xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
58     II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {
59 
60  FunctionType *FTy = I.getCalledFunction()->getFunctionType();
61  ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
62  Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
63  if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
64    FMF = FPMO->getFastMathFlags();
65 }
66 
67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
68                                                  const CallBase &CI) :
69   II(dyn_cast<IntrinsicInst>(&CI)),  RetTy(CI.getType()), IID(Id) {
70 
71   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
72     FMF = FPMO->getFastMathFlags();
73 
74   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
75   FunctionType *FTy =
76     CI.getCalledFunction()->getFunctionType();
77   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
78 }
79 
80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
81                                                  const CallBase &CI,
82                                                  ElementCount Factor)
83     : RetTy(CI.getType()), IID(Id), VF(Factor) {
84 
85   assert(!Factor.isScalable() && "Scalable vectors are not yet supported");
86   if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
87     FMF = FPMO->getFastMathFlags();
88 
89   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
90   FunctionType *FTy =
91     CI.getCalledFunction()->getFunctionType();
92   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
93 }
94 
95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
96                                                  const CallBase &CI,
97                                                  ElementCount Factor,
98                                                  unsigned ScalarCost)
99     : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {
100 
101   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
102     FMF = FPMO->getFastMathFlags();
103 
104   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
105   FunctionType *FTy =
106     CI.getCalledFunction()->getFunctionType();
107   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
108 }
109 
110 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
111                                                  ArrayRef<Type *> Tys,
112                                                  FastMathFlags Flags) :
113     RetTy(RTy), IID(Id), FMF(Flags) {
114   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
115 }
116 
117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
118                                                  ArrayRef<Type *> Tys,
119                                                  FastMathFlags Flags,
120                                                  unsigned ScalarCost) :
121     RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
122   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
123 }
124 
125 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
126                                                  ArrayRef<Type *> Tys,
127                                                  FastMathFlags Flags,
128                                                  unsigned ScalarCost,
129                                                  const IntrinsicInst *I) :
130     II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
131   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
132 }
133 
134 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
135                                                  ArrayRef<Type *> Tys) :
136     RetTy(RTy), IID(Id) {
137   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
138 }
139 
140 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
141                                                  ArrayRef<const Value *> Args)
142     : RetTy(Ty), IID(Id) {
143 
144   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
145   ParamTys.reserve(Arguments.size());
146   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
147     ParamTys.push_back(Arguments[Idx]->getType());
148 }
149 
150 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
151                                                LoopInfo &LI, DominatorTree &DT,
152                                                bool ForceNestedLoop,
153                                                bool ForceHardwareLoopPHI) {
154   SmallVector<BasicBlock *, 4> ExitingBlocks;
155   L->getExitingBlocks(ExitingBlocks);
156 
157   for (BasicBlock *BB : ExitingBlocks) {
158     // If we pass the updated counter back through a phi, we need to know
159     // which latch the updated value will be coming from.
160     if (!L->isLoopLatch(BB)) {
161       if (ForceHardwareLoopPHI || CounterInReg)
162         continue;
163     }
164 
165     const SCEV *EC = SE.getExitCount(L, BB);
166     if (isa<SCEVCouldNotCompute>(EC))
167       continue;
168     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
169       if (ConstEC->getValue()->isZero())
170         continue;
171     } else if (!SE.isLoopInvariant(EC, L))
172       continue;
173 
174     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
175       continue;
176 
177     // If this exiting block is contained in a nested loop, it is not eligible
178     // for insertion of the branch-and-decrement since the inner loop would
179     // end up messing up the value in the CTR.
180     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
181       continue;
182 
183     // We now have a loop-invariant count of loop iterations (which is not the
184     // constant zero) for which we know that this loop will not exit via this
185     // existing block.
186 
187     // We need to make sure that this block will run on every loop iteration.
188     // For this to be true, we must dominate all blocks with backedges. Such
189     // blocks are in-loop predecessors to the header block.
190     bool NotAlways = false;
191     for (BasicBlock *Pred : predecessors(L->getHeader())) {
192       if (!L->contains(Pred))
193         continue;
194 
195       if (!DT.dominates(BB, Pred)) {
196         NotAlways = true;
197         break;
198       }
199     }
200 
201     if (NotAlways)
202       continue;
203 
204     // Make sure this blocks ends with a conditional branch.
205     Instruction *TI = BB->getTerminator();
206     if (!TI)
207       continue;
208 
209     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
210       if (!BI->isConditional())
211         continue;
212 
213       ExitBranch = BI;
214     } else
215       continue;
216 
217     // Note that this block may not be the loop latch block, even if the loop
218     // has a latch block.
