xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/InstrTypes.h"
100 #include "llvm/IR/Instruction.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/IntrinsicInst.h"
103 #include "llvm/IR/Intrinsics.h"
104 #include "llvm/IR/LLVMContext.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/IR/PatternMatch.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/Value.h"
111 #include "llvm/IR/Verifier.h"
112 #include "llvm/InitializePasses.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <climits>
125 #include <cstdint>
126 #include <cstdlib>
127 #include <map>
128 #include <memory>
129 #include <tuple>
130 #include <utility>
131 #include <vector>
132 
133 using namespace llvm;
134 using namespace PatternMatch;
135 
136 #define DEBUG_TYPE "scalar-evolution"
137 
138 STATISTIC(NumTripCountsComputed,
139           "Number of loops with predictable loop counts");
140 STATISTIC(NumTripCountsNotComputed,
141           "Number of loops without predictable loop counts");
142 STATISTIC(NumBruteForceTripCountsComputed,
143           "Number of loops with trip counts computed by force");
144 
145 #ifdef EXPENSIVE_CHECKS
146 bool llvm::VerifySCEV = true;
147 #else
148 bool llvm::VerifySCEV = false;
149 #endif
150 
151 static cl::opt<unsigned>
152     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                             cl::desc("Maximum number of iterations SCEV will "
154                                      "symbolically execute a constant "
155                                      "derived loop"),
156                             cl::init(100));
157 
158 static cl::opt<bool, true> VerifySCEVOpt(
159     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 static cl::opt<bool> UseExpensiveRangeSharpening(
229     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230     cl::init(false),
231     cl::desc("Use more powerful methods of sharpening expression ranges. May "
232              "be costly in terms of compile time"));
233 
234 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
235     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
236     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
237              "Phi strongly connected components"),
238     cl::init(8));
239 
240 static cl::opt<bool>
241     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
242                             cl::desc("Handle <= and >= in finite loops"),
243                             cl::init(true));
244 
245 //===----------------------------------------------------------------------===//
246 //                           SCEV class definitions
247 //===----------------------------------------------------------------------===//
248 
249 //===----------------------------------------------------------------------===//
250 // Implementation of the SCEV class.
251 //
252 
253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
254 LLVM_DUMP_METHOD void SCEV::dump() const {
255   print(dbgs());
256   dbgs() << '\n';
257 }
258 #endif
259 
260 void SCEV::print(raw_ostream &OS) const {
261   switch (getSCEVType()) {
262   case scConstant:
263     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
264     return;
265   case scPtrToInt: {
266     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
267     const SCEV *Op = PtrToInt->getOperand();
268     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
269        << *PtrToInt->getType() << ")";
270     return;
271   }
272   case scTruncate: {
273     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
274     const SCEV *Op = Trunc->getOperand();
275     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
276        << *Trunc->getType() << ")";
277     return;
278   }
279   case scZeroExtend: {
280     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
281     const SCEV *Op = ZExt->getOperand();
282     OS << "(zext " << *Op->getType() << " " << *Op << " to "
283        << *ZExt->getType() << ")";
284     return;
285   }
286   case scSignExtend: {
287     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
288     const SCEV *Op = SExt->getOperand();
289     OS << "(sext " << *Op->getType() << " " << *Op << " to "
290        << *SExt->getType() << ")";
291     return;
292   }
293   case scAddRecExpr: {
294     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
295     OS << "{" << *AR->getOperand(0);
296     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
297       OS << ",+," << *AR->getOperand(i);
298     OS << "}<";
299     if (AR->hasNoUnsignedWrap())
300       OS << "nuw><";
301     if (AR->hasNoSignedWrap())
302       OS << "nsw><";
303     if (AR->hasNoSelfWrap() &&
304         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
305       OS << "nw><";
306     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
307     OS << ">";
308     return;
309   }
310   case scAddExpr:
311   case scMulExpr:
312   case scUMaxExpr:
313   case scSMaxExpr:
314   case scUMinExpr:
315   case scSMinExpr:
316   case scSequentialUMinExpr: {
317     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
318     const char *OpStr = nullptr;
319     switch (NAry->getSCEVType()) {
320     case scAddExpr: OpStr = " + "; break;
321     case scMulExpr: OpStr = " * "; break;
322     case scUMaxExpr: OpStr = " umax "; break;
323     case scSMaxExpr: OpStr = " smax "; break;
324     case scUMinExpr:
325       OpStr = " umin ";
326       break;
327     case scSMinExpr:
328       OpStr = " smin ";
329       break;
330     case scSequentialUMinExpr:
331       OpStr = " umin_seq ";
332       break;
333     default:
334       llvm_unreachable("There are no other nary expression types.");
335     }
336     OS << "(";
337     ListSeparator LS(OpStr);
338     for (const SCEV *Op : NAry->operands())
339       OS << LS << *Op;
340     OS << ")";
341     switch (NAry->getSCEVType()) {
342     case scAddExpr:
343     case scMulExpr:
344       if (NAry->hasNoUnsignedWrap())
345         OS << "<nuw>";
346       if (NAry->hasNoSignedWrap())
347         OS << "<nsw>";
348       break;
349     default:
350       // Nothing to print for other nary expressions.
351       break;
352     }
353     return;
354   }
355   case scUDivExpr: {
356     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
357     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
358     return;
359   }
360   case scUnknown: {
361     const SCEVUnknown *U = cast<SCEVUnknown>(this);
362     Type *AllocTy;
363     if (U->isSizeOf(AllocTy)) {
364       OS << "sizeof(" << *AllocTy << ")";
365       return;
366     }
367     if (U->isAlignOf(AllocTy)) {
368       OS << "alignof(" << *AllocTy << ")";
369       return;
370     }
371 
372     Type *CTy;
373     Constant *FieldNo;
374     if (U->isOffsetOf(CTy, FieldNo)) {
375       OS << "offsetof(" << *CTy << ", ";
376       FieldNo->printAsOperand(OS, false);
377       OS << ")";
378       return;
379     }
380 
381     // Otherwise just print it normally.
382     U->getValue()->printAsOperand(OS, false);
383     return;
384   }
385   case scCouldNotCompute:
386     OS << "***COULDNOTCOMPUTE***";
387     return;
388   }
389   llvm_unreachable("Unknown SCEV kind!");
390 }
391 
392 Type *SCEV::getType() const {
393   switch (getSCEVType()) {
394   case scConstant:
395     return cast<SCEVConstant>(this)->getType();
396   case scPtrToInt:
397   case scTruncate:
398   case scZeroExtend:
399   case scSignExtend:
400     return cast<SCEVCastExpr>(this)->getType();
401   case scAddRecExpr:
402     return cast<SCEVAddRecExpr>(this)->getType();
403   case scMulExpr:
404     return cast<SCEVMulExpr>(this)->getType();
405   case scUMaxExpr:
406   case scSMaxExpr:
407   case scUMinExpr:
408   case scSMinExpr:
409     return cast<SCEVMinMaxExpr>(this)->getType();
410   case scSequentialUMinExpr:
411     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
412   case scAddExpr:
413     return cast<SCEVAddExpr>(this)->getType();
414   case scUDivExpr:
415     return cast<SCEVUDivExpr>(this)->getType();
416   case scUnknown:
417     return cast<SCEVUnknown>(this)->getType();
418   case scCouldNotCompute:
419     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
420   }
421   llvm_unreachable("Unknown SCEV kind!");
422 }
423 
424 bool SCEV::isZero() const {
425   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
426     return SC->getValue()->isZero();
427   return false;
428 }
429 
430 bool SCEV::isOne() const {
431   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
432     return SC->getValue()->isOne();
433   return false;
434 }
435 
436 bool SCEV::isAllOnesValue() const {
437   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
438     return SC->getValue()->isMinusOne();
439   return false;
440 }
441 
442 bool SCEV::isNonConstantNegative() const {
443   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
444   if (!Mul) return false;
445 
446   // If there is a constant factor, it will be first.
447   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
448   if (!SC) return false;
449 
450   // Return true if the value is negative, this matches things like (-42 * V).
451   return SC->getAPInt().isNegative();
452 }
453 
454 SCEVCouldNotCompute::SCEVCouldNotCompute() :
455   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
456 
457 bool SCEVCouldNotCompute::classof(const SCEV *S) {
458   return S->getSCEVType() == scCouldNotCompute;
459 }
460 
461 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
462   FoldingSetNodeID ID;
463   ID.AddInteger(scConstant);
464   ID.AddPointer(V);
465   void *IP = nullptr;
466   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
467   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
468   UniqueSCEVs.InsertNode(S, IP);
469   return S;
470 }
471 
472 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
473   return getConstant(ConstantInt::get(getContext(), Val));
474 }
475 
476 const SCEV *
477 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
478   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
479   return getConstant(ConstantInt::get(ITy, V, isSigned));
480 }
481 
482 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
483                            const SCEV *op, Type *ty)
484     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
485   Operands[0] = op;
486 }
487 
488 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
489                                    Type *ITy)
490     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
491   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
492          "Must be a non-bit-width-changing pointer-to-integer cast!");
493 }
494 
495 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
496                                            SCEVTypes SCEVTy, const SCEV *op,
497                                            Type *ty)
498     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
499 
500 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
501                                    Type *ty)
502     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
503   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
504          "Cannot truncate non-integer value!");
505 }
506 
507 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
508                                        const SCEV *op, Type *ty)
509     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
510   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
511          "Cannot zero extend non-integer value!");
512 }
513 
514 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
515                                        const SCEV *op, Type *ty)
516     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
517   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
518          "Cannot sign extend non-integer value!");
519 }
520 
521 void SCEVUnknown::deleted() {
522   // Clear this SCEVUnknown from various maps.
523   SE->forgetMemoizedResults(this);
524 
525   // Remove this SCEVUnknown from the uniquing map.
526   SE->UniqueSCEVs.RemoveNode(this);
527 
528   // Release the value.
529   setValPtr(nullptr);
530 }
531 
532 void SCEVUnknown::allUsesReplacedWith(Value *New) {
533   // Clear this SCEVUnknown from various maps.
534   SE->forgetMemoizedResults(this);
535 
536   // Remove this SCEVUnknown from the uniquing map.
537   SE->UniqueSCEVs.RemoveNode(this);
538 
539   // Replace the value pointer in case someone is still using this SCEVUnknown.
540   setValPtr(New);
541 }
542 
543 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue() &&
549             CE->getNumOperands() == 2)
550           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
551             if (CI->isOne()) {
552               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
553               return true;
554             }
555 
556   return false;
557 }
558 
559 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
560   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
561     if (VCE->getOpcode() == Instruction::PtrToInt)
562       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
563         if (CE->getOpcode() == Instruction::GetElementPtr &&
564             CE->getOperand(0)->isNullValue()) {
565           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
566           if (StructType *STy = dyn_cast<StructType>(Ty))
567             if (!STy->isPacked() &&
568                 CE->getNumOperands() == 3 &&
569                 CE->getOperand(1)->isNullValue()) {
570               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
571                 if (CI->isOne() &&
572                     STy->getNumElements() == 2 &&
573                     STy->getElementType(0)->isIntegerTy(1)) {
574                   AllocTy = STy->getElementType(1);
575                   return true;
576                 }
577             }
578         }
579 
580   return false;
581 }
582 
583 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
584   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
585     if (VCE->getOpcode() == Instruction::PtrToInt)
586       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
587         if (CE->getOpcode() == Instruction::GetElementPtr &&
588             CE->getNumOperands() == 3 &&
589             CE->getOperand(0)->isNullValue() &&
590             CE->getOperand(1)->isNullValue()) {
591           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
592           // Ignore vector types here so that ScalarEvolutionExpander doesn't
593           // emit getelementptrs that index into vectors.
594           if (Ty->isStructTy() || Ty->isArrayTy()) {
595             CTy = Ty;
596             FieldNo = CE->getOperand(2);
597             return true;
598           }
599         }
600 
601   return false;
602 }
603 
604 //===----------------------------------------------------------------------===//
605 //                               SCEV Utilities
606 //===----------------------------------------------------------------------===//
607 
608 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
609 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
610 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
611 /// have been previously deemed to be "equally complex" by this routine.  It is
612 /// intended to avoid exponential time complexity in cases like:
613 ///
614 ///   %a = f(%x, %y)
615 ///   %b = f(%a, %a)
616 ///   %c = f(%b, %b)
617 ///
618 ///   %d = f(%x, %y)
619 ///   %e = f(%d, %d)
620 ///   %f = f(%e, %e)
621 ///
622 ///   CompareValueComplexity(%f, %c)
623 ///
624 /// Since we do not continue running this routine on expression trees once we
625 /// have seen unequal values, there is no need to track them in the cache.
626 static int
627 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
628                        const LoopInfo *const LI, Value *LV, Value *RV,
629                        unsigned Depth) {
630   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
631     return 0;
632 
633   // Order pointer values after integer values. This helps SCEVExpander form
634   // GEPs.
635   bool LIsPointer = LV->getType()->isPointerTy(),
636        RIsPointer = RV->getType()->isPointerTy();
637   if (LIsPointer != RIsPointer)
638     return (int)LIsPointer - (int)RIsPointer;
639 
640   // Compare getValueID values.
641   unsigned LID = LV->getValueID(), RID = RV->getValueID();
642   if (LID != RID)
643     return (int)LID - (int)RID;
644 
645   // Sort arguments by their position.
646   if (const auto *LA = dyn_cast<Argument>(LV)) {
647     const auto *RA = cast<Argument>(RV);
648     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
649     return (int)LArgNo - (int)RArgNo;
650   }
651 
652   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
653     const auto *RGV = cast<GlobalValue>(RV);
654 
655     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
656       auto LT = GV->getLinkage();
657       return !(GlobalValue::isPrivateLinkage(LT) ||
658                GlobalValue::isInternalLinkage(LT));
659     };
660 
661     // Use the names to distinguish the two values, but only if the
662     // names are semantically important.
663     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
664       return LGV->getName().compare(RGV->getName());
665   }
666 
667   // For instructions, compare their loop depth, and their operand count.  This
668   // is pretty loose.
669   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
670     const auto *RInst = cast<Instruction>(RV);
671 
672     // Compare loop depths.
673     const BasicBlock *LParent = LInst->getParent(),
674                      *RParent = RInst->getParent();
675     if (LParent != RParent) {
676       unsigned LDepth = LI->getLoopDepth(LParent),
677                RDepth = LI->getLoopDepth(RParent);
678       if (LDepth != RDepth)
679         return (int)LDepth - (int)RDepth;
680     }
681 
682     // Compare the number of operands.
683     unsigned LNumOps = LInst->getNumOperands(),
684              RNumOps = RInst->getNumOperands();
685     if (LNumOps != RNumOps)
686       return (int)LNumOps - (int)RNumOps;
687 
688     for (unsigned Idx : seq(0u, LNumOps)) {
689       int Result =
690           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
691                                  RInst->getOperand(Idx), Depth + 1);
692       if (Result != 0)
693         return Result;
694     }
695   }
696 
697   EqCacheValue.unionSets(LV, RV);
698   return 0;
699 }
700 
701 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
702 // than RHS, respectively. A three-way result allows recursive comparisons to be
703 // more efficient.
704 // If the max analysis depth was reached, return None, assuming we do not know
705 // if they are equivalent for sure.
706 static Optional<int>
707 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
708                       EquivalenceClasses<const Value *> &EqCacheValue,
709                       const LoopInfo *const LI, const SCEV *LHS,
710                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
711   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
712   if (LHS == RHS)
713     return 0;
714 
715   // Primarily, sort the SCEVs by their getSCEVType().
716   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
717   if (LType != RType)
718     return (int)LType - (int)RType;
719 
720   if (EqCacheSCEV.isEquivalent(LHS, RHS))
721     return 0;
722 
723   if (Depth > MaxSCEVCompareDepth)
724     return None;
725 
726   // Aside from the getSCEVType() ordering, the particular ordering
727   // isn't very important except that it's beneficial to be consistent,
728   // so that (a + b) and (b + a) don't end up as different expressions.
729   switch (LType) {
730   case scUnknown: {
731     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
732     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
733 
734     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
735                                    RU->getValue(), Depth + 1);
736     if (X == 0)
737       EqCacheSCEV.unionSets(LHS, RHS);
738     return X;
739   }
740 
741   case scConstant: {
742     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
743     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
744 
745     // Compare constant values.
746     const APInt &LA = LC->getAPInt();
747     const APInt &RA = RC->getAPInt();
748     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
749     if (LBitWidth != RBitWidth)
750       return (int)LBitWidth - (int)RBitWidth;
751     return LA.ult(RA) ? -1 : 1;
752   }
753 
754   case scAddRecExpr: {
755     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
756     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
757 
758     // There is always a dominance between two recs that are used by one SCEV,
759     // so we can safely sort recs by loop header dominance. We require such
760     // order in getAddExpr.
761     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
762     if (LLoop != RLoop) {
763       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
764       assert(LHead != RHead && "Two loops share the same header?");
765       if (DT.dominates(LHead, RHead))
766         return 1;
767       else
768         assert(DT.dominates(RHead, LHead) &&
769                "No dominance between recurrences used by one SCEV?");
770       return -1;
771     }
772 
773     // Addrec complexity grows with operand count.
774     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
775     if (LNumOps != RNumOps)
776       return (int)LNumOps - (int)RNumOps;
777 
778     // Lexicographically compare.
779     for (unsigned i = 0; i != LNumOps; ++i) {
780       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
781                                      LA->getOperand(i), RA->getOperand(i), DT,
782                                      Depth + 1);
783       if (X != 0)
784         return X;
785     }
786     EqCacheSCEV.unionSets(LHS, RHS);
787     return 0;
788   }
789 
790   case scAddExpr:
791   case scMulExpr:
792   case scSMaxExpr:
793   case scUMaxExpr:
794   case scSMinExpr:
795   case scUMinExpr:
796   case scSequentialUMinExpr: {
797     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
798     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
799 
800     // Lexicographically compare n-ary expressions.
801     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
802     if (LNumOps != RNumOps)
803       return (int)LNumOps - (int)RNumOps;
804 
805     for (unsigned i = 0; i != LNumOps; ++i) {
806       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
807                                      LC->getOperand(i), RC->getOperand(i), DT,
808                                      Depth + 1);
809       if (X != 0)
810         return X;
811     }
812     EqCacheSCEV.unionSets(LHS, RHS);
813     return 0;
814   }
815 
816   case scUDivExpr: {
817     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
818     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
819 
820     // Lexicographically compare udiv expressions.
821     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
822                                    RC->getLHS(), DT, Depth + 1);
823     if (X != 0)
824       return X;
825     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
826                               RC->getRHS(), DT, Depth + 1);
827     if (X == 0)
828       EqCacheSCEV.unionSets(LHS, RHS);
829     return X;
830   }
831 
832   case scPtrToInt:
833   case scTruncate:
834   case scZeroExtend:
835   case scSignExtend: {
836     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
837     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
838 
839     // Compare cast expressions by operand.
840     auto X =
841         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
842                               RC->getOperand(), DT, Depth + 1);
843     if (X == 0)
844       EqCacheSCEV.unionSets(LHS, RHS);
845     return X;
846   }
847 
848   case scCouldNotCompute:
849     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
850   }
851   llvm_unreachable("Unknown SCEV kind!");
852 }
853 
854 /// Given a list of SCEV objects, order them by their complexity, and group
855 /// objects of the same complexity together by value.  When this routine is
856 /// finished, we know that any duplicates in the vector are consecutive and that
857 /// complexity is monotonically increasing.
858 ///
859 /// Note that we go take special precautions to ensure that we get deterministic
860 /// results from this routine.  In other words, we don't want the results of
861 /// this to depend on where the addresses of various SCEV objects happened to
862 /// land in memory.
863 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
864                               LoopInfo *LI, DominatorTree &DT) {
865   if (Ops.size() < 2) return;  // Noop
866 
867   EquivalenceClasses<const SCEV *> EqCacheSCEV;
868   EquivalenceClasses<const Value *> EqCacheValue;
869 
870   // Whether LHS has provably less complexity than RHS.
871   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
872     auto Complexity =
873         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
874     return Complexity && *Complexity < 0;
875   };
876   if (Ops.size() == 2) {
877     // This is the common case, which also happens to be trivially simple.
878     // Special case it.
879     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
880     if (IsLessComplex(RHS, LHS))
881       std::swap(LHS, RHS);
882     return;
883   }
884 
885   // Do the rough sort by complexity.
886   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
887     return IsLessComplex(LHS, RHS);
888   });
889 
890   // Now that we are sorted by complexity, group elements of the same
891   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
892   // be extremely short in practice.  Note that we take this approach because we
893   // do not want to depend on the addresses of the objects we are grouping.
894   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
895     const SCEV *S = Ops[i];
896     unsigned Complexity = S->getSCEVType();
897 
898     // If there are any objects of the same complexity and same value as this
899     // one, group them.
900     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
901       if (Ops[j] == S) { // Found a duplicate.
902         // Move it to immediately after i'th element.
903         std::swap(Ops[i+1], Ops[j]);
904         ++i;   // no need to rescan it.
905         if (i == e-2) return;  // Done!
906       }
907     }
908   }
909 }
910 
911 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
912 /// least HugeExprThreshold nodes).
913 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
914   return any_of(Ops, [](const SCEV *S) {
915     return S->getExpressionSize() >= HugeExprThreshold;
916   });
917 }
918 
919 //===----------------------------------------------------------------------===//
920 //                      Simple SCEV method implementations
921 //===----------------------------------------------------------------------===//
922 
923 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
924 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
925                                        ScalarEvolution &SE,
926                                        Type *ResultTy) {
927   // Handle the simplest case efficiently.
928   if (K == 1)
929     return SE.getTruncateOrZeroExtend(It, ResultTy);
930 
931   // We are using the following formula for BC(It, K):
932   //
933   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
934   //
935   // Suppose, W is the bitwidth of the return value.  We must be prepared for
936   // overflow.  Hence, we must assure that the result of our computation is
937   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
938   // safe in modular arithmetic.
939   //
940   // However, this code doesn't use exactly that formula; the formula it uses
941   // is something like the following, where T is the number of factors of 2 in
942   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
943   // exponentiation:
944   //
945   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
946   //
947   // This formula is trivially equivalent to the previous formula.  However,
948   // this formula can be implemented much more efficiently.  The trick is that
949   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
950   // arithmetic.  To do exact division in modular arithmetic, all we have
951   // to do is multiply by the inverse.  Therefore, this step can be done at
952   // width W.
953   //
954   // The next issue is how to safely do the division by 2^T.  The way this
955   // is done is by doing the multiplication step at a width of at least W + T
956   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
957   // when we perform the division by 2^T (which is equivalent to a right shift
958   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
959   // truncated out after the division by 2^T.
960   //
961   // In comparison to just directly using the first formula, this technique
962   // is much more efficient; using the first formula requires W * K bits,
963   // but this formula less than W + K bits. Also, the first formula requires
964   // a division step, whereas this formula only requires multiplies and shifts.
965   //
966   // It doesn't matter whether the subtraction step is done in the calculation
967   // width or the input iteration count's width; if the subtraction overflows,
968   // the result must be zero anyway.  We prefer here to do it in the width of
969   // the induction variable because it helps a lot for certain cases; CodeGen
970   // isn't smart enough to ignore the overflow, which leads to much less
971   // efficient code if the width of the subtraction is wider than the native
972   // register width.
973   //
974   // (It's possible to not widen at all by pulling out factors of 2 before
975   // the multiplication; for example, K=2 can be calculated as
976   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
977   // extra arithmetic, so it's not an obvious win, and it gets
978   // much more complicated for K > 3.)
979 
980   // Protection from insane SCEVs; this bound is conservative,
981   // but it probably doesn't matter.
982   if (K > 1000)
983     return SE.getCouldNotCompute();
984 
985   unsigned W = SE.getTypeSizeInBits(ResultTy);
986 
987   // Calculate K! / 2^T and T; we divide out the factors of two before
988   // multiplying for calculating K! / 2^T to avoid overflow.
989   // Other overflow doesn't matter because we only care about the bottom
990   // W bits of the result.
991   APInt OddFactorial(W, 1);
992   unsigned T = 1;
993   for (unsigned i = 3; i <= K; ++i) {
994     APInt Mult(W, i);
995     unsigned TwoFactors = Mult.countTrailingZeros();
996     T += TwoFactors;
997     Mult.lshrInPlace(TwoFactors);
998     OddFactorial *= Mult;
999   }
1000 
1001   // We need at least W + T bits for the multiplication step
1002   unsigned CalculationBits = W + T;
1003 
1004   // Calculate 2^T, at width T+W.
1005   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1006 
1007   // Calculate the multiplicative inverse of K! / 2^T;
1008   // this multiplication factor will perform the exact division by
1009   // K! / 2^T.
1010   APInt Mod = APInt::getSignedMinValue(W+1);
1011   APInt MultiplyFactor = OddFactorial.zext(W+1);
1012   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1013   MultiplyFactor = MultiplyFactor.trunc(W);
1014 
1015   // Calculate the product, at width T+W
1016   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1017                                                       CalculationBits);
1018   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1019   for (unsigned i = 1; i != K; ++i) {
1020     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1021     Dividend = SE.getMulExpr(Dividend,
1022                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1023   }
1024 
1025   // Divide by 2^T
1026   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1027 
1028   // Truncate the result, and divide by K! / 2^T.
1029 
1030   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1031                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1032 }
1033 
1034 /// Return the value of this chain of recurrences at the specified iteration
1035 /// number.  We can evaluate this recurrence by multiplying each element in the
1036 /// chain by the binomial coefficient corresponding to it.  In other words, we
1037 /// can evaluate {A,+,B,+,C,+,D} as:
1038 ///
1039 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1040 ///
1041 /// where BC(It, k) stands for binomial coefficient.
1042 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1043                                                 ScalarEvolution &SE) const {
1044   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1045 }
1046 
1047 const SCEV *
1048 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1049                                     const SCEV *It, ScalarEvolution &SE) {
1050   assert(Operands.size() > 0);
1051   const SCEV *Result = Operands[0];
1052   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1053     // The computation is correct in the face of overflow provided that the
1054     // multiplication is performed _after_ the evaluation of the binomial
1055     // coefficient.
1056     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1057     if (isa<SCEVCouldNotCompute>(Coeff))
1058       return Coeff;
1059 
1060     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1061   }
1062   return Result;
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 //                    SCEV Expression folder implementations
1067 //===----------------------------------------------------------------------===//
1068 
1069 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1070                                                      unsigned Depth) {
1071   assert(Depth <= 1 &&
1072          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1073 
1074   // We could be called with an integer-typed operands during SCEV rewrites.
1075   // Since the operand is an integer already, just perform zext/trunc/self cast.
1076   if (!Op->getType()->isPointerTy())
1077     return Op;
1078 
1079   // What would be an ID for such a SCEV cast expression?
1080   FoldingSetNodeID ID;
1081   ID.AddInteger(scPtrToInt);
1082   ID.AddPointer(Op);
1083 
1084   void *IP = nullptr;
1085 
1086   // Is there already an expression for such a cast?
1087   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1088     return S;
1089 
1090   // It isn't legal for optimizations to construct new ptrtoint expressions
1091   // for non-integral pointers.
1092   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1093     return getCouldNotCompute();
1094 
1095   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1096 
1097   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1098   // is sufficiently wide to represent all possible pointer values.
1099   // We could theoretically teach SCEV to truncate wider pointers, but
1100   // that isn't implemented for now.
1101   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1102       getDataLayout().getTypeSizeInBits(IntPtrTy))
1103     return getCouldNotCompute();
1104 
1105   // If not, is this expression something we can't reduce any further?
1106   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1107     // Perform some basic constant folding. If the operand of the ptr2int cast
1108     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1109     // left as-is), but produce a zero constant.
1110     // NOTE: We could handle a more general case, but lack motivational cases.
1111     if (isa<ConstantPointerNull>(U->getValue()))
1112       return getZero(IntPtrTy);
1113 
1114     // Create an explicit cast node.
1115     // We can reuse the existing insert position since if we get here,
1116     // we won't have made any changes which would invalidate it.
1117     SCEV *S = new (SCEVAllocator)
1118         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1119     UniqueSCEVs.InsertNode(S, IP);
1120     registerUser(S, Op);
1121     return S;
1122   }
1123 
1124   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1125                        "non-SCEVUnknown's.");
1126 
1127   // Otherwise, we've got some expression that is more complex than just a
1128   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1129   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1130   // only, and the expressions must otherwise be integer-typed.
1131   // So sink the cast down to the SCEVUnknown's.
1132 
1133   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1134   /// which computes a pointer-typed value, and rewrites the whole expression
1135   /// tree so that *all* the computations are done on integers, and the only
1136   /// pointer-typed operands in the expression are SCEVUnknown.
1137   class SCEVPtrToIntSinkingRewriter
1138       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1139     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1140 
1141   public:
1142     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1143 
1144     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1145       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1146       return Rewriter.visit(Scev);
1147     }
1148 
1149     const SCEV *visit(const SCEV *S) {
1150       Type *STy = S->getType();
1151       // If the expression is not pointer-typed, just keep it as-is.
1152       if (!STy->isPointerTy())
1153         return S;
1154       // Else, recursively sink the cast down into it.
1155       return Base::visit(S);
1156     }
1157 
1158     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1159       SmallVector<const SCEV *, 2> Operands;
1160       bool Changed = false;
1161       for (const auto *Op : Expr->operands()) {
1162         Operands.push_back(visit(Op));
1163         Changed |= Op != Operands.back();
1164       }
1165       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1166     }
1167 
1168     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1169       SmallVector<const SCEV *, 2> Operands;
1170       bool Changed = false;
1171       for (const auto *Op : Expr->operands()) {
1172         Operands.push_back(visit(Op));
1173         Changed |= Op != Operands.back();
1174       }
1175       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1176     }
1177 
1178     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1179       assert(Expr->getType()->isPointerTy() &&
1180              "Should only reach pointer-typed SCEVUnknown's.");
1181       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1182     }
1183   };
1184 
1185   // And actually perform the cast sinking.
1186   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1187   assert(IntOp->getType()->isIntegerTy() &&
1188          "We must have succeeded in sinking the cast, "
1189          "and ending up with an integer-typed expression!");
1190   return IntOp;
1191 }
1192 
1193 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1194   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1195 
1196   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1197   if (isa<SCEVCouldNotCompute>(IntOp))
1198     return IntOp;
1199 
1200   return getTruncateOrZeroExtend(IntOp, Ty);
1201 }
1202 
1203 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1204                                              unsigned Depth) {
1205   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1206          "This is not a truncating conversion!");
1207   assert(isSCEVable(Ty) &&
1208          "This is not a conversion to a SCEVable type!");
1209   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1210   Ty = getEffectiveSCEVType(Ty);
1211 
1212   FoldingSetNodeID ID;
1213   ID.AddInteger(scTruncate);
1214   ID.AddPointer(Op);
1215   ID.AddPointer(Ty);
1216   void *IP = nullptr;
1217   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1218 
1219   // Fold if the operand is constant.
1220   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1221     return getConstant(
1222       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1223 
1224   // trunc(trunc(x)) --> trunc(x)
1225   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1226     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1227 
1228   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1229   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1230     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1231 
1232   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1233   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1234     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1235 
1236   if (Depth > MaxCastDepth) {
1237     SCEV *S =
1238         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1239     UniqueSCEVs.InsertNode(S, IP);
1240     registerUser(S, Op);
1241     return S;
1242   }
1243 
1244   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1245   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1246   // if after transforming we have at most one truncate, not counting truncates
1247   // that replace other casts.
1248   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1249     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1250     SmallVector<const SCEV *, 4> Operands;
1251     unsigned numTruncs = 0;
1252     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1253          ++i) {
1254       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1255       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1256           isa<SCEVTruncateExpr>(S))
1257         numTruncs++;
1258       Operands.push_back(S);
1259     }
1260     if (numTruncs < 2) {
1261       if (isa<SCEVAddExpr>(Op))
1262         return getAddExpr(Operands);
1263       else if (isa<SCEVMulExpr>(Op))
1264         return getMulExpr(Operands);
1265       else
1266         llvm_unreachable("Unexpected SCEV type for Op.");
1267     }
1268     // Although we checked in the beginning that ID is not in the cache, it is
1269     // possible that during recursion and different modification ID was inserted
1270     // into the cache. So if we find it, just return it.
1271     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1272       return S;
1273   }
1274 
1275   // If the input value is a chrec scev, truncate the chrec's operands.
1276   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1277     SmallVector<const SCEV *, 4> Operands;
1278     for (const SCEV *Op : AddRec->operands())
1279       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1280     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1281   }
1282 
1283   // Return zero if truncating to known zeros.
1284   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1285   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1286     return getZero(Ty);
1287 
1288   // The cast wasn't folded; create an explicit cast node. We can reuse
1289   // the existing insert position since if we get here, we won't have
1290   // made any changes which would invalidate it.
1291   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1292                                                  Op, Ty);
1293   UniqueSCEVs.InsertNode(S, IP);
1294   registerUser(S, Op);
1295   return S;
1296 }
1297 
1298 // Get the limit of a recurrence such that incrementing by Step cannot cause
1299 // signed overflow as long as the value of the recurrence within the
1300 // loop does not exceed this limit before incrementing.
1301 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1302                                                  ICmpInst::Predicate *Pred,
1303                                                  ScalarEvolution *SE) {
1304   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1305   if (SE->isKnownPositive(Step)) {
1306     *Pred = ICmpInst::ICMP_SLT;
1307     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1308                            SE->getSignedRangeMax(Step));
1309   }
1310   if (SE->isKnownNegative(Step)) {
1311     *Pred = ICmpInst::ICMP_SGT;
1312     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1313                            SE->getSignedRangeMin(Step));
1314   }
1315   return nullptr;
1316 }
1317 
1318 // Get the limit of a recurrence such that incrementing by Step cannot cause
1319 // unsigned overflow as long as the value of the recurrence within the loop does
1320 // not exceed this limit before incrementing.
1321 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1322                                                    ICmpInst::Predicate *Pred,
1323                                                    ScalarEvolution *SE) {
1324   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1325   *Pred = ICmpInst::ICMP_ULT;
1326 
1327   return SE->getConstant(APInt::getMinValue(BitWidth) -
1328                          SE->getUnsignedRangeMax(Step));
1329 }
1330 
1331 namespace {
1332 
1333 struct ExtendOpTraitsBase {
1334   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1335                                                           unsigned);
1336 };
1337 
1338 // Used to make code generic over signed and unsigned overflow.
1339 template <typename ExtendOp> struct ExtendOpTraits {
1340   // Members present:
1341   //
1342   // static const SCEV::NoWrapFlags WrapType;
1343   //
1344   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1345   //
1346   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1347   //                                           ICmpInst::Predicate *Pred,
1348   //                                           ScalarEvolution *SE);
1349 };
1350 
1351 template <>
1352 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1353   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1354 
1355   static const GetExtendExprTy GetExtendExpr;
1356 
1357   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1358                                              ICmpInst::Predicate *Pred,
1359                                              ScalarEvolution *SE) {
1360     return getSignedOverflowLimitForStep(Step, Pred, SE);
1361   }
1362 };
1363 
1364 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1365     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1366 
1367 template <>
1368 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1369   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1370 
1371   static const GetExtendExprTy GetExtendExpr;
1372 
1373   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1374                                              ICmpInst::Predicate *Pred,
1375                                              ScalarEvolution *SE) {
1376     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1377   }
1378 };
1379 
1380 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1381     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1382 
1383 } // end anonymous namespace
1384 
1385 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1386 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1387 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1388 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1389 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1390 // expression "Step + sext/zext(PreIncAR)" is congruent with
1391 // "sext/zext(PostIncAR)"
1392 template <typename ExtendOpTy>
1393 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1394                                         ScalarEvolution *SE, unsigned Depth) {
1395   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1396   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1397 
1398   const Loop *L = AR->getLoop();
1399   const SCEV *Start = AR->getStart();
1400   const SCEV *Step = AR->getStepRecurrence(*SE);
1401 
1402   // Check for a simple looking step prior to loop entry.
1403   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1404   if (!SA)
1405     return nullptr;
1406 
1407   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1408   // subtraction is expensive. For this purpose, perform a quick and dirty
1409   // difference, by checking for Step in the operand list.
1410   SmallVector<const SCEV *, 4> DiffOps;
1411   for (const SCEV *Op : SA->operands())
1412     if (Op != Step)
1413       DiffOps.push_back(Op);
1414 
1415   if (DiffOps.size() == SA->getNumOperands())
1416     return nullptr;
1417 
1418   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1419   // `Step`:
1420 
1421   // 1. NSW/NUW flags on the step increment.
1422   auto PreStartFlags =
1423     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1424   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1425   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1426       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1427 
1428   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1429   // "S+X does not sign/unsign-overflow".
1430   //
1431 
1432   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1433   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1434       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1435     return PreStart;
1436 
1437   // 2. Direct overflow check on the step operation's expression.
1438   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1439   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1440   const SCEV *OperandExtendedStart =
1441       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1442                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1443   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1444     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1445       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1446       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1447       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1448       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1449     }
1450     return PreStart;
1451   }
1452 
1453   // 3. Loop precondition.
1454   ICmpInst::Predicate Pred;
1455   const SCEV *OverflowLimit =
1456       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1457 
1458   if (OverflowLimit &&
1459       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1460     return PreStart;
1461 
1462   return nullptr;
1463 }
1464 
1465 // Get the normalized zero or sign extended expression for this AddRec's Start.
1466 template <typename ExtendOpTy>
1467 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1468                                         ScalarEvolution *SE,
1469                                         unsigned Depth) {
1470   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1471 
1472   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1473   if (!PreStart)
1474     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1475 
1476   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1477                                              Depth),
1478                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1479 }
1480 
1481 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1482 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1483 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1484 //
1485 // Formally:
1486 //
1487 //     {S,+,X} == {S-T,+,X} + T
1488 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1489 //
1490 // If ({S-T,+,X} + T) does not overflow  ... (1)
1491 //
1492 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1493 //
1494 // If {S-T,+,X} does not overflow  ... (2)
1495 //
1496 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1497 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1498 //
1499 // If (S-T)+T does not overflow  ... (3)
1500 //
1501 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1502 //      == {Ext(S),+,Ext(X)} == LHS
1503 //
1504 // Thus, if (1), (2) and (3) are true for some T, then
1505 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1506 //
1507 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1508 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1509 // to check for (1) and (2).
1510 //
1511 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1512 // is `Delta` (defined below).
1513 template <typename ExtendOpTy>
1514 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1515                                                 const SCEV *Step,
1516                                                 const Loop *L) {
1517   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1518 
1519   // We restrict `Start` to a constant to prevent SCEV from spending too much
1520   // time here.  It is correct (but more expensive) to continue with a
1521   // non-constant `Start` and do a general SCEV subtraction to compute
1522   // `PreStart` below.
