1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "llvm/Analysis/StackSafetyAnalysis.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 17 #include "llvm/Analysis/ScalarEvolution.h" 18 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 19 #include "llvm/Analysis/StackLifetime.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/GlobalValue.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/ModuleSummaryIndex.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/FormatVariadic.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <memory> 35 #include <tuple> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "stack-safety" 40 41 STATISTIC(NumAllocaStackSafe, "Number of safe allocas"); 42 STATISTIC(NumAllocaTotal, "Number of total allocas"); 43 44 STATISTIC(NumCombinedCalleeLookupTotal, 45 "Number of total callee lookups on combined index."); 46 STATISTIC(NumCombinedCalleeLookupFailed, 47 "Number of failed callee lookups on combined index."); 48 STATISTIC(NumModuleCalleeLookupTotal, 49 "Number of total callee lookups on module index."); 50 STATISTIC(NumModuleCalleeLookupFailed, 51 "Number of failed callee lookups on module index."); 52 STATISTIC(NumCombinedParamAccessesBefore, 53 "Number of total param accesses before generateParamAccessSummary."); 54 STATISTIC(NumCombinedParamAccessesAfter, 55 "Number of total param accesses after generateParamAccessSummary."); 56 STATISTIC(NumCombinedDataFlowNodes, 57 "Number of total nodes in combined index for dataflow processing."); 58 STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled."); 59 STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak."); 60 STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external."); 61 62 63 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations", 64 cl::init(20), cl::Hidden); 65 66 static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false), 67 cl::Hidden); 68 69 static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false), 70 cl::Hidden); 71 72 namespace { 73 74 // Check if we should bailout for such ranges. 75 bool isUnsafe(const ConstantRange &R) { 76 return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped(); 77 } 78 79 ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) { 80 assert(!L.isSignWrappedSet()); 81 assert(!R.isSignWrappedSet()); 82 if (L.signedAddMayOverflow(R) != 83 ConstantRange::OverflowResult::NeverOverflows) 84 return ConstantRange::getFull(L.getBitWidth()); 85 ConstantRange Result = L.add(R); 86 assert(!Result.isSignWrappedSet()); 87 return Result; 88 } 89 90 ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) { 91 assert(!L.isSignWrappedSet()); 92 assert(!R.isSignWrappedSet()); 93 auto Result = L.unionWith(R); 94 // Two non-wrapped sets can produce wrapped. 95 if (Result.isSignWrappedSet()) 96 Result = ConstantRange::getFull(Result.getBitWidth()); 97 return Result; 98 } 99 100 /// Describes use of address in as a function call argument. 101 template <typename CalleeTy> struct CallInfo { 102 /// Function being called. 103 const CalleeTy *Callee = nullptr; 104 /// Index of argument which pass address. 105 size_t ParamNo = 0; 106 107 CallInfo(const CalleeTy *Callee, size_t ParamNo) 108 : Callee(Callee), ParamNo(ParamNo) {} 109 110 struct Less { 111 bool operator()(const CallInfo &L, const CallInfo &R) const { 112 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 113 } 114 }; 115 }; 116 117 /// Describe uses of address (alloca or parameter) inside of the function. 118 template <typename CalleeTy> struct UseInfo { 119 // Access range if the address (alloca or parameters). 120 // It is allowed to be empty-set when there are no known accesses. 121 ConstantRange Range; 122 std::set<const Instruction *> UnsafeAccesses; 123 124 // List of calls which pass address as an argument. 125 // Value is offset range of address from base address (alloca or calling 126 // function argument). Range should never set to empty-set, that is an invalid 127 // access range that can cause empty-set to be propagated with 128 // ConstantRange::add 129 using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange, 130 typename CallInfo<CalleeTy>::Less>; 131 CallsTy Calls; 132 133 UseInfo(unsigned PointerSize) : Range{PointerSize, false} {} 134 135 void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); } 136 void addRange(const Instruction *I, const ConstantRange &R, bool IsSafe) { 137 if (!IsSafe) 138 UnsafeAccesses.insert(I); 139 updateRange(R); 140 } 141 }; 142 143 template <typename CalleeTy> 144 raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) { 145 OS << U.Range; 146 for (auto &Call : U.Calls) 147 OS << ", " 148 << "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo 149 << ", " << Call.second << ")"; 150 return OS; 151 } 152 153 /// Calculate the allocation size of a given alloca. Returns empty range 154 // in case of confution. 