xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(
58     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
59     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
60       ScalarizationCost(ScalarizationCost) {
61 
62   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
63     FMF = FPMO->getFastMathFlags();
64 
65   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
66   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
67   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
68 }
69 
70 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
71                                                  ArrayRef<Type *> Tys,
72                                                  FastMathFlags Flags,
73                                                  const IntrinsicInst *I,
74                                                  InstructionCost ScalarCost)
75     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
76   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
77 }
78 
79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
80                                                  ArrayRef<const Value *> Args)
81     : RetTy(Ty), IID(Id) {
82 
83   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
84   ParamTys.reserve(Arguments.size());
85   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
86     ParamTys.push_back(Arguments[Idx]->getType());
87 }
88 
89 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
90                                                  ArrayRef<const Value *> Args,
91                                                  ArrayRef<Type *> Tys,
92                                                  FastMathFlags Flags,
93                                                  const IntrinsicInst *I,
94                                                  InstructionCost ScalarCost)
95     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
96   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
97   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
98 }
99 
100 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
101                                                LoopInfo &LI, DominatorTree &DT,
102                                                bool ForceNestedLoop,
103                                                bool ForceHardwareLoopPHI) {
104   SmallVector<BasicBlock *, 4> ExitingBlocks;
105   L->getExitingBlocks(ExitingBlocks);
106 
107   for (BasicBlock *BB : ExitingBlocks) {
108     // If we pass the updated counter back through a phi, we need to know
109     // which latch the updated value will be coming from.
110     if (!L->isLoopLatch(BB)) {
111       if (ForceHardwareLoopPHI || CounterInReg)
112         continue;
113     }
114 
115     const SCEV *EC = SE.getExitCount(L, BB);
116     if (isa<SCEVCouldNotCompute>(EC))
117       continue;
118     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
119       if (ConstEC->getValue()->isZero())
120         continue;
121     } else if (!SE.isLoopInvariant(EC, L))
122       continue;
123 
124     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
125       continue;
126 
127     // If this exiting block is contained in a nested loop, it is not eligible
128     // for insertion of the branch-and-decrement since the inner loop would
129     // end up messing up the value in the CTR.
130     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
131       continue;
132 
133     // We now have a loop-invariant count of loop iterations (which is not the
134     // constant zero) for which we know that this loop will not exit via this
135     // existing block.
136 
137     // We need to make sure that this block will run on every loop iteration.
138     // For this to be true, we must dominate all blocks with backedges. Such
139     // blocks are in-loop predecessors to the header block.
140     bool NotAlways = false;
141     for (BasicBlock *Pred : predecessors(L->getHeader())) {
142       if (!L->contains(Pred))
143         continue;
144 
145       if (!DT.dominates(BB, Pred)) {
146         NotAlways = true;
147         break;
148       }
149     }
150 
151     if (NotAlways)
152       continue;
153 
154     // Make sure this blocks ends with a conditional branch.
155     Instruction *TI = BB->getTerminator();
156     if (!TI)
157       continue;
158 
159     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
160       if (!BI->isConditional())
161         continue;
162 
163       ExitBranch = BI;
164     } else
165       continue;
166 
167     // Note that this block may not be the loop latch block, even if the loop
168     // has a latch block.