1523   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1524   if (!StartC)
1525     return false;
1526 
1527   APInt StartAI = StartC->getAPInt();
1528 
1529   for (unsigned Delta : {-2, -1, 1, 2}) {
1530     const SCEV *PreStart = getConstant(StartAI - Delta);
1531 
1532     FoldingSetNodeID ID;
1533     ID.AddInteger(scAddRecExpr);
1534     ID.AddPointer(PreStart);
1535     ID.AddPointer(Step);
1536     ID.AddPointer(L);
1537     void *IP = nullptr;
1538     const auto *PreAR =
1539       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1540 
1541     // Give up if we don't already have the add recurrence we need because
1542     // actually constructing an add recurrence is relatively expensive.
1543     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1544       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1545       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1546       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1547           DeltaS, &Pred, this);
1548       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1549         return true;
1550     }
1551   }
1552 
1553   return false;
1554 }
1555 
1556 // Finds an integer D for an expression (C + x + y + ...) such that the top
1557 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1558 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1559 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1560 // the (C + x + y + ...) expression is \p WholeAddExpr.
1561 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1562                                             const SCEVConstant *ConstantTerm,
1563                                             const SCEVAddExpr *WholeAddExpr) {
1564   const APInt &C = ConstantTerm->getAPInt();
1565   const unsigned BitWidth = C.getBitWidth();
1566   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1567   uint32_t TZ = BitWidth;
1568   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1569     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1570   if (TZ) {
1571     // Set D to be as many least significant bits of C as possible while still
1572     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1573     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1574   }
1575   return APInt(BitWidth, 0);
1576 }
1577 
1578 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1579 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1580 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1581 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1582 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1583                                             const APInt &ConstantStart,
1584                                             const SCEV *Step) {
1585   const unsigned BitWidth = ConstantStart.getBitWidth();
1586   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1587   if (TZ)
1588     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1589                          : ConstantStart;
1590   return APInt(BitWidth, 0);
1591 }
1592 
1593 const SCEV *
1594 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1595   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1596          "This is not an extending conversion!");
1597   assert(isSCEVable(Ty) &&
1598          "This is not a conversion to a SCEVable type!");
1599   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1600   Ty = getEffectiveSCEVType(Ty);
1601 
1602   // Fold if the operand is constant.
1603   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1604     return getConstant(
1605       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1606 
1607   // zext(zext(x)) --> zext(x)
1608   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1610 
1611   // Before doing any expensive analysis, check to see if we've already
1612   // computed a SCEV for this Op and Ty.
1613   FoldingSetNodeID ID;
1614   ID.AddInteger(scZeroExtend);
1615   ID.AddPointer(Op);
1616   ID.AddPointer(Ty);
1617   void *IP = nullptr;
1618   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619   if (Depth > MaxCastDepth) {
1620     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1621                                                      Op, Ty);
1622     UniqueSCEVs.InsertNode(S, IP);
1623     registerUser(S, Op);
1624     return S;
1625   }
1626 
1627   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1628   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1629     // It's possible the bits taken off by the truncate were all zero bits. If
1630     // so, we should be able to simplify this further.
1631     const SCEV *X = ST->getOperand();
1632     ConstantRange CR = getUnsignedRange(X);
1633     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1634     unsigned NewBits = getTypeSizeInBits(Ty);
1635     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1636             CR.zextOrTrunc(NewBits)))
1637       return getTruncateOrZeroExtend(X, Ty, Depth);
1638   }
1639 
1640   // If the input value is a chrec scev, and we can prove that the value
1641   // did not overflow the old, smaller, value, we can zero extend all of the
1642   // operands (often constants).  This allows analysis of something like
1643   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1644   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1645     if (AR->isAffine()) {
1646       const SCEV *Start = AR->getStart();
1647       const SCEV *Step = AR->getStepRecurrence(*this);
1648       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1649       const Loop *L = AR->getLoop();
1650 
1651       if (!AR->hasNoUnsignedWrap()) {
1652         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1653         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1654       }
1655 
1656       // If we have special knowledge that this addrec won't overflow,
1657       // we don't need to do any further analysis.
1658       if (AR->hasNoUnsignedWrap()) {
1659         Start =
1660             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1661         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1662         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1663       }
1664 
1665       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1666       // Note that this serves two purposes: It filters out loops that are
1667       // simply not analyzable, and it covers the case where this code is
1668       // being called from within backedge-taken count analysis, such that
1669       // attempting to ask for the backedge-taken count would likely result
1670       // in infinite recursion. In the later case, the analysis code will
1671       // cope with a conservative value, and it will take care to purge
1672       // that value once it has finished.
1673       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1674       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1675         // Manually compute the final value for AR, checking for overflow.
1676 
1677         // Check whether the backedge-taken count can be losslessly casted to
1678         // the addrec's type. The count is always unsigned.
1679         const SCEV *CastedMaxBECount =
1680             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1681         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1682             CastedMaxBECount, MaxBECount->getType(), Depth);
1683         if (MaxBECount == RecastedMaxBECount) {
1684           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1685           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1686           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1687                                         SCEV::FlagAnyWrap, Depth + 1);
1688           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1689                                                           SCEV::FlagAnyWrap,
1690                                                           Depth + 1),
1691                                                WideTy, Depth + 1);
1692           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1693           const SCEV *WideMaxBECount =
1694             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1695           const SCEV *OperandExtendedAdd =
1696             getAddExpr(WideStart,
1697                        getMulExpr(WideMaxBECount,
1698                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1699                                   SCEV::FlagAnyWrap, Depth + 1),
1700                        SCEV::FlagAnyWrap, Depth + 1);
1701           if (ZAdd == OperandExtendedAdd) {
1702             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1704             // Return the expression with the addrec on the outside.
1705             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1706                                                              Depth + 1);
1707             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1708             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1709           }
1710           // Similar to above, only this time treat the step value as signed.
1711           // This covers loops that count down.
1712           OperandExtendedAdd =
1713             getAddExpr(WideStart,
1714                        getMulExpr(WideMaxBECount,
1715                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1716                                   SCEV::FlagAnyWrap, Depth + 1),
1717                        SCEV::FlagAnyWrap, Depth + 1);
1718           if (ZAdd == OperandExtendedAdd) {
1719             // Cache knowledge of AR NW, which is propagated to this AddRec.
1720             // Negative step causes unsigned wrap, but it still can't self-wrap.
1721             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1722             // Return the expression with the addrec on the outside.
1723             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1724                                                              Depth + 1);
1725             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1726             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1727           }
1728         }
1729       }
1730 
1731       // Normally, in the cases we can prove no-overflow via a
1732       // backedge guarding condition, we can also compute a backedge
1733       // taken count for the loop.  The exceptions are assumptions and
1734       // guards present in the loop -- SCEV is not great at exploiting
1735       // these to compute max backedge taken counts, but can still use
1736       // these to prove lack of overflow.  Use this fact to avoid
1737       // doing extra work that may not pay off.
1738       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1739           !AC.assumptions().empty()) {
1740 
1741         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1742         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1743         if (AR->hasNoUnsignedWrap()) {
1744           // Same as nuw case above - duplicated here to avoid a compile time
1745           // issue.  It's not clear that the order of checks does matter, but
1746           // it's one of two issue possible causes for a change which was
1747           // reverted.  Be conservative for the moment.
1748           Start =
1749               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1750           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1751           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1752         }
1753 
1754         // For a negative step, we can extend the operands iff doing so only
1755         // traverses values in the range zext([0,UINT_MAX]).
1756         if (isKnownNegative(Step)) {
1757           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1758                                       getSignedRangeMin(Step));
1759           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1760               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1761             // Cache knowledge of AR NW, which is propagated to this
1762             // AddRec.  Negative step causes unsigned wrap, but it
1763             // still can't self-wrap.
1764             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1765             // Return the expression with the addrec on the outside.
1766             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1767                                                              Depth + 1);
1768             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1769             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1770           }
1771         }
1772       }
1773 
1774       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1775       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1776       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1777       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1778         const APInt &C = SC->getAPInt();
1779         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1780         if (D != 0) {
1781           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1782           const SCEV *SResidual =
1783               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1784           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1785           return getAddExpr(SZExtD, SZExtR,
1786                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1787                             Depth + 1);
1788         }
1789       }
1790 
1791       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1792         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1793         Start =
1794             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1795         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1796         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1797       }
1798     }
1799 
1800   // zext(A % B) --> zext(A) % zext(B)
1801   {
1802     const SCEV *LHS;
1803     const SCEV *RHS;
1804     if (matchURem(Op, LHS, RHS))
1805       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1806                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1807   }
1808 
1809   // zext(A / B) --> zext(A) / zext(B).
1810   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1811     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1812                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1813 
1814   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1815     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1816     if (SA->hasNoUnsignedWrap()) {
1817       // If the addition does not unsign overflow then we can, by definition,
1818       // commute the zero extension with the addition operation.
1819       SmallVector<const SCEV *, 4> Ops;
1820       for (const auto *Op : SA->operands())
1821         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1822       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1823     }
1824 
1825     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1826     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1827     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1828     //
1829     // Often address arithmetics contain expressions like
1830     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1831     // This transformation is useful while proving that such expressions are
1832     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1833     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1834       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1835       if (D != 0) {
1836         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1837         const SCEV *SResidual =
1838             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1839         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1840         return getAddExpr(SZExtD, SZExtR,
1841                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1842                           Depth + 1);
1843       }
1844     }
1845   }
1846 
1847   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1848     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1849     if (SM->hasNoUnsignedWrap()) {
1850       // If the multiply does not unsign overflow then we can, by definition,
1851       // commute the zero extension with the multiply operation.
1852       SmallVector<const SCEV *, 4> Ops;
1853       for (const auto *Op : SM->operands())
1854         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1855       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1856     }
1857 
1858     // zext(2^K * (trunc X to iN)) to iM ->
1859     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1860     //
1861     // Proof:
1862     //
1863     //     zext(2^K * (trunc X to iN)) to iM
1864     //   = zext((trunc X to iN) << K) to iM
1865     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1866     //     (because shl removes the top K bits)
1867     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1868     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1869     //
1870     if (SM->getNumOperands() == 2)
1871       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1872         if (MulLHS->getAPInt().isPowerOf2())
1873           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1874             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1875                                MulLHS->getAPInt().logBase2();
1876             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1877             return getMulExpr(
1878                 getZeroExtendExpr(MulLHS, Ty),
1879                 getZeroExtendExpr(
1880                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1881                 SCEV::FlagNUW, Depth + 1);
1882           }
1883   }
1884 
1885   // The cast wasn't folded; create an explicit cast node.
1886   // Recompute the insert position, as it may have been invalidated.
1887   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1888   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1889                                                    Op, Ty);
1890   UniqueSCEVs.InsertNode(S, IP);
1891   registerUser(S, Op);
1892   return S;
1893 }
1894 
1895 const SCEV *
1896 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1897   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1898          "This is not an extending conversion!");
1899   assert(isSCEVable(Ty) &&
1900          "This is not a conversion to a SCEVable type!");
1901   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1902   Ty = getEffectiveSCEVType(Ty);
1903 
1904   // Fold if the operand is constant.
1905   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1906     return getConstant(
1907       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1908 
1909   // sext(sext(x)) --> sext(x)
1910   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1911     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1912 
1913   // sext(zext(x)) --> zext(x)
1914   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1915     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1916 
1917   // Before doing any expensive analysis, check to see if we've already
1918   // computed a SCEV for this Op and Ty.
1919   FoldingSetNodeID ID;
1920   ID.AddInteger(scSignExtend);
1921   ID.AddPointer(Op);
1922   ID.AddPointer(Ty);
1923   void *IP = nullptr;
1924   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1925   // Limit recursion depth.
1926   if (Depth > MaxCastDepth) {
1927     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1928                                                      Op, Ty);
1929     UniqueSCEVs.InsertNode(S, IP);
1930     registerUser(S, Op);
1931     return S;
1932   }
1933 
1934   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1935   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1936     // It's possible the bits taken off by the truncate were all sign bits. If
1937     // so, we should be able to simplify this further.
1938     const SCEV *X = ST->getOperand();
1939     ConstantRange CR = getSignedRange(X);
1940     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1941     unsigned NewBits = getTypeSizeInBits(Ty);
1942     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1943             CR.sextOrTrunc(NewBits)))
1944       return getTruncateOrSignExtend(X, Ty, Depth);
1945   }
1946 
1947   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1948     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1949     if (SA->hasNoSignedWrap()) {
1950       // If the addition does not sign overflow then we can, by definition,
1951       // commute the sign extension with the addition operation.
1952       SmallVector<const SCEV *, 4> Ops;
1953       for (const auto *Op : SA->operands())
1954         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1955       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1956     }
1957 
1958     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1959     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1960     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1961     //
1962     // For instance, this will bring two seemingly different expressions:
1963     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1964     //         sext(6 + 20 * %x + 24 * %y)
1965     // to the same form:
1966     //     2 + sext(4 + 20 * %x + 24 * %y)
1967     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1968       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1969       if (D != 0) {
1970         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1971         const SCEV *SResidual =
1972             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1973         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1974         return getAddExpr(SSExtD, SSExtR,
1975                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1976                           Depth + 1);
1977       }
1978     }
1979   }
1980   // If the input value is a chrec scev, and we can prove that the value
1981   // did not overflow the old, smaller, value, we can sign extend all of the
1982   // operands (often constants).  This allows analysis of something like
1983   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1984   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1985     if (AR->isAffine()) {
1986       const SCEV *Start = AR->getStart();
1987       const SCEV *Step = AR->getStepRecurrence(*this);
1988       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1989       const Loop *L = AR->getLoop();
1990 
1991       if (!AR->hasNoSignedWrap()) {
1992         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1993         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1994       }
1995 
1996       // If we have special knowledge that this addrec won't overflow,
1997       // we don't need to do any further analysis.
1998       if (AR->hasNoSignedWrap()) {
1999         Start =
2000             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2001         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2002         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2003       }
2004 
2005       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2006       // Note that this serves two purposes: It filters out loops that are
2007       // simply not analyzable, and it covers the case where this code is
2008       // being called from within backedge-taken count analysis, such that
2009       // attempting to ask for the backedge-taken count would likely result
2010       // in infinite recursion. In the later case, the analysis code will
2011       // cope with a conservative value, and it will take care to purge
2012       // that value once it has finished.
2013       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2014       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2015         // Manually compute the final value for AR, checking for
2016         // overflow.
2017 
2018         // Check whether the backedge-taken count can be losslessly casted to
2019         // the addrec's type. The count is always unsigned.
2020         const SCEV *CastedMaxBECount =
2021             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2022         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2023             CastedMaxBECount, MaxBECount->getType(), Depth);
2024         if (MaxBECount == RecastedMaxBECount) {
2025           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2026           // Check whether Start+Step*MaxBECount has no signed overflow.
2027           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2028                                         SCEV::FlagAnyWrap, Depth + 1);
2029           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2030                                                           SCEV::FlagAnyWrap,
2031                                                           Depth + 1),
2032                                                WideTy, Depth + 1);
2033           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2034           const SCEV *WideMaxBECount =
2035             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2036           const SCEV *OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2044             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2045             // Return the expression with the addrec on the outside.
2046             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2047                                                              Depth + 1);
2048             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2049             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2050           }
2051           // Similar to above, only this time treat the step value as unsigned.
2052           // This covers loops that count up with an unsigned step.
2053           OperandExtendedAdd =
2054             getAddExpr(WideStart,
2055                        getMulExpr(WideMaxBECount,
2056                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2057                                   SCEV::FlagAnyWrap, Depth + 1),
2058                        SCEV::FlagAnyWrap, Depth + 1);
2059           if (SAdd == OperandExtendedAdd) {
2060             // If AR wraps around then
2061             //
2062             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2063             // => SAdd != OperandExtendedAdd
2064             //
2065             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2066             // (SAdd == OperandExtendedAdd => AR is NW)
2067 
2068             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2069 
2070             // Return the expression with the addrec on the outside.
2071             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2072                                                              Depth + 1);
2073             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2074             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2075           }
2076         }
2077       }
2078 
2079       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2080       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2081       if (AR->hasNoSignedWrap()) {
2082         // Same as nsw case above - duplicated here to avoid a compile time
2083         // issue.  It's not clear that the order of checks does matter, but
2084         // it's one of two issue possible causes for a change which was
2085         // reverted.  Be conservative for the moment.
2086         Start =
2087             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2088         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2089         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2090       }
2091 
2092       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2093       // if D + (C - D + Step * n) could be proven to not signed wrap
2094       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2095       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2096         const APInt &C = SC->getAPInt();
2097         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2098         if (D != 0) {
2099           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2100           const SCEV *SResidual =
2101               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2102           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2103           return getAddExpr(SSExtD, SSExtR,
2104                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2105                             Depth + 1);
2106         }
2107       }
2108 
2109       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2110         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2111         Start =
2112             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2113         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2114         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2115       }
2116     }
2117 
2118   // If the input value is provably positive and we could not simplify
2119   // away the sext build a zext instead.
2120   if (isKnownNonNegative(Op))
2121     return getZeroExtendExpr(Op, Ty, Depth + 1);
2122 
2123   // The cast wasn't folded; create an explicit cast node.
2124   // Recompute the insert position, as it may have been invalidated.
2125   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2126   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2127                                                    Op, Ty);
2128   UniqueSCEVs.InsertNode(S, IP);
2129   registerUser(S, { Op });
2130   return S;
2131 }
2132 
2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2134                                          Type *Ty) {
2135   switch (Kind) {
2136   case scTruncate:
2137     return getTruncateExpr(Op, Ty);
2138   case scZeroExtend:
2139     return getZeroExtendExpr(Op, Ty);
2140   case scSignExtend:
2141     return getSignExtendExpr(Op, Ty);
2142   case scPtrToInt:
2143     return getPtrToIntExpr(Op, Ty);
2144   default:
2145     llvm_unreachable("Not a SCEV cast expression!");
2146   }
2147 }
2148 
2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2150 /// unspecified bits out to the given type.
2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2152                                               Type *Ty) {
2153   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2154          "This is not an extending conversion!");
2155   assert(isSCEVable(Ty) &&
2156          "This is not a conversion to a SCEVable type!");
2157   Ty = getEffectiveSCEVType(Ty);
2158 
2159   // Sign-extend negative constants.
2160   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2161     if (SC->getAPInt().isNegative())
2162       return getSignExtendExpr(Op, Ty);
2163 
2164   // Peel off a truncate cast.
2165   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2166     const SCEV *NewOp = T->getOperand();
2167     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2168       return getAnyExtendExpr(NewOp, Ty);
2169     return getTruncateOrNoop(NewOp, Ty);
2170   }
2171 
2172   // Next try a zext cast. If the cast is folded, use it.
2173   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2174   if (!isa<SCEVZeroExtendExpr>(ZExt))
2175     return ZExt;
2176 
2177   // Next try a sext cast. If the cast is folded, use it.
2178   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2179   if (!isa<SCEVSignExtendExpr>(SExt))
2180     return SExt;
2181 
2182   // Force the cast to be folded into the operands of an addrec.
2183   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2184     SmallVector<const SCEV *, 4> Ops;
2185     for (const SCEV *Op : AR->operands())
2186       Ops.push_back(getAnyExtendExpr(Op, Ty));
2187     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2188   }
2189 
2190   // If the expression is obviously signed, use the sext cast value.
2191   if (isa<SCEVSMaxExpr>(Op))
2192     return SExt;
2193 
2194   // Absent any other information, use the zext cast value.
2195   return ZExt;
2196 }
2197 
2198 /// Process the given Ops list, which is a list of operands to be added under
2199 /// the given scale, update the given map. This is a helper function for
2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2201 /// that would form an add expression like this:
2202 ///
2203 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2204 ///
2205 /// where A and B are constants, update the map with these values:
2206 ///
2207 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2208 ///
2209 /// and add 13 + A*B*29 to AccumulatedConstant.
2210 /// This will allow getAddRecExpr to produce this:
2211 ///
2212 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2213 ///
2214 /// This form often exposes folding opportunities that are hidden in
2215 /// the original operand list.
2216 ///
2217 /// Return true iff it appears that any interesting folding opportunities
2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2219 /// the common case where no interesting opportunities are present, and
2220 /// is also used as a check to avoid infinite recursion.
2221 static bool
2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2223                              SmallVectorImpl<const SCEV *> &NewOps,
2224                              APInt &AccumulatedConstant,
2225                              const SCEV *const *Ops, size_t NumOperands,
2226                              const APInt &Scale,
2227                              ScalarEvolution &SE) {
2228   bool Interesting = false;
2229 
2230   // Iterate over the add operands. They are sorted, with constants first.
2231   unsigned i = 0;
2232   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2233     ++i;
2234     // Pull a buried constant out to the outside.
2235     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2236       Interesting = true;
2237     AccumulatedConstant += Scale * C->getAPInt();
2238   }
2239 
2240   // Next comes everything else. We're especially interested in multiplies
2241   // here, but they're in the middle, so just visit the rest with one loop.
2242   for (; i != NumOperands; ++i) {
2243     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2244     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2245       APInt NewScale =
2246           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2247       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2248         // A multiplication of a constant with another add; recurse.
2249         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2250         Interesting |=
2251           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2252                                        Add->op_begin(), Add->getNumOperands(),
2253                                        NewScale, SE);
2254       } else {
2255         // A multiplication of a constant with some other value. Update
2256         // the map.
2257         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2258         const SCEV *Key = SE.getMulExpr(MulOps);
2259         auto Pair = M.insert({Key, NewScale});
2260         if (Pair.second) {
2261           NewOps.push_back(Pair.first->first);
2262         } else {
2263           Pair.first->second += NewScale;
2264           // The map already had an entry for this value, which may indicate
2265           // a folding opportunity.
2266           Interesting = true;
2267         }
2268       }
2269     } else {
2270       // An ordinary operand. Update the map.
2271       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2272           M.insert({Ops[i], Scale});
2273       if (Pair.second) {
2274         NewOps.push_back(Pair.first->first);
2275       } else {
2276         Pair.first->second += Scale;
2277         // The map already had an entry for this value, which may indicate
2278         // a folding opportunity.
2279         Interesting = true;
2280       }
2281     }
2282   }
2283 
2284   return Interesting;
2285 }
2286 
2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2288                                       const SCEV *LHS, const SCEV *RHS) {
2289   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2290                                             SCEV::NoWrapFlags, unsigned);
2291   switch (BinOp) {
2292   default:
2293     llvm_unreachable("Unsupported binary op");
2294   case Instruction::Add:
2295     Operation = &ScalarEvolution::getAddExpr;
2296     break;
2297   case Instruction::Sub:
2298     Operation = &ScalarEvolution::getMinusSCEV;
2299     break;
2300   case Instruction::Mul:
2301     Operation = &ScalarEvolution::getMulExpr;
2302     break;
2303   }
2304 
2305   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2306       Signed ? &ScalarEvolution::getSignExtendExpr
2307              : &ScalarEvolution::getZeroExtendExpr;
2308 
2309   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2310   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2311   auto *WideTy =
2312       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2313 
2314   const SCEV *A = (this->*Extension)(
2315       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2316   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2317   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2318   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2319   return A == B;
2320 }
2321 
2322 Optional<SCEV::NoWrapFlags>
2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2324     const OverflowingBinaryOperator *OBO) {
2325   // It cannot be done any better.
2326   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2327     return None;
2328 
2329   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2330 
2331   if (OBO->hasNoUnsignedWrap())
2332     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2333   if (OBO->hasNoSignedWrap())
2334     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2335 
2336   bool Deduced = false;
2337 
2338   if (OBO->getOpcode() != Instruction::Add &&
2339       OBO->getOpcode() != Instruction::Sub &&
2340       OBO->getOpcode() != Instruction::Mul)
2341     return None;
2342 
2343   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2344   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2345 
2346   if (!OBO->hasNoUnsignedWrap() &&
2347       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2348                       /* Signed */ false, LHS, RHS)) {
2349     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2350     Deduced = true;
2351   }
2352 
2353   if (!OBO->hasNoSignedWrap() &&
2354       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2355                       /* Signed */ true, LHS, RHS)) {
2356     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2357     Deduced = true;
2358   }
2359 
2360   if (Deduced)
2361     return Flags;
2362   return None;
2363 }
2364 
2365 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2366 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2367 // can't-overflow flags for the operation if possible.
2368 static SCEV::NoWrapFlags
2369 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2370                       const ArrayRef<const SCEV *> Ops,
2371                       SCEV::NoWrapFlags Flags) {
2372   using namespace std::placeholders;
2373 
2374   using OBO = OverflowingBinaryOperator;
2375 
2376   bool CanAnalyze =
2377       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2378   (void)CanAnalyze;
2379   assert(CanAnalyze && "don't call from other places!");
2380 
2381   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2382   SCEV::NoWrapFlags SignOrUnsignWrap =
2383       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2384 
2385   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2386   auto IsKnownNonNegative = [&](const SCEV *S) {
2387     return SE->isKnownNonNegative(S);
2388   };
2389 
2390   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2391     Flags =
2392         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2393 
2394   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2395 
2396   if (SignOrUnsignWrap != SignOrUnsignMask &&
2397       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2398       isa<SCEVConstant>(Ops[0])) {
2399 
2400     auto Opcode = [&] {
2401       switch (Type) {
2402       case scAddExpr:
2403         return Instruction::Add;
2404       case scMulExpr:
2405         return Instruction::Mul;
2406       default:
2407         llvm_unreachable("Unexpected SCEV op.");
2408       }
2409     }();
2410 
2411     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2412 
2413     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2414     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2415       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2416           Opcode, C, OBO::NoSignedWrap);
2417       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2418         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2419     }
2420 
2421     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2422     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2423       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2424           Opcode, C, OBO::NoUnsignedWrap);
2425       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2426         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2427     }
2428   }
2429 
2430   // <0,+,nonnegative><nw> is also nuw
2431   // TODO: Add corresponding nsw case
2432   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2433       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2434       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2435     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2436 
2437   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2438   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2439       Ops.size() == 2) {
2440     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2441       if (UDiv->getOperand(1) == Ops[1])
2442         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2443     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2444       if (UDiv->getOperand(1) == Ops[0])
2445         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2446   }
2447 
2448   return Flags;
2449 }
2450 
2451 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2452   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2453 }
2454 
2455 /// Get a canonical add expression, or something simpler if possible.
2456 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2457                                         SCEV::NoWrapFlags OrigFlags,
2458                                         unsigned Depth) {
2459   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2460          "only nuw or nsw allowed");
2461   assert(!Ops.empty() && "Cannot get empty add!");
2462   if (Ops.size() == 1) return Ops[0];
2463 #ifndef NDEBUG
2464   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2465   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2466     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2467            "SCEVAddExpr operand types don't match!");
2468   unsigned NumPtrs = count_if(
2469       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2470   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2471 #endif
2472 
2473   // Sort by complexity, this groups all similar expression types together.
2474   GroupByComplexity(Ops, &LI, DT);
2475 
2476   // If there are any constants, fold them together.
2477   unsigned Idx = 0;
2478   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2479     ++Idx;
2480     assert(Idx < Ops.size());
2481     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2482       // We found two constants, fold them together!
2483       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2484       if (Ops.size() == 2) return Ops[0];
2485       Ops.erase(Ops.begin()+1);  // Erase the folded element
2486       LHSC = cast<SCEVConstant>(Ops[0]);
2487     }
2488 
2489     // If we are left with a constant zero being added, strip it off.
2490     if (LHSC->getValue()->isZero()) {
2491       Ops.erase(Ops.begin());
2492       --Idx;
2493     }
2494 
2495     if (Ops.size() == 1) return Ops[0];
2496   }
2497 
2498   // Delay expensive flag strengthening until necessary.
2499   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2500     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2501   };
2502 
2503   // Limit recursion calls depth.
2504   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2505     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2506 
2507   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2508     // Don't strengthen flags if we have no new information.
2509     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2510     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2511       Add->setNoWrapFlags(ComputeFlags(Ops));
2512     return S;
2513   }
2514 
2515   // Okay, check to see if the same value occurs in the operand list more than
2516   // once.  If so, merge them together into an multiply expression.  Since we
2517   // sorted the list, these values are required to be adjacent.
2518   Type *Ty = Ops[0]->getType();
2519   bool FoundMatch = false;
2520   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2521     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2522       // Scan ahead to count how many equal operands there are.
2523       unsigned Count = 2;
2524       while (i+Count != e && Ops[i+Count] == Ops[i])
2525         ++Count;
2526       // Merge the values into a multiply.
2527       const SCEV *Scale = getConstant(Ty, Count);
2528       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2529       if (Ops.size() == Count)
2530         return Mul;
2531       Ops[i] = Mul;
2532       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2533       --i; e -= Count - 1;
2534       FoundMatch = true;
2535     }
2536   if (FoundMatch)
2537     return getAddExpr(Ops, OrigFlags, Depth + 1);
2538 
2539   // Check for truncates. If all the operands are truncated from the same
2540   // type, see if factoring out the truncate would permit the result to be
2541   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2542   // if the contents of the resulting outer trunc fold to something simple.
2543   auto FindTruncSrcType = [&]() -> Type * {
2544     // We're ultimately looking to fold an addrec of truncs and muls of only
2545     // constants and truncs, so if we find any other types of SCEV
2546     // as operands of the addrec then we bail and return nullptr here.
2547     // Otherwise, we return the type of the operand of a trunc that we find.
2548     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2549       return T->getOperand()->getType();
2550     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2551       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2552       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2553         return T->getOperand()->getType();
2554     }
2555     return nullptr;
2556   };
2557   if (auto *SrcType = FindTruncSrcType()) {
2558     SmallVector<const SCEV *, 8> LargeOps;
2559     bool Ok = true;
2560     // Check all the operands to see if they can be represented in the
2561     // source type of the truncate.
2562     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2563       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2564         if (T->getOperand()->getType() != SrcType) {
2565           Ok = false;
2566           break;
2567         }
2568         LargeOps.push_back(T->getOperand());
2569       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2570         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2571       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2572         SmallVector<const SCEV *, 8> LargeMulOps;
2573         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2574           if (const SCEVTruncateExpr *T =
2575                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2576             if (T->getOperand()->getType() != SrcType) {
2577               Ok = false;
2578               break;
2579             }
2580             LargeMulOps.push_back(T->getOperand());
2581           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2582             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2583           } else {
2584             Ok = false;
2585             break;
2586           }
2587         }
2588         if (Ok)
2589           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2590       } else {
2591         Ok = false;
2592         break;
2593       }
2594     }
2595     if (Ok) {
2596       // Evaluate the expression in the larger type.
2597       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2598       // If it folds to something simple, use it. Otherwise, don't.
2599       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2600         return getTruncateExpr(Fold, Ty);
2601     }
2602   }
2603 
2604   if (Ops.size() == 2) {
2605     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2606     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2607     // C1).
2608     const SCEV *A = Ops[0];
2609     const SCEV *B = Ops[1];
2610     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2611     auto *C = dyn_cast<SCEVConstant>(A);
2612     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2613       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2614       auto C2 = C->getAPInt();
2615       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2616 
2617       APInt ConstAdd = C1 + C2;
2618       auto AddFlags = AddExpr->getNoWrapFlags();
2619       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2620       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2621           ConstAdd.ule(C1)) {
2622         PreservedFlags =
2623             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2624       }
2625 
2626       // Adding a constant with the same sign and small magnitude is NSW, if the
2627       // original AddExpr was NSW.
2628       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2629           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2630           ConstAdd.abs().ule(C1.abs())) {
2631         PreservedFlags =
2632             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2633       }
2634 
2635       if (PreservedFlags != SCEV::FlagAnyWrap) {
2636         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2637         NewOps[0] = getConstant(ConstAdd);
2638         return getAddExpr(NewOps, PreservedFlags);
2639       }
2640     }
2641   }
2642 
2643   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2644   if (Ops.size() == 2) {
2645     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2646     if (Mul && Mul->getNumOperands() == 2 &&
2647         Mul->getOperand(0)->isAllOnesValue()) {
2648       const SCEV *X;
2649       const SCEV *Y;
2650       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2651         return getMulExpr(Y, getUDivExpr(X, Y));
2652       }
2653     }
2654   }
2655 
2656   // Skip past any other cast SCEVs.
2657   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2658     ++Idx;
2659 
2660   // If there are add operands they would be next.
2661   if (Idx < Ops.size()) {
2662     bool DeletedAdd = false;
2663     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2664     // common NUW flag for expression after inlining. Other flags cannot be
2665     // preserved, because they may depend on the original order of operations.
2666     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2667     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2668       if (Ops.size() > AddOpsInlineThreshold ||
2669           Add->getNumOperands() > AddOpsInlineThreshold)
2670         break;
2671       // If we have an add, expand the add operands onto the end of the operands
2672       // list.
2673       Ops.erase(Ops.begin()+Idx);
2674       Ops.append(Add->op_begin(), Add->op_end());
2675       DeletedAdd = true;
2676       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2677     }
2678 
2679     // If we deleted at least one add, we added operands to the end of the list,
2680     // and they are not necessarily sorted.  Recurse to resort and resimplify
2681     // any operands we just acquired.
2682     if (DeletedAdd)
2683       return getAddExpr(Ops, CommonFlags, Depth + 1);
2684   }
2685 
2686   // Skip over the add expression until we get to a multiply.
2687   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2688     ++Idx;
2689 
2690   // Check to see if there are any folding opportunities present with
2691   // operands multiplied by constant values.
2692   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2693     uint64_t BitWidth = getTypeSizeInBits(Ty);
2694     DenseMap<const SCEV *, APInt> M;
2695     SmallVector<const SCEV *, 8> NewOps;
2696     APInt AccumulatedConstant(BitWidth, 0);
2697     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2698                                      Ops.data(), Ops.size(),
2699                                      APInt(BitWidth, 1), *this)) {
2700       struct APIntCompare {
2701         bool operator()(const APInt &LHS, const APInt &RHS) const {
2702           return LHS.ult(RHS);
2703         }
2704       };
2705 
2706       // Some interesting folding opportunity is present, so its worthwhile to
2707       // re-generate the operands list. Group the operands by constant scale,
2708       // to avoid multiplying by the same constant scale multiple times.
2709       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2710       for (const SCEV *NewOp : NewOps)
2711         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2712       // Re-generate the operands list.
2713       Ops.clear();
2714       if (AccumulatedConstant != 0)
2715         Ops.push_back(getConstant(AccumulatedConstant));
2716       for (auto &MulOp : MulOpLists) {
2717         if (MulOp.first == 1) {
2718           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2719         } else if (MulOp.first != 0) {
2720           Ops.push_back(getMulExpr(
2721               getConstant(MulOp.first),
2722               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2723               SCEV::FlagAnyWrap, Depth + 1));
2724         }
2725       }
2726       if (Ops.empty())
2727         return getZero(Ty);
2728       if (Ops.size() == 1)
2729         return Ops[0];
2730       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2731     }
2732   }
2733 
2734   // If we are adding something to a multiply expression, make sure the
2735   // something is not already an operand of the multiply.  If so, merge it into
2736   // the multiply.
2737   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2738     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2739     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2740       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2741       if (isa<SCEVConstant>(MulOpSCEV))
2742         continue;
2743       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2744         if (MulOpSCEV == Ops[AddOp]) {
2745           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2746           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2747           if (Mul->getNumOperands() != 2) {
2748             // If the multiply has more than two operands, we must get the
2749             // Y*Z term.
2750             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2751                                                 Mul->op_begin()+MulOp);
2752             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2753             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2754           }
2755           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2756           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2757           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2758                                             SCEV::FlagAnyWrap, Depth + 1);
2759           if (Ops.size() == 2) return OuterMul;
2760           if (AddOp < Idx) {
2761             Ops.erase(Ops.begin()+AddOp);
2762             Ops.erase(Ops.begin()+Idx-1);
2763           } else {
2764             Ops.erase(Ops.begin()+Idx);
2765             Ops.erase(Ops.begin()+AddOp-1);
2766           }
2767           Ops.push_back(OuterMul);
2768           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2769         }
2770 
2771       // Check this multiply against other multiplies being added together.
2772       for (unsigned OtherMulIdx = Idx+1;
2773            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2774            ++OtherMulIdx) {
2775         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2776         // If MulOp occurs in OtherMul, we can fold the two multiplies
2777         // together.
2778         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2779              OMulOp != e; ++OMulOp)
2780           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2781             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2782             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2783             if (Mul->getNumOperands() != 2) {
2784               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2785                                                   Mul->op_begin()+MulOp);
2786               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2787               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2788             }
2789             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2790             if (OtherMul->getNumOperands() != 2) {
2791               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2792                                                   OtherMul->op_begin()+OMulOp);
2793               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2794               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2795             }
2796             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2797             const SCEV *InnerMulSum =
2798                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2799             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2800                                               SCEV::FlagAnyWrap, Depth + 1);
2801             if (Ops.size() == 2) return OuterMul;
2802             Ops.erase(Ops.begin()+Idx);
2803             Ops.erase(Ops.begin()+OtherMulIdx-1);
2804             Ops.push_back(OuterMul);
2805             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2806           }
2807       }
2808     }
2809   }
2810 
2811   // If there are any add recurrences in the operands list, see if any other
2812   // added values are loop invariant.  If so, we can fold them into the
2813   // recurrence.
2814   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2815     ++Idx;
2816 
2817   // Scan over all recurrences, trying to fold loop invariants into them.
2818   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2819     // Scan all of the other operands to this add and add them to the vector if
2820     // they are loop invariant w.r.t. the recurrence.
2821     SmallVector<const SCEV *, 8> LIOps;
2822     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2823     const Loop *AddRecLoop = AddRec->getLoop();
2824     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2825       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2826         LIOps.push_back(Ops[i]);
2827         Ops.erase(Ops.begin()+i);
2828         --i; --e;
2829       }
2830 
2831     // If we found some loop invariants, fold them into the recurrence.
2832     if (!LIOps.empty()) {
2833       // Compute nowrap flags for the addition of the loop-invariant ops and
2834       // the addrec. Temporarily push it as an operand for that purpose. These
2835       // flags are valid in the scope of the addrec only.
2836       LIOps.push_back(AddRec);
2837       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2838       LIOps.pop_back();
2839 
2840       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2841       LIOps.push_back(AddRec->getStart());
2842 
2843       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2844 
2845       // It is not in general safe to propagate flags valid on an add within
2846       // the addrec scope to one outside it.  We must prove that the inner
2847       // scope is guaranteed to execute if the outer one does to be able to
2848       // safely propagate.  We know the program is undefined if poison is
2849       // produced on the inner scoped addrec.  We also know that *for this use*
2850       // the outer scoped add can't overflow (because of the flags we just
2851       // computed for the inner scoped add) without the program being undefined.
2852       // Proving that entry to the outer scope neccesitates entry to the inner
2853       // scope, thus proves the program undefined if the flags would be violated
2854       // in the outer scope.
2855       SCEV::NoWrapFlags AddFlags = Flags;
2856       if (AddFlags != SCEV::FlagAnyWrap) {
2857         auto *DefI = getDefiningScopeBound(LIOps);
2858         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2859         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2860           AddFlags = SCEV::FlagAnyWrap;
2861       }
2862       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2863 
2864       // Build the new addrec. Propagate the NUW and NSW flags if both the
2865       // outer add and the inner addrec are guaranteed to have no overflow.
