xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/StackSafetyAnalysis.cpp (revision d439598dd0d341b0c0b77151ba904e09c42f8421)
1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #include "llvm/Analysis/StackSafetyAnalysis.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
17 #include "llvm/Analysis/ScalarEvolution.h"
18 #include "llvm/Analysis/StackLifetime.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/ModuleSummaryIndex.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/FormatVariadic.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <memory>
34 #include <tuple>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "stack-safety"
39 
40 STATISTIC(NumAllocaStackSafe, "Number of safe allocas");
41 STATISTIC(NumAllocaTotal, "Number of total allocas");
42 
43 STATISTIC(NumCombinedCalleeLookupTotal,
44           "Number of total callee lookups on combined index.");
45 STATISTIC(NumCombinedCalleeLookupFailed,
46           "Number of failed callee lookups on combined index.");
47 STATISTIC(NumModuleCalleeLookupTotal,
48           "Number of total callee lookups on module index.");
49 STATISTIC(NumModuleCalleeLookupFailed,
50           "Number of failed callee lookups on module index.");
51 STATISTIC(NumCombinedParamAccessesBefore,
52           "Number of total param accesses before generateParamAccessSummary.");
53 STATISTIC(NumCombinedParamAccessesAfter,
54           "Number of total param accesses after generateParamAccessSummary.");
55 STATISTIC(NumCombinedDataFlowNodes,
56           "Number of total nodes in combined index for dataflow processing.");
57 STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled.");
58 STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak.");
59 STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external.");
60 
61 
62 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations",
63                                              cl::init(20), cl::Hidden);
64 
65 static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false),
66                                       cl::Hidden);
67 
68 static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false),
69                                     cl::Hidden);
70 
71 namespace {
72 
73 // Check if we should bailout for such ranges.
74 bool isUnsafe(const ConstantRange &R) {
75   return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped();
76 }
77 
78 ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) {
79   assert(!L.isSignWrappedSet());
80   assert(!R.isSignWrappedSet());
81   if (L.signedAddMayOverflow(R) !=
82       ConstantRange::OverflowResult::NeverOverflows)
83     return ConstantRange::getFull(L.getBitWidth());
84   ConstantRange Result = L.add(R);
85   assert(!Result.isSignWrappedSet());
86   return Result;
87 }
88 
89 ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) {
90   assert(!L.isSignWrappedSet());
91   assert(!R.isSignWrappedSet());
92   auto Result = L.unionWith(R);
93   // Two non-wrapped sets can produce wrapped.
94   if (Result.isSignWrappedSet())
95     Result = ConstantRange::getFull(Result.getBitWidth());
96   return Result;
97 }
98 
99 /// Describes use of address in as a function call argument.
100 template <typename CalleeTy> struct CallInfo {
101   /// Function being called.
102   const CalleeTy *Callee = nullptr;
103   /// Index of argument which pass address.
104   size_t ParamNo = 0;
105 
106   CallInfo(const CalleeTy *Callee, size_t ParamNo)
107       : Callee(Callee), ParamNo(ParamNo) {}
108 
109   struct Less {
110     bool operator()(const CallInfo &L, const CallInfo &R) const {
111       return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
112     }
113   };
114 };
115 
116 /// Describe uses of address (alloca or parameter) inside of the function.
117 template <typename CalleeTy> struct UseInfo {
118   // Access range if the address (alloca or parameters).
119   // It is allowed to be empty-set when there are no known accesses.
120   ConstantRange Range;
121   std::set<const Instruction *> UnsafeAccesses;
122 
123   // List of calls which pass address as an argument.
124   // Value is offset range of address from base address (alloca or calling
125   // function argument). Range should never set to empty-set, that is an invalid
126   // access range that can cause empty-set to be propagated with
127   // ConstantRange::add
128   using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange,
129                            typename CallInfo<CalleeTy>::Less>;
130   CallsTy Calls;
131 
132   UseInfo(unsigned PointerSize) : Range{PointerSize, false} {}
133 
134   void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); }
135   void addRange(const Instruction *I, const ConstantRange &R, bool IsSafe) {
136     if (!IsSafe)
137       UnsafeAccesses.insert(I);
138     updateRange(R);
139   }
140 };
141 
142 template <typename CalleeTy>
143 raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) {
144   OS << U.Range;
145   for (auto &Call : U.Calls)
146     OS << ", "
147        << "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo
148        << ", " << Call.second << ")";
149   return OS;
150 }
151 
152 /// Calculate the allocation size of a given alloca. Returns empty range
153 // in case of confution.
154 ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) {
155   const DataLayout &DL = AI.getModule()->getDataLayout();
156   TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType());
157   unsigned PointerSize = DL.getPointerTypeSizeInBits(AI.getType());
158   // Fallback to empty range for alloca size.
