1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "llvm/Analysis/StackSafetyAnalysis.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 17 #include "llvm/Analysis/ScalarEvolution.h" 18 #include "llvm/Analysis/StackLifetime.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/ModuleSummaryIndex.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/FormatVariadic.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <memory> 34 #include <tuple> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "stack-safety" 39 40 STATISTIC(NumAllocaStackSafe, "Number of safe allocas"); 41 STATISTIC(NumAllocaTotal, "Number of total allocas"); 42 43 STATISTIC(NumCombinedCalleeLookupTotal, 44 "Number of total callee lookups on combined index."); 45 STATISTIC(NumCombinedCalleeLookupFailed, 46 "Number of failed callee lookups on combined index."); 47 STATISTIC(NumModuleCalleeLookupTotal, 48 "Number of total callee lookups on module index."); 49 STATISTIC(NumModuleCalleeLookupFailed, 50 "Number of failed callee lookups on module index."); 51 STATISTIC(NumCombinedParamAccessesBefore, 52 "Number of total param accesses before generateParamAccessSummary."); 53 STATISTIC(NumCombinedParamAccessesAfter, 54 "Number of total param accesses after generateParamAccessSummary."); 55 STATISTIC(NumCombinedDataFlowNodes, 56 "Number of total nodes in combined index for dataflow processing."); 57 STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled."); 58 STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak."); 59 STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external."); 60 61 62 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations", 63 cl::init(20), cl::Hidden); 64 65 static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false), 66 cl::Hidden); 67 68 static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false), 69 cl::Hidden); 70 71 namespace { 72 73 // Check if we should bailout for such ranges. 74 bool isUnsafe(const ConstantRange &R) { 75 return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped(); 76 } 77 78 ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) { 79 assert(!L.isSignWrappedSet()); 80 assert(!R.isSignWrappedSet()); 81 if (L.signedAddMayOverflow(R) != 82 ConstantRange::OverflowResult::NeverOverflows) 83 return ConstantRange::getFull(L.getBitWidth()); 84 ConstantRange Result = L.add(R); 85 assert(!Result.isSignWrappedSet()); 86 return Result; 87 } 88 89 ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) { 90 assert(!L.isSignWrappedSet()); 91 assert(!R.isSignWrappedSet()); 92 auto Result = L.unionWith(R); 93 // Two non-wrapped sets can produce wrapped. 94 if (Result.isSignWrappedSet()) 95 Result = ConstantRange::getFull(Result.getBitWidth()); 96 return Result; 97 } 98 99 /// Describes use of address in as a function call argument. 100 template <typename CalleeTy> struct CallInfo { 101 /// Function being called. 102 const CalleeTy *Callee = nullptr; 103 /// Index of argument which pass address. 104 size_t ParamNo = 0; 105 106 CallInfo(const CalleeTy *Callee, size_t ParamNo) 107 : Callee(Callee), ParamNo(ParamNo) {} 108 109 struct Less { 110 bool operator()(const CallInfo &L, const CallInfo &R) const { 111 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 112 } 113 }; 114 }; 115 116 /// Describe uses of address (alloca or parameter) inside of the function. 117 template <typename CalleeTy> struct UseInfo { 118 // Access range if the address (alloca or parameters). 119 // It is allowed to be empty-set when there are no known accesses. 120 ConstantRange Range; 121 std::set<const Instruction *> UnsafeAccesses; 122 123 // List of calls which pass address as an argument. 124 // Value is offset range of address from base address (alloca or calling 125 // function argument). Range should never set to empty-set, that is an invalid 126 // access range that can cause empty-set to be propagated with 127 // ConstantRange::add 128 using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange, 129 typename CallInfo<CalleeTy>::Less>; 130 CallsTy Calls; 131 132 UseInfo(unsigned PointerSize) : Range{PointerSize, false} {} 133 134 void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); } 135 void addRange(const Instruction *I, const ConstantRange &R, bool IsSafe) { 136 if (!IsSafe) 137 UnsafeAccesses.insert(I); 138 updateRange(R); 139 } 140 }; 141 142 template <typename CalleeTy> 143 raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) { 144 OS << U.Range; 145 for (auto &Call : U.Calls) 146 OS << ", " 147 << "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo 148 << ", " << Call.second << ")"; 149 return OS; 150 } 151 152 /// Calculate the allocation size of a given alloca. Returns empty range 153 // in case of confution. 