2866       // Always propagate NW.
2867       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2868       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2869 
2870       // If all of the other operands were loop invariant, we are done.
2871       if (Ops.size() == 1) return NewRec;
2872 
2873       // Otherwise, add the folded AddRec by the non-invariant parts.
2874       for (unsigned i = 0;; ++i)
2875         if (Ops[i] == AddRec) {
2876           Ops[i] = NewRec;
2877           break;
2878         }
2879       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2880     }
2881 
2882     // Okay, if there weren't any loop invariants to be folded, check to see if
2883     // there are multiple AddRec's with the same loop induction variable being
2884     // added together.  If so, we can fold them.
2885     for (unsigned OtherIdx = Idx+1;
2886          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2887          ++OtherIdx) {
2888       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2889       // so that the 1st found AddRecExpr is dominated by all others.
2890       assert(DT.dominates(
2891            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2892            AddRec->getLoop()->getHeader()) &&
2893         "AddRecExprs are not sorted in reverse dominance order?");
2894       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2895         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2896         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2897         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2898              ++OtherIdx) {
2899           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2900           if (OtherAddRec->getLoop() == AddRecLoop) {
2901             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2902                  i != e; ++i) {
2903               if (i >= AddRecOps.size()) {
2904                 AddRecOps.append(OtherAddRec->op_begin()+i,
2905                                  OtherAddRec->op_end());
2906                 break;
2907               }
2908               SmallVector<const SCEV *, 2> TwoOps = {
2909                   AddRecOps[i], OtherAddRec->getOperand(i)};
2910               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2911             }
2912             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2913           }
2914         }
2915         // Step size has changed, so we cannot guarantee no self-wraparound.
2916         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2917         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2918       }
2919     }
2920 
2921     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2922     // next one.
2923   }
2924 
2925   // Okay, it looks like we really DO need an add expr.  Check to see if we
2926   // already have one, otherwise create a new one.
2927   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2928 }
2929 
2930 const SCEV *
2931 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2932                                     SCEV::NoWrapFlags Flags) {
2933   FoldingSetNodeID ID;
2934   ID.AddInteger(scAddExpr);
2935   for (const SCEV *Op : Ops)
2936     ID.AddPointer(Op);
2937   void *IP = nullptr;
2938   SCEVAddExpr *S =
2939       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2940   if (!S) {
2941     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2942     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2943     S = new (SCEVAllocator)
2944         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2945     UniqueSCEVs.InsertNode(S, IP);
2946     registerUser(S, Ops);
2947   }
2948   S->setNoWrapFlags(Flags);
2949   return S;
2950 }
2951 
2952 const SCEV *
2953 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2954                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2955   FoldingSetNodeID ID;
2956   ID.AddInteger(scAddRecExpr);
2957   for (const SCEV *Op : Ops)
2958     ID.AddPointer(Op);
2959   ID.AddPointer(L);
2960   void *IP = nullptr;
2961   SCEVAddRecExpr *S =
2962       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2963   if (!S) {
2964     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2965     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2966     S = new (SCEVAllocator)
2967         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2968     UniqueSCEVs.InsertNode(S, IP);
2969     LoopUsers[L].push_back(S);
2970     registerUser(S, Ops);
2971   }
2972   setNoWrapFlags(S, Flags);
2973   return S;
2974 }
2975 
2976 const SCEV *
2977 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2978                                     SCEV::NoWrapFlags Flags) {
2979   FoldingSetNodeID ID;
2980   ID.AddInteger(scMulExpr);
2981   for (const SCEV *Op : Ops)
2982     ID.AddPointer(Op);
2983   void *IP = nullptr;
2984   SCEVMulExpr *S =
2985     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2986   if (!S) {
2987     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2988     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2989     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2990                                         O, Ops.size());
2991     UniqueSCEVs.InsertNode(S, IP);
2992     registerUser(S, Ops);
2993   }
2994   S->setNoWrapFlags(Flags);
2995   return S;
2996 }
2997 
2998 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2999   uint64_t k = i*j;
3000   if (j > 1 && k / j != i) Overflow = true;
3001   return k;
3002 }
3003 
3004 /// Compute the result of "n choose k", the binomial coefficient.  If an
3005 /// intermediate computation overflows, Overflow will be set and the return will
3006 /// be garbage. Overflow is not cleared on absence of overflow.
3007 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3008   // We use the multiplicative formula:
3009   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3010   // At each iteration, we take the n-th term of the numeral and divide by the
3011   // (k-n)th term of the denominator.  This division will always produce an
3012   // integral result, and helps reduce the chance of overflow in the
3013   // intermediate computations. However, we can still overflow even when the
3014   // final result would fit.
3015 
3016   if (n == 0 || n == k) return 1;
3017   if (k > n) return 0;
3018 
3019   if (k > n/2)
3020     k = n-k;
3021 
3022   uint64_t r = 1;
3023   for (uint64_t i = 1; i <= k; ++i) {
3024     r = umul_ov(r, n-(i-1), Overflow);
3025     r /= i;
3026   }
3027   return r;
3028 }
3029 
3030 /// Determine if any of the operands in this SCEV are a constant or if
3031 /// any of the add or multiply expressions in this SCEV contain a constant.
3032 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3033   struct FindConstantInAddMulChain {
3034     bool FoundConstant = false;
3035 
3036     bool follow(const SCEV *S) {
3037       FoundConstant |= isa<SCEVConstant>(S);
3038       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3039     }
3040 
3041     bool isDone() const {
3042       return FoundConstant;
3043     }
3044   };
3045 
3046   FindConstantInAddMulChain F;
3047   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3048   ST.visitAll(StartExpr);
3049   return F.FoundConstant;
3050 }
3051 
3052 /// Get a canonical multiply expression, or something simpler if possible.
3053 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3054                                         SCEV::NoWrapFlags OrigFlags,
3055                                         unsigned Depth) {
3056   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3057          "only nuw or nsw allowed");
3058   assert(!Ops.empty() && "Cannot get empty mul!");
3059   if (Ops.size() == 1) return Ops[0];
3060 #ifndef NDEBUG
3061   Type *ETy = Ops[0]->getType();
3062   assert(!ETy->isPointerTy());
3063   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3064     assert(Ops[i]->getType() == ETy &&
3065            "SCEVMulExpr operand types don't match!");
3066 #endif
3067 
3068   // Sort by complexity, this groups all similar expression types together.
3069   GroupByComplexity(Ops, &LI, DT);
3070 
3071   // If there are any constants, fold them together.
3072   unsigned Idx = 0;
3073   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3074     ++Idx;
3075     assert(Idx < Ops.size());
3076     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3077       // We found two constants, fold them together!
3078       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3079       if (Ops.size() == 2) return Ops[0];
3080       Ops.erase(Ops.begin()+1);  // Erase the folded element
3081       LHSC = cast<SCEVConstant>(Ops[0]);
3082     }
3083 
3084     // If we have a multiply of zero, it will always be zero.
3085     if (LHSC->getValue()->isZero())
3086       return LHSC;
3087 
3088     // If we are left with a constant one being multiplied, strip it off.
3089     if (LHSC->getValue()->isOne()) {
3090       Ops.erase(Ops.begin());
3091       --Idx;
3092     }
3093 
3094     if (Ops.size() == 1)
3095       return Ops[0];
3096   }
3097 
3098   // Delay expensive flag strengthening until necessary.
3099   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3100     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3101   };
3102 
3103   // Limit recursion calls depth.
3104   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3105     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3106 
3107   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3108     // Don't strengthen flags if we have no new information.
3109     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3110     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3111       Mul->setNoWrapFlags(ComputeFlags(Ops));
3112     return S;
3113   }
3114 
3115   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3116     if (Ops.size() == 2) {
3117       // C1*(C2+V) -> C1*C2 + C1*V
3118       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3119         // If any of Add's ops are Adds or Muls with a constant, apply this
3120         // transformation as well.
3121         //
3122         // TODO: There are some cases where this transformation is not
3123         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3124         // this transformation should be narrowed down.
3125         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3126           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3127                                        SCEV::FlagAnyWrap, Depth + 1);
3128           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3129                                        SCEV::FlagAnyWrap, Depth + 1);
3130           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3131         }
3132 
3133       if (Ops[0]->isAllOnesValue()) {
3134         // If we have a mul by -1 of an add, try distributing the -1 among the
3135         // add operands.
3136         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3137           SmallVector<const SCEV *, 4> NewOps;
3138           bool AnyFolded = false;
3139           for (const SCEV *AddOp : Add->operands()) {
3140             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3141                                          Depth + 1);
3142             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3143             NewOps.push_back(Mul);
3144           }
3145           if (AnyFolded)
3146             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3147         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3148           // Negation preserves a recurrence's no self-wrap property.
3149           SmallVector<const SCEV *, 4> Operands;
3150           for (const SCEV *AddRecOp : AddRec->operands())
3151             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3152                                           Depth + 1));
3153 
3154           return getAddRecExpr(Operands, AddRec->getLoop(),
3155                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3156         }
3157       }
3158     }
3159   }
3160 
3161   // Skip over the add expression until we get to a multiply.
3162   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3163     ++Idx;
3164 
3165   // If there are mul operands inline them all into this expression.
3166   if (Idx < Ops.size()) {
3167     bool DeletedMul = false;
3168     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3169       if (Ops.size() > MulOpsInlineThreshold)
3170         break;
3171       // If we have an mul, expand the mul operands onto the end of the
3172       // operands list.
3173       Ops.erase(Ops.begin()+Idx);
3174       Ops.append(Mul->op_begin(), Mul->op_end());
3175       DeletedMul = true;
3176     }
3177 
3178     // If we deleted at least one mul, we added operands to the end of the
3179     // list, and they are not necessarily sorted.  Recurse to resort and
3180     // resimplify any operands we just acquired.
3181     if (DeletedMul)
3182       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3183   }
3184 
3185   // If there are any add recurrences in the operands list, see if any other
3186   // added values are loop invariant.  If so, we can fold them into the
3187   // recurrence.
3188   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3189     ++Idx;
3190 
3191   // Scan over all recurrences, trying to fold loop invariants into them.
3192   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3193     // Scan all of the other operands to this mul and add them to the vector
3194     // if they are loop invariant w.r.t. the recurrence.
3195     SmallVector<const SCEV *, 8> LIOps;
3196     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3197     const Loop *AddRecLoop = AddRec->getLoop();
3198     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3199       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3200         LIOps.push_back(Ops[i]);
3201         Ops.erase(Ops.begin()+i);
3202         --i; --e;
3203       }
3204 
3205     // If we found some loop invariants, fold them into the recurrence.
3206     if (!LIOps.empty()) {
3207       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3208       SmallVector<const SCEV *, 4> NewOps;
3209       NewOps.reserve(AddRec->getNumOperands());
3210       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3211       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3212         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3213                                     SCEV::FlagAnyWrap, Depth + 1));
3214 
3215       // Build the new addrec. Propagate the NUW and NSW flags if both the
3216       // outer mul and the inner addrec are guaranteed to have no overflow.
3217       //
3218       // No self-wrap cannot be guaranteed after changing the step size, but
3219       // will be inferred if either NUW or NSW is true.
3220       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3221       const SCEV *NewRec = getAddRecExpr(
3222           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3223 
3224       // If all of the other operands were loop invariant, we are done.
3225       if (Ops.size() == 1) return NewRec;
3226 
3227       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3228       for (unsigned i = 0;; ++i)
3229         if (Ops[i] == AddRec) {
3230           Ops[i] = NewRec;
3231           break;
3232         }
3233       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3234     }
3235 
3236     // Okay, if there weren't any loop invariants to be folded, check to see
3237     // if there are multiple AddRec's with the same loop induction variable
3238     // being multiplied together.  If so, we can fold them.
3239 
3240     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3241     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3242     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3243     //   ]]],+,...up to x=2n}.
3244     // Note that the arguments to choose() are always integers with values
3245     // known at compile time, never SCEV objects.
3246     //
3247     // The implementation avoids pointless extra computations when the two
3248     // addrec's are of different length (mathematically, it's equivalent to
3249     // an infinite stream of zeros on the right).
3250     bool OpsModified = false;
3251     for (unsigned OtherIdx = Idx+1;
3252          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3253          ++OtherIdx) {
3254       const SCEVAddRecExpr *OtherAddRec =
3255         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3256       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3257         continue;
3258 
3259       // Limit max number of arguments to avoid creation of unreasonably big
3260       // SCEVAddRecs with very complex operands.
3261       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3262           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3263         continue;
3264 
3265       bool Overflow = false;
3266       Type *Ty = AddRec->getType();
3267       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3268       SmallVector<const SCEV*, 7> AddRecOps;
3269       for (int x = 0, xe = AddRec->getNumOperands() +
3270              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3271         SmallVector <const SCEV *, 7> SumOps;
3272         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3273           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3274           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3275                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3276                z < ze && !Overflow; ++z) {
3277             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3278             uint64_t Coeff;
3279             if (LargerThan64Bits)
3280               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3281             else
3282               Coeff = Coeff1*Coeff2;
3283             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3284             const SCEV *Term1 = AddRec->getOperand(y-z);
3285             const SCEV *Term2 = OtherAddRec->getOperand(z);
3286             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3287                                         SCEV::FlagAnyWrap, Depth + 1));
3288           }
3289         }
3290         if (SumOps.empty())
3291           SumOps.push_back(getZero(Ty));
3292         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3293       }
3294       if (!Overflow) {
3295         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3296                                               SCEV::FlagAnyWrap);
3297         if (Ops.size() == 2) return NewAddRec;
3298         Ops[Idx] = NewAddRec;
3299         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3300         OpsModified = true;
3301         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3302         if (!AddRec)
3303           break;
3304       }
3305     }
3306     if (OpsModified)
3307       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3308 
3309     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3310     // next one.
3311   }
3312 
3313   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3314   // already have one, otherwise create a new one.
3315   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3316 }
3317 
3318 /// Represents an unsigned remainder expression based on unsigned division.
3319 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3320                                          const SCEV *RHS) {
3321   assert(getEffectiveSCEVType(LHS->getType()) ==
3322          getEffectiveSCEVType(RHS->getType()) &&
3323          "SCEVURemExpr operand types don't match!");
3324 
3325   // Short-circuit easy cases
3326   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3327     // If constant is one, the result is trivial
3328     if (RHSC->getValue()->isOne())
3329       return getZero(LHS->getType()); // X urem 1 --> 0
3330 
3331     // If constant is a power of two, fold into a zext(trunc(LHS)).
3332     if (RHSC->getAPInt().isPowerOf2()) {
3333       Type *FullTy = LHS->getType();
3334       Type *TruncTy =
3335           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3336       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3337     }
3338   }
3339 
3340   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3341   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3342   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3343   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3344 }
3345 
3346 /// Get a canonical unsigned division expression, or something simpler if
3347 /// possible.
3348 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3349                                          const SCEV *RHS) {
3350   assert(!LHS->getType()->isPointerTy() &&
3351          "SCEVUDivExpr operand can't be pointer!");
3352   assert(LHS->getType() == RHS->getType() &&
3353          "SCEVUDivExpr operand types don't match!");
3354 
3355   FoldingSetNodeID ID;
3356   ID.AddInteger(scUDivExpr);
3357   ID.AddPointer(LHS);
3358   ID.AddPointer(RHS);
3359   void *IP = nullptr;
3360   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3361     return S;
3362 
3363   // 0 udiv Y == 0
3364   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3365     if (LHSC->getValue()->isZero())
3366       return LHS;
3367 
3368   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3369     if (RHSC->getValue()->isOne())
3370       return LHS;                               // X udiv 1 --> x
3371     // If the denominator is zero, the result of the udiv is undefined. Don't
3372     // try to analyze it, because the resolution chosen here may differ from
3373     // the resolution chosen in other parts of the compiler.
3374     if (!RHSC->getValue()->isZero()) {
3375       // Determine if the division can be folded into the operands of
3376       // its operands.
3377       // TODO: Generalize this to non-constants by using known-bits information.
3378       Type *Ty = LHS->getType();
3379       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3380       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3381       // For non-power-of-two values, effectively round the value up to the
3382       // nearest power of two.
3383       if (!RHSC->getAPInt().isPowerOf2())
3384         ++MaxShiftAmt;
3385       IntegerType *ExtTy =
3386         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3387       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3388         if (const SCEVConstant *Step =
3389             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3390           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3391           const APInt &StepInt = Step->getAPInt();
3392           const APInt &DivInt = RHSC->getAPInt();
3393           if (!StepInt.urem(DivInt) &&
3394               getZeroExtendExpr(AR, ExtTy) ==
3395               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3396                             getZeroExtendExpr(Step, ExtTy),
3397                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3398             SmallVector<const SCEV *, 4> Operands;
3399             for (const SCEV *Op : AR->operands())
3400               Operands.push_back(getUDivExpr(Op, RHS));
3401             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3402           }
3403           /// Get a canonical UDivExpr for a recurrence.
3404           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3405           // We can currently only fold X%N if X is constant.
3406           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3407           if (StartC && !DivInt.urem(StepInt) &&
3408               getZeroExtendExpr(AR, ExtTy) ==
3409               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3410                             getZeroExtendExpr(Step, ExtTy),
3411                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3412             const APInt &StartInt = StartC->getAPInt();
3413             const APInt &StartRem = StartInt.urem(StepInt);
3414             if (StartRem != 0) {
3415               const SCEV *NewLHS =
3416                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3417                                 AR->getLoop(), SCEV::FlagNW);
3418               if (LHS != NewLHS) {
3419                 LHS = NewLHS;
3420 
3421                 // Reset the ID to include the new LHS, and check if it is
3422                 // already cached.
3423                 ID.clear();
3424                 ID.AddInteger(scUDivExpr);
3425                 ID.AddPointer(LHS);
3426                 ID.AddPointer(RHS);
3427                 IP = nullptr;
3428                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3429                   return S;
3430               }
3431             }
3432           }
3433         }
3434       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3435       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3436         SmallVector<const SCEV *, 4> Operands;
3437         for (const SCEV *Op : M->operands())
3438           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3439         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3440           // Find an operand that's safely divisible.
3441           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3442             const SCEV *Op = M->getOperand(i);
3443             const SCEV *Div = getUDivExpr(Op, RHSC);
3444             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3445               Operands = SmallVector<const SCEV *, 4>(M->operands());
3446               Operands[i] = Div;
3447               return getMulExpr(Operands);
3448             }
3449           }
3450       }
3451 
3452       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3453       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3454         if (auto *DivisorConstant =
3455                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3456           bool Overflow = false;
3457           APInt NewRHS =
3458               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3459           if (Overflow) {
3460             return getConstant(RHSC->getType(), 0, false);
3461           }
3462           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3463         }
3464       }
3465 
3466       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3467       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3468         SmallVector<const SCEV *, 4> Operands;
3469         for (const SCEV *Op : A->operands())
3470           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3471         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3472           Operands.clear();
3473           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3474             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3475             if (isa<SCEVUDivExpr>(Op) ||
3476                 getMulExpr(Op, RHS) != A->getOperand(i))
3477               break;
3478             Operands.push_back(Op);
3479           }
3480           if (Operands.size() == A->getNumOperands())
3481             return getAddExpr(Operands);
3482         }
3483       }
3484 
3485       // Fold if both operands are constant.
3486       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3487         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3488     }
3489   }
3490 
3491   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3492   // changes). Make sure we get a new one.
3493   IP = nullptr;
3494   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3495   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3496                                              LHS, RHS);
3497   UniqueSCEVs.InsertNode(S, IP);
3498   registerUser(S, {LHS, RHS});
3499   return S;
3500 }
3501 
3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3503   APInt A = C1->getAPInt().abs();
3504   APInt B = C2->getAPInt().abs();
3505   uint32_t ABW = A.getBitWidth();
3506   uint32_t BBW = B.getBitWidth();
3507 
3508   if (ABW > BBW)
3509     B = B.zext(ABW);
3510   else if (ABW < BBW)
3511     A = A.zext(BBW);
3512 
3513   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3514 }
3515 
3516 /// Get a canonical unsigned division expression, or something simpler if
3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3518 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3519 /// it's not exact because the udiv may be clearing bits.
3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3521                                               const SCEV *RHS) {
3522   // TODO: we could try to find factors in all sorts of things, but for now we
3523   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3524   // end of this file for inspiration.
3525 
3526   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3527   if (!Mul || !Mul->hasNoUnsignedWrap())
3528     return getUDivExpr(LHS, RHS);
3529 
3530   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3531     // If the mulexpr multiplies by a constant, then that constant must be the
3532     // first element of the mulexpr.
3533     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3534       if (LHSCst == RHSCst) {
3535         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3536         return getMulExpr(Operands);
3537       }
3538 
3539       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3540       // that there's a factor provided by one of the other terms. We need to
3541       // check.
3542       APInt Factor = gcd(LHSCst, RHSCst);
3543       if (!Factor.isIntN(1)) {
3544         LHSCst =
3545             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3546         RHSCst =
3547             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3548         SmallVector<const SCEV *, 2> Operands;
3549         Operands.push_back(LHSCst);
3550         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3551         LHS = getMulExpr(Operands);
3552         RHS = RHSCst;
3553         Mul = dyn_cast<SCEVMulExpr>(LHS);
3554         if (!Mul)
3555           return getUDivExactExpr(LHS, RHS);
3556       }
3557     }
3558   }
3559 
3560   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3561     if (Mul->getOperand(i) == RHS) {
3562       SmallVector<const SCEV *, 2> Operands;
3563       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3564       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3565       return getMulExpr(Operands);
3566     }
3567   }
3568 
3569   return getUDivExpr(LHS, RHS);
3570 }
3571 
3572 /// Get an add recurrence expression for the specified loop.  Simplify the
3573 /// expression as much as possible.
3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3575                                            const Loop *L,
3576                                            SCEV::NoWrapFlags Flags) {
3577   SmallVector<const SCEV *, 4> Operands;
3578   Operands.push_back(Start);
3579   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3580     if (StepChrec->getLoop() == L) {
3581       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3582       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3583     }
3584 
3585   Operands.push_back(Step);
3586   return getAddRecExpr(Operands, L, Flags);
3587 }
3588 
3589 /// Get an add recurrence expression for the specified loop.  Simplify the
3590 /// expression as much as possible.
3591 const SCEV *
3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3593                                const Loop *L, SCEV::NoWrapFlags Flags) {
3594   if (Operands.size() == 1) return Operands[0];
3595 #ifndef NDEBUG
3596   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3597   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3598     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3599            "SCEVAddRecExpr operand types don't match!");
3600     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3601   }
3602   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3603     assert(isLoopInvariant(Operands[i], L) &&
3604            "SCEVAddRecExpr operand is not loop-invariant!");
3605 #endif
3606 
3607   if (Operands.back()->isZero()) {
3608     Operands.pop_back();
3609     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3610   }
3611 
3612   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3613   // use that information to infer NUW and NSW flags. However, computing a
3614   // BE count requires calling getAddRecExpr, so we may not yet have a
3615   // meaningful BE count at this point (and if we don't, we'd be stuck
3616   // with a SCEVCouldNotCompute as the cached BE count).
3617 
3618   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3619 
3620   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3621   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3622     const Loop *NestedLoop = NestedAR->getLoop();
3623     if (L->contains(NestedLoop)
3624             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3625             : (!NestedLoop->contains(L) &&
3626                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3627       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3628       Operands[0] = NestedAR->getStart();
3629       // AddRecs require their operands be loop-invariant with respect to their
3630       // loops. Don't perform this transformation if it would break this
3631       // requirement.
3632       bool AllInvariant = all_of(
3633           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3634 
3635       if (AllInvariant) {
3636         // Create a recurrence for the outer loop with the same step size.
3637         //
3638         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3639         // inner recurrence has the same property.
3640         SCEV::NoWrapFlags OuterFlags =
3641           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3642 
3643         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3644         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3645           return isLoopInvariant(Op, NestedLoop);
3646         });
3647 
3648         if (AllInvariant) {
3649           // Ok, both add recurrences are valid after the transformation.
3650           //
3651           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3652           // the outer recurrence has the same property.
3653           SCEV::NoWrapFlags InnerFlags =
3654             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3655           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3656         }
3657       }
3658       // Reset Operands to its original state.
3659       Operands[0] = NestedAR;
3660     }
3661   }
3662 
3663   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3664   // already have one, otherwise create a new one.
3665   return getOrCreateAddRecExpr(Operands, L, Flags);
3666 }
3667 
3668 const SCEV *
3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3670                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3671   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3672   // getSCEV(Base)->getType() has the same address space as Base->getType()
3673   // because SCEV::getType() preserves the address space.
3674   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3675   const bool AssumeInBoundsFlags = [&]() {
3676     if (!GEP->isInBounds())
3677       return false;
3678 
3679     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3680     // but to do that, we have to ensure that said flag is valid in the entire
3681     // defined scope of the SCEV.
3682     auto *GEPI = dyn_cast<Instruction>(GEP);
3683     // TODO: non-instructions have global scope.  We might be able to prove
3684     // some global scope cases
3685     return GEPI && isSCEVExprNeverPoison(GEPI);
3686   }();
3687 
3688   SCEV::NoWrapFlags OffsetWrap =
3689     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3690 
3691   Type *CurTy = GEP->getType();
3692   bool FirstIter = true;
3693   SmallVector<const SCEV *, 4> Offsets;
3694   for (const SCEV *IndexExpr : IndexExprs) {
3695     // Compute the (potentially symbolic) offset in bytes for this index.
3696     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3697       // For a struct, add the member offset.
3698       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3699       unsigned FieldNo = Index->getZExtValue();
3700       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3701       Offsets.push_back(FieldOffset);
3702 
3703       // Update CurTy to the type of the field at Index.
3704       CurTy = STy->getTypeAtIndex(Index);
3705     } else {
3706       // Update CurTy to its element type.
3707       if (FirstIter) {
3708         assert(isa<PointerType>(CurTy) &&
3709                "The first index of a GEP indexes a pointer");
3710         CurTy = GEP->getSourceElementType();
3711         FirstIter = false;
3712       } else {
3713         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3714       }
3715       // For an array, add the element offset, explicitly scaled.
3716       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3717       // Getelementptr indices are signed.
3718       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3719 
3720       // Multiply the index by the element size to compute the element offset.
3721       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3722       Offsets.push_back(LocalOffset);
3723     }
3724   }
3725 
3726   // Handle degenerate case of GEP without offsets.
3727   if (Offsets.empty())
3728     return BaseExpr;
3729 
3730   // Add the offsets together, assuming nsw if inbounds.
3731   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3732   // Add the base address and the offset. We cannot use the nsw flag, as the
3733   // base address is unsigned. However, if we know that the offset is
3734   // non-negative, we can use nuw.
3735   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3736                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3737   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3738   assert(BaseExpr->getType() == GEPExpr->getType() &&
3739          "GEP should not change type mid-flight.");
3740   return GEPExpr;
3741 }
3742 
3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3744                                                ArrayRef<const SCEV *> Ops) {
3745   FoldingSetNodeID ID;
3746   ID.AddInteger(SCEVType);
3747   for (const SCEV *Op : Ops)
3748     ID.AddPointer(Op);
3749   void *IP = nullptr;
3750   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3751 }
3752 
3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3754   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3755   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3756 }
3757 
3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3759                                            SmallVectorImpl<const SCEV *> &Ops) {
3760   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3761   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3762   if (Ops.size() == 1) return Ops[0];
3763 #ifndef NDEBUG
3764   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3765   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3766     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3767            "Operand types don't match!");
3768     assert(Ops[0]->getType()->isPointerTy() ==
3769                Ops[i]->getType()->isPointerTy() &&
3770            "min/max should be consistently pointerish");
3771   }
3772 #endif
3773 
3774   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3775   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3776 
3777   // Sort by complexity, this groups all similar expression types together.
3778   GroupByComplexity(Ops, &LI, DT);
3779 
3780   // Check if we have created the same expression before.
3781   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3782     return S;
3783   }
3784 
3785   // If there are any constants, fold them together.
3786   unsigned Idx = 0;
3787   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3788     ++Idx;
3789     assert(Idx < Ops.size());
3790     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3791       if (Kind == scSMaxExpr)
3792         return APIntOps::smax(LHS, RHS);
3793       else if (Kind == scSMinExpr)
3794         return APIntOps::smin(LHS, RHS);
3795       else if (Kind == scUMaxExpr)
3796         return APIntOps::umax(LHS, RHS);
3797       else if (Kind == scUMinExpr)
3798         return APIntOps::umin(LHS, RHS);
3799       llvm_unreachable("Unknown SCEV min/max opcode");
3800     };
3801 
3802     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3803       // We found two constants, fold them together!
3804       ConstantInt *Fold = ConstantInt::get(
3805           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3806       Ops[0] = getConstant(Fold);
3807       Ops.erase(Ops.begin()+1);  // Erase the folded element
3808       if (Ops.size() == 1) return Ops[0];
3809       LHSC = cast<SCEVConstant>(Ops[0]);
3810     }
3811 
3812     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3813     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3814 
3815     if (IsMax ? IsMinV : IsMaxV) {
3816       // If we are left with a constant minimum(/maximum)-int, strip it off.
3817       Ops.erase(Ops.begin());
3818       --Idx;
3819     } else if (IsMax ? IsMaxV : IsMinV) {
3820       // If we have a max(/min) with a constant maximum(/minimum)-int,
3821       // it will always be the extremum.
3822       return LHSC;
3823     }
3824 
3825     if (Ops.size() == 1) return Ops[0];
3826   }
3827 
3828   // Find the first operation of the same kind
3829   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3830     ++Idx;
3831 
3832   // Check to see if one of the operands is of the same kind. If so, expand its
3833   // operands onto our operand list, and recurse to simplify.
3834   if (Idx < Ops.size()) {
3835     bool DeletedAny = false;
3836     while (Ops[Idx]->getSCEVType() == Kind) {
3837       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3838       Ops.erase(Ops.begin()+Idx);
3839       Ops.append(SMME->op_begin(), SMME->op_end());
3840       DeletedAny = true;
3841     }
3842 
3843     if (DeletedAny)
3844       return getMinMaxExpr(Kind, Ops);
3845   }
3846 
3847   // Okay, check to see if the same value occurs in the operand list twice.  If
3848   // so, delete one.  Since we sorted the list, these values are required to
3849   // be adjacent.
3850   llvm::CmpInst::Predicate GEPred =
3851       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3852   llvm::CmpInst::Predicate LEPred =
3853       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3854   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3855   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3856   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3857     if (Ops[i] == Ops[i + 1] ||
3858         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3859       //  X op Y op Y  -->  X op Y
3860       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3861       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3862       --i;
3863       --e;
3864     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3865                                                Ops[i + 1])) {
3866       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3867       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3868       --i;
3869       --e;
3870     }
3871   }
3872 
3873   if (Ops.size() == 1) return Ops[0];
3874 
3875   assert(!Ops.empty() && "Reduced smax down to nothing!");
3876 
3877   // Okay, it looks like we really DO need an expr.  Check to see if we
3878   // already have one, otherwise create a new one.
3879   FoldingSetNodeID ID;
3880   ID.AddInteger(Kind);
3881   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3882     ID.AddPointer(Ops[i]);
3883   void *IP = nullptr;
3884   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3885   if (ExistingSCEV)
3886     return ExistingSCEV;
3887   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3888   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3889   SCEV *S = new (SCEVAllocator)
3890       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3891 
3892   UniqueSCEVs.InsertNode(S, IP);
3893   registerUser(S, Ops);
3894   return S;
3895 }
3896 
3897 namespace {
3898 
3899 class SCEVSequentialMinMaxDeduplicatingVisitor final
3900     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3901                          Optional<const SCEV *>> {
3902   using RetVal = Optional<const SCEV *>;
3903   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3904 
3905   ScalarEvolution &SE;
3906   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3907   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3908   SmallPtrSet<const SCEV *, 16> SeenOps;
3909 
3910   bool canRecurseInto(SCEVTypes Kind) const {
3911     // We can only recurse into the SCEV expression of the same effective type
3912     // as the type of our root SCEV expression.
3913     return RootKind == Kind || NonSequentialRootKind == Kind;
3914   };
3915 
3916   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3917     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3918            "Only for min/max expressions.");
3919     SCEVTypes Kind = S->getSCEVType();
3920 
3921     if (!canRecurseInto(Kind))
3922       return S;
3923 
3924     auto *NAry = cast<SCEVNAryExpr>(S);
3925     SmallVector<const SCEV *> NewOps;
3926     bool Changed =
3927         visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps);
3928 
3929     if (!Changed)
3930       return S;
3931     if (NewOps.empty())
3932       return None;
3933 
3934     return isa<SCEVSequentialMinMaxExpr>(S)
3935                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3936                : SE.getMinMaxExpr(Kind, NewOps);
3937   }
3938 
3939   RetVal visit(const SCEV *S) {
3940     // Has the whole operand been seen already?
3941     if (!SeenOps.insert(S).second)
3942       return None;
3943     return Base::visit(S);
3944   }
3945 
3946 public:
3947   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
3948                                            SCEVTypes RootKind)
3949       : SE(SE), RootKind(RootKind),
3950         NonSequentialRootKind(
3951             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
3952                 RootKind)) {}
3953 
3954   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
3955                          SmallVectorImpl<const SCEV *> &NewOps) {
3956     bool Changed = false;
3957     SmallVector<const SCEV *> Ops;
3958     Ops.reserve(OrigOps.size());
3959 
3960     for (const SCEV *Op : OrigOps) {
3961       RetVal NewOp = visit(Op);
3962       if (NewOp != Op)
3963         Changed = true;
3964       if (NewOp)
3965         Ops.emplace_back(*NewOp);
3966     }
3967 
3968     if (Changed)
3969       NewOps = std::move(Ops);
3970     return Changed;
3971   }
3972 
3973   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
3974 
3975   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
3976 
3977   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
3978 
3979   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
3980 
3981   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
3982 
3983   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
3984 
3985   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
3986 
3987   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
3988 
3989   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
3990 
3991   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
3992     return visitAnyMinMaxExpr(Expr);
3993   }
3994 
3995   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
3996     return visitAnyMinMaxExpr(Expr);
3997   }
3998 
3999   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4000     return visitAnyMinMaxExpr(Expr);
4001   }
4002 
4003   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4004     return visitAnyMinMaxExpr(Expr);
4005   }
4006 
4007   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4008     return visitAnyMinMaxExpr(Expr);
4009   }
4010 
4011   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4012 
4013   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4014 };
4015 
4016 } // namespace
4017 
4018 /// Return true if V is poison given that AssumedPoison is already poison.
4019 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4020   // The only way poison may be introduced in a SCEV expression is from a
4021   // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4022   // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4023   // introduce poison -- they encode guaranteed, non-speculated knowledge.
4024   //
4025   // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4026   // with the notable exception of umin_seq, where only poison from the first
4027   // operand is (unconditionally) propagated.
4028   struct SCEVPoisonCollector {
4029     bool LookThroughSeq;
4030     SmallPtrSet<const SCEV *, 4> MaybePoison;
4031     SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {}
4032 
4033     bool follow(const SCEV *S) {
4034       // TODO: We can always follow the first operand, but the SCEVTraversal
4035       // API doesn't support this.
4036       if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S))
4037         return false;
4038 
4039       if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4040         if (!isGuaranteedNotToBePoison(SU->getValue()))
4041           MaybePoison.insert(S);
4042       }
4043       return true;
4044     }
4045     bool isDone() const { return false; }
4046   };
4047 
4048   // First collect all SCEVs that might result in AssumedPoison to be poison.
4049   // We need to look through umin_seq here, because we want to find all SCEVs
4050   // that *might* result in poison, not only those that are *required* to.
4051   SCEVPoisonCollector PC1(/* LookThroughSeq */ true);
4052   visitAll(AssumedPoison, PC1);
4053 
4054   // AssumedPoison is never poison. As the assumption is false, the implication
4055   // is true. Don't bother walking the other SCEV in this case.
4056   if (PC1.MaybePoison.empty())
4057     return true;
4058 
4059   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4060   // as well. We cannot look through umin_seq here, as its argument only *may*
4061   // make the result poison.
4062   SCEVPoisonCollector PC2(/* LookThroughSeq */ false);
4063   visitAll(S, PC2);
4064 
4065   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4066   // it will also make S poison by being part of PC2.MaybePoison.
4067   return all_of(PC1.MaybePoison,
4068                 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); });
4069 }
4070 
4071 const SCEV *
4072 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4073                                          SmallVectorImpl<const SCEV *> &Ops) {
4074   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4075          "Not a SCEVSequentialMinMaxExpr!");
4076   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4077   if (Ops.size() == 1)
4078     return Ops[0];
4079 #ifndef NDEBUG
4080   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4081   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4082     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4083            "Operand types don't match!");
4084     assert(Ops[0]->getType()->isPointerTy() ==
4085                Ops[i]->getType()->isPointerTy() &&
4086            "min/max should be consistently pointerish");
4087   }
4088 #endif
4089 
4090   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4091   // so we can *NOT* do any kind of sorting of the expressions!
4092 
4093   // Check if we have created the same expression before.
4094   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4095     return S;
4096 
4097   // FIXME: there are *some* simplifications that we can do here.
4098 
4099   // Keep only the first instance of an operand.
4100   {
4101     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4102     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4103     if (Changed)
4104       return getSequentialMinMaxExpr(Kind, Ops);
4105   }
4106 
4107   // Check to see if one of the operands is of the same kind. If so, expand its
4108   // operands onto our operand list, and recurse to simplify.
4109   {
4110     unsigned Idx = 0;
4111     bool DeletedAny = false;
4112     while (Idx < Ops.size()) {
4113       if (Ops[Idx]->getSCEVType() != Kind) {
4114         ++Idx;
4115         continue;
4116       }
4117       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4118       Ops.erase(Ops.begin() + Idx);
4119       Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end());
4120       DeletedAny = true;
4121     }
4122 
4123     if (DeletedAny)
4124       return getSequentialMinMaxExpr(Kind, Ops);
4125   }
4126 
4127   const SCEV *SaturationPoint;
4128   ICmpInst::Predicate Pred;
4129   switch (Kind) {
4130   case scSequentialUMinExpr:
4131     SaturationPoint = getZero(Ops[0]->getType());
4132     Pred = ICmpInst::ICMP_ULE;
4133     break;
4134   default:
4135     llvm_unreachable("Not a sequential min/max type.");
4136   }
4137 
4138   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4139     // We can replace %x umin_seq %y with %x umin %y if either:
4140     //  * %y being poison implies %x is also poison.
4141     //  * %x cannot be the saturating value (e.g. zero for umin).
4142     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4143         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4144                                         SaturationPoint)) {
4145       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4146       Ops[i - 1] = getMinMaxExpr(
4147           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4148           SeqOps);
4149       Ops.erase(Ops.begin() + i);
4150       return getSequentialMinMaxExpr(Kind, Ops);
4151     }
4152     // Fold %x umin_seq %y to %x if %x ule %y.