219     ExitBlock = BB;
220     ExitCount = EC;
221 
222     break;
223   }
224 
225   if (!ExitBlock)
226     return false;
227   return true;
228 }
229 
230 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
231     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
232 
233 TargetTransformInfo::~TargetTransformInfo() {}
234 
235 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
236     : TTIImpl(std::move(Arg.TTIImpl)) {}
237 
238 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
239   TTIImpl = std::move(RHS.TTIImpl);
240   return *this;
241 }
242 
243 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
244   return TTIImpl->getInliningThresholdMultiplier();
245 }
246 
247 unsigned
248 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
249   return TTIImpl->adjustInliningThreshold(CB);
250 }
251 
252 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
253   return TTIImpl->getInlinerVectorBonusPercent();
254 }
255 
256 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
257                                     ArrayRef<const Value *> Operands,
258                                     TTI::TargetCostKind CostKind) const {
259   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
260 }
261 
262 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
263     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
264     BlockFrequencyInfo *BFI) const {
265   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
266 }
267 
268 int TargetTransformInfo::getUserCost(const User *U,
269                                      ArrayRef<const Value *> Operands,
270                                      enum TargetCostKind CostKind) const {
271   int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
272   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
273          "TTI should not produce negative costs!");
274   return Cost;
275 }
276 
277 bool TargetTransformInfo::hasBranchDivergence() const {
278   return TTIImpl->hasBranchDivergence();
279 }
280 
281 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
282   return TTIImpl->useGPUDivergenceAnalysis();
283 }
284 
285 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
286   return TTIImpl->isSourceOfDivergence(V);
287 }
288 
289 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
290   return TTIImpl->isAlwaysUniform(V);
291 }
292 
293 unsigned TargetTransformInfo::getFlatAddressSpace() const {
294   return TTIImpl->getFlatAddressSpace();
295 }
296 
297 bool TargetTransformInfo::collectFlatAddressOperands(
298     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
299   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
300 }
301 
302 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
303                                               unsigned ToAS) const {
304   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
305 }
306 
307 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
308   return TTIImpl->getAssumedAddrSpace(V);
309 }
310 
311 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
312     IntrinsicInst *II, Value *OldV, Value *NewV) const {
313   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
314 }
315 
316 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
317   return TTIImpl->isLoweredToCall(F);
318 }
319 
320 bool TargetTransformInfo::isHardwareLoopProfitable(
321     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
322     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
323   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
324 }
325 
326 bool TargetTransformInfo::preferPredicateOverEpilogue(
327     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
328     TargetLibraryInfo *TLI, DominatorTree *DT,
329     const LoopAccessInfo *LAI) const {
330   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
331 }
332 
333 bool TargetTransformInfo::emitGetActiveLaneMask() const {
334   return TTIImpl->emitGetActiveLaneMask();
335 }
336 
337 Optional<Instruction *>
338 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
339                                           IntrinsicInst &II) const {
340   return TTIImpl->instCombineIntrinsic(IC, II);
341 }
342 
343 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
344     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
345     bool &KnownBitsComputed) const {
346   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
347                                                    KnownBitsComputed);
348 }
349 
350 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
351     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
352     APInt &UndefElts2, APInt &UndefElts3,
353     std::function<void(Instruction *, unsigned, APInt, APInt &)>
354         SimplifyAndSetOp) const {
355   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
356       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
357       SimplifyAndSetOp);
358 }
359 
360 void TargetTransformInfo::getUnrollingPreferences(
361     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
362   return TTIImpl->getUnrollingPreferences(L, SE, UP);
363 }
364 
365 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
366                                                 PeelingPreferences &PP) const {
367   return TTIImpl->getPeelingPreferences(L, SE, PP);
368 }
369 
370 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
371   return TTIImpl->isLegalAddImmediate(Imm);
372 }
373 
374 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
375   return TTIImpl->isLegalICmpImmediate(Imm);
376 }
377 
378 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
379                                                 int64_t BaseOffset,
380                                                 bool HasBaseReg, int64_t Scale,
381                                                 unsigned AddrSpace,
382                                                 Instruction *I) const {
383   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
384                                         Scale, AddrSpace, I);
385 }
386 
387 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
388   return TTIImpl->isLSRCostLess(C1, C2);
389 }
390 
391 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
392   return TTIImpl->isNumRegsMajorCostOfLSR();
393 }
394 
395 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
396   return TTIImpl->isProfitableLSRChainElement(I);
397 }
398 
399 bool TargetTransformInfo::canMacroFuseCmp() const {
400   return TTIImpl->canMacroFuseCmp();
401 }
402 
403 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
404                                      ScalarEvolution *SE, LoopInfo *LI,
405                                      DominatorTree *DT, AssumptionCache *AC,
406                                      TargetLibraryInfo *LibInfo) const {
407   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
408 }
409 
410 bool TargetTransformInfo::shouldFavorPostInc() const {
411   return TTIImpl->shouldFavorPostInc();
412 }
413 
414 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
415   return TTIImpl->shouldFavorBackedgeIndex(L);
416 }
417 
418 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
419                                              Align Alignment) const {
420   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
421 }
422 