155 ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) { 156 const DataLayout &DL = AI.getModule()->getDataLayout(); 157 TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType()); 158 unsigned PointerSize = DL.getPointerTypeSizeInBits(AI.getType()); 159 // Fallback to empty range for alloca size. 160 ConstantRange R = ConstantRange::getEmpty(PointerSize); 161 if (TS.isScalable()) 162 return R; 163 APInt APSize(PointerSize, TS.getFixedSize(), true); 164 if (APSize.isNonPositive()) 165 return R; 166 if (AI.isArrayAllocation()) { 167 const auto *C = dyn_cast<ConstantInt>(AI.getArraySize()); 168 if (!C) 169 return R; 170 bool Overflow = false; 171 APInt Mul = C->getValue(); 172 if (Mul.isNonPositive()) 173 return R; 174 Mul = Mul.sextOrTrunc(PointerSize); 175 APSize = APSize.smul_ov(Mul, Overflow); 176 if (Overflow) 177 return R; 178 } 179 R = ConstantRange(APInt::getZero(PointerSize), APSize); 180 assert(!isUnsafe(R)); 181 return R; 182 } 183 184 template <typename CalleeTy> struct FunctionInfo { 185 std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas; 186 std::map<uint32_t, UseInfo<CalleeTy>> Params; 187 // TODO: describe return value as depending on one or more of its arguments. 188 189 // StackSafetyDataFlowAnalysis counter stored here for faster access. 190 int UpdateCount = 0; 191 192 void print(raw_ostream &O, StringRef Name, const Function *F) const { 193 // TODO: Consider different printout format after 194 // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then. 195 O << " @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable") 196 << ((F && F->isInterposable()) ? " interposable" : "") << "\n"; 197 198 O << " args uses:\n"; 199 for (auto &KV : Params) { 200 O << " "; 201 if (F) 202 O << F->getArg(KV.first)->getName(); 203 else 204 O << formatv("arg{0}", KV.first); 205 O << "[]: " << KV.second << "\n"; 206 } 207 208 O << " allocas uses:\n"; 209 if (F) { 210 for (auto &I : instructions(F)) { 211 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 212 auto &AS = Allocas.find(AI)->second; 213 O << " " << AI->getName() << "[" 214 << getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n"; 215 } 216 } 217 } else { 218 assert(Allocas.empty()); 219 } 220 } 221 }; 222 223 using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>; 224 225 } // namespace 226 227 struct StackSafetyInfo::InfoTy { 228 FunctionInfo<GlobalValue> Info; 229 }; 230 231 struct StackSafetyGlobalInfo::InfoTy { 232 GVToSSI Info; 233 SmallPtrSet<const AllocaInst *, 8> SafeAllocas; 234 std::set<const Instruction *> UnsafeAccesses; 235 }; 236 237 namespace { 238 239 class StackSafetyLocalAnalysis { 240 Function &F; 241 const DataLayout &DL; 242 ScalarEvolution &SE; 243 unsigned PointerSize = 0; 244 245 const ConstantRange UnknownRange; 246 247 ConstantRange offsetFrom(Value *Addr, Value *Base); 248 ConstantRange getAccessRange(Value *Addr, Value *Base, 249 const ConstantRange &SizeRange); 250 ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size); 251 ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U, 252 Value *Base); 253 254 void analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS, 255 const StackLifetime &SL); 256 257 258 bool isSafeAccess(const Use &U, AllocaInst *AI, const SCEV *AccessSize); 259 bool isSafeAccess(const Use &U, AllocaInst *AI, Value *V); 260 bool isSafeAccess(const Use &U, AllocaInst *AI, TypeSize AccessSize); 261 262 public: 263 StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE) 264 : F(F), DL(F.getParent()->getDataLayout()), SE(SE), 265 PointerSize(DL.getPointerSizeInBits()), 266 UnknownRange(PointerSize, true) {} 267 268 // Run the transformation on the associated function. 269 FunctionInfo<GlobalValue> run(); 270 }; 271 272 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) { 273 if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType())) 274 return UnknownRange; 275 276 auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext()); 277 const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy); 278 const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy); 279 const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp); 280 if (isa<SCEVCouldNotCompute>(Diff)) 281 return UnknownRange; 282 283 ConstantRange Offset = SE.getSignedRange(Diff); 284 if (isUnsafe(Offset)) 285 return UnknownRange; 286 return Offset.sextOrTrunc(PointerSize); 287 } 288 289 ConstantRange 290 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 291 const ConstantRange &SizeRange) { 292 // Zero-size loads and stores do not access memory. 