169     ExitBlock = BB;
170     ExitCount = EC;
171     break;
172   }
173 
174   if (!ExitBlock)
175     return false;
176   return true;
177 }
178 
179 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
180     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
181 
182 TargetTransformInfo::~TargetTransformInfo() {}
183 
184 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
185     : TTIImpl(std::move(Arg.TTIImpl)) {}
186 
187 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
188   TTIImpl = std::move(RHS.TTIImpl);
189   return *this;
190 }
191 
192 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
193   return TTIImpl->getInliningThresholdMultiplier();
194 }
195 
196 unsigned
197 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
198   return TTIImpl->adjustInliningThreshold(CB);
199 }
200 
201 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
202   return TTIImpl->getInlinerVectorBonusPercent();
203 }
204 
205 InstructionCost
206 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
207                                 ArrayRef<const Value *> Operands,
208                                 TTI::TargetCostKind CostKind) const {
209   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
210 }
211 
212 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
213     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
214     BlockFrequencyInfo *BFI) const {
215   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
216 }
217 
218 InstructionCost
219 TargetTransformInfo::getUserCost(const User *U,
220                                  ArrayRef<const Value *> Operands,
221                                  enum TargetCostKind CostKind) const {
222   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
223   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
224          "TTI should not produce negative costs!");
225   return Cost;
226 }
227 
228 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
229   return TTIImpl->getPredictableBranchThreshold();
230 }
231 
232 bool TargetTransformInfo::hasBranchDivergence() const {
233   return TTIImpl->hasBranchDivergence();
234 }
235 
236 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
237   return TTIImpl->useGPUDivergenceAnalysis();
238 }
239 
240 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
241   return TTIImpl->isSourceOfDivergence(V);
242 }
243 
244 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
245   return TTIImpl->isAlwaysUniform(V);
246 }
247 
248 unsigned TargetTransformInfo::getFlatAddressSpace() const {
249   return TTIImpl->getFlatAddressSpace();
250 }
251 
252 bool TargetTransformInfo::collectFlatAddressOperands(
253     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
254   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
255 }
256 
257 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
258                                               unsigned ToAS) const {
259   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
260 }
261 
262 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
263   return TTIImpl->getAssumedAddrSpace(V);
264 }
265 
266 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
267     IntrinsicInst *II, Value *OldV, Value *NewV) const {
268   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
269 }
270 
271 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
272   return TTIImpl->isLoweredToCall(F);
273 }
274 
275 bool TargetTransformInfo::isHardwareLoopProfitable(
276     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
277     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
278   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
279 }
280 
281 bool TargetTransformInfo::preferPredicateOverEpilogue(
282     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
283     TargetLibraryInfo *TLI, DominatorTree *DT,
284     const LoopAccessInfo *LAI) const {
285   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
286 }
287 
288 bool TargetTransformInfo::emitGetActiveLaneMask() const {
289   return TTIImpl->emitGetActiveLaneMask();
290 }
291 
292 Optional<Instruction *>
293 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
294                                           IntrinsicInst &II) const {
295   return TTIImpl->instCombineIntrinsic(IC, II);
296 }
297 
298 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
299     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
300     bool &KnownBitsComputed) const {
301   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
302                                                    KnownBitsComputed);
303 }
304 
305 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
306     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
307     APInt &UndefElts2, APInt &UndefElts3,
308     std::function<void(Instruction *, unsigned, APInt, APInt &)>
309         SimplifyAndSetOp) const {
310   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
311       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
312       SimplifyAndSetOp);
313 }
314 
315 void TargetTransformInfo::getUnrollingPreferences(
316     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
317   return TTIImpl->getUnrollingPreferences(L, SE, UP);
318 }
319 
320 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
321                                                 PeelingPreferences &PP) const {
322   return TTIImpl->getPeelingPreferences(L, SE, PP);
323 }
324 
325 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
326   return TTIImpl->isLegalAddImmediate(Imm);
327 }
328 
329 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
330   return TTIImpl->isLegalICmpImmediate(Imm);
331 }
332 
333 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
334                                                 int64_t BaseOffset,
335                                                 bool HasBaseReg, int64_t Scale,
336                                                 unsigned AddrSpace,
337                                                 Instruction *I) const {
338   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
339                                         Scale, AddrSpace, I);
340 }
341 