154 ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) { 155 const DataLayout &DL = AI.getModule()->getDataLayout(); 156 TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType()); 157 unsigned PointerSize = DL.getPointerTypeSizeInBits(AI.getType()); 158 // Fallback to empty range for alloca size. 159 ConstantRange R = ConstantRange::getEmpty(PointerSize); 160 if (TS.isScalable()) 161 return R; 162 APInt APSize(PointerSize, TS.getFixedSize(), true); 163 if (APSize.isNonPositive()) 164 return R; 165 if (AI.isArrayAllocation()) { 166 const auto *C = dyn_cast<ConstantInt>(AI.getArraySize()); 167 if (!C) 168 return R; 169 bool Overflow = false; 170 APInt Mul = C->getValue(); 171 if (Mul.isNonPositive()) 172 return R; 173 Mul = Mul.sextOrTrunc(PointerSize); 174 APSize = APSize.smul_ov(Mul, Overflow); 175 if (Overflow) 176 return R; 177 } 178 R = ConstantRange(APInt::getZero(PointerSize), APSize); 179 assert(!isUnsafe(R)); 180 return R; 181 } 182 183 template <typename CalleeTy> struct FunctionInfo { 184 std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas; 185 std::map<uint32_t, UseInfo<CalleeTy>> Params; 186 // TODO: describe return value as depending on one or more of its arguments. 187 188 // StackSafetyDataFlowAnalysis counter stored here for faster access. 189 int UpdateCount = 0; 190 191 void print(raw_ostream &O, StringRef Name, const Function *F) const { 192 // TODO: Consider different printout format after 193 // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then. 194 O << " @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable") 195 << ((F && F->isInterposable()) ? " interposable" : "") << "\n"; 196 197 O << " args uses:\n"; 198 for (auto &KV : Params) { 199 O << " "; 200 if (F) 201 O << F->getArg(KV.first)->getName(); 202 else 203 O << formatv("arg{0}", KV.first); 204 O << "[]: " << KV.second << "\n"; 205 } 206 207 O << " allocas uses:\n"; 208 if (F) { 209 for (const auto &I : instructions(F)) { 210 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 211 auto &AS = Allocas.find(AI)->second; 212 O << " " << AI->getName() << "[" 213 << getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n"; 214 } 215 } 216 } else { 217 assert(Allocas.empty()); 218 } 219 } 220 }; 221 222 using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>; 223 224 } // namespace 225 226 struct StackSafetyInfo::InfoTy { 227 FunctionInfo<GlobalValue> Info; 228 }; 229 230 struct StackSafetyGlobalInfo::InfoTy { 231 GVToSSI Info; 232 SmallPtrSet<const AllocaInst *, 8> SafeAllocas; 233 std::set<const Instruction *> UnsafeAccesses; 234 }; 235 236 namespace { 237 238 class StackSafetyLocalAnalysis { 239 Function &F; 240 const DataLayout &DL; 241 ScalarEvolution &SE; 242 unsigned PointerSize = 0; 243 244 const ConstantRange UnknownRange; 245 246 ConstantRange offsetFrom(Value *Addr, Value *Base); 247 ConstantRange getAccessRange(Value *Addr, Value *Base, 248 const ConstantRange &SizeRange); 249 ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size); 250 ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U, 251 Value *Base); 252 253 void analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS, 254 const StackLifetime &SL); 255 256 257 bool isSafeAccess(const Use &U, AllocaInst *AI, const SCEV *AccessSize); 258 bool isSafeAccess(const Use &U, AllocaInst *AI, Value *V); 259 bool isSafeAccess(const Use &U, AllocaInst *AI, TypeSize AccessSize); 260 261 public: 262 StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE) 263 : F(F), DL(F.getParent()->getDataLayout()), SE(SE), 264 PointerSize(DL.getPointerSizeInBits()), 265 UnknownRange(PointerSize, true) {} 266 267 // Run the transformation on the associated function. 268 FunctionInfo<GlobalValue> run(); 269 }; 270 271 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) { 272 if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType())) 273 return UnknownRange; 274 275 auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext()); 276 const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy); 277 const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy); 278 const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp); 279 if (isa<SCEVCouldNotCompute>(Diff)) 280 return UnknownRange; 281 282 ConstantRange Offset = SE.getSignedRange(Diff); 283 if (isUnsafe(Offset)) 284 return UnknownRange; 285 return Offset.sextOrTrunc(PointerSize); 286 } 287 288 ConstantRange 289 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 290 const ConstantRange &SizeRange) { 291 // Zero-size loads and stores do not access memory. 