4153     // TODO: We might be able to prove the predicate for a later operand.
4154     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4155       Ops.erase(Ops.begin() + i);
4156       return getSequentialMinMaxExpr(Kind, Ops);
4157     }
4158   }
4159 
4160   // Okay, it looks like we really DO need an expr.  Check to see if we
4161   // already have one, otherwise create a new one.
4162   FoldingSetNodeID ID;
4163   ID.AddInteger(Kind);
4164   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4165     ID.AddPointer(Ops[i]);
4166   void *IP = nullptr;
4167   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4168   if (ExistingSCEV)
4169     return ExistingSCEV;
4170 
4171   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4172   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4173   SCEV *S = new (SCEVAllocator)
4174       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4175 
4176   UniqueSCEVs.InsertNode(S, IP);
4177   registerUser(S, Ops);
4178   return S;
4179 }
4180 
4181 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4182   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4183   return getSMaxExpr(Ops);
4184 }
4185 
4186 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4187   return getMinMaxExpr(scSMaxExpr, Ops);
4188 }
4189 
4190 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4191   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4192   return getUMaxExpr(Ops);
4193 }
4194 
4195 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4196   return getMinMaxExpr(scUMaxExpr, Ops);
4197 }
4198 
4199 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4200                                          const SCEV *RHS) {
4201   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4202   return getSMinExpr(Ops);
4203 }
4204 
4205 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4206   return getMinMaxExpr(scSMinExpr, Ops);
4207 }
4208 
4209 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4210                                          bool Sequential) {
4211   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4212   return getUMinExpr(Ops, Sequential);
4213 }
4214 
4215 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4216                                          bool Sequential) {
4217   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4218                     : getMinMaxExpr(scUMinExpr, Ops);
4219 }
4220 
4221 const SCEV *
4222 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4223                                              ScalableVectorType *ScalableTy) {
4224   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4225   Constant *One = ConstantInt::get(IntTy, 1);
4226   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4227   // Note that the expression we created is the final expression, we don't
4228   // want to simplify it any further Also, if we call a normal getSCEV(),
4229   // we'll end up in an endless recursion. So just create an SCEVUnknown.
4230   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4231 }
4232 
4233 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4234   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4235     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4236   // We can bypass creating a target-independent constant expression and then
4237   // folding it back into a ConstantInt. This is just a compile-time
4238   // optimization.
4239   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4240 }
4241 
4242 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4243   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4244     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4245   // We can bypass creating a target-independent constant expression and then
4246   // folding it back into a ConstantInt. This is just a compile-time
4247   // optimization.
4248   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4249 }
4250 
4251 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4252                                              StructType *STy,
4253                                              unsigned FieldNo) {
4254   // We can bypass creating a target-independent constant expression and then
4255   // folding it back into a ConstantInt. This is just a compile-time
4256   // optimization.
4257   return getConstant(
4258       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4259 }
4260 
4261 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4262   // Don't attempt to do anything other than create a SCEVUnknown object
4263   // here.  createSCEV only calls getUnknown after checking for all other
4264   // interesting possibilities, and any other code that calls getUnknown
4265   // is doing so in order to hide a value from SCEV canonicalization.
4266 
4267   FoldingSetNodeID ID;
4268   ID.AddInteger(scUnknown);
4269   ID.AddPointer(V);
4270   void *IP = nullptr;
4271   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4272     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4273            "Stale SCEVUnknown in uniquing map!");
4274     return S;
4275   }
4276   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4277                                             FirstUnknown);
4278   FirstUnknown = cast<SCEVUnknown>(S);
4279   UniqueSCEVs.InsertNode(S, IP);
4280   return S;
4281 }
4282 
4283 //===----------------------------------------------------------------------===//
4284 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4285 //
4286 
4287 /// Test if values of the given type are analyzable within the SCEV
4288 /// framework. This primarily includes integer types, and it can optionally
4289 /// include pointer types if the ScalarEvolution class has access to
4290 /// target-specific information.
4291 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4292   // Integers and pointers are always SCEVable.
4293   return Ty->isIntOrPtrTy();
4294 }
4295 
4296 /// Return the size in bits of the specified type, for which isSCEVable must
4297 /// return true.
4298 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4299   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4300   if (Ty->isPointerTy())
4301     return getDataLayout().getIndexTypeSizeInBits(Ty);
4302   return getDataLayout().getTypeSizeInBits(Ty);
4303 }
4304 
4305 /// Return a type with the same bitwidth as the given type and which represents
4306 /// how SCEV will treat the given type, for which isSCEVable must return
4307 /// true. For pointer types, this is the pointer index sized integer type.
4308 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4309   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4310 
4311   if (Ty->isIntegerTy())
4312     return Ty;
4313 
4314   // The only other support type is pointer.
4315   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4316   return getDataLayout().getIndexType(Ty);
4317 }
4318 
4319 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4320   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4321 }
4322 
4323 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4324                                                          const SCEV *B) {
4325   /// For a valid use point to exist, the defining scope of one operand
4326   /// must dominate the other.
4327   bool PreciseA, PreciseB;
4328   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4329   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4330   if (!PreciseA || !PreciseB)
4331     // Can't tell.
4332     return false;
4333   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4334     DT.dominates(ScopeB, ScopeA);
4335 }
4336 
4337 
4338 const SCEV *ScalarEvolution::getCouldNotCompute() {
4339   return CouldNotCompute.get();
4340 }
4341 
4342 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4343   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4344     auto *SU = dyn_cast<SCEVUnknown>(S);
4345     return SU && SU->getValue() == nullptr;
4346   });
4347 
4348   return !ContainsNulls;
4349 }
4350 
4351 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4352   HasRecMapType::iterator I = HasRecMap.find(S);
4353   if (I != HasRecMap.end())
4354     return I->second;
4355 
4356   bool FoundAddRec =
4357       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4358   HasRecMap.insert({S, FoundAddRec});
4359   return FoundAddRec;
4360 }
4361 
4362 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4363 /// by the value and offset from any ValueOffsetPair in the set.
4364 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4365   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4366   if (SI == ExprValueMap.end())
4367     return None;
4368 #ifndef NDEBUG
4369   if (VerifySCEVMap) {
4370     // Check there is no dangling Value in the set returned.
4371     for (Value *V : SI->second)
4372       assert(ValueExprMap.count(V));
4373   }
4374 #endif
4375   return SI->second.getArrayRef();
4376 }
4377 
4378 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4379 /// cannot be used separately. eraseValueFromMap should be used to remove
4380 /// V from ValueExprMap and ExprValueMap at the same time.
4381 void ScalarEvolution::eraseValueFromMap(Value *V) {
4382   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4383   if (I != ValueExprMap.end()) {
4384     auto EVIt = ExprValueMap.find(I->second);
4385     bool Removed = EVIt->second.remove(V);
4386     (void) Removed;
4387     assert(Removed && "Value not in ExprValueMap?");
4388     ValueExprMap.erase(I);
4389   }
4390 }
4391 
4392 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4393   // A recursive query may have already computed the SCEV. It should be
4394   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4395   // inferred nowrap flags.
4396   auto It = ValueExprMap.find_as(V);
4397   if (It == ValueExprMap.end()) {
4398     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4399     ExprValueMap[S].insert(V);
4400   }
4401 }
4402 
4403 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4404 /// create a new one.
4405 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4406   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4407 
4408   if (const SCEV *S = getExistingSCEV(V))
4409     return S;
4410   return createSCEVIter(V);
4411 }
4412 
4413 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4414   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4415 
4416   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4417   if (I != ValueExprMap.end()) {
4418     const SCEV *S = I->second;
4419     assert(checkValidity(S) &&
4420            "existing SCEV has not been properly invalidated");
4421     return S;
4422   }
4423   return nullptr;
4424 }
4425 
4426 /// Return a SCEV corresponding to -V = -1*V
4427 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4428                                              SCEV::NoWrapFlags Flags) {
4429   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4430     return getConstant(
4431                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4432 
4433   Type *Ty = V->getType();
4434   Ty = getEffectiveSCEVType(Ty);
4435   return getMulExpr(V, getMinusOne(Ty), Flags);
4436 }
4437 
4438 /// If Expr computes ~A, return A else return nullptr
4439 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4440   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4441   if (!Add || Add->getNumOperands() != 2 ||
4442       !Add->getOperand(0)->isAllOnesValue())
4443     return nullptr;
4444 
4445   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4446   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4447       !AddRHS->getOperand(0)->isAllOnesValue())
4448     return nullptr;
4449 
4450   return AddRHS->getOperand(1);
4451 }
4452 
4453 /// Return a SCEV corresponding to ~V = -1-V
4454 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4455   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4456 
4457   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4458     return getConstant(
4459                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4460 
4461   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4462   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4463     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4464       SmallVector<const SCEV *, 2> MatchedOperands;
4465       for (const SCEV *Operand : MME->operands()) {
4466         const SCEV *Matched = MatchNotExpr(Operand);
4467         if (!Matched)
4468           return (const SCEV *)nullptr;
4469         MatchedOperands.push_back(Matched);
4470       }
4471       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4472                            MatchedOperands);
4473     };
4474     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4475       return Replaced;
4476   }
4477 
4478   Type *Ty = V->getType();
4479   Ty = getEffectiveSCEVType(Ty);
4480   return getMinusSCEV(getMinusOne(Ty), V);
4481 }
4482 
4483 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4484   assert(P->getType()->isPointerTy());
4485 
4486   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4487     // The base of an AddRec is the first operand.
4488     SmallVector<const SCEV *> Ops{AddRec->operands()};
4489     Ops[0] = removePointerBase(Ops[0]);
4490     // Don't try to transfer nowrap flags for now. We could in some cases
4491     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4492     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4493   }
4494   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4495     // The base of an Add is the pointer operand.
4496     SmallVector<const SCEV *> Ops{Add->operands()};
4497     const SCEV **PtrOp = nullptr;
4498     for (const SCEV *&AddOp : Ops) {
4499       if (AddOp->getType()->isPointerTy()) {
4500         assert(!PtrOp && "Cannot have multiple pointer ops");
4501         PtrOp = &AddOp;
4502       }
4503     }
4504     *PtrOp = removePointerBase(*PtrOp);
4505     // Don't try to transfer nowrap flags for now. We could in some cases
4506     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4507     return getAddExpr(Ops);
4508   }
4509   // Any other expression must be a pointer base.
4510   return getZero(P->getType());
4511 }
4512 
4513 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4514                                           SCEV::NoWrapFlags Flags,
4515                                           unsigned Depth) {
4516   // Fast path: X - X --> 0.
4517   if (LHS == RHS)
4518     return getZero(LHS->getType());
4519 
4520   // If we subtract two pointers with different pointer bases, bail.
4521   // Eventually, we're going to add an assertion to getMulExpr that we
4522   // can't multiply by a pointer.
4523   if (RHS->getType()->isPointerTy()) {
4524     if (!LHS->getType()->isPointerTy() ||
4525         getPointerBase(LHS) != getPointerBase(RHS))
4526       return getCouldNotCompute();
4527     LHS = removePointerBase(LHS);
4528     RHS = removePointerBase(RHS);
4529   }
4530 
4531   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4532   // makes it so that we cannot make much use of NUW.
4533   auto AddFlags = SCEV::FlagAnyWrap;
4534   const bool RHSIsNotMinSigned =
4535       !getSignedRangeMin(RHS).isMinSignedValue();
4536   if (hasFlags(Flags, SCEV::FlagNSW)) {
4537     // Let M be the minimum representable signed value. Then (-1)*RHS
4538     // signed-wraps if and only if RHS is M. That can happen even for
4539     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4540     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4541     // (-1)*RHS, we need to prove that RHS != M.
4542     //
4543     // If LHS is non-negative and we know that LHS - RHS does not
4544     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4545     // either by proving that RHS > M or that LHS >= 0.
4546     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4547       AddFlags = SCEV::FlagNSW;
4548     }
4549   }
4550 
4551   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4552   // RHS is NSW and LHS >= 0.
4553   //
4554   // The difficulty here is that the NSW flag may have been proven
4555   // relative to a loop that is to be found in a recurrence in LHS and
4556   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4557   // larger scope than intended.
4558   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4559 
4560   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4561 }
4562 
4563 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4564                                                      unsigned Depth) {
4565   Type *SrcTy = V->getType();
4566   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4567          "Cannot truncate or zero extend with non-integer arguments!");
4568   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4569     return V;  // No conversion
4570   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4571     return getTruncateExpr(V, Ty, Depth);
4572   return getZeroExtendExpr(V, Ty, Depth);
4573 }
4574 
4575 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4576                                                      unsigned Depth) {
4577   Type *SrcTy = V->getType();
4578   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4579          "Cannot truncate or zero extend with non-integer arguments!");
4580   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4581     return V;  // No conversion
4582   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4583     return getTruncateExpr(V, Ty, Depth);
4584   return getSignExtendExpr(V, Ty, Depth);
4585 }
4586 
4587 const SCEV *
4588 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4589   Type *SrcTy = V->getType();
4590   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4591          "Cannot noop or zero extend with non-integer arguments!");
4592   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4593          "getNoopOrZeroExtend cannot truncate!");
4594   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4595     return V;  // No conversion
4596   return getZeroExtendExpr(V, Ty);
4597 }
4598 
4599 const SCEV *
4600 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4601   Type *SrcTy = V->getType();
4602   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4603          "Cannot noop or sign extend with non-integer arguments!");
4604   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4605          "getNoopOrSignExtend cannot truncate!");
4606   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4607     return V;  // No conversion
4608   return getSignExtendExpr(V, Ty);
4609 }
4610 
4611 const SCEV *
4612 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4613   Type *SrcTy = V->getType();
4614   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4615          "Cannot noop or any extend with non-integer arguments!");
4616   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4617          "getNoopOrAnyExtend cannot truncate!");
4618   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4619     return V;  // No conversion
4620   return getAnyExtendExpr(V, Ty);
4621 }
4622 
4623 const SCEV *
4624 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4625   Type *SrcTy = V->getType();
4626   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4627          "Cannot truncate or noop with non-integer arguments!");
4628   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4629          "getTruncateOrNoop cannot extend!");
4630   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4631     return V;  // No conversion
4632   return getTruncateExpr(V, Ty);
4633 }
4634 
4635 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4636                                                         const SCEV *RHS) {
4637   const SCEV *PromotedLHS = LHS;
4638   const SCEV *PromotedRHS = RHS;
4639 
4640   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4641     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4642   else
4643     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4644 
4645   return getUMaxExpr(PromotedLHS, PromotedRHS);
4646 }
4647 
4648 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4649                                                         const SCEV *RHS,
4650                                                         bool Sequential) {
4651   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4652   return getUMinFromMismatchedTypes(Ops, Sequential);
4653 }
4654 
4655 const SCEV *
4656 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4657                                             bool Sequential) {
4658   assert(!Ops.empty() && "At least one operand must be!");
4659   // Trivial case.
4660   if (Ops.size() == 1)
4661     return Ops[0];
4662 
4663   // Find the max type first.
4664   Type *MaxType = nullptr;
4665   for (const auto *S : Ops)
4666     if (MaxType)
4667       MaxType = getWiderType(MaxType, S->getType());
4668     else
4669       MaxType = S->getType();
4670   assert(MaxType && "Failed to find maximum type!");
4671 
4672   // Extend all ops to max type.
4673   SmallVector<const SCEV *, 2> PromotedOps;
4674   for (const auto *S : Ops)
4675     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4676 
4677   // Generate umin.
4678   return getUMinExpr(PromotedOps, Sequential);
4679 }
4680 
4681 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4682   // A pointer operand may evaluate to a nonpointer expression, such as null.
4683   if (!V->getType()->isPointerTy())
4684     return V;
4685 
4686   while (true) {
4687     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4688       V = AddRec->getStart();
4689     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4690       const SCEV *PtrOp = nullptr;
4691       for (const SCEV *AddOp : Add->operands()) {
4692         if (AddOp->getType()->isPointerTy()) {
4693           assert(!PtrOp && "Cannot have multiple pointer ops");
4694           PtrOp = AddOp;
4695         }
4696       }
4697       assert(PtrOp && "Must have pointer op");
4698       V = PtrOp;
4699     } else // Not something we can look further into.
4700       return V;
4701   }
4702 }
4703 
4704 /// Push users of the given Instruction onto the given Worklist.
4705 static void PushDefUseChildren(Instruction *I,
4706                                SmallVectorImpl<Instruction *> &Worklist,
4707                                SmallPtrSetImpl<Instruction *> &Visited) {
4708   // Push the def-use children onto the Worklist stack.
4709   for (User *U : I->users()) {
4710     auto *UserInsn = cast<Instruction>(U);
4711     if (Visited.insert(UserInsn).second)
4712       Worklist.push_back(UserInsn);
4713   }
4714 }
4715 
4716 namespace {
4717 
4718 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4719 /// expression in case its Loop is L. If it is not L then
4720 /// if IgnoreOtherLoops is true then use AddRec itself
4721 /// otherwise rewrite cannot be done.
4722 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4723 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4724 public:
4725   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4726                              bool IgnoreOtherLoops = true) {
4727     SCEVInitRewriter Rewriter(L, SE);
4728     const SCEV *Result = Rewriter.visit(S);
4729     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4730       return SE.getCouldNotCompute();
4731     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4732                ? SE.getCouldNotCompute()
4733                : Result;
4734   }
4735 
4736   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4737     if (!SE.isLoopInvariant(Expr, L))
4738       SeenLoopVariantSCEVUnknown = true;
4739     return Expr;
4740   }
4741 
4742   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4743     // Only re-write AddRecExprs for this loop.
4744     if (Expr->getLoop() == L)
4745       return Expr->getStart();
4746     SeenOtherLoops = true;
4747     return Expr;
4748   }
4749 
4750   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4751 
4752   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4753 
4754 private:
4755   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4756       : SCEVRewriteVisitor(SE), L(L) {}
4757 
4758   const Loop *L;
4759   bool SeenLoopVariantSCEVUnknown = false;
4760   bool SeenOtherLoops = false;
4761 };
4762 
4763 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4764 /// increment expression in case its Loop is L. If it is not L then
4765 /// use AddRec itself.
4766 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4767 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4768 public:
4769   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4770     SCEVPostIncRewriter Rewriter(L, SE);
4771     const SCEV *Result = Rewriter.visit(S);
4772     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4773         ? SE.getCouldNotCompute()
4774         : Result;
4775   }
4776 
4777   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4778     if (!SE.isLoopInvariant(Expr, L))
4779       SeenLoopVariantSCEVUnknown = true;
4780     return Expr;
4781   }
4782 
4783   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4784     // Only re-write AddRecExprs for this loop.
4785     if (Expr->getLoop() == L)
4786       return Expr->getPostIncExpr(SE);
4787     SeenOtherLoops = true;
4788     return Expr;
4789   }
4790 
4791   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4792 
4793   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4794 
4795 private:
4796   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4797       : SCEVRewriteVisitor(SE), L(L) {}
4798 
4799   const Loop *L;
4800   bool SeenLoopVariantSCEVUnknown = false;
4801   bool SeenOtherLoops = false;
4802 };
4803 
4804 /// This class evaluates the compare condition by matching it against the
4805 /// condition of loop latch. If there is a match we assume a true value
4806 /// for the condition while building SCEV nodes.
4807 class SCEVBackedgeConditionFolder
4808     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4809 public:
4810   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4811                              ScalarEvolution &SE) {
4812     bool IsPosBECond = false;
4813     Value *BECond = nullptr;
4814     if (BasicBlock *Latch = L->getLoopLatch()) {
4815       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4816       if (BI && BI->isConditional()) {
4817         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4818                "Both outgoing branches should not target same header!");
4819         BECond = BI->getCondition();
4820         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4821       } else {
4822         return S;
4823       }
4824     }
4825     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4826     return Rewriter.visit(S);
4827   }
4828 
4829   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4830     const SCEV *Result = Expr;
4831     bool InvariantF = SE.isLoopInvariant(Expr, L);
4832 
4833     if (!InvariantF) {
4834       Instruction *I = cast<Instruction>(Expr->getValue());
4835       switch (I->getOpcode()) {
4836       case Instruction::Select: {
4837         SelectInst *SI = cast<SelectInst>(I);
4838         Optional<const SCEV *> Res =
4839             compareWithBackedgeCondition(SI->getCondition());
4840         if (Res) {
4841           bool IsOne = cast<SCEVConstant>(Res.value())->getValue()->isOne();
4842           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4843         }
4844         break;
4845       }
4846       default: {
4847         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4848         if (Res)
4849           Result = Res.value();
4850         break;
4851       }
4852       }
4853     }
4854     return Result;
4855   }
4856 
4857 private:
4858   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4859                                        bool IsPosBECond, ScalarEvolution &SE)
4860       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4861         IsPositiveBECond(IsPosBECond) {}
4862 
4863   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4864 
4865   const Loop *L;
4866   /// Loop back condition.
4867   Value *BackedgeCond = nullptr;
4868   /// Set to true if loop back is on positive branch condition.
4869   bool IsPositiveBECond;
4870 };
4871 
4872 Optional<const SCEV *>
4873 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4874 
4875   // If value matches the backedge condition for loop latch,
4876   // then return a constant evolution node based on loopback
4877   // branch taken.
4878   if (BackedgeCond == IC)
4879     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4880                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4881   return None;
4882 }
4883 
4884 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4885 public:
4886   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4887                              ScalarEvolution &SE) {
4888     SCEVShiftRewriter Rewriter(L, SE);
4889     const SCEV *Result = Rewriter.visit(S);
4890     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4891   }
4892 
4893   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4894     // Only allow AddRecExprs for this loop.
4895     if (!SE.isLoopInvariant(Expr, L))
4896       Valid = false;
4897     return Expr;
4898   }
4899 
4900   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4901     if (Expr->getLoop() == L && Expr->isAffine())
4902       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4903     Valid = false;
4904     return Expr;
4905   }
4906 
4907   bool isValid() { return Valid; }
4908 
4909 private:
4910   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4911       : SCEVRewriteVisitor(SE), L(L) {}
4912 
4913   const Loop *L;
4914   bool Valid = true;
4915 };
4916 
4917 } // end anonymous namespace
4918 
4919 SCEV::NoWrapFlags
4920 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4921   if (!AR->isAffine())
4922     return SCEV::FlagAnyWrap;
4923 
4924   using OBO = OverflowingBinaryOperator;
4925 
4926   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4927 
4928   if (!AR->hasNoSignedWrap()) {
4929     ConstantRange AddRecRange = getSignedRange(AR);
4930     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4931 
4932     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4933         Instruction::Add, IncRange, OBO::NoSignedWrap);
4934     if (NSWRegion.contains(AddRecRange))
4935       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4936   }
4937 
4938   if (!AR->hasNoUnsignedWrap()) {
4939     ConstantRange AddRecRange = getUnsignedRange(AR);
4940     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4941 
4942     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4943         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4944     if (NUWRegion.contains(AddRecRange))
4945       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4946   }
4947 
4948   return Result;
4949 }
4950 
4951 SCEV::NoWrapFlags
4952 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4953   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4954 
4955   if (AR->hasNoSignedWrap())
4956     return Result;
4957 
4958   if (!AR->isAffine())
4959     return Result;
4960 
4961   const SCEV *Step = AR->getStepRecurrence(*this);
4962   const Loop *L = AR->getLoop();
4963 
4964   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4965   // Note that this serves two purposes: It filters out loops that are
4966   // simply not analyzable, and it covers the case where this code is
4967   // being called from within backedge-taken count analysis, such that
4968   // attempting to ask for the backedge-taken count would likely result
4969   // in infinite recursion. In the later case, the analysis code will
4970   // cope with a conservative value, and it will take care to purge
4971   // that value once it has finished.
4972   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4973 
4974   // Normally, in the cases we can prove no-overflow via a
4975   // backedge guarding condition, we can also compute a backedge
4976   // taken count for the loop.  The exceptions are assumptions and
4977   // guards present in the loop -- SCEV is not great at exploiting
4978   // these to compute max backedge taken counts, but can still use
4979   // these to prove lack of overflow.  Use this fact to avoid
4980   // doing extra work that may not pay off.
4981 
4982   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4983       AC.assumptions().empty())
4984     return Result;
4985 
4986   // If the backedge is guarded by a comparison with the pre-inc  value the
4987   // addrec is safe. Also, if the entry is guarded by a comparison with the
4988   // start value and the backedge is guarded by a comparison with the post-inc
4989   // value, the addrec is safe.
4990   ICmpInst::Predicate Pred;
4991   const SCEV *OverflowLimit =
4992     getSignedOverflowLimitForStep(Step, &Pred, this);
4993   if (OverflowLimit &&
4994       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4995        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4996     Result = setFlags(Result, SCEV::FlagNSW);
4997   }
4998   return Result;
4999 }
5000 SCEV::NoWrapFlags
5001 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5002   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5003 
5004   if (AR->hasNoUnsignedWrap())
5005     return Result;
5006 
5007   if (!AR->isAffine())
5008     return Result;
5009 
5010   const SCEV *Step = AR->getStepRecurrence(*this);
5011   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5012   const Loop *L = AR->getLoop();
5013 
5014   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5015   // Note that this serves two purposes: It filters out loops that are
5016   // simply not analyzable, and it covers the case where this code is
5017   // being called from within backedge-taken count analysis, such that
5018   // attempting to ask for the backedge-taken count would likely result
5019   // in infinite recursion. In the later case, the analysis code will
5020   // cope with a conservative value, and it will take care to purge
5021   // that value once it has finished.
5022   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5023 
5024   // Normally, in the cases we can prove no-overflow via a
5025   // backedge guarding condition, we can also compute a backedge
5026   // taken count for the loop.  The exceptions are assumptions and
5027   // guards present in the loop -- SCEV is not great at exploiting
5028   // these to compute max backedge taken counts, but can still use
5029   // these to prove lack of overflow.  Use this fact to avoid
5030   // doing extra work that may not pay off.
5031 
5032   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5033       AC.assumptions().empty())
5034     return Result;
5035 
5036   // If the backedge is guarded by a comparison with the pre-inc  value the
5037   // addrec is safe. Also, if the entry is guarded by a comparison with the
5038   // start value and the backedge is guarded by a comparison with the post-inc
5039   // value, the addrec is safe.
5040   if (isKnownPositive(Step)) {
5041     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5042                                 getUnsignedRangeMax(Step));
5043     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5044         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5045       Result = setFlags(Result, SCEV::FlagNUW);
5046     }
5047   }
5048 
5049   return Result;
5050 }
5051 
5052 namespace {
5053 
5054 /// Represents an abstract binary operation.  This may exist as a
5055 /// normal instruction or constant expression, or may have been
5056 /// derived from an expression tree.
5057 struct BinaryOp {
5058   unsigned Opcode;
5059   Value *LHS;
5060   Value *RHS;
5061   bool IsNSW = false;
5062   bool IsNUW = false;
5063 
5064   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5065   /// constant expression.
5066   Operator *Op = nullptr;
5067 
5068   explicit BinaryOp(Operator *Op)
5069       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5070         Op(Op) {
5071     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5072       IsNSW = OBO->hasNoSignedWrap();
5073       IsNUW = OBO->hasNoUnsignedWrap();
5074     }
5075   }
5076 
5077   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5078                     bool IsNUW = false)
5079       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5080 };
5081 
5082 } // end anonymous namespace
5083 
5084 /// Try to map \p V into a BinaryOp, and return \c None on failure.
5085 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
5086   auto *Op = dyn_cast<Operator>(V);
5087   if (!Op)
5088     return None;
5089 
5090   // Implementation detail: all the cleverness here should happen without
5091   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5092   // SCEV expressions when possible, and we should not break that.
5093 
5094   switch (Op->getOpcode()) {
5095   case Instruction::Add:
5096   case Instruction::Sub:
5097   case Instruction::Mul:
5098   case Instruction::UDiv:
5099   case Instruction::URem:
5100   case Instruction::And:
5101   case Instruction::Or:
5102   case Instruction::AShr:
5103   case Instruction::Shl:
5104     return BinaryOp(Op);
5105 
5106   case Instruction::Xor:
5107     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5108       // If the RHS of the xor is a signmask, then this is just an add.
5109       // Instcombine turns add of signmask into xor as a strength reduction step.
5110       if (RHSC->getValue().isSignMask())
5111         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5112     // Binary `xor` is a bit-wise `add`.
5113     if (V->getType()->isIntegerTy(1))
5114       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5115     return BinaryOp(Op);
5116 
5117   case Instruction::LShr:
5118     // Turn logical shift right of a constant into a unsigned divide.
5119     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5120       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5121 
5122       // If the shift count is not less than the bitwidth, the result of
5123       // the shift is undefined. Don't try to analyze it, because the
5124       // resolution chosen here may differ from the resolution chosen in
5125       // other parts of the compiler.
5126       if (SA->getValue().ult(BitWidth)) {
5127         Constant *X =
5128             ConstantInt::get(SA->getContext(),
5129                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5130         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5131       }
5132     }
5133     return BinaryOp(Op);
5134 
5135   case Instruction::ExtractValue: {
5136     auto *EVI = cast<ExtractValueInst>(Op);
5137     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5138       break;
5139 
5140     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5141     if (!WO)
5142       break;
5143 
5144     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5145     bool Signed = WO->isSigned();
5146     // TODO: Should add nuw/nsw flags for mul as well.
5147     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5148       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5149 
5150     // Now that we know that all uses of the arithmetic-result component of
5151     // CI are guarded by the overflow check, we can go ahead and pretend
5152     // that the arithmetic is non-overflowing.
5153     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5154                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5155   }
5156 
5157   default:
5158     break;
5159   }
5160 
5161   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5162   // semantics as a Sub, return a binary sub expression.
5163   if (auto *II = dyn_cast<IntrinsicInst>(V))
5164     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5165       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5166 
5167   return None;
5168 }
5169 
5170 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5171 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5172 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5173 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5174 /// follows one of the following patterns:
5175 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5176 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5177 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5178 /// we return the type of the truncation operation, and indicate whether the
5179 /// truncated type should be treated as signed/unsigned by setting
5180 /// \p Signed to true/false, respectively.
5181 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5182                                bool &Signed, ScalarEvolution &SE) {
5183   // The case where Op == SymbolicPHI (that is, with no type conversions on
5184   // the way) is handled by the regular add recurrence creating logic and
5185   // would have already been triggered in createAddRecForPHI. Reaching it here
5186   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5187   // because one of the other operands of the SCEVAddExpr updating this PHI is
5188   // not invariant).
5189   //
5190   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5191   // this case predicates that allow us to prove that Op == SymbolicPHI will
5192   // be added.
5193   if (Op == SymbolicPHI)
5194     return nullptr;
5195 
5196   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5197   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5198   if (SourceBits != NewBits)
5199     return nullptr;
5200 
5201   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5202   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5203   if (!SExt && !ZExt)
5204     return nullptr;
5205   const SCEVTruncateExpr *Trunc =
5206       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5207            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5208   if (!Trunc)
5209     return nullptr;
5210   const SCEV *X = Trunc->getOperand();
5211   if (X != SymbolicPHI)
5212     return nullptr;
5213   Signed = SExt != nullptr;
5214   return Trunc->getType();
5215 }
5216 
5217 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5218   if (!PN->getType()->isIntegerTy())
5219     return nullptr;
5220   const Loop *L = LI.getLoopFor(PN->getParent());
5221   if (!L || L->getHeader() != PN->getParent())
5222     return nullptr;
5223   return L;
5224 }
5225 
5226 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5227 // computation that updates the phi follows the following pattern:
5228 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5229 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5230 // If so, try to see if it can be rewritten as an AddRecExpr under some
5231 // Predicates. If successful, return them as a pair. Also cache the results
5232 // of the analysis.
5233 //
5234 // Example usage scenario:
5235 //    Say the Rewriter is called for the following SCEV:
5236 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5237 //    where:
5238 //         %X = phi i64 (%Start, %BEValue)
5239 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5240 //    and call this function with %SymbolicPHI = %X.
5241 //
5242 //    The analysis will find that the value coming around the backedge has
5243 //    the following SCEV:
5244 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5245 //    Upon concluding that this matches the desired pattern, the function
5246 //    will return the pair {NewAddRec, SmallPredsVec} where:
5247 //         NewAddRec = {%Start,+,%Step}
5248 //         SmallPredsVec = {P1, P2, P3} as follows:
5249 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5250 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5251 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5252 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5253 //    under the predicates {P1,P2,P3}.
5254 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5255 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5256 //
5257 // TODO's:
5258 //
5259 // 1) Extend the Induction descriptor to also support inductions that involve
5260 //    casts: When needed (namely, when we are called in the context of the
5261 //    vectorizer induction analysis), a Set of cast instructions will be
5262 //    populated by this method, and provided back to isInductionPHI. This is
5263 //    needed to allow the vectorizer to properly record them to be ignored by
5264 //    the cost model and to avoid vectorizing them (otherwise these casts,
5265 //    which are redundant under the runtime overflow checks, will be
5266 //    vectorized, which can be costly).
5267 //
5268 // 2) Support additional induction/PHISCEV patterns: We also want to support
5269 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5270 //    after the induction update operation (the induction increment):
5271 //
5272 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5273 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5274 //
5275 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5276 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5277 //
5278 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5279 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5280 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5281   SmallVector<const SCEVPredicate *, 3> Predicates;
5282 
5283   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5284   // return an AddRec expression under some predicate.
5285 
5286   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5287   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5288   assert(L && "Expecting an integer loop header phi");
5289 
5290   // The loop may have multiple entrances or multiple exits; we can analyze
5291   // this phi as an addrec if it has a unique entry value and a unique
5292   // backedge value.
5293   Value *BEValueV = nullptr, *StartValueV = nullptr;
5294   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5295     Value *V = PN->getIncomingValue(i);
5296     if (L->contains(PN->getIncomingBlock(i))) {
5297       if (!BEValueV) {
5298         BEValueV = V;
5299       } else if (BEValueV != V) {
5300         BEValueV = nullptr;
5301         break;
5302       }
5303     } else if (!StartValueV) {
5304       StartValueV = V;
5305     } else if (StartValueV != V) {
5306       StartValueV = nullptr;
5307       break;
5308     }
5309   }
5310   if (!BEValueV || !StartValueV)
5311     return None;
5312 
5313   const SCEV *BEValue = getSCEV(BEValueV);
5314 
5315   // If the value coming around the backedge is an add with the symbolic
5316   // value we just inserted, possibly with casts that we can ignore under
5317   // an appropriate runtime guard, then we found a simple induction variable!
5318   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5319   if (!Add)
5320     return None;
5321 
5322   // If there is a single occurrence of the symbolic value, possibly
5323   // casted, replace it with a recurrence.
5324   unsigned FoundIndex = Add->getNumOperands();
5325   Type *TruncTy = nullptr;
5326   bool Signed;
5327   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5328     if ((TruncTy =
5329              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5330       if (FoundIndex == e) {
5331         FoundIndex = i;
5332         break;
5333       }
5334 
5335   if (FoundIndex == Add->getNumOperands())
5336     return None;
5337 
5338   // Create an add with everything but the specified operand.
5339   SmallVector<const SCEV *, 8> Ops;
5340   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5341     if (i != FoundIndex)
5342       Ops.push_back(Add->getOperand(i));
5343   const SCEV *Accum = getAddExpr(Ops);
5344 
5345   // The runtime checks will not be valid if the step amount is
5346   // varying inside the loop.
5347   if (!isLoopInvariant(Accum, L))
5348     return None;
5349 
5350   // *** Part2: Create the predicates
5351 
5352   // Analysis was successful: we have a phi-with-cast pattern for which we
5353   // can return an AddRec expression under the following predicates:
5354   //
5355   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5356   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5357   // P2: An Equal predicate that guarantees that
5358   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5359   // P3: An Equal predicate that guarantees that
5360   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5361   //
5362   // As we next prove, the above predicates guarantee that:
5363   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5364   //
5365   //
5366   // More formally, we want to prove that:
5367   //     Expr(i+1) = Start + (i+1) * Accum
5368   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5369   //
5370   // Given that:
5371   // 1) Expr(0) = Start
5372   // 2) Expr(1) = Start + Accum
5373   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5374   // 3) Induction hypothesis (step i):
5375   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5376   //
5377   // Proof:
5378   //  Expr(i+1) =
5379   //   = Start + (i+1)*Accum
5380   //   = (Start + i*Accum) + Accum
5381   //   = Expr(i) + Accum
5382   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5383   //                                                             :: from step i
5384   //
5385   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5386   //
5387   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5388   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5389   //     + Accum                                                     :: from P3
5390   //
5391   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5392   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5393   //
5394   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5395   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5396   //
5397   // By induction, the same applies to all iterations 1<=i<n:
5398   //
5399 
5400   // Create a truncated addrec for which we will add a no overflow check (P1).
5401   const SCEV *StartVal = getSCEV(StartValueV);
5402   const SCEV *PHISCEV =
5403       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5404                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5405 
5406   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5407   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5408   // will be constant.
5409   //
5410   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5411   // add P1.
5412   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5413     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5414         Signed ? SCEVWrapPredicate::IncrementNSSW
5415                : SCEVWrapPredicate::IncrementNUSW;
5416     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5417     Predicates.push_back(AddRecPred);
5418   }
5419 
5420   // Create the Equal Predicates P2,P3:
5421 
5422   // It is possible that the predicates P2 and/or P3 are computable at
5423   // compile time due to StartVal and/or Accum being constants.
5424   // If either one is, then we can check that now and escape if either P2
5425   // or P3 is false.
5426 
5427   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5428   // for each of StartVal and Accum
5429   auto getExtendedExpr = [&](const SCEV *Expr,
5430                              bool CreateSignExtend) -> const SCEV * {
5431     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5432     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5433     const SCEV *ExtendedExpr =
5434         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5435                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5436     return ExtendedExpr;
5437   };
5438 
5439   // Given:
5440   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5441   //               = getExtendedExpr(Expr)
5442   // Determine whether the predicate P: Expr == ExtendedExpr
5443   // is known to be false at compile time
5444   auto PredIsKnownFalse = [&](const SCEV *Expr,
5445                               const SCEV *ExtendedExpr) -> bool {
5446     return Expr != ExtendedExpr &&
5447            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5448   };
5449 
5450   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5451   if (PredIsKnownFalse(StartVal, StartExtended)) {
5452     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5453     return None;
5454   }
5455 
5456   // The Step is always Signed (because the overflow checks are either
5457   // NSSW or NUSW)
5458   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5459   if (PredIsKnownFalse(Accum, AccumExtended)) {
5460     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5461     return None;
5462   }
5463 
5464   auto AppendPredicate = [&](const SCEV *Expr,
5465                              const SCEV *ExtendedExpr) -> void {
5466     if (Expr != ExtendedExpr &&
5467         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5468       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5469       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5470       Predicates.push_back(Pred);
5471     }
5472   };
5473 
5474   AppendPredicate(StartVal, StartExtended);
5475   AppendPredicate(Accum, AccumExtended);
5476 
5477   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5478   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5479   // into NewAR if it will also add the runtime overflow checks specified in
5480   // Predicates.
