1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Dominators.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/Operator.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <utility> 26 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "tti" 31 32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 33 cl::Hidden, 34 cl::desc("Recognize reduction patterns.")); 35 36 namespace { 37 /// No-op implementation of the TTI interface using the utility base 38 /// classes. 39 /// 40 /// This is used when no target specific information is available. 41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 42 explicit NoTTIImpl(const DataLayout &DL) 43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 44 }; 45 } // namespace 46 47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 48 // If the loop has irreducible control flow, it can not be converted to 49 // Hardware loop. 50 LoopBlocksRPO RPOT(L); 51 RPOT.perform(&LI); 52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 53 return false; 54 return true; 55 } 56 57 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 58 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 59 60 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 61 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 62 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 63 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 64 FMF = FPMO->getFastMathFlags(); 65 } 66 67 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 68 const CallBase &CI) : 69 II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) { 70 71 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 72 FMF = FPMO->getFastMathFlags(); 73 74 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 75 FunctionType *FTy = 76 CI.getCalledFunction()->getFunctionType(); 77 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 78 } 79 80 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 81 const CallBase &CI, 82 ElementCount Factor) 83 : RetTy(CI.getType()), IID(Id), VF(Factor) { 84 85 assert(!Factor.isScalable() && "Scalable vectors are not yet supported"); 86 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 87 FMF = FPMO->getFastMathFlags(); 88 89 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 90 FunctionType *FTy = 91 CI.getCalledFunction()->getFunctionType(); 92 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 93 } 94 95 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, 96 const CallBase &CI, 97 ElementCount Factor, 98 unsigned ScalarCost) 99 : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 100 101 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 102 FMF = FPMO->getFastMathFlags(); 103 104 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 105 FunctionType *FTy = 106 CI.getCalledFunction()->getFunctionType(); 107 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 108 } 109 110 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 111 ArrayRef<Type *> Tys, 112 FastMathFlags Flags) : 113 RetTy(RTy), IID(Id), FMF(Flags) { 114 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 115 } 116 117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 118 ArrayRef<Type *> Tys, 119 FastMathFlags Flags, 120 unsigned ScalarCost) : 121 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 122 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 123 } 124 125 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 126 ArrayRef<Type *> Tys, 127 FastMathFlags Flags, 128 unsigned ScalarCost, 129 const IntrinsicInst *I) : 130 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 131 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 132 } 133 134 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 135 ArrayRef<Type *> Tys) : 136 RetTy(RTy), IID(Id) { 137 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 138 } 139 140 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 141 ArrayRef<const Value *> Args) 142 : RetTy(Ty), IID(Id) { 143 144 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 145 ParamTys.reserve(Arguments.size()); 146 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 147 ParamTys.push_back(Arguments[Idx]->getType()); 148 } 149 150 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 151 LoopInfo &LI, DominatorTree &DT, 152 bool ForceNestedLoop, 153 bool ForceHardwareLoopPHI) { 154 SmallVector<BasicBlock *, 4> ExitingBlocks; 155 L->getExitingBlocks(ExitingBlocks); 156 157 for (BasicBlock *BB : ExitingBlocks) { 158 // If we pass the updated counter back through a phi, we need to know 159 // which latch the updated value will be coming from. 160 if (!L->isLoopLatch(BB)) { 161 if (ForceHardwareLoopPHI || CounterInReg) 162 continue; 163 } 164 165 const SCEV *EC = SE.getExitCount(L, BB); 166 if (isa<SCEVCouldNotCompute>(EC)) 167 continue; 168 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 169 if (ConstEC->getValue()->isZero()) 170 continue; 171 } else if (!SE.isLoopInvariant(EC, L)) 172 continue; 173 174 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 175 continue; 176 177 // If this exiting block is contained in a nested loop, it is not eligible 178 // for insertion of the branch-and-decrement since the inner loop would 179 // end up messing up the value in the CTR. 180 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 181 continue; 182 183 // We now have a loop-invariant count of loop iterations (which is not the 184 // constant zero) for which we know that this loop will not exit via this 185 // existing block. 186 187 // We need to make sure that this block will run on every loop iteration. 188 // For this to be true, we must dominate all blocks with backedges. Such 189 // blocks are in-loop predecessors to the header block. 190 bool NotAlways = false; 191 for (BasicBlock *Pred : predecessors(L->getHeader())) { 192 if (!L->contains(Pred)) 193 continue; 194 195 if (!DT.dominates(BB, Pred)) { 196 NotAlways = true; 197 break; 198 } 199 } 200 201 if (NotAlways) 202 continue; 203 204 // Make sure this blocks ends with a conditional branch. 