1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Instruction.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Module.h" 17 #include "llvm/IR/Operator.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include <utility> 24 25 using namespace llvm; 26 using namespace PatternMatch; 27 28 #define DEBUG_TYPE "tti" 29 30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 31 cl::Hidden, 32 cl::desc("Recognize reduction patterns.")); 33 34 namespace { 35 /// No-op implementation of the TTI interface using the utility base 36 /// classes. 37 /// 38 /// This is used when no target specific information is available. 39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 40 explicit NoTTIImpl(const DataLayout &DL) 41 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 42 }; 43 } 44 45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 46 // If the loop has irreducible control flow, it can not be converted to 47 // Hardware loop. 48 LoopBlocksRPO RPOT(L); 49 RPOT.perform(&LI); 50 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 51 return false; 52 return true; 53 } 54 55 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 56 LoopInfo &LI, DominatorTree &DT, 57 bool ForceNestedLoop, 58 bool ForceHardwareLoopPHI) { 59 SmallVector<BasicBlock *, 4> ExitingBlocks; 60 L->getExitingBlocks(ExitingBlocks); 61 62 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 63 IE = ExitingBlocks.end(); 64 I != IE; ++I) { 65 BasicBlock *BB = *I; 66 67 // If we pass the updated counter back through a phi, we need to know 68 // which latch the updated value will be coming from. 69 if (!L->isLoopLatch(BB)) { 70 if (ForceHardwareLoopPHI || CounterInReg) 71 continue; 72 } 73 74 const SCEV *EC = SE.getExitCount(L, BB); 75 if (isa<SCEVCouldNotCompute>(EC)) 76 continue; 77 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 78 if (ConstEC->getValue()->isZero()) 79 continue; 80 } else if (!SE.isLoopInvariant(EC, L)) 81 continue; 82 83 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 84 continue; 85 86 // If this exiting block is contained in a nested loop, it is not eligible 87 // for insertion of the branch-and-decrement since the inner loop would 88 // end up messing up the value in the CTR. 89 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 90 continue; 91 92 // We now have a loop-invariant count of loop iterations (which is not the 93 // constant zero) for which we know that this loop will not exit via this 94 // existing block. 95 96 // We need to make sure that this block will run on every loop iteration. 97 // For this to be true, we must dominate all blocks with backedges. Such 98 // blocks are in-loop predecessors to the header block. 99 bool NotAlways = false; 100 for (pred_iterator PI = pred_begin(L->getHeader()), 101 PIE = pred_end(L->getHeader()); 102 PI != PIE; ++PI) { 103 if (!L->contains(*PI)) 104 continue; 105 106 if (!DT.dominates(*I, *PI)) { 107 NotAlways = true; 108 break; 109 } 110 } 111 112 if (NotAlways) 113 continue; 114 115 // Make sure this blocks ends with a conditional branch. 116 Instruction *TI = BB->getTerminator(); 117 if (!TI) 118 continue; 119 120 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 121 if (!BI->isConditional()) 122 continue; 123 124 ExitBranch = BI; 125 } else 126 continue; 127 128 // Note that this block may not be the loop latch block, even if the loop 129 // has a latch block. 130 ExitBlock = *I; 131 ExitCount = EC; 132 break; 133 } 134 135 if (!ExitBlock) 136 return false; 137 return true; 138 } 139 140 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 141 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 142 143 TargetTransformInfo::~TargetTransformInfo() {} 144 145 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 146 : TTIImpl(std::move(Arg.TTIImpl)) {} 147 148 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 149 TTIImpl = std::move(RHS.TTIImpl); 150 return *this; 151 } 152 153 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 154 Type *OpTy) const { 155 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 156 assert(Cost >= 0 && "TTI should not produce negative costs!"); 157 return Cost; 158 } 159 160 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 161 const User *U) const { 162 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 163 assert(Cost >= 0 && "TTI should not produce negative costs!"); 164 return Cost; 165 } 166 167 int TargetTransformInfo::getCallCost(const Function *F, 168 ArrayRef<const Value *> Arguments, 169 const User *U) const { 170 int Cost = TTIImpl->getCallCost(F, Arguments, U); 171 assert(Cost >= 0 && "TTI should not produce negative costs!"); 172 return Cost; 173 } 174 175 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 176 return TTIImpl->getInliningThresholdMultiplier(); 177 } 178 179 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 180 return TTIImpl->getInlinerVectorBonusPercent(); 181 } 182 183 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 184 ArrayRef<const Value *> Operands) const { 185 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 186 } 187 188 int TargetTransformInfo::getExtCost(const Instruction *I, 189 const Value *Src) const { 190 return TTIImpl->getExtCost(I, Src); 191 } 192 193 int TargetTransformInfo::getIntrinsicCost( 194 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 195 const User *U) const { 196 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 197 assert(Cost >= 0 && "TTI should not produce negative costs!"); 198 return Cost; 199 } 200 201 