292 if (SizeRange.isEmptySet()) 293 return ConstantRange::getEmpty(PointerSize); 294 assert(!isUnsafe(SizeRange)); 295 296 ConstantRange Offsets = offsetFrom(Addr, Base); 297 if (isUnsafe(Offsets)) 298 return UnknownRange; 299 300 Offsets = addOverflowNever(Offsets, SizeRange); 301 if (isUnsafe(Offsets)) 302 return UnknownRange; 303 return Offsets; 304 } 305 306 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 307 TypeSize Size) { 308 if (Size.isScalable()) 309 return UnknownRange; 310 APInt APSize(PointerSize, Size.getFixedSize(), true); 311 if (APSize.isNegative()) 312 return UnknownRange; 313 return getAccessRange(Addr, Base, 314 ConstantRange(APInt::getZero(PointerSize), APSize)); 315 } 316 317 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange( 318 const MemIntrinsic *MI, const Use &U, Value *Base) { 319 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 320 if (MTI->getRawSource() != U && MTI->getRawDest() != U) 321 return ConstantRange::getEmpty(PointerSize); 322 } else { 323 if (MI->getRawDest() != U) 324 return ConstantRange::getEmpty(PointerSize); 325 } 326 327 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 328 if (!SE.isSCEVable(MI->getLength()->getType())) 329 return UnknownRange; 330 331 const SCEV *Expr = 332 SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy); 333 ConstantRange Sizes = SE.getSignedRange(Expr); 334 if (Sizes.getUpper().isNegative() || isUnsafe(Sizes)) 335 return UnknownRange; 336 Sizes = Sizes.sextOrTrunc(PointerSize); 337 ConstantRange SizeRange(APInt::getZero(PointerSize), Sizes.getUpper() - 1); 338 return getAccessRange(U, Base, SizeRange); 339 } 340 341 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 342 Value *V) { 343 return isSafeAccess(U, AI, SE.getSCEV(V)); 344 } 345 346 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 347 TypeSize TS) { 348 if (TS.isScalable()) 349 return false; 350 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 351 const SCEV *SV = SE.getConstant(CalculationTy, TS.getFixedSize()); 352 return isSafeAccess(U, AI, SV); 353 } 354 355 bool StackSafetyLocalAnalysis::isSafeAccess(const Use &U, AllocaInst *AI, 356 const SCEV *AccessSize) { 357 358 if (!AI) 359 return true; 360 if (isa<SCEVCouldNotCompute>(AccessSize)) 361 return false; 362 363 const auto *I = cast<Instruction>(U.getUser()); 364 365 auto ToCharPtr = [&](const SCEV *V) { 366 auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext()); 367 return SE.getTruncateOrZeroExtend(V, PtrTy); 368 }; 369 370 const SCEV *AddrExp = ToCharPtr(SE.getSCEV(U.get())); 371 const SCEV *BaseExp = ToCharPtr(SE.getSCEV(AI)); 372 const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp); 373 if (isa<SCEVCouldNotCompute>(Diff)) 374 return false; 375 376 auto Size = getStaticAllocaSizeRange(*AI); 377 378 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 379 auto ToDiffTy = [&](const SCEV *V) { 380 return SE.getTruncateOrZeroExtend(V, CalculationTy); 381 }; 382 const SCEV *Min = ToDiffTy(SE.getConstant(Size.getLower())); 383 const SCEV *Max = SE.getMinusSCEV(ToDiffTy(SE.getConstant(Size.getUpper())), 384 ToDiffTy(AccessSize)); 385 return SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SGE, Diff, Min, I) 386 .value_or(false) && 387 SE.evaluatePredicateAt(ICmpInst::Predicate::ICMP_SLE, Diff, Max, I) 388 .value_or(false); 389 } 390 391 /// The function analyzes all local uses of Ptr (alloca or argument) and 392 /// calculates local access range and all function calls where it was used. 393 void StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr, 394 UseInfo<GlobalValue> &US, 395 const StackLifetime &SL) { 396 SmallPtrSet<const Value *, 16> Visited; 397 SmallVector<const Value *, 8> WorkList; 398 WorkList.push_back(Ptr); 399 AllocaInst *AI = dyn_cast<AllocaInst>(Ptr); 400 401 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 402 while (!WorkList.empty()) { 403 const Value *V = WorkList.pop_back_val(); 404 for (const Use &UI : V->uses()) { 405 const auto *I = cast<Instruction>(UI.getUser()); 406 if (!SL.isReachable(I)) 407 continue; 408 409 assert(V == UI.get()); 410 411 switch (I->getOpcode()) { 412 case Instruction::Load: { 413 if (AI && !SL.isAliveAfter(AI, I)) { 414 US.addRange(I, UnknownRange, /*IsSafe=*/false); 415 break; 416 } 417 auto TypeSize = DL.getTypeStoreSize(I->getType()); 418 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 419 bool Safe = isSafeAccess(UI, AI, TypeSize); 420 US.addRange(I, AccessRange, Safe); 421 break; 422 } 423 424 case Instruction::VAArg: 425 // "va-arg" from a pointer is safe. 426 break; 427 case Instruction::Store: { 428 if (V == I->getOperand(0)) { 429 // Stored the pointer - conservatively assume it may be unsafe. 430 US.addRange(I, UnknownRange, /*IsSafe=*/false); 431 break; 432 } 433 if (AI && !SL.isAliveAfter(AI, I)) { 434 US.addRange(I, UnknownRange, /*IsSafe=*/false); 435 break; 436 } 437 auto TypeSize = DL.getTypeStoreSize(I->getOperand(0)->getType()); 438 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 439 bool Safe = isSafeAccess(UI, AI, TypeSize); 440 US.addRange(I, AccessRange, Safe); 441 break; 442 } 443 444 case Instruction::Ret: 445 // Information leak. 446 // FIXME: Process parameters correctly. This is a leak only if we return 447 // alloca. 