423 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
424                                             Align Alignment) const {
425   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
426 }
427 
428 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
429                                          Align Alignment) const {
430   return TTIImpl->isLegalNTStore(DataType, Alignment);
431 }
432 
433 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
434   return TTIImpl->isLegalNTLoad(DataType, Alignment);
435 }
436 
437 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
438                                               Align Alignment) const {
439   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
440 }
441 
442 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
443                                                Align Alignment) const {
444   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
445 }
446 
447 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
448   return TTIImpl->isLegalMaskedCompressStore(DataType);
449 }
450 
451 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
452   return TTIImpl->isLegalMaskedExpandLoad(DataType);
453 }
454 
455 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
456   return TTIImpl->hasDivRemOp(DataType, IsSigned);
457 }
458 
459 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
460                                              unsigned AddrSpace) const {
461   return TTIImpl->hasVolatileVariant(I, AddrSpace);
462 }
463 
464 bool TargetTransformInfo::prefersVectorizedAddressing() const {
465   return TTIImpl->prefersVectorizedAddressing();
466 }
467 
468 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
469                                               int64_t BaseOffset,
470                                               bool HasBaseReg, int64_t Scale,
471                                               unsigned AddrSpace) const {
472   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
473                                            Scale, AddrSpace);
474   assert(Cost >= 0 && "TTI should not produce negative costs!");
475   return Cost;
476 }
477 
478 bool TargetTransformInfo::LSRWithInstrQueries() const {
479   return TTIImpl->LSRWithInstrQueries();
480 }
481 
482 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
483   return TTIImpl->isTruncateFree(Ty1, Ty2);
484 }
485 
486 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
487   return TTIImpl->isProfitableToHoist(I);
488 }
489 
490 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
491 
492 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
493   return TTIImpl->isTypeLegal(Ty);
494 }
495 
496 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
497   return TTIImpl->getRegUsageForType(Ty);
498 }
499 
500 bool TargetTransformInfo::shouldBuildLookupTables() const {
501   return TTIImpl->shouldBuildLookupTables();
502 }
503 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
504     Constant *C) const {
505   return TTIImpl->shouldBuildLookupTablesForConstant(C);
506 }
507 
508 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
509   return TTIImpl->useColdCCForColdCall(F);
510 }
511 
512 unsigned
513 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
514                                               const APInt &DemandedElts,
515                                               bool Insert, bool Extract) const {
516   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
517 }
518 
519 unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
520     ArrayRef<const Value *> Args, unsigned VF) const {
521   return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
522 }
523 
524 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
525   return TTIImpl->supportsEfficientVectorElementLoadStore();
526 }
527 
528 bool TargetTransformInfo::enableAggressiveInterleaving(
529     bool LoopHasReductions) const {
530   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
531 }
532 
533 TargetTransformInfo::MemCmpExpansionOptions
534 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
535   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
536 }
537 
538 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
539   return TTIImpl->enableInterleavedAccessVectorization();
540 }
541 
542 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
543   return TTIImpl->enableMaskedInterleavedAccessVectorization();
544 }
545 
546 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
547   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
548 }
549 
550 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
551                                                          unsigned BitWidth,
552                                                          unsigned AddressSpace,
553                                                          unsigned Alignment,
554                                                          bool *Fast) const {
555   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
556                                                  AddressSpace, Alignment, Fast);
557 }
558 
559 TargetTransformInfo::PopcntSupportKind
560 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
561   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
562 }
563 
564 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
565   return TTIImpl->haveFastSqrt(Ty);
566 }
567 
568 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
569   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
570 }
571 
572 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
573   int Cost = TTIImpl->getFPOpCost(Ty);
574   assert(Cost >= 0 && "TTI should not produce negative costs!");
575   return Cost;
576 }
577 
578 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
579                                                const APInt &Imm,
580                                                Type *Ty) const {
581   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
582   assert(Cost >= 0 && "TTI should not produce negative costs!");
583   return Cost;
584 }
585 
586 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
587                                        TTI::TargetCostKind CostKind) const {
588   int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
589   assert(Cost >= 0 && "TTI should not produce negative costs!");
590   return Cost;
591 }
592 
593 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
594                                            const APInt &Imm, Type *Ty,
595                                            TTI::TargetCostKind CostKind,
596                                            Instruction *Inst) const {
597   int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
598   assert(Cost >= 0 && "TTI should not produce negative costs!");
599   return Cost;
600 }
601 
602 int
603 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
604                                          const APInt &Imm, Type *Ty,
605                                          TTI::TargetCostKind CostKind) const {
606   int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
607   assert(Cost >= 0 && "TTI should not produce negative costs!");
608   return Cost;
609 }
610 
611 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
612   return TTIImpl->getNumberOfRegisters(ClassID);
613 }