159   ConstantRange R = ConstantRange::getEmpty(PointerSize);
160   if (TS.isScalable())
161     return R;
162   APInt APSize(PointerSize, TS.getFixedValue(), true);
163   if (APSize.isNonPositive())
164     return R;
165   if (AI.isArrayAllocation()) {
166     const auto *C = dyn_cast<ConstantInt>(AI.getArraySize());
167     if (!C)
168       return R;
169     bool Overflow = false;
170     APInt Mul = C->getValue();
171     if (Mul.isNonPositive())
172       return R;
173     Mul = Mul.sextOrTrunc(PointerSize);
174     APSize = APSize.smul_ov(Mul, Overflow);
175     if (Overflow)
176       return R;
177   }
178   R = ConstantRange(APInt::getZero(PointerSize), APSize);
179   assert(!isUnsafe(R));
180   return R;
181 }
182 
183 template <typename CalleeTy> struct FunctionInfo {
184   std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas;
185   std::map<uint32_t, UseInfo<CalleeTy>> Params;
186   // TODO: describe return value as depending on one or more of its arguments.
187 
188   // StackSafetyDataFlowAnalysis counter stored here for faster access.
189   int UpdateCount = 0;
190 
191   void print(raw_ostream &O, StringRef Name, const Function *F) const {
192     // TODO: Consider different printout format after
193     // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then.
194     O << "  @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable")
195       << ((F && F->isInterposable()) ? " interposable" : "") << "\n";
196 
197     O << "    args uses:\n";
198     for (auto &KV : Params) {
199       O << "      ";
200       if (F)
201         O << F->getArg(KV.first)->getName();
202       else
203         O << formatv("arg{0}", KV.first);
204       O << "[]: " << KV.second << "\n";
205     }
206 
207     O << "    allocas uses:\n";
208     if (F) {
209       for (const auto &I : instructions(F)) {
210         if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
211           auto &AS = Allocas.find(AI)->second;
212           O << "      " << AI->getName() << "["
213             << getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n";
214         }
215       }
216     } else {
217       assert(Allocas.empty());
218     }
219   }
220 };
221 
222 using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>;
223 
224 } // namespace
225 
226 struct StackSafetyInfo::InfoTy {
227   FunctionInfo<GlobalValue> Info;
228 };
229 
230 struct StackSafetyGlobalInfo::InfoTy {
231   GVToSSI Info;
232   SmallPtrSet<const AllocaInst *, 8> SafeAllocas;
233   std::set<const Instruction *> UnsafeAccesses;
234 };
235 
236 namespace {
237 
238 class StackSafetyLocalAnalysis {
239   Function &F;
240   const DataLayout &DL;
241   ScalarEvolution &SE;
242   unsigned PointerSize = 0;
243 
244   const ConstantRange UnknownRange;
245 
246   ConstantRange offsetFrom(Value *Addr, Value *Base);
247   ConstantRange getAccessRange(Value *Addr, Value *Base,
248                                const ConstantRange &SizeRange);
249   ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size);
250   ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U,
251                                            Value *Base);
252 
253   void analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS,
254                       const StackLifetime &SL);
255 
256 
257   bool isSafeAccess(const Use &U, AllocaInst *AI, const SCEV *AccessSize);
258   bool isSafeAccess(const Use &U, AllocaInst *AI, Value *V);
259   bool isSafeAccess(const Use &U, AllocaInst *AI, TypeSize AccessSize);
260 
261 public:
262   StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE)
263       : F(F), DL(F.getParent()->getDataLayout()), SE(SE),
264         PointerSize(DL.getPointerSizeInBits()),
265         UnknownRange(PointerSize, true) {}
266 
267   // Run the transformation on the associated function.
268   FunctionInfo<GlobalValue> run();
269 };
270 
271 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) {
272   if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType()))
273     return UnknownRange;
274 
275   auto *PtrTy = PointerType::getUnqual(SE.getContext());
276   const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy);
277   const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy);
278   const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp);
279   if (isa<SCEVCouldNotCompute>(Diff))
280     return UnknownRange;
281 
282   ConstantRange Offset = SE.getSignedRange(Diff);
283   if (isUnsafe(Offset))
284     return UnknownRange;
285   return Offset.sextOrTrunc(PointerSize);
286 }
287 
288 ConstantRange
289 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
290                                          const ConstantRange &SizeRange) {
291   // Zero-size loads and stores do not access memory.