342 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
343   return TTIImpl->isLSRCostLess(C1, C2);
344 }
345 
346 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
347   return TTIImpl->isNumRegsMajorCostOfLSR();
348 }
349 
350 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
351   return TTIImpl->isProfitableLSRChainElement(I);
352 }
353 
354 bool TargetTransformInfo::canMacroFuseCmp() const {
355   return TTIImpl->canMacroFuseCmp();
356 }
357 
358 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
359                                      ScalarEvolution *SE, LoopInfo *LI,
360                                      DominatorTree *DT, AssumptionCache *AC,
361                                      TargetLibraryInfo *LibInfo) const {
362   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
363 }
364 
365 TTI::AddressingModeKind
366 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
367                                                 ScalarEvolution *SE) const {
368   return TTIImpl->getPreferredAddressingMode(L, SE);
369 }
370 
371 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
372                                              Align Alignment) const {
373   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
374 }
375 
376 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
377                                             Align Alignment) const {
378   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
379 }
380 
381 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
382                                          Align Alignment) const {
383   return TTIImpl->isLegalNTStore(DataType, Alignment);
384 }
385 
386 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
387   return TTIImpl->isLegalNTLoad(DataType, Alignment);
388 }
389 
390 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
391                                               Align Alignment) const {
392   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
393 }
394 
395 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
396                                                Align Alignment) const {
397   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
398 }
399 
400 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
401   return TTIImpl->isLegalMaskedCompressStore(DataType);
402 }
403 
404 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
405   return TTIImpl->isLegalMaskedExpandLoad(DataType);
406 }
407 
408 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
409   return TTIImpl->hasDivRemOp(DataType, IsSigned);
410 }
411 
412 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
413                                              unsigned AddrSpace) const {
414   return TTIImpl->hasVolatileVariant(I, AddrSpace);
415 }
416 
417 bool TargetTransformInfo::prefersVectorizedAddressing() const {
418   return TTIImpl->prefersVectorizedAddressing();
419 }
420 
421 InstructionCost TargetTransformInfo::getScalingFactorCost(
422     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
423     int64_t Scale, unsigned AddrSpace) const {
424   InstructionCost Cost = TTIImpl->getScalingFactorCost(
425       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
426   assert(Cost >= 0 && "TTI should not produce negative costs!");
427   return Cost;
428 }
429 
430 bool TargetTransformInfo::LSRWithInstrQueries() const {
431   return TTIImpl->LSRWithInstrQueries();
432 }
433 
434 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
435   return TTIImpl->isTruncateFree(Ty1, Ty2);
436 }
437 
438 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
439   return TTIImpl->isProfitableToHoist(I);
440 }
441 
442 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
443 
444 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
445   return TTIImpl->isTypeLegal(Ty);
446 }
447 
448 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
449   return TTIImpl->getRegUsageForType(Ty);
450 }
451 
452 bool TargetTransformInfo::shouldBuildLookupTables() const {
453   return TTIImpl->shouldBuildLookupTables();
454 }
455 
456 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
457     Constant *C) const {
458   return TTIImpl->shouldBuildLookupTablesForConstant(C);
459 }
460 
461 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
462   return TTIImpl->shouldBuildRelLookupTables();
463 }
464 
465 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
466   return TTIImpl->useColdCCForColdCall(F);
467 }
468 
469 InstructionCost
470 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
471                                               const APInt &DemandedElts,
472                                               bool Insert, bool Extract) const {
473   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
474 }
475 
476 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
477     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
478   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
479 }
480 
481 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
482   return TTIImpl->supportsEfficientVectorElementLoadStore();
483 }
484 
485 bool TargetTransformInfo::enableAggressiveInterleaving(
486     bool LoopHasReductions) const {
487   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
488 }
489 
490 TargetTransformInfo::MemCmpExpansionOptions
491 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
492   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
493 }
494 
495 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
496   return TTIImpl->enableInterleavedAccessVectorization();
497 }
498 
499 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
500   return TTIImpl->enableMaskedInterleavedAccessVectorization();
501 }
502 
503 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
504   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
505 }
506 
507 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
508                                                          unsigned BitWidth,
509                                                          unsigned AddressSpace,
510                                                          Align Alignment,