614 
615 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
616                                                       Type *Ty) const {
617   return TTIImpl->getRegisterClassForType(Vector, Ty);
618 }
619 
620 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
621   return TTIImpl->getRegisterClassName(ClassID);
622 }
623 
624 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
625   return TTIImpl->getRegisterBitWidth(Vector);
626 }
627 
628 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
629   return TTIImpl->getMinVectorRegisterBitWidth();
630 }
631 
632 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
633   return TTIImpl->getMaxVScale();
634 }
635 
636 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
637   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
638 }
639 
640 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
641   return TTIImpl->getMinimumVF(ElemWidth);
642 }
643 
644 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
645                                            unsigned Opcode) const {
646   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
647 }
648 
649 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
650     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
651   return TTIImpl->shouldConsiderAddressTypePromotion(
652       I, AllowPromotionWithoutCommonHeader);
653 }
654 
655 unsigned TargetTransformInfo::getCacheLineSize() const {
656   return TTIImpl->getCacheLineSize();
657 }
658 
659 llvm::Optional<unsigned>
660 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
661   return TTIImpl->getCacheSize(Level);
662 }
663 
664 llvm::Optional<unsigned>
665 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
666   return TTIImpl->getCacheAssociativity(Level);
667 }
668 
669 unsigned TargetTransformInfo::getPrefetchDistance() const {
670   return TTIImpl->getPrefetchDistance();
671 }
672 
673 unsigned TargetTransformInfo::getMinPrefetchStride(
674     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
675     unsigned NumPrefetches, bool HasCall) const {
676   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
677                                        NumPrefetches, HasCall);
678 }
679 
680 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
681   return TTIImpl->getMaxPrefetchIterationsAhead();
682 }
683 
684 bool TargetTransformInfo::enableWritePrefetching() const {
685   return TTIImpl->enableWritePrefetching();
686 }
687 
688 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
689   return TTIImpl->getMaxInterleaveFactor(VF);
690 }
691 
692 TargetTransformInfo::OperandValueKind
693 TargetTransformInfo::getOperandInfo(const Value *V,
694                                     OperandValueProperties &OpProps) {
695   OperandValueKind OpInfo = OK_AnyValue;
696   OpProps = OP_None;
697 
698   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
699     if (CI->getValue().isPowerOf2())
700       OpProps = OP_PowerOf2;
701     return OK_UniformConstantValue;
702   }
703 
704   // A broadcast shuffle creates a uniform value.
705   // TODO: Add support for non-zero index broadcasts.
706   // TODO: Add support for different source vector width.
707   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
708     if (ShuffleInst->isZeroEltSplat())
709       OpInfo = OK_UniformValue;
710 
711   const Value *Splat = getSplatValue(V);
712 
713   // Check for a splat of a constant or for a non uniform vector of constants
714   // and check if the constant(s) are all powers of two.
715   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
716     OpInfo = OK_NonUniformConstantValue;
717     if (Splat) {
718       OpInfo = OK_UniformConstantValue;
719       if (auto *CI = dyn_cast<ConstantInt>(Splat))
720         if (CI->getValue().isPowerOf2())
721           OpProps = OP_PowerOf2;
722     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
723       OpProps = OP_PowerOf2;
724       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
725         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
726           if (CI->getValue().isPowerOf2())
727             continue;
728         OpProps = OP_None;
729         break;
730       }
731     }
732   }
733 
734   // Check for a splat of a uniform value. This is not loop aware, so return
735   // true only for the obviously uniform cases (argument, globalvalue)
736   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
737     OpInfo = OK_UniformValue;
738 
739   return OpInfo;
740 }
741 
742 int TargetTransformInfo::getArithmeticInstrCost(
743     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
744     OperandValueKind Opd1Info,
745     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
746     OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
747     const Instruction *CxtI) const {
748   int Cost = TTIImpl->getArithmeticInstrCost(
749       Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
750       Args, CxtI);
751   assert(Cost >= 0 && "TTI should not produce negative costs!");
752   return Cost;
753 }
754 
755 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
756                                         int Index, VectorType *SubTp) const {
757   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
758   assert(Cost >= 0 && "TTI should not produce negative costs!");
759   return Cost;
760 }
761 
762 TTI::CastContextHint
763 TargetTransformInfo::getCastContextHint(const Instruction *I) {
764   if (!I)
765     return CastContextHint::None;
766 
767   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
768                              unsigned GatScatOp) {
769     const Instruction *I = dyn_cast<Instruction>(V);
770     if (!I)
771       return CastContextHint::None;
772 
773     if (I->getOpcode() == LdStOp)
774       return CastContextHint::Normal;
775 
776     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777       if (II->getIntrinsicID() == MaskedOp)
778         return TTI::CastContextHint::Masked;
779       if (II->getIntrinsicID() == GatScatOp)
780         return TTI::CastContextHint::GatherScatter;
781     }
782 
783     return TTI::CastContextHint::None;
784   };
785 
786   switch (I->getOpcode()) {
787   case Instruction::ZExt:
788   case Instruction::SExt:
789   case Instruction::FPExt:
790     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
791                             Intrinsic::masked_load, Intrinsic::masked_gather);
792   case Instruction::Trunc:
793   case Instruction::FPTrunc:
794     if (I->hasOneUse())
795       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
796                               Intrinsic::masked_store,
797                               Intrinsic::masked_scatter);
798     break;
799   default:
800     return CastContextHint::None;
801   }
802 
803   return TTI::CastContextHint::None;
804 }
805 
806 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
807                                           CastContextHint CCH,
808                                           TTI::TargetCostKind CostKind,
809                                           const Instruction *I) const {
810   assert((I == nullptr || I->getOpcode() == Opcode) &&
811          "Opcode should reflect passed instruction.");
812   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