292   if (SizeRange.isEmptySet())
293     return ConstantRange::getEmpty(PointerSize);
294   assert(!isUnsafe(SizeRange));
295 
296   ConstantRange Offsets = offsetFrom(Addr, Base);
297   if (isUnsafe(Offsets))
298     return UnknownRange;
299 
300   Offsets = addOverflowNever(Offsets, SizeRange);
301   if (isUnsafe(Offsets))
302     return UnknownRange;
303   return Offsets;
304 }
305 
306 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
307                                                        TypeSize Size) {
308   if (Size.isScalable())
309     return UnknownRange;
310   APInt APSize(PointerSize, Size.getFixedValue(), true);
311   if (APSize.isNegative())
312     return UnknownRange;
313   return getAccessRange(Addr, Base,
314                         ConstantRange(APInt::getZero(PointerSize), APSize));
315 }
316 
317 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange(
318     const MemIntrinsic *MI, const Use &U, Value *Base) {
319   if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
320     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
321       return ConstantRange::getEmpty(PointerSize);
322   } else {
323     if (MI->getRawDest() != U)
324       return ConstantRange::getEmpty(PointerSize);
325   }
326 
327   auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize);
328   if (!SE.isSCEVable(MI->getLength()->getType()))
329     return UnknownRange;
330 
331   const SCEV *Expr =
332       SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy);
333   ConstantRange Sizes = SE.getSignedRange(Expr);
334   if (!Sizes.getUpper().isStrictlyPositive() || isUnsafe(Sizes))
335     return UnknownRange;
336   Sizes = Sizes.sextOrTrunc(PointerSize);
337   ConstantRange SizeRange(APInt::getZero(PointerSize), Sizes.getUpper() - 1);
338   return getAccessRange(U, Base, SizeRange);
339 }
340 
341 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI,
342                                             Value *V) {
343   return isSafeAccess(U, AI, SE.getSCEV(V));
344 }
345 
346 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI,
347                                             TypeSize TS) {
348   if (TS.isScalable())
349     return false;
350   auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize);
351   const SCEV *SV = SE.getConstant(CalculationTy, TS.getFixedValue());
352   return isSafeAccess(U, AI, SV);
353 }
354 
355 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI,
356                                             const SCEV *AccessSize) {
357 
358   if (!AI)
359     return true; // This only judges whether it is a safe *stack* access.
360   if (isa<SCEVCouldNotCompute>(AccessSize))
361     return false;
362 
363   const auto *I = cast<Instruction>(U.getUser());
364 
365   auto ToCharPtr = [&](const SCEV *V) {
366     auto *PtrTy = PointerType::getUnqual(SE.getContext());
367     return SE.getTruncateOrZeroExtend(V, PtrTy);
368   };
369 
370   const SCEV *AddrExp = ToCharPtr(SE.getSCEV(U.get()));
371   const SCEV *BaseExp = ToCharPtr(SE.getSCEV(AI));
372   const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp);
373   if (isa<SCEVCouldNotCompute>(Diff))
374     return false;
375 
376   auto Size = getStaticAllocaSizeRange(*AI);
377 
378   auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize);
379   auto ToDiffTy = [&](const SCEV *V) {
380     return SE.getTruncateOrZeroExtend(V, CalculationTy);
381   };
382   const SCEV *Min = ToDiffTy(SE.getConstant(Size.getLower()));
383   const SCEV *Max = SE.getMinusSCEV(ToDiffTy(SE.getConstant(Size.getUpper())),
384                                     ToDiffTy(AccessSize));
385   return SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SGE, Diff, Min, I)
386              .value_or(false) &&
387          SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SLE, Diff, Max, I)
388              .value_or(false);
389 }
390 
391 /// The function analyzes all local uses of Ptr (alloca or argument) and
392 /// calculates local access range and all function calls where it was used.
393 void StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr,
394                                               UseInfo<GlobalValue> &US,
395                                               const StackLifetime &SL) {
396   SmallPtrSet<const Value *, 16> Visited;
397   SmallVector<const Value *, 8> WorkList;
398   WorkList.push_back(Ptr);
399   AllocaInst *AI = dyn_cast<AllocaInst>(Ptr);
400 
401   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
402   while (!WorkList.empty()) {
403     const Value *V = WorkList.pop_back_val();
404     for (const Use &UI : V->uses()) {
405       const auto *I = cast<Instruction>(UI.getUser());
406       if (!SL.isReachable(I))
407         continue;
408 
409       assert(V == UI.get());
410 
411       auto RecordStore = [&](const Value* StoredVal) {
412         if (V == StoredVal) {
413           // Stored the pointer - conservatively assume it may be unsafe.
414           US.addRange(I, UnknownRange, /*IsSafe=*/false);
415           return;
416         }
417         if (AI && !SL.isAliveAfter(AI, I)) {
418           US.addRange(I, UnknownRange, /*IsSafe=*/false);
419           return;
420         }
421         auto TypeSize = DL.getTypeStoreSize(StoredVal->getType());
422         auto AccessRange = getAccessRange(UI, Ptr, TypeSize);
423         bool Safe = isSafeAccess(UI, AI, TypeSize);
424         US.addRange(I, AccessRange, Safe);
425         return;
426       };
427 
428       switch (I->getOpcode()) {
429       case Instruction::Load: {
430         if (AI && !SL.isAliveAfter(AI, I)) {
431           US.addRange(I, UnknownRange, /*IsSafe=*/false);
432           break;
433         }
434         auto TypeSize = DL.getTypeStoreSize(I->getType());
435         auto AccessRange = getAccessRange(UI, Ptr, TypeSize);
436         bool Safe = isSafeAccess(UI, AI, TypeSize);
437         US.addRange(I, AccessRange, Safe);
438         break;
439       }
440 
441       case Instruction::VAArg:
442         // "va-arg" from a pointer is safe.
