xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(
58     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
59     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
60       ScalarizationCost(ScalarizationCost) {
61 
62   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
63     FMF = FPMO->getFastMathFlags();
64 
65   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
66   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
67   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
68 }
69 
70 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
71                                                  ArrayRef<Type *> Tys,
72                                                  FastMathFlags Flags,
73                                                  const IntrinsicInst *I,
74                                                  InstructionCost ScalarCost)
75     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
76   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
77 }
78 
79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
80                                                  ArrayRef<const Value *> Args)
81     : RetTy(Ty), IID(Id) {
82 
83   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
84   ParamTys.reserve(Arguments.size());
85   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
86     ParamTys.push_back(Arguments[Idx]->getType());
87 }
88 
89 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
90                                                  ArrayRef<const Value *> Args,
91                                                  ArrayRef<Type *> Tys,
92                                                  FastMathFlags Flags,
93                                                  const IntrinsicInst *I,
94                                                  InstructionCost ScalarCost)
95     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
96   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
97   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
98 }
99 
100 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
101                                                LoopInfo &LI, DominatorTree &DT,
102                                                bool ForceNestedLoop,
103                                                bool ForceHardwareLoopPHI) {
104   SmallVector<BasicBlock *, 4> ExitingBlocks;
105   L->getExitingBlocks(ExitingBlocks);
106 
107   for (BasicBlock *BB : ExitingBlocks) {
108     // If we pass the updated counter back through a phi, we need to know
109     // which latch the updated value will be coming from.
110     if (!L->isLoopLatch(BB)) {
111       if (ForceHardwareLoopPHI || CounterInReg)
112         continue;
113     }
114 
115     const SCEV *EC = SE.getExitCount(L, BB);
116     if (isa<SCEVCouldNotCompute>(EC))
117       continue;
118     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
119       if (ConstEC->getValue()->isZero())
120         continue;
121     } else if (!SE.isLoopInvariant(EC, L))
122       continue;
123 
124     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
125       continue;
126 
127     // If this exiting block is contained in a nested loop, it is not eligible
128     // for insertion of the branch-and-decrement since the inner loop would
129     // end up messing up the value in the CTR.
130     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
131       continue;
132 
133     // We now have a loop-invariant count of loop iterations (which is not the
134     // constant zero) for which we know that this loop will not exit via this
135     // existing block.
136 
137     // We need to make sure that this block will run on every loop iteration.
138     // For this to be true, we must dominate all blocks with backedges. Such
139     // blocks are in-loop predecessors to the header block.
140     bool NotAlways = false;
141     for (BasicBlock *Pred : predecessors(L->getHeader())) {
142       if (!L->contains(Pred))
143         continue;
144 
145       if (!DT.dominates(BB, Pred)) {
146         NotAlways = true;
147         break;
148       }
149     }
150 
151     if (NotAlways)
152       continue;
153 
154     // Make sure this blocks ends with a conditional branch.
155     Instruction *TI = BB->getTerminator();
156     if (!TI)
157       continue;
158 
159     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
160       if (!BI->isConditional())
161         continue;
162 
163       ExitBranch = BI;
164     } else
165       continue;
166 
167     // Note that this block may not be the loop latch block, even if the loop
168     // has a latch block.
