xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <optional>
24 #include <utility>
25 
26 using namespace llvm;
27 using namespace PatternMatch;
28 
29 #define DEBUG_TYPE "tti"
30 
31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
32                                      cl::Hidden,
33                                      cl::desc("Recognize reduction patterns."));
34 
35 static cl::opt<unsigned> CacheLineSize(
36     "cache-line-size", cl::init(0), cl::Hidden,
37     cl::desc("Use this to override the target cache line size when "
38              "specified by the user."));
39 
40 namespace {
41 /// No-op implementation of the TTI interface using the utility base
42 /// classes.
43 ///
44 /// This is used when no target specific information is available.
45 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
46   explicit NoTTIImpl(const DataLayout &DL)
47       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
48 };
49 } // namespace
50 
51 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
52   // If the loop has irreducible control flow, it can not be converted to
53   // Hardware loop.
54   LoopBlocksRPO RPOT(L);
55   RPOT.perform(&LI);
56   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
57     return false;
58   return true;
59 }
60 
61 IntrinsicCostAttributes::IntrinsicCostAttributes(
62     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost,
63     bool TypeBasedOnly)
64     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
65       ScalarizationCost(ScalarizationCost) {
66 
67   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
68     FMF = FPMO->getFastMathFlags();
69 
70   if (!TypeBasedOnly)
71     Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
72   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
73   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
74 }
75 
76 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
77                                                  ArrayRef<Type *> Tys,
78                                                  FastMathFlags Flags,
79                                                  const IntrinsicInst *I,
80                                                  InstructionCost ScalarCost)
81     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
82   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
83 }
84 
85 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
86                                                  ArrayRef<const Value *> Args)
87     : RetTy(Ty), IID(Id) {
88 
89   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
90   ParamTys.reserve(Arguments.size());
91   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
92     ParamTys.push_back(Arguments[Idx]->getType());
93 }
94 
95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
96                                                  ArrayRef<const Value *> Args,
97                                                  ArrayRef<Type *> Tys,
98                                                  FastMathFlags Flags,
99                                                  const IntrinsicInst *I,
100                                                  InstructionCost ScalarCost)
101     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
102   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
103   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
104 }
105 
106 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
107                                                LoopInfo &LI, DominatorTree &DT,
108                                                bool ForceNestedLoop,
109                                                bool ForceHardwareLoopPHI) {
110   SmallVector<BasicBlock *, 4> ExitingBlocks;
111   L->getExitingBlocks(ExitingBlocks);
112 
113   for (BasicBlock *BB : ExitingBlocks) {
114     // If we pass the updated counter back through a phi, we need to know
115     // which latch the updated value will be coming from.
116     if (!L->isLoopLatch(BB)) {
117       if (ForceHardwareLoopPHI || CounterInReg)
118         continue;
119     }
120 
121     const SCEV *EC = SE.getExitCount(L, BB);
122     if (isa<SCEVCouldNotCompute>(EC))
123       continue;
124     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
125       if (ConstEC->getValue()->isZero())
126         continue;
127     } else if (!SE.isLoopInvariant(EC, L))
128       continue;
129 
130     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
131       continue;
132 
133     // If this exiting block is contained in a nested loop, it is not eligible
134     // for insertion of the branch-and-decrement since the inner loop would
135     // end up messing up the value in the CTR.
136     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
137       continue;
138 
139     // We now have a loop-invariant count of loop iterations (which is not the
140     // constant zero) for which we know that this loop will not exit via this
141     // existing block.
142 
143     // We need to make sure that this block will run on every loop iteration.
144     // For this to be true, we must dominate all blocks with backedges. Such
145     // blocks are in-loop predecessors to the header block.
146     bool NotAlways = false;
147     for (BasicBlock *Pred : predecessors(L->getHeader())) {
148       if (!L->contains(Pred))
149         continue;
150 
151       if (!DT.dominates(BB, Pred)) {
152         NotAlways = true;
153         break;
154       }
155     }
156 
157     if (NotAlways)
158       continue;
159 
160     // Make sure this blocks ends with a conditional branch.
161     Instruction *TI = BB->getTerminator();
162     if (!TI)
163       continue;
164 
165     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
166       if (!BI->isConditional())
167         continue;
168 
169       ExitBranch = BI;
170     } else
171       continue;
172 
173     // Note that this block may not be the loop latch block, even if the loop
174     // has a latch block.