443         break;
444       case Instruction::Store:
445         RecordStore(cast<StoreInst>(I)->getValueOperand());
446         break;
447       case Instruction::AtomicCmpXchg:
448         RecordStore(cast<AtomicCmpXchgInst>(I)->getNewValOperand());
449         break;
450       case Instruction::AtomicRMW:
451         RecordStore(cast<AtomicRMWInst>(I)->getValOperand());
452         break;
453 
454       case Instruction::Ret:
455         // Information leak.
456         // FIXME: Process parameters correctly. This is a leak only if we return
457         // alloca.
458         US.addRange(I, UnknownRange, /*IsSafe=*/false);
459         break;
460 
461       case Instruction::Call:
462       case Instruction::Invoke: {
463         if (I->isLifetimeStartOrEnd())
464           break;
465 
466         if (AI && !SL.isAliveAfter(AI, I)) {
467           US.addRange(I, UnknownRange, /*IsSafe=*/false);
468           break;
469         }
470         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
471           auto AccessRange = getMemIntrinsicAccessRange(MI, UI, Ptr);
472           bool Safe = false;
473           if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
474             if (MTI->getRawSource() != UI && MTI->getRawDest() != UI)
475               Safe = true;
476           } else if (MI->getRawDest() != UI) {
477             Safe = true;
478           }
479           Safe = Safe || isSafeAccess(UI, AI, MI->getLength());
480           US.addRange(I, AccessRange, Safe);
481           break;
482         }
483 
484         const auto &CB = cast<CallBase>(*I);
485         if (CB.getReturnedArgOperand() == V) {
486           if (Visited.insert(I).second)
487             WorkList.push_back(cast<const Instruction>(I));
488         }
489 
490         if (!CB.isArgOperand(&UI)) {
491           US.addRange(I, UnknownRange, /*IsSafe=*/false);
492           break;
493         }
494 
495         unsigned ArgNo = CB.getArgOperandNo(&UI);
496         if (CB.isByValArgument(ArgNo)) {
497           auto TypeSize = DL.getTypeStoreSize(CB.getParamByValType(ArgNo));
498           auto AccessRange = getAccessRange(UI, Ptr, TypeSize);
499           bool Safe = isSafeAccess(UI, AI, TypeSize);
500           US.addRange(I, AccessRange, Safe);
501           break;
502         }
503 
504         // FIXME: consult devirt?
505         // Do not follow aliases, otherwise we could inadvertently follow
506         // dso_preemptable aliases or aliases with interposable linkage.
507         const GlobalValue *Callee =
508             dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts());
509         if (!Callee) {
510           US.addRange(I, UnknownRange, /*IsSafe=*/false);
511           break;
512         }
513 
514         assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee));
515         ConstantRange Offsets = offsetFrom(UI, Ptr);
516         auto Insert =
517             US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets);
518         if (!Insert.second)
519           Insert.first->second = Insert.first->second.unionWith(Offsets);
520         break;
521       }
522 
523       default:
524         if (Visited.insert(I).second)
525           WorkList.push_back(cast<const Instruction>(I));
526       }
527     }
528   }
529 }
530 
531 FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() {
532   FunctionInfo<GlobalValue> Info;
533   assert(!F.isDeclaration() &&
534          "Can't run StackSafety on a function declaration");
535 
536   LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n");
537 
538   SmallVector<AllocaInst *, 64> Allocas;
539   for (auto &I : instructions(F))
540     if (auto *AI = dyn_cast<AllocaInst>(&I))
541       Allocas.push_back(AI);
542   StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must);
543   SL.run();
544 
545   for (auto *AI : Allocas) {
546     auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second;
547     analyzeAllUses(AI, UI, SL);
548   }
549 
550   for (Argument &A : F.args()) {
551     // Non pointers and bypass arguments are not going to be used in any global
552     // processing.
553     if (A.getType()->isPointerTy() && !A.hasByValAttr()) {
554       auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second;
555       analyzeAllUses(&A, UI, SL);
556     }
557   }
558 
559   LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F));
560   LLVM_DEBUG(dbgs() << "\n[StackSafety] done\n");
561   return Info;
562 }
563 
564 template <typename CalleeTy> class StackSafetyDataFlowAnalysis {
565   using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>;
566 
567   FunctionMap Functions;
568   const ConstantRange UnknownRange;
569 
570   // Callee-to-Caller multimap.
571   DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers;
572   SetVector<const CalleeTy *> WorkList;
573 
574   bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet);
575   void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS);
576   void updateOneNode(const CalleeTy *Callee) {
577     updateOneNode(Callee, Functions.find(Callee)->second);
578   }
579   void updateAllNodes() {
580     for (auto &F : Functions)
581       updateOneNode(F.first, F.second);
582   }
583   void runDataFlow();
584 #ifndef NDEBUG
585   void verifyFixedPoint();
586 #endif
587 
588 public:
589   StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions)
590       : Functions(std::move(Functions)),
591         UnknownRange(ConstantRange::getFull(PointerBitWidth)) {}
592 
593   const FunctionMap &run();
594 
595   ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo,
596                                        const ConstantRange &Offsets) const;
597 };
598 
599 template <typename CalleeTy>
600 ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange(
601     const CalleeTy *Callee, unsigned ParamNo,
602     const ConstantRange &Offsets) const {
603   auto FnIt = Functions.find(Callee);
604   // Unknown callee (outside of LTO domain or an indirect call).
