xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TFLiteUtils.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities for interfacing with tensorflow C APIs.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "llvm/Config/config.h"
13 #if defined(LLVM_HAVE_TFLITE)
14 
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Analysis/Utils/TFUtils.h"
17 #include "llvm/Support/Base64.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/JSON.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 #include "tensorflow/lite/interpreter.h"
26 #include "tensorflow/lite/kernels/register.h"
27 #include "tensorflow/lite/model.h"
28 #include "tensorflow/lite/model_builder.h"
29 #include "tensorflow/lite/op_resolver.h"
30 #include "tensorflow/lite/logger.h"
31 
32 #include <cassert>
33 #include <numeric>
34 #include <optional>
35 
36 using namespace llvm;
37 
38 namespace llvm {
39 class EvaluationResultImpl {
40 public:
41   EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
42       : Outputs(Outputs){};
43 
44   const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
45 
46   EvaluationResultImpl(const EvaluationResultImpl &) = delete;
47   EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
48 
49 private:
50   const std::vector<const TfLiteTensor *> Outputs;
51 };
52 
53 class TFModelEvaluatorImpl {
54 public:
55   TFModelEvaluatorImpl(StringRef SavedModelPath,
56                        const std::vector<TensorSpec> &InputSpecs,
57                        const std::vector<TensorSpec> &OutputSpecs,
58                        const char *Tags);
59 
60   bool isValid() const { return IsValid; }
61   size_t outputSize() const { return Output.size(); }
62 
63   std::unique_ptr<EvaluationResultImpl> evaluate() {
64     Interpreter->Invoke();
65     return std::make_unique<EvaluationResultImpl>(Output);
66   }
67 
68   const std::vector<TfLiteTensor *> &getInput() const { return Input; }
69 
70   ~TFModelEvaluatorImpl();
71 
72 private:
73   std::unique_ptr<tflite::FlatBufferModel> Model;
74 
75   /// The objects necessary for carrying out an evaluation of the SavedModel.
76   /// They are expensive to set up, and we maintain them accross all the
77   /// evaluations of the model.
78   std::unique_ptr<tflite::Interpreter> Interpreter;
79 
80   /// The input tensors. We set up the tensors once and just mutate theirs
81   /// scalars before each evaluation. The input tensors keep their value after
82   /// an evaluation.
83   std::vector<TfLiteTensor *> Input;
84 
85   /// The output nodes.
86   std::vector<const TfLiteTensor *> Output;
87 
88   void invalidate() { IsValid = false; }
89 
90   bool IsValid = true;
91 
92   /// Reusable utility for ensuring we can bind the requested Name to a node in
93   /// the SavedModel Graph.
94   bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
95                                 const TensorSpec &Spec);
96 };
97 
98 } // namespace llvm
99 
100 TFModelEvaluatorImpl::TFModelEvaluatorImpl(
101     StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
102     const std::vector<TensorSpec> &OutputSpecs, const char *Tags = "serve")
103     : Input(InputSpecs.size()), Output(OutputSpecs.size()) {
104   // INFO and DEBUG messages could be numerous and not particularly interesting
105   tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);
106   // FIXME: make ErrorReporter a member (may also need subclassing
107   // StatefulErrorReporter) to easily get the latest error status, for
108   // debugging.
109   tflite::StderrReporter ErrorReporter;
110   SmallVector<char, 128> TFLitePathBuff;
111   llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
112   StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
113   Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
114                                                  &ErrorReporter);
115   if (!Model) {
116     invalidate();
117     return;
118   }
119 
120   tflite::ops::builtin::BuiltinOpResolver Resolver;
121   tflite::InterpreterBuilder Builder(*Model, Resolver);
122   Builder(&Interpreter);
123 
124   if (!Interpreter) {
125     invalidate();
126     return;
127   }
128 
129   // We assume the input buffers are valid for the lifetime of the interpreter.