unsigned 202 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 203 unsigned &JTSize) const { 204 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 205 } 206 207 int TargetTransformInfo::getUserCost(const User *U, 208 ArrayRef<const Value *> Operands) const { 209 int Cost = TTIImpl->getUserCost(U, Operands); 210 assert(Cost >= 0 && "TTI should not produce negative costs!"); 211 return Cost; 212 } 213 214 bool TargetTransformInfo::hasBranchDivergence() const { 215 return TTIImpl->hasBranchDivergence(); 216 } 217 218 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 219 return TTIImpl->isSourceOfDivergence(V); 220 } 221 222 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 223 return TTIImpl->isAlwaysUniform(V); 224 } 225 226 unsigned TargetTransformInfo::getFlatAddressSpace() const { 227 return TTIImpl->getFlatAddressSpace(); 228 } 229 230 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 231 return TTIImpl->isLoweredToCall(F); 232 } 233 234 bool TargetTransformInfo::isHardwareLoopProfitable( 235 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 236 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 237 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 238 } 239 240 void TargetTransformInfo::getUnrollingPreferences( 241 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 242 return TTIImpl->getUnrollingPreferences(L, SE, UP); 243 } 244 245 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 246 return TTIImpl->isLegalAddImmediate(Imm); 247 } 248 249 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 250 return TTIImpl->isLegalICmpImmediate(Imm); 251 } 252 253 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 254 int64_t BaseOffset, 255 bool HasBaseReg, 256 int64_t Scale, 257 unsigned AddrSpace, 258 Instruction *I) const { 259 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 260 Scale, AddrSpace, I); 261 } 262 263 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 264 return TTIImpl->isLSRCostLess(C1, C2); 265 } 266 267 bool TargetTransformInfo::canMacroFuseCmp() const { 268 return TTIImpl->canMacroFuseCmp(); 269 } 270 271 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 272 ScalarEvolution *SE, LoopInfo *LI, 273 DominatorTree *DT, AssumptionCache *AC, 274 TargetLibraryInfo *LibInfo) const { 275 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 276 } 277 278 bool TargetTransformInfo::shouldFavorPostInc() const { 279 return TTIImpl->shouldFavorPostInc(); 280 } 281 282 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 283 return TTIImpl->shouldFavorBackedgeIndex(L); 284 } 285 286 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 287 return TTIImpl->isLegalMaskedStore(DataType); 288 } 289 290 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 291 return TTIImpl->isLegalMaskedLoad(DataType); 292 } 293 294 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 295 unsigned Alignment) const { 296 return TTIImpl->isLegalNTStore(DataType, Alignment); 297 } 298 299 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, 300 unsigned Alignment) const { 301 return TTIImpl->isLegalNTLoad(DataType, Alignment); 302 } 303 304 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 305 return TTIImpl->isLegalMaskedGather(DataType); 306 } 307 308 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 309 return TTIImpl->isLegalMaskedScatter(DataType); 310 } 311 312 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 313 return TTIImpl->isLegalMaskedCompressStore(DataType); 314 } 315 316 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 317 return TTIImpl->isLegalMaskedExpandLoad(DataType); 318 } 319 320 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 321 return TTIImpl->hasDivRemOp(DataType, IsSigned); 322 } 323 324 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 325 unsigned AddrSpace) const { 326 return TTIImpl->hasVolatileVariant(I, AddrSpace); 327 } 328 329 bool TargetTransformInfo::prefersVectorizedAddressing() const { 330 return TTIImpl->prefersVectorizedAddressing(); 331 } 332 333 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 334 int64_t BaseOffset, 335 bool HasBaseReg, 336 int64_t Scale, 337 unsigned AddrSpace) const { 338 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 339 Scale, AddrSpace); 340 assert(Cost >= 0 && "TTI should not produce negative costs!"); 341 return Cost; 342 } 343 344 bool TargetTransformInfo::LSRWithInstrQueries() const { 345 return TTIImpl->LSRWithInstrQueries(); 346 } 347 348 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 349 return TTIImpl->isTruncateFree(Ty1, Ty2); 350 } 351 352 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 353 return TTIImpl->isProfitableToHoist(I); 354 } 355 356 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 357 358 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 359 return TTIImpl->isTypeLegal(Ty); 360 } 361 362 unsigned TargetTransformInfo::getJumpBufAlignment() const { 363 return TTIImpl->getJumpBufAlignment(); 364 } 365 366 unsigned TargetTransformInfo::getJumpBufSize() const { 367 return TTIImpl->getJumpBufSize(); 368 } 369 370 bool TargetTransformInfo::shouldBuildLookupTables() const { 371 return TTIImpl->shouldBuildLookupTables(); 372 } 373 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 374 return TTIImpl->shouldBuildLookupTablesForConstant(C); 375 } 376 377 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 378 return TTIImpl->useColdCCForColdCall(F); 379 } 380 381 unsigned TargetTransformInfo:: 382 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 