175     ExitBlock = BB;
176     ExitCount = EC;
177     break;
178   }
179 
180   if (!ExitBlock)
181     return false;
182   return true;
183 }
184 
185 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
186     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
187 
188 TargetTransformInfo::~TargetTransformInfo() = default;
189 
190 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
191     : TTIImpl(std::move(Arg.TTIImpl)) {}
192 
193 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
194   TTIImpl = std::move(RHS.TTIImpl);
195   return *this;
196 }
197 
198 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
199   return TTIImpl->getInliningThresholdMultiplier();
200 }
201 
202 unsigned
203 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
204   return TTIImpl->adjustInliningThreshold(CB);
205 }
206 
207 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
208   return TTIImpl->getInlinerVectorBonusPercent();
209 }
210 
211 InstructionCost
212 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
213                                 ArrayRef<const Value *> Operands,
214                                 TTI::TargetCostKind CostKind) const {
215   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
216 }
217 
218 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
219     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
220     BlockFrequencyInfo *BFI) const {
221   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
222 }
223 
224 InstructionCost
225 TargetTransformInfo::getInstructionCost(const User *U,
226                                         ArrayRef<const Value *> Operands,
227                                         enum TargetCostKind CostKind) const {
228   InstructionCost Cost = TTIImpl->getInstructionCost(U, Operands, CostKind);
229   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
230          "TTI should not produce negative costs!");
231   return Cost;
232 }
233 
234 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
235   return TTIImpl->getPredictableBranchThreshold();
236 }
237 
238 bool TargetTransformInfo::hasBranchDivergence() const {
239   return TTIImpl->hasBranchDivergence();
240 }
241 
242 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
243   return TTIImpl->useGPUDivergenceAnalysis();
244 }
245 
246 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
247   return TTIImpl->isSourceOfDivergence(V);
248 }
249 
250 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
251   return TTIImpl->isAlwaysUniform(V);
252 }
253 
254 unsigned TargetTransformInfo::getFlatAddressSpace() const {
255   return TTIImpl->getFlatAddressSpace();
256 }
257 
258 bool TargetTransformInfo::collectFlatAddressOperands(
259     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
260   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
261 }
262 
263 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
264                                               unsigned ToAS) const {
265   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
266 }
267 
268 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
269     unsigned AS) const {
270   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
271 }
272 
273 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
274   return TTIImpl->getAssumedAddrSpace(V);
275 }
276 
277 bool TargetTransformInfo::isSingleThreaded() const {
278   return TTIImpl->isSingleThreaded();
279 }
280 
281 std::pair<const Value *, unsigned>
282 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
283   return TTIImpl->getPredicatedAddrSpace(V);
284 }
285 
286 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
287     IntrinsicInst *II, Value *OldV, Value *NewV) const {
288   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
289 }
290 
291 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
292   return TTIImpl->isLoweredToCall(F);
293 }
294 
295 bool TargetTransformInfo::isHardwareLoopProfitable(
296     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
297     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
298   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
299 }
300 
301 bool TargetTransformInfo::preferPredicateOverEpilogue(
302     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
303     TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL,
304     InterleavedAccessInfo *IAI) const {
305   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
306 }
307 
308 PredicationStyle TargetTransformInfo::emitGetActiveLaneMask() const {
309   return TTIImpl->emitGetActiveLaneMask();
310 }
311 
312 std::optional<Instruction *>
313 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
314                                           IntrinsicInst &II) const {
315   return TTIImpl->instCombineIntrinsic(IC, II);
316 }
317 
318 std::optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
319     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
320     bool &KnownBitsComputed) const {
321   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
322                                                    KnownBitsComputed);
323 }
324 
325 std::optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
326     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
327     APInt &UndefElts2, APInt &UndefElts3,
328     std::function<void(Instruction *, unsigned, APInt, APInt &)>
329         SimplifyAndSetOp) const {