169     ExitBlock = BB;
170     ExitCount = EC;
171     break;
172   }
173 
174   if (!ExitBlock)
175     return false;
176   return true;
177 }
178 
179 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
180     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
181 
182 TargetTransformInfo::~TargetTransformInfo() {}
183 
184 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
185     : TTIImpl(std::move(Arg.TTIImpl)) {}
186 
187 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
188   TTIImpl = std::move(RHS.TTIImpl);
189   return *this;
190 }
191 
192 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
193   return TTIImpl->getInliningThresholdMultiplier();
194 }
195 
196 unsigned
197 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
198   return TTIImpl->adjustInliningThreshold(CB);
199 }
200 
201 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
202   return TTIImpl->getInlinerVectorBonusPercent();
203 }
204 
205 InstructionCost
206 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
207                                 ArrayRef<const Value *> Operands,
208                                 TTI::TargetCostKind CostKind) const {
209   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
210 }
211 
212 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
213     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
214     BlockFrequencyInfo *BFI) const {
215   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
216 }
217 
218 InstructionCost
219 TargetTransformInfo::getUserCost(const User *U,
220                                  ArrayRef<const Value *> Operands,
221                                  enum TargetCostKind CostKind) const {
222   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
223   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
224          "TTI should not produce negative costs!");
225   return Cost;
226 }
227 
228 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
229   return TTIImpl->getPredictableBranchThreshold();
230 }
231 
232 bool TargetTransformInfo::hasBranchDivergence() const {
233   return TTIImpl->hasBranchDivergence();
234 }
235 
236 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
237   return TTIImpl->useGPUDivergenceAnalysis();
238 }
239 
240 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
241   return TTIImpl->isSourceOfDivergence(V);
242 }
243 
244 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
245   return TTIImpl->isAlwaysUniform(V);
246 }
247 
248 unsigned TargetTransformInfo::getFlatAddressSpace() const {
249   return TTIImpl->getFlatAddressSpace();
250 }
251 
252 bool TargetTransformInfo::collectFlatAddressOperands(
253     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
254   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
255 }
256 
257 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
258                                               unsigned ToAS) const {
259   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
260 }
261 
262 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
263     unsigned AS) const {
264   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
265 }
266 
267 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
268   return TTIImpl->getAssumedAddrSpace(V);
269 }
270 
271 std::pair<const Value *, unsigned>
272 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
273   return TTIImpl->getPredicatedAddrSpace(V);
274 }
275 
276 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
277     IntrinsicInst *II, Value *OldV, Value *NewV) const {
278   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
279 }
280 
281 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
282   return TTIImpl->isLoweredToCall(F);
283 }
284 
285 bool TargetTransformInfo::isHardwareLoopProfitable(
286     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
287     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
288   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
289 }
290 
291 bool TargetTransformInfo::preferPredicateOverEpilogue(
292     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
293     TargetLibraryInfo *TLI, DominatorTree *DT,
294     const LoopAccessInfo *LAI) const {
295   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
296 }
297 
298 bool TargetTransformInfo::emitGetActiveLaneMask() const {
299   return TTIImpl->emitGetActiveLaneMask();
300 }
301 
302 Optional<Instruction *>
303 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
304                                           IntrinsicInst &II) const {
305   return TTIImpl->instCombineIntrinsic(IC, II);
306 }
307 
308 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
309     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
310     bool &KnownBitsComputed) const {
311   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
312                                                    KnownBitsComputed);
313 }
314 
315 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
316     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
317     APInt &UndefElts2, APInt &UndefElts3,
318     std::function<void(Instruction *, unsigned, APInt, APInt &)>
319         SimplifyAndSetOp) const {
320   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
321       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
322       SimplifyAndSetOp);
323 }
324 
325 void TargetTransformInfo::getUnrollingPreferences(
326     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
327     OptimizationRemarkEmitter *ORE) const {
328   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
329 }
330 
331 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
332                                                 PeelingPreferences &PP) const {
333   return TTIImpl->getPeelingPreferences(L, SE, PP);
334 }
335 
336 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
337   return TTIImpl->isLegalAddImmediate(Imm);
338 }
339 
340 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
341   return TTIImpl->isLegalICmpImmediate(Imm);
342 }
343 
344 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
345                                                 int64_t BaseOffset,
346                                                 bool HasBaseReg, int64_t Scale,
347                                                 unsigned AddrSpace,
348                                                 Instruction *I) const {
349   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
350                                         Scale, AddrSpace, I);