383 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 384 } 385 386 unsigned TargetTransformInfo:: 387 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 388 unsigned VF) const { 389 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 390 } 391 392 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 393 return TTIImpl->supportsEfficientVectorElementLoadStore(); 394 } 395 396 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 397 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 398 } 399 400 TargetTransformInfo::MemCmpExpansionOptions 401 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 402 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 403 } 404 405 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 406 return TTIImpl->enableInterleavedAccessVectorization(); 407 } 408 409 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 410 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 411 } 412 413 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 414 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 415 } 416 417 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 418 unsigned BitWidth, 419 unsigned AddressSpace, 420 unsigned Alignment, 421 bool *Fast) const { 422 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 423 Alignment, Fast); 424 } 425 426 TargetTransformInfo::PopcntSupportKind 427 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 428 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 429 } 430 431 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 432 return TTIImpl->haveFastSqrt(Ty); 433 } 434 435 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 436 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 437 } 438 439 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 440 int Cost = TTIImpl->getFPOpCost(Ty); 441 assert(Cost >= 0 && "TTI should not produce negative costs!"); 442 return Cost; 443 } 444 445 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 446 const APInt &Imm, 447 Type *Ty) const { 448 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 449 assert(Cost >= 0 && "TTI should not produce negative costs!"); 450 return Cost; 451 } 452 453 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 454 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 455 assert(Cost >= 0 && "TTI should not produce negative costs!"); 456 return Cost; 457 } 458 459 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 460 const APInt &Imm, Type *Ty) const { 461 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 462 assert(Cost >= 0 && "TTI should not produce negative costs!"); 463 return Cost; 464 } 465 466 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 467 const APInt &Imm, Type *Ty) const { 468 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 469 assert(Cost >= 0 && "TTI should not produce negative costs!"); 470 return Cost; 471 } 472 473 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 474 return TTIImpl->getNumberOfRegisters(Vector); 475 } 476 477 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 478 return TTIImpl->getRegisterBitWidth(Vector); 479 } 480 481 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 482 return TTIImpl->getMinVectorRegisterBitWidth(); 483 } 484 485 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 486 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 487 } 488 489 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 490 return TTIImpl->getMinimumVF(ElemWidth); 491 } 492 493 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 494 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 495 return TTIImpl->shouldConsiderAddressTypePromotion( 496 I, AllowPromotionWithoutCommonHeader); 497 } 498 499 unsigned TargetTransformInfo::getCacheLineSize() const { 500 return TTIImpl->getCacheLineSize(); 501 } 502 503 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 504 const { 505 return TTIImpl->getCacheSize(Level); 506 } 507 508 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 509 CacheLevel Level) const { 510 return TTIImpl->getCacheAssociativity(Level); 511 } 512 513 unsigned TargetTransformInfo::getPrefetchDistance() const { 514 return TTIImpl->getPrefetchDistance(); 515 } 516 517 unsigned TargetTransformInfo::getMinPrefetchStride() const { 518 return TTIImpl->getMinPrefetchStride(); 519 } 520 521 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 522 return TTIImpl->getMaxPrefetchIterationsAhead(); 523 } 524 525 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 526 return TTIImpl->getMaxInterleaveFactor(VF); 527 } 528 529 TargetTransformInfo::OperandValueKind 530 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 531 OperandValueKind OpInfo = OK_AnyValue; 532 OpProps = OP_None; 533 534 if (auto *CI = dyn_cast<ConstantInt>(V)) { 535 if (CI->getValue().isPowerOf2()) 536 OpProps = OP_PowerOf2; 537 return OK_UniformConstantValue; 538 } 539 540 // A broadcast shuffle creates a uniform value. 541 // TODO: Add support for non-zero index broadcasts. 542 // TODO: Add support for different source vector width. 