330   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
331       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
332       SimplifyAndSetOp);
333 }
334 
335 void TargetTransformInfo::getUnrollingPreferences(
336     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
337     OptimizationRemarkEmitter *ORE) const {
338   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
339 }
340 
341 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
342                                                 PeelingPreferences &PP) const {
343   return TTIImpl->getPeelingPreferences(L, SE, PP);
344 }
345 
346 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
347   return TTIImpl->isLegalAddImmediate(Imm);
348 }
349 
350 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
351   return TTIImpl->isLegalICmpImmediate(Imm);
352 }
353 
354 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
355                                                 int64_t BaseOffset,
356                                                 bool HasBaseReg, int64_t Scale,
357                                                 unsigned AddrSpace,
358                                                 Instruction *I) const {
359   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
360                                         Scale, AddrSpace, I);
361 }
362 
363 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
364                                         const LSRCost &C2) const {
365   return TTIImpl->isLSRCostLess(C1, C2);
366 }
367 
368 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
369   return TTIImpl->isNumRegsMajorCostOfLSR();
370 }
371 
372 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
373   return TTIImpl->isProfitableLSRChainElement(I);
374 }
375 
376 bool TargetTransformInfo::canMacroFuseCmp() const {
377   return TTIImpl->canMacroFuseCmp();
378 }
379 
380 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
381                                      ScalarEvolution *SE, LoopInfo *LI,
382                                      DominatorTree *DT, AssumptionCache *AC,
383                                      TargetLibraryInfo *LibInfo) const {
384   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
385 }
386 
387 TTI::AddressingModeKind
388 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
389                                                 ScalarEvolution *SE) const {
390   return TTIImpl->getPreferredAddressingMode(L, SE);
391 }
392 
393 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
394                                              Align Alignment) const {
395   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
396 }
397 
398 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
399                                             Align Alignment) const {
400   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
401 }
402 
403 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
404                                          Align Alignment) const {
405   return TTIImpl->isLegalNTStore(DataType, Alignment);
406 }
407 
408 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
409   return TTIImpl->isLegalNTLoad(DataType, Alignment);
410 }
411 
412 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
413                                                ElementCount NumElements) const {
414   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
415 }
416 
417 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
418                                               Align Alignment) const {
419   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
420 }
421 
422 bool TargetTransformInfo::isLegalAltInstr(
423     VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
424     const SmallBitVector &OpcodeMask) const {
425   return TTIImpl->isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
426 }
427 
428 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
429                                                Align Alignment) const {
430   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
431 }
432 
433 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
434                                                      Align Alignment) const {
435   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
436 }
437 
438 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
439                                                       Align Alignment) const {
440   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
441 }
442 
443 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
444   return TTIImpl->isLegalMaskedCompressStore(DataType);
445 }
446 
447 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
448   return TTIImpl->isLegalMaskedExpandLoad(DataType);
449 }
450 
451 bool TargetTransformInfo::enableOrderedReductions() const {
452   return TTIImpl->enableOrderedReductions();
453 }
454 
455 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
456   return TTIImpl->hasDivRemOp(DataType, IsSigned);
457 }
458 
459 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
460                                              unsigned AddrSpace) const {
461   return TTIImpl->hasVolatileVariant(I, AddrSpace);
462 }
463 
464 bool TargetTransformInfo::prefersVectorizedAddressing() const {
465   return TTIImpl->prefersVectorizedAddressing();
466 }
467 
468 InstructionCost TargetTransformInfo::getScalingFactorCost(