605   if (FnIt == Functions.end())
606     return UnknownRange;
607   auto &FS = FnIt->second;
608   auto ParamIt = FS.Params.find(ParamNo);
609   if (ParamIt == FS.Params.end())
610     return UnknownRange;
611   auto &Access = ParamIt->second.Range;
612   if (Access.isEmptySet())
613     return Access;
614   if (Access.isFullSet())
615     return UnknownRange;
616   return addOverflowNever(Access, Offsets);
617 }
618 
619 template <typename CalleeTy>
620 bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US,
621                                                          bool UpdateToFullSet) {
622   bool Changed = false;
623   for (auto &KV : US.Calls) {
624     assert(!KV.second.isEmptySet() &&
625            "Param range can't be empty-set, invalid offset range");
626 
627     ConstantRange CalleeRange =
628         getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second);
629     if (!US.Range.contains(CalleeRange)) {
630       Changed = true;
631       if (UpdateToFullSet)
632         US.Range = UnknownRange;
633       else
634         US.updateRange(CalleeRange);
635     }
636   }
637   return Changed;
638 }
639 
640 template <typename CalleeTy>
641 void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode(
642     const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) {
643   bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations;
644   bool Changed = false;
645   for (auto &KV : FS.Params)
646     Changed |= updateOneUse(KV.second, UpdateToFullSet);
647 
648   if (Changed) {
649     LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount
650                       << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS
651                       << "\n");
652     // Callers of this function may need updating.
653     for (auto &CallerID : Callers[Callee])
654       WorkList.insert(CallerID);
655 
656     ++FS.UpdateCount;
657   }
658 }
659 
660 template <typename CalleeTy>
661 void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() {
662   SmallVector<const CalleeTy *, 16> Callees;
663   for (auto &F : Functions) {
664     Callees.clear();
665     auto &FS = F.second;
666     for (auto &KV : FS.Params)
667       for (auto &CS : KV.second.Calls)
668         Callees.push_back(CS.first.Callee);
669 
670     llvm::sort(Callees);
671     Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end());
672 
673     for (auto &Callee : Callees)
674       Callers[Callee].push_back(F.first);
675   }
676 
677   updateAllNodes();
678 
679   while (!WorkList.empty()) {
680     const CalleeTy *Callee = WorkList.pop_back_val();
681     updateOneNode(Callee);
682   }
683 }
684 
685 #ifndef NDEBUG
686 template <typename CalleeTy>
687 void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() {
688   WorkList.clear();
689   updateAllNodes();
690   assert(WorkList.empty());
691 }
692 #endif
693 
694 template <typename CalleeTy>
695 const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap &
696 StackSafetyDataFlowAnalysis<CalleeTy>::run() {
697   runDataFlow();
698   LLVM_DEBUG(verifyFixedPoint());
699   return Functions;
700 }
701 
702 FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) {
703   if (!VI)
704     return nullptr;
705   auto SummaryList = VI.getSummaryList();
706   GlobalValueSummary* S = nullptr;
707   for (const auto& GVS : SummaryList) {
708     if (!GVS->isLive())
709       continue;
710     if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get()))
711       if (!AS->hasAliasee())
712         continue;
713     if (!isa<FunctionSummary>(GVS->getBaseObject()))
714       continue;
715     if (GlobalValue::isLocalLinkage(GVS->linkage())) {
716       if (GVS->modulePath() == ModuleId) {
717         S = GVS.get();
718         break;
719       }
720     } else if (GlobalValue::isExternalLinkage(GVS->linkage())) {
721       if (S) {
722         ++NumIndexCalleeMultipleExternal;
723         return nullptr;
724       }
725       S = GVS.get();
726     } else if (GlobalValue::isWeakLinkage(GVS->linkage())) {
727       if (S) {
728         ++NumIndexCalleeMultipleWeak;
729         return nullptr;
730       }
731       S = GVS.get();
732     } else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) ||
733                GlobalValue::isLinkOnceLinkage(GVS->linkage())) {
734       if (SummaryList.size() == 1)
735         S = GVS.get();
736       // According thinLTOResolvePrevailingGUID these are unlikely prevailing.