813   assert(Cost >= 0 && "TTI should not produce negative costs!");
814   return Cost;
815 }
816 
817 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
818                                                   VectorType *VecTy,
819                                                   unsigned Index) const {
820   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
821   assert(Cost >= 0 && "TTI should not produce negative costs!");
822   return Cost;
823 }
824 
825 int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
826                                         TTI::TargetCostKind CostKind) const {
827   int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
828   assert(Cost >= 0 && "TTI should not produce negative costs!");
829   return Cost;
830 }
831 
832 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
833                                             Type *CondTy,
834                                             CmpInst::Predicate VecPred,
835                                             TTI::TargetCostKind CostKind,
836                                             const Instruction *I) const {
837   assert((I == nullptr || I->getOpcode() == Opcode) &&
838          "Opcode should reflect passed instruction.");
839   int Cost =
840       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
841   assert(Cost >= 0 && "TTI should not produce negative costs!");
842   return Cost;
843 }
844 
845 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
846                                             unsigned Index) const {
847   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
848   assert(Cost >= 0 && "TTI should not produce negative costs!");
849   return Cost;
850 }
851 
852 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
853                                          Align Alignment, unsigned AddressSpace,
854                                          TTI::TargetCostKind CostKind,
855                                          const Instruction *I) const {
856   assert((I == nullptr || I->getOpcode() == Opcode) &&
857          "Opcode should reflect passed instruction.");
858   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
859                                       CostKind, I);
860   assert(Cost >= 0 && "TTI should not produce negative costs!");
861   return Cost;
862 }
863 
864 int TargetTransformInfo::getMaskedMemoryOpCost(
865     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
866     TTI::TargetCostKind CostKind) const {
867   int Cost =
868       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
869                                      CostKind);
870   assert(Cost >= 0 && "TTI should not produce negative costs!");
871   return Cost;
872 }
873 
874 int TargetTransformInfo::getGatherScatterOpCost(
875     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
876     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
877   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
878                                              Alignment, CostKind, I);
879   assert(Cost >= 0 && "TTI should not produce negative costs!");
880   return Cost;
881 }
882 
883 int TargetTransformInfo::getInterleavedMemoryOpCost(
884     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
885     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
886     bool UseMaskForCond, bool UseMaskForGaps) const {
887   int Cost = TTIImpl->getInterleavedMemoryOpCost(
888       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
889       UseMaskForCond, UseMaskForGaps);
890   assert(Cost >= 0 && "TTI should not produce negative costs!");
891   return Cost;
892 }
893 
894 int
895 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
896                                            TTI::TargetCostKind CostKind) const {
897   int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
898   assert(Cost >= 0 && "TTI should not produce negative costs!");
899   return Cost;
900 }
901 
902 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
903                                           ArrayRef<Type *> Tys,
904                                           TTI::TargetCostKind CostKind) const {
905   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
906   assert(Cost >= 0 && "TTI should not produce negative costs!");
907   return Cost;
908 }
909 
910 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
911   return TTIImpl->getNumberOfParts(Tp);
912 }
913 
914 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
915                                                    ScalarEvolution *SE,
916                                                    const SCEV *Ptr) const {
917   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
918   assert(Cost >= 0 && "TTI should not produce negative costs!");
919   return Cost;
920 }
921 
922 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
923   int Cost = TTIImpl->getMemcpyCost(I);
924   assert(Cost >= 0 && "TTI should not produce negative costs!");
925   return Cost;
926 }
927 
928 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
929                                                     VectorType *Ty,
930                                                     bool IsPairwiseForm,
931                                                     TTI::TargetCostKind CostKind) const {
932   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
933                                                  CostKind);
934   assert(Cost >= 0 && "TTI should not produce negative costs!");
935   return Cost;
936 }
937 
938 int TargetTransformInfo::getMinMaxReductionCost(
939     VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
940     TTI::TargetCostKind CostKind) const {
941   int Cost =
942       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
943                                       CostKind);
944   assert(Cost >= 0 && "TTI should not produce negative costs!");
945   return Cost;
946 }
947 
948 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
949     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
950     TTI::TargetCostKind CostKind) const {
951   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
952                                               CostKind);
953 }
954 
955 unsigned
956 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
957   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
958 }
959 
960 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
961                                              MemIntrinsicInfo &Info) const {
962   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
963 }
964 
965 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
966   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
967 }
968 
969 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
970     IntrinsicInst *Inst, Type *ExpectedType) const {
971   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
972 }
973 
974 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
975     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
976     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
977   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
978                                             DestAddrSpace, SrcAlign, DestAlign);
979 }
980 
981 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
982     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