351 }
352 
353 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
354   return TTIImpl->isLSRCostLess(C1, C2);
355 }
356 
357 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
358   return TTIImpl->isNumRegsMajorCostOfLSR();
359 }
360 
361 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
362   return TTIImpl->isProfitableLSRChainElement(I);
363 }
364 
365 bool TargetTransformInfo::canMacroFuseCmp() const {
366   return TTIImpl->canMacroFuseCmp();
367 }
368 
369 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
370                                      ScalarEvolution *SE, LoopInfo *LI,
371                                      DominatorTree *DT, AssumptionCache *AC,
372                                      TargetLibraryInfo *LibInfo) const {
373   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
374 }
375 
376 TTI::AddressingModeKind
377 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
378                                                 ScalarEvolution *SE) const {
379   return TTIImpl->getPreferredAddressingMode(L, SE);
380 }
381 
382 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
383                                              Align Alignment) const {
384   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
385 }
386 
387 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
388                                             Align Alignment) const {
389   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
390 }
391 
392 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
393                                          Align Alignment) const {
394   return TTIImpl->isLegalNTStore(DataType, Alignment);
395 }
396 
397 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
398   return TTIImpl->isLegalNTLoad(DataType, Alignment);
399 }
400 
401 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
402                                               Align Alignment) const {
403   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
404 }
405 
406 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
407                                                Align Alignment) const {
408   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
409 }
410 
411 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
412                                                      Align Alignment) const {
413   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
414 }
415 
416 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
417                                                       Align Alignment) const {
418   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
419 }
420 
421 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
422   return TTIImpl->isLegalMaskedCompressStore(DataType);
423 }
424 
425 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
426   return TTIImpl->isLegalMaskedExpandLoad(DataType);
427 }
428 
429 bool TargetTransformInfo::enableOrderedReductions() const {
430   return TTIImpl->enableOrderedReductions();
431 }
432 
433 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
434   return TTIImpl->hasDivRemOp(DataType, IsSigned);
435 }
436 
437 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
438                                              unsigned AddrSpace) const {
439   return TTIImpl->hasVolatileVariant(I, AddrSpace);
440 }
441 
442 bool TargetTransformInfo::prefersVectorizedAddressing() const {
443   return TTIImpl->prefersVectorizedAddressing();
444 }
445 
446 InstructionCost TargetTransformInfo::getScalingFactorCost(
447     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
448     int64_t Scale, unsigned AddrSpace) const {
449   InstructionCost Cost = TTIImpl->getScalingFactorCost(
450       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
451   assert(Cost >= 0 && "TTI should not produce negative costs!");
452   return Cost;
453 }
454 
455 bool TargetTransformInfo::LSRWithInstrQueries() const {
456   return TTIImpl->LSRWithInstrQueries();
457 }
458 
459 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
460   return TTIImpl->isTruncateFree(Ty1, Ty2);
461 }
462 
463 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
464   return TTIImpl->isProfitableToHoist(I);
465 }
466 
467 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
468 
469 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
470   return TTIImpl->isTypeLegal(Ty);
471 }
472 
473 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
474   return TTIImpl->getRegUsageForType(Ty);
475 }
476 
477 bool TargetTransformInfo::shouldBuildLookupTables() const {
478   return TTIImpl->shouldBuildLookupTables();
479 }
480 
481 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
482     Constant *C) const {
483   return TTIImpl->shouldBuildLookupTablesForConstant(C);
484 }
485 
486 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
487   return TTIImpl->shouldBuildRelLookupTables();
488 }
489 
490 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
491   return TTIImpl->useColdCCForColdCall(F);
492 }
493 
494 InstructionCost
495 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
496                                               const APInt &DemandedElts,
497                                               bool Insert, bool Extract) const {
498   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
499 }
500 
501 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
502     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
503   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
504 }
505 
506 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
507   return TTIImpl->supportsEfficientVectorElementLoadStore();
508 }
509 
510 bool TargetTransformInfo::enableAggressiveInterleaving(
511     bool LoopHasReductions) const {
512   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
513 }
514 
515 TargetTransformInfo::MemCmpExpansionOptions
516 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
517   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
518 }
519 
520 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
521   return TTIImpl->enableInterleavedAccessVectorization();
522 }
523 
524 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
525   return TTIImpl->enableMaskedInterleavedAccessVectorization();
526 }
527 
528 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
529   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
530 }
531 
532 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
533                                                          unsigned BitWidth,