737     } else {
738       ++NumIndexCalleeUnhandled;
739     }
740   };
741   while (S) {
742     if (!S->isLive() || !S->isDSOLocal())
743       return nullptr;
744     if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S))
745       return FS;
746     AliasSummary *AS = dyn_cast<AliasSummary>(S);
747     if (!AS || !AS->hasAliasee())
748       return nullptr;
749     S = AS->getBaseObject();
750     if (S == AS)
751       return nullptr;
752   }
753   return nullptr;
754 }
755 
756 const Function *findCalleeInModule(const GlobalValue *GV) {
757   while (GV) {
758     if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal())
759       return nullptr;
760     if (const Function *F = dyn_cast<Function>(GV))
761       return F;
762     const GlobalAlias *A = dyn_cast<GlobalAlias>(GV);
763     if (!A)
764       return nullptr;
765     GV = A->getAliaseeObject();
766     if (GV == A)
767       return nullptr;
768   }
769   return nullptr;
770 }
771 
772 const ConstantRange *findParamAccess(const FunctionSummary &FS,
773                                      uint32_t ParamNo) {
774   assert(FS.isLive());
775   assert(FS.isDSOLocal());
776   for (const auto &PS : FS.paramAccesses())
777     if (ParamNo == PS.ParamNo)
778       return &PS.Use;
779   return nullptr;
780 }
781 
782 void resolveAllCalls(UseInfo<GlobalValue> &Use,
783                      const ModuleSummaryIndex *Index) {
784   ConstantRange FullSet(Use.Range.getBitWidth(), true);
785   // Move Use.Calls to a temp storage and repopulate - don't use std::move as it
786   // leaves Use.Calls in an undefined state.
787   UseInfo<GlobalValue>::CallsTy TmpCalls;
788   std::swap(TmpCalls, Use.Calls);
789   for (const auto &C : TmpCalls) {
790     const Function *F = findCalleeInModule(C.first.Callee);
791     if (F) {
792       Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second);
793       continue;
794     }
795 
796     if (!Index)
797       return Use.updateRange(FullSet);
798     FunctionSummary *FS =
799         findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()),
800                                   C.first.Callee->getParent()->getModuleIdentifier());
801     ++NumModuleCalleeLookupTotal;
802     if (!FS) {
803       ++NumModuleCalleeLookupFailed;
804       return Use.updateRange(FullSet);
805     }
806     const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo);
807     if (!Found || Found->isFullSet())
808       return Use.updateRange(FullSet);
809     ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth());
810     if (!Access.isEmptySet())
811       Use.updateRange(addOverflowNever(Access, C.second));
812   }
813 }
814 
815 GVToSSI createGlobalStackSafetyInfo(
816     std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions,
817     const ModuleSummaryIndex *Index) {
818   GVToSSI SSI;
819   if (Functions.empty())
820     return SSI;
821 
822   // FIXME: Simplify printing and remove copying here.
823   auto Copy = Functions;
824 
825   for (auto &FnKV : Copy)
826     for (auto &KV : FnKV.second.Params) {
827       resolveAllCalls(KV.second, Index);
828       if (KV.second.Range.isFullSet())
829         KV.second.Calls.clear();
830     }
831 
832   uint32_t PointerSize =
833       Copy.begin()->first->getParent()->getDataLayout().getPointerSizeInBits();
834   StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy));
835 
836   for (const auto &F : SSDFA.run()) {
837     auto FI = F.second;
838     auto &SrcF = Functions[F.first];
839     for (auto &KV : FI.Allocas) {
840       auto &A = KV.second;
841       resolveAllCalls(A, Index);
842       for (auto &C : A.Calls) {
843         A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee,
844                                                    C.first.ParamNo, C.second));
845       }
846       // FIXME: This is needed only to preserve calls in print() results.
847       A.Calls = SrcF.Allocas.find(KV.first)->second.Calls;
848     }
849     for (auto &KV : FI.Params) {
850       auto &P = KV.second;
851       P.Calls = SrcF.Params.find(KV.first)->second.Calls;
852     }
853     SSI[F.first] = std::move(FI);
854   }
855 
856   return SSI;
857 }
858 
859 } // end anonymous namespace
860 
861 StackSafetyInfo::StackSafetyInfo() = default;
862 
863 StackSafetyInfo::StackSafetyInfo(Function *F,
864                                  std::function<ScalarEvolution &()> GetSE)
865     : F(F), GetSE(GetSE) {}
866 
867 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default;
868 
869 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default;
870 
871 StackSafetyInfo::~StackSafetyInfo() = default;
872 
873 const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const {
874   if (!Info) {
875     StackSafetyLocalAnalysis SSLA(*F, GetSE());
876     Info.reset(new InfoTy{SSLA.run()});
877   }
878   return *Info;
879 }
880 
881 void StackSafetyInfo::print(raw_ostream &O) const {
882   getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F));
883   O << "\n";
884 }
885 
886 const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const {
887   if (!Info) {
888     std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions;
889     for (auto &F : M->functions()) {
890       if (!F.isDeclaration()) {
891         auto FI = GetSSI(F).getInfo().Info;
892         Functions.emplace(&F, std::move(FI));
893       }
894     }
895     Info.reset(new InfoTy{
896         createGlobalStackSafetyInfo(std::move(Functions), Index), {}, {}});
897 
898     for (auto &FnKV : Info->Info) {
899       for (auto &KV : FnKV.second.Allocas) {
900         ++NumAllocaTotal;
901         const AllocaInst *AI = KV.first;
902         auto AIRange = getStaticAllocaSizeRange(*AI);
903         if (AIRange.contains(KV.second.Range)) {
904           Info->SafeAllocas.insert(AI);
905           ++NumAllocaStackSafe;
906         }
907         Info->UnsafeAccesses.insert(KV.second.UnsafeAccesses.begin(),
908                                     KV.second.UnsafeAccesses.end());
909       }
910     }
911 
912     if (StackSafetyPrint)
913       print(errs());
914   }
915   return *Info;
916 }
917 
918 std::vector<FunctionSummary::ParamAccess>
919 StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const {
920   // Implementation transforms internal representation of parameter information
921   // into FunctionSummary format.