983     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
984     unsigned SrcAlign, unsigned DestAlign) const {
985   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
986                                              SrcAddrSpace, DestAddrSpace,
987                                              SrcAlign, DestAlign);
988 }
989 
990 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
991                                               const Function *Callee) const {
992   return TTIImpl->areInlineCompatible(Caller, Callee);
993 }
994 
995 bool TargetTransformInfo::areFunctionArgsABICompatible(
996     const Function *Caller, const Function *Callee,
997     SmallPtrSetImpl<Argument *> &Args) const {
998   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
999 }
1000 
1001 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1002                                              Type *Ty) const {
1003   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1004 }
1005 
1006 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1007                                               Type *Ty) const {
1008   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1009 }
1010 
1011 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1012   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1013 }
1014 
1015 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1016   return TTIImpl->isLegalToVectorizeLoad(LI);
1017 }
1018 
1019 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1020   return TTIImpl->isLegalToVectorizeStore(SI);
1021 }
1022 
1023 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1024     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1025   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1026                                               AddrSpace);
1027 }
1028 
1029 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1030     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1031   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1032                                                AddrSpace);
1033 }
1034 
1035 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1036                                                   unsigned LoadSize,
1037                                                   unsigned ChainSizeInBytes,
1038                                                   VectorType *VecTy) const {
1039   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1040 }
1041 
1042 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1043                                                    unsigned StoreSize,
1044                                                    unsigned ChainSizeInBytes,
1045                                                    VectorType *VecTy) const {
1046   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1047 }
1048 
1049 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
1050                                                 ReductionFlags Flags) const {
1051   return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
1052 }
1053 
1054 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1055                                                 ReductionFlags Flags) const {
1056   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1057 }
1058 
1059 bool TargetTransformInfo::preferPredicatedReductionSelect(
1060     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1061   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1062 }
1063 
1064 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1065   return TTIImpl->shouldExpandReduction(II);
1066 }
1067 
1068 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1069   return TTIImpl->getGISelRematGlobalCost();
1070 }
1071 
1072 bool TargetTransformInfo::supportsScalableVectors() const {
1073   return TTIImpl->supportsScalableVectors();
1074 }
1075 
1076 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1077   return TTIImpl->getInstructionLatency(I);
1078 }
1079 
1080 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
1081                                      unsigned Level) {
1082   // We don't need a shuffle if we just want to have element 0 in position 0 of
1083   // the vector.
1084   if (!SI && Level == 0 && IsLeft)
1085     return true;
1086   else if (!SI)
1087     return false;
1088 
1089   SmallVector<int, 32> Mask(
1090       cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
1091 
1092   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
1093   // we look at the left or right side.
1094   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
1095     Mask[i] = val;
1096 
1097   ArrayRef<int> ActualMask = SI->getShuffleMask();
1098   return Mask == ActualMask;
1099 }
1100 
1101 static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
1102   Value *L, *R;
1103   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
1104     return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
1105   if (auto *SI = dyn_cast<SelectInst>(I)) {
1106     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
1107         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
1108         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
1109         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
1110         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
1111         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
1112       auto *CI = cast<CmpInst>(SI->getCondition());
1113       return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
1114     }
1115     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
1116         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
1117       auto *CI = cast<CmpInst>(SI->getCondition());
1118       return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
1119     }
1120   }
1121   return llvm::None;
1122 }
1123 
1124 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
1125                                                         unsigned Level,
1126                                                         unsigned NumLevels) {
1127   // Match one level of pairwise operations.
1128   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1129   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1130   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1131   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1132   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1133   if (!I)
1134     return TTI::RK_None;
1135 
1136   assert(I->getType()->isVectorTy() && "Expecting a vector type");
1137 
1138   Optional<TTI::ReductionData> RD = getReductionData(I);
1139   if (!RD)
1140     return TTI::RK_None;
1141 
1142   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
1143   if (!LS && Level)
1144     return TTI::RK_None;
1145   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
1146   if (!RS && Level)
1147     return TTI::RK_None;
1148 
1149   // On level 0 we can omit one shufflevector instruction.
1150   if (!Level && !RS && !LS)
1151     return TTI::RK_None;
1152 
1153   // Shuffle inputs must match.
1154   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
1155   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
1156   Value *NextLevelOp = nullptr;
1157   if (NextLevelOpR && NextLevelOpL) {
1158     // If we have two shuffles their operands must match.