205 Instruction *TI = BB->getTerminator(); 206 if (!TI) 207 continue; 208 209 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 210 if (!BI->isConditional()) 211 continue; 212 213 ExitBranch = BI; 214 } else 215 continue; 216 217 // Note that this block may not be the loop latch block, even if the loop 218 // has a latch block. 219 ExitBlock = BB; 220 TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType())); 221 222 if (!EC->getType()->isPointerTy() && EC->getType() != CountType) 223 TripCount = SE.getZeroExtendExpr(TripCount, CountType); 224 225 break; 226 } 227 228 if (!ExitBlock) 229 return false; 230 return true; 231 } 232 233 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 234 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 235 236 TargetTransformInfo::~TargetTransformInfo() {} 237 238 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 239 : TTIImpl(std::move(Arg.TTIImpl)) {} 240 241 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 242 TTIImpl = std::move(RHS.TTIImpl); 243 return *this; 244 } 245 246 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 247 return TTIImpl->getInliningThresholdMultiplier(); 248 } 249 250 unsigned 251 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const { 252 return TTIImpl->adjustInliningThreshold(CB); 253 } 254 255 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 256 return TTIImpl->getInlinerVectorBonusPercent(); 257 } 258 259 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 260 ArrayRef<const Value *> Operands, 261 TTI::TargetCostKind CostKind) const { 262 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 263 } 264 265 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 266 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 267 BlockFrequencyInfo *BFI) const { 268 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 269 } 270 271 int TargetTransformInfo::getUserCost(const User *U, 272 ArrayRef<const Value *> Operands, 273 enum TargetCostKind CostKind) const { 274 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 275 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) && 276 "TTI should not produce negative costs!"); 277 return Cost; 278 } 279 280 bool TargetTransformInfo::hasBranchDivergence() const { 281 return TTIImpl->hasBranchDivergence(); 282 } 283 284 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 285 return TTIImpl->useGPUDivergenceAnalysis(); 286 } 287 288 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 289 return TTIImpl->isSourceOfDivergence(V); 290 } 291 292 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 293 return TTIImpl->isAlwaysUniform(V); 294 } 295 296 unsigned TargetTransformInfo::getFlatAddressSpace() const { 297 return TTIImpl->getFlatAddressSpace(); 298 } 299 300 bool TargetTransformInfo::collectFlatAddressOperands( 301 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 302 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 303 } 304 305 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS, 306 unsigned ToAS) const { 307 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS); 308 } 309 310 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const { 311 return TTIImpl->getAssumedAddrSpace(V); 312 } 313 314 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace( 315 IntrinsicInst *II, Value *OldV, Value *NewV) const { 316 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 317 } 318 319 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 320 return TTIImpl->isLoweredToCall(F); 321 } 322 323 bool TargetTransformInfo::isHardwareLoopProfitable( 324 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 325 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 326 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 327 } 328 329 bool TargetTransformInfo::preferPredicateOverEpilogue( 330 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 331 TargetLibraryInfo *TLI, DominatorTree *DT, 332 const LoopAccessInfo *LAI) const { 333 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 334 } 335 336 bool TargetTransformInfo::emitGetActiveLaneMask() const { 337 return TTIImpl->emitGetActiveLaneMask(); 338 } 339 340 Optional<Instruction *> 341 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC, 342 IntrinsicInst &II) const { 343 return TTIImpl->instCombineIntrinsic(IC, II); 344 } 345 346 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic( 347 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 348 bool &KnownBitsComputed) const { 349 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 350 KnownBitsComputed); 351 } 352 353 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic( 354 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 355 APInt &UndefElts2, APInt &UndefElts3, 356 std::function<void(Instruction *, unsigned, APInt, APInt &)> 357 SimplifyAndSetOp) const { 358 return TTIImpl->simplifyDemandedVectorEltsIntrinsic( 359 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 360 SimplifyAndSetOp); 361 } 362 363 void TargetTransformInfo::getUnrollingPreferences( 364 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 365 return TTIImpl->getUnrollingPreferences(L, SE, UP); 366 } 367 368 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 369 PeelingPreferences &PP) const { 370 return TTIImpl->getPeelingPreferences(L, SE, PP); 371 } 372 373 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 374 return TTIImpl->isLegalAddImmediate(Imm); 375 } 376 377 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 378 return TTIImpl->isLegalICmpImmediate(Imm); 379 } 380 381 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 382 int64_t BaseOffset, 383 bool HasBaseReg, int64_t Scale, 384 unsigned AddrSpace, 385 Instruction *I) const { 386 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 387 Scale, AddrSpace, I); 388 } 389 390 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 391 return TTIImpl->isLSRCostLess(C1, C2); 392 } 393 394 