448 US.addRange(I, UnknownRange, /*IsSafe=*/false); 449 break; 450 451 case Instruction::Call: 452 case Instruction::Invoke: { 453 if (I->isLifetimeStartOrEnd()) 454 break; 455 456 if (AI && !SL.isAliveAfter(AI, I)) { 457 US.addRange(I, UnknownRange, /*IsSafe=*/false); 458 break; 459 } 460 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 461 auto AccessRange = getMemIntrinsicAccessRange(MI, UI, Ptr); 462 bool Safe = false; 463 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 464 if (MTI->getRawSource() != UI && MTI->getRawDest() != UI) 465 Safe = true; 466 } else if (MI->getRawDest() != UI) { 467 Safe = true; 468 } 469 Safe = Safe || isSafeAccess(UI, AI, MI->getLength()); 470 US.addRange(I, AccessRange, Safe); 471 break; 472 } 473 474 const auto &CB = cast<CallBase>(*I); 475 if (CB.getReturnedArgOperand() == V) { 476 if (Visited.insert(I).second) 477 WorkList.push_back(cast<const Instruction>(I)); 478 } 479 480 if (!CB.isArgOperand(&UI)) { 481 US.addRange(I, UnknownRange, /*IsSafe=*/false); 482 break; 483 } 484 485 unsigned ArgNo = CB.getArgOperandNo(&UI); 486 if (CB.isByValArgument(ArgNo)) { 487 auto TypeSize = DL.getTypeStoreSize(CB.getParamByValType(ArgNo)); 488 auto AccessRange = getAccessRange(UI, Ptr, TypeSize); 489 bool Safe = isSafeAccess(UI, AI, TypeSize); 490 US.addRange(I, AccessRange, Safe); 491 break; 492 } 493 494 // FIXME: consult devirt? 495 // Do not follow aliases, otherwise we could inadvertently follow 496 // dso_preemptable aliases or aliases with interposable linkage. 497 const GlobalValue *Callee = 498 dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts()); 499 if (!Callee) { 500 US.addRange(I, UnknownRange, /*IsSafe=*/false); 501 break; 502 } 503 504 assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee)); 505 ConstantRange Offsets = offsetFrom(UI, Ptr); 506 auto Insert = 507 US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets); 508 if (!Insert.second) 509 Insert.first->second = Insert.first->second.unionWith(Offsets); 510 break; 511 } 512 513 default: 514 if (Visited.insert(I).second) 515 WorkList.push_back(cast<const Instruction>(I)); 516 } 517 } 518 } 519 } 520 521 FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() { 522 FunctionInfo<GlobalValue> Info; 523 assert(!F.isDeclaration() && 524 "Can't run StackSafety on a function declaration"); 525 526 LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n"); 527 528 SmallVector<AllocaInst *, 64> Allocas; 529 for (auto &I : instructions(F)) 530 if (auto *AI = dyn_cast<AllocaInst>(&I)) 531 Allocas.push_back(AI); 532 StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must); 533 SL.run(); 534 535 for (auto *AI : Allocas) { 536 auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second; 537 analyzeAllUses(AI, UI, SL); 538 } 539 540 for (Argument &A : F.args()) { 541 // Non pointers and bypass arguments are not going to be used in any global 542 // processing. 543 if (A.getType()->isPointerTy() && !A.hasByValAttr()) { 544 auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second; 545 analyzeAllUses(&A, UI, SL); 546 } 547 } 548 549 LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F)); 550 LLVM_DEBUG(dbgs() << "\n[StackSafety] done\n"); 551 return Info; 552 } 553 554 template <typename CalleeTy> class StackSafetyDataFlowAnalysis { 555 using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>; 556 557 FunctionMap Functions; 558 const ConstantRange UnknownRange; 559 560 // Callee-to-Caller multimap. 561 DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers; 562 SetVector<const CalleeTy *> WorkList; 563 564 bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet); 565 void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS); 566 void updateOneNode(const CalleeTy *Callee) { 567 updateOneNode(Callee, Functions.find(Callee)->second); 568 } 569 void updateAllNodes() { 570 for (auto &F : Functions) 571 updateOneNode(F.first, F.second); 572 } 573 void runDataFlow(); 574 #ifndef NDEBUG 575 void verifyFixedPoint(); 576 #endif 577 578 public: 579 StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions) 580 : Functions(std::move(Functions)), 581 UnknownRange(ConstantRange::getFull(PointerBitWidth)) {} 582 583 const FunctionMap &run(); 584 585 ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo, 586 const ConstantRange &Offsets) const; 587 }; 588 589 template <typename CalleeTy> 590 ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange( 591 const CalleeTy *Callee, unsigned ParamNo, 592 const ConstantRange &Offsets) const { 593 auto FnIt = Functions.find(Callee); 594 // Unknown callee (outside of LTO domain or an indirect call). 