922   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
923   for (const auto &KV : getInfo().Info.Params) {
924     auto &PS = KV.second;
925     // Parameter accessed by any or unknown offset, represented as FullSet by
926     // StackSafety, is handled as the parameter for which we have no
927     // StackSafety info at all. So drop it to reduce summary size.
928     if (PS.Range.isFullSet())
929       continue;
930 
931     ParamAccesses.emplace_back(KV.first, PS.Range);
932     FunctionSummary::ParamAccess &Param = ParamAccesses.back();
933 
934     Param.Calls.reserve(PS.Calls.size());
935     for (const auto &C : PS.Calls) {
936       // Parameter forwarded into another function by any or unknown offset
937       // will make ParamAccess::Range as FullSet anyway. So we can drop the
938       // entire parameter like we did above.
939       // TODO(vitalybuka): Return already filtered parameters from getInfo().
940       if (C.second.isFullSet()) {
941         ParamAccesses.pop_back();
942         break;
943       }
944       Param.Calls.emplace_back(C.first.ParamNo,
945                                Index.getOrInsertValueInfo(C.first.Callee),
946                                C.second);
947     }
948   }
949   for (FunctionSummary::ParamAccess &Param : ParamAccesses) {
950     sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L,
951                          const FunctionSummary::ParamAccess::Call &R) {
952       return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
953     });
954   }
955   return ParamAccesses;
956 }
957 
958 StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default;
959 
960 StackSafetyGlobalInfo::StackSafetyGlobalInfo(
961     Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI,
962     const ModuleSummaryIndex *Index)
963     : M(M), GetSSI(GetSSI), Index(Index) {
964   if (StackSafetyRun)
965     getInfo();
966 }
967 
968 StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) =
969     default;
970 
971 StackSafetyGlobalInfo &
972 StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default;
973 
974 StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default;
975 
976 bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const {
977   const auto &Info = getInfo();
978   return Info.SafeAllocas.count(&AI);
979 }
980 
981 bool StackSafetyGlobalInfo::stackAccessIsSafe(const Instruction &I) const {
982   const auto &Info = getInfo();
983   return Info.UnsafeAccesses.find(&I) == Info.UnsafeAccesses.end();
984 }
985 
986 void StackSafetyGlobalInfo::print(raw_ostream &O) const {
987   auto &SSI = getInfo().Info;
988   if (SSI.empty())
989     return;
990   const Module &M = *SSI.begin()->first->getParent();
991   for (const auto &F : M.functions()) {
992     if (!F.isDeclaration()) {
993       SSI.find(&F)->second.print(O, F.getName(), &F);
994       O << "    safe accesses:"
995         << "\n";
996       for (const auto &I : instructions(F)) {
997         const CallInst *Call = dyn_cast<CallInst>(&I);
998         if ((isa<StoreInst>(I) || isa<LoadInst>(I) || isa<MemIntrinsic>(I) ||
999              isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I) ||
1000              (Call && Call->hasByValArgument())) &&
1001             stackAccessIsSafe(I)) {
1002           O << "     " << I << "\n";
1003         }
1004       }
1005       O << "\n";
1006     }
1007   }
1008 }
1009 
1010 LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); }
1011 
1012 AnalysisKey StackSafetyAnalysis::Key;
1013 
1014 StackSafetyInfo StackSafetyAnalysis::run(Function &F,
1015                                          FunctionAnalysisManager &AM) {
1016   return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & {
1017     return AM.getResult<ScalarEvolutionAnalysis>(F);
1018   });
1019 }
1020 
1021 PreservedAnalyses StackSafetyPrinterPass::run(Function &F,
1022                                               FunctionAnalysisManager &AM) {
1023   OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n";
1024   AM.getResult<StackSafetyAnalysis>(F).print(OS);
1025   return PreservedAnalyses::all();
1026 }
1027 
1028 char StackSafetyInfoWrapperPass::ID = 0;
1029 
1030 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) {
1031   initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1032 }
1033 
1034 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1035   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1036   AU.setPreservesAll();
1037 }
1038 
1039 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const {
1040   SSI.print(O);
1041 }
1042 
1043 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) {
1044   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1045   SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }};
1046   return false;
1047 }
1048 
1049 AnalysisKey StackSafetyGlobalAnalysis::Key;
1050 
1051 StackSafetyGlobalInfo
1052 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1053   // FIXME: Lookup Module Summary.