511                                                          bool *Fast) const {
512   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
513                                                  AddressSpace, Alignment, Fast);
514 }
515 
516 TargetTransformInfo::PopcntSupportKind
517 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
518   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
519 }
520 
521 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
522   return TTIImpl->haveFastSqrt(Ty);
523 }
524 
525 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
526   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
527 }
528 
529 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
530   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
531   assert(Cost >= 0 && "TTI should not produce negative costs!");
532   return Cost;
533 }
534 
535 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
536                                                            unsigned Idx,
537                                                            const APInt &Imm,
538                                                            Type *Ty) const {
539   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
540   assert(Cost >= 0 && "TTI should not produce negative costs!");
541   return Cost;
542 }
543 
544 InstructionCost
545 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
546                                    TTI::TargetCostKind CostKind) const {
547   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
548   assert(Cost >= 0 && "TTI should not produce negative costs!");
549   return Cost;
550 }
551 
552 InstructionCost TargetTransformInfo::getIntImmCostInst(
553     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
554     TTI::TargetCostKind CostKind, Instruction *Inst) const {
555   InstructionCost Cost =
556       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
557   assert(Cost >= 0 && "TTI should not produce negative costs!");
558   return Cost;
559 }
560 
561 InstructionCost
562 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
563                                          const APInt &Imm, Type *Ty,
564                                          TTI::TargetCostKind CostKind) const {
565   InstructionCost Cost =
566       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
567   assert(Cost >= 0 && "TTI should not produce negative costs!");
568   return Cost;
569 }
570 
571 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
572   return TTIImpl->getNumberOfRegisters(ClassID);
573 }
574 
575 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
576                                                       Type *Ty) const {
577   return TTIImpl->getRegisterClassForType(Vector, Ty);
578 }
579 
580 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
581   return TTIImpl->getRegisterClassName(ClassID);
582 }
583 
584 TypeSize TargetTransformInfo::getRegisterBitWidth(
585     TargetTransformInfo::RegisterKind K) const {
586   return TTIImpl->getRegisterBitWidth(K);
587 }
588 
589 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
590   return TTIImpl->getMinVectorRegisterBitWidth();
591 }
592 
593 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
594   return TTIImpl->getMaxVScale();
595 }
596 
597 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
598   return TTIImpl->shouldMaximizeVectorBandwidth();
599 }
600 
601 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
602                                                bool IsScalable) const {
603   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
604 }
605 
606 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
607                                            unsigned Opcode) const {
608   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
609 }
610 
611 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
612     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
613   return TTIImpl->shouldConsiderAddressTypePromotion(
614       I, AllowPromotionWithoutCommonHeader);
615 }
616 
617 unsigned TargetTransformInfo::getCacheLineSize() const {
618   return TTIImpl->getCacheLineSize();
619 }
620 
621 llvm::Optional<unsigned>
622 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
623   return TTIImpl->getCacheSize(Level);
624 }
625 
626 llvm::Optional<unsigned>
627 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
628   return TTIImpl->getCacheAssociativity(Level);
629 }
630 
631 unsigned TargetTransformInfo::getPrefetchDistance() const {
632   return TTIImpl->getPrefetchDistance();
633 }
634 
635 unsigned TargetTransformInfo::getMinPrefetchStride(
636     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
637     unsigned NumPrefetches, bool HasCall) const {
638   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
639                                        NumPrefetches, HasCall);
640 }
641 
642 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
643   return TTIImpl->getMaxPrefetchIterationsAhead();
644 }
645 
646 bool TargetTransformInfo::enableWritePrefetching() const {
647   return TTIImpl->enableWritePrefetching();
648 }
649 
650 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
651   return TTIImpl->getMaxInterleaveFactor(VF);
652 }
653 
654 TargetTransformInfo::OperandValueKind
655 TargetTransformInfo::getOperandInfo(const Value *V,
656                                     OperandValueProperties &OpProps) {
657   OperandValueKind OpInfo = OK_AnyValue;
658   OpProps = OP_None;
659 
660   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
661     if (CI->getValue().isPowerOf2())
662       OpProps = OP_PowerOf2;
663     return OK_UniformConstantValue;
664   }
665 
666   // A broadcast shuffle creates a uniform value.
667   // TODO: Add support for non-zero index broadcasts.
668   // TODO: Add support for different source vector width.
669   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
670     if (ShuffleInst->isZeroEltSplat())
671       OpInfo = OK_UniformValue;
672 
673   const Value *Splat = getSplatValue(V);
674 
675   // Check for a splat of a constant or for a non uniform vector of constants
676   // and check if the constant(s) are all powers of two.