293 if (SizeRange.isEmptySet()) 294 return ConstantRange::getEmpty(PointerSize); 295 assert(!isUnsafe(SizeRange)); 296 297 ConstantRange Offsets = offsetFrom(Addr, Base); 298 if (isUnsafe(Offsets)) 299 return UnknownRange; 300 301 Offsets = addOverflowNever(Offsets, SizeRange); 302 if (isUnsafe(Offsets)) 303 return UnknownRange; 304 return Offsets; 305 } 306 307 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 308 TypeSize Size) { 309 if (Size.isScalable()) 310 return UnknownRange; 311 APInt APSize(PointerSize, Size.getFixedSize(), true); 312 if (APSize.isNegative()) 313 return UnknownRange; 314 return getAccessRange(Addr, Base, 315 ConstantRange(APInt::getZero(PointerSize), APSize)); 316 } 317 318 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange( 319 const MemIntrinsic *MI, const Use &U, Value *Base) { 320 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 321 if (MTI->getRawSource() != U && MTI->getRawDest() != U) 322 return ConstantRange::getEmpty(PointerSize); 323 } else { 324 if (MI->getRawDest() != U) 325 return ConstantRange::getEmpty(PointerSize); 326 } 327 328 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 329 if (!SE.isSCEVable(MI->getLength()->getType())) 330 return UnknownRange; 331 332 const SCEV *Expr = 333 SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy); 334 ConstantRange Sizes = SE.getSignedRange(Expr); 335 if (Sizes.getUpper().isNegative() || isUnsafe(Sizes)) 336 return UnknownRange; 337 Sizes = Sizes.sextOrTrunc(PointerSize); 338 ConstantRange SizeRange(APInt::getZero(PointerSize), Sizes.getUpper() - 1); 339 return getAccessRange(U, Base, SizeRange); 340 } 341 342 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 343 Value *V) { 344 return isSafeAccess(U, AI, SE.getSCEV(V)); 345 } 346 347 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 348 TypeSize TS) { 349 if (TS.isScalable()) 350 return false; 351 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 352 const SCEV *SV = SE.getConstant(CalculationTy, TS.getFixedSize()); 353 return isSafeAccess(U, AI, SV); 354 } 355 356 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 357 const SCEV *AccessSize) { 358 359 if (!AI) 360 return true; 361 if (isa<SCEVCouldNotCompute>(AccessSize)) 362 return false; 363 364 const auto *I = cast<Instruction>(U.getUser()); 365 366 auto ToCharPtr = [&](const SCEV *V) { 367 auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext()); 368 return SE.getTruncateOrZeroExtend(V, PtrTy); 369 }; 370 371 const SCEV *AddrExp = ToCharPtr(SE.getSCEV(U.get())); 372 const SCEV *BaseExp = ToCharPtr(SE.getSCEV(AI)); 373 const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp); 374 if (isa<SCEVCouldNotCompute>(Diff)) 375 return false; 376 377 auto Size = getStaticAllocaSizeRange(*AI); 378 379 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 380 auto ToDiffTy = [&](const SCEV *V) { 381 return SE.getTruncateOrZeroExtend(V, CalculationTy); 382 }; 383 const SCEV *Min = ToDiffTy(SE.getConstant(Size.getLower())); 384 const SCEV *Max = SE.getMinusSCEV(ToDiffTy(SE.getConstant(Size.getUpper())), 385 ToDiffTy(AccessSize)); 386 return SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SGE, Diff, Min, I) 387 .getValueOr(false) && 388 SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SLE, Diff, Max, I) 389 .getValueOr(false); 390 } 391 392 /// The function analyzes all local uses of Ptr (alloca or argument) and 393 /// calculates local access range and all function calls where it was used. 394 void StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr, 395 UseInfo<GlobalValue> &US, 396 const StackLifetime &SL) { 397 SmallPtrSet<const Value *, 16> Visited; 398 SmallVector<const Value *, 8> WorkList; 399 WorkList.push_back(Ptr); 400 AllocaInst *AI = dyn_cast<AllocaInst>(Ptr); 401 402 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 403 while (!WorkList.empty()) { 404 const Value *V = WorkList.pop_back_val(); 405 for (const Use &UI : V->uses()) { 406 const auto *I = cast<Instruction>(UI.getUser()); 407 if (!SL.isReachable(I)) 408 continue; 409 410 assert(V == UI.get()); 411 412 switch (I->getOpcode()) { 413 case Instruction::Load: { 414 if (AI && !SL.isAliveAfter(AI, I)) { 415 US.addRange(I, UnknownRange, /*IsSafe=*/false); 416 break; 417 } 418 auto TypeSize = DL.getTypeStoreSize(I->getType()); 419 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 420 bool Safe = isSafeAccess(UI, AI, TypeSize); 421 US.addRange(I, AccessRange, Safe); 422 break; 423 } 424 425 case Instruction::VAArg: 426 // "va-arg" from a pointer is safe. 427 break; 428 case Instruction::Store: { 429 if (V == I->getOperand(0)) { 430 // Stored the pointer - conservatively assume it may be unsafe. 431 US.addRange(I, UnknownRange, /*IsSafe=*/false); 432 break; 433 } 434 if (AI && !SL.isAliveAfter(AI, I)) { 435 US.addRange(I, UnknownRange, /*IsSafe=*/false); 436 break; 437 } 438 auto TypeSize = DL.getTypeStoreSize(I->getOperand(0)->getType()); 439 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 440 bool Safe = isSafeAccess(UI, AI, TypeSize); 441 US.addRange(I, AccessRange, Safe); 442 break; 443 } 444 445 case Instruction::Ret: 446 // Information leak. 447 // FIXME: Process parameters correctly. This is a leak only if we return 448 // alloca. 