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const { 395 return TTIImpl->isNumRegsMajorCostOfLSR(); 396 } 397 398 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 399 return TTIImpl->isProfitableLSRChainElement(I); 400 } 401 402 bool TargetTransformInfo::canMacroFuseCmp() const { 403 return TTIImpl->canMacroFuseCmp(); 404 } 405 406 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 407 ScalarEvolution *SE, LoopInfo *LI, 408 DominatorTree *DT, AssumptionCache *AC, 409 TargetLibraryInfo *LibInfo) const { 410 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 411 } 412 413 bool TargetTransformInfo::shouldFavorPostInc() const { 414 return TTIImpl->shouldFavorPostInc(); 415 } 416 417 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 418 return TTIImpl->shouldFavorBackedgeIndex(L); 419 } 420 421 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 422 Align Alignment) const { 423 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 424 } 425 426 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 427 Align Alignment) const { 428 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 429 } 430 431 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 432 Align Alignment) const { 433 return TTIImpl->isLegalNTStore(DataType, Alignment); 434 } 435 436 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 437 return TTIImpl->isLegalNTLoad(DataType, Alignment); 438 } 439 440 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 441 Align Alignment) const { 442 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 443 } 444 445 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 446 Align Alignment) const { 447 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 448 } 449 450 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 451 return TTIImpl->isLegalMaskedCompressStore(DataType); 452 } 453 454 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 455 return TTIImpl->isLegalMaskedExpandLoad(DataType); 456 } 457 458 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 459 return TTIImpl->hasDivRemOp(DataType, IsSigned); 460 } 461 462 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 463 unsigned AddrSpace) const { 464 return TTIImpl->hasVolatileVariant(I, AddrSpace); 465 } 466 467 bool TargetTransformInfo::prefersVectorizedAddressing() const { 468 return TTIImpl->prefersVectorizedAddressing(); 469 } 470 471 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 472 int64_t BaseOffset, 473 bool HasBaseReg, int64_t Scale, 474 unsigned AddrSpace) const { 475 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 476 Scale, AddrSpace); 477 assert(Cost >= 0 && "TTI should not produce negative costs!"); 478 return Cost; 479 } 480 481 bool TargetTransformInfo::LSRWithInstrQueries() const { 482 return TTIImpl->LSRWithInstrQueries(); 483 } 484 485 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 486 return TTIImpl->isTruncateFree(Ty1, Ty2); 487 } 488 489 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 490 return TTIImpl->isProfitableToHoist(I); 491 } 492 493 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 494 495 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 496 return TTIImpl->isTypeLegal(Ty); 497 } 498 499 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const { 500 return TTIImpl->getRegUsageForType(Ty); 501 } 502 503 bool TargetTransformInfo::shouldBuildLookupTables() const { 504 return TTIImpl->shouldBuildLookupTables(); 505 } 506 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 507 Constant *C) const { 508 return TTIImpl->shouldBuildLookupTablesForConstant(C); 509 } 510 511 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 512 return TTIImpl->useColdCCForColdCall(F); 513 } 514 515 unsigned 516 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 517 const APInt &DemandedElts, 518 bool Insert, bool Extract) const { 519 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 520 } 521 522 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 523 ArrayRef<const Value *> Args, unsigned VF) const { 524 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 525 } 526 527 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 528 return TTIImpl->supportsEfficientVectorElementLoadStore(); 529 } 530 531 bool TargetTransformInfo::enableAggressiveInterleaving( 532 bool LoopHasReductions) const { 533 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 534 } 535 536 TargetTransformInfo::MemCmpExpansionOptions 537 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 538 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 539 } 540 541 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 542 return TTIImpl->enableInterleavedAccessVectorization(); 543 } 544 545 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 546 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 547 } 548 549 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 550 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 551 } 552 553 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 554 unsigned BitWidth, 555 unsigned AddressSpace, 556 unsigned Alignment, 557 bool *Fast) const { 558 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 559 AddressSpace, Alignment, Fast); 560 } 561 562 TargetTransformInfo::PopcntSupportKind 563 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 564 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 565 } 566 567 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 568 return TTIImpl->haveFastSqrt(Ty); 569 } 570 571 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 572 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 573 } 574 575 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 576 int Cost = TTIImpl->getFPOpCost(Ty); 577 assert(Cost >= 0 && "TTI should not produce negative costs!"); 578 return Cost; 579 } 580 581 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 582 const APInt &Imm, 583 Type *Ty) const { 584 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 585 assert(Cost >= 0 && "TTI should