543 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 544 if (ShuffleInst->isZeroEltSplat()) 545 OpInfo = OK_UniformValue; 546 547 const Value *Splat = getSplatValue(V); 548 549 // Check for a splat of a constant or for a non uniform vector of constants 550 // and check if the constant(s) are all powers of two. 551 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 552 OpInfo = OK_NonUniformConstantValue; 553 if (Splat) { 554 OpInfo = OK_UniformConstantValue; 555 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 556 if (CI->getValue().isPowerOf2()) 557 OpProps = OP_PowerOf2; 558 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 559 OpProps = OP_PowerOf2; 560 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 561 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 562 if (CI->getValue().isPowerOf2()) 563 continue; 564 OpProps = OP_None; 565 break; 566 } 567 } 568 } 569 570 // Check for a splat of a uniform value. This is not loop aware, so return 571 // true only for the obviously uniform cases (argument, globalvalue) 572 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 573 OpInfo = OK_UniformValue; 574 575 return OpInfo; 576 } 577 578 int TargetTransformInfo::getArithmeticInstrCost( 579 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 580 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 581 OperandValueProperties Opd2PropInfo, 582 ArrayRef<const Value *> Args) const { 583 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 584 Opd1PropInfo, Opd2PropInfo, Args); 585 assert(Cost >= 0 && "TTI should not produce negative costs!"); 586 return Cost; 587 } 588 589 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 590 Type *SubTp) const { 591 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 592 assert(Cost >= 0 && "TTI should not produce negative costs!"); 593 return Cost; 594 } 595 596 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 597 Type *Src, const Instruction *I) const { 598 assert ((I == nullptr || I->getOpcode() == Opcode) && 599 "Opcode should reflect passed instruction."); 600 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 601 assert(Cost >= 0 && "TTI should not produce negative costs!"); 602 return Cost; 603 } 604 605 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 606 VectorType *VecTy, 607 unsigned Index) const { 608 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 609 assert(Cost >= 0 && "TTI should not produce negative costs!"); 610 return Cost; 611 } 612 613 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 614 int Cost = TTIImpl->getCFInstrCost(Opcode); 615 assert(Cost >= 0 && "TTI should not produce negative costs!"); 616 return Cost; 617 } 618 619 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 620 Type *CondTy, const Instruction *I) const { 621 assert ((I == nullptr || I->getOpcode() == Opcode) && 622 "Opcode should reflect passed instruction."); 623 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 624 assert(Cost >= 0 && "TTI should not produce negative costs!"); 625 return Cost; 626 } 627 628 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 629 unsigned Index) const { 630 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 636 unsigned Alignment, 637 unsigned AddressSpace, 638 const Instruction *I) const { 639 assert ((I == nullptr || I->getOpcode() == Opcode) && 640 "Opcode should reflect passed instruction."); 641 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 642 assert(Cost >= 0 && "TTI should not produce negative costs!"); 643 return Cost; 644 } 645 646 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 647 unsigned Alignment, 648 unsigned AddressSpace) const { 649 int Cost = 650 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 651 assert(Cost >= 0 && "TTI should not produce negative costs!"); 652 return Cost; 653 } 654 655 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 656 Value *Ptr, bool VariableMask, 657 unsigned Alignment) const { 658 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 659 Alignment); 660 assert(Cost >= 0 && "TTI should not produce negative costs!"); 661 return Cost; 662 } 663 664 int TargetTransformInfo::getInterleavedMemoryOpCost( 665 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 666 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 667 bool UseMaskForGaps) const { 668 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 669 Alignment, AddressSpace, 670 UseMaskForCond, 671 UseMaskForGaps); 672 assert(Cost >= 0 && "TTI should not produce negative costs!"); 673 return Cost; 674 } 675 676 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 677 ArrayRef<Type *> Tys, FastMathFlags FMF, 678 unsigned ScalarizationCostPassed) const { 679 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 680 ScalarizationCostPassed); 681 assert(Cost >= 0 && "TTI should not produce negative costs!"); 682 return Cost; 683 } 684 685 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 686 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 687 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 688 assert(Cost >= 0 && "TTI should not produce negative costs!"); 689 return Cost; 690 } 691 692 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 693 ArrayRef<Type *> Tys) const { 694 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 695 assert(Cost >= 0 && "TTI should not produce negative costs!"); 696 return Cost; 697 } 698 699 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 700 return TTIImpl->getNumberOfParts(Tp); 701 } 702 703 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 704 ScalarEvolution *SE, 705 const SCEV *Ptr) const { 706 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 707 assert(Cost >= 0 && "TTI should not produce negative costs!"); 708 return Cost; 709 } 710 711 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 712 int Cost = TTIImpl->getMemcpyCost(I); 713 assert(Cost >= 0 && "TTI should not produce negative costs!"); 714 return Cost; 715 } 716 717 