534                                                          unsigned AddressSpace,
535                                                          Align Alignment,
536                                                          bool *Fast) const {
537   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
538                                                  AddressSpace, Alignment, Fast);
539 }
540 
541 TargetTransformInfo::PopcntSupportKind
542 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
543   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
544 }
545 
546 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
547   return TTIImpl->haveFastSqrt(Ty);
548 }
549 
550 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
551   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
552 }
553 
554 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
555   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
556   assert(Cost >= 0 && "TTI should not produce negative costs!");
557   return Cost;
558 }
559 
560 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
561                                                            unsigned Idx,
562                                                            const APInt &Imm,
563                                                            Type *Ty) const {
564   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
565   assert(Cost >= 0 && "TTI should not produce negative costs!");
566   return Cost;
567 }
568 
569 InstructionCost
570 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
571                                    TTI::TargetCostKind CostKind) const {
572   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
573   assert(Cost >= 0 && "TTI should not produce negative costs!");
574   return Cost;
575 }
576 
577 InstructionCost TargetTransformInfo::getIntImmCostInst(
578     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
579     TTI::TargetCostKind CostKind, Instruction *Inst) const {
580   InstructionCost Cost =
581       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
582   assert(Cost >= 0 && "TTI should not produce negative costs!");
583   return Cost;
584 }
585 
586 InstructionCost
587 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
588                                          const APInt &Imm, Type *Ty,
589                                          TTI::TargetCostKind CostKind) const {
590   InstructionCost Cost =
591       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
592   assert(Cost >= 0 && "TTI should not produce negative costs!");
593   return Cost;
594 }
595 
596 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
597   return TTIImpl->getNumberOfRegisters(ClassID);
598 }
599 
600 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
601                                                       Type *Ty) const {
602   return TTIImpl->getRegisterClassForType(Vector, Ty);
603 }
604 
605 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
606   return TTIImpl->getRegisterClassName(ClassID);
607 }
608 
609 TypeSize TargetTransformInfo::getRegisterBitWidth(
610     TargetTransformInfo::RegisterKind K) const {
611   return TTIImpl->getRegisterBitWidth(K);
612 }
613 
614 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
615   return TTIImpl->getMinVectorRegisterBitWidth();
616 }
617 
618 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
619   return TTIImpl->getMaxVScale();
620 }
621 
622 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
623   return TTIImpl->getVScaleForTuning();
624 }
625 
626 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
627   return TTIImpl->shouldMaximizeVectorBandwidth();
628 }
629 
630 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
631                                                bool IsScalable) const {
632   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
633 }
634 
635 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
636                                            unsigned Opcode) const {
637   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
638 }
639 
640 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
641     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
642   return TTIImpl->shouldConsiderAddressTypePromotion(
643       I, AllowPromotionWithoutCommonHeader);
644 }
645 
646 unsigned TargetTransformInfo::getCacheLineSize() const {
647   return TTIImpl->getCacheLineSize();
648 }
649 
650 llvm::Optional<unsigned>
651 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
652   return TTIImpl->getCacheSize(Level);
653 }
654 
655 llvm::Optional<unsigned>
656 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
657   return TTIImpl->getCacheAssociativity(Level);
658 }
659 
660 unsigned TargetTransformInfo::getPrefetchDistance() const {
661   return TTIImpl->getPrefetchDistance();
662 }
663 
664 unsigned TargetTransformInfo::getMinPrefetchStride(
665     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
666     unsigned NumPrefetches, bool HasCall) const {
667   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
668                                        NumPrefetches, HasCall);
669 }
670 
671 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
672   return TTIImpl->getMaxPrefetchIterationsAhead();
673 }
674 
675 bool TargetTransformInfo::enableWritePrefetching() const {
676   return TTIImpl->enableWritePrefetching();
677 }
678 
679 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
680   return TTIImpl->getMaxInterleaveFactor(VF);
681 }
682 
683 TargetTransformInfo::OperandValueKind
684 TargetTransformInfo::getOperandInfo(const Value *V,
685                                     OperandValueProperties &OpProps) {
686   OperandValueKind OpInfo = OK_AnyValue;
687   OpProps = OP_None;
688 
689   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
690     if (CI->getValue().isPowerOf2())
691       OpProps = OP_PowerOf2;
692     return OK_UniformConstantValue;
693   }
694 
695   // A broadcast shuffle creates a uniform value.
696   // TODO: Add support for non-zero index broadcasts.
697   // TODO: Add support for different source vector width.
698   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
699     if (ShuffleInst->isZeroEltSplat())
700       OpInfo = OK_UniformValue;
701 
702   const Value *Splat = getSplatValue(V);
703 
704   // Check for a splat of a constant or for a non uniform vector of constants
705   // and check if the constant(s) are all powers of two.