130   // By default, tflite allocates memory in an arena and will periodically take
131   // away memory and reallocate it in a different location after evaluations in
132   // order to improve utilization of the buffers owned in the arena. So, we
133   // explicitly mark our input buffers as persistent to avoid this behavior.
134   for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
135     Interpreter->tensor(I)->allocation_type =
136         TfLiteAllocationType::kTfLiteArenaRwPersistent;
137 
138   if (Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
139     invalidate();
140     return;
141   }
142   // Known inputs and outputs
143   StringMap<int> InputsMap;
144   StringMap<int> OutputsMap;
145   for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
146     InputsMap[Interpreter->GetInputName(I)] = I;
147   for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
148     OutputsMap[Interpreter->GetOutputName(I)] = I;
149 
150   size_t NumberFeaturesPassed = 0;
151   for (size_t I = 0; I < InputSpecs.size(); ++I) {
152     auto &InputSpec = InputSpecs[I];
153     auto MapI = InputsMap.find(InputSpec.name() + ":" +
154                                std::to_string(InputSpec.port()));
155     if (MapI == InputsMap.end()) {
156       Input[I] = nullptr;
157       continue;
158     }
159     Input[I] = Interpreter->tensor(MapI->second);
160     if (!checkReportAndInvalidate(Input[I], InputSpec))
161       return;
162     std::memset(Input[I]->data.data, 0,
163                 InputSpecs[I].getTotalTensorBufferSize());
164     ++NumberFeaturesPassed;
165   }
166 
167   if (NumberFeaturesPassed < Interpreter->inputs().size()) {
168     // we haven't passed all the required features to the model, throw an error.
169     errs() << "Required feature(s) have not been passed to the ML model";
170     invalidate();
171     return;
172   }
173 
174   for (size_t I = 0; I < OutputSpecs.size(); ++I) {
175     const auto &OutputSpec = OutputSpecs[I];
176     Output[I] = Interpreter->output_tensor(
177         OutputsMap[OutputSpec.name() + ":" +
178                    std::to_string(OutputSpec.port())]);
179     if (!checkReportAndInvalidate(Output[I], OutputSpec))
180       return;
181   }
182 }
183 
184 TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
185                                    const std::vector<TensorSpec> &InputSpecs,
186                                    const std::vector<TensorSpec> &OutputSpecs,
187                                    const char *Tags)
188     : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, OutputSpecs,
189                                     Tags)) {
190   if (!Impl->isValid())
191     Impl.reset();
192 }
193 
194 TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
195 
196 bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
197                                                     const TensorSpec &Spec) {
198   if (!Tensor) {
199     errs() << "Could not find TF_Output named: " + Spec.name();
200     IsValid = false;
201   }
202   if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
203     IsValid = false;
204 
205   // If the total sizes match, there could still be a mismatch in the shape.
206   // We ignore that for now.
207 
208   return IsValid;
209 }
210 
211 std::optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
212   if (!isValid())
213     return std::nullopt;
214   return EvaluationResult(Impl->evaluate());
215 }
216 
217 void *TFModelEvaluator::getUntypedInput(size_t Index) {
218   TfLiteTensor *T = Impl->getInput()[Index];
219   if (!T)
220     return nullptr;
221   return T->data.data;
222 }
223 
224 TFModelEvaluator::EvaluationResult::EvaluationResult(
225     std::unique_ptr<EvaluationResultImpl> Impl)
226     : Impl(std::move(Impl)) {}
227 
228 TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
229     : Impl(std::move(Other.Impl)) {}
230 
231 TFModelEvaluator::EvaluationResult &
232 TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
233   Impl = std::move(Other.Impl);
234   return *this;
235 }
236 
237 void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
238   return Impl->getOutput(Index)->data.data;
239 }
240 
241 const void *
242 TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
243   return Impl->getOutput(Index)->data.data;
244 }
245 
246 TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
247 TFModelEvaluator::~TFModelEvaluator() {}
248 
249 #endif // defined(LLVM_HAVE_TFLITE)
250