5481   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5482 
5483   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5484       std::make_pair(NewAR, Predicates);
5485   // Remember the result of the analysis for this SCEV at this locayyytion.
5486   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5487   return PredRewrite;
5488 }
5489 
5490 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5491 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5492   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5493   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5494   if (!L)
5495     return None;
5496 
5497   // Check to see if we already analyzed this PHI.
5498   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5499   if (I != PredicatedSCEVRewrites.end()) {
5500     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5501         I->second;
5502     // Analysis was done before and failed to create an AddRec:
5503     if (Rewrite.first == SymbolicPHI)
5504       return None;
5505     // Analysis was done before and succeeded to create an AddRec under
5506     // a predicate:
5507     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5508     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5509     return Rewrite;
5510   }
5511 
5512   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5513     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5514 
5515   // Record in the cache that the analysis failed
5516   if (!Rewrite) {
5517     SmallVector<const SCEVPredicate *, 3> Predicates;
5518     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5519     return None;
5520   }
5521 
5522   return Rewrite;
5523 }
5524 
5525 // FIXME: This utility is currently required because the Rewriter currently
5526 // does not rewrite this expression:
5527 // {0, +, (sext ix (trunc iy to ix) to iy)}
5528 // into {0, +, %step},
5529 // even when the following Equal predicate exists:
5530 // "%step == (sext ix (trunc iy to ix) to iy)".
5531 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5532     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5533   if (AR1 == AR2)
5534     return true;
5535 
5536   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5537     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5538         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5539       return false;
5540     return true;
5541   };
5542 
5543   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5544       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5545     return false;
5546   return true;
5547 }
5548 
5549 /// A helper function for createAddRecFromPHI to handle simple cases.
5550 ///
5551 /// This function tries to find an AddRec expression for the simplest (yet most
5552 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5553 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5554 /// technique for finding the AddRec expression.
5555 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5556                                                       Value *BEValueV,
5557                                                       Value *StartValueV) {
5558   const Loop *L = LI.getLoopFor(PN->getParent());
5559   assert(L && L->getHeader() == PN->getParent());
5560   assert(BEValueV && StartValueV);
5561 
5562   auto BO = MatchBinaryOp(BEValueV, DT);
5563   if (!BO)
5564     return nullptr;
5565 
5566   if (BO->Opcode != Instruction::Add)
5567     return nullptr;
5568 
5569   const SCEV *Accum = nullptr;
5570   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5571     Accum = getSCEV(BO->RHS);
5572   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5573     Accum = getSCEV(BO->LHS);
5574 
5575   if (!Accum)
5576     return nullptr;
5577 
5578   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5579   if (BO->IsNUW)
5580     Flags = setFlags(Flags, SCEV::FlagNUW);
5581   if (BO->IsNSW)
5582     Flags = setFlags(Flags, SCEV::FlagNSW);
5583 
5584   const SCEV *StartVal = getSCEV(StartValueV);
5585   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5586   insertValueToMap(PN, PHISCEV);
5587 
5588   // We can add Flags to the post-inc expression only if we
5589   // know that it is *undefined behavior* for BEValueV to
5590   // overflow.
5591   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5592     assert(isLoopInvariant(Accum, L) &&
5593            "Accum is defined outside L, but is not invariant?");
5594     if (isAddRecNeverPoison(BEInst, L))
5595       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5596   }
5597 
5598   return PHISCEV;
5599 }
5600 
5601 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5602   const Loop *L = LI.getLoopFor(PN->getParent());
5603   if (!L || L->getHeader() != PN->getParent())
5604     return nullptr;
5605 
5606   // The loop may have multiple entrances or multiple exits; we can analyze
5607   // this phi as an addrec if it has a unique entry value and a unique
5608   // backedge value.
5609   Value *BEValueV = nullptr, *StartValueV = nullptr;
5610   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5611     Value *V = PN->getIncomingValue(i);
5612     if (L->contains(PN->getIncomingBlock(i))) {
5613       if (!BEValueV) {
5614         BEValueV = V;
5615       } else if (BEValueV != V) {
5616         BEValueV = nullptr;
5617         break;
5618       }
5619     } else if (!StartValueV) {
5620       StartValueV = V;
5621     } else if (StartValueV != V) {
5622       StartValueV = nullptr;
5623       break;
5624     }
5625   }
5626   if (!BEValueV || !StartValueV)
5627     return nullptr;
5628 
5629   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5630          "PHI node already processed?");
5631 
5632   // First, try to find AddRec expression without creating a fictituos symbolic
5633   // value for PN.
5634   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5635     return S;
5636 
5637   // Handle PHI node value symbolically.
5638   const SCEV *SymbolicName = getUnknown(PN);
5639   insertValueToMap(PN, SymbolicName);
5640 
5641   // Using this symbolic name for the PHI, analyze the value coming around
5642   // the back-edge.
5643   const SCEV *BEValue = getSCEV(BEValueV);
5644 
5645   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5646   // has a special value for the first iteration of the loop.
5647 
5648   // If the value coming around the backedge is an add with the symbolic
5649   // value we just inserted, then we found a simple induction variable!
5650   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5651     // If there is a single occurrence of the symbolic value, replace it
5652     // with a recurrence.
5653     unsigned FoundIndex = Add->getNumOperands();
5654     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5655       if (Add->getOperand(i) == SymbolicName)
5656         if (FoundIndex == e) {
5657           FoundIndex = i;
5658           break;
5659         }
5660 
5661     if (FoundIndex != Add->getNumOperands()) {
5662       // Create an add with everything but the specified operand.
5663       SmallVector<const SCEV *, 8> Ops;
5664       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5665         if (i != FoundIndex)
5666           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5667                                                              L, *this));
5668       const SCEV *Accum = getAddExpr(Ops);
5669 
5670       // This is not a valid addrec if the step amount is varying each
5671       // loop iteration, but is not itself an addrec in this loop.
5672       if (isLoopInvariant(Accum, L) ||
5673           (isa<SCEVAddRecExpr>(Accum) &&
5674            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5675         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5676 
5677         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5678           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5679             if (BO->IsNUW)
5680               Flags = setFlags(Flags, SCEV::FlagNUW);
5681             if (BO->IsNSW)
5682               Flags = setFlags(Flags, SCEV::FlagNSW);
5683           }
5684         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5685           // If the increment is an inbounds GEP, then we know the address
5686           // space cannot be wrapped around. We cannot make any guarantee
5687           // about signed or unsigned overflow because pointers are
5688           // unsigned but we may have a negative index from the base
5689           // pointer. We can guarantee that no unsigned wrap occurs if the
5690           // indices form a positive value.
5691           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5692             Flags = setFlags(Flags, SCEV::FlagNW);
5693 
5694             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5695             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5696               Flags = setFlags(Flags, SCEV::FlagNUW);
5697           }
5698 
5699           // We cannot transfer nuw and nsw flags from subtraction
5700           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5701           // for instance.
5702         }
5703 
5704         const SCEV *StartVal = getSCEV(StartValueV);
5705         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5706 
5707         // Okay, for the entire analysis of this edge we assumed the PHI
5708         // to be symbolic.  We now need to go back and purge all of the
5709         // entries for the scalars that use the symbolic expression.
5710         forgetMemoizedResults(SymbolicName);
5711         insertValueToMap(PN, PHISCEV);
5712 
5713         // We can add Flags to the post-inc expression only if we
5714         // know that it is *undefined behavior* for BEValueV to
5715         // overflow.
5716         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5717           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5718             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5719 
5720         return PHISCEV;
5721       }
5722     }
5723   } else {
5724     // Otherwise, this could be a loop like this:
5725     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5726     // In this case, j = {1,+,1}  and BEValue is j.
5727     // Because the other in-value of i (0) fits the evolution of BEValue
5728     // i really is an addrec evolution.
5729     //
5730     // We can generalize this saying that i is the shifted value of BEValue
5731     // by one iteration:
5732     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5733     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5734     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5735     if (Shifted != getCouldNotCompute() &&
5736         Start != getCouldNotCompute()) {
5737       const SCEV *StartVal = getSCEV(StartValueV);
5738       if (Start == StartVal) {
5739         // Okay, for the entire analysis of this edge we assumed the PHI
5740         // to be symbolic.  We now need to go back and purge all of the
5741         // entries for the scalars that use the symbolic expression.
5742         forgetMemoizedResults(SymbolicName);
5743         insertValueToMap(PN, Shifted);
5744         return Shifted;
5745       }
5746     }
5747   }
5748 
5749   // Remove the temporary PHI node SCEV that has been inserted while intending
5750   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5751   // as it will prevent later (possibly simpler) SCEV expressions to be added
5752   // to the ValueExprMap.
5753   eraseValueFromMap(PN);
5754 
5755   return nullptr;
5756 }
5757 
5758 // Checks if the SCEV S is available at BB.  S is considered available at BB
5759 // if S can be materialized at BB without introducing a fault.
5760 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5761                                BasicBlock *BB) {
5762   struct CheckAvailable {
5763     bool TraversalDone = false;
5764     bool Available = true;
5765 
5766     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5767     BasicBlock *BB = nullptr;
5768     DominatorTree &DT;
5769 
5770     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5771       : L(L), BB(BB), DT(DT) {}
5772 
5773     bool setUnavailable() {
5774       TraversalDone = true;
5775       Available = false;
5776       return false;
5777     }
5778 
5779     bool follow(const SCEV *S) {
5780       switch (S->getSCEVType()) {
5781       case scConstant:
5782       case scPtrToInt:
5783       case scTruncate:
5784       case scZeroExtend:
5785       case scSignExtend:
5786       case scAddExpr:
5787       case scMulExpr:
5788       case scUMaxExpr:
5789       case scSMaxExpr:
5790       case scUMinExpr:
5791       case scSMinExpr:
5792       case scSequentialUMinExpr:
5793         // These expressions are available if their operand(s) is/are.
5794         return true;
5795 
5796       case scAddRecExpr: {
5797         // We allow add recurrences that are on the loop BB is in, or some
5798         // outer loop.  This guarantees availability because the value of the
5799         // add recurrence at BB is simply the "current" value of the induction
5800         // variable.  We can relax this in the future; for instance an add
5801         // recurrence on a sibling dominating loop is also available at BB.
5802         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5803         if (L && (ARLoop == L || ARLoop->contains(L)))
5804           return true;
5805 
5806         return setUnavailable();
5807       }
5808 
5809       case scUnknown: {
5810         // For SCEVUnknown, we check for simple dominance.
5811         const auto *SU = cast<SCEVUnknown>(S);
5812         Value *V = SU->getValue();
5813 
5814         if (isa<Argument>(V))
5815           return false;
5816 
5817         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5818           return false;
5819 
5820         return setUnavailable();
5821       }
5822 
5823       case scUDivExpr:
5824       case scCouldNotCompute:
5825         // We do not try to smart about these at all.
5826         return setUnavailable();
5827       }
5828       llvm_unreachable("Unknown SCEV kind!");
5829     }
5830 
5831     bool isDone() { return TraversalDone; }
5832   };
5833 
5834   CheckAvailable CA(L, BB, DT);
5835   SCEVTraversal<CheckAvailable> ST(CA);
5836 
5837   ST.visitAll(S);
5838   return CA.Available;
5839 }
5840 
5841 // Try to match a control flow sequence that branches out at BI and merges back
5842 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5843 // match.
5844 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5845                           Value *&C, Value *&LHS, Value *&RHS) {
5846   C = BI->getCondition();
5847 
5848   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5849   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5850 
5851   if (!LeftEdge.isSingleEdge())
5852     return false;
5853 
5854   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5855 
5856   Use &LeftUse = Merge->getOperandUse(0);
5857   Use &RightUse = Merge->getOperandUse(1);
5858 
5859   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5860     LHS = LeftUse;
5861     RHS = RightUse;
5862     return true;
5863   }
5864 
5865   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5866     LHS = RightUse;
5867     RHS = LeftUse;
5868     return true;
5869   }
5870 
5871   return false;
5872 }
5873 
5874 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5875   auto IsReachable =
5876       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5877   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5878     const Loop *L = LI.getLoopFor(PN->getParent());
5879 
5880     // We don't want to break LCSSA, even in a SCEV expression tree.
5881     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5882       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5883         return nullptr;
5884 
5885     // Try to match
5886     //
5887     //  br %cond, label %left, label %right
5888     // left:
5889     //  br label %merge
5890     // right:
5891     //  br label %merge
5892     // merge:
5893     //  V = phi [ %x, %left ], [ %y, %right ]
5894     //
5895     // as "select %cond, %x, %y"
5896 
5897     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5898     assert(IDom && "At least the entry block should dominate PN");
5899 
5900     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5901     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5902 
5903     if (BI && BI->isConditional() &&
5904         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5905         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5906         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5907       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5908   }
5909 
5910   return nullptr;
5911 }
5912 
5913 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5914   if (const SCEV *S = createAddRecFromPHI(PN))
5915     return S;
5916 
5917   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5918     return S;
5919 
5920   // If the PHI has a single incoming value, follow that value, unless the
5921   // PHI's incoming blocks are in a different loop, in which case doing so
5922   // risks breaking LCSSA form. Instcombine would normally zap these, but
5923   // it doesn't have DominatorTree information, so it may miss cases.
5924   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5925     if (LI.replacementPreservesLCSSAForm(PN, V))
5926       return getSCEV(V);
5927 
5928   // If it's not a loop phi, we can't handle it yet.
5929   return getUnknown(PN);
5930 }
5931 
5932 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
5933                             SCEVTypes RootKind) {
5934   struct FindClosure {
5935     const SCEV *OperandToFind;
5936     const SCEVTypes RootKind; // Must be a sequential min/max expression.
5937     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
5938 
5939     bool Found = false;
5940 
5941     bool canRecurseInto(SCEVTypes Kind) const {
5942       // We can only recurse into the SCEV expression of the same effective type
5943       // as the type of our root SCEV expression, and into zero-extensions.
5944       return RootKind == Kind || NonSequentialRootKind == Kind ||
5945              scZeroExtend == Kind;
5946     };
5947 
5948     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
5949         : OperandToFind(OperandToFind), RootKind(RootKind),
5950           NonSequentialRootKind(
5951               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5952                   RootKind)) {}
5953 
5954     bool follow(const SCEV *S) {
5955       Found = S == OperandToFind;
5956 
5957       return !isDone() && canRecurseInto(S->getSCEVType());
5958     }
5959 
5960     bool isDone() const { return Found; }
5961   };
5962 
5963   FindClosure FC(OperandToFind, RootKind);
5964   visitAll(Root, FC);
5965   return FC.Found;
5966 }
5967 
5968 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(
5969     Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) {
5970   // Try to match some simple smax or umax patterns.
5971   auto *ICI = Cond;
5972 
5973   Value *LHS = ICI->getOperand(0);
5974   Value *RHS = ICI->getOperand(1);
5975 
5976   switch (ICI->getPredicate()) {
5977   case ICmpInst::ICMP_SLT:
5978   case ICmpInst::ICMP_SLE:
5979   case ICmpInst::ICMP_ULT:
5980   case ICmpInst::ICMP_ULE:
5981     std::swap(LHS, RHS);
5982     LLVM_FALLTHROUGH;
5983   case ICmpInst::ICMP_SGT:
5984   case ICmpInst::ICMP_SGE:
5985   case ICmpInst::ICMP_UGT:
5986   case ICmpInst::ICMP_UGE:
5987     // a > b ? a+x : b+x  ->  max(a, b)+x
5988     // a > b ? b+x : a+x  ->  min(a, b)+x
5989     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5990       bool Signed = ICI->isSigned();
5991       const SCEV *LA = getSCEV(TrueVal);
5992       const SCEV *RA = getSCEV(FalseVal);
5993       const SCEV *LS = getSCEV(LHS);
5994       const SCEV *RS = getSCEV(RHS);
5995       if (LA->getType()->isPointerTy()) {
5996         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5997         // Need to make sure we can't produce weird expressions involving
5998         // negated pointers.
5999         if (LA == LS && RA == RS)
6000           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6001         if (LA == RS && RA == LS)
6002           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6003       }
6004       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6005         if (Op->getType()->isPointerTy()) {
6006           Op = getLosslessPtrToIntExpr(Op);
6007           if (isa<SCEVCouldNotCompute>(Op))
6008             return Op;
6009         }
6010         if (Signed)
6011           Op = getNoopOrSignExtend(Op, I->getType());
6012         else
6013           Op = getNoopOrZeroExtend(Op, I->getType());
6014         return Op;
6015       };
6016       LS = CoerceOperand(LS);
6017       RS = CoerceOperand(RS);
6018       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6019         break;
6020       const SCEV *LDiff = getMinusSCEV(LA, LS);
6021       const SCEV *RDiff = getMinusSCEV(RA, RS);
6022       if (LDiff == RDiff)
6023         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6024                           LDiff);
6025       LDiff = getMinusSCEV(LA, RS);
6026       RDiff = getMinusSCEV(RA, LS);
6027       if (LDiff == RDiff)
6028         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6029                           LDiff);
6030     }
6031     break;
6032   case ICmpInst::ICMP_NE:
6033     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6034     std::swap(TrueVal, FalseVal);
6035     LLVM_FALLTHROUGH;
6036   case ICmpInst::ICMP_EQ:
6037     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6038     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
6039         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6040       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
6041       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6042       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6043       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6044       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6045       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6046         return getAddExpr(getUMaxExpr(X, C), Y);
6047     }
6048     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6049     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6050     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6051     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6052     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6053         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6054       const SCEV *X = getSCEV(LHS);
6055       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6056         X = ZExt->getOperand();
6057       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) {
6058         const SCEV *FalseValExpr = getSCEV(FalseVal);
6059         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6060           return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr,
6061                              /*Sequential=*/true);
6062       }
6063     }
6064     break;
6065   default:
6066     break;
6067   }
6068 
6069   return getUnknown(I);
6070 }
6071 
6072 static Optional<const SCEV *>
6073 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6074                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6075   assert(CondExpr->getType()->isIntegerTy(1) &&
6076          TrueExpr->getType() == FalseExpr->getType() &&
6077          TrueExpr->getType()->isIntegerTy(1) &&
6078          "Unexpected operands of a select.");
6079 
6080   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6081   //                        -->  C + (umin_seq  cond, x - C)
6082   //
6083   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6084   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6085   //                        -->  C + (umin_seq ~cond, x - C)
6086 
6087   // FIXME: while we can't legally model the case where both of the hands
6088   // are fully variable, we only require that the *difference* is constant.
6089   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6090     return None;
6091 
6092   const SCEV *X, *C;
6093   if (isa<SCEVConstant>(TrueExpr)) {
6094     CondExpr = SE->getNotSCEV(CondExpr);
6095     X = FalseExpr;
6096     C = TrueExpr;
6097   } else {
6098     X = TrueExpr;
6099     C = FalseExpr;
6100   }
6101   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6102                                            /*Sequential=*/true));
6103 }
6104 
6105 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE,
6106                                                             Value *Cond,
6107                                                             Value *TrueVal,
6108                                                             Value *FalseVal) {
6109   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6110     return None;
6111 
6112   const auto *SECond = SE->getSCEV(Cond);
6113   const auto *SETrue = SE->getSCEV(TrueVal);
6114   const auto *SEFalse = SE->getSCEV(FalseVal);
6115   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6116 }
6117 
6118 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6119     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6120   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6121   assert(TrueVal->getType() == FalseVal->getType() &&
6122          V->getType() == TrueVal->getType() &&
6123          "Types of select hands and of the result must match.");
6124 
6125   // For now, only deal with i1-typed `select`s.
6126   if (!V->getType()->isIntegerTy(1))
6127     return getUnknown(V);
6128 
6129   if (Optional<const SCEV *> S =
6130           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6131     return *S;
6132 
6133   return getUnknown(V);
6134 }
6135 
6136 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6137                                                       Value *TrueVal,
6138                                                       Value *FalseVal) {
6139   // Handle "constant" branch or select. This can occur for instance when a
6140   // loop pass transforms an inner loop and moves on to process the outer loop.
6141   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6142     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6143 
6144   if (auto *I = dyn_cast<Instruction>(V)) {
6145     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6146       const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond(
6147           I, ICI, TrueVal, FalseVal);
6148       if (!isa<SCEVUnknown>(S))
6149         return S;
6150     }
6151   }
6152 
6153   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6154 }
6155 
6156 /// Expand GEP instructions into add and multiply operations. This allows them
6157 /// to be analyzed by regular SCEV code.
6158 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6159   assert(GEP->getSourceElementType()->isSized() &&
6160          "GEP source element type must be sized");
6161 
6162   SmallVector<const SCEV *, 4> IndexExprs;
6163   for (Value *Index : GEP->indices())
6164     IndexExprs.push_back(getSCEV(Index));
6165   return getGEPExpr(GEP, IndexExprs);
6166 }
6167 
6168 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6169   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6170     return C->getAPInt().countTrailingZeros();
6171 
6172   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
6173     return GetMinTrailingZeros(I->getOperand());
6174 
6175   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
6176     return std::min(GetMinTrailingZeros(T->getOperand()),
6177                     (uint32_t)getTypeSizeInBits(T->getType()));
6178 
6179   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
6180     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6181     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6182                ? getTypeSizeInBits(E->getType())
6183                : OpRes;
6184   }
6185 
6186   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
6187     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6188     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6189                ? getTypeSizeInBits(E->getType())
6190                : OpRes;
6191   }
6192 
6193   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
6194     // The result is the min of all operands results.
6195     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6196     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6197       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6198     return MinOpRes;
6199   }
6200 
6201   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
6202     // The result is the sum of all operands results.
6203     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6204     uint32_t BitWidth = getTypeSizeInBits(M->getType());
6205     for (unsigned i = 1, e = M->getNumOperands();
6206          SumOpRes != BitWidth && i != e; ++i)
6207       SumOpRes =
6208           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6209     return SumOpRes;
6210   }
6211 
6212   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
6213     // The result is the min of all operands results.
6214     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6215     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6216       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6217     return MinOpRes;
6218   }
6219 
6220   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
6221     // The result is the min of all operands results.
6222     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6223     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6224       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6225     return MinOpRes;
6226   }
6227 
6228   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
6229     // The result is the min of all operands results.
6230     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6231     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6232       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6233     return MinOpRes;
6234   }
6235 
6236   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6237     // For a SCEVUnknown, ask ValueTracking.
6238     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6239     return Known.countMinTrailingZeros();
6240   }
6241 
6242   // SCEVUDivExpr
6243   return 0;
6244 }
6245 
6246 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6247   auto I = MinTrailingZerosCache.find(S);
6248   if (I != MinTrailingZerosCache.end())
6249     return I->second;
6250 
6251   uint32_t Result = GetMinTrailingZerosImpl(S);
6252   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6253   assert(InsertPair.second && "Should insert a new key");
6254   return InsertPair.first->second;
6255 }
6256 
6257 /// Helper method to assign a range to V from metadata present in the IR.
6258 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6259   if (Instruction *I = dyn_cast<Instruction>(V))
6260     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6261       return getConstantRangeFromMetadata(*MD);
6262 
6263   return None;
6264 }
6265 
6266 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6267                                      SCEV::NoWrapFlags Flags) {
6268   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6269     AddRec->setNoWrapFlags(Flags);
6270     UnsignedRanges.erase(AddRec);
6271     SignedRanges.erase(AddRec);
6272   }
6273 }
6274 
6275 ConstantRange ScalarEvolution::
6276 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6277   const DataLayout &DL = getDataLayout();
6278 
6279   unsigned BitWidth = getTypeSizeInBits(U->getType());
6280   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6281 
6282   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6283   // use information about the trip count to improve our available range.  Note
6284   // that the trip count independent cases are already handled by known bits.
6285   // WARNING: The definition of recurrence used here is subtly different than
6286   // the one used by AddRec (and thus most of this file).  Step is allowed to
6287   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6288   // and other addrecs in the same loop (for non-affine addrecs).  The code
6289   // below intentionally handles the case where step is not loop invariant.
6290   auto *P = dyn_cast<PHINode>(U->getValue());
6291   if (!P)
6292     return FullSet;
6293 
6294   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6295   // even the values that are not available in these blocks may come from them,
6296   // and this leads to false-positive recurrence test.
6297   for (auto *Pred : predecessors(P->getParent()))
6298     if (!DT.isReachableFromEntry(Pred))
6299       return FullSet;
6300 
6301   BinaryOperator *BO;
6302   Value *Start, *Step;
6303   if (!matchSimpleRecurrence(P, BO, Start, Step))
6304     return FullSet;
6305 
6306   // If we found a recurrence in reachable code, we must be in a loop. Note
6307   // that BO might be in some subloop of L, and that's completely okay.
6308   auto *L = LI.getLoopFor(P->getParent());
6309   assert(L && L->getHeader() == P->getParent());
6310   if (!L->contains(BO->getParent()))
6311     // NOTE: This bailout should be an assert instead.  However, asserting
6312     // the condition here exposes a case where LoopFusion is querying SCEV
6313     // with malformed loop information during the midst of the transform.
6314     // There doesn't appear to be an obvious fix, so for the moment bailout
6315     // until the caller issue can be fixed.  PR49566 tracks the bug.
6316     return FullSet;
6317 
6318   // TODO: Extend to other opcodes such as mul, and div
6319   switch (BO->getOpcode()) {
6320   default:
6321     return FullSet;
6322   case Instruction::AShr:
6323   case Instruction::LShr:
6324   case Instruction::Shl:
6325     break;
6326   };
6327 
6328   if (BO->getOperand(0) != P)
6329     // TODO: Handle the power function forms some day.
6330     return FullSet;
6331 
6332   unsigned TC = getSmallConstantMaxTripCount(L);
6333   if (!TC || TC >= BitWidth)
6334     return FullSet;
6335 
6336   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6337   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6338   assert(KnownStart.getBitWidth() == BitWidth &&
6339          KnownStep.getBitWidth() == BitWidth);
6340 
6341   // Compute total shift amount, being careful of overflow and bitwidths.
6342   auto MaxShiftAmt = KnownStep.getMaxValue();
6343   APInt TCAP(BitWidth, TC-1);
6344   bool Overflow = false;
6345   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6346   if (Overflow)
6347     return FullSet;
6348 
6349   switch (BO->getOpcode()) {
6350   default:
6351     llvm_unreachable("filtered out above");
6352   case Instruction::AShr: {
6353     // For each ashr, three cases:
6354     //   shift = 0 => unchanged value
6355     //   saturation => 0 or -1
6356     //   other => a value closer to zero (of the same sign)
6357     // Thus, the end value is closer to zero than the start.
6358     auto KnownEnd = KnownBits::ashr(KnownStart,
6359                                     KnownBits::makeConstant(TotalShift));
6360     if (KnownStart.isNonNegative())
6361       // Analogous to lshr (simply not yet canonicalized)
6362       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6363                                         KnownStart.getMaxValue() + 1);
6364     if (KnownStart.isNegative())
6365       // End >=u Start && End <=s Start
6366       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6367                                         KnownEnd.getMaxValue() + 1);
6368     break;
6369   }
6370   case Instruction::LShr: {
6371     // For each lshr, three cases:
6372     //   shift = 0 => unchanged value
6373     //   saturation => 0
6374     //   other => a smaller positive number
6375     // Thus, the low end of the unsigned range is the last value produced.
6376     auto KnownEnd = KnownBits::lshr(KnownStart,
6377                                     KnownBits::makeConstant(TotalShift));
6378     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6379                                       KnownStart.getMaxValue() + 1);
6380   }
6381   case Instruction::Shl: {
6382     // Iff no bits are shifted out, value increases on every shift.
6383     auto KnownEnd = KnownBits::shl(KnownStart,
6384                                    KnownBits::makeConstant(TotalShift));
6385     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6386       return ConstantRange(KnownStart.getMinValue(),
6387                            KnownEnd.getMaxValue() + 1);
6388     break;
6389   }
6390   };
6391   return FullSet;
6392 }
6393 
6394 /// Determine the range for a particular SCEV.  If SignHint is
6395 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6396 /// with a "cleaner" unsigned (resp. signed) representation.
6397 const ConstantRange &
6398 ScalarEvolution::getRangeRef(const SCEV *S,
6399                              ScalarEvolution::RangeSignHint SignHint) {
6400   DenseMap<const SCEV *, ConstantRange> &Cache =
6401       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6402                                                        : SignedRanges;
6403   ConstantRange::PreferredRangeType RangeType =
6404       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6405           ? ConstantRange::Unsigned : ConstantRange::Signed;
6406 
6407   // See if we've computed this range already.
6408   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6409   if (I != Cache.end())
6410     return I->second;
6411 
6412   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6413     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6414 
6415   unsigned BitWidth = getTypeSizeInBits(S->getType());
6416   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6417   using OBO = OverflowingBinaryOperator;
6418 
6419   // If the value has known zeros, the maximum value will have those known zeros
6420   // as well.
6421   uint32_t TZ = GetMinTrailingZeros(S);
6422   if (TZ != 0) {
6423     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6424       ConservativeResult =
6425           ConstantRange(APInt::getMinValue(BitWidth),
6426                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6427     else
6428       ConservativeResult = ConstantRange(
6429           APInt::getSignedMinValue(BitWidth),
6430           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6431   }
6432 
6433   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6434     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6435     unsigned WrapType = OBO::AnyWrap;
6436     if (Add->hasNoSignedWrap())
6437       WrapType |= OBO::NoSignedWrap;
6438     if (Add->hasNoUnsignedWrap())
6439       WrapType |= OBO::NoUnsignedWrap;
6440     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6441       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6442                           WrapType, RangeType);
6443     return setRange(Add, SignHint,
6444                     ConservativeResult.intersectWith(X, RangeType));
6445   }
6446 
6447   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6448     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6449     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6450       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6451     return setRange(Mul, SignHint,
6452                     ConservativeResult.intersectWith(X, RangeType));
6453   }
6454 
6455   if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
6456     Intrinsic::ID ID;
6457     switch (S->getSCEVType()) {
6458     case scUMaxExpr:
6459       ID = Intrinsic::umax;
6460       break;
6461     case scSMaxExpr:
6462       ID = Intrinsic::smax;
6463       break;
6464     case scUMinExpr:
6465     case scSequentialUMinExpr:
6466       ID = Intrinsic::umin;
6467       break;
6468     case scSMinExpr:
6469       ID = Intrinsic::smin;
6470       break;
6471     default:
6472       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6473     }
6474 
6475     const auto *NAry = cast<SCEVNAryExpr>(S);
6476     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint);
6477     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6478       X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)});
6479     return setRange(S, SignHint,
6480                     ConservativeResult.intersectWith(X, RangeType));
6481   }
6482 
6483   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6484     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6485     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6486     return setRange(UDiv, SignHint,
6487                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6488   }
6489 
6490   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6491     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6492     return setRange(ZExt, SignHint,
6493                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6494                                                      RangeType));
6495   }
6496 
6497   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6498     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6499     return setRange(SExt, SignHint,
6500                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6501                                                      RangeType));
6502   }
6503 
6504   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6505     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6506     return setRange(PtrToInt, SignHint, X);
6507   }
6508 
6509   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6510     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6511     return setRange(Trunc, SignHint,
6512                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6513                                                      RangeType));
6514   }
6515 
6516   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6517     // If there's no unsigned wrap, the value will never be less than its
6518     // initial value.
6519     if (AddRec->hasNoUnsignedWrap()) {
6520       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6521       if (!UnsignedMinValue.isZero())
6522         ConservativeResult = ConservativeResult.intersectWith(
6523             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6524     }
6525 
6526     // If there's no signed wrap, and all the operands except initial value have
6527     // the same sign or zero, the value won't ever be:
6528     // 1: smaller than initial value if operands are non negative,
6529     // 2: bigger than initial value if operands are non positive.
6530     // For both cases, value can not cross signed min/max boundary.
6531     if (AddRec->hasNoSignedWrap()) {
6532       bool AllNonNeg = true;
6533       bool AllNonPos = true;
6534       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6535         if (!isKnownNonNegative(AddRec->getOperand(i)))
6536           AllNonNeg = false;
6537         if (!isKnownNonPositive(AddRec->getOperand(i)))
6538           AllNonPos = false;
6539       }
6540       if (AllNonNeg)
6541         ConservativeResult = ConservativeResult.intersectWith(
6542             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6543                                        APInt::getSignedMinValue(BitWidth)),
6544             RangeType);
6545       else if (AllNonPos)
6546         ConservativeResult = ConservativeResult.intersectWith(
6547             ConstantRange::getNonEmpty(
6548                 APInt::getSignedMinValue(BitWidth),
6549                 getSignedRangeMax(AddRec->getStart()) + 1),
6550             RangeType);
6551     }
6552 
6553     // TODO: non-affine addrec
6554     if (AddRec->isAffine()) {
6555       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6556       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6557           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6558         auto RangeFromAffine = getRangeForAffineAR(
6559             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6560             BitWidth);
6561         ConservativeResult =
6562             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6563 
6564         auto RangeFromFactoring = getRangeViaFactoring(
6565             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6566             BitWidth);
6567         ConservativeResult =
6568             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6569       }
6570 
6571       // Now try symbolic BE count and more powerful methods.
6572       if (UseExpensiveRangeSharpening) {
6573         const SCEV *SymbolicMaxBECount =
6574             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6575         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6576             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6577             AddRec->hasNoSelfWrap()) {
6578           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6579               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6580           ConservativeResult =
6581               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6582         }
6583       }
6584     }
6585 
6586     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6587   }
6588 
6589   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6590 
6591     // Check if the IR explicitly contains !range metadata.
6592     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6593     if (MDRange)
6594       ConservativeResult =
6595           ConservativeResult.intersectWith(MDRange.value(), RangeType);
6596 
6597     // Use facts about recurrences in the underlying IR.  Note that add
6598     // recurrences are AddRecExprs and thus don't hit this path.  This
6599     // primarily handles shift recurrences.
6600     auto CR = getRangeForUnknownRecurrence(U);
6601     ConservativeResult = ConservativeResult.intersectWith(CR);
6602 
6603     // See if ValueTracking can give us a useful range.
6604     const DataLayout &DL = getDataLayout();
6605     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6606     if (Known.getBitWidth() != BitWidth)
6607       Known = Known.zextOrTrunc(BitWidth);
6608 
6609     // ValueTracking may be able to compute a tighter result for the number of
6610     // sign bits than for the value of those sign bits.
6611     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6612     if (U->getType()->isPointerTy()) {
6613       // If the pointer size is larger than the index size type, this can cause
6614       // NS to be larger than BitWidth. So compensate for this.
6615       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6616       int ptrIdxDiff = ptrSize - BitWidth;
6617       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6618         NS -= ptrIdxDiff;
6619     }
6620 
6621     if (NS > 1) {
6622       // If we know any of the sign bits, we know all of the sign bits.
6623       if (!Known.Zero.getHiBits(NS).isZero())
6624         Known.Zero.setHighBits(NS);
6625       if (!Known.One.getHiBits(NS).isZero())
6626         Known.One.setHighBits(NS);
6627     }
6628 
6629     if (Known.getMinValue() != Known.getMaxValue() + 1)
6630       ConservativeResult = ConservativeResult.intersectWith(
6631           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6632           RangeType);
6633     if (NS > 1)
6634       ConservativeResult = ConservativeResult.intersectWith(
6635           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6636                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6637           RangeType);
6638 
6639     // A range of Phi is a subset of union of all ranges of its input.
6640     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6641       // Make sure that we do not run over cycled Phis.
6642       if (PendingPhiRanges.insert(Phi).second) {
6643         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6644         for (const auto &Op : Phi->operands()) {
6645           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6646           RangeFromOps = RangeFromOps.unionWith(OpRange);
6647           // No point to continue if we already have a full set.
6648           if (RangeFromOps.isFullSet())
6649             break;
6650         }
6651         ConservativeResult =
6652             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6653         bool Erased = PendingPhiRanges.erase(Phi);
6654         assert(Erased && "Failed to erase Phi properly?");
6655         (void) Erased;
6656       }
6657     }
6658 
6659     // vscale can't be equal to zero
6660     if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue()))
6661       if (II->getIntrinsicID() == Intrinsic::vscale) {
6662         ConstantRange Disallowed = APInt::getZero(BitWidth);
6663         ConservativeResult = ConservativeResult.difference(Disallowed);
6664       }
6665 
6666     return setRange(U, SignHint, std::move(ConservativeResult));
6667   }
6668 
6669   return setRange(S, SignHint, std::move(ConservativeResult));
6670 }
6671 
6672 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6673 // values that the expression can take. Initially, the expression has a value
6674 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6675 // argument defines if we treat Step as signed or unsigned.
6676 static ConstantRange getRangeForAffineARHelper(APInt Step,
6677                                                const ConstantRange &StartRange,
6678                                                const APInt &MaxBECount,
6679                                                unsigned BitWidth, bool Signed) {
6680   // If either Step or MaxBECount is 0, then the expression won't change, and we
6681   // just need to return the initial range.
6682   if (Step == 0 || MaxBECount == 0)
6683     return StartRange;
6684 
6685   // If we don't know anything about the initial value (i.e. StartRange is
6686   // FullRange), then we don't know anything about the final range either.
6687   // Return FullRange.
6688   if (StartRange.isFullSet())
6689     return ConstantRange::getFull(BitWidth);
6690 
6691   // If Step is signed and negative, then we use its absolute value, but we also
6692   // note that we're moving in the opposite direction.
6693   bool Descending = Signed && Step.isNegative();
6694 
6695   if (Signed)
6696     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6697     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6698     // This equations hold true due to the well-defined wrap-around behavior of
6699     // APInt.
6700     Step = Step.abs();
6701 
6702   // Check if Offset is more than full span of BitWidth. If it is, the
6703   // expression is guaranteed to overflow.
6704   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6705     return ConstantRange::getFull(BitWidth);
6706 
6707   // Offset is by how much the expression can change. Checks above guarantee no
6708   // overflow here.
6709   APInt Offset = Step * MaxBECount;
6710 
6711   // Minimum value of the final range will match the minimal value of StartRange
6712   // if the expression is increasing and will be decreased by Offset otherwise.
6713   // Maximum value of the final range will match the maximal value of StartRange
6714   // if the expression is decreasing and will be increased by Offset otherwise.
6715   APInt StartLower = StartRange.getLower();
6716   APInt StartUpper = StartRange.getUpper() - 1;
6717   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6718                                    : (StartUpper + std::move(Offset));
6719 
6720   // It's possible that the new minimum/maximum value will fall into the initial
6721   // range (due to wrap around). This means that the expression can take any
6722   // value in this bitwidth, and we have to return full range.
6723   if (StartRange.contains(MovedBoundary))
6724     return ConstantRange::getFull(BitWidth);
6725 
6726   APInt NewLower =
6727       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6728   APInt NewUpper =
6729       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6730   NewUpper += 1;
6731 
6732   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6733   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6734 }
6735 
6736 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6737                                                    const SCEV *Step,
6738                                                    const SCEV *MaxBECount,
6739                                                    unsigned BitWidth) {
6740   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6741          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6742          "Precondition!");
6743 
6744   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6745   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6746 
6747   // First, consider step signed.