449 US.addRange(I, UnknownRange, /*IsSafe=*/false); 450 break; 451 452 case Instruction::Call: 453 case Instruction::Invoke: { 454 if (I->isLifetimeStartOrEnd()) 455 break; 456 457 if (AI && !SL.isAliveAfter(AI, I)) { 458 US.addRange(I, UnknownRange, /*IsSafe=*/false); 459 break; 460 } 461 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 462 auto AccessRange = getMemIntrinsicAccessRange(MI, UI, Ptr); 463 bool Safe = false; 464 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 465 if (MTI->getRawSource() != UI && MTI->getRawDest() != UI) 466 Safe = true; 467 } else if (MI->getRawDest() != UI) { 468 Safe = true; 469 } 470 Safe = Safe || isSafeAccess(UI, AI, MI->getLength()); 471 US.addRange(I, AccessRange, Safe); 472 break; 473 } 474 475 const auto &CB = cast<CallBase>(*I); 476 if (CB.getReturnedArgOperand() == V) { 477 if (Visited.insert(I).second) 478 WorkList.push_back(cast<const Instruction>(I)); 479 } 480 481 if (!CB.isArgOperand(&UI)) { 482 US.addRange(I, UnknownRange, /*IsSafe=*/false); 483 break; 484 } 485 486 unsigned ArgNo = CB.getArgOperandNo(&UI); 487 if (CB.isByValArgument(ArgNo)) { 488 auto TypeSize = DL.getTypeStoreSize(CB.getParamByValType(ArgNo)); 489 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 490 bool Safe = isSafeAccess(UI, AI, TypeSize); 491 US.addRange(I, AccessRange, Safe); 492 break; 493 } 494 495 // FIXME: consult devirt? 496 // Do not follow aliases, otherwise we could inadvertently follow 497 // dso_preemptable aliases or aliases with interposable linkage. 498 const GlobalValue *Callee = 499 dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts()); 500 if (!Callee) { 501 US.addRange(I, UnknownRange, /*IsSafe=*/false); 502 break; 503 } 504 505 assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee)); 506 ConstantRange Offsets = offsetFrom(UI, Ptr); 507 auto Insert = 508 US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets); 509 if (!Insert.second) 510 Insert.first->second = Insert.first->second.unionWith(Offsets); 511 break; 512 } 513 514 default: 515 if (Visited.insert(I).second) 516 WorkList.push_back(cast<const Instruction>(I)); 517 } 518 } 519 } 520 } 521 522 FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() { 523 FunctionInfo<GlobalValue> Info; 524 assert(!F.isDeclaration() && 525 "Can't run StackSafety on a function declaration"); 526 527 LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n"); 528 529 SmallVector<AllocaInst *, 64> Allocas; 530 for (auto &I : instructions(F)) 531 if (auto *AI = dyn_cast<AllocaInst>(&I)) 532 Allocas.push_back(AI); 533 StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must); 534 SL.run(); 535 536 for (auto *AI : Allocas) { 537 auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second; 538 analyzeAllUses(AI, UI, SL); 539 } 540 541 for (Argument &A : F.args()) { 542 // Non pointers and bypass arguments are not going to be used in any global 543 // processing. 544 if (A.getType()->isPointerTy() && !A.hasByValAttr()) { 545 auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second; 546 analyzeAllUses(&A, UI, SL); 547 } 548 } 549 550 LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F)); 551 LLVM_DEBUG(dbgs() << "\n[StackSafety] done\n"); 552 return Info; 553 } 554 555 template <typename CalleeTy> class StackSafetyDataFlowAnalysis { 556 using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>; 557 558 FunctionMap Functions; 559 const ConstantRange UnknownRange; 560 561 // Callee-to-Caller multimap. 562 DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers; 563 SetVector<const CalleeTy *> WorkList; 564 565 bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet); 566 void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS); 567 void updateOneNode(const CalleeTy *Callee) { 568 updateOneNode(Callee, Functions.find(Callee)->second); 569 } 570 void updateAllNodes() { 571 for (auto &F : Functions) 572 updateOneNode(F.first, F.second); 573 } 574 void runDataFlow(); 575 #ifndef NDEBUG 576 void verifyFixedPoint(); 577 #endif 578 579 public: 580 StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions) 581 : Functions(std::move(Functions)), 582 UnknownRange(ConstantRange::getFull(PointerBitWidth)) {} 583 584 const FunctionMap &run(); 585 586 ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo, 587 const ConstantRange &Offsets) const; 588 }; 589 590 template <typename CalleeTy> 591 ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange( 592 const CalleeTy *Callee, unsigned ParamNo, 593 const ConstantRange &Offsets) const { 594 auto FnIt = Functions.find(Callee); 595 // Unknown callee (outside of LTO domain or an indirect call). 