1159     if (NextLevelOpL != NextLevelOpR)
1160       return TTI::RK_None;
1161 
1162     NextLevelOp = NextLevelOpL;
1163   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
1164     // On the first level we can omit the shufflevector <0, undef,...>. So the
1165     // input to the other shufflevector <1, undef> must match with one of the
1166     // inputs to the current binary operation.
1167     // Example:
1168     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
1169     //  %BinOp        = fadd          %NextLevelOpL, %R
1170     if (NextLevelOpL && NextLevelOpL != RD->RHS)
1171       return TTI::RK_None;
1172     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
1173       return TTI::RK_None;
1174 
1175     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
1176   } else
1177     return TTI::RK_None;
1178 
1179   // Check that the next levels binary operation exists and matches with the
1180   // current one.
1181   if (Level + 1 != NumLevels) {
1182     if (!isa<Instruction>(NextLevelOp))
1183       return TTI::RK_None;
1184     Optional<TTI::ReductionData> NextLevelRD =
1185         getReductionData(cast<Instruction>(NextLevelOp));
1186     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
1187       return TTI::RK_None;
1188   }
1189 
1190   // Shuffle mask for pairwise operation must match.
1191   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
1192     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
1193       return TTI::RK_None;
1194   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
1195     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
1196       return TTI::RK_None;
1197   } else {
1198     return TTI::RK_None;
1199   }
1200 
1201   if (++Level == NumLevels)
1202     return RD->Kind;
1203 
1204   // Match next level.
1205   return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
1206                                        NumLevels);
1207 }
1208 
1209 TTI::ReductionKind TTI::matchPairwiseReduction(
1210   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
1211   if (!EnableReduxCost)
1212     return TTI::RK_None;
1213 
1214   // Need to extract the first element.
1215   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1216   unsigned Idx = ~0u;
1217   if (CI)
1218     Idx = CI->getZExtValue();
1219   if (Idx != 0)
1220     return TTI::RK_None;
1221 
1222   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1223   if (!RdxStart)
1224     return TTI::RK_None;
1225   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
1226   if (!RD)
1227     return TTI::RK_None;
1228 
1229   auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
1230   unsigned NumVecElems = VecTy->getNumElements();
1231   if (!isPowerOf2_32(NumVecElems))
1232     return TTI::RK_None;
1233 
1234   // We look for a sequence of shuffle,shuffle,add triples like the following
1235   // that builds a pairwise reduction tree.
1236   //
1237   //  (X0, X1, X2, X3)
1238   //   (X0 + X1, X2 + X3, undef, undef)
1239   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
1240   //
1241   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1242   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1243   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1244   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1245   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1246   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1247   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1248   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1249   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1250   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1251   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1252   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1253       TTI::RK_None)
1254     return TTI::RK_None;
1255 
1256   Opcode = RD->Opcode;
1257   Ty = VecTy;
1258 
1259   return RD->Kind;
1260 }
1261 
1262 static std::pair<Value *, ShuffleVectorInst *>
1263 getShuffleAndOtherOprd(Value *L, Value *R) {
1264   ShuffleVectorInst *S = nullptr;
1265 
1266   if ((S = dyn_cast<ShuffleVectorInst>(L)))
1267     return std::make_pair(R, S);
1268 
1269   S = dyn_cast<ShuffleVectorInst>(R);
1270   return std::make_pair(L, S);
1271 }
1272 
1273 TTI::ReductionKind TTI::matchVectorSplittingReduction(
1274   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
1275 
1276   if (!EnableReduxCost)
1277     return TTI::RK_None;
1278 
1279   // Need to extract the first element.
1280   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1281   unsigned Idx = ~0u;
1282   if (CI)
1283     Idx = CI->getZExtValue();
1284   if (Idx != 0)
1285     return TTI::RK_None;
1286 
1287   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1288   if (!RdxStart)
1289     return TTI::RK_None;
1290   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
1291   if (!RD)
1292     return TTI::RK_None;
1293 
1294   auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
1295   unsigned NumVecElems = VecTy->getNumElements();
1296   if (!isPowerOf2_32(NumVecElems))
1297     return TTI::RK_None;
1298 
1299   // We look for a sequence of shuffles and adds like the following matching one
1300   // fadd, shuffle vector pair at a time.
1301   //
1302   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1303   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1304   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1305   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1306   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1307   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1308   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1309 
1310   unsigned MaskStart = 1;
1311   Instruction *RdxOp = RdxStart;
1312   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1313   unsigned NumVecElemsRemain = NumVecElems;
1314   while (NumVecElemsRemain - 1) {
1315     // Check for the right reduction operation.
1316     if (!RdxOp)
1317       return TTI::RK_None;
1318     Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
1319     if (!RDLevel || !RDLevel->hasSameData(*RD))
1320       return TTI::RK_None;
1321 
1322     Value *NextRdxOp;
1323     ShuffleVectorInst *Shuffle;
1324     std::tie(NextRdxOp, Shuffle) =
1325         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1326 
1327     // Check the current reduction operation and the shuffle use the same value.