not produce negative costs!"); 586 return Cost; 587 } 588 589 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 590 TTI::TargetCostKind CostKind) const { 591 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 592 assert(Cost >= 0 && "TTI should not produce negative costs!"); 593 return Cost; 594 } 595 596 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 597 const APInt &Imm, Type *Ty, 598 TTI::TargetCostKind CostKind, 599 Instruction *Inst) const { 600 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 601 assert(Cost >= 0 && "TTI should not produce negative costs!"); 602 return Cost; 603 } 604 605 int 606 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 607 const APInt &Imm, Type *Ty, 608 TTI::TargetCostKind CostKind) const { 609 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 610 assert(Cost >= 0 && "TTI should not produce negative costs!"); 611 return Cost; 612 } 613 614 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 615 return TTIImpl->getNumberOfRegisters(ClassID); 616 } 617 618 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 619 Type *Ty) const { 620 return TTIImpl->getRegisterClassForType(Vector, Ty); 621 } 622 623 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 624 return TTIImpl->getRegisterClassName(ClassID); 625 } 626 627 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 628 return TTIImpl->getRegisterBitWidth(Vector); 629 } 630 631 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 632 return TTIImpl->getMinVectorRegisterBitWidth(); 633 } 634 635 Optional<unsigned> TargetTransformInfo::getMaxVScale() const { 636 return TTIImpl->getMaxVScale(); 637 } 638 639 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 640 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 641 } 642 643 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 644 return TTIImpl->getMinimumVF(ElemWidth); 645 } 646 647 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth, 648 unsigned Opcode) const { 649 return TTIImpl->getMaximumVF(ElemWidth, Opcode); 650 } 651 652 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 653 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 654 return TTIImpl->shouldConsiderAddressTypePromotion( 655 I, AllowPromotionWithoutCommonHeader); 656 } 657 658 unsigned TargetTransformInfo::getCacheLineSize() const { 659 return TTIImpl->getCacheLineSize(); 660 } 661 662 llvm::Optional<unsigned> 663 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 664 return TTIImpl->getCacheSize(Level); 665 } 666 667 llvm::Optional<unsigned> 668 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 669 return TTIImpl->getCacheAssociativity(Level); 670 } 671 672 unsigned TargetTransformInfo::getPrefetchDistance() const { 673 return TTIImpl->getPrefetchDistance(); 674 } 675 676 unsigned TargetTransformInfo::getMinPrefetchStride( 677 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 678 unsigned NumPrefetches, bool HasCall) const { 679 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 680 NumPrefetches, HasCall); 681 } 682 683 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 684 return TTIImpl->getMaxPrefetchIterationsAhead(); 685 } 686 687 bool TargetTransformInfo::enableWritePrefetching() const { 688 return TTIImpl->enableWritePrefetching(); 689 } 690 691 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 692 return TTIImpl->getMaxInterleaveFactor(VF); 693 } 694 695 TargetTransformInfo::OperandValueKind 696 TargetTransformInfo::getOperandInfo(const Value *V, 697 OperandValueProperties &OpProps) { 698 OperandValueKind OpInfo = OK_AnyValue; 699 OpProps = OP_None; 700 701 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 702 if (CI->getValue().isPowerOf2()) 703 OpProps = OP_PowerOf2; 704 return OK_UniformConstantValue; 705 } 706 707 // A broadcast shuffle creates a uniform value. 708 // TODO: Add support for non-zero index broadcasts. 709 // TODO: Add support for different source vector width. 710 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 711 if (ShuffleInst->isZeroEltSplat()) 712 OpInfo = OK_UniformValue; 713 714 const Value *Splat = getSplatValue(V); 715 716 // Check for a splat of a constant or for a non uniform vector of constants 717 // and check if the constant(s) are all powers of two. 718 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 719 OpInfo = OK_NonUniformConstantValue; 720 if (Splat) { 721 OpInfo = OK_UniformConstantValue; 722 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 723 if (CI->getValue().isPowerOf2()) 724 OpProps = OP_PowerOf2; 725 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 726 OpProps = OP_PowerOf2; 727 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 728 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 729 if (CI->getValue().isPowerOf2()) 730 continue; 731 OpProps = OP_None; 732 break; 733 } 734 } 735 } 736 737 // Check for a splat of a uniform value. This is not loop aware, so return 738 // true only for the obviously uniform cases (argument, globalvalue) 739 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 740 OpInfo = OK_UniformValue; 741 742 return OpInfo; 743 } 744 745 int TargetTransformInfo::getArithmeticInstrCost( 746 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 747 OperandValueKind Opd1Info, 748 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 749 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 750 const Instruction *CxtI) const { 751 int Cost = TTIImpl->getArithmeticInstrCost( 752 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 753 Args, CxtI); 754 assert(Cost >= 0 && "TTI should not produce negative costs!"); 755 return Cost; 756 } 757 758 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 759 int Index, VectorType *SubTp) const { 760 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 761 assert(Cost >= 0 && "TTI should not produce negative costs!"); 762 return Cost; 763 } 764 765 TTI::CastContextHint 766 TargetTransformInfo::getCastContextHint(const Instruction *I) { 767 if (!I) 768 return CastContextHint::None; 769 770 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp, 771 unsigned GatScatOp) { 772 const Instruction *I = dyn_cast<Instruction>(V); 773 if (!I) 774 return CastContextHint::None; 775 776 if (I->getOpcode() == LdStOp) 777 return CastContextHint::Normal; 778 779 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 780 if (II->getIntrinsicID() == MaskedOp) 781 return TTI::CastContextHint::Masked; 782 if (II->getIntrinsicID() == GatScatOp) 783 return TTI::CastContextHint::GatherScatter; 784 } 785 786 return TTI::CastContextHint::None; 787 }; 788 789 switch (I->getOpcode()) { 790 case Instruction::ZExt: 791 case Instruction::SExt: 792 case Instruction::FPExt: 793 return getLoadStoreKind(I->getOperand(0), Instruction::Load, 794 Intrinsic::masked_load, Intrinsic::masked_gather); 795 case Instruction::Trunc: 796 case Instruction::FPTrunc: 797 if (I->hasOneUse()) 798 return getLoadStoreKind(*I->user_begin(), Instruction::Store, 799 Intrinsic::masked_store, 800 Intrinsic::masked_scatter); 801 break; 802 default: 803 return CastContextHint::None; 804 } 805 806 return TTI::CastContextHint::None; 807 } 808 809 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 810 CastContextHint CCH, 811 TTI::TargetCostKind CostKind, 812 const Instruction *I) const { 813 assert((I == nullptr || I->getOpcode() == Opcode) && 814 "Opcode should reflect passed instruction."); 815 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 816 assert(Cost >= 0 && "TTI should not produce negative costs!"); 817 return Cost; 818 } 819 820 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 821 VectorType *VecTy, 822 unsigned Index) const { 823 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 824 assert(Cost >= 0 && "TTI should not produce negative costs!"); 825 return Cost; 826 } 827 828 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 829 TTI::TargetCostKind CostKind) const { 830 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 831 assert(Cost >= 0 && "TTI should not produce negative costs!"); 832 return Cost; 833 } 834 835 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 836 Type *CondTy, 837 CmpInst::Predicate VecPred, 838 TTI::TargetCostKind CostKind, 839 const Instruction *I) const { 840 assert((I == nullptr || I->getOpcode() == Opcode) && 841 "Opcode should reflect passed instruction."); 842 int Cost = 843 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 844 assert(Cost >= 0 && "TTI should not produce negative costs!"); 845 return Cost; 846 } 847 848 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 849 unsigned Index) const { 850 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 851 assert(Cost >= 0 && "TTI should not produce negative costs!"); 852 return Cost; 853 } 854 855 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 856 Align Alignment, unsigned AddressSpace, 857 TTI::TargetCostKind CostKind, 858 const Instruction *I) const { 859 assert((I == nullptr || I->getOpcode() == Opcode) && 860 "Opcode should reflect passed instruction."); 861 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 862 CostKind, I); 863 assert(Cost >= 0 && "TTI should not produce negative costs!"); 864 return Cost; 865 } 866 867 int TargetTransformInfo::getMaskedMemoryOpCost( 868 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 869 TTI::TargetCostKind CostKind) const { 870 int Cost = 871 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 872 CostKind); 873 assert(Cost >= 0 && "TTI should not produce negative costs!"); 874 return Cost; 875 } 876 877 int TargetTransformInfo::getGatherScatterOpCost( 878 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 879 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { 880 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 881 Alignment, CostKind, I); 882 assert(Cost >= 0 && "TTI should not produce negative costs!"); 883 return Cost; 884 } 885 886 int TargetTransformInfo::getInterleavedMemoryOpCost( 887 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 888 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 889 bool UseMaskForCond, bool UseMaskForGaps) const { 890 int Cost = TTIImpl->getInterleavedMemoryOpCost( 891 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 892 UseMaskForCond, UseMaskForGaps); 893 assert(Cost >= 0 && "TTI should not produce negative costs!"); 894 return Cost; 895 } 896 897 int 898 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 899 TTI::TargetCostKind CostKind) const { 900 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 901 assert(Cost >= 0 && "TTI should not produce negative costs!"); 902 return Cost; 903 } 904 905 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 906 ArrayRef<Type *> Tys, 907 TTI::TargetCostKind CostKind) const { 908 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 909 assert(Cost >= 0 && "TTI should not produce negative costs!"); 910 return Cost; 911 } 912 913 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 914 return TTIImpl->getNumberOfParts(Tp); 915 } 916 917 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 918 ScalarEvolution *SE, 919 const SCEV *Ptr) const { 920 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 921 assert(Cost >= 0 && "TTI should not produce negative costs!"); 922 return Cost; 923 } 924 925 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 926 int Cost = TTIImpl->getMemcpyCost(I); 927 assert(Cost >= 0 && "TTI should not produce negative costs!"); 928 return Cost; 929 } 930 931 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 932 VectorType *Ty, 933 bool IsPairwiseForm, 934 TTI::TargetCostKind CostKind) const { 935 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 936 CostKind); 937 assert(Cost >= 0 && "TTI should not produce negative costs!"); 938 return Cost; 939 } 940 941 int TargetTransformInfo::getMinMaxReductionCost( 942 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 943 TTI::TargetCostKind CostKind) const { 944 int Cost = 945 