596 if (FnIt == Functions.end()) 597 return UnknownRange; 598 auto &FS = FnIt->second; 599 auto ParamIt = FS.Params.find(ParamNo); 600 if (ParamIt == FS.Params.end()) 601 return UnknownRange; 602 auto &Access = ParamIt->second.Range; 603 if (Access.isEmptySet()) 604 return Access; 605 if (Access.isFullSet()) 606 return UnknownRange; 607 return addOverflowNever(Access, Offsets); 608 } 609 610 template <typename CalleeTy> 611 bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US, 612 bool UpdateToFullSet) { 613 bool Changed = false; 614 for (auto &KV : US.Calls) { 615 assert(!KV.second.isEmptySet() && 616 "Param range can't be empty-set, invalid offset range"); 617 618 ConstantRange CalleeRange = 619 getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second); 620 if (!US.Range.contains(CalleeRange)) { 621 Changed = true; 622 if (UpdateToFullSet) 623 US.Range = UnknownRange; 624 else 625 US.updateRange(CalleeRange); 626 } 627 } 628 return Changed; 629 } 630 631 template <typename CalleeTy> 632 void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode( 633 const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) { 634 bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations; 635 bool Changed = false; 636 for (auto &KV : FS.Params) 637 Changed |= updateOneUse(KV.second, UpdateToFullSet); 638 639 if (Changed) { 640 LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount 641 << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS 642 << "\n"); 643 // Callers of this function may need updating. 644 for (auto &CallerID : Callers[Callee]) 645 WorkList.insert(CallerID); 646 647 ++FS.UpdateCount; 648 } 649 } 650 651 template <typename CalleeTy> 652 void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() { 653 SmallVector<const CalleeTy *, 16> Callees; 654 for (auto &F : Functions) { 655 Callees.clear(); 656 auto &FS = F.second; 657 for (auto &KV : FS.Params) 658 for (auto &CS : KV.second.Calls) 659 Callees.push_back(CS.first.Callee); 660 661 llvm::sort(Callees); 662 Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end()); 663 664 for (auto &Callee : Callees) 665 Callers[Callee].push_back(F.first); 666 } 667 668 updateAllNodes(); 669 670 while (!WorkList.empty()) { 671 const CalleeTy *Callee = WorkList.pop_back_val(); 672 updateOneNode(Callee); 673 } 674 } 675 676 #ifndef NDEBUG 677 template <typename CalleeTy> 678 void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() { 679 WorkList.clear(); 680 updateAllNodes(); 681 assert(WorkList.empty()); 682 } 683 #endif 684 685 template <typename CalleeTy> 686 const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap & 687 StackSafetyDataFlowAnalysis<CalleeTy>::run() { 688 runDataFlow(); 689 LLVM_DEBUG(verifyFixedPoint()); 690 return Functions; 691 } 692 693 FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) { 694 if (!VI) 695 return nullptr; 696 auto SummaryList = VI.getSummaryList(); 697 GlobalValueSummary* S = nullptr; 698 for (const auto& GVS : SummaryList) { 699 if (!GVS->isLive()) 700 continue; 701 if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get())) 702 if (!AS->hasAliasee()) 703 continue; 704 if (!isa<FunctionSummary>(GVS->getBaseObject())) 705 continue; 706 if (GlobalValue::isLocalLinkage(GVS->linkage())) { 707 if (GVS->modulePath() == ModuleId) { 708 S = GVS.get(); 709 break; 710 } 711 } else if (GlobalValue::isExternalLinkage(GVS->linkage())) { 712 if (S) { 713 ++NumIndexCalleeMultipleExternal; 714 return nullptr; 715 } 716 S = GVS.get(); 717 } else if (GlobalValue::isWeakLinkage(GVS->linkage())) { 718 if (S) { 719 ++NumIndexCalleeMultipleWeak; 720 return nullptr; 721 } 722 S = GVS.get(); 723 } else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) || 724 GlobalValue::isLinkOnceLinkage(GVS->linkage())) { 725 if (SummaryList.size() == 1) 726 S = GVS.get(); 727 // According thinLTOResolvePrevailingGUID these are unlikely prevailing. 728 } else { 729 ++NumIndexCalleeUnhandled; 730 } 731 }; 732 while (S) { 733 if (!S->isLive() || !S->isDSOLocal()) 734 return nullptr; 735 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S)) 736 return FS; 737 AliasSummary *AS = dyn_cast<AliasSummary>(S); 738 if (!AS || !AS->hasAliasee()) 739 return nullptr; 740 S = AS->getBaseObject(); 741 if (S == AS) 742 return nullptr; 743 } 744 return nullptr; 745 } 746 747 const Function *findCalleeInModule(const GlobalValue *GV) { 748 while (GV) { 749 if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal()) 750 return nullptr; 751 if (const Function *F = dyn_cast<Function>(GV)) 752 return F; 753 const GlobalAlias *A = dyn_cast<GlobalAlias>(GV); 754 if (!A) 755 return nullptr; 756 GV = A->getAliaseeObject(); 757 if (GV == A) 758 return nullptr; 759 } 760 return nullptr; 761 } 762 763 const ConstantRange *findParamAccess(const FunctionSummary &FS, 764 uint32_t ParamNo) { 765 assert(FS.isLive()); 766 assert(FS.isDSOLocal()); 767 for (auto &PS : FS.paramAccesses()) 768 if (ParamNo == PS.ParamNo) 769 return &PS.Use; 770 return nullptr; 771 } 772 773 void resolveAllCalls(UseInfo<GlobalValue> &Use, 774 const ModuleSummaryIndex *Index) { 775 ConstantRange FullSet(Use.Range.getBitWidth(), true); 776 // Move Use.Calls to a temp storage and repopulate - don't use std::move as it 777 // leaves Use.Calls in an undefined state. 