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 718 bool IsPairwiseForm) const { 719 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 720 assert(Cost >= 0 && "TTI should not produce negative costs!"); 721 return Cost; 722 } 723 724 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 725 bool IsPairwiseForm, 726 bool IsUnsigned) const { 727 int Cost = 728 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 729 assert(Cost >= 0 && "TTI should not produce negative costs!"); 730 return Cost; 731 } 732 733 unsigned 734 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 735 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 736 } 737 738 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 739 MemIntrinsicInfo &Info) const { 740 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 741 } 742 743 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 744 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 745 } 746 747 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 748 IntrinsicInst *Inst, Type *ExpectedType) const { 749 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 750 } 751 752 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 753 Value *Length, 754 unsigned SrcAlign, 755 unsigned DestAlign) const { 756 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 757 DestAlign); 758 } 759 760 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 761 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 762 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 763 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 764 SrcAlign, DestAlign); 765 } 766 767 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 768 const Function *Callee) const { 769 return TTIImpl->areInlineCompatible(Caller, Callee); 770 } 771 772 bool TargetTransformInfo::areFunctionArgsABICompatible( 773 const Function *Caller, const Function *Callee, 774 SmallPtrSetImpl<Argument *> &Args) const { 775 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 776 } 777 778 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 779 Type *Ty) const { 780 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 781 } 782 783 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 784 Type *Ty) const { 785 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 786 } 787 788 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 789 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 790 } 791 792 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 793 return TTIImpl->isLegalToVectorizeLoad(LI); 794 } 795 796 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 797 return TTIImpl->isLegalToVectorizeStore(SI); 798 } 799 800 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 801 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 802 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 803 AddrSpace); 804 } 805 806 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 807 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 808 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 809 AddrSpace); 810 } 811 812 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 813 unsigned LoadSize, 814 unsigned ChainSizeInBytes, 815 VectorType *VecTy) const { 816 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 817 } 818 819 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 820 unsigned StoreSize, 821 unsigned ChainSizeInBytes, 822 VectorType *VecTy) const { 823 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 824 } 825 826 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 827 Type *Ty, ReductionFlags Flags) const { 828 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 829 } 830 831 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 832 return TTIImpl->shouldExpandReduction(II); 833 } 834 835 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 836 return TTIImpl->getGISelRematGlobalCost(); 837 } 838 839 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 840 return TTIImpl->getInstructionLatency(I); 841 } 842 843 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 844 unsigned Level) { 845 // We don't need a shuffle if we just want to have element 0 in position 0 of 846 // the vector. 847 if (!SI && Level == 0 && IsLeft) 848 return true; 849 else if (!SI) 850 return false; 851 852 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 853 854 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 855 // we look at the left or right side. 856 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 857 Mask[i] = val; 858 859 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 860 return Mask == ActualMask; 861 } 862 863 namespace { 864 /// Kind of the reduction data. 865 enum ReductionKind { 866 RK_None, /// Not a reduction. 867 RK_Arithmetic, /// Binary reduction data. 868 RK_MinMax, /// Min/max reduction data. 869 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 870 }; 871 /// Contains opcode + LHS/RHS parts of the reduction operations. 