677   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
678     OpInfo = OK_NonUniformConstantValue;
679     if (Splat) {
680       OpInfo = OK_UniformConstantValue;
681       if (auto *CI = dyn_cast<ConstantInt>(Splat))
682         if (CI->getValue().isPowerOf2())
683           OpProps = OP_PowerOf2;
684     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
685       OpProps = OP_PowerOf2;
686       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
687         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
688           if (CI->getValue().isPowerOf2())
689             continue;
690         OpProps = OP_None;
691         break;
692       }
693     }
694   }
695 
696   // Check for a splat of a uniform value. This is not loop aware, so return
697   // true only for the obviously uniform cases (argument, globalvalue)
698   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
699     OpInfo = OK_UniformValue;
700 
701   return OpInfo;
702 }
703 
704 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
705     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
706     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
707     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
708     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
709   InstructionCost Cost =
710       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
711                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
712   assert(Cost >= 0 && "TTI should not produce negative costs!");
713   return Cost;
714 }
715 
716 InstructionCost TargetTransformInfo::getShuffleCost(ShuffleKind Kind,
717                                                     VectorType *Ty,
718                                                     ArrayRef<int> Mask,
719                                                     int Index,
720                                                     VectorType *SubTp) const {
721   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
722   assert(Cost >= 0 && "TTI should not produce negative costs!");
723   return Cost;
724 }
725 
726 TTI::CastContextHint
727 TargetTransformInfo::getCastContextHint(const Instruction *I) {
728   if (!I)
729     return CastContextHint::None;
730 
731   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
732                              unsigned GatScatOp) {
733     const Instruction *I = dyn_cast<Instruction>(V);
734     if (!I)
735       return CastContextHint::None;
736 
737     if (I->getOpcode() == LdStOp)
738       return CastContextHint::Normal;
739 
740     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
741       if (II->getIntrinsicID() == MaskedOp)
742         return TTI::CastContextHint::Masked;
743       if (II->getIntrinsicID() == GatScatOp)
744         return TTI::CastContextHint::GatherScatter;
745     }
746 
747     return TTI::CastContextHint::None;
748   };
749 
750   switch (I->getOpcode()) {
751   case Instruction::ZExt:
752   case Instruction::SExt:
753   case Instruction::FPExt:
754     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
755                             Intrinsic::masked_load, Intrinsic::masked_gather);
756   case Instruction::Trunc:
757   case Instruction::FPTrunc:
758     if (I->hasOneUse())
759       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
760                               Intrinsic::masked_store,
761                               Intrinsic::masked_scatter);
762     break;
763   default:
764     return CastContextHint::None;
765   }
766 
767   return TTI::CastContextHint::None;
768 }
769 
770 InstructionCost TargetTransformInfo::getCastInstrCost(
771     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
772     TTI::TargetCostKind CostKind, const Instruction *I) const {
773   assert((I == nullptr || I->getOpcode() == Opcode) &&
774          "Opcode should reflect passed instruction.");
775   InstructionCost Cost =
776       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
777   assert(Cost >= 0 && "TTI should not produce negative costs!");
778   return Cost;
779 }
780 
781 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
782     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
783   InstructionCost Cost =
784       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
785   assert(Cost >= 0 && "TTI should not produce negative costs!");
786   return Cost;
787 }
788 
789 InstructionCost TargetTransformInfo::getCFInstrCost(
790     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
791   assert((I == nullptr || I->getOpcode() == Opcode) &&
792          "Opcode should reflect passed instruction.");
793   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
794   assert(Cost >= 0 && "TTI should not produce negative costs!");
795   return Cost;
796 }
797 
798 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
799     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
800     TTI::TargetCostKind CostKind, const Instruction *I) const {
801   assert((I == nullptr || I->getOpcode() == Opcode) &&
802          "Opcode should reflect passed instruction.");
803   InstructionCost Cost =
804       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
805   assert(Cost >= 0 && "TTI should not produce negative costs!");
806   return Cost;
807 }
808 
809 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
810                                                         Type *Val,
811                                                         unsigned Index) const {
812   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
813   assert(Cost >= 0 && "TTI should not produce negative costs!");
814   return Cost;
815 }
816 
817 InstructionCost TargetTransformInfo::getMemoryOpCost(
818     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
819     TTI::TargetCostKind CostKind, const Instruction *I) const {
820   assert((I == nullptr || I->getOpcode() == Opcode) &&
821          "Opcode should reflect passed instruction.");
822   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
823                                                   AddressSpace, CostKind, I);
824   assert(Cost >= 0 && "TTI should not produce negative costs!");
825   return Cost;
826 }
827 
828 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
829     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