778 UseInfo<GlobalValue>::CallsTy TmpCalls; 779 std::swap(TmpCalls, Use.Calls); 780 for (const auto &C : TmpCalls) { 781 const Function *F = findCalleeInModule(C.first.Callee); 782 if (F) { 783 Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second); 784 continue; 785 } 786 787 if (!Index) 788 return Use.updateRange(FullSet); 789 FunctionSummary *FS = 790 findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()), 791 C.first.Callee->getParent()->getModuleIdentifier()); 792 ++NumModuleCalleeLookupTotal; 793 if (!FS) { 794 ++NumModuleCalleeLookupFailed; 795 return Use.updateRange(FullSet); 796 } 797 const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo); 798 if (!Found || Found->isFullSet()) 799 return Use.updateRange(FullSet); 800 ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth()); 801 if (!Access.isEmptySet()) 802 Use.updateRange(addOverflowNever(Access, C.second)); 803 } 804 } 805 806 GVToSSI createGlobalStackSafetyInfo( 807 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions, 808 const ModuleSummaryIndex *Index) { 809 GVToSSI SSI; 810 if (Functions.empty()) 811 return SSI; 812 813 // FIXME: Simplify printing and remove copying here. 814 auto Copy = Functions; 815 816 for (auto &FnKV : Copy) 817 for (auto &KV : FnKV.second.Params) { 818 resolveAllCalls(KV.second, Index); 819 if (KV.second.Range.isFullSet()) 820 KV.second.Calls.clear(); 821 } 822 823 uint32_t PointerSize = 824 Copy.begin()->first->getParent()->getDataLayout().getPointerSizeInBits(); 825 StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy)); 826 827 for (auto &F : SSDFA.run()) { 828 auto FI = F.second; 829 auto &SrcF = Functions[F.first]; 830 for (auto &KV : FI.Allocas) { 831 auto &A = KV.second; 832 resolveAllCalls(A, Index); 833 for (auto &C : A.Calls) { 834 A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee, 835 C.first.ParamNo, C.second)); 836 } 837 // FIXME: This is needed only to preserve calls in print() results. 838 A.Calls = SrcF.Allocas.find(KV.first)->second.Calls; 839 } 840 for (auto &KV : FI.Params) { 841 auto &P = KV.second; 842 P.Calls = SrcF.Params.find(KV.first)->second.Calls; 843 } 844 SSI[F.first] = std::move(FI); 845 } 846 847 return SSI; 848 } 849 850 } // end anonymous namespace 851 852 StackSafetyInfo::StackSafetyInfo() = default; 853 854 StackSafetyInfo::StackSafetyInfo(Function *F, 855 std::function<ScalarEvolution &()> GetSE) 856 : F(F), GetSE(GetSE) {} 857 858 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default; 859 860 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default; 861 862 StackSafetyInfo::~StackSafetyInfo() = default; 863 864 const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const { 865 if (!Info) { 866 StackSafetyLocalAnalysis SSLA(*F, GetSE()); 867 Info.reset(new InfoTy{SSLA.run()}); 868 } 869 return *Info; 870 } 871 872 void StackSafetyInfo::print(raw_ostream &O) const { 873 getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F)); 874 O << "\n"; 875 } 876 877 const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const { 878 if (!Info) { 879 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions; 880 for (auto &F : M->functions()) { 881 if (!F.isDeclaration()) { 882 auto FI = GetSSI(F).getInfo().Info; 883 Functions.emplace(&F, std::move(FI)); 884 } 885 } 886 Info.reset(new InfoTy{ 887 createGlobalStackSafetyInfo(std::move(Functions), Index), {}, {}}); 888 889 for (auto &FnKV : Info->Info) { 890 for (auto &KV : FnKV.second.Allocas) { 891 ++NumAllocaTotal; 892 const AllocaInst *AI = KV.first; 893 auto AIRange = getStaticAllocaSizeRange(*AI); 894 if (AIRange.contains(KV.second.Range)) { 895 Info->SafeAllocas.insert(AI); 896 ++NumAllocaStackSafe; 897 } 898 Info->UnsafeAccesses.insert(KV.second.UnsafeAccesses.begin(), 899 KV.second.UnsafeAccesses.end()); 900 } 901 } 902 903 if (StackSafetyPrint) 904 print(errs()); 905 } 906 return *Info; 907 } 908 909 std::vector<FunctionSummary::ParamAccess> 910 StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const { 911 // Implementation transforms internal representation of parameter information 912 // into FunctionSummary format. 