1054   FunctionAnalysisManager &FAM =
1055       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1056   return {&M,
1057           [&FAM](Function &F) -> const StackSafetyInfo & {
1058             return FAM.getResult<StackSafetyAnalysis>(F);
1059           },
1060           nullptr};
1061 }
1062 
1063 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M,
1064                                                     ModuleAnalysisManager &AM) {
1065   OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n";
1066   AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS);
1067   return PreservedAnalyses::all();
1068 }
1069 
1070 char StackSafetyGlobalInfoWrapperPass::ID = 0;
1071 
1072 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass()
1073     : ModulePass(ID) {
1074   initializeStackSafetyGlobalInfoWrapperPassPass(
1075       *PassRegistry::getPassRegistry());
1076 }
1077 
1078 StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default;
1079 
1080 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O,
1081                                              const Module *M) const {
1082   SSGI.print(O);
1083 }
1084 
1085 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage(
1086     AnalysisUsage &AU) const {
1087   AU.setPreservesAll();
1088   AU.addRequired<StackSafetyInfoWrapperPass>();
1089 }
1090 
1091 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) {
1092   const ModuleSummaryIndex *ImportSummary = nullptr;
1093   if (auto *IndexWrapperPass =
1094           getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
1095     ImportSummary = IndexWrapperPass->getIndex();
1096 
1097   SSGI = {&M,
1098           [this](Function &F) -> const StackSafetyInfo & {
1099             return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult();
1100           },
1101           ImportSummary};
1102   return false;
1103 }
1104 
1105 bool llvm::needsParamAccessSummary(const Module &M) {
1106   if (StackSafetyRun)
1107     return true;
1108   for (const auto &F : M.functions())
1109     if (F.hasFnAttribute(Attribute::SanitizeMemTag))
1110       return true;
1111   return false;
1112 }
1113 
1114 void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) {
1115   if (!Index.hasParamAccess())
1116     return;
1117   const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true);
1118 
1119   auto CountParamAccesses = [&](auto &Stat) {
1120     if (!AreStatisticsEnabled())
1121       return;
1122     for (auto &GVS : Index)
1123       for (auto &GV : GVS.second.SummaryList)
1124         if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()))
1125           Stat += FS->paramAccesses().size();
1126   };
1127 
1128   CountParamAccesses(NumCombinedParamAccessesBefore);
1129 
1130   std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions;
1131 
1132   // Convert the ModuleSummaryIndex to a FunctionMap
1133   for (auto &GVS : Index) {
1134     for (auto &GV : GVS.second.SummaryList) {
1135       FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get());
1136       if (!FS || FS->paramAccesses().empty())
1137         continue;
1138       if (FS->isLive() && FS->isDSOLocal()) {
1139         FunctionInfo<FunctionSummary> FI;
1140         for (const auto &PS : FS->paramAccesses()) {
1141           auto &US =
1142               FI.Params
1143                   .emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth)
1144                   .first->second;
1145           US.Range = PS.Use;
1146           for (const auto &Call : PS.Calls) {
1147             assert(!Call.Offsets.isFullSet());
1148             FunctionSummary *S =
1149                 findCalleeFunctionSummary(Call.Callee, FS->modulePath());
1150             ++NumCombinedCalleeLookupTotal;
1151             if (!S) {
1152               ++NumCombinedCalleeLookupFailed;
1153               US.Range = FullSet;
1154               US.Calls.clear();
1155               break;
1156             }
1157             US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo),
1158                              Call.Offsets);
1159           }
1160         }
1161         Functions.emplace(FS, std::move(FI));
1162       }
1163       // Reset data for all summaries. Alive and DSO local will be set back from
1164       // of data flow results below. Anything else will not be accessed
1165       // by ThinLTO backend, so we can save on bitcode size.
1166       FS->setParamAccesses({});
1167     }
1168   }
1169   NumCombinedDataFlowNodes += Functions.size();
1170   StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA(
1171       FunctionSummary::ParamAccess::RangeWidth, std::move(Functions));
1172   for (const auto &KV : SSDFA.run()) {
1173     std::vector<FunctionSummary::ParamAccess> NewParams;
1174     NewParams.reserve(KV.second.Params.size());
1175     for (const auto &Param : KV.second.Params) {
1176       // It's not needed as FullSet is processed the same as a missing value.
1177       if (Param.second.Range.isFullSet())
1178         continue;
1179       NewParams.emplace_back();
1180       FunctionSummary::ParamAccess &New = NewParams.back();
1181       New.ParamNo = Param.first;
1182       New.Use = Param.second.Range; // Only range is needed.
1183     }
1184     const_cast<FunctionSummary *>(KV.first)->setParamAccesses(
1185         std::move(NewParams));
1186   }
1187 
1188   CountParamAccesses(NumCombinedParamAccessesAfter);
1189 }
1190 
1191 static const char LocalPassArg[] = "stack-safety-local";
1192 static const char LocalPassName[] = "Stack Safety Local Analysis";
1193 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
1194                       false, true)
1195 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1196 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
1197                     false, true)
1198 
1199 static const char GlobalPassName[] = "Stack Safety Analysis";
1200 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
1201                       GlobalPassName, false, true)
1202 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1203 INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass)
1204 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
1205                     GlobalPassName, false, true)
1206