469     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
470     int64_t Scale, unsigned AddrSpace) const {
471   InstructionCost Cost = TTIImpl->getScalingFactorCost(
472       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
473   assert(Cost >= 0 && "TTI should not produce negative costs!");
474   return Cost;
475 }
476 
477 bool TargetTransformInfo::LSRWithInstrQueries() const {
478   return TTIImpl->LSRWithInstrQueries();
479 }
480 
481 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
482   return TTIImpl->isTruncateFree(Ty1, Ty2);
483 }
484 
485 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
486   return TTIImpl->isProfitableToHoist(I);
487 }
488 
489 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
490 
491 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
492   return TTIImpl->isTypeLegal(Ty);
493 }
494 
495 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
496   return TTIImpl->getRegUsageForType(Ty);
497 }
498 
499 bool TargetTransformInfo::shouldBuildLookupTables() const {
500   return TTIImpl->shouldBuildLookupTables();
501 }
502 
503 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
504     Constant *C) const {
505   return TTIImpl->shouldBuildLookupTablesForConstant(C);
506 }
507 
508 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
509   return TTIImpl->shouldBuildRelLookupTables();
510 }
511 
512 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
513   return TTIImpl->useColdCCForColdCall(F);
514 }
515 
516 InstructionCost TargetTransformInfo::getScalarizationOverhead(
517     VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
518     TTI::TargetCostKind CostKind) const {
519   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
520                                            CostKind);
521 }
522 
523 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
524     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys,
525     TTI::TargetCostKind CostKind) const {
526   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys, CostKind);
527 }
528 
529 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
530   return TTIImpl->supportsEfficientVectorElementLoadStore();
531 }
532 
533 bool TargetTransformInfo::supportsTailCalls() const {
534   return TTIImpl->supportsTailCalls();
535 }
536 
537 bool TargetTransformInfo::supportsTailCallFor(const CallBase *CB) const {
538   return TTIImpl->supportsTailCallFor(CB);
539 }
540 
541 bool TargetTransformInfo::enableAggressiveInterleaving(
542     bool LoopHasReductions) const {
543   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
544 }
545 
546 TargetTransformInfo::MemCmpExpansionOptions
547 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
548   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
549 }
550 
551 bool TargetTransformInfo::enableSelectOptimize() const {
552   return TTIImpl->enableSelectOptimize();
553 }
554 
555 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
556   return TTIImpl->enableInterleavedAccessVectorization();
557 }
558 
559 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
560   return TTIImpl->enableMaskedInterleavedAccessVectorization();
561 }
562 
563 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
564   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
565 }
566 
567 bool
568 TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
569                                                     unsigned BitWidth,
570                                                     unsigned AddressSpace,
571                                                     Align Alignment,
572                                                     unsigned *Fast) const {
573   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
574                                                  AddressSpace, Alignment, Fast);
575 }
576 
577 TargetTransformInfo::PopcntSupportKind
578 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
579   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
580 }
581 
582 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
583   return TTIImpl->haveFastSqrt(Ty);
584 }
585 
586 bool TargetTransformInfo::isExpensiveToSpeculativelyExecute(
587     const Instruction *I) const {
588   return TTIImpl->isExpensiveToSpeculativelyExecute(I);
589 }
590 
591 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
592   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
593 }
594 
595 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
596   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
597   assert(Cost >= 0 && "TTI should not produce negative costs!");
598   return Cost;
599 }
600 
601 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
602                                                            unsigned Idx,
603                                                            const APInt &Imm,
604                                                            Type *Ty) const {
605   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
606   assert(Cost >= 0 && "TTI should not produce negative costs!");
607   return Cost;
608 }
609 
610 InstructionCost
611 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
612                                    TTI::TargetCostKind CostKind) const {
613   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
614   assert(Cost >= 0 && "TTI should not produce negative costs!");