595 if (FnIt == Functions.end()) 596 return UnknownRange; 597 auto &FS = FnIt->second; 598 auto ParamIt = FS.Params.find(ParamNo); 599 if (ParamIt == FS.Params.end()) 600 return UnknownRange; 601 auto &Access = ParamIt->second.Range; 602 if (Access.isEmptySet()) 603 return Access; 604 if (Access.isFullSet()) 605 return UnknownRange; 606 return addOverflowNever(Access, Offsets); 607 } 608 609 template <typename CalleeTy> 610 bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US, 611 bool UpdateToFullSet) { 612 bool Changed = false; 613 for (auto &KV : US.Calls) { 614 assert(!KV.second.isEmptySet() && 615 "Param range can't be empty-set, invalid offset range"); 616 617 ConstantRange CalleeRange = 618 getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second); 619 if (!US.Range.contains(CalleeRange)) { 620 Changed = true; 621 if (UpdateToFullSet) 622 US.Range = UnknownRange; 623 else 624 US.updateRange(CalleeRange); 625 } 626 } 627 return Changed; 628 } 629 630 template <typename CalleeTy> 631 void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode( 632 const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) { 633 bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations; 634 bool Changed = false; 635 for (auto &KV : FS.Params) 636 Changed |= updateOneUse(KV.second, UpdateToFullSet); 637 638 if (Changed) { 639 LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount 640 << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS 641 << "\n"); 642 // Callers of this function may need updating. 643 for (auto &CallerID : Callers[Callee]) 644 WorkList.insert(CallerID); 645 646 ++FS.UpdateCount; 647 } 648 } 649 650 template <typename CalleeTy> 651 void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() { 652 SmallVector<const CalleeTy *, 16> Callees; 653 for (auto &F : Functions) { 654 Callees.clear(); 655 auto &FS = F.second; 656 for (auto &KV : FS.Params) 657 for (auto &CS : KV.second.Calls) 658 Callees.push_back(CS.first.Callee); 659 660 llvm::sort(Callees); 661 Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end()); 662 663 for (auto &Callee : Callees) 664 Callers[Callee].push_back(F.first); 665 } 666 667 updateAllNodes(); 668 669 while (!WorkList.empty()) { 670 const CalleeTy *Callee = WorkList.pop_back_val(); 671 updateOneNode(Callee); 672 } 673 } 674 675 #ifndef NDEBUG 676 template <typename CalleeTy> 677 void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() { 678 WorkList.clear(); 679 updateAllNodes(); 680 assert(WorkList.empty()); 681 } 682 #endif 683 684 template <typename CalleeTy> 685 const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap & 686 StackSafetyDataFlowAnalysis<CalleeTy>::run() { 687 runDataFlow(); 688 LLVM_DEBUG(verifyFixedPoint()); 689 return Functions; 690 } 691 692 FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) { 693 if (!VI) 694 return nullptr; 695 auto SummaryList = VI.getSummaryList(); 696 GlobalValueSummary* S = nullptr; 697 for (const auto& GVS : SummaryList) { 698 if (!GVS->isLive()) 699 continue; 700 if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get())) 701 if (!AS->hasAliasee()) 702 continue; 703 if (!isa<FunctionSummary>(GVS->getBaseObject())) 704 continue; 705 if (GlobalValue::isLocalLinkage(GVS->linkage())) { 706 if (GVS->modulePath() == ModuleId) { 707 S = GVS.get(); 708 break; 709 } 710 } else if (GlobalValue::isExternalLinkage(GVS->linkage())) { 711 if (S) { 712 ++NumIndexCalleeMultipleExternal; 713 return nullptr; 714 } 715 S = GVS.get(); 716 } else if (GlobalValue::isWeakLinkage(GVS->linkage())) { 717 if (S) { 718 ++NumIndexCalleeMultipleWeak; 719 return nullptr; 720 } 721 S = GVS.get(); 722 } else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) || 723 GlobalValue::isLinkOnceLinkage(GVS->linkage())) { 724 if (SummaryList.size() == 1) 725 S = GVS.get(); 726 // According thinLTOResolvePrevailingGUID these are unlikely prevailing. 727 } else { 728 ++NumIndexCalleeUnhandled; 729 } 730 }; 731 while (S) { 732 if (!S->isLive() || !S->isDSOLocal()) 733 return nullptr; 734 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S)) 735 return FS; 736 AliasSummary *AS = dyn_cast<AliasSummary>(S); 737 if (!AS || !AS->hasAliasee()) 738 return nullptr; 739 S = AS->getBaseObject(); 740 if (S == AS) 741 return nullptr; 742 } 743 return nullptr; 744 } 745 746 const Function *findCalleeInModule(const GlobalValue *GV) { 747 while (GV) { 748 if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal()) 749 return nullptr; 750 if (const Function *F = dyn_cast<Function>(GV)) 751 return F; 752 const GlobalAlias *A = dyn_cast<GlobalAlias>(GV); 753 if (!A) 754 return nullptr; 755 GV = A->getAliaseeObject(); 756 if (GV == A) 757 return nullptr; 758 } 759 return nullptr; 760 } 761 762 const ConstantRange *findParamAccess(const FunctionSummary &FS, 763 uint32_t ParamNo) { 764 assert(FS.isLive()); 765 assert(FS.isDSOLocal()); 766 for (const auto &PS : FS.paramAccesses()) 767 if (ParamNo == PS.ParamNo) 768 return &PS.Use; 769 return nullptr; 770 } 771 772 void resolveAllCalls(UseInfo<GlobalValue> &Use, 773 const ModuleSummaryIndex *Index) { 774 ConstantRange FullSet(Use.Range.getBitWidth(), true); 775 // Move Use.Calls to a temp storage and repopulate - don't use std::move as it 776 // leaves Use.Calls in an undefined state. 