6748   ConstantRange StartSRange = getSignedRange(Start);
6749   ConstantRange StepSRange = getSignedRange(Step);
6750 
6751   // If Step can be both positive and negative, we need to find ranges for the
6752   // maximum absolute step values in both directions and union them.
6753   ConstantRange SR =
6754       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6755                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6756   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6757                                               StartSRange, MaxBECountValue,
6758                                               BitWidth, /* Signed = */ true));
6759 
6760   // Next, consider step unsigned.
6761   ConstantRange UR = getRangeForAffineARHelper(
6762       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6763       MaxBECountValue, BitWidth, /* Signed = */ false);
6764 
6765   // Finally, intersect signed and unsigned ranges.
6766   return SR.intersectWith(UR, ConstantRange::Smallest);
6767 }
6768 
6769 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6770     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6771     ScalarEvolution::RangeSignHint SignHint) {
6772   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6773   assert(AddRec->hasNoSelfWrap() &&
6774          "This only works for non-self-wrapping AddRecs!");
6775   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6776   const SCEV *Step = AddRec->getStepRecurrence(*this);
6777   // Only deal with constant step to save compile time.
6778   if (!isa<SCEVConstant>(Step))
6779     return ConstantRange::getFull(BitWidth);
6780   // Let's make sure that we can prove that we do not self-wrap during
6781   // MaxBECount iterations. We need this because MaxBECount is a maximum
6782   // iteration count estimate, and we might infer nw from some exit for which we
6783   // do not know max exit count (or any other side reasoning).
6784   // TODO: Turn into assert at some point.
6785   if (getTypeSizeInBits(MaxBECount->getType()) >
6786       getTypeSizeInBits(AddRec->getType()))
6787     return ConstantRange::getFull(BitWidth);
6788   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6789   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6790   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6791   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6792   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6793                                          MaxItersWithoutWrap))
6794     return ConstantRange::getFull(BitWidth);
6795 
6796   ICmpInst::Predicate LEPred =
6797       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6798   ICmpInst::Predicate GEPred =
6799       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6800   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6801 
6802   // We know that there is no self-wrap. Let's take Start and End values and
6803   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6804   // the iteration. They either lie inside the range [Min(Start, End),
6805   // Max(Start, End)] or outside it:
6806   //
6807   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6808   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6809   //
6810   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6811   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6812   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6813   // Start <= End and step is positive, or Start >= End and step is negative.
6814   const SCEV *Start = AddRec->getStart();
6815   ConstantRange StartRange = getRangeRef(Start, SignHint);
6816   ConstantRange EndRange = getRangeRef(End, SignHint);
6817   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6818   // If they already cover full iteration space, we will know nothing useful
6819   // even if we prove what we want to prove.
6820   if (RangeBetween.isFullSet())
6821     return RangeBetween;
6822   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6823   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6824                                : RangeBetween.isWrappedSet();
6825   if (IsWrappedSet)
6826     return ConstantRange::getFull(BitWidth);
6827 
6828   if (isKnownPositive(Step) &&
6829       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6830     return RangeBetween;
6831   else if (isKnownNegative(Step) &&
6832            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6833     return RangeBetween;
6834   return ConstantRange::getFull(BitWidth);
6835 }
6836 
6837 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6838                                                     const SCEV *Step,
6839                                                     const SCEV *MaxBECount,
6840                                                     unsigned BitWidth) {
6841   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6842   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6843 
6844   struct SelectPattern {
6845     Value *Condition = nullptr;
6846     APInt TrueValue;
6847     APInt FalseValue;
6848 
6849     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6850                            const SCEV *S) {
6851       Optional<unsigned> CastOp;
6852       APInt Offset(BitWidth, 0);
6853 
6854       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6855              "Should be!");
6856 
6857       // Peel off a constant offset:
6858       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6859         // In the future we could consider being smarter here and handle
6860         // {Start+Step,+,Step} too.
6861         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6862           return;
6863 
6864         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6865         S = SA->getOperand(1);
6866       }
6867 
6868       // Peel off a cast operation
6869       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6870         CastOp = SCast->getSCEVType();
6871         S = SCast->getOperand();
6872       }
6873 
6874       using namespace llvm::PatternMatch;
6875 
6876       auto *SU = dyn_cast<SCEVUnknown>(S);
6877       const APInt *TrueVal, *FalseVal;
6878       if (!SU ||
6879           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6880                                           m_APInt(FalseVal)))) {
6881         Condition = nullptr;
6882         return;
6883       }
6884 
6885       TrueValue = *TrueVal;
6886       FalseValue = *FalseVal;
6887 
6888       // Re-apply the cast we peeled off earlier
6889       if (CastOp)
6890         switch (*CastOp) {
6891         default:
6892           llvm_unreachable("Unknown SCEV cast type!");
6893 
6894         case scTruncate:
6895           TrueValue = TrueValue.trunc(BitWidth);
6896           FalseValue = FalseValue.trunc(BitWidth);
6897           break;
6898         case scZeroExtend:
6899           TrueValue = TrueValue.zext(BitWidth);
6900           FalseValue = FalseValue.zext(BitWidth);
6901           break;
6902         case scSignExtend:
6903           TrueValue = TrueValue.sext(BitWidth);
6904           FalseValue = FalseValue.sext(BitWidth);
6905           break;
6906         }
6907 
6908       // Re-apply the constant offset we peeled off earlier
6909       TrueValue += Offset;
6910       FalseValue += Offset;
6911     }
6912 
6913     bool isRecognized() { return Condition != nullptr; }
6914   };
6915 
6916   SelectPattern StartPattern(*this, BitWidth, Start);
6917   if (!StartPattern.isRecognized())
6918     return ConstantRange::getFull(BitWidth);
6919 
6920   SelectPattern StepPattern(*this, BitWidth, Step);
6921   if (!StepPattern.isRecognized())
6922     return ConstantRange::getFull(BitWidth);
6923 
6924   if (StartPattern.Condition != StepPattern.Condition) {
6925     // We don't handle this case today; but we could, by considering four
6926     // possibilities below instead of two. I'm not sure if there are cases where
6927     // that will help over what getRange already does, though.
6928     return ConstantRange::getFull(BitWidth);
6929   }
6930 
6931   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6932   // construct arbitrary general SCEV expressions here.  This function is called
6933   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6934   // say) can end up caching a suboptimal value.
6935 
6936   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6937   // C2352 and C2512 (otherwise it isn't needed).
6938 
6939   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6940   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6941   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6942   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6943 
6944   ConstantRange TrueRange =
6945       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6946   ConstantRange FalseRange =
6947       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6948 
6949   return TrueRange.unionWith(FalseRange);
6950 }
6951 
6952 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6953   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6954   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6955 
6956   // Return early if there are no flags to propagate to the SCEV.
6957   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6958   if (BinOp->hasNoUnsignedWrap())
6959     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6960   if (BinOp->hasNoSignedWrap())
6961     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6962   if (Flags == SCEV::FlagAnyWrap)
6963     return SCEV::FlagAnyWrap;
6964 
6965   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6966 }
6967 
6968 const Instruction *
6969 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6970   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6971     return &*AddRec->getLoop()->getHeader()->begin();
6972   if (auto *U = dyn_cast<SCEVUnknown>(S))
6973     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6974       return I;
6975   return nullptr;
6976 }
6977 
6978 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6979 /// \p Ops remains unmodified.
6980 static void collectUniqueOps(const SCEV *S,
6981                              SmallVectorImpl<const SCEV *> &Ops) {
6982   SmallPtrSet<const SCEV *, 4> Unique;
6983   auto InsertUnique = [&](const SCEV *S) {
6984     if (Unique.insert(S).second)
6985       Ops.push_back(S);
6986   };
6987   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6988     for (const auto *Op : S2->operands())
6989       InsertUnique(Op);
6990   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6991     for (const auto *Op : S2->operands())
6992       InsertUnique(Op);
6993   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6994     for (const auto *Op : S2->operands())
6995       InsertUnique(Op);
6996 }
6997 
6998 const Instruction *
6999 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7000                                        bool &Precise) {
7001   Precise = true;
7002   // Do a bounded search of the def relation of the requested SCEVs.
7003   SmallSet<const SCEV *, 16> Visited;
7004   SmallVector<const SCEV *> Worklist;
7005   auto pushOp = [&](const SCEV *S) {
7006     if (!Visited.insert(S).second)
7007       return;
7008     // Threshold of 30 here is arbitrary.
7009     if (Visited.size() > 30) {
7010       Precise = false;
7011       return;
7012     }
7013     Worklist.push_back(S);
7014   };
7015 
7016   for (const auto *S : Ops)
7017     pushOp(S);
7018 
7019   const Instruction *Bound = nullptr;
7020   while (!Worklist.empty()) {
7021     auto *S = Worklist.pop_back_val();
7022     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7023       if (!Bound || DT.dominates(Bound, DefI))
7024         Bound = DefI;
7025     } else {
7026       SmallVector<const SCEV *, 4> Ops;
7027       collectUniqueOps(S, Ops);
7028       for (const auto *Op : Ops)
7029         pushOp(Op);
7030     }
7031   }
7032   return Bound ? Bound : &*F.getEntryBlock().begin();
7033 }
7034 
7035 const Instruction *
7036 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7037   bool Discard;
7038   return getDefiningScopeBound(Ops, Discard);
7039 }
7040 
7041 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7042                                                         const Instruction *B) {
7043   if (A->getParent() == B->getParent() &&
7044       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7045                                                  B->getIterator()))
7046     return true;
7047 
7048   auto *BLoop = LI.getLoopFor(B->getParent());
7049   if (BLoop && BLoop->getHeader() == B->getParent() &&
7050       BLoop->getLoopPreheader() == A->getParent() &&
7051       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7052                                                  A->getParent()->end()) &&
7053       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7054                                                  B->getIterator()))
7055     return true;
7056   return false;
7057 }
7058 
7059 
7060 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7061   // Only proceed if we can prove that I does not yield poison.
7062   if (!programUndefinedIfPoison(I))
7063     return false;
7064 
7065   // At this point we know that if I is executed, then it does not wrap
7066   // according to at least one of NSW or NUW. If I is not executed, then we do
7067   // not know if the calculation that I represents would wrap. Multiple
7068   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7069   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7070   // derived from other instructions that map to the same SCEV. We cannot make
7071   // that guarantee for cases where I is not executed. So we need to find a
7072   // upper bound on the defining scope for the SCEV, and prove that I is
7073   // executed every time we enter that scope.  When the bounding scope is a
7074   // loop (the common case), this is equivalent to proving I executes on every
7075   // iteration of that loop.
7076   SmallVector<const SCEV *> SCEVOps;
7077   for (const Use &Op : I->operands()) {
7078     // I could be an extractvalue from a call to an overflow intrinsic.
7079     // TODO: We can do better here in some cases.
7080     if (isSCEVable(Op->getType()))
7081       SCEVOps.push_back(getSCEV(Op));
7082   }
7083   auto *DefI = getDefiningScopeBound(SCEVOps);
7084   return isGuaranteedToTransferExecutionTo(DefI, I);
7085 }
7086 
7087 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7088   // If we know that \c I can never be poison period, then that's enough.
7089   if (isSCEVExprNeverPoison(I))
7090     return true;
7091 
7092   // For an add recurrence specifically, we assume that infinite loops without
7093   // side effects are undefined behavior, and then reason as follows:
7094   //
7095   // If the add recurrence is poison in any iteration, it is poison on all
7096   // future iterations (since incrementing poison yields poison). If the result
7097   // of the add recurrence is fed into the loop latch condition and the loop
7098   // does not contain any throws or exiting blocks other than the latch, we now
7099   // have the ability to "choose" whether the backedge is taken or not (by
7100   // choosing a sufficiently evil value for the poison feeding into the branch)
7101   // for every iteration including and after the one in which \p I first became
7102   // poison.  There are two possibilities (let's call the iteration in which \p
7103   // I first became poison as K):
7104   //
7105   //  1. In the set of iterations including and after K, the loop body executes
7106   //     no side effects.  In this case executing the backege an infinte number
7107   //     of times will yield undefined behavior.
7108   //
7109   //  2. In the set of iterations including and after K, the loop body executes
7110   //     at least one side effect.  In this case, that specific instance of side
7111   //     effect is control dependent on poison, which also yields undefined
7112   //     behavior.
7113 
7114   auto *ExitingBB = L->getExitingBlock();
7115   auto *LatchBB = L->getLoopLatch();
7116   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
7117     return false;
7118 
7119   SmallPtrSet<const Instruction *, 16> Pushed;
7120   SmallVector<const Instruction *, 8> PoisonStack;
7121 
7122   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7123   // things that are known to be poison under that assumption go on the
7124   // PoisonStack.
7125   Pushed.insert(I);
7126   PoisonStack.push_back(I);
7127 
7128   bool LatchControlDependentOnPoison = false;
7129   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
7130     const Instruction *Poison = PoisonStack.pop_back_val();
7131 
7132     for (const auto *PoisonUser : Poison->users()) {
7133       if (propagatesPoison(cast<Operator>(PoisonUser))) {
7134         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
7135           PoisonStack.push_back(cast<Instruction>(PoisonUser));
7136       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
7137         assert(BI->isConditional() && "Only possibility!");
7138         if (BI->getParent() == LatchBB) {
7139           LatchControlDependentOnPoison = true;
7140           break;
7141         }
7142       }
7143     }
7144   }
7145 
7146   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
7147 }
7148 
7149 ScalarEvolution::LoopProperties
7150 ScalarEvolution::getLoopProperties(const Loop *L) {
7151   using LoopProperties = ScalarEvolution::LoopProperties;
7152 
7153   auto Itr = LoopPropertiesCache.find(L);
7154   if (Itr == LoopPropertiesCache.end()) {
7155     auto HasSideEffects = [](Instruction *I) {
7156       if (auto *SI = dyn_cast<StoreInst>(I))
7157         return !SI->isSimple();
7158 
7159       return I->mayThrow() || I->mayWriteToMemory();
7160     };
7161 
7162     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7163                          /*HasNoSideEffects*/ true};
7164 
7165     for (auto *BB : L->getBlocks())
7166       for (auto &I : *BB) {
7167         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7168           LP.HasNoAbnormalExits = false;
7169         if (HasSideEffects(&I))
7170           LP.HasNoSideEffects = false;
7171         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7172           break; // We're already as pessimistic as we can get.
7173       }
7174 
7175     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7176     assert(InsertPair.second && "We just checked!");
7177     Itr = InsertPair.first;
7178   }
7179 
7180   return Itr->second;
7181 }
7182 
7183 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7184   // A mustprogress loop without side effects must be finite.
7185   // TODO: The check used here is very conservative.  It's only *specific*
7186   // side effects which are well defined in infinite loops.
7187   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7188 }
7189 
7190 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7191   // Worklist item with a Value and a bool indicating whether all operands have
7192   // been visited already.
7193   using PointerTy = PointerIntPair<Value *, 1, bool>;
7194   SmallVector<PointerTy> Stack;
7195 
7196   Stack.emplace_back(V, true);
7197   Stack.emplace_back(V, false);
7198   while (!Stack.empty()) {
7199     auto E = Stack.pop_back_val();
7200     Value *CurV = E.getPointer();
7201 
7202     if (getExistingSCEV(CurV))
7203       continue;
7204 
7205     SmallVector<Value *> Ops;
7206     const SCEV *CreatedSCEV = nullptr;
7207     // If all operands have been visited already, create the SCEV.
7208     if (E.getInt()) {
7209       CreatedSCEV = createSCEV(CurV);
7210     } else {
7211       // Otherwise get the operands we need to create SCEV's for before creating
7212       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7213       // just use it.
7214       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7215     }
7216 
7217     if (CreatedSCEV) {
7218       insertValueToMap(CurV, CreatedSCEV);
7219     } else {
7220       // Queue CurV for SCEV creation, followed by its's operands which need to
7221       // be constructed first.
7222       Stack.emplace_back(CurV, true);
7223       for (Value *Op : Ops)
7224         Stack.emplace_back(Op, false);
7225     }
7226   }
7227 
7228   return getExistingSCEV(V);
7229 }
7230 
7231 const SCEV *
7232 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7233   if (!isSCEVable(V->getType()))
7234     return getUnknown(V);
7235 
7236   if (Instruction *I = dyn_cast<Instruction>(V)) {
7237     // Don't attempt to analyze instructions in blocks that aren't
7238     // reachable. Such instructions don't matter, and they aren't required
7239     // to obey basic rules for definitions dominating uses which this
7240     // analysis depends on.
7241     if (!DT.isReachableFromEntry(I->getParent()))
7242       return getUnknown(PoisonValue::get(V->getType()));
7243   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7244     return getConstant(CI);
7245   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
7246     if (!GA->isInterposable()) {
7247       Ops.push_back(GA->getAliasee());
7248       return nullptr;
7249     }
7250     return getUnknown(V);
7251   } else if (!isa<ConstantExpr>(V))
7252     return getUnknown(V);
7253 
7254   Operator *U = cast<Operator>(V);
7255   if (auto BO = MatchBinaryOp(U, DT)) {
7256     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7257     switch (BO->Opcode) {
7258     case Instruction::Add: {
7259       // For additions and multiplications, traverse add/mul chains for which we
7260       // can potentially create a single SCEV, to reduce the number of
7261       // get{Add,Mul}Expr calls.
7262       do {
7263         if (BO->Op) {
7264           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7265             Ops.push_back(BO->Op);
7266             break;
7267           }
7268         }
7269         Ops.push_back(BO->RHS);
7270         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7271         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7272                        NewBO->Opcode != Instruction::Sub)) {
7273           Ops.push_back(BO->LHS);
7274           break;
7275         }
7276         BO = NewBO;
7277       } while (true);
7278       return nullptr;
7279     }
7280 
7281     case Instruction::Mul: {
7282       do {
7283         if (BO->Op) {
7284           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7285             Ops.push_back(BO->Op);
7286             break;
7287           }
7288         }
7289         Ops.push_back(BO->RHS);
7290         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7291         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7292           Ops.push_back(BO->LHS);
7293           break;
7294         }
7295         BO = NewBO;
7296       } while (true);
7297       return nullptr;
7298     }
7299     case Instruction::Sub:
7300     case Instruction::UDiv:
7301     case Instruction::URem:
7302       break;
7303     case Instruction::AShr:
7304     case Instruction::Shl:
7305     case Instruction::Xor:
7306       if (!IsConstArg)
7307         return nullptr;
7308       break;
7309     case Instruction::And:
7310     case Instruction::Or:
7311       if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1))
7312         return nullptr;
7313       break;
7314     case Instruction::LShr:
7315       return getUnknown(V);
7316     default:
7317       llvm_unreachable("Unhandled binop");
7318       break;
7319     }
7320 
7321     Ops.push_back(BO->LHS);
7322     Ops.push_back(BO->RHS);
7323     return nullptr;
7324   }
7325 
7326   switch (U->getOpcode()) {
7327   case Instruction::Trunc:
7328   case Instruction::ZExt:
7329   case Instruction::SExt:
7330   case Instruction::PtrToInt:
7331     Ops.push_back(U->getOperand(0));
7332     return nullptr;
7333 
7334   case Instruction::BitCast:
7335     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7336       Ops.push_back(U->getOperand(0));
7337       return nullptr;
7338     }
7339     return getUnknown(V);
7340 
7341   case Instruction::SDiv:
7342   case Instruction::SRem:
7343     Ops.push_back(U->getOperand(0));
7344     Ops.push_back(U->getOperand(1));
7345     return nullptr;
7346 
7347   case Instruction::GetElementPtr:
7348     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7349            "GEP source element type must be sized");
7350     for (Value *Index : U->operands())
7351       Ops.push_back(Index);
7352     return nullptr;
7353 
7354   case Instruction::IntToPtr:
7355     return getUnknown(V);
7356 
7357   case Instruction::PHI:
7358     // Keep constructing SCEVs' for phis recursively for now.
7359     return nullptr;
7360 
7361   case Instruction::Select: {
7362     // Check if U is a select that can be simplified to a SCEVUnknown.
7363     auto CanSimplifyToUnknown = [this, U]() {
7364       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7365         return false;
7366 
7367       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7368       if (!ICI)
7369         return false;
7370       Value *LHS = ICI->getOperand(0);
7371       Value *RHS = ICI->getOperand(1);
7372       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7373           ICI->getPredicate() == CmpInst::ICMP_NE) {
7374         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7375           return true;
7376       } else if (getTypeSizeInBits(LHS->getType()) >
7377                  getTypeSizeInBits(U->getType()))
7378         return true;
7379       return false;
7380     };
7381     if (CanSimplifyToUnknown())
7382       return getUnknown(U);
7383 
7384     for (Value *Inc : U->operands())
7385       Ops.push_back(Inc);
7386     return nullptr;
7387     break;
7388   }
7389   case Instruction::Call:
7390   case Instruction::Invoke:
7391     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7392       Ops.push_back(RV);
7393       return nullptr;
7394     }
7395 
7396     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7397       switch (II->getIntrinsicID()) {
7398       case Intrinsic::abs:
7399         Ops.push_back(II->getArgOperand(0));
7400         return nullptr;
7401       case Intrinsic::umax:
7402       case Intrinsic::umin:
7403       case Intrinsic::smax:
7404       case Intrinsic::smin:
7405       case Intrinsic::usub_sat:
7406       case Intrinsic::uadd_sat:
7407         Ops.push_back(II->getArgOperand(0));
7408         Ops.push_back(II->getArgOperand(1));
7409         return nullptr;
7410       case Intrinsic::start_loop_iterations:
7411       case Intrinsic::annotation:
7412       case Intrinsic::ptr_annotation:
7413         Ops.push_back(II->getArgOperand(0));
7414         return nullptr;
7415       default:
7416         break;
7417       }
7418     }
7419     break;
7420   }
7421 
7422   return nullptr;
7423 }
7424 
7425 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7426   if (!isSCEVable(V->getType()))
7427     return getUnknown(V);
7428 
7429   if (Instruction *I = dyn_cast<Instruction>(V)) {
7430     // Don't attempt to analyze instructions in blocks that aren't
7431     // reachable. Such instructions don't matter, and they aren't required
7432     // to obey basic rules for definitions dominating uses which this
7433     // analysis depends on.
7434     if (!DT.isReachableFromEntry(I->getParent()))
7435       return getUnknown(PoisonValue::get(V->getType()));
7436   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7437     return getConstant(CI);
7438   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7439     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7440   else if (!isa<ConstantExpr>(V))
7441     return getUnknown(V);
7442 
7443   const SCEV *LHS;
7444   const SCEV *RHS;
7445 
7446   Operator *U = cast<Operator>(V);
7447   if (auto BO = MatchBinaryOp(U, DT)) {
7448     switch (BO->Opcode) {
7449     case Instruction::Add: {
7450       // The simple thing to do would be to just call getSCEV on both operands
7451       // and call getAddExpr with the result. However if we're looking at a
7452       // bunch of things all added together, this can be quite inefficient,
7453       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7454       // Instead, gather up all the operands and make a single getAddExpr call.
7455       // LLVM IR canonical form means we need only traverse the left operands.
7456       SmallVector<const SCEV *, 4> AddOps;
7457       do {
7458         if (BO->Op) {
7459           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7460             AddOps.push_back(OpSCEV);
7461             break;
7462           }
7463 
7464           // If a NUW or NSW flag can be applied to the SCEV for this
7465           // addition, then compute the SCEV for this addition by itself
7466           // with a separate call to getAddExpr. We need to do that
7467           // instead of pushing the operands of the addition onto AddOps,
7468           // since the flags are only known to apply to this particular
7469           // addition - they may not apply to other additions that can be
7470           // formed with operands from AddOps.
7471           const SCEV *RHS = getSCEV(BO->RHS);
7472           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7473           if (Flags != SCEV::FlagAnyWrap) {
7474             const SCEV *LHS = getSCEV(BO->LHS);
7475             if (BO->Opcode == Instruction::Sub)
7476               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7477             else
7478               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7479             break;
7480           }
7481         }
7482 
7483         if (BO->Opcode == Instruction::Sub)
7484           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7485         else
7486           AddOps.push_back(getSCEV(BO->RHS));
7487 
7488         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7489         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7490                        NewBO->Opcode != Instruction::Sub)) {
7491           AddOps.push_back(getSCEV(BO->LHS));
7492           break;
7493         }
7494         BO = NewBO;
7495       } while (true);
7496 
7497       return getAddExpr(AddOps);
7498     }
7499 
7500     case Instruction::Mul: {
7501       SmallVector<const SCEV *, 4> MulOps;
7502       do {
7503         if (BO->Op) {
7504           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7505             MulOps.push_back(OpSCEV);
7506             break;
7507           }
7508 
7509           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7510           if (Flags != SCEV::FlagAnyWrap) {
7511             LHS = getSCEV(BO->LHS);
7512             RHS = getSCEV(BO->RHS);
7513             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7514             break;
7515           }
7516         }
7517 
7518         MulOps.push_back(getSCEV(BO->RHS));
7519         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7520         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7521           MulOps.push_back(getSCEV(BO->LHS));
7522           break;
7523         }
7524         BO = NewBO;
7525       } while (true);
7526 
7527       return getMulExpr(MulOps);
7528     }
7529     case Instruction::UDiv:
7530       LHS = getSCEV(BO->LHS);
7531       RHS = getSCEV(BO->RHS);
7532       return getUDivExpr(LHS, RHS);
7533     case Instruction::URem:
7534       LHS = getSCEV(BO->LHS);
7535       RHS = getSCEV(BO->RHS);
7536       return getURemExpr(LHS, RHS);
7537     case Instruction::Sub: {
7538       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7539       if (BO->Op)
7540         Flags = getNoWrapFlagsFromUB(BO->Op);
7541       LHS = getSCEV(BO->LHS);
7542       RHS = getSCEV(BO->RHS);
7543       return getMinusSCEV(LHS, RHS, Flags);
7544     }
7545     case Instruction::And:
7546       // For an expression like x&255 that merely masks off the high bits,
7547       // use zext(trunc(x)) as the SCEV expression.
7548       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7549         if (CI->isZero())
7550           return getSCEV(BO->RHS);
7551         if (CI->isMinusOne())
7552           return getSCEV(BO->LHS);
7553         const APInt &A = CI->getValue();
7554 
7555         // Instcombine's ShrinkDemandedConstant may strip bits out of
7556         // constants, obscuring what would otherwise be a low-bits mask.
7557         // Use computeKnownBits to compute what ShrinkDemandedConstant
7558         // knew about to reconstruct a low-bits mask value.
7559         unsigned LZ = A.countLeadingZeros();
7560         unsigned TZ = A.countTrailingZeros();
7561         unsigned BitWidth = A.getBitWidth();
7562         KnownBits Known(BitWidth);
7563         computeKnownBits(BO->LHS, Known, getDataLayout(),
7564                          0, &AC, nullptr, &DT);
7565 
7566         APInt EffectiveMask =
7567             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7568         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7569           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7570           const SCEV *LHS = getSCEV(BO->LHS);
7571           const SCEV *ShiftedLHS = nullptr;
7572           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7573             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7574               // For an expression like (x * 8) & 8, simplify the multiply.
7575               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7576               unsigned GCD = std::min(MulZeros, TZ);
7577               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7578               SmallVector<const SCEV*, 4> MulOps;
7579               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7580               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
7581               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7582               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7583             }
7584           }
7585           if (!ShiftedLHS)
7586             ShiftedLHS = getUDivExpr(LHS, MulCount);
7587           return getMulExpr(
7588               getZeroExtendExpr(
7589                   getTruncateExpr(ShiftedLHS,
7590                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7591                   BO->LHS->getType()),
7592               MulCount);
7593         }
7594       }
7595       // Binary `and` is a bit-wise `umin`.
7596       if (BO->LHS->getType()->isIntegerTy(1)) {
7597         LHS = getSCEV(BO->LHS);
7598         RHS = getSCEV(BO->RHS);
7599         return getUMinExpr(LHS, RHS);
7600       }
7601       break;
7602 
7603     case Instruction::Or:
7604       // If the RHS of the Or is a constant, we may have something like:
7605       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
7606       // optimizations will transparently handle this case.
7607       //
7608       // In order for this transformation to be safe, the LHS must be of the
7609       // form X*(2^n) and the Or constant must be less than 2^n.
7610       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7611         const SCEV *LHS = getSCEV(BO->LHS);
7612         const APInt &CIVal = CI->getValue();
7613         if (GetMinTrailingZeros(LHS) >=
7614             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
7615           // Build a plain add SCEV.
7616           return getAddExpr(LHS, getSCEV(CI),
7617                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
7618         }
7619       }
7620       // Binary `or` is a bit-wise `umax`.
7621       if (BO->LHS->getType()->isIntegerTy(1)) {
7622         LHS = getSCEV(BO->LHS);
7623         RHS = getSCEV(BO->RHS);
7624         return getUMaxExpr(LHS, RHS);
7625       }
7626       break;
7627 
7628     case Instruction::Xor:
7629       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7630         // If the RHS of xor is -1, then this is a not operation.
7631         if (CI->isMinusOne())
7632           return getNotSCEV(getSCEV(BO->LHS));
7633 
7634         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7635         // This is a variant of the check for xor with -1, and it handles
7636         // the case where instcombine has trimmed non-demanded bits out
7637         // of an xor with -1.
7638         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7639           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7640             if (LBO->getOpcode() == Instruction::And &&
7641                 LCI->getValue() == CI->getValue())
7642               if (const SCEVZeroExtendExpr *Z =
7643                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7644                 Type *UTy = BO->LHS->getType();
7645                 const SCEV *Z0 = Z->getOperand();
7646                 Type *Z0Ty = Z0->getType();
7647                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7648 
7649                 // If C is a low-bits mask, the zero extend is serving to
7650                 // mask off the high bits. Complement the operand and
7651                 // re-apply the zext.
7652                 if (CI->getValue().isMask(Z0TySize))
7653                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7654 
7655                 // If C is a single bit, it may be in the sign-bit position
7656                 // before the zero-extend. In this case, represent the xor
7657                 // using an add, which is equivalent, and re-apply the zext.
7658                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7659                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7660                     Trunc.isSignMask())
7661                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7662                                            UTy);
7663               }
7664       }
7665       break;
7666 
7667     case Instruction::Shl:
7668       // Turn shift left of a constant amount into a multiply.
7669       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7670         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7671 
7672         // If the shift count is not less than the bitwidth, the result of
7673         // the shift is undefined. Don't try to analyze it, because the
7674         // resolution chosen here may differ from the resolution chosen in
7675         // other parts of the compiler.
7676         if (SA->getValue().uge(BitWidth))
7677           break;
7678 
7679         // We can safely preserve the nuw flag in all cases. It's also safe to
7680         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7681         // requires special handling. It can be preserved as long as we're not
7682         // left shifting by bitwidth - 1.
7683         auto Flags = SCEV::FlagAnyWrap;
7684         if (BO->Op) {
7685           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7686           if ((MulFlags & SCEV::FlagNSW) &&
7687               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7688             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7689           if (MulFlags & SCEV::FlagNUW)
7690             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7691         }
7692 
7693         ConstantInt *X = ConstantInt::get(
7694             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7695         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7696       }
7697       break;
7698 
7699     case Instruction::AShr: {
7700       // AShr X, C, where C is a constant.
7701       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7702       if (!CI)
7703         break;
7704 
7705       Type *OuterTy = BO->LHS->getType();
7706       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7707       // If the shift count is not less than the bitwidth, the result of
7708       // the shift is undefined. Don't try to analyze it, because the
7709       // resolution chosen here may differ from the resolution chosen in
7710       // other parts of the compiler.
7711       if (CI->getValue().uge(BitWidth))
7712         break;
7713 
7714       if (CI->isZero())
7715         return getSCEV(BO->LHS); // shift by zero --> noop
7716 
7717       uint64_t AShrAmt = CI->getZExtValue();
7718       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7719 
7720       Operator *L = dyn_cast<Operator>(BO->LHS);
7721       if (L && L->getOpcode() == Instruction::Shl) {
7722         // X = Shl A, n
7723         // Y = AShr X, m
7724         // Both n and m are constant.
7725 
7726         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7727         if (L->getOperand(1) == BO->RHS)
7728           // For a two-shift sext-inreg, i.e. n = m,
7729           // use sext(trunc(x)) as the SCEV expression.
7730           return getSignExtendExpr(
7731               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7732 
7733         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7734         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7735           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7736           if (ShlAmt > AShrAmt) {
7737             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7738             // expression. We already checked that ShlAmt < BitWidth, so
7739             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7740             // ShlAmt - AShrAmt < Amt.
7741             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7742                                             ShlAmt - AShrAmt);
7743             return getSignExtendExpr(
7744                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7745                 getConstant(Mul)), OuterTy);
7746           }
7747         }
7748       }
7749       break;
7750     }
7751     }
7752   }
7753 
7754   switch (U->getOpcode()) {
7755   case Instruction::Trunc:
7756     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7757 
7758   case Instruction::ZExt:
7759     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7760 
7761   case Instruction::SExt:
7762     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7763       // The NSW flag of a subtract does not always survive the conversion to
7764       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7765       // more likely to preserve NSW and allow later AddRec optimisations.
7766       //
7767       // NOTE: This is effectively duplicating this logic from getSignExtend:
7768       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7769       // but by that point the NSW information has potentially been lost.
7770       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7771         Type *Ty = U->getType();
7772         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7773         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7774         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7775       }
7776     }
7777     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7778 
7779   case Instruction::BitCast:
7780     // BitCasts are no-op casts so we just eliminate the cast.
7781     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7782       return getSCEV(U->getOperand(0));
7783     break;
7784 
7785   case Instruction::PtrToInt: {
7786     // Pointer to integer cast is straight-forward, so do model it.
7787     const SCEV *Op = getSCEV(U->getOperand(0));
7788     Type *DstIntTy = U->getType();
7789     // But only if effective SCEV (integer) type is wide enough to represent
7790     // all possible pointer values.
7791     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7792     if (isa<SCEVCouldNotCompute>(IntOp))
7793       return getUnknown(V);
7794     return IntOp;
7795   }
7796   case Instruction::IntToPtr:
7797     // Just don't deal with inttoptr casts.
7798     return getUnknown(V);
7799 
7800   case Instruction::SDiv:
7801     // If both operands are non-negative, this is just an udiv.
7802     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7803         isKnownNonNegative(getSCEV(U->getOperand(1))))
7804       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7805     break;
7806 
7807   case Instruction::SRem:
7808     // If both operands are non-negative, this is just an urem.
7809     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7810         isKnownNonNegative(getSCEV(U->getOperand(1))))
7811       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7812     break;
7813 
7814   case Instruction::GetElementPtr:
7815     return createNodeForGEP(cast<GEPOperator>(U));
7816 
7817   case Instruction::PHI:
7818     return createNodeForPHI(cast<PHINode>(U));
7819 
7820   case Instruction::Select:
7821     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
7822                                     U->getOperand(2));
7823 
7824   case Instruction::Call:
7825   case Instruction::Invoke:
7826     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7827       return getSCEV(RV);
7828 
7829     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7830       switch (II->getIntrinsicID()) {
7831       case Intrinsic::abs:
7832         return getAbsExpr(
7833             getSCEV(II->getArgOperand(0)),
7834             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7835       case Intrinsic::umax:
7836         LHS = getSCEV(II->getArgOperand(0));
7837         RHS = getSCEV(II->getArgOperand(1));
7838         return getUMaxExpr(LHS, RHS);
7839       case Intrinsic::umin:
7840         LHS = getSCEV(II->getArgOperand(0));
7841         RHS = getSCEV(II->getArgOperand(1));
7842         return getUMinExpr(LHS, RHS);
7843       case Intrinsic::smax:
7844         LHS = getSCEV(II->getArgOperand(0));
7845         RHS = getSCEV(II->getArgOperand(1));
7846         return getSMaxExpr(LHS, RHS);
7847       case Intrinsic::smin:
7848         LHS = getSCEV(II->getArgOperand(0));
7849         RHS = getSCEV(II->getArgOperand(1));
7850         return getSMinExpr(LHS, RHS);
7851       case Intrinsic::usub_sat: {
7852         const SCEV *X = getSCEV(II->getArgOperand(0));
7853         const SCEV *Y = getSCEV(II->getArgOperand(1));
7854         const SCEV *ClampedY = getUMinExpr(X, Y);
7855         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7856       }
7857       case Intrinsic::uadd_sat: {
7858         const SCEV *X = getSCEV(II->getArgOperand(0));
7859         const SCEV *Y = getSCEV(II->getArgOperand(1));
7860         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7861         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7862       }
7863       case Intrinsic::start_loop_iterations:
7864       case Intrinsic::annotation:
7865       case Intrinsic::ptr_annotation:
7866         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
7867         // just eqivalent to the first operand for SCEV purposes.
7868         return getSCEV(II->getArgOperand(0));
7869       default:
7870         break;
7871       }
7872     }
7873     break;
7874   }
7875 
7876   return getUnknown(V);
7877 }
7878 
7879 //===----------------------------------------------------------------------===//
7880 //                   Iteration Count Computation Code
7881 //
7882 
7883 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7884                                                        bool Extend) {
7885   if (isa<SCEVCouldNotCompute>(ExitCount))
7886     return getCouldNotCompute();
7887 
7888   auto *ExitCountType = ExitCount->getType();
7889   assert(ExitCountType->isIntegerTy());
7890 
7891   if (!Extend)
7892     return getAddExpr(ExitCount, getOne(ExitCountType));
7893 
7894   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7895                                     1 + ExitCountType->getScalarSizeInBits());
7896   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7897                     getOne(WiderType));
7898 }
7899 
7900 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7901   if (!ExitCount)
7902     return 0;
7903 
7904   ConstantInt *ExitConst = ExitCount->getValue();
7905 
7906   // Guard against huge trip counts.
7907   if (ExitConst->getValue().getActiveBits() > 32)
7908     return 0;
7909 
7910   // In case of integer overflow, this returns 0, which is correct.
7911   return ((unsigned)ExitConst->getZExtValue()) + 1;
7912 }
7913 
7914 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7915   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7916   return getConstantTripCount(ExitCount);
7917 }
7918 
7919 unsigned
7920 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7921                                            const BasicBlock *ExitingBlock) {
7922   assert(ExitingBlock && "Must pass a non-null exiting block!");
7923   assert(L->isLoopExiting(ExitingBlock) &&
7924          "Exiting block must actually branch out of the loop!");
7925   const SCEVConstant *ExitCount =
7926       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7927   return getConstantTripCount(ExitCount);
7928 }
7929 
7930 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7931   const auto *MaxExitCount =
7932       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7933   return getConstantTripCount(MaxExitCount);
7934 }
7935 
7936 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7937   // We can't infer from Array in Irregular Loop.