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 946 CostKind); 947 assert(Cost >= 0 && "TTI should not produce negative costs!"); 948 return Cost; 949 } 950 951 InstructionCost TargetTransformInfo::getExtendedAddReductionCost( 952 bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, 953 TTI::TargetCostKind CostKind) const { 954 return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty, 955 CostKind); 956 } 957 958 unsigned 959 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 960 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 961 } 962 963 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 964 MemIntrinsicInfo &Info) const { 965 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 966 } 967 968 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 969 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 970 } 971 972 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 973 IntrinsicInst *Inst, Type *ExpectedType) const { 974 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 975 } 976 977 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 978 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 979 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 980 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 981 DestAddrSpace, SrcAlign, DestAlign); 982 } 983 984 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 985 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 986 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 987 unsigned SrcAlign, unsigned DestAlign) const { 988 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 989 SrcAddrSpace, DestAddrSpace, 990 SrcAlign, DestAlign); 991 } 992 993 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 994 const Function *Callee) const { 995 return TTIImpl->areInlineCompatible(Caller, Callee); 996 } 997 998 bool TargetTransformInfo::areFunctionArgsABICompatible( 999 const Function *Caller, const Function *Callee, 1000 SmallPtrSetImpl<Argument *> &Args) const { 1001 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 1002 } 1003 1004 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 1005 Type *Ty) const { 1006 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 1007 } 1008 1009 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 1010 Type *Ty) const { 1011 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 1012 } 1013 1014 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 1015 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 1016 } 1017 1018 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 1019 return TTIImpl->isLegalToVectorizeLoad(LI); 1020 } 1021 1022 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 1023 return TTIImpl->isLegalToVectorizeStore(SI); 1024 } 1025 1026 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 1027 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1028 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 1029 AddrSpace); 1030 } 1031 1032 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 1033 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { 1034 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 1035 AddrSpace); 1036 } 1037 1038 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 1039 unsigned LoadSize, 1040 unsigned ChainSizeInBytes, 1041 VectorType *VecTy) const { 1042 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 1043 } 1044 1045 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 1046 unsigned StoreSize, 1047 unsigned ChainSizeInBytes, 1048 VectorType *VecTy) const { 1049 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 1050 } 1051 1052 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1053 ReductionFlags Flags) const { 1054 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 1055 } 1056 1057 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty, 1058 ReductionFlags Flags) const { 1059 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags); 1060 } 1061 1062 bool TargetTransformInfo::preferPredicatedReductionSelect( 1063 unsigned Opcode, Type *Ty, ReductionFlags Flags) const { 1064 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags); 1065 } 1066 1067 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 1068 return TTIImpl->shouldExpandReduction(II); 1069 } 1070 1071 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 1072 return TTIImpl->getGISelRematGlobalCost(); 1073 } 1074 1075 bool TargetTransformInfo::supportsScalableVectors() const { 1076 return TTIImpl->supportsScalableVectors(); 1077 } 1078 1079 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 1080 return TTIImpl->getInstructionLatency(I); 1081 } 1082 1083 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 1084 unsigned Level) { 1085 // We don't need a shuffle if we just want to have element 0 in position 0 of 1086 // the vector. 1087 if (!SI && Level == 0 && IsLeft) 1088 return true; 1089 else if (!SI) 1090 return false; 1091 1092 SmallVector<int, 32> Mask( 1093 cast<FixedVectorType>(SI->getType())->getNumElements(), -1); 1094 1095 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 1096 // we look at the left or right side. 1097 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 1098 Mask[i] = val; 1099 1100 ArrayRef<int> ActualMask = SI->getShuffleMask(); 1101 return Mask == ActualMask; 1102 } 1103 1104 static Optional<TTI::ReductionData> getReductionData(Instruction *I) { 1105 Value *L, *R; 1106 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 1107 return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R); 1108 if (auto *SI = dyn_cast<SelectInst>(I)) { 1109 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 1110 m_SMax(m_Value(L), m_Value(R)).match(SI) || 1111 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 1112 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 1113 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 1114 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 1115 auto *CI = cast<CmpInst>(SI->getCondition()); 1116 return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R); 1117 } 1118 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1119 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1120 auto *CI = cast<CmpInst>(SI->getCondition()); 1121 return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R); 1122 } 1123 } 1124 return llvm::None; 1125 } 1126 1127 static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1128 unsigned Level, 1129 unsigned NumLevels) { 1130 // Match one level of pairwise operations. 