913 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 914 for (const auto &KV : getInfo().Info.Params) { 915 auto &PS = KV.second; 916 // Parameter accessed by any or unknown offset, represented as FullSet by 917 // StackSafety, is handled as the parameter for which we have no 918 // StackSafety info at all. So drop it to reduce summary size. 919 if (PS.Range.isFullSet()) 920 continue; 921 922 ParamAccesses.emplace_back(KV.first, PS.Range); 923 FunctionSummary::ParamAccess &Param = ParamAccesses.back(); 924 925 Param.Calls.reserve(PS.Calls.size()); 926 for (auto &C : PS.Calls) { 927 // Parameter forwarded into another function by any or unknown offset 928 // will make ParamAccess::Range as FullSet anyway. So we can drop the 929 // entire parameter like we did above. 930 // TODO(vitalybuka): Return already filtered parameters from getInfo(). 931 if (C.second.isFullSet()) { 932 ParamAccesses.pop_back(); 933 break; 934 } 935 Param.Calls.emplace_back(C.first.ParamNo, 936 Index.getOrInsertValueInfo(C.first.Callee), 937 C.second); 938 } 939 } 940 for (FunctionSummary::ParamAccess &Param : ParamAccesses) { 941 sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L, 942 const FunctionSummary::ParamAccess::Call &R) { 943 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 944 }); 945 } 946 return ParamAccesses; 947 } 948 949 StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default; 950 951 StackSafetyGlobalInfo::StackSafetyGlobalInfo( 952 Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI, 953 const ModuleSummaryIndex *Index) 954 : M(M), GetSSI(GetSSI), Index(Index) { 955 if (StackSafetyRun) 956 getInfo(); 957 } 958 959 StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) = 960 default; 961 962 StackSafetyGlobalInfo & 963 StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default; 964 965 StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default; 966 967 bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const { 968 const auto &Info = getInfo(); 969 return Info.SafeAllocas.count(&AI); 970 } 971 972 bool StackSafetyGlobalInfo::stackAccessIsSafe(const Instruction &I) const { 973 const auto &Info = getInfo(); 974 return Info.UnsafeAccesses.find(&I) == Info.UnsafeAccesses.end(); 975 } 976 977 void StackSafetyGlobalInfo::print(raw_ostream &O) const { 978 auto &SSI = getInfo().Info; 979 if (SSI.empty()) 980 return; 981 const Module &M = *SSI.begin()->first->getParent(); 982 for (auto &F : M.functions()) { 983 if (!F.isDeclaration()) { 984 SSI.find(&F)->second.print(O, F.getName(), &F); 985 O << " safe accesses:" 986 << "\n"; 987 for (const auto &I : instructions(F)) { 988 const CallInst *Call = dyn_cast<CallInst>(&I); 989 if ((isa<StoreInst>(I) || isa<LoadInst>(I) || isa<MemIntrinsic>(I) || 990 (Call && Call->hasByValArgument())) && 991 stackAccessIsSafe(I)) { 992 O << " " << I << "\n"; 993 } 994 } 995 O << "\n"; 996 } 997 } 998 } 999 1000 LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); } 1001 1002 AnalysisKey StackSafetyAnalysis::Key; 1003 1004 StackSafetyInfo StackSafetyAnalysis::run(Function &F, 1005 FunctionAnalysisManager &AM) { 1006 return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & { 1007 return AM.getResult<ScalarEvolutionAnalysis>(F); 1008 }); 1009 } 1010 1011 PreservedAnalyses StackSafetyPrinterPass::run(Function &F, 1012 FunctionAnalysisManager &AM) { 1013 OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n"; 1014 AM.getResult<StackSafetyAnalysis>(F).print(OS); 1015 return PreservedAnalyses::all(); 1016 } 1017 1018 char StackSafetyInfoWrapperPass::ID = 0; 1019 1020 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) { 1021 initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1022 } 1023 1024 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1025 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 1026 AU.setPreservesAll(); 1027 } 1028 1029 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const { 1030 SSI.print(O); 1031 } 1032 1033 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) { 1034 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1035 SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }}; 1036 return false; 1037 } 1038 1039 AnalysisKey StackSafetyGlobalAnalysis::Key; 1040 1041 StackSafetyGlobalInfo 1042 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1043 // FIXME: Lookup Module Summary. 