615   return Cost;
616 }
617 
618 InstructionCost TargetTransformInfo::getIntImmCostInst(
619     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
620     TTI::TargetCostKind CostKind, Instruction *Inst) const {
621   InstructionCost Cost =
622       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
623   assert(Cost >= 0 && "TTI should not produce negative costs!");
624   return Cost;
625 }
626 
627 InstructionCost
628 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
629                                          const APInt &Imm, Type *Ty,
630                                          TTI::TargetCostKind CostKind) const {
631   InstructionCost Cost =
632       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
633   assert(Cost >= 0 && "TTI should not produce negative costs!");
634   return Cost;
635 }
636 
637 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
638   return TTIImpl->getNumberOfRegisters(ClassID);
639 }
640 
641 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
642                                                       Type *Ty) const {
643   return TTIImpl->getRegisterClassForType(Vector, Ty);
644 }
645 
646 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
647   return TTIImpl->getRegisterClassName(ClassID);
648 }
649 
650 TypeSize TargetTransformInfo::getRegisterBitWidth(
651     TargetTransformInfo::RegisterKind K) const {
652   return TTIImpl->getRegisterBitWidth(K);
653 }
654 
655 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
656   return TTIImpl->getMinVectorRegisterBitWidth();
657 }
658 
659 std::optional<unsigned> TargetTransformInfo::getMaxVScale() const {
660   return TTIImpl->getMaxVScale();
661 }
662 
663 std::optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
664   return TTIImpl->getVScaleForTuning();
665 }
666 
667 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
668     TargetTransformInfo::RegisterKind K) const {
669   return TTIImpl->shouldMaximizeVectorBandwidth(K);
670 }
671 
672 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
673                                                bool IsScalable) const {
674   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
675 }
676 
677 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
678                                            unsigned Opcode) const {
679   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
680 }
681 
682 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
683                                                 Type *ScalarValTy) const {
684   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
685 }
686 
687 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
688     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
689   return TTIImpl->shouldConsiderAddressTypePromotion(
690       I, AllowPromotionWithoutCommonHeader);
691 }
692 
693 unsigned TargetTransformInfo::getCacheLineSize() const {
694   return CacheLineSize.getNumOccurrences() > 0 ? CacheLineSize
695                                                : TTIImpl->getCacheLineSize();
696 }
697 
698 std::optional<unsigned>
699 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
700   return TTIImpl->getCacheSize(Level);
701 }
702 
703 std::optional<unsigned>
704 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
705   return TTIImpl->getCacheAssociativity(Level);
706 }
707 
708 unsigned TargetTransformInfo::getPrefetchDistance() const {
709   return TTIImpl->getPrefetchDistance();
710 }
711 
712 unsigned TargetTransformInfo::getMinPrefetchStride(
713     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
714     unsigned NumPrefetches, bool HasCall) const {
715   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
716                                        NumPrefetches, HasCall);
717 }
718 
719 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
720   return TTIImpl->getMaxPrefetchIterationsAhead();
721 }
722 
723 bool TargetTransformInfo::enableWritePrefetching() const {
724   return TTIImpl->enableWritePrefetching();
725 }
726 
727 bool TargetTransformInfo::shouldPrefetchAddressSpace(unsigned AS) const {
728   return TTIImpl->shouldPrefetchAddressSpace(AS);
729 }
730 
731 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
732   return TTIImpl->getMaxInterleaveFactor(VF);
733 }
734 
735 TargetTransformInfo::OperandValueInfo
736 TargetTransformInfo::getOperandInfo(const Value *V) {
737   OperandValueKind OpInfo = OK_AnyValue;
738   OperandValueProperties OpProps = OP_None;
739 
740   if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
741     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
742       if (CI->getValue().isPowerOf2())
743         OpProps = OP_PowerOf2;
744       else if (CI->getValue().isNegatedPowerOf2())
745         OpProps = OP_NegatedPowerOf2;
746     }
747     return {OK_UniformConstantValue, OpProps};
748   }
749 
750   // A broadcast shuffle creates a uniform value.
751   // TODO: Add support for non-zero index broadcasts.
752   // TODO: Add support for different source vector width.
753   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
754     if (ShuffleInst->isZeroEltSplat())
755       OpInfo = OK_UniformValue;
756 
757   const Value *Splat = getSplatValue(V);
758 
759   // Check for a splat of a constant or for a non uniform vector of constants
760   // and check if the constant(s) are all powers of two.