7938   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7939   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7940     return getCouldNotCompute();
7941 
7942   // FIXME: To make the scene more typical, we only analysis loops that have
7943   // one exiting block and that block must be the latch. To make it easier to
7944   // capture loops that have memory access and memory access will be executed
7945   // in each iteration.
7946   const BasicBlock *LoopLatch = L->getLoopLatch();
7947   assert(LoopLatch && "See defination of simplify form loop.");
7948   if (L->getExitingBlock() != LoopLatch)
7949     return getCouldNotCompute();
7950 
7951   const DataLayout &DL = getDataLayout();
7952   SmallVector<const SCEV *> InferCountColl;
7953   for (auto *BB : L->getBlocks()) {
7954     // Go here, we can know that Loop is a single exiting and simplified form
7955     // loop. Make sure that infer from Memory Operation in those BBs must be
7956     // executed in loop. First step, we can make sure that max execution time
7957     // of MemAccessBB in loop represents latch max excution time.
7958     // If MemAccessBB does not dom Latch, skip.
7959     //            Entry
7960     //              │
7961     //        ┌─────▼─────┐
7962     //        │Loop Header◄─────┐
7963     //        └──┬──────┬─┘     │
7964     //           │      │       │
7965     //  ┌────────▼──┐ ┌─▼─────┐ │
7966     //  │MemAccessBB│ │OtherBB│ │
7967     //  └────────┬──┘ └─┬─────┘ │
7968     //           │      │       │
7969     //         ┌─▼──────▼─┐     │
7970     //         │Loop Latch├─────┘
7971     //         └────┬─────┘
7972     //              ▼
7973     //             Exit
7974     if (!DT.dominates(BB, LoopLatch))
7975       continue;
7976 
7977     for (Instruction &Inst : *BB) {
7978       // Find Memory Operation Instruction.
7979       auto *GEP = getLoadStorePointerOperand(&Inst);
7980       if (!GEP)
7981         continue;
7982 
7983       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7984       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7985       if (!ElemSize)
7986         continue;
7987 
7988       // Use a existing polynomial recurrence on the trip count.
7989       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7990       if (!AddRec)
7991         continue;
7992       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7993       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7994       if (!ArrBase || !Step)
7995         continue;
7996       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7997 
7998       // Only handle { %array + step },
7999       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
8000       if (AddRec->getStart() != ArrBase)
8001         continue;
8002 
8003       // Memory operation pattern which have gaps.
8004       // Or repeat memory opreation.
8005       // And index of GEP wraps arround.
8006       if (Step->getAPInt().getActiveBits() > 32 ||
8007           Step->getAPInt().getZExtValue() !=
8008               ElemSize->getAPInt().getZExtValue() ||
8009           Step->isZero() || Step->getAPInt().isNegative())
8010         continue;
8011 
8012       // Only infer from stack array which has certain size.
8013       // Make sure alloca instruction is not excuted in loop.
8014       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
8015       if (!AllocateInst || L->contains(AllocateInst->getParent()))
8016         continue;
8017 
8018       // Make sure only handle normal array.
8019       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
8020       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
8021       if (!Ty || !ArrSize || !ArrSize->isOne())
8022         continue;
8023 
8024       // FIXME: Since gep indices are silently zext to the indexing type,
8025       // we will have a narrow gep index which wraps around rather than
8026       // increasing strictly, we shoule ensure that step is increasing
8027       // strictly by the loop iteration.
8028       // Now we can infer a max execution time by MemLength/StepLength.
8029       const SCEV *MemSize =
8030           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
8031       auto *MaxExeCount =
8032           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
8033       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
8034         continue;
8035 
8036       // If the loop reaches the maximum number of executions, we can not
8037       // access bytes starting outside the statically allocated size without
8038       // being immediate UB. But it is allowed to enter loop header one more
8039       // time.
8040       auto *InferCount = dyn_cast<SCEVConstant>(
8041           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
8042       // Discard the maximum number of execution times under 32bits.
8043       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
8044         continue;
8045 
8046       InferCountColl.push_back(InferCount);
8047     }
8048   }
8049 
8050   if (InferCountColl.size() == 0)
8051     return getCouldNotCompute();
8052 
8053   return getUMinFromMismatchedTypes(InferCountColl);
8054 }
8055 
8056 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8057   SmallVector<BasicBlock *, 8> ExitingBlocks;
8058   L->getExitingBlocks(ExitingBlocks);
8059 
8060   Optional<unsigned> Res = None;
8061   for (auto *ExitingBB : ExitingBlocks) {
8062     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8063     if (!Res)
8064       Res = Multiple;
8065     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
8066   }
8067   return Res.value_or(1);
8068 }
8069 
8070 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8071                                                        const SCEV *ExitCount) {
8072   if (ExitCount == getCouldNotCompute())
8073     return 1;
8074 
8075   // Get the trip count
8076   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
8077 
8078   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
8079   if (!TC)
8080     // Attempt to factor more general cases. Returns the greatest power of
8081     // two divisor. If overflow happens, the trip count expression is still
8082     // divisible by the greatest power of 2 divisor returned.
8083     return 1U << std::min((uint32_t)31,
8084                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
8085 
8086   ConstantInt *Result = TC->getValue();
8087 
8088   // Guard against huge trip counts (this requires checking
8089   // for zero to handle the case where the trip count == -1 and the
8090   // addition wraps).
8091   if (!Result || Result->getValue().getActiveBits() > 32 ||
8092       Result->getValue().getActiveBits() == 0)
8093     return 1;
8094 
8095   return (unsigned)Result->getZExtValue();
8096 }
8097 
8098 /// Returns the largest constant divisor of the trip count of this loop as a
8099 /// normal unsigned value, if possible. This means that the actual trip count is
8100 /// always a multiple of the returned value (don't forget the trip count could
8101 /// very well be zero as well!).
8102 ///
8103 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8104 /// multiple of a constant (which is also the case if the trip count is simply
8105 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8106 /// if the trip count is very large (>= 2^32).
8107 ///
8108 /// As explained in the comments for getSmallConstantTripCount, this assumes
8109 /// that control exits the loop via ExitingBlock.
8110 unsigned
8111 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8112                                               const BasicBlock *ExitingBlock) {
8113   assert(ExitingBlock && "Must pass a non-null exiting block!");
8114   assert(L->isLoopExiting(ExitingBlock) &&
8115          "Exiting block must actually branch out of the loop!");
8116   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8117   return getSmallConstantTripMultiple(L, ExitCount);
8118 }
8119 
8120 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8121                                           const BasicBlock *ExitingBlock,
8122                                           ExitCountKind Kind) {
8123   switch (Kind) {
8124   case Exact:
8125   case SymbolicMaximum:
8126     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8127   case ConstantMaximum:
8128     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8129   };
8130   llvm_unreachable("Invalid ExitCountKind!");
8131 }
8132 
8133 const SCEV *
8134 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8135                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8136   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8137 }
8138 
8139 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8140                                                    ExitCountKind Kind) {
8141   switch (Kind) {
8142   case Exact:
8143     return getBackedgeTakenInfo(L).getExact(L, this);
8144   case ConstantMaximum:
8145     return getBackedgeTakenInfo(L).getConstantMax(this);
8146   case SymbolicMaximum:
8147     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8148   };
8149   llvm_unreachable("Invalid ExitCountKind!");
8150 }
8151 
8152 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8153   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8154 }
8155 
8156 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8157 static void PushLoopPHIs(const Loop *L,
8158                          SmallVectorImpl<Instruction *> &Worklist,
8159                          SmallPtrSetImpl<Instruction *> &Visited) {
8160   BasicBlock *Header = L->getHeader();
8161 
8162   // Push all Loop-header PHIs onto the Worklist stack.
8163   for (PHINode &PN : Header->phis())
8164     if (Visited.insert(&PN).second)
8165       Worklist.push_back(&PN);
8166 }
8167 
8168 const ScalarEvolution::BackedgeTakenInfo &
8169 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8170   auto &BTI = getBackedgeTakenInfo(L);
8171   if (BTI.hasFullInfo())
8172     return BTI;
8173 
8174   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8175 
8176   if (!Pair.second)
8177     return Pair.first->second;
8178 
8179   BackedgeTakenInfo Result =
8180       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8181 
8182   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8183 }
8184 
8185 ScalarEvolution::BackedgeTakenInfo &
8186 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8187   // Initially insert an invalid entry for this loop. If the insertion
8188   // succeeds, proceed to actually compute a backedge-taken count and
8189   // update the value. The temporary CouldNotCompute value tells SCEV
8190   // code elsewhere that it shouldn't attempt to request a new
8191   // backedge-taken count, which could result in infinite recursion.
8192   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8193       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8194   if (!Pair.second)
8195     return Pair.first->second;
8196 
8197   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8198   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8199   // must be cleared in this scope.
8200   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8201 
8202   // In product build, there are no usage of statistic.
8203   (void)NumTripCountsComputed;
8204   (void)NumTripCountsNotComputed;
8205 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
8206   const SCEV *BEExact = Result.getExact(L, this);
8207   if (BEExact != getCouldNotCompute()) {
8208     assert(isLoopInvariant(BEExact, L) &&
8209            isLoopInvariant(Result.getConstantMax(this), L) &&
8210            "Computed backedge-taken count isn't loop invariant for loop!");
8211     ++NumTripCountsComputed;
8212   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
8213              isa<PHINode>(L->getHeader()->begin())) {
8214     // Only count loops that have phi nodes as not being computable.
8215     ++NumTripCountsNotComputed;
8216   }
8217 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
8218 
8219   // Now that we know more about the trip count for this loop, forget any
8220   // existing SCEV values for PHI nodes in this loop since they are only
8221   // conservative estimates made without the benefit of trip count
8222   // information. This invalidation is not necessary for correctness, and is
8223   // only done to produce more precise results.
8224   if (Result.hasAnyInfo()) {
8225     // Invalidate any expression using an addrec in this loop.
8226     SmallVector<const SCEV *, 8> ToForget;
8227     auto LoopUsersIt = LoopUsers.find(L);
8228     if (LoopUsersIt != LoopUsers.end())
8229       append_range(ToForget, LoopUsersIt->second);
8230     forgetMemoizedResults(ToForget);
8231 
8232     // Invalidate constant-evolved loop header phis.
8233     for (PHINode &PN : L->getHeader()->phis())
8234       ConstantEvolutionLoopExitValue.erase(&PN);
8235   }
8236 
8237   // Re-lookup the insert position, since the call to
8238   // computeBackedgeTakenCount above could result in a
8239   // recusive call to getBackedgeTakenInfo (on a different
8240   // loop), which would invalidate the iterator computed
8241   // earlier.
8242   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8243 }
8244 
8245 void ScalarEvolution::forgetAllLoops() {
8246   // This method is intended to forget all info about loops. It should
8247   // invalidate caches as if the following happened:
8248   // - The trip counts of all loops have changed arbitrarily
8249   // - Every llvm::Value has been updated in place to produce a different
8250   // result.
8251   BackedgeTakenCounts.clear();
8252   PredicatedBackedgeTakenCounts.clear();
8253   BECountUsers.clear();
8254   LoopPropertiesCache.clear();
8255   ConstantEvolutionLoopExitValue.clear();
8256   ValueExprMap.clear();
8257   ValuesAtScopes.clear();
8258   ValuesAtScopesUsers.clear();
8259   LoopDispositions.clear();
8260   BlockDispositions.clear();
8261   UnsignedRanges.clear();
8262   SignedRanges.clear();
8263   ExprValueMap.clear();
8264   HasRecMap.clear();
8265   MinTrailingZerosCache.clear();
8266   PredicatedSCEVRewrites.clear();
8267 }
8268 
8269 void ScalarEvolution::forgetLoop(const Loop *L) {
8270   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8271   SmallVector<Instruction *, 32> Worklist;
8272   SmallPtrSet<Instruction *, 16> Visited;
8273   SmallVector<const SCEV *, 16> ToForget;
8274 
8275   // Iterate over all the loops and sub-loops to drop SCEV information.
8276   while (!LoopWorklist.empty()) {
8277     auto *CurrL = LoopWorklist.pop_back_val();
8278 
8279     // Drop any stored trip count value.
8280     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8281     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8282 
8283     // Drop information about predicated SCEV rewrites for this loop.
8284     for (auto I = PredicatedSCEVRewrites.begin();
8285          I != PredicatedSCEVRewrites.end();) {
8286       std::pair<const SCEV *, const Loop *> Entry = I->first;
8287       if (Entry.second == CurrL)
8288         PredicatedSCEVRewrites.erase(I++);
8289       else
8290         ++I;
8291     }
8292 
8293     auto LoopUsersItr = LoopUsers.find(CurrL);
8294     if (LoopUsersItr != LoopUsers.end()) {
8295       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8296                 LoopUsersItr->second.end());
8297     }
8298 
8299     // Drop information about expressions based on loop-header PHIs.
8300     PushLoopPHIs(CurrL, Worklist, Visited);
8301 
8302     while (!Worklist.empty()) {
8303       Instruction *I = Worklist.pop_back_val();
8304 
8305       ValueExprMapType::iterator It =
8306           ValueExprMap.find_as(static_cast<Value *>(I));
8307       if (It != ValueExprMap.end()) {
8308         eraseValueFromMap(It->first);
8309         ToForget.push_back(It->second);
8310         if (PHINode *PN = dyn_cast<PHINode>(I))
8311           ConstantEvolutionLoopExitValue.erase(PN);
8312       }
8313 
8314       PushDefUseChildren(I, Worklist, Visited);
8315     }
8316 
8317     LoopPropertiesCache.erase(CurrL);
8318     // Forget all contained loops too, to avoid dangling entries in the
8319     // ValuesAtScopes map.
8320     LoopWorklist.append(CurrL->begin(), CurrL->end());
8321   }
8322   forgetMemoizedResults(ToForget);
8323 }
8324 
8325 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8326   forgetLoop(L->getOutermostLoop());
8327 }
8328 
8329 void ScalarEvolution::forgetValue(Value *V) {
8330   Instruction *I = dyn_cast<Instruction>(V);
8331   if (!I) return;
8332 
8333   // Drop information about expressions based on loop-header PHIs.
8334   SmallVector<Instruction *, 16> Worklist;
8335   SmallPtrSet<Instruction *, 8> Visited;
8336   SmallVector<const SCEV *, 8> ToForget;
8337   Worklist.push_back(I);
8338   Visited.insert(I);
8339 
8340   while (!Worklist.empty()) {
8341     I = Worklist.pop_back_val();
8342     ValueExprMapType::iterator It =
8343       ValueExprMap.find_as(static_cast<Value *>(I));
8344     if (It != ValueExprMap.end()) {
8345       eraseValueFromMap(It->first);
8346       ToForget.push_back(It->second);
8347       if (PHINode *PN = dyn_cast<PHINode>(I))
8348         ConstantEvolutionLoopExitValue.erase(PN);
8349     }
8350 
8351     PushDefUseChildren(I, Worklist, Visited);
8352   }
8353   forgetMemoizedResults(ToForget);
8354 }
8355 
8356 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
8357   LoopDispositions.clear();
8358 }
8359 
8360 /// Get the exact loop backedge taken count considering all loop exits. A
8361 /// computable result can only be returned for loops with all exiting blocks
8362 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8363 /// is never skipped. This is a valid assumption as long as the loop exits via
8364 /// that test. For precise results, it is the caller's responsibility to specify
8365 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8366 const SCEV *
8367 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8368                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8369   // If any exits were not computable, the loop is not computable.
8370   if (!isComplete() || ExitNotTaken.empty())
8371     return SE->getCouldNotCompute();
8372 
8373   const BasicBlock *Latch = L->getLoopLatch();
8374   // All exiting blocks we have collected must dominate the only backedge.
8375   if (!Latch)
8376     return SE->getCouldNotCompute();
8377 
8378   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8379   // count is simply a minimum out of all these calculated exit counts.
8380   SmallVector<const SCEV *, 2> Ops;
8381   for (const auto &ENT : ExitNotTaken) {
8382     const SCEV *BECount = ENT.ExactNotTaken;
8383     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8384     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8385            "We should only have known counts for exiting blocks that dominate "
8386            "latch!");
8387 
8388     Ops.push_back(BECount);
8389 
8390     if (Preds)
8391       for (const auto *P : ENT.Predicates)
8392         Preds->push_back(P);
8393 
8394     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8395            "Predicate should be always true!");
8396   }
8397 
8398   // If an earlier exit exits on the first iteration (exit count zero), then
8399   // a later poison exit count should not propagate into the result. This are
8400   // exactly the semantics provided by umin_seq.
8401   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8402 }
8403 
8404 /// Get the exact not taken count for this loop exit.
8405 const SCEV *
8406 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8407                                              ScalarEvolution *SE) const {
8408   for (const auto &ENT : ExitNotTaken)
8409     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8410       return ENT.ExactNotTaken;
8411 
8412   return SE->getCouldNotCompute();
8413 }
8414 
8415 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8416     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8417   for (const auto &ENT : ExitNotTaken)
8418     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8419       return ENT.MaxNotTaken;
8420 
8421   return SE->getCouldNotCompute();
8422 }
8423 
8424 /// getConstantMax - Get the constant max backedge taken count for the loop.
8425 const SCEV *
8426 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8427   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8428     return !ENT.hasAlwaysTruePredicate();
8429   };
8430 
8431   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8432     return SE->getCouldNotCompute();
8433 
8434   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8435           isa<SCEVConstant>(getConstantMax())) &&
8436          "No point in having a non-constant max backedge taken count!");
8437   return getConstantMax();
8438 }
8439 
8440 const SCEV *
8441 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8442                                                    ScalarEvolution *SE) {
8443   if (!SymbolicMax)
8444     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8445   return SymbolicMax;
8446 }
8447 
8448 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8449     ScalarEvolution *SE) const {
8450   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8451     return !ENT.hasAlwaysTruePredicate();
8452   };
8453   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8454 }
8455 
8456 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8457     : ExitLimit(E, E, false, None) {
8458 }
8459 
8460 ScalarEvolution::ExitLimit::ExitLimit(
8461     const SCEV *E, const SCEV *M, bool MaxOrZero,
8462     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8463     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
8464   // If we prove the max count is zero, so is the symbolic bound.  This happens
8465   // in practice due to differences in a) how context sensitive we've chosen
8466   // to be and b) how we reason about bounds impied by UB.
8467   if (MaxNotTaken->isZero())
8468     ExactNotTaken = MaxNotTaken;
8469 
8470   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8471           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
8472          "Exact is not allowed to be less precise than Max");
8473   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
8474           isa<SCEVConstant>(MaxNotTaken)) &&
8475          "No point in having a non-constant max backedge taken count!");
8476   for (const auto *PredSet : PredSetList)
8477     for (const auto *P : *PredSet)
8478       addPredicate(P);
8479   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8480          "Backedge count should be int");
8481   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
8482          "Max backedge count should be int");
8483 }
8484 
8485 ScalarEvolution::ExitLimit::ExitLimit(
8486     const SCEV *E, const SCEV *M, bool MaxOrZero,
8487     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8488     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
8489 }
8490 
8491 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
8492                                       bool MaxOrZero)
8493     : ExitLimit(E, M, MaxOrZero, None) {
8494 }
8495 
8496 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8497 /// computable exit into a persistent ExitNotTakenInfo array.
8498 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8499     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8500     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8501     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8502   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8503 
8504   ExitNotTaken.reserve(ExitCounts.size());
8505   std::transform(
8506       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
8507       [&](const EdgeExitInfo &EEI) {
8508         BasicBlock *ExitBB = EEI.first;
8509         const ExitLimit &EL = EEI.second;
8510         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8511                                 EL.Predicates);
8512       });
8513   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8514           isa<SCEVConstant>(ConstantMax)) &&
8515          "No point in having a non-constant max backedge taken count!");
8516 }
8517 
8518 /// Compute the number of times the backedge of the specified loop will execute.
8519 ScalarEvolution::BackedgeTakenInfo
8520 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8521                                            bool AllowPredicates) {
8522   SmallVector<BasicBlock *, 8> ExitingBlocks;
8523   L->getExitingBlocks(ExitingBlocks);
8524 
8525   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8526 
8527   SmallVector<EdgeExitInfo, 4> ExitCounts;
8528   bool CouldComputeBECount = true;
8529   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8530   const SCEV *MustExitMaxBECount = nullptr;
8531   const SCEV *MayExitMaxBECount = nullptr;
8532   bool MustExitMaxOrZero = false;
8533 
8534   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8535   // and compute maxBECount.
8536   // Do a union of all the predicates here.
8537   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8538     BasicBlock *ExitBB = ExitingBlocks[i];
8539 
8540     // We canonicalize untaken exits to br (constant), ignore them so that
8541     // proving an exit untaken doesn't negatively impact our ability to reason
8542     // about the loop as whole.
8543     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8544       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8545         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8546         if (ExitIfTrue == CI->isZero())
8547           continue;
8548       }
8549 
8550     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8551 
8552     assert((AllowPredicates || EL.Predicates.empty()) &&
8553            "Predicated exit limit when predicates are not allowed!");
8554 
8555     // 1. For each exit that can be computed, add an entry to ExitCounts.
8556     // CouldComputeBECount is true only if all exits can be computed.
8557     if (EL.ExactNotTaken == getCouldNotCompute())
8558       // We couldn't compute an exact value for this exit, so
8559       // we won't be able to compute an exact value for the loop.
8560       CouldComputeBECount = false;
8561     else
8562       ExitCounts.emplace_back(ExitBB, EL);
8563 
8564     // 2. Derive the loop's MaxBECount from each exit's max number of
8565     // non-exiting iterations. Partition the loop exits into two kinds:
8566     // LoopMustExits and LoopMayExits.
8567     //
8568     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8569     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8570     // MaxBECount is the minimum EL.MaxNotTaken of computable
8571     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8572     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
8573     // computable EL.MaxNotTaken.
8574     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
8575         DT.dominates(ExitBB, Latch)) {
8576       if (!MustExitMaxBECount) {
8577         MustExitMaxBECount = EL.MaxNotTaken;
8578         MustExitMaxOrZero = EL.MaxOrZero;
8579       } else {
8580         MustExitMaxBECount =
8581             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
8582       }
8583     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8584       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
8585         MayExitMaxBECount = EL.MaxNotTaken;
8586       else {
8587         MayExitMaxBECount =
8588             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8589       }
8590     }
8591   }
8592   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8593     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8594   // The loop backedge will be taken the maximum or zero times if there's
8595   // a single exit that must be taken the maximum or zero times.
8596   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8597 
8598   // Remember which SCEVs are used in exit limits for invalidation purposes.
8599   // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
8600   // and MaxBECount, which must be SCEVConstant.
8601   for (const auto &Pair : ExitCounts)
8602     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8603       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8604   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8605                            MaxBECount, MaxOrZero);
8606 }
8607 
8608 ScalarEvolution::ExitLimit
8609 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8610                                       bool AllowPredicates) {
8611   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8612   // If our exiting block does not dominate the latch, then its connection with
8613   // loop's exit limit may be far from trivial.
8614   const BasicBlock *Latch = L->getLoopLatch();
8615   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8616     return getCouldNotCompute();
8617 
8618   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8619   Instruction *Term = ExitingBlock->getTerminator();
8620   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8621     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8622     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8623     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8624            "It should have one successor in loop and one exit block!");
8625     // Proceed to the next level to examine the exit condition expression.
8626     return computeExitLimitFromCond(
8627         L, BI->getCondition(), ExitIfTrue,
8628         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8629   }
8630 
8631   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8632     // For switch, make sure that there is a single exit from the loop.
8633     BasicBlock *Exit = nullptr;
8634     for (auto *SBB : successors(ExitingBlock))
8635       if (!L->contains(SBB)) {
8636         if (Exit) // Multiple exit successors.
8637           return getCouldNotCompute();
8638         Exit = SBB;
8639       }
8640     assert(Exit && "Exiting block must have at least one exit");
8641     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8642                                                 /*ControlsExit=*/IsOnlyExit);
8643   }
8644 
8645   return getCouldNotCompute();
8646 }
8647 
8648 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8649     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8650     bool ControlsExit, bool AllowPredicates) {
8651   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8652   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8653                                         ControlsExit, AllowPredicates);
8654 }
8655 
8656 Optional<ScalarEvolution::ExitLimit>
8657 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8658                                       bool ExitIfTrue, bool ControlsExit,
8659                                       bool AllowPredicates) {
8660   (void)this->L;
8661   (void)this->ExitIfTrue;
8662   (void)this->AllowPredicates;
8663 
8664   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8665          this->AllowPredicates == AllowPredicates &&
8666          "Variance in assumed invariant key components!");
8667   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8668   if (Itr == TripCountMap.end())
8669     return None;
8670   return Itr->second;
8671 }
8672 
8673 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8674                                              bool ExitIfTrue,
8675                                              bool ControlsExit,
8676                                              bool AllowPredicates,
8677                                              const ExitLimit &EL) {
8678   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8679          this->AllowPredicates == AllowPredicates &&
8680          "Variance in assumed invariant key components!");
8681 
8682   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8683   assert(InsertResult.second && "Expected successful insertion!");
8684   (void)InsertResult;
8685   (void)ExitIfTrue;
8686 }
8687 
8688 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8689     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8690     bool ControlsExit, bool AllowPredicates) {
8691 
8692   if (auto MaybeEL =
8693           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8694     return *MaybeEL;
8695 
8696   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8697                                               ControlsExit, AllowPredicates);
8698   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8699   return EL;
8700 }
8701 
8702 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8703     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8704     bool ControlsExit, bool AllowPredicates) {
8705   // Handle BinOp conditions (And, Or).
8706   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8707           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8708     return *LimitFromBinOp;
8709 
8710   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8711   // Proceed to the next level to examine the icmp.
8712   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8713     ExitLimit EL =
8714         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8715     if (EL.hasFullInfo() || !AllowPredicates)
8716       return EL;
8717 
8718     // Try again, but use SCEV predicates this time.
8719     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8720                                     /*AllowPredicates=*/true);
8721   }
8722 
8723   // Check for a constant condition. These are normally stripped out by
8724   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8725   // preserve the CFG and is temporarily leaving constant conditions
8726   // in place.
8727   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8728     if (ExitIfTrue == !CI->getZExtValue())
8729       // The backedge is always taken.
8730       return getCouldNotCompute();
8731     else
8732       // The backedge is never taken.
8733       return getZero(CI->getType());
8734   }
8735 
8736   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8737   // with a constant step, we can form an equivalent icmp predicate and figure
8738   // out how many iterations will be taken before we exit.
8739   const WithOverflowInst *WO;
8740   const APInt *C;
8741   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8742       match(WO->getRHS(), m_APInt(C))) {
8743     ConstantRange NWR =
8744       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8745                                            WO->getNoWrapKind());
8746     CmpInst::Predicate Pred;
8747     APInt NewRHSC, Offset;
8748     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8749     if (!ExitIfTrue)
8750       Pred = ICmpInst::getInversePredicate(Pred);
8751     auto *LHS = getSCEV(WO->getLHS());
8752     if (Offset != 0)
8753       LHS = getAddExpr(LHS, getConstant(Offset));
8754     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8755                                        ControlsExit, AllowPredicates);
8756     if (EL.hasAnyInfo()) return EL;
8757   }
8758 
8759   // If it's not an integer or pointer comparison then compute it the hard way.
8760   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8761 }
8762 
8763 Optional<ScalarEvolution::ExitLimit>
8764 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8765     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8766     bool ControlsExit, bool AllowPredicates) {
8767   // Check if the controlling expression for this loop is an And or Or.
8768   Value *Op0, *Op1;
8769   bool IsAnd = false;
8770   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8771     IsAnd = true;
8772   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8773     IsAnd = false;
8774   else
8775     return None;
8776 
8777   // EitherMayExit is true in these two cases:
8778   //   br (and Op0 Op1), loop, exit
8779   //   br (or  Op0 Op1), exit, loop
8780   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8781   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8782                                                  ControlsExit && !EitherMayExit,
8783                                                  AllowPredicates);
8784   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8785                                                  ControlsExit && !EitherMayExit,
8786                                                  AllowPredicates);
8787 
8788   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8789   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8790   if (isa<ConstantInt>(Op1))
8791     return Op1 == NeutralElement ? EL0 : EL1;
8792   if (isa<ConstantInt>(Op0))
8793     return Op0 == NeutralElement ? EL1 : EL0;
8794 
8795   const SCEV *BECount = getCouldNotCompute();
8796   const SCEV *MaxBECount = getCouldNotCompute();
8797   if (EitherMayExit) {
8798     // Both conditions must be same for the loop to continue executing.
8799     // Choose the less conservative count.
8800     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8801         EL1.ExactNotTaken != getCouldNotCompute()) {
8802       BECount = getUMinFromMismatchedTypes(
8803           EL0.ExactNotTaken, EL1.ExactNotTaken,
8804           /*Sequential=*/!isa<BinaryOperator>(ExitCond));
8805     }
8806     if (EL0.MaxNotTaken == getCouldNotCompute())
8807       MaxBECount = EL1.MaxNotTaken;
8808     else if (EL1.MaxNotTaken == getCouldNotCompute())
8809       MaxBECount = EL0.MaxNotTaken;
8810     else
8811       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8812   } else {
8813     // Both conditions must be same at the same time for the loop to exit.
8814     // For now, be conservative.
8815     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8816       BECount = EL0.ExactNotTaken;
8817   }
8818 
8819   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8820   // to be more aggressive when computing BECount than when computing
8821   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8822   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8823   // to not.
8824   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8825       !isa<SCEVCouldNotCompute>(BECount))
8826     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8827 
8828   return ExitLimit(BECount, MaxBECount, false,
8829                    { &EL0.Predicates, &EL1.Predicates });
8830 }
8831 
8832 ScalarEvolution::ExitLimit
8833 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8834                                           ICmpInst *ExitCond,
8835                                           bool ExitIfTrue,
8836                                           bool ControlsExit,
8837                                           bool AllowPredicates) {
8838   // If the condition was exit on true, convert the condition to exit on false
8839   ICmpInst::Predicate Pred;
8840   if (!ExitIfTrue)
8841     Pred = ExitCond->getPredicate();
8842   else
8843     Pred = ExitCond->getInversePredicate();
8844   const ICmpInst::Predicate OriginalPred = Pred;
8845 
8846   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8847   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8848 
8849   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
8850                                           AllowPredicates);
8851   if (EL.hasAnyInfo()) return EL;
8852 
8853   auto *ExhaustiveCount =
8854       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8855 
8856   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8857     return ExhaustiveCount;
8858 
8859   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8860                                       ExitCond->getOperand(1), L, OriginalPred);
8861 }
8862 ScalarEvolution::ExitLimit
8863 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8864                                           ICmpInst::Predicate Pred,
8865                                           const SCEV *LHS, const SCEV *RHS,
8866                                           bool ControlsExit,
8867                                           bool AllowPredicates) {
8868 
8869   // Try to evaluate any dependencies out of the loop.
8870   LHS = getSCEVAtScope(LHS, L);
8871   RHS = getSCEVAtScope(RHS, L);
8872 
8873   // At this point, we would like to compute how many iterations of the
8874   // loop the predicate will return true for these inputs.
8875   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8876     // If there is a loop-invariant, force it into the RHS.
8877     std::swap(LHS, RHS);
8878     Pred = ICmpInst::getSwappedPredicate(Pred);
8879   }
8880 
8881   bool ControllingFiniteLoop =
8882       ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
8883   // Simplify the operands before analyzing them.
8884   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
8885                              (EnableFiniteLoopControl ? ControllingFiniteLoop
8886                                                      : false));
8887 
8888   // If we have a comparison of a chrec against a constant, try to use value
8889   // ranges to answer this query.
8890   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8891     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8892       if (AddRec->getLoop() == L) {
8893         // Form the constant range.
8894         ConstantRange CompRange =
8895             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8896 
8897         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8898         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8899       }
8900 
8901   // If this loop must exit based on this condition (or execute undefined
8902   // behaviour), and we can prove the test sequence produced must repeat
8903   // the same values on self-wrap of the IV, then we can infer that IV
8904   // doesn't self wrap because if it did, we'd have an infinite (undefined)
8905   // loop.
8906   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
8907     // TODO: We can peel off any functions which are invertible *in L*.  Loop
8908     // invariant terms are effectively constants for our purposes here.
8909     auto *InnerLHS = LHS;
8910     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8911       InnerLHS = ZExt->getOperand();
8912     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8913       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8914       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8915           StrideC && StrideC->getAPInt().isPowerOf2()) {
8916         auto Flags = AR->getNoWrapFlags();
8917         Flags = setFlags(Flags, SCEV::FlagNW);
8918         SmallVector<const SCEV*> Operands{AR->operands()};
8919         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8920         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8921       }
8922     }
8923   }
8924 
8925   switch (Pred) {
8926   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8927     // Convert to: while (X-Y != 0)
8928     if (LHS->getType()->isPointerTy()) {
8929       LHS = getLosslessPtrToIntExpr(LHS);
8930       if (isa<SCEVCouldNotCompute>(LHS))
8931         return LHS;
8932     }
8933     if (RHS->getType()->isPointerTy()) {
8934       RHS = getLosslessPtrToIntExpr(RHS);
8935       if (isa<SCEVCouldNotCompute>(RHS))
8936         return RHS;
8937     }
8938     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8939                                 AllowPredicates);
8940     if (EL.hasAnyInfo()) return EL;
8941     break;
8942   }
8943   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8944     // Convert to: while (X-Y == 0)
8945     if (LHS->getType()->isPointerTy()) {
8946       LHS = getLosslessPtrToIntExpr(LHS);
8947       if (isa<SCEVCouldNotCompute>(LHS))
8948         return LHS;
8949     }
8950     if (RHS->getType()->isPointerTy()) {
8951       RHS = getLosslessPtrToIntExpr(RHS);
8952       if (isa<SCEVCouldNotCompute>(RHS))
8953         return RHS;
8954     }
8955     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8956     if (EL.hasAnyInfo()) return EL;
8957     break;
8958   }
8959   case ICmpInst::ICMP_SLT:
8960   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8961     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8962     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8963                                     AllowPredicates);
8964     if (EL.hasAnyInfo()) return EL;
8965     break;
8966   }
8967   case ICmpInst::ICMP_SGT:
8968   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8969     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8970     ExitLimit EL =
8971         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8972                             AllowPredicates);
8973     if (EL.hasAnyInfo()) return EL;
8974     break;
8975   }
8976   default:
8977     break;
8978   }
8979 
8980   return getCouldNotCompute();
8981 }
8982 
8983 ScalarEvolution::ExitLimit
8984 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8985                                                       SwitchInst *Switch,
8986                                                       BasicBlock *ExitingBlock,
8987                                                       bool ControlsExit) {
8988   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8989 
8990   // Give up if the exit is the default dest of a switch.
8991   if (Switch->getDefaultDest() == ExitingBlock)
8992     return getCouldNotCompute();
8993 
8994   assert(L->contains(Switch->getDefaultDest()) &&
8995          "Default case must not exit the loop!");
8996   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8997   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8998 
8999   // while (X != Y) --> while (X-Y != 0)
9000   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
9001   if (EL.hasAnyInfo())
9002     return EL;
9003 
9004   return getCouldNotCompute();
9005 }
9006 
9007 static ConstantInt *
9008 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9009                                 ScalarEvolution &SE) {
9010   const SCEV *InVal = SE.getConstant(C);
9011   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9012   assert(isa<SCEVConstant>(Val) &&
9013          "Evaluation of SCEV at constant didn't fold correctly?");
9014   return cast<SCEVConstant>(Val)->getValue();
9015 }
9016 
9017 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9018     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9019   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9020   if (!RHS)
9021     return getCouldNotCompute();
9022 
9023   const BasicBlock *Latch = L->getLoopLatch();
9024   if (!Latch)
9025     return getCouldNotCompute();
9026 
9027   const BasicBlock *Predecessor = L->getLoopPredecessor();
9028   if (!Predecessor)
9029     return getCouldNotCompute();
9030 
9031   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9032   // Return LHS in OutLHS and shift_opt in OutOpCode.
9033   auto MatchPositiveShift =
9034       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9035 
9036     using namespace PatternMatch;
9037 
9038     ConstantInt *ShiftAmt;
9039     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9040       OutOpCode = Instruction::LShr;
9041     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9042       OutOpCode = Instruction::AShr;
9043     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9044       OutOpCode = Instruction::Shl;
9045     else
9046       return false;
9047 
9048     return ShiftAmt->getValue().isStrictlyPositive();
9049   };
9050 
9051   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9052   //
9053   // loop:
9054   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9055   //   %iv.shifted = lshr i32 %iv, <positive constant>
9056   //
9057   // Return true on a successful match.  Return the corresponding PHI node (%iv
9058   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9059   auto MatchShiftRecurrence =
9060       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9061     Optional<Instruction::BinaryOps> PostShiftOpCode;
9062 
9063     {
9064       Instruction::BinaryOps OpC;
9065       Value *V;
9066 
9067       // If we encounter a shift instruction, "peel off" the shift operation,
9068       // and remember that we did so.  Later when we inspect %iv's backedge
9069       // value, we will make sure that the backedge value uses the same
9070       // operation.
9071       //
9072       // Note: the peeled shift operation does not have to be the same
9073       // instruction as the one feeding into the PHI's backedge value.  We only
9074       // really care about it being the same *kind* of shift instruction --
9075       // that's all that is required for our later inferences to hold.
9076       if (MatchPositiveShift(LHS, V, OpC)) {
9077         PostShiftOpCode = OpC;
9078         LHS = V;
9079       }
9080     }
9081 
9082     PNOut = dyn_cast<PHINode>(LHS);
9083     if (!PNOut || PNOut->getParent() != L->getHeader())
9084       return false;
9085 
9086     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9087     Value *OpLHS;
9088 
9089     return
9090         // The backedge value for the PHI node must be a shift by a positive
9091         // amount
9092         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9093 
9094         // of the PHI node itself
9095         OpLHS == PNOut &&
9096 
9097         // and the kind of shift should be match the kind of shift we peeled
9098         // off, if any.
9099         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9100   };
9101 
9102   PHINode *PN;
9103   Instruction::BinaryOps OpCode;
9104   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9105     return getCouldNotCompute();
9106 
9107   const DataLayout &DL = getDataLayout();
9108 
9109   // The key rationale for this optimization is that for some kinds of shift
9110   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9111   // within a finite number of iterations.  If the condition guarding the
9112   // backedge (in the sense that the backedge is taken if the condition is true)
9113   // is false for the value the shift recurrence stabilizes to, then we know
9114   // that the backedge is taken only a finite number of times.
9115 
9116   ConstantInt *StableValue = nullptr;
9117   switch (OpCode) {
9118   default:
9119     llvm_unreachable("Impossible case!");
9120 
9121   case Instruction::AShr: {
9122     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9123     // bitwidth(K) iterations.