706   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
707     OpInfo = OK_NonUniformConstantValue;
708     if (Splat) {
709       OpInfo = OK_UniformConstantValue;
710       if (auto *CI = dyn_cast<ConstantInt>(Splat))
711         if (CI->getValue().isPowerOf2())
712           OpProps = OP_PowerOf2;
713     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
714       OpProps = OP_PowerOf2;
715       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
716         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
717           if (CI->getValue().isPowerOf2())
718             continue;
719         OpProps = OP_None;
720         break;
721       }
722     }
723   }
724 
725   // Check for a splat of a uniform value. This is not loop aware, so return
726   // true only for the obviously uniform cases (argument, globalvalue)
727   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
728     OpInfo = OK_UniformValue;
729 
730   return OpInfo;
731 }
732 
733 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
734     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
735     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
736     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
737     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
738   InstructionCost Cost =
739       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
740                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
741   assert(Cost >= 0 && "TTI should not produce negative costs!");
742   return Cost;
743 }
744 
745 InstructionCost TargetTransformInfo::getShuffleCost(ShuffleKind Kind,
746                                                     VectorType *Ty,
747                                                     ArrayRef<int> Mask,
748                                                     int Index,
749                                                     VectorType *SubTp) const {
750   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
751   assert(Cost >= 0 && "TTI should not produce negative costs!");
752   return Cost;
753 }
754 
755 TTI::CastContextHint
756 TargetTransformInfo::getCastContextHint(const Instruction *I) {
757   if (!I)
758     return CastContextHint::None;
759 
760   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
761                              unsigned GatScatOp) {
762     const Instruction *I = dyn_cast<Instruction>(V);
763     if (!I)
764       return CastContextHint::None;
765 
766     if (I->getOpcode() == LdStOp)
767       return CastContextHint::Normal;
768 
769     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
770       if (II->getIntrinsicID() == MaskedOp)
771         return TTI::CastContextHint::Masked;
772       if (II->getIntrinsicID() == GatScatOp)
773         return TTI::CastContextHint::GatherScatter;
774     }
775 
776     return TTI::CastContextHint::None;
777   };
778 
779   switch (I->getOpcode()) {
780   case Instruction::ZExt:
781   case Instruction::SExt:
782   case Instruction::FPExt:
783     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
784                             Intrinsic::masked_load, Intrinsic::masked_gather);
785   case Instruction::Trunc:
786   case Instruction::FPTrunc:
787     if (I->hasOneUse())
788       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
789                               Intrinsic::masked_store,
790                               Intrinsic::masked_scatter);
791     break;
792   default:
793     return CastContextHint::None;
794   }
795 
796   return TTI::CastContextHint::None;
797 }
798 
799 InstructionCost TargetTransformInfo::getCastInstrCost(
800     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
801     TTI::TargetCostKind CostKind, const Instruction *I) const {
802   assert((I == nullptr || I->getOpcode() == Opcode) &&
803          "Opcode should reflect passed instruction.");
804   InstructionCost Cost =
805       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
806   assert(Cost >= 0 && "TTI should not produce negative costs!");
807   return Cost;
808 }
809 
810 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
811     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
812   InstructionCost Cost =
813       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
814   assert(Cost >= 0 && "TTI should not produce negative costs!");
815   return Cost;
816 }
817 
818 InstructionCost TargetTransformInfo::getCFInstrCost(
819     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
820   assert((I == nullptr || I->getOpcode() == Opcode) &&
821          "Opcode should reflect passed instruction.");
822   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
823   assert(Cost >= 0 && "TTI should not produce negative costs!");
824   return Cost;
825 }
826 
827 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
828     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
829     TTI::TargetCostKind CostKind, const Instruction *I) const {
830   assert((I == nullptr || I->getOpcode() == Opcode) &&
831          "Opcode should reflect passed instruction.");
832   InstructionCost Cost =
833       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
834   assert(Cost >= 0 && "TTI should not produce negative costs!");
835   return Cost;
836 }
837 
838 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
839                                                         Type *Val,
840                                                         unsigned Index) const {
841   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
842   assert(Cost >= 0 && "TTI should not produce negative costs!");
843   return Cost;
844 }
845 
846 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
847     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
848     TTI::TargetCostKind CostKind) {
849   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
850       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
851   assert(Cost >= 0 && "TTI should not produce negative costs!");
852   return Cost;
853 }
854 
855 InstructionCost TargetTransformInfo::getMemoryOpCost(
856     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
857     TTI::TargetCostKind CostKind, const Instruction *I) const {
858   assert((I == nullptr || I->getOpcode() == Opcode) &&
859          "Opcode should reflect passed instruction.");
860   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
861                                                   AddressSpace, CostKind, I);