777 UseInfo<GlobalValue>::CallsTy TmpCalls; 778 std::swap(TmpCalls, Use.Calls); 779 for (const auto &C : TmpCalls) { 780 const Function *F = findCalleeInModule(C.first.Callee); 781 if (F) { 782 Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second); 783 continue; 784 } 785 786 if (!Index) 787 return Use.updateRange(FullSet); 788 FunctionSummary *FS = 789 findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()), 790 C.first.Callee->getParent()->getModuleIdentifier()); 791 ++NumModuleCalleeLookupTotal; 792 if (!FS) { 793 ++NumModuleCalleeLookupFailed; 794 return Use.updateRange(FullSet); 795 } 796 const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo); 797 if (!Found || Found->isFullSet()) 798 return Use.updateRange(FullSet); 799 ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth()); 800 if (!Access.isEmptySet()) 801 Use.updateRange(addOverflowNever(Access, C.second)); 802 } 803 } 804 805 GVToSSI createGlobalStackSafetyInfo( 806 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions, 807 const ModuleSummaryIndex *Index) { 808 GVToSSI SSI; 809 if (Functions.empty()) 810 return SSI; 811 812 // FIXME: Simplify printing and remove copying here. 813 auto Copy = Functions; 814 815 for (auto &FnKV : Copy) 816 for (auto &KV : FnKV.second.Params) { 817 resolveAllCalls(KV.second, Index); 818 if (KV.second.Range.isFullSet()) 819 KV.second.Calls.clear(); 820 } 821 822 uint32_t PointerSize = 823 Copy.begin()->first->getParent()->getDataLayout().getPointerSizeInBits(); 824 StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy)); 825 826 for (const auto &F : SSDFA.run()) { 827 auto FI = F.second; 828 auto &SrcF = Functions[F.first]; 829 for (auto &KV : FI.Allocas) { 830 auto &A = KV.second; 831 resolveAllCalls(A, Index); 832 for (auto &C : A.Calls) { 833 A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee, 834 C.first.ParamNo, C.second)); 835 } 836 // FIXME: This is needed only to preserve calls in print() results. 837 A.Calls = SrcF.Allocas.find(KV.first)->second.Calls; 838 } 839 for (auto &KV : FI.Params) { 840 auto &P = KV.second; 841 P.Calls = SrcF.Params.find(KV.first)->second.Calls; 842 } 843 SSI[F.first] = std::move(FI); 844 } 845 846 return SSI; 847 } 848 849 } // end anonymous namespace 850 851 StackSafetyInfo::StackSafetyInfo() = default; 852 853 StackSafetyInfo::StackSafetyInfo(Function *F, 854 std::function<ScalarEvolution &()> GetSE) 855 : F(F), GetSE(GetSE) {} 856 857 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default; 858 859 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default; 860 861 StackSafetyInfo::~StackSafetyInfo() = default; 862 863 const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const { 864 if (!Info) { 865 StackSafetyLocalAnalysis SSLA(*F, GetSE()); 866 Info.reset(new InfoTy{SSLA.run()}); 867 } 868 return *Info; 869 } 870 871 void StackSafetyInfo::print(raw_ostream &O) const { 872 getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F)); 873 O << "\n"; 874 } 875 876 const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const { 877 if (!Info) { 878 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions; 879 for (auto &F : M->functions()) { 880 if (!F.isDeclaration()) { 881 auto FI = GetSSI(F).getInfo().Info; 882 Functions.emplace(&F, std::move(FI)); 883 } 884 } 885 Info.reset(new InfoTy{ 886 createGlobalStackSafetyInfo(std::move(Functions), Index), {}, {}}); 887 888 for (auto &FnKV : Info->Info) { 889 for (auto &KV : FnKV.second.Allocas) { 890 ++NumAllocaTotal; 891 const AllocaInst *AI = KV.first; 892 auto AIRange = getStaticAllocaSizeRange(*AI); 893 if (AIRange.contains(KV.second.Range)) { 894 Info->SafeAllocas.insert(AI); 895 ++NumAllocaStackSafe; 896 } 897 Info->UnsafeAccesses.insert(KV.second.UnsafeAccesses.begin(), 898 KV.second.UnsafeAccesses.end()); 899 } 900 } 901 902 if (StackSafetyPrint) 903 print(errs()); 904 } 905 return *Info; 906 } 907 908 std::vector<FunctionSummary::ParamAccess> 909 StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const { 910 // Implementation transforms internal representation of parameter information 911 // into FunctionSummary format. 