1328     if (Shuffle == nullptr)
1329       return TTI::RK_None;
1330     if (Shuffle->getOperand(0) != NextRdxOp)
1331       return TTI::RK_None;
1332 
1333     // Check that shuffle masks matches.
1334     for (unsigned j = 0; j != MaskStart; ++j)
1335       ShuffleMask[j] = MaskStart + j;
1336     // Fill the rest of the mask with -1 for undef.
1337     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1338 
1339     ArrayRef<int> Mask = Shuffle->getShuffleMask();
1340     if (ShuffleMask != Mask)
1341       return TTI::RK_None;
1342 
1343     RdxOp = dyn_cast<Instruction>(NextRdxOp);
1344     NumVecElemsRemain /= 2;
1345     MaskStart *= 2;
1346   }
1347 
1348   Opcode = RD->Opcode;
1349   Ty = VecTy;
1350   return RD->Kind;
1351 }
1352 
1353 TTI::ReductionKind
1354 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode,
1355                           VectorType *&Ty, bool &IsPairwise) {
1356   TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty);
1357   if (RdxKind != TTI::ReductionKind::RK_None) {
1358     IsPairwise = false;
1359     return RdxKind;
1360   }
1361   IsPairwise = true;
1362   return matchPairwiseReduction(Root, Opcode, Ty);
1363 }
1364 
1365 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1366   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1367 
1368   switch (I->getOpcode()) {
1369   case Instruction::GetElementPtr:
1370   case Instruction::Ret:
1371   case Instruction::PHI:
1372   case Instruction::Br:
1373   case Instruction::Add:
1374   case Instruction::FAdd:
1375   case Instruction::Sub:
1376   case Instruction::FSub:
1377   case Instruction::Mul:
1378   case Instruction::FMul:
1379   case Instruction::UDiv:
1380   case Instruction::SDiv:
1381   case Instruction::FDiv:
1382   case Instruction::URem:
1383   case Instruction::SRem:
1384   case Instruction::FRem:
1385   case Instruction::Shl:
1386   case Instruction::LShr:
1387   case Instruction::AShr:
1388   case Instruction::And:
1389   case Instruction::Or:
1390   case Instruction::Xor:
1391   case Instruction::FNeg:
1392   case Instruction::Select:
1393   case Instruction::ICmp:
1394   case Instruction::FCmp:
1395   case Instruction::Store:
1396   case Instruction::Load:
1397   case Instruction::ZExt:
1398   case Instruction::SExt:
1399   case Instruction::FPToUI:
1400   case Instruction::FPToSI:
1401   case Instruction::FPExt:
1402   case Instruction::PtrToInt:
1403   case Instruction::IntToPtr:
1404   case Instruction::SIToFP:
1405   case Instruction::UIToFP:
1406   case Instruction::Trunc:
1407   case Instruction::FPTrunc:
1408   case Instruction::BitCast:
1409   case Instruction::AddrSpaceCast:
1410   case Instruction::ExtractElement:
1411   case Instruction::InsertElement:
1412   case Instruction::ExtractValue:
1413   case Instruction::ShuffleVector:
1414   case Instruction::Call:
1415     return getUserCost(I, CostKind);
1416   default:
1417     // We don't have any information on this instruction.
1418     return -1;
1419   }
1420 }
1421 
1422 TargetTransformInfo::Concept::~Concept() {}
1423 
1424 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1425 
1426 TargetIRAnalysis::TargetIRAnalysis(
1427     std::function<Result(const Function &)> TTICallback)
1428     : TTICallback(std::move(TTICallback)) {}
1429 
1430 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1431                                                FunctionAnalysisManager &) {
1432   return TTICallback(F);
1433 }
1434 
1435 AnalysisKey TargetIRAnalysis::Key;
1436 
1437 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1438   return Result(F.getParent()->getDataLayout());
1439 }
1440 
1441 // Register the basic pass.
1442 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1443                 "Target Transform Information", false, true)
1444 char TargetTransformInfoWrapperPass::ID = 0;
1445 
1446 void TargetTransformInfoWrapperPass::anchor() {}
1447 
1448 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1449     : ImmutablePass(ID) {
1450   initializeTargetTransformInfoWrapperPassPass(
1451       *PassRegistry::getPassRegistry());
1452 }
1453 
1454 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1455     TargetIRAnalysis TIRA)
1456     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1457   initializeTargetTransformInfoWrapperPassPass(
1458       *PassRegistry::getPassRegistry());
1459 }
1460 
1461 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1462   FunctionAnalysisManager DummyFAM;
1463   TTI = TIRA.run(F, DummyFAM);
1464   return *TTI;
1465 }
1466 
1467 ImmutablePass *
1468 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1469   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1470 }
1471