761   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
762     OpInfo = OK_NonUniformConstantValue;
763     if (Splat) {
764       OpInfo = OK_UniformConstantValue;
765       if (auto *CI = dyn_cast<ConstantInt>(Splat)) {
766         if (CI->getValue().isPowerOf2())
767           OpProps = OP_PowerOf2;
768         else if (CI->getValue().isNegatedPowerOf2())
769           OpProps = OP_NegatedPowerOf2;
770       }
771     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
772       bool AllPow2 = true, AllNegPow2 = true;
773       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
774         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) {
775           AllPow2 &= CI->getValue().isPowerOf2();
776           AllNegPow2 &= CI->getValue().isNegatedPowerOf2();
777           if (AllPow2 || AllNegPow2)
778             continue;
779         }
780         AllPow2 = AllNegPow2 = false;
781         break;
782       }
783       OpProps = AllPow2 ? OP_PowerOf2 : OpProps;
784       OpProps = AllNegPow2 ? OP_NegatedPowerOf2 : OpProps;
785     }
786   }
787 
788   // Check for a splat of a uniform value. This is not loop aware, so return
789   // true only for the obviously uniform cases (argument, globalvalue)
790   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
791     OpInfo = OK_UniformValue;
792 
793   return {OpInfo, OpProps};
794 }
795 
796 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
797     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
798     OperandValueInfo Op1Info, OperandValueInfo Op2Info,
799     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
800   InstructionCost Cost =
801       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind,
802                                       Op1Info, Op2Info,
803                                       Args, CxtI);
804   assert(Cost >= 0 && "TTI should not produce negative costs!");
805   return Cost;
806 }
807 
808 InstructionCost TargetTransformInfo::getShuffleCost(
809     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask,
810     TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
811     ArrayRef<const Value *> Args) const {
812   InstructionCost Cost =
813       TTIImpl->getShuffleCost(Kind, Ty, Mask, CostKind, Index, SubTp, Args);
814   assert(Cost >= 0 && "TTI should not produce negative costs!");
815   return Cost;
816 }
817 
818 TTI::CastContextHint
819 TargetTransformInfo::getCastContextHint(const Instruction *I) {
820   if (!I)
821     return CastContextHint::None;
822 
823   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
824                              unsigned GatScatOp) {
825     const Instruction *I = dyn_cast<Instruction>(V);
826     if (!I)
827       return CastContextHint::None;
828 
829     if (I->getOpcode() == LdStOp)
830       return CastContextHint::Normal;
831 
832     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
833       if (II->getIntrinsicID() == MaskedOp)
834         return TTI::CastContextHint::Masked;
835       if (II->getIntrinsicID() == GatScatOp)
836         return TTI::CastContextHint::GatherScatter;
837     }
838 
839     return TTI::CastContextHint::None;
840   };
841 
842   switch (I->getOpcode()) {
843   case Instruction::ZExt:
844   case Instruction::SExt:
845   case Instruction::FPExt:
846     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
847                             Intrinsic::masked_load, Intrinsic::masked_gather);
848   case Instruction::Trunc:
849   case Instruction::FPTrunc:
850     if (I->hasOneUse())
851       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
852                               Intrinsic::masked_store,
853                               Intrinsic::masked_scatter);
854     break;
855   default:
856     return CastContextHint::None;
857   }
858 
859   return TTI::CastContextHint::None;
860 }
861 
862 InstructionCost TargetTransformInfo::getCastInstrCost(
863     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
864     TTI::TargetCostKind CostKind, const Instruction *I) const {
865   assert((I == nullptr || I->getOpcode() == Opcode) &&
866          "Opcode should reflect passed instruction.");
867   InstructionCost Cost =
868       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
869   assert(Cost >= 0 && "TTI should not produce negative costs!");
870   return Cost;
871 }
872 
873 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
874     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
875   InstructionCost Cost =
876       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
877   assert(Cost >= 0 && "TTI should not produce negative costs!");
878   return Cost;
879 }
880 
881 InstructionCost TargetTransformInfo::getCFInstrCost(
882     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
883   assert((I == nullptr || I->getOpcode() == Opcode) &&
884          "Opcode should reflect passed instruction.");
885   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
886   assert(Cost >= 0 && "TTI should not produce negative costs!");
887   return Cost;
888 }
889 
890 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
891     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
892     TTI::TargetCostKind CostKind, const Instruction *I) const {
893   assert((I == nullptr || I->getOpcode() == Opcode) &&
894          "Opcode should reflect passed instruction.");
895   InstructionCost Cost =
896       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
897   assert(Cost >= 0 && "TTI should not produce negative costs!");
898   return Cost;
899 }
900 
901 InstructionCost TargetTransformInfo::getVectorInstrCost(
902     unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
903     Value *Op0, Value *Op1) const {
904   // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
905   // This is mentioned in the interface description and respected by all
906   // callers, but never asserted upon.
907   InstructionCost Cost =
908       TTIImpl->getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
909   assert(Cost >= 0 && "TTI should not produce negative costs!");
910   return Cost;
911 }
912 
913 InstructionCost
914 TargetTransformInfo::getVectorInstrCost(const Instruction &I, Type *Val,
915                                         TTI::TargetCostKind CostKind,
916                                         unsigned Index) const {
917   // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
918   // This is mentioned in the interface description and respected by all
919   // callers, but never asserted upon.