872 struct ReductionData { 873 ReductionData() = delete; 874 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 875 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 876 assert(Kind != RK_None && "expected binary or min/max reduction only."); 877 } 878 unsigned Opcode = 0; 879 Value *LHS = nullptr; 880 Value *RHS = nullptr; 881 ReductionKind Kind = RK_None; 882 bool hasSameData(ReductionData &RD) const { 883 return Kind == RD.Kind && Opcode == RD.Opcode; 884 } 885 }; 886 } // namespace 887 888 static Optional<ReductionData> getReductionData(Instruction *I) { 889 Value *L, *R; 890 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 891 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 892 if (auto *SI = dyn_cast<SelectInst>(I)) { 893 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 894 m_SMax(m_Value(L), m_Value(R)).match(SI) || 895 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 896 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 897 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 898 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 899 auto *CI = cast<CmpInst>(SI->getCondition()); 900 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 901 } 902 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 903 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 904 auto *CI = cast<CmpInst>(SI->getCondition()); 905 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 906 } 907 } 908 return llvm::None; 909 } 910 911 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 912 unsigned Level, 913 unsigned NumLevels) { 914 // Match one level of pairwise operations. 915 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 916 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 917 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 918 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 919 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 920 if (!I) 921 return RK_None; 922 923 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 924 925 Optional<ReductionData> RD = getReductionData(I); 926 if (!RD) 927 return RK_None; 928 929 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 930 if (!LS && Level) 931 return RK_None; 932 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 933 if (!RS && Level) 934 return RK_None; 935 936 // On level 0 we can omit one shufflevector instruction. 937 if (!Level && !RS && !LS) 938 return RK_None; 939 940 // Shuffle inputs must match. 941 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 942 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 943 Value *NextLevelOp = nullptr; 944 if (NextLevelOpR && NextLevelOpL) { 945 // If we have two shuffles their operands must match. 946 if (NextLevelOpL != NextLevelOpR) 947 return RK_None; 948 949 NextLevelOp = NextLevelOpL; 950 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 951 // On the first level we can omit the shufflevector <0, undef,...>. So the 952 // input to the other shufflevector <1, undef> must match with one of the 953 // inputs to the current binary operation. 954 // Example: 955 // %NextLevelOpL = shufflevector %R, <1, undef ...> 956 // %BinOp = fadd %NextLevelOpL, %R 957 if (NextLevelOpL && NextLevelOpL != RD->RHS) 958 return RK_None; 959 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 960 return RK_None; 961 962 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 963 } else 964 return RK_None; 965 966 // Check that the next levels binary operation exists and matches with the 967 // current one. 968 if (Level + 1 != NumLevels) { 969 Optional<ReductionData> NextLevelRD = 970 getReductionData(cast<Instruction>(NextLevelOp)); 971 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 972 return RK_None; 973 } 974 975 // Shuffle mask for pairwise operation must match. 976 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 977 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 978 return RK_None; 979 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 980 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 981 return RK_None; 982 } else { 983 return RK_None; 984 } 985 986 if (++Level == NumLevels) 987 return RD->Kind; 988 989 // Match next level. 990 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 991 NumLevels); 992 } 993 994 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 995 unsigned &Opcode, Type *&Ty) { 996 if (!EnableReduxCost) 997 return RK_None; 998 999 // Need to extract the first element. 1000 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1001 unsigned Idx = ~0u; 1002 if (CI) 1003 Idx = CI->getZExtValue(); 1004 if (Idx != 0) 1005 return RK_None; 1006 1007 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1008 if (!RdxStart) 1009 return RK_None; 1010 Optional<ReductionData> RD = getReductionData(RdxStart); 1011 if (!RD) 1012 return RK_None; 1013 1014 Type *VecTy = RdxStart->getType(); 1015 unsigned NumVecElems = VecTy->getVectorNumElements(); 1016 if (!isPowerOf2_32(NumVecElems)) 1017 return RK_None; 1018 1019 // We look for a sequence of shuffle,shuffle,add triples like the following 1020 // that builds a pairwise reduction tree. 1021 // 1022 // (X0, X1, X2, X3) 1023 // (X0 + X1, X2 + X3, undef, undef) 1024 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1025 // 1026 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1027 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1028 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1029 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1030 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1031 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1032 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1033 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1034 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1035 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1036 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1037 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1038 RK_None) 1039 return RK_None; 1040 1041 Opcode = RD->Opcode; 1042 Ty = VecTy; 1043 1044 return RD->Kind; 1045 } 1046 1047 static std::pair<Value *, ShuffleVectorInst *> 1048 getShuffleAndOtherOprd(Value *L, Value *R) { 1049 ShuffleVectorInst *S = nullptr; 1050 1051 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1052 return std::make_pair(R, S); 1053 1054 S = dyn_cast<ShuffleVectorInst>(R); 1055 return std::make_pair(L, S); 1056 } 1057 1058 static ReductionKind 1059 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1060 unsigned &Opcode, Type *&Ty) { 1061 if (!EnableReduxCost) 1062 return RK_None; 1063 1064 // Need to extract the first element. 