1131 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1132 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1133 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1134 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1135 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1136 if (!I) 1137 return TTI::RK_None; 1138 1139 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1140 1141 Optional<TTI::ReductionData> RD = getReductionData(I); 1142 if (!RD) 1143 return TTI::RK_None; 1144 1145 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1146 if (!LS && Level) 1147 return TTI::RK_None; 1148 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1149 if (!RS && Level) 1150 return TTI::RK_None; 1151 1152 // On level 0 we can omit one shufflevector instruction. 1153 if (!Level && !RS && !LS) 1154 return TTI::RK_None; 1155 1156 // Shuffle inputs must match. 1157 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1158 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1159 Value *NextLevelOp = nullptr; 1160 if (NextLevelOpR && NextLevelOpL) { 1161 // If we have two shuffles their operands must match. 1162 if (NextLevelOpL != NextLevelOpR) 1163 return TTI::RK_None; 1164 1165 NextLevelOp = NextLevelOpL; 1166 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1167 // On the first level we can omit the shufflevector <0, undef,...>. So the 1168 // input to the other shufflevector <1, undef> must match with one of the 1169 // inputs to the current binary operation. 1170 // Example: 1171 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1172 // %BinOp = fadd %NextLevelOpL, %R 1173 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1174 return TTI::RK_None; 1175 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1176 return TTI::RK_None; 1177 1178 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1179 } else 1180 return TTI::RK_None; 1181 1182 // Check that the next levels binary operation exists and matches with the 1183 // current one. 1184 if (Level + 1 != NumLevels) { 1185 if (!isa<Instruction>(NextLevelOp)) 1186 return TTI::RK_None; 1187 Optional<TTI::ReductionData> NextLevelRD = 1188 getReductionData(cast<Instruction>(NextLevelOp)); 1189 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1190 return TTI::RK_None; 1191 } 1192 1193 // Shuffle mask for pairwise operation must match. 1194 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1195 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1196 return TTI::RK_None; 1197 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1198 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1199 return TTI::RK_None; 1200 } else { 1201 return TTI::RK_None; 1202 } 1203 1204 if (++Level == NumLevels) 1205 return RD->Kind; 1206 1207 // Match next level. 1208 return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level, 1209 NumLevels); 1210 } 1211 1212 TTI::ReductionKind TTI::matchPairwiseReduction( 1213 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1214 if (!EnableReduxCost) 1215 return TTI::RK_None; 1216 1217 // Need to extract the first element. 1218 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1219 unsigned Idx = ~0u; 1220 if (CI) 1221 Idx = CI->getZExtValue(); 1222 if (Idx != 0) 1223 return TTI::RK_None; 1224 1225 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1226 if (!RdxStart) 1227 return TTI::RK_None; 1228 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1229 if (!RD) 1230 return TTI::RK_None; 1231 1232 auto *VecTy = cast<FixedVectorType>(RdxStart->getType()); 1233 unsigned NumVecElems = VecTy->getNumElements(); 1234 if (!isPowerOf2_32(NumVecElems)) 1235 return TTI::RK_None; 1236 1237 // We look for a sequence of shuffle,shuffle,add triples like the following 1238 // that builds a pairwise reduction tree. 1239 // 1240 // (X0, X1, X2, X3) 1241 // (X0 + X1, X2 + X3, undef, undef) 1242 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1243 // 1244 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1245 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1246 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1247 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1248 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1249 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1250 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1251 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1252 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1253 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1254 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1255 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1256 TTI::RK_None) 1257 return TTI::RK_None; 1258 1259 Opcode = RD->Opcode; 1260 Ty = VecTy; 1261 1262 return RD->Kind; 1263 } 1264 1265 static std::pair<Value *, ShuffleVectorInst *> 1266 getShuffleAndOtherOprd(Value *L, Value *R) { 1267 ShuffleVectorInst *S = nullptr; 1268 1269 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1270 return std::make_pair(R, S); 1271 1272 S = dyn_cast<ShuffleVectorInst>(R); 1273 return std::make_pair(L, S); 1274 } 1275 1276 TTI::ReductionKind TTI::matchVectorSplittingReduction( 1277 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) { 1278 1279 if (!EnableReduxCost) 1280 return TTI::RK_None; 1281 1282 // Need to extract the first element. 