830     TTI::TargetCostKind CostKind) const {
831   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
832                                                         AddressSpace, CostKind);
833   assert(Cost >= 0 && "TTI should not produce negative costs!");
834   return Cost;
835 }
836 
837 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
838     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
839     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
840   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
841       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
842   assert(Cost >= 0 && "TTI should not produce negative costs!");
843   return Cost;
844 }
845 
846 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
847     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
848     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
849     bool UseMaskForCond, bool UseMaskForGaps) const {
850   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
851       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
852       UseMaskForCond, UseMaskForGaps);
853   assert(Cost >= 0 && "TTI should not produce negative costs!");
854   return Cost;
855 }
856 
857 InstructionCost
858 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
859                                            TTI::TargetCostKind CostKind) const {
860   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
861   assert(Cost >= 0 && "TTI should not produce negative costs!");
862   return Cost;
863 }
864 
865 InstructionCost
866 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
867                                       ArrayRef<Type *> Tys,
868                                       TTI::TargetCostKind CostKind) const {
869   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
870   assert(Cost >= 0 && "TTI should not produce negative costs!");
871   return Cost;
872 }
873 
874 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
875   return TTIImpl->getNumberOfParts(Tp);
876 }
877 
878 InstructionCost
879 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
880                                                const SCEV *Ptr) const {
881   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
882   assert(Cost >= 0 && "TTI should not produce negative costs!");
883   return Cost;
884 }
885 
886 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
887   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
888   assert(Cost >= 0 && "TTI should not produce negative costs!");
889   return Cost;
890 }
891 
892 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
893     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
894     TTI::TargetCostKind CostKind) const {
895   InstructionCost Cost =
896       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
897   assert(Cost >= 0 && "TTI should not produce negative costs!");
898   return Cost;
899 }
900 
901 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
902     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
903     TTI::TargetCostKind CostKind) const {
904   InstructionCost Cost =
905       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
906   assert(Cost >= 0 && "TTI should not produce negative costs!");
907   return Cost;
908 }
909 
910 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
911     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
912     TTI::TargetCostKind CostKind) const {
913   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
914                                               CostKind);
915 }
916 
917 InstructionCost
918 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
919   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
920 }
921 
922 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
923                                              MemIntrinsicInfo &Info) const {
924   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
925 }
926 
927 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
928   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
929 }
930 
931 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
932     IntrinsicInst *Inst, Type *ExpectedType) const {
933   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
934 }
935 
936 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
937     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
938     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
939   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
940                                             DestAddrSpace, SrcAlign, DestAlign);
941 }
942 
943 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
944     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
945     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
946     unsigned SrcAlign, unsigned DestAlign) const {
947   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
948                                              SrcAddrSpace, DestAddrSpace,
949                                              SrcAlign, DestAlign);
950 }
951 
952 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
953                                               const Function *Callee) const {
954   return TTIImpl->areInlineCompatible(Caller, Callee);
955 }
956 
957 bool TargetTransformInfo::areFunctionArgsABICompatible(
958     const Function *Caller, const Function *Callee,
959     SmallPtrSetImpl<Argument *> &Args) const {
960   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
961 }
962 
963 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
964                                              Type *Ty) const {
965   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
966 }
967 
968 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
969                                               Type *Ty) const {
970   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
971 }
972 
973 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
974   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
975 }
976 
977 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
978   return TTIImpl->isLegalToVectorizeLoad(LI);
979 }
980 
981 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
982   return TTIImpl->isLegalToVectorizeStore(SI);
983 }
984 
985 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