912 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 913 for (const auto &KV : getInfo().Info.Params) { 914 auto &PS = KV.second; 915 // Parameter accessed by any or unknown offset, represented as FullSet by 916 // StackSafety, is handled as the parameter for which we have no 917 // StackSafety info at all. So drop it to reduce summary size. 918 if (PS.Range.isFullSet()) 919 continue; 920 921 ParamAccesses.emplace_back(KV.first, PS.Range); 922 FunctionSummary::ParamAccess &Param = ParamAccesses.back(); 923 924 Param.Calls.reserve(PS.Calls.size()); 925 for (const auto &C : PS.Calls) { 926 // Parameter forwarded into another function by any or unknown offset 927 // will make ParamAccess::Range as FullSet anyway. So we can drop the 928 // entire parameter like we did above. 929 // TODO(vitalybuka): Return already filtered parameters from getInfo(). 930 if (C.second.isFullSet()) { 931 ParamAccesses.pop_back(); 932 break; 933 } 934 Param.Calls.emplace_back(C.first.ParamNo, 935 Index.getOrInsertValueInfo(C.first.Callee), 936 C.second); 937 } 938 } 939 for (FunctionSummary::ParamAccess &Param : ParamAccesses) { 940 sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L, 941 const FunctionSummary::ParamAccess::Call &R) { 942 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 943 }); 944 } 945 return ParamAccesses; 946 } 947 948 StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default; 949 950 StackSafetyGlobalInfo::StackSafetyGlobalInfo( 951 Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI, 952 const ModuleSummaryIndex *Index) 953 : M(M), GetSSI(GetSSI), Index(Index) { 954 if (StackSafetyRun) 955 getInfo(); 956 } 957 958 StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) = 959 default; 960 961 StackSafetyGlobalInfo & 962 StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default; 963 964 StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default; 965 966 bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const { 967 const auto &Info = getInfo(); 968 return Info.SafeAllocas.count(&AI); 969 } 970 971 bool StackSafetyGlobalInfo::stackAccessIsSafe(const Instruction &I) const { 972 const auto &Info = getInfo(); 973 return Info.UnsafeAccesses.find(&I) == Info.UnsafeAccesses.end(); 974 } 975 976 void StackSafetyGlobalInfo::print(raw_ostream &O) const { 977 auto &SSI = getInfo().Info; 978 if (SSI.empty()) 979 return; 980 const Module &M = *SSI.begin()->first->getParent(); 981 for (const auto &F : M.functions()) { 982 if (!F.isDeclaration()) { 983 SSI.find(&F)->second.print(O, F.getName(), &F); 984 O << " safe accesses:" 985 << "\n"; 986 for (const auto &I : instructions(F)) { 987 const CallInst *Call = dyn_cast<CallInst>(&I); 988 if ((isa<StoreInst>(I) || isa<LoadInst>(I) || isa<MemIntrinsic>(I) || 989 (Call && Call->hasByValArgument())) && 990 stackAccessIsSafe(I)) { 991 O << " " << I << "\n"; 992 } 993 } 994 O << "\n"; 995 } 996 } 997 } 998 999 LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); } 1000 1001 AnalysisKey StackSafetyAnalysis::Key; 1002 1003 StackSafetyInfo StackSafetyAnalysis::run(Function &F, 1004 FunctionAnalysisManager &AM) { 1005 return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & { 1006 return AM.getResult<ScalarEvolutionAnalysis>(F); 1007 }); 1008 } 1009 1010 PreservedAnalyses StackSafetyPrinterPass::run(Function &F, 1011 FunctionAnalysisManager &AM) { 1012 OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n"; 1013 AM.getResult<StackSafetyAnalysis>(F).print(OS); 1014 return PreservedAnalyses::all(); 1015 } 1016 1017 char StackSafetyInfoWrapperPass::ID = 0; 1018 1019 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) { 1020 initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1021 } 1022 1023 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1024 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 1025 AU.setPreservesAll(); 1026 } 1027 1028 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const { 1029 SSI.print(O); 1030 } 1031 1032 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) { 1033 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1034 SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }}; 1035 return false; 1036 } 1037 1038 AnalysisKey StackSafetyGlobalAnalysis::Key; 1039 1040 StackSafetyGlobalInfo 1041 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1042 // FIXME: Lookup Module Summary. 