1283 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1284 unsigned Idx = ~0u; 1285 if (CI) 1286 Idx = CI->getZExtValue(); 1287 if (Idx != 0) 1288 return TTI::RK_None; 1289 1290 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1291 if (!RdxStart) 1292 return TTI::RK_None; 1293 Optional<TTI::ReductionData> RD = getReductionData(RdxStart); 1294 if (!RD) 1295 return TTI::RK_None; 1296 1297 auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType()); 1298 unsigned NumVecElems = VecTy->getNumElements(); 1299 if (!isPowerOf2_32(NumVecElems)) 1300 return TTI::RK_None; 1301 1302 // We look for a sequence of shuffles and adds like the following matching one 1303 // fadd, shuffle vector pair at a time. 1304 // 1305 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1306 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1307 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1308 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1309 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1310 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1311 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1312 1313 unsigned MaskStart = 1; 1314 Instruction *RdxOp = RdxStart; 1315 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1316 unsigned NumVecElemsRemain = NumVecElems; 1317 while (NumVecElemsRemain - 1) { 1318 // Check for the right reduction operation. 1319 if (!RdxOp) 1320 return TTI::RK_None; 1321 Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp); 1322 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1323 return TTI::RK_None; 1324 1325 Value *NextRdxOp; 1326 ShuffleVectorInst *Shuffle; 1327 std::tie(NextRdxOp, Shuffle) = 1328 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1329 1330 // Check the current reduction operation and the shuffle use the same value. 1331 if (Shuffle == nullptr) 1332 return TTI::RK_None; 1333 if (Shuffle->getOperand(0) != NextRdxOp) 1334 return TTI::RK_None; 1335 1336 // Check that shuffle masks matches. 1337 for (unsigned j = 0; j != MaskStart; ++j) 1338 ShuffleMask[j] = MaskStart + j; 1339 // Fill the rest of the mask with -1 for undef. 1340 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1341 1342 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1343 if (ShuffleMask != Mask) 1344 return TTI::RK_None; 1345 1346 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1347 NumVecElemsRemain /= 2; 1348 MaskStart *= 2; 1349 } 1350 1351 Opcode = RD->Opcode; 1352 Ty = VecTy; 1353 return RD->Kind; 1354 } 1355 1356 TTI::ReductionKind 1357 TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode, 1358 VectorType *&Ty, bool &IsPairwise) { 1359 TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty); 1360 if (RdxKind != TTI::ReductionKind::RK_None) { 1361 IsPairwise = false; 1362 return RdxKind; 1363 } 1364 IsPairwise = true; 1365 return matchPairwiseReduction(Root, Opcode, Ty); 1366 } 1367 1368 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1369 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1370 1371 switch (I->getOpcode()) { 1372 case Instruction::GetElementPtr: 1373 case Instruction::Ret: 1374 case Instruction::PHI: 1375 case Instruction::Br: 1376 case Instruction::Add: 1377 case Instruction::FAdd: 1378 case Instruction::Sub: 1379 case Instruction::FSub: 1380 case Instruction::Mul: 1381 case Instruction::FMul: 1382 case Instruction::UDiv: 1383 case Instruction::SDiv: 1384 case Instruction::FDiv: 1385 case Instruction::URem: 1386 case Instruction::SRem: 1387 case Instruction::FRem: 1388 case Instruction::Shl: 1389 case Instruction::LShr: 1390 case Instruction::AShr: 1391 case Instruction::And: 1392 case Instruction::Or: 1393 case Instruction::Xor: 1394 case Instruction::FNeg: 1395 case Instruction::Select: 1396 case Instruction::ICmp: 1397 case Instruction::FCmp: 1398 case Instruction::Store: 1399 case Instruction::Load: 1400 case Instruction::ZExt: 1401 case Instruction::SExt: 1402 case Instruction::FPToUI: 1403 case Instruction::FPToSI: 1404 case Instruction::FPExt: 1405 case Instruction::PtrToInt: 1406 case Instruction::IntToPtr: 1407 case Instruction::SIToFP: 1408 case Instruction::UIToFP: 1409 case Instruction::Trunc: 1410 case Instruction::FPTrunc: 1411 case Instruction::BitCast: 1412 case Instruction::AddrSpaceCast: 1413 case Instruction::ExtractElement: 1414 case Instruction::InsertElement: 1415 case Instruction::ExtractValue: 1416 case Instruction::ShuffleVector: 1417 case Instruction::Call: 1418 return getUserCost(I, CostKind); 1419 default: 1420 // We don't have any information on this instruction. 1421 return -1; 1422 } 1423 } 1424 1425 TargetTransformInfo::Concept::~Concept() {} 1426 1427 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1428 1429 TargetIRAnalysis::TargetIRAnalysis( 1430 std::function<Result(const Function &)> TTICallback) 1431 : TTICallback(std::move(TTICallback)) {} 1432 1433 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1434 FunctionAnalysisManager &) { 1435 return TTICallback(F); 1436 } 1437 1438 AnalysisKey TargetIRAnalysis::Key; 1439 1440 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1441 return Result(F.getParent()->getDataLayout()); 1442 } 1443 1444 // Register the basic pass. 1445 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1446 "Target Transform Information", false, true) 1447 char TargetTransformInfoWrapperPass::ID = 0; 1448 1449 void TargetTransformInfoWrapperPass::anchor() {} 1450 1451 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1452 : ImmutablePass(ID) { 1453 initializeTargetTransformInfoWrapperPassPass( 1454 *PassRegistry::getPassRegistry()); 1455 } 1456 1457 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1458 TargetIRAnalysis TIRA) 1459 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1460 initializeTargetTransformInfoWrapperPassPass( 1461 *PassRegistry::getPassRegistry()); 1462 } 1463 1464 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1465 FunctionAnalysisManager DummyFAM; 1466 TTI = TIRA.run(F, DummyFAM); 1467 return *TTI; 1468 } 1469 1470 ImmutablePass * 1471 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1472 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1473 } 1474