920   InstructionCost Cost = TTIImpl->getVectorInstrCost(I, Val, CostKind, Index);
921   assert(Cost >= 0 && "TTI should not produce negative costs!");
922   return Cost;
923 }
924 
925 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
926     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
927     TTI::TargetCostKind CostKind) {
928   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
929       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
930   assert(Cost >= 0 && "TTI should not produce negative costs!");
931   return Cost;
932 }
933 
934 InstructionCost TargetTransformInfo::getMemoryOpCost(
935     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
936     TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo,
937     const Instruction *I) const {
938   assert((I == nullptr || I->getOpcode() == Opcode) &&
939          "Opcode should reflect passed instruction.");
940   InstructionCost Cost = TTIImpl->getMemoryOpCost(
941       Opcode, Src, Alignment, AddressSpace, CostKind, OpInfo, I);
942   assert(Cost >= 0 && "TTI should not produce negative costs!");
943   return Cost;
944 }
945 
946 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
947     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
948     TTI::TargetCostKind CostKind) const {
949   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
950                                                         AddressSpace, CostKind);
951   assert(Cost >= 0 && "TTI should not produce negative costs!");
952   return Cost;
953 }
954 
955 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
956     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
957     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
958   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
959       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
960   assert(Cost >= 0 && "TTI should not produce negative costs!");
961   return Cost;
962 }
963 
964 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
965     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
966     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
967     bool UseMaskForCond, bool UseMaskForGaps) const {
968   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
969       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
970       UseMaskForCond, UseMaskForGaps);
971   assert(Cost >= 0 && "TTI should not produce negative costs!");
972   return Cost;
973 }
974 
975 InstructionCost
976 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
977                                            TTI::TargetCostKind CostKind) const {
978   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
979   assert(Cost >= 0 && "TTI should not produce negative costs!");
980   return Cost;
981 }
982 
983 InstructionCost
984 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
985                                       ArrayRef<Type *> Tys,
986                                       TTI::TargetCostKind CostKind) const {
987   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
988   assert(Cost >= 0 && "TTI should not produce negative costs!");
989   return Cost;
990 }
991 
992 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
993   return TTIImpl->getNumberOfParts(Tp);
994 }
995 
996 InstructionCost
997 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
998                                                const SCEV *Ptr) const {
999   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
1000   assert(Cost >= 0 && "TTI should not produce negative costs!");
1001   return Cost;
1002 }
1003 
1004 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
1005   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
1006   assert(Cost >= 0 && "TTI should not produce negative costs!");
1007   return Cost;
1008 }
1009 
1010 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
1011     unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1012     TTI::TargetCostKind CostKind) const {
1013   InstructionCost Cost =
1014       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1015   assert(Cost >= 0 && "TTI should not produce negative costs!");
1016   return Cost;
1017 }
1018 
1019 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
1020     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
1021     TTI::TargetCostKind CostKind) const {
1022   InstructionCost Cost =
1023       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
1024   assert(Cost >= 0 && "TTI should not produce negative costs!");
1025   return Cost;
1026 }
1027 
1028 InstructionCost TargetTransformInfo::getExtendedReductionCost(
1029     unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1030     std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) const {
1031   return TTIImpl->getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
1032                                            CostKind);
1033 }
1034 
1035 InstructionCost TargetTransformInfo::getMulAccReductionCost(
1036     bool IsUnsigned, Type *ResTy, VectorType *Ty,
1037     TTI::TargetCostKind CostKind) const {
1038   return TTIImpl->getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
1039 }
1040 
1041 InstructionCost
1042 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
1043   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
1044 }
1045 
1046 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
1047                                              MemIntrinsicInfo &Info) const {
1048   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
1049 }
1050 
1051 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
1052   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
1053 }
1054 
1055 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
1056     IntrinsicInst *Inst, Type *ExpectedType) const {
1057   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1058 }
1059 
1060 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
1061     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1062     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1063     std::optional<uint32_t> AtomicElementSize) const {
1064   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
1065                                             DestAddrSpace, SrcAlign, DestAlign,
1066                                             AtomicElementSize);
1067 }
1068 