1043 FunctionAnalysisManager &FAM = 1044 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1045 return {&M, 1046 [&FAM](Function &F) -> const StackSafetyInfo & { 1047 return FAM.getResult<StackSafetyAnalysis>(F); 1048 }, 1049 nullptr}; 1050 } 1051 1052 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M, 1053 ModuleAnalysisManager &AM) { 1054 OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n"; 1055 AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS); 1056 return PreservedAnalyses::all(); 1057 } 1058 1059 char StackSafetyGlobalInfoWrapperPass::ID = 0; 1060 1061 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass() 1062 : ModulePass(ID) { 1063 initializeStackSafetyGlobalInfoWrapperPassPass( 1064 *PassRegistry::getPassRegistry()); 1065 } 1066 1067 StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default; 1068 1069 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O, 1070 const Module *M) const { 1071 SSGI.print(O); 1072 } 1073 1074 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage( 1075 AnalysisUsage &AU) const { 1076 AU.setPreservesAll(); 1077 AU.addRequired<StackSafetyInfoWrapperPass>(); 1078 } 1079 1080 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) { 1081 const ModuleSummaryIndex *ImportSummary = nullptr; 1082 if (auto *IndexWrapperPass = 1083 getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>()) 1084 ImportSummary = IndexWrapperPass->getIndex(); 1085 1086 SSGI = {&M, 1087 [this](Function &F) -> const StackSafetyInfo & { 1088 return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult(); 1089 }, 1090 ImportSummary}; 1091 return false; 1092 } 1093 1094 bool llvm::needsParamAccessSummary(const Module &M) { 1095 if (StackSafetyRun) 1096 return true; 1097 for (const auto &F : M.functions()) 1098 if (F.hasFnAttribute(Attribute::SanitizeMemTag)) 1099 return true; 1100 return false; 1101 } 1102 1103 void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) { 1104 if (!Index.hasParamAccess()) 1105 return; 1106 const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true); 1107 1108 auto CountParamAccesses = [&](auto &Stat) { 1109 if (!AreStatisticsEnabled()) 1110 return; 1111 for (auto &GVS : Index) 1112 for (auto &GV : GVS.second.SummaryList) 1113 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get())) 1114 Stat += FS->paramAccesses().size(); 1115 }; 1116 1117 CountParamAccesses(NumCombinedParamAccessesBefore); 1118 1119 std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions; 1120 1121 // Convert the ModuleSummaryIndex to a FunctionMap 1122 for (auto &GVS : Index) { 1123 for (auto &GV : GVS.second.SummaryList) { 1124 FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()); 1125 if (!FS || FS->paramAccesses().empty()) 1126 continue; 1127 if (FS->isLive() && FS->isDSOLocal()) { 1128 FunctionInfo<FunctionSummary> FI; 1129 for (const auto &PS : FS->paramAccesses()) { 1130 auto &US = 1131 FI.Params 1132 .emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth) 1133 .first->second; 1134 US.Range = PS.Use; 1135 for (const auto &Call : PS.Calls) { 1136 assert(!Call.Offsets.isFullSet()); 1137 FunctionSummary *S = 1138 findCalleeFunctionSummary(Call.Callee, FS->modulePath()); 1139 ++NumCombinedCalleeLookupTotal; 1140 if (!S) { 1141 ++NumCombinedCalleeLookupFailed; 1142 US.Range = FullSet; 1143 US.Calls.clear(); 1144 break; 1145 } 1146 US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo), 1147 Call.Offsets); 1148 } 1149 } 1150 Functions.emplace(FS, std::move(FI)); 1151 } 1152 // Reset data for all summaries. Alive and DSO local will be set back from 1153 // of data flow results below. Anything else will not be accessed 1154 // by ThinLTO backend, so we can save on bitcode size. 1155 FS->setParamAccesses({}); 1156 } 1157 } 1158 NumCombinedDataFlowNodes += Functions.size(); 1159 StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA( 1160 FunctionSummary::ParamAccess::RangeWidth, std::move(Functions)); 1161 for (const auto &KV : SSDFA.run()) { 1162 std::vector<FunctionSummary::ParamAccess> NewParams; 1163 NewParams.reserve(KV.second.Params.size()); 1164 for (const auto &Param : KV.second.Params) { 1165 // It's not needed as FullSet is processed the same as a missing value. 1166 if (Param.second.Range.isFullSet()) 1167 continue; 1168 NewParams.emplace_back(); 1169 FunctionSummary::ParamAccess &New = NewParams.back(); 1170 New.ParamNo = Param.first; 1171 New.Use = Param.second.Range; // Only range is needed. 1172 } 1173 const_cast<FunctionSummary *>(KV.first)->setParamAccesses( 1174 std::move(NewParams)); 1175 } 1176 1177 CountParamAccesses(NumCombinedParamAccessesAfter); 1178 } 1179 1180 static const char LocalPassArg[] = "stack-safety-local"; 1181 static const char LocalPassName[] = "Stack Safety Local Analysis"; 1182 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1183 false, true) 1184 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1185 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1186 false, true) 1187 1188 static const char GlobalPassName[] = "Stack Safety Analysis"; 1189 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1190 GlobalPassName, false, true) 1191 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1192 INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass) 1193 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1194 GlobalPassName, false, true) 1195