1065 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1066 unsigned Idx = ~0u; 1067 if (CI) 1068 Idx = CI->getZExtValue(); 1069 if (Idx != 0) 1070 return RK_None; 1071 1072 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1073 if (!RdxStart) 1074 return RK_None; 1075 Optional<ReductionData> RD = getReductionData(RdxStart); 1076 if (!RD) 1077 return RK_None; 1078 1079 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 1080 unsigned NumVecElems = VecTy->getVectorNumElements(); 1081 if (!isPowerOf2_32(NumVecElems)) 1082 return RK_None; 1083 1084 // We look for a sequence of shuffles and adds like the following matching one 1085 // fadd, shuffle vector pair at a time. 1086 // 1087 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1088 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1089 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1090 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1091 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1092 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1093 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1094 1095 unsigned MaskStart = 1; 1096 Instruction *RdxOp = RdxStart; 1097 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1098 unsigned NumVecElemsRemain = NumVecElems; 1099 while (NumVecElemsRemain - 1) { 1100 // Check for the right reduction operation. 1101 if (!RdxOp) 1102 return RK_None; 1103 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1104 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1105 return RK_None; 1106 1107 Value *NextRdxOp; 1108 ShuffleVectorInst *Shuffle; 1109 std::tie(NextRdxOp, Shuffle) = 1110 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1111 1112 // Check the current reduction operation and the shuffle use the same value. 1113 if (Shuffle == nullptr) 1114 return RK_None; 1115 if (Shuffle->getOperand(0) != NextRdxOp) 1116 return RK_None; 1117 1118 // Check that shuffle masks matches. 1119 for (unsigned j = 0; j != MaskStart; ++j) 1120 ShuffleMask[j] = MaskStart + j; 1121 // Fill the rest of the mask with -1 for undef. 1122 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1123 1124 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1125 if (ShuffleMask != Mask) 1126 return RK_None; 1127 1128 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1129 NumVecElemsRemain /= 2; 1130 MaskStart *= 2; 1131 } 1132 1133 Opcode = RD->Opcode; 1134 Ty = VecTy; 1135 return RD->Kind; 1136 } 1137 1138 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1139 switch (I->getOpcode()) { 1140 case Instruction::GetElementPtr: 1141 return getUserCost(I); 1142 1143 case Instruction::Ret: 1144 case Instruction::PHI: 1145 case Instruction::Br: { 1146 return getCFInstrCost(I->getOpcode()); 1147 } 1148 case Instruction::Add: 1149 case Instruction::FAdd: 1150 case Instruction::Sub: 1151 case Instruction::FSub: 1152 case Instruction::Mul: 1153 case Instruction::FMul: 1154 case Instruction::UDiv: 1155 case Instruction::SDiv: 1156 case Instruction::FDiv: 1157 case Instruction::URem: 1158 case Instruction::SRem: 1159 case Instruction::FRem: 1160 case Instruction::Shl: 1161 case Instruction::LShr: 1162 case Instruction::AShr: 1163 case Instruction::And: 1164 case Instruction::Or: 1165 case Instruction::Xor: { 1166 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1167 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1168 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1169 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1170 SmallVector<const Value *, 2> Operands(I->operand_values()); 1171 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1172 Op1VP, Op2VP, Operands); 1173 } 1174 case Instruction::FNeg: { 1175 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1176 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1177 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1178 Op2VK = OK_AnyValue; 1179 Op2VP = OP_None; 1180 SmallVector<const Value *, 2> Operands(I->operand_values()); 1181 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1182 Op1VP, Op2VP, Operands); 1183 } 1184 case Instruction::Select: { 1185 const SelectInst *SI = cast<SelectInst>(I); 1186 Type *CondTy = SI->getCondition()->getType(); 1187 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1188 } 1189 case Instruction::ICmp: 1190 case Instruction::FCmp: { 1191 Type *ValTy = I->getOperand(0)->getType(); 1192 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1193 } 1194 case Instruction::Store: { 1195 const StoreInst *SI = cast<StoreInst>(I); 1196 Type *ValTy = SI->getValueOperand()->getType(); 1197 return getMemoryOpCost(I->getOpcode(), ValTy, 1198 SI->getAlignment(), 1199 SI->getPointerAddressSpace(), I); 1200 } 1201 case Instruction::Load: { 1202 const LoadInst *LI = cast<LoadInst>(I); 1203 return getMemoryOpCost(I->getOpcode(), I->getType(), 1204 LI->getAlignment(), 1205 LI->getPointerAddressSpace(), I); 1206 } 1207 case Instruction::ZExt: 1208 case Instruction::SExt: 1209 case Instruction::FPToUI: 1210 case Instruction::FPToSI: 1211 case Instruction::FPExt: 1212 case Instruction::PtrToInt: 1213 case Instruction::IntToPtr: 1214 case Instruction::SIToFP: 1215 case Instruction::UIToFP: 1216 case Instruction::Trunc: 1217 case Instruction::FPTrunc: 1218 case Instruction::BitCast: 1219 case Instruction::AddrSpaceCast: { 1220 Type *SrcTy = I->getOperand(0)->getType(); 1221 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1222 } 1223 case Instruction::ExtractElement: { 1224 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1225 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1226 unsigned Idx = -1; 1227 if (CI) 1228 Idx = CI->getZExtValue(); 1229 1230 // Try to match a reduction sequence (series of shufflevector and vector 1231 // adds followed by a extractelement). 