1069 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1070     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1071     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1072     unsigned SrcAlign, unsigned DestAlign,
1073     std::optional<uint32_t> AtomicCpySize) const {
1074   TTIImpl->getMemcpyLoopResidualLoweringType(
1075       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
1076       DestAlign, AtomicCpySize);
1077 }
1078 
1079 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1080                                               const Function *Callee) const {
1081   return TTIImpl->areInlineCompatible(Caller, Callee);
1082 }
1083 
1084 bool TargetTransformInfo::areTypesABICompatible(
1085     const Function *Caller, const Function *Callee,
1086     const ArrayRef<Type *> &Types) const {
1087   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1088 }
1089 
1090 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1091                                              Type *Ty) const {
1092   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1093 }
1094 
1095 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1096                                               Type *Ty) const {
1097   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1098 }
1099 
1100 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1101   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1102 }
1103 
1104 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1105   return TTIImpl->isLegalToVectorizeLoad(LI);
1106 }
1107 
1108 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1109   return TTIImpl->isLegalToVectorizeStore(SI);
1110 }
1111 
1112 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1113     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1114   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1115                                               AddrSpace);
1116 }
1117 
1118 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1119     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1120   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1121                                                AddrSpace);
1122 }
1123 
1124 bool TargetTransformInfo::isLegalToVectorizeReduction(
1125     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1126   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1127 }
1128 
1129 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1130   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1131 }
1132 
1133 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1134                                                   unsigned LoadSize,
1135                                                   unsigned ChainSizeInBytes,
1136                                                   VectorType *VecTy) const {
1137   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1138 }
1139 
1140 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1141                                                    unsigned StoreSize,
1142                                                    unsigned ChainSizeInBytes,
1143                                                    VectorType *VecTy) const {
1144   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1145 }
1146 
1147 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1148                                                 ReductionFlags Flags) const {
1149   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1150 }
1151 
1152 bool TargetTransformInfo::preferPredicatedReductionSelect(
1153     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1154   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1155 }
1156 
1157 bool TargetTransformInfo::preferEpilogueVectorization() const {
1158   return TTIImpl->preferEpilogueVectorization();
1159 }
1160 
1161 TargetTransformInfo::VPLegalization
1162 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1163   return TTIImpl->getVPLegalizationStrategy(VPI);
1164 }
1165 
1166 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1167   return TTIImpl->shouldExpandReduction(II);
1168 }
1169 
1170 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1171   return TTIImpl->getGISelRematGlobalCost();
1172 }
1173 
1174 unsigned TargetTransformInfo::getMinTripCountTailFoldingThreshold() const {
1175   return TTIImpl->getMinTripCountTailFoldingThreshold();
1176 }
1177 
1178 bool TargetTransformInfo::supportsScalableVectors() const {
1179   return TTIImpl->supportsScalableVectors();
1180 }
1181 
1182 bool TargetTransformInfo::enableScalableVectorization() const {
1183   return TTIImpl->enableScalableVectorization();
1184 }
1185 
1186 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1187                                                 Align Alignment) const {
1188   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1189 }
1190 
1191 TargetTransformInfo::Concept::~Concept() = default;
1192 
1193 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1194 
1195 TargetIRAnalysis::TargetIRAnalysis(
1196     std::function<Result(const Function &)> TTICallback)
1197     : TTICallback(std::move(TTICallback)) {}
1198 
1199 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1200                                                FunctionAnalysisManager &) {
1201   return TTICallback(F);
1202 }
1203 
1204 AnalysisKey TargetIRAnalysis::Key;
1205 
1206 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1207   return Result(F.getParent()->getDataLayout());
1208 }
1209 
1210 // Register the basic pass.
1211 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1212                 "Target Transform Information", false, true)
1213 char TargetTransformInfoWrapperPass::ID = 0;
1214 
1215 void TargetTransformInfoWrapperPass::anchor() {}
1216 
1217 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1218     : ImmutablePass(ID) {
1219   initializeTargetTransformInfoWrapperPassPass(
1220       *PassRegistry::getPassRegistry());
1221 }
1222 
1223 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1224     TargetIRAnalysis TIRA)
1225     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1226   initializeTargetTransformInfoWrapperPassPass(
1227       *PassRegistry::getPassRegistry());
1228 }
1229 
1230 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1231   FunctionAnalysisManager DummyFAM;
1232   TTI = TIRA.run(F, DummyFAM);
1233   return *TTI;
1234 }
1235 
1236 ImmutablePass *
1237 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1238   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1239 }
1240