1044 FunctionAnalysisManager &FAM = 1045 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1046 return {&M, 1047 [&FAM](Function &F) -> const StackSafetyInfo & { 1048 return FAM.getResult<StackSafetyAnalysis>(F); 1049 }, 1050 nullptr}; 1051 } 1052 1053 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M, 1054 ModuleAnalysisManager &AM) { 1055 OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n"; 1056 AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS); 1057 return PreservedAnalyses::all(); 1058 } 1059 1060 char StackSafetyGlobalInfoWrapperPass::ID = 0; 1061 1062 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass() 1063 : ModulePass(ID) { 1064 initializeStackSafetyGlobalInfoWrapperPassPass( 1065 *PassRegistry::getPassRegistry()); 1066 } 1067 1068 StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default; 1069 1070 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O, 1071 const Module *M) const { 1072 SSGI.print(O); 1073 } 1074 1075 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage( 1076 AnalysisUsage &AU) const { 1077 AU.setPreservesAll(); 1078 AU.addRequired<StackSafetyInfoWrapperPass>(); 1079 } 1080 1081 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) { 1082 const ModuleSummaryIndex *ImportSummary = nullptr; 1083 if (auto *IndexWrapperPass = 1084 getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>()) 1085 ImportSummary = IndexWrapperPass->getIndex(); 1086 1087 SSGI = {&M, 1088 [this](Function &F) -> const StackSafetyInfo & { 1089 return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult(); 1090 }, 1091 ImportSummary}; 1092 return false; 1093 } 1094 1095 bool llvm::needsParamAccessSummary(const Module &M) { 1096 if (StackSafetyRun) 1097 return true; 1098 for (auto &F : M.functions()) 1099 if (F.hasFnAttribute(Attribute::SanitizeMemTag)) 1100 return true; 1101 return false; 1102 } 1103 1104 void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) { 1105 if (!Index.hasParamAccess()) 1106 return; 1107 const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true); 1108 1109 auto CountParamAccesses = [&](auto &Stat) { 1110 if (!AreStatisticsEnabled()) 1111 return; 1112 for (auto &GVS : Index) 1113 for (auto &GV : GVS.second.SummaryList) 1114 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get())) 1115 Stat += FS->paramAccesses().size(); 1116 }; 1117 1118 CountParamAccesses(NumCombinedParamAccessesBefore); 1119 1120 std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions; 1121 1122 // Convert the ModuleSummaryIndex to a FunctionMap 1123 for (auto &GVS : Index) { 1124 for (auto &GV : GVS.second.SummaryList) { 1125 FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()); 1126 if (!FS || FS->paramAccesses().empty()) 1127 continue; 1128 if (FS->isLive() && FS->isDSOLocal()) { 1129 FunctionInfo<FunctionSummary> FI; 1130 for (auto &PS : FS->paramAccesses()) { 1131 auto &US = 1132 FI.Params 1133 .emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth) 1134 .first->second; 1135 US.Range = PS.Use; 1136 for (auto &Call : PS.Calls) { 1137 assert(!Call.Offsets.isFullSet()); 1138 FunctionSummary *S = 1139 findCalleeFunctionSummary(Call.Callee, FS->modulePath()); 1140 ++NumCombinedCalleeLookupTotal; 1141 if (!S) { 1142 ++NumCombinedCalleeLookupFailed; 1143 US.Range = FullSet; 1144 US.Calls.clear(); 1145 break; 1146 } 1147 US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo), 1148 Call.Offsets); 1149 } 1150 } 1151 Functions.emplace(FS, std::move(FI)); 1152 } 1153 // Reset data for all summaries. Alive and DSO local will be set back from 1154 // of data flow results below. Anything else will not be accessed 1155 // by ThinLTO backend, so we can save on bitcode size. 1156 FS->setParamAccesses({}); 1157 } 1158 } 1159 NumCombinedDataFlowNodes += Functions.size(); 1160 StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA( 1161 FunctionSummary::ParamAccess::RangeWidth, std::move(Functions)); 1162 for (auto &KV : SSDFA.run()) { 1163 std::vector<FunctionSummary::ParamAccess> NewParams; 1164 NewParams.reserve(KV.second.Params.size()); 1165 for (auto &Param : KV.second.Params) { 1166 // It's not needed as FullSet is processed the same as a missing value. 1167 if (Param.second.Range.isFullSet()) 1168 continue; 1169 NewParams.emplace_back(); 1170 FunctionSummary::ParamAccess &New = NewParams.back(); 1171 New.ParamNo = Param.first; 1172 New.Use = Param.second.Range; // Only range is needed. 1173 } 1174 const_cast<FunctionSummary *>(KV.first)->setParamAccesses( 1175 std::move(NewParams)); 1176 } 1177 1178 CountParamAccesses(NumCombinedParamAccessesAfter); 1179 } 1180 1181 static const char LocalPassArg[] = "stack-safety-local"; 1182 static const char LocalPassName[] = "Stack Safety Local Analysis"; 1183 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1184 false, true) 1185 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1186 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1187 false, true) 1188 1189 static const char GlobalPassName[] = "Stack Safety Analysis"; 1190 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1191 GlobalPassName, false, true) 1192 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1193 INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass) 1194 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1195 GlobalPassName, false, true) 1196