1232 unsigned ReduxOpCode; 1233 Type *ReduxType; 1234 1235 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1236 case RK_Arithmetic: 1237 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1238 /*IsPairwiseForm=*/false); 1239 case RK_MinMax: 1240 return getMinMaxReductionCost( 1241 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1242 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1243 case RK_UnsignedMinMax: 1244 return getMinMaxReductionCost( 1245 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1246 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1247 case RK_None: 1248 break; 1249 } 1250 1251 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1252 case RK_Arithmetic: 1253 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1254 /*IsPairwiseForm=*/true); 1255 case RK_MinMax: 1256 return getMinMaxReductionCost( 1257 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1258 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1259 case RK_UnsignedMinMax: 1260 return getMinMaxReductionCost( 1261 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1262 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1263 case RK_None: 1264 break; 1265 } 1266 1267 return getVectorInstrCost(I->getOpcode(), 1268 EEI->getOperand(0)->getType(), Idx); 1269 } 1270 case Instruction::InsertElement: { 1271 const InsertElementInst * IE = cast<InsertElementInst>(I); 1272 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1273 unsigned Idx = -1; 1274 if (CI) 1275 Idx = CI->getZExtValue(); 1276 return getVectorInstrCost(I->getOpcode(), 1277 IE->getType(), Idx); 1278 } 1279 case Instruction::ShuffleVector: { 1280 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1281 Type *Ty = Shuffle->getType(); 1282 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1283 1284 // TODO: Identify and add costs for insert subvector, etc. 1285 int SubIndex; 1286 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1287 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1288 1289 if (Shuffle->changesLength()) 1290 return -1; 1291 1292 if (Shuffle->isIdentity()) 1293 return 0; 1294 1295 if (Shuffle->isReverse()) 1296 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1297 1298 if (Shuffle->isSelect()) 1299 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1300 1301 if (Shuffle->isTranspose()) 1302 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1303 1304 if (Shuffle->isZeroEltSplat()) 1305 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1306 1307 if (Shuffle->isSingleSource()) 1308 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1309 1310 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1311 } 1312 case Instruction::Call: 1313 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1314 SmallVector<Value *, 4> Args(II->arg_operands()); 1315 1316 FastMathFlags FMF; 1317 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1318 FMF = FPMO->getFastMathFlags(); 1319 1320 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1321 Args, FMF); 1322 } 1323 return -1; 1324 default: 1325 // We don't have any information on this instruction. 1326 return -1; 1327 } 1328 } 1329 1330 TargetTransformInfo::Concept::~Concept() {} 1331 1332 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1333 1334 TargetIRAnalysis::TargetIRAnalysis( 1335 std::function<Result(const Function &)> TTICallback) 1336 : TTICallback(std::move(TTICallback)) {} 1337 1338 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1339 FunctionAnalysisManager &) { 1340 return TTICallback(F); 1341 } 1342 1343 AnalysisKey TargetIRAnalysis::Key; 1344 1345 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1346 return Result(F.getParent()->getDataLayout()); 1347 } 1348 1349 // Register the basic pass. 1350 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1351 "Target Transform Information", false, true) 1352 char TargetTransformInfoWrapperPass::ID = 0; 1353 1354 void TargetTransformInfoWrapperPass::anchor() {} 1355 1356 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1357 : ImmutablePass(ID) { 1358 initializeTargetTransformInfoWrapperPassPass( 1359 *PassRegistry::getPassRegistry()); 1360 } 1361 1362 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1363 TargetIRAnalysis TIRA) 1364 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1365 initializeTargetTransformInfoWrapperPassPass( 1366 *PassRegistry::getPassRegistry()); 1367 } 1368 1369 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1370 FunctionAnalysisManager DummyFAM; 1371 TTI = TIRA.run(F, DummyFAM); 1372 return *TTI; 1373 } 1374 1375 ImmutablePass * 1376 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1377 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1378 } 1379