986     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
987   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
988                                               AddrSpace);
989 }
990 
991 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
992     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
993   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
994                                                AddrSpace);
995 }
996 
997 bool TargetTransformInfo::isLegalToVectorizeReduction(
998     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
999   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1000 }
1001 
1002 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1003   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1004 }
1005 
1006 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1007                                                   unsigned LoadSize,
1008                                                   unsigned ChainSizeInBytes,
1009                                                   VectorType *VecTy) const {
1010   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1011 }
1012 
1013 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1014                                                    unsigned StoreSize,
1015                                                    unsigned ChainSizeInBytes,
1016                                                    VectorType *VecTy) const {
1017   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1018 }
1019 
1020 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1021                                                 ReductionFlags Flags) const {
1022   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1023 }
1024 
1025 bool TargetTransformInfo::preferPredicatedReductionSelect(
1026     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1027   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1028 }
1029 
1030 TargetTransformInfo::VPLegalization
1031 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1032   return TTIImpl->getVPLegalizationStrategy(VPI);
1033 }
1034 
1035 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1036   return TTIImpl->shouldExpandReduction(II);
1037 }
1038 
1039 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1040   return TTIImpl->getGISelRematGlobalCost();
1041 }
1042 
1043 bool TargetTransformInfo::supportsScalableVectors() const {
1044   return TTIImpl->supportsScalableVectors();
1045 }
1046 
1047 bool TargetTransformInfo::hasActiveVectorLength() const {
1048   return TTIImpl->hasActiveVectorLength();
1049 }
1050 
1051 InstructionCost
1052 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1053   return TTIImpl->getInstructionLatency(I);
1054 }
1055 
1056 InstructionCost
1057 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1058   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1059 
1060   switch (I->getOpcode()) {
1061   case Instruction::GetElementPtr:
1062   case Instruction::Ret:
1063   case Instruction::PHI:
1064   case Instruction::Br:
1065   case Instruction::Add:
1066   case Instruction::FAdd:
1067   case Instruction::Sub:
1068   case Instruction::FSub:
1069   case Instruction::Mul:
1070   case Instruction::FMul:
1071   case Instruction::UDiv:
1072   case Instruction::SDiv:
1073   case Instruction::FDiv:
1074   case Instruction::URem:
1075   case Instruction::SRem:
1076   case Instruction::FRem:
1077   case Instruction::Shl:
1078   case Instruction::LShr:
1079   case Instruction::AShr:
1080   case Instruction::And:
1081   case Instruction::Or:
1082   case Instruction::Xor:
1083   case Instruction::FNeg:
1084   case Instruction::Select:
1085   case Instruction::ICmp:
1086   case Instruction::FCmp:
1087   case Instruction::Store:
1088   case Instruction::Load:
1089   case Instruction::ZExt:
1090   case Instruction::SExt:
1091   case Instruction::FPToUI:
1092   case Instruction::FPToSI:
1093   case Instruction::FPExt:
1094   case Instruction::PtrToInt:
1095   case Instruction::IntToPtr:
1096   case Instruction::SIToFP:
1097   case Instruction::UIToFP:
1098   case Instruction::Trunc:
1099   case Instruction::FPTrunc:
1100   case Instruction::BitCast:
1101   case Instruction::AddrSpaceCast:
1102   case Instruction::ExtractElement:
1103   case Instruction::InsertElement:
1104   case Instruction::ExtractValue:
1105   case Instruction::ShuffleVector:
1106   case Instruction::Call:
1107   case Instruction::Switch:
1108     return getUserCost(I, CostKind);
1109   default:
1110     // We don't have any information on this instruction.
1111     return -1;
1112   }
1113 }
1114 
1115 TargetTransformInfo::Concept::~Concept() {}
1116 
1117 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1118 
1119 TargetIRAnalysis::TargetIRAnalysis(
1120     std::function<Result(const Function &)> TTICallback)
1121     : TTICallback(std::move(TTICallback)) {}
1122 
1123 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1124                                                FunctionAnalysisManager &) {
1125   return TTICallback(F);
1126 }
1127 
1128 AnalysisKey TargetIRAnalysis::Key;
1129 
1130 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1131   return Result(F.getParent()->getDataLayout());
1132 }
1133 
1134 // Register the basic pass.
1135 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1136                 "Target Transform Information", false, true)
1137 char TargetTransformInfoWrapperPass::ID = 0;
1138 
1139 void TargetTransformInfoWrapperPass::anchor() {}
1140 
1141 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1142     : ImmutablePass(ID) {
1143   initializeTargetTransformInfoWrapperPassPass(
1144       *PassRegistry::getPassRegistry());
1145 }
1146 
1147 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1148     TargetIRAnalysis TIRA)
1149     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1150   initializeTargetTransformInfoWrapperPassPass(
1151       *PassRegistry::getPassRegistry());
1152 }
1153 
1154 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1155   FunctionAnalysisManager DummyFAM;
1156   TTI = TIRA.run(F, DummyFAM);
1157   return *TTI;
1158 }
1159 
1160 ImmutablePass *
1161 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1162   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1163 }
1164