862   assert(Cost >= 0 && "TTI should not produce negative costs!");
863   return Cost;
864 }
865 
866 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
867     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
868     TTI::TargetCostKind CostKind) const {
869   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
870                                                         AddressSpace, CostKind);
871   assert(Cost >= 0 && "TTI should not produce negative costs!");
872   return Cost;
873 }
874 
875 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
876     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
877     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
878   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
879       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
880   assert(Cost >= 0 && "TTI should not produce negative costs!");
881   return Cost;
882 }
883 
884 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
885     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
886     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
887     bool UseMaskForCond, bool UseMaskForGaps) const {
888   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
889       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
890       UseMaskForCond, UseMaskForGaps);
891   assert(Cost >= 0 && "TTI should not produce negative costs!");
892   return Cost;
893 }
894 
895 InstructionCost
896 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
897                                            TTI::TargetCostKind CostKind) const {
898   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
899   assert(Cost >= 0 && "TTI should not produce negative costs!");
900   return Cost;
901 }
902 
903 InstructionCost
904 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
905                                       ArrayRef<Type *> Tys,
906                                       TTI::TargetCostKind CostKind) const {
907   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
908   assert(Cost >= 0 && "TTI should not produce negative costs!");
909   return Cost;
910 }
911 
912 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
913   return TTIImpl->getNumberOfParts(Tp);
914 }
915 
916 InstructionCost
917 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
918                                                const SCEV *Ptr) const {
919   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
920   assert(Cost >= 0 && "TTI should not produce negative costs!");
921   return Cost;
922 }
923 
924 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
925   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
926   assert(Cost >= 0 && "TTI should not produce negative costs!");
927   return Cost;
928 }
929 
930 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
931     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
932     TTI::TargetCostKind CostKind) const {
933   InstructionCost Cost =
934       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
935   assert(Cost >= 0 && "TTI should not produce negative costs!");
936   return Cost;
937 }
938 
939 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
940     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
941     TTI::TargetCostKind CostKind) const {
942   InstructionCost Cost =
943       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
944   assert(Cost >= 0 && "TTI should not produce negative costs!");
945   return Cost;
946 }
947 
948 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
949     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
950     TTI::TargetCostKind CostKind) const {
951   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
952                                               CostKind);
953 }
954 
955 InstructionCost
956 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
957   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
958 }
959 
960 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
961                                              MemIntrinsicInfo &Info) const {
962   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
963 }
964 
965 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
966   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
967 }
968 
969 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
970     IntrinsicInst *Inst, Type *ExpectedType) const {
971   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
972 }
973 
974 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
975     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
976     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
977   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
978                                             DestAddrSpace, SrcAlign, DestAlign);
979 }
980 
981 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
982     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
983     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
984     unsigned SrcAlign, unsigned DestAlign) const {
985   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
986                                              SrcAddrSpace, DestAddrSpace,
987                                              SrcAlign, DestAlign);
988 }
989 
990 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
991                                               const Function *Callee) const {
992   return TTIImpl->areInlineCompatible(Caller, Callee);
993 }
994 
995 bool TargetTransformInfo::areTypesABICompatible(
996     const Function *Caller, const Function *Callee,
997     const ArrayRef<Type *> &Types) const {
998   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
999 }
1000 
1001 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1002                                              Type *Ty) const {
1003   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1004 }
1005 
1006 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1007                                               Type *Ty) const {
1008   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1009 }
1010 
1011 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1012   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1013 }
1014 
1015 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1016   return TTIImpl->isLegalToVectorizeLoad(LI);
1017 }
1018 
1019 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1020   return TTIImpl->isLegalToVectorizeStore(SI);
1021 }
1022 
1023 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1024     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1025   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1026                                               AddrSpace);
1027 }
1028 
1029 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1030     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1031   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1032                                                AddrSpace);
1033 }
1034 
1035 bool TargetTransformInfo::isLegalToVectorizeReduction(
1036     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1037   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1038 }
1039 
1040 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1041   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1042 }
1043 
1044 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1045                                                   unsigned LoadSize,
1046                                                   unsigned ChainSizeInBytes,
1047                                                   VectorType *VecTy) const {
1048   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1049 }
1050 
1051 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1052                                                    unsigned StoreSize,
1053                                                    unsigned ChainSizeInBytes,
1054                                                    VectorType *VecTy) const {
1055   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1056 }
1057 
1058 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1059                                                 ReductionFlags Flags) const {
1060   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1061 }
1062 
1063 bool TargetTransformInfo::preferPredicatedReductionSelect(
1064     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1065   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1066 }
1067 
1068 TargetTransformInfo::VPLegalization
1069 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1070   return TTIImpl->getVPLegalizationStrategy(VPI);
1071 }
1072 
1073 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1074   return TTIImpl->shouldExpandReduction(II);
1075 }
1076 
1077 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1078   return TTIImpl->getGISelRematGlobalCost();
1079 }
1080 
1081 bool TargetTransformInfo::supportsScalableVectors() const {
1082   return TTIImpl->supportsScalableVectors();
1083 }
1084 
1085 bool TargetTransformInfo::enableScalableVectorization() const {
1086   return TTIImpl->enableScalableVectorization();
1087 }
1088 
1089 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1090                                                 Align Alignment) const {
1091   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1092 }
1093 
1094 InstructionCost
1095 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1096   return TTIImpl->getInstructionLatency(I);
1097 }
1098 
1099 InstructionCost
1100 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1101   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1102 
1103   switch (I->getOpcode()) {
1104   case Instruction::GetElementPtr:
1105   case Instruction::Ret:
1106   case Instruction::PHI:
1107   case Instruction::Br:
1108   case Instruction::Add:
1109   case Instruction::FAdd:
1110   case Instruction::Sub:
1111   case Instruction::FSub:
1112   case Instruction::Mul:
1113   case Instruction::FMul:
1114   case Instruction::UDiv:
1115   case Instruction::SDiv:
1116   case Instruction::FDiv:
1117   case Instruction::URem:
1118   case Instruction::SRem:
1119   case Instruction::FRem:
1120   case Instruction::Shl:
1121   case Instruction::LShr:
1122   case Instruction::AShr:
1123   case Instruction::And:
1124   case Instruction::Or:
1125   case Instruction::Xor:
1126   case Instruction::FNeg:
1127   case Instruction::Select:
1128   case Instruction::ICmp:
1129   case Instruction::FCmp:
1130   case Instruction::Store:
1131   case Instruction::Load:
1132   case Instruction::ZExt:
1133   case Instruction::SExt:
1134   case Instruction::FPToUI:
1135   case Instruction::FPToSI:
1136   case Instruction::FPExt:
1137   case Instruction::PtrToInt:
1138   case Instruction::IntToPtr:
1139   case Instruction::SIToFP:
1140   case Instruction::UIToFP:
1141   case Instruction::Trunc:
1142   case Instruction::FPTrunc:
1143   case Instruction::BitCast:
1144   case Instruction::AddrSpaceCast:
1145   case Instruction::ExtractElement:
1146   case Instruction::InsertElement:
1147   case Instruction::ExtractValue:
1148   case Instruction::ShuffleVector:
1149   case Instruction::Call:
1150   case Instruction::Switch:
1151     return getUserCost(I, CostKind);
1152   default:
1153     // We don't have any information on this instruction.
1154     return -1;
1155   }
1156 }
1157 
1158 TargetTransformInfo::Concept::~Concept() {}
1159 
1160 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1161 
1162 TargetIRAnalysis::TargetIRAnalysis(
1163     std::function<Result(const Function &)> TTICallback)
1164     : TTICallback(std::move(TTICallback)) {}
1165 
1166 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1167                                                FunctionAnalysisManager &) {
1168   return TTICallback(F);
1169 }
1170 
1171 AnalysisKey TargetIRAnalysis::Key;
1172 
1173 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1174   return Result(F.getParent()->getDataLayout());
1175 }
1176 
1177 // Register the basic pass.
1178 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1179                 "Target Transform Information", false, true)
1180 char TargetTransformInfoWrapperPass::ID = 0;
1181 
1182 void TargetTransformInfoWrapperPass::anchor() {}
1183 
1184 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1185     : ImmutablePass(ID) {
1186   initializeTargetTransformInfoWrapperPassPass(
1187       *PassRegistry::getPassRegistry());
1188 }
1189 
1190 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1191     TargetIRAnalysis TIRA)
1192     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1193   initializeTargetTransformInfoWrapperPassPass(
1194       *PassRegistry::getPassRegistry());
1195 }
1196 
1197 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1198   FunctionAnalysisManager DummyFAM;
1199   TTI = TIRA.run(F, DummyFAM);
1200   return *TTI;
1201 }
1202 
1203 ImmutablePass *
1204 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1205   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1206 }
1207