9124     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9125     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9126                                        Predecessor->getTerminator(), &DT);
9127     auto *Ty = cast<IntegerType>(RHS->getType());
9128     if (Known.isNonNegative())
9129       StableValue = ConstantInt::get(Ty, 0);
9130     else if (Known.isNegative())
9131       StableValue = ConstantInt::get(Ty, -1, true);
9132     else
9133       return getCouldNotCompute();
9134 
9135     break;
9136   }
9137   case Instruction::LShr:
9138   case Instruction::Shl:
9139     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9140     // stabilize to 0 in at most bitwidth(K) iterations.
9141     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9142     break;
9143   }
9144 
9145   auto *Result =
9146       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9147   assert(Result->getType()->isIntegerTy(1) &&
9148          "Otherwise cannot be an operand to a branch instruction");
9149 
9150   if (Result->isZeroValue()) {
9151     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9152     const SCEV *UpperBound =
9153         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9154     return ExitLimit(getCouldNotCompute(), UpperBound, false);
9155   }
9156 
9157   return getCouldNotCompute();
9158 }
9159 
9160 /// Return true if we can constant fold an instruction of the specified type,
9161 /// assuming that all operands were constants.
9162 static bool CanConstantFold(const Instruction *I) {
9163   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9164       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9165       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9166     return true;
9167 
9168   if (const CallInst *CI = dyn_cast<CallInst>(I))
9169     if (const Function *F = CI->getCalledFunction())
9170       return canConstantFoldCallTo(CI, F);
9171   return false;
9172 }
9173 
9174 /// Determine whether this instruction can constant evolve within this loop
9175 /// assuming its operands can all constant evolve.
9176 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9177   // An instruction outside of the loop can't be derived from a loop PHI.
9178   if (!L->contains(I)) return false;
9179 
9180   if (isa<PHINode>(I)) {
9181     // We don't currently keep track of the control flow needed to evaluate
9182     // PHIs, so we cannot handle PHIs inside of loops.
9183     return L->getHeader() == I->getParent();
9184   }
9185 
9186   // If we won't be able to constant fold this expression even if the operands
9187   // are constants, bail early.
9188   return CanConstantFold(I);
9189 }
9190 
9191 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9192 /// recursing through each instruction operand until reaching a loop header phi.
9193 static PHINode *
9194 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9195                                DenseMap<Instruction *, PHINode *> &PHIMap,
9196                                unsigned Depth) {
9197   if (Depth > MaxConstantEvolvingDepth)
9198     return nullptr;
9199 
9200   // Otherwise, we can evaluate this instruction if all of its operands are
9201   // constant or derived from a PHI node themselves.
9202   PHINode *PHI = nullptr;
9203   for (Value *Op : UseInst->operands()) {
9204     if (isa<Constant>(Op)) continue;
9205 
9206     Instruction *OpInst = dyn_cast<Instruction>(Op);
9207     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9208 
9209     PHINode *P = dyn_cast<PHINode>(OpInst);
9210     if (!P)
9211       // If this operand is already visited, reuse the prior result.
9212       // We may have P != PHI if this is the deepest point at which the
9213       // inconsistent paths meet.
9214       P = PHIMap.lookup(OpInst);
9215     if (!P) {
9216       // Recurse and memoize the results, whether a phi is found or not.
9217       // This recursive call invalidates pointers into PHIMap.
9218       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9219       PHIMap[OpInst] = P;
9220     }
9221     if (!P)
9222       return nullptr;  // Not evolving from PHI
9223     if (PHI && PHI != P)
9224       return nullptr;  // Evolving from multiple different PHIs.
9225     PHI = P;
9226   }
9227   // This is a expression evolving from a constant PHI!
9228   return PHI;
9229 }
9230 
9231 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9232 /// in the loop that V is derived from.  We allow arbitrary operations along the
9233 /// way, but the operands of an operation must either be constants or a value
9234 /// derived from a constant PHI.  If this expression does not fit with these
9235 /// constraints, return null.
9236 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9237   Instruction *I = dyn_cast<Instruction>(V);
9238   if (!I || !canConstantEvolve(I, L)) return nullptr;
9239 
9240   if (PHINode *PN = dyn_cast<PHINode>(I))
9241     return PN;
9242 
9243   // Record non-constant instructions contained by the loop.
9244   DenseMap<Instruction *, PHINode *> PHIMap;
9245   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9246 }
9247 
9248 /// EvaluateExpression - Given an expression that passes the
9249 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9250 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9251 /// reason, return null.
9252 static Constant *EvaluateExpression(Value *V, const Loop *L,
9253                                     DenseMap<Instruction *, Constant *> &Vals,
9254                                     const DataLayout &DL,
9255                                     const TargetLibraryInfo *TLI) {
9256   // Convenient constant check, but redundant for recursive calls.
9257   if (Constant *C = dyn_cast<Constant>(V)) return C;
9258   Instruction *I = dyn_cast<Instruction>(V);
9259   if (!I) return nullptr;
9260 
9261   if (Constant *C = Vals.lookup(I)) return C;
9262 
9263   // An instruction inside the loop depends on a value outside the loop that we
9264   // weren't given a mapping for, or a value such as a call inside the loop.
9265   if (!canConstantEvolve(I, L)) return nullptr;
9266 
9267   // An unmapped PHI can be due to a branch or another loop inside this loop,
9268   // or due to this not being the initial iteration through a loop where we
9269   // couldn't compute the evolution of this particular PHI last time.
9270   if (isa<PHINode>(I)) return nullptr;
9271 
9272   std::vector<Constant*> Operands(I->getNumOperands());
9273 
9274   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9275     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9276     if (!Operand) {
9277       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9278       if (!Operands[i]) return nullptr;
9279       continue;
9280     }
9281     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9282     Vals[Operand] = C;
9283     if (!C) return nullptr;
9284     Operands[i] = C;
9285   }
9286 
9287   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9288 }
9289 
9290 
9291 // If every incoming value to PN except the one for BB is a specific Constant,
9292 // return that, else return nullptr.
9293 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9294   Constant *IncomingVal = nullptr;
9295 
9296   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9297     if (PN->getIncomingBlock(i) == BB)
9298       continue;
9299 
9300     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9301     if (!CurrentVal)
9302       return nullptr;
9303 
9304     if (IncomingVal != CurrentVal) {
9305       if (IncomingVal)
9306         return nullptr;
9307       IncomingVal = CurrentVal;
9308     }
9309   }
9310 
9311   return IncomingVal;
9312 }
9313 
9314 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9315 /// in the header of its containing loop, we know the loop executes a
9316 /// constant number of times, and the PHI node is just a recurrence
9317 /// involving constants, fold it.
9318 Constant *
9319 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9320                                                    const APInt &BEs,
9321                                                    const Loop *L) {
9322   auto I = ConstantEvolutionLoopExitValue.find(PN);
9323   if (I != ConstantEvolutionLoopExitValue.end())
9324     return I->second;
9325 
9326   if (BEs.ugt(MaxBruteForceIterations))
9327     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9328 
9329   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9330 
9331   DenseMap<Instruction *, Constant *> CurrentIterVals;
9332   BasicBlock *Header = L->getHeader();
9333   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9334 
9335   BasicBlock *Latch = L->getLoopLatch();
9336   if (!Latch)
9337     return nullptr;
9338 
9339   for (PHINode &PHI : Header->phis()) {
9340     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9341       CurrentIterVals[&PHI] = StartCST;
9342   }
9343   if (!CurrentIterVals.count(PN))
9344     return RetVal = nullptr;
9345 
9346   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9347 
9348   // Execute the loop symbolically to determine the exit value.
9349   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9350          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9351 
9352   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9353   unsigned IterationNum = 0;
9354   const DataLayout &DL = getDataLayout();
9355   for (; ; ++IterationNum) {
9356     if (IterationNum == NumIterations)
9357       return RetVal = CurrentIterVals[PN];  // Got exit value!
9358 
9359     // Compute the value of the PHIs for the next iteration.
9360     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9361     DenseMap<Instruction *, Constant *> NextIterVals;
9362     Constant *NextPHI =
9363         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9364     if (!NextPHI)
9365       return nullptr;        // Couldn't evaluate!
9366     NextIterVals[PN] = NextPHI;
9367 
9368     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9369 
9370     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9371     // cease to be able to evaluate one of them or if they stop evolving,
9372     // because that doesn't necessarily prevent us from computing PN.
9373     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9374     for (const auto &I : CurrentIterVals) {
9375       PHINode *PHI = dyn_cast<PHINode>(I.first);
9376       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9377       PHIsToCompute.emplace_back(PHI, I.second);
9378     }
9379     // We use two distinct loops because EvaluateExpression may invalidate any
9380     // iterators into CurrentIterVals.
9381     for (const auto &I : PHIsToCompute) {
9382       PHINode *PHI = I.first;
9383       Constant *&NextPHI = NextIterVals[PHI];
9384       if (!NextPHI) {   // Not already computed.
9385         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9386         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9387       }
9388       if (NextPHI != I.second)
9389         StoppedEvolving = false;
9390     }
9391 
9392     // If all entries in CurrentIterVals == NextIterVals then we can stop
9393     // iterating, the loop can't continue to change.
9394     if (StoppedEvolving)
9395       return RetVal = CurrentIterVals[PN];
9396 
9397     CurrentIterVals.swap(NextIterVals);
9398   }
9399 }
9400 
9401 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9402                                                           Value *Cond,
9403                                                           bool ExitWhen) {
9404   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9405   if (!PN) return getCouldNotCompute();
9406 
9407   // If the loop is canonicalized, the PHI will have exactly two entries.
9408   // That's the only form we support here.
9409   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9410 
9411   DenseMap<Instruction *, Constant *> CurrentIterVals;
9412   BasicBlock *Header = L->getHeader();
9413   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9414 
9415   BasicBlock *Latch = L->getLoopLatch();
9416   assert(Latch && "Should follow from NumIncomingValues == 2!");
9417 
9418   for (PHINode &PHI : Header->phis()) {
9419     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9420       CurrentIterVals[&PHI] = StartCST;
9421   }
9422   if (!CurrentIterVals.count(PN))
9423     return getCouldNotCompute();
9424 
9425   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9426   // the loop symbolically to determine when the condition gets a value of
9427   // "ExitWhen".
9428   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9429   const DataLayout &DL = getDataLayout();
9430   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9431     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9432         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9433 
9434     // Couldn't symbolically evaluate.
9435     if (!CondVal) return getCouldNotCompute();
9436 
9437     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9438       ++NumBruteForceTripCountsComputed;
9439       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9440     }
9441 
9442     // Update all the PHI nodes for the next iteration.
9443     DenseMap<Instruction *, Constant *> NextIterVals;
9444 
9445     // Create a list of which PHIs we need to compute. We want to do this before
9446     // calling EvaluateExpression on them because that may invalidate iterators
9447     // into CurrentIterVals.
9448     SmallVector<PHINode *, 8> PHIsToCompute;
9449     for (const auto &I : CurrentIterVals) {
9450       PHINode *PHI = dyn_cast<PHINode>(I.first);
9451       if (!PHI || PHI->getParent() != Header) continue;
9452       PHIsToCompute.push_back(PHI);
9453     }
9454     for (PHINode *PHI : PHIsToCompute) {
9455       Constant *&NextPHI = NextIterVals[PHI];
9456       if (NextPHI) continue;    // Already computed!
9457 
9458       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9459       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9460     }
9461     CurrentIterVals.swap(NextIterVals);
9462   }
9463 
9464   // Too many iterations were needed to evaluate.
9465   return getCouldNotCompute();
9466 }
9467 
9468 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9469   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9470       ValuesAtScopes[V];
9471   // Check to see if we've folded this expression at this loop before.
9472   for (auto &LS : Values)
9473     if (LS.first == L)
9474       return LS.second ? LS.second : V;
9475 
9476   Values.emplace_back(L, nullptr);
9477 
9478   // Otherwise compute it.
9479   const SCEV *C = computeSCEVAtScope(V, L);
9480   for (auto &LS : reverse(ValuesAtScopes[V]))
9481     if (LS.first == L) {
9482       LS.second = C;
9483       if (!isa<SCEVConstant>(C))
9484         ValuesAtScopesUsers[C].push_back({L, V});
9485       break;
9486     }
9487   return C;
9488 }
9489 
9490 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9491 /// will return Constants for objects which aren't represented by a
9492 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9493 /// Returns NULL if the SCEV isn't representable as a Constant.
9494 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9495   switch (V->getSCEVType()) {
9496   case scCouldNotCompute:
9497   case scAddRecExpr:
9498     return nullptr;
9499   case scConstant:
9500     return cast<SCEVConstant>(V)->getValue();
9501   case scUnknown:
9502     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9503   case scSignExtend: {
9504     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9505     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9506       return ConstantExpr::getSExt(CastOp, SS->getType());
9507     return nullptr;
9508   }
9509   case scZeroExtend: {
9510     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9511     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9512       return ConstantExpr::getZExt(CastOp, SZ->getType());
9513     return nullptr;
9514   }
9515   case scPtrToInt: {
9516     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9517     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9518       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9519 
9520     return nullptr;
9521   }
9522   case scTruncate: {
9523     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9524     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9525       return ConstantExpr::getTrunc(CastOp, ST->getType());
9526     return nullptr;
9527   }
9528   case scAddExpr: {
9529     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9530     Constant *C = nullptr;
9531     for (const SCEV *Op : SA->operands()) {
9532       Constant *OpC = BuildConstantFromSCEV(Op);
9533       if (!OpC)
9534         return nullptr;
9535       if (!C) {
9536         C = OpC;
9537         continue;
9538       }
9539       assert(!C->getType()->isPointerTy() &&
9540              "Can only have one pointer, and it must be last");
9541       if (auto *PT = dyn_cast<PointerType>(OpC->getType())) {
9542         // The offsets have been converted to bytes.  We can add bytes to an
9543         // i8* by GEP with the byte count in the first index.
9544         Type *DestPtrTy =
9545             Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace());
9546         OpC = ConstantExpr::getBitCast(OpC, DestPtrTy);
9547         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9548                                            OpC, C);
9549       } else {
9550         C = ConstantExpr::getAdd(C, OpC);
9551       }
9552     }
9553     return C;
9554   }
9555   case scMulExpr: {
9556     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9557     Constant *C = nullptr;
9558     for (const SCEV *Op : SM->operands()) {
9559       assert(!Op->getType()->isPointerTy() && "Can't multiply pointers");
9560       Constant *OpC = BuildConstantFromSCEV(Op);
9561       if (!OpC)
9562         return nullptr;
9563       C = C ? ConstantExpr::getMul(C, OpC) : OpC;
9564     }
9565     return C;
9566   }
9567   case scUDivExpr:
9568   case scSMaxExpr:
9569   case scUMaxExpr:
9570   case scSMinExpr:
9571   case scUMinExpr:
9572   case scSequentialUMinExpr:
9573     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9574   }
9575   llvm_unreachable("Unknown SCEV kind!");
9576 }
9577 
9578 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9579   if (isa<SCEVConstant>(V)) return V;
9580 
9581   // If this instruction is evolved from a constant-evolving PHI, compute the
9582   // exit value from the loop without using SCEVs.
9583   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
9584     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
9585       if (PHINode *PN = dyn_cast<PHINode>(I)) {
9586         const Loop *CurrLoop = this->LI[I->getParent()];
9587         // Looking for loop exit value.
9588         if (CurrLoop && CurrLoop->getParentLoop() == L &&
9589             PN->getParent() == CurrLoop->getHeader()) {
9590           // Okay, there is no closed form solution for the PHI node.  Check
9591           // to see if the loop that contains it has a known backedge-taken
9592           // count.  If so, we may be able to force computation of the exit
9593           // value.
9594           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9595           // This trivial case can show up in some degenerate cases where
9596           // the incoming IR has not yet been fully simplified.
9597           if (BackedgeTakenCount->isZero()) {
9598             Value *InitValue = nullptr;
9599             bool MultipleInitValues = false;
9600             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9601               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9602                 if (!InitValue)
9603                   InitValue = PN->getIncomingValue(i);
9604                 else if (InitValue != PN->getIncomingValue(i)) {
9605                   MultipleInitValues = true;
9606                   break;
9607                 }
9608               }
9609             }
9610             if (!MultipleInitValues && InitValue)
9611               return getSCEV(InitValue);
9612           }
9613           // Do we have a loop invariant value flowing around the backedge
9614           // for a loop which must execute the backedge?
9615           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9616               isKnownPositive(BackedgeTakenCount) &&
9617               PN->getNumIncomingValues() == 2) {
9618 
9619             unsigned InLoopPred =
9620                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9621             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9622             if (CurrLoop->isLoopInvariant(BackedgeVal))
9623               return getSCEV(BackedgeVal);
9624           }
9625           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9626             // Okay, we know how many times the containing loop executes.  If
9627             // this is a constant evolving PHI node, get the final value at
9628             // the specified iteration number.
9629             Constant *RV = getConstantEvolutionLoopExitValue(
9630                 PN, BTCC->getAPInt(), CurrLoop);
9631             if (RV) return getSCEV(RV);
9632           }
9633         }
9634 
9635         // If there is a single-input Phi, evaluate it at our scope. If we can
9636         // prove that this replacement does not break LCSSA form, use new value.
9637         if (PN->getNumOperands() == 1) {
9638           const SCEV *Input = getSCEV(PN->getOperand(0));
9639           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9640           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9641           // for the simplest case just support constants.
9642           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9643         }
9644       }
9645 
9646       // Okay, this is an expression that we cannot symbolically evaluate
9647       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9648       // the arguments into constants, and if so, try to constant propagate the
9649       // result.  This is particularly useful for computing loop exit values.
9650       if (CanConstantFold(I)) {
9651         SmallVector<Constant *, 4> Operands;
9652         bool MadeImprovement = false;
9653         for (Value *Op : I->operands()) {
9654           if (Constant *C = dyn_cast<Constant>(Op)) {
9655             Operands.push_back(C);
9656             continue;
9657           }
9658 
9659           // If any of the operands is non-constant and if they are
9660           // non-integer and non-pointer, don't even try to analyze them
9661           // with scev techniques.
9662           if (!isSCEVable(Op->getType()))
9663             return V;
9664 
9665           const SCEV *OrigV = getSCEV(Op);
9666           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9667           MadeImprovement |= OrigV != OpV;
9668 
9669           Constant *C = BuildConstantFromSCEV(OpV);
9670           if (!C) return V;
9671           if (C->getType() != Op->getType())
9672             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9673                                                               Op->getType(),
9674                                                               false),
9675                                       C, Op->getType());
9676           Operands.push_back(C);
9677         }
9678 
9679         // Check to see if getSCEVAtScope actually made an improvement.
9680         if (MadeImprovement) {
9681           Constant *C = nullptr;
9682           const DataLayout &DL = getDataLayout();
9683           C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9684           if (!C) return V;
9685           return getSCEV(C);
9686         }
9687       }
9688     }
9689 
9690     // This is some other type of SCEVUnknown, just return it.
9691     return V;
9692   }
9693 
9694   if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
9695     const auto *Comm = cast<SCEVNAryExpr>(V);
9696     // Avoid performing the look-up in the common case where the specified
9697     // expression has no loop-variant portions.
9698     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9699       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9700       if (OpAtScope != Comm->getOperand(i)) {
9701         // Okay, at least one of these operands is loop variant but might be
9702         // foldable.  Build a new instance of the folded commutative expression.
9703         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9704                                             Comm->op_begin()+i);
9705         NewOps.push_back(OpAtScope);
9706 
9707         for (++i; i != e; ++i) {
9708           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9709           NewOps.push_back(OpAtScope);
9710         }
9711         if (isa<SCEVAddExpr>(Comm))
9712           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9713         if (isa<SCEVMulExpr>(Comm))
9714           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9715         if (isa<SCEVMinMaxExpr>(Comm))
9716           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9717         if (isa<SCEVSequentialMinMaxExpr>(Comm))
9718           return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
9719         llvm_unreachable("Unknown commutative / sequential min/max SCEV type!");
9720       }
9721     }
9722     // If we got here, all operands are loop invariant.
9723     return Comm;
9724   }
9725 
9726   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9727     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9728     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9729     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9730       return Div;   // must be loop invariant
9731     return getUDivExpr(LHS, RHS);
9732   }
9733 
9734   // If this is a loop recurrence for a loop that does not contain L, then we
9735   // are dealing with the final value computed by the loop.
9736   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9737     // First, attempt to evaluate each operand.
9738     // Avoid performing the look-up in the common case where the specified
9739     // expression has no loop-variant portions.
9740     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9741       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9742       if (OpAtScope == AddRec->getOperand(i))
9743         continue;
9744 
9745       // Okay, at least one of these operands is loop variant but might be
9746       // foldable.  Build a new instance of the folded commutative expression.
9747       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9748                                           AddRec->op_begin()+i);
9749       NewOps.push_back(OpAtScope);
9750       for (++i; i != e; ++i)
9751         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9752 
9753       const SCEV *FoldedRec =
9754         getAddRecExpr(NewOps, AddRec->getLoop(),
9755                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9756       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9757       // The addrec may be folded to a nonrecurrence, for example, if the
9758       // induction variable is multiplied by zero after constant folding. Go
9759       // ahead and return the folded value.
9760       if (!AddRec)
9761         return FoldedRec;
9762       break;
9763     }
9764 
9765     // If the scope is outside the addrec's loop, evaluate it by using the
9766     // loop exit value of the addrec.
9767     if (!AddRec->getLoop()->contains(L)) {
9768       // To evaluate this recurrence, we need to know how many times the AddRec
9769       // loop iterates.  Compute this now.
9770       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9771       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9772 
9773       // Then, evaluate the AddRec.
9774       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9775     }
9776 
9777     return AddRec;
9778   }
9779 
9780   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
9781     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9782     if (Op == Cast->getOperand())
9783       return Cast;  // must be loop invariant
9784     return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
9785   }
9786 
9787   llvm_unreachable("Unknown SCEV type!");
9788 }
9789 
9790 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9791   return getSCEVAtScope(getSCEV(V), L);
9792 }
9793 
9794 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9795   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9796     return stripInjectiveFunctions(ZExt->getOperand());
9797   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9798     return stripInjectiveFunctions(SExt->getOperand());
9799   return S;
9800 }
9801 
9802 /// Finds the minimum unsigned root of the following equation:
9803 ///
9804 ///     A * X = B (mod N)
9805 ///
9806 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9807 /// A and B isn't important.
9808 ///
9809 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9810 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9811                                                ScalarEvolution &SE) {
9812   uint32_t BW = A.getBitWidth();
9813   assert(BW == SE.getTypeSizeInBits(B->getType()));
9814   assert(A != 0 && "A must be non-zero.");
9815 
9816   // 1. D = gcd(A, N)
9817   //
9818   // The gcd of A and N may have only one prime factor: 2. The number of
9819   // trailing zeros in A is its multiplicity
9820   uint32_t Mult2 = A.countTrailingZeros();
9821   // D = 2^Mult2
9822 
9823   // 2. Check if B is divisible by D.
9824   //
9825   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9826   // is not less than multiplicity of this prime factor for D.
9827   if (SE.GetMinTrailingZeros(B) < Mult2)
9828     return SE.getCouldNotCompute();
9829 
9830   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9831   // modulo (N / D).
9832   //
9833   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9834   // (N / D) in general. The inverse itself always fits into BW bits, though,
9835   // so we immediately truncate it.
9836   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9837   APInt Mod(BW + 1, 0);
9838   Mod.setBit(BW - Mult2);  // Mod = N / D
9839   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9840 
9841   // 4. Compute the minimum unsigned root of the equation:
9842   // I * (B / D) mod (N / D)
9843   // To simplify the computation, we factor out the divide by D:
9844   // (I * B mod N) / D
9845   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9846   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9847 }
9848 
9849 /// For a given quadratic addrec, generate coefficients of the corresponding
9850 /// quadratic equation, multiplied by a common value to ensure that they are
9851 /// integers.
9852 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9853 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9854 /// were multiplied by, and BitWidth is the bit width of the original addrec
9855 /// coefficients.
9856 /// This function returns None if the addrec coefficients are not compile-
9857 /// time constants.
9858 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9859 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9860   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9861   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9862   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9863   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9864   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9865                     << *AddRec << '\n');
9866 
9867   // We currently can only solve this if the coefficients are constants.
9868   if (!LC || !MC || !NC) {
9869     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9870     return None;
9871   }
9872 
9873   APInt L = LC->getAPInt();
9874   APInt M = MC->getAPInt();
9875   APInt N = NC->getAPInt();
9876   assert(!N.isZero() && "This is not a quadratic addrec");
9877 
9878   unsigned BitWidth = LC->getAPInt().getBitWidth();
9879   unsigned NewWidth = BitWidth + 1;
9880   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9881                     << BitWidth << '\n');
9882   // The sign-extension (as opposed to a zero-extension) here matches the
9883   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9884   N = N.sext(NewWidth);
9885   M = M.sext(NewWidth);
9886   L = L.sext(NewWidth);
9887 
9888   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9889   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9890   //   L+M, L+2M+N, L+3M+3N, ...
9891   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9892   //
9893   // The equation Acc = 0 is then
9894   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9895   // In a quadratic form it becomes:
9896   //   N n^2 + (2M-N) n + 2L = 0.
9897 
9898   APInt A = N;
9899   APInt B = 2 * M - A;
9900   APInt C = 2 * L;
9901   APInt T = APInt(NewWidth, 2);
9902   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9903                     << "x + " << C << ", coeff bw: " << NewWidth
9904                     << ", multiplied by " << T << '\n');
9905   return std::make_tuple(A, B, C, T, BitWidth);
9906 }
9907 
9908 /// Helper function to compare optional APInts:
9909 /// (a) if X and Y both exist, return min(X, Y),
9910 /// (b) if neither X nor Y exist, return None,
9911 /// (c) if exactly one of X and Y exists, return that value.
9912 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9913   if (X && Y) {
9914     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9915     APInt XW = X->sext(W);
9916     APInt YW = Y->sext(W);
9917     return XW.slt(YW) ? *X : *Y;
9918   }
9919   if (!X && !Y)
9920     return None;
9921   return X ? *X : *Y;
9922 }
9923 
9924 /// Helper function to truncate an optional APInt to a given BitWidth.
9925 /// When solving addrec-related equations, it is preferable to return a value
9926 /// that has the same bit width as the original addrec's coefficients. If the
9927 /// solution fits in the original bit width, truncate it (except for i1).
9928 /// Returning a value of a different bit width may inhibit some optimizations.
9929 ///
9930 /// In general, a solution to a quadratic equation generated from an addrec
9931 /// may require BW+1 bits, where BW is the bit width of the addrec's
9932 /// coefficients. The reason is that the coefficients of the quadratic
9933 /// equation are BW+1 bits wide (to avoid truncation when converting from
9934 /// the addrec to the equation).
9935 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9936   if (!X)
9937     return None;
9938   unsigned W = X->getBitWidth();
9939   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9940     return X->trunc(BitWidth);
9941   return X;
9942 }
9943 
9944 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9945 /// iterations. The values L, M, N are assumed to be signed, and they
9946 /// should all have the same bit widths.
9947 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9948 /// where BW is the bit width of the addrec's coefficients.
9949 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9950 /// returned as such, otherwise the bit width of the returned value may
9951 /// be greater than BW.
9952 ///
9953 /// This function returns None if
9954 /// (a) the addrec coefficients are not constant, or
9955 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9956 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9957 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9958 static Optional<APInt>
9959 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9960   APInt A, B, C, M;
9961   unsigned BitWidth;
9962   auto T = GetQuadraticEquation(AddRec);
9963   if (!T)
9964     return None;
9965 
9966   std::tie(A, B, C, M, BitWidth) = *T;
9967   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9968   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9969   if (!X)
9970     return None;
9971 
9972   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9973   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9974   if (!V->isZero())
9975     return None;
9976 
9977   return TruncIfPossible(X, BitWidth);
9978 }
9979 
9980 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9981 /// iterations. The values M, N are assumed to be signed, and they
9982 /// should all have the same bit widths.
9983 /// Find the least n such that c(n) does not belong to the given range,
9984 /// while c(n-1) does.
9985 ///
9986 /// This function returns None if
9987 /// (a) the addrec coefficients are not constant, or
9988 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9989 ///     bounds of the range.
9990 static Optional<APInt>
9991 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9992                           const ConstantRange &Range, ScalarEvolution &SE) {
9993   assert(AddRec->getOperand(0)->isZero() &&
9994          "Starting value of addrec should be 0");
9995   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9996                     << Range << ", addrec " << *AddRec << '\n');
9997   // This case is handled in getNumIterationsInRange. Here we can assume that
9998   // we start in the range.
9999   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10000          "Addrec's initial value should be in range");
10001 
10002   APInt A, B, C, M;
10003   unsigned BitWidth;
10004   auto T = GetQuadraticEquation(AddRec);
10005   if (!T)
10006     return None;
10007 
10008   // Be careful about the return value: there can be two reasons for not
10009   // returning an actual number. First, if no solutions to the equations
10010   // were found, and second, if the solutions don't leave the given range.
10011   // The first case means that the actual solution is "unknown", the second
10012   // means that it's known, but not valid. If the solution is unknown, we
10013   // cannot make any conclusions.
10014   // Return a pair: the optional solution and a flag indicating if the
10015   // solution was found.
10016   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
10017     // Solve for signed overflow and unsigned overflow, pick the lower
10018     // solution.
10019     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10020                       << Bound << " (before multiplying by " << M << ")\n");
10021     Bound *= M; // The quadratic equation multiplier.
10022 
10023     Optional<APInt> SO = None;
10024     if (BitWidth > 1) {
10025       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10026                            "signed overflow\n");
10027       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10028     }
10029     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10030                          "unsigned overflow\n");
10031     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
10032                                                               BitWidth+1);
10033 
10034     auto LeavesRange = [&] (const APInt &X) {
10035       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10036       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10037       if (Range.contains(V0->getValue()))
10038         return false;
10039       // X should be at least 1, so X-1 is non-negative.
10040       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10041       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10042       if (Range.contains(V1->getValue()))
10043         return true;
10044       return false;
10045     };
10046 
10047     // If SolveQuadraticEquationWrap returns None, it means that there can
10048     // be a solution, but the function failed to find it. We cannot treat it
10049     // as "no solution".
10050     if (!SO || !UO)
10051       return { None, false };
10052 
10053     // Check the smaller value first to see if it leaves the range.
10054     // At this point, both SO and UO must have values.
10055     Optional<APInt> Min = MinOptional(SO, UO);
10056     if (LeavesRange(*Min))
10057       return { Min, true };
10058     Optional<APInt> Max = Min == SO ? UO : SO;
10059     if (LeavesRange(*Max))
10060       return { Max, true };
10061 
10062     // Solutions were found, but were eliminated, hence the "true".
10063     return { None, true };
10064   };
10065 
10066   std::tie(A, B, C, M, BitWidth) = *T;
10067   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10068   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10069   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10070   auto SL = SolveForBoundary(Lower);
10071   auto SU = SolveForBoundary(Upper);
10072   // If any of the solutions was unknown, no meaninigful conclusions can
10073   // be made.
10074   if (!SL.second || !SU.second)
10075     return None;
10076 
10077   // Claim: The correct solution is not some value between Min and Max.
10078   //
10079   // Justification: Assuming that Min and Max are different values, one of
10080   // them is when the first signed overflow happens, the other is when the
10081   // first unsigned overflow happens. Crossing the range boundary is only
10082   // possible via an overflow (treating 0 as a special case of it, modeling
10083   // an overflow as crossing k*2^W for some k).
10084   //
10085   // The interesting case here is when Min was eliminated as an invalid
10086   // solution, but Max was not. The argument is that if there was another
10087   // overflow between Min and Max, it would also have been eliminated if
10088   // it was considered.
10089   //
10090   // For a given boundary, it is possible to have two overflows of the same
10091   // type (signed/unsigned) without having the other type in between: this
10092   // can happen when the vertex of the parabola is between the iterations
10093   // corresponding to the overflows. This is only possible when the two
10094   // overflows cross k*2^W for the same k. In such case, if the second one
10095   // left the range (and was the first one to do so), the first overflow
10096   // would have to enter the range, which would mean that either we had left
10097   // the range before or that we started outside of it. Both of these cases
10098   // are contradictions.
10099   //
10100   // Claim: In the case where SolveForBoundary returns None, the correct
10101   // solution is not some value between the Max for this boundary and the
10102   // Min of the other boundary.
10103   //
10104   // Justification: Assume that we had such Max_A and Min_B corresponding
10105   // to range boundaries A and B and such that Max_A < Min_B. If there was
10106   // a solution between Max_A and Min_B, it would have to be caused by an
10107   // overflow corresponding to either A or B. It cannot correspond to B,
10108   // since Min_B is the first occurrence of such an overflow. If it
10109   // corresponded to A, it would have to be either a signed or an unsigned
10110   // overflow that is larger than both eliminated overflows for A. But
10111   // between the eliminated overflows and this overflow, the values would
10112   // cover the entire value space, thus crossing the other boundary, which
10113   // is a contradiction.
10114 
10115   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10116 }
10117 
10118 ScalarEvolution::ExitLimit
10119 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
10120                               bool AllowPredicates) {
10121 
10122   // This is only used for loops with a "x != y" exit test. The exit condition
10123   // is now expressed as a single expression, V = x-y. So the exit test is
10124   // effectively V != 0.  We know and take advantage of the fact that this
10125   // expression only being used in a comparison by zero context.
10126 
10127   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10128   // If the value is a constant
10129   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10130     // If the value is already zero, the branch will execute zero times.
10131     if (C->getValue()->isZero()) return C;
10132     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10133   }
10134 
10135   const SCEVAddRecExpr *AddRec =
10136       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10137 
10138   if (!AddRec && AllowPredicates)
10139     // Try to make this an AddRec using runtime tests, in the first X
10140     // iterations of this loop, where X is the SCEV expression found by the
10141     // algorithm below.
10142     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10143 
10144   if (!AddRec || AddRec->getLoop() != L)
10145     return getCouldNotCompute();
10146 
10147   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10148   // the quadratic equation to solve it.
10149   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10150     // We can only use this value if the chrec ends up with an exact zero
10151     // value at this index.  When solving for "X*X != 5", for example, we
10152     // should not accept a root of 2.
10153     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10154       const auto *R = cast<SCEVConstant>(getConstant(*S));
10155       return ExitLimit(R, R, false, Predicates);
10156     }
10157     return getCouldNotCompute();
10158   }
10159 
10160   // Otherwise we can only handle this if it is affine.
10161   if (!AddRec->isAffine())
10162     return getCouldNotCompute();
10163 
10164   // If this is an affine expression, the execution count of this branch is
10165   // the minimum unsigned root of the following equation:
10166   //
10167   //     Start + Step*N = 0 (mod 2^BW)
10168   //
10169   // equivalent to:
10170   //
10171   //             Step*N = -Start (mod 2^BW)
10172   //
10173   // where BW is the common bit width of Start and Step.
10174 
10175   // Get the initial value for the loop.
10176   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10177   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10178 
10179   // For now we handle only constant steps.
10180   //
10181   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10182   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10183   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10184   // We have not yet seen any such cases.
10185   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10186   if (!StepC || StepC->getValue()->isZero())
10187     return getCouldNotCompute();
10188 
10189   // For positive steps (counting up until unsigned overflow):
10190   //   N = -Start/Step (as unsigned)
10191   // For negative steps (counting down to zero):
10192   //   N = Start/-Step
10193   // First compute the unsigned distance from zero in the direction of Step.
10194   bool CountDown = StepC->getAPInt().isNegative();
10195   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10196 
10197   // Handle unitary steps, which cannot wraparound.
10198   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10199   //   N = Distance (as unsigned)
10200   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10201     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10202     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10203 
10204     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10205     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10206     // case, and see if we can improve the bound.
10207     //
10208     // Explicitly handling this here is necessary because getUnsignedRange
10209     // isn't context-sensitive; it doesn't know that we only care about the
10210     // range inside the loop.
10211     const SCEV *Zero = getZero(Distance->getType());
10212     const SCEV *One = getOne(Distance->getType());
10213     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10214     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10215       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10216       // as "unsigned_max(Distance + 1) - 1".
10217       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10218       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10219     }
10220     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
10221   }
10222 
10223   // If the condition controls loop exit (the loop exits only if the expression
10224   // is true) and the addition is no-wrap we can use unsigned divide to
10225   // compute the backedge count.  In this case, the step may not divide the
10226   // distance, but we don't care because if the condition is "missed" the loop
10227   // will have undefined behavior due to wrapping.
10228   if (ControlsExit && AddRec->hasNoSelfWrap() &&
10229       loopHasNoAbnormalExits(AddRec->getLoop())) {
10230     const SCEV *Exact =
10231         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10232     const SCEV *Max = getCouldNotCompute();
10233     if (Exact != getCouldNotCompute()) {
10234       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10235       Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10236     }
10237     return ExitLimit(Exact, Max, false, Predicates);
10238   }
10239 
10240   // Solve the general equation.
10241   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10242                                                getNegativeSCEV(Start), *this);
10243 
10244   const SCEV *M = E;
10245   if (E != getCouldNotCompute()) {
10246     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10247     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10248   }
10249   return ExitLimit(E, M, false, Predicates);
10250 }
10251 
10252 ScalarEvolution::ExitLimit
10253 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10254   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10255   // handle them yet except for the trivial case.  This could be expanded in the
10256   // future as needed.
10257 
10258   // If the value is a constant, check to see if it is known to be non-zero
10259   // already.  If so, the backedge will execute zero times.
10260   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10261     if (!C->getValue()->isZero())
10262       return getZero(C->getType());
10263     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10264   }
10265 
10266   // We could implement others, but I really doubt anyone writes loops like
10267   // this, and if they did, they would already be constant folded.
10268   return getCouldNotCompute();
10269 }
10270 
10271 std::pair<const BasicBlock *, const BasicBlock *>
10272 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10273     const {
10274   // If the block has a unique predecessor, then there is no path from the
10275   // predecessor to the block that does not go through the direct edge
10276   // from the predecessor to the block.
10277   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10278     return {Pred, BB};
10279 
10280   // A loop's header is defined to be a block that dominates the loop.
10281   // If the header has a unique predecessor outside the loop, it must be
10282   // a block that has exactly one successor that can reach the loop.
10283   if (const Loop *L = LI.getLoopFor(BB))
10284     return {L->getLoopPredecessor(), L->getHeader()};
10285 
10286   return {nullptr, nullptr};
10287 }
10288 
10289 /// SCEV structural equivalence is usually sufficient for testing whether two
10290 /// expressions are equal, however for the purposes of looking for a condition
10291 /// guarding a loop, it can be useful to be a little more general, since a
10292 /// front-end may have replicated the controlling expression.
10293 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10294   // Quick check to see if they are the same SCEV.
10295   if (A == B) return true;
10296 
10297   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10298     // Not all instructions that are "identical" compute the same value.  For
10299     // instance, two distinct alloca instructions allocating the same type are
10300     // identical and do not read memory; but compute distinct values.
10301     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10302   };
10303 
10304   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10305   // two different instructions with the same value. Check for this case.
10306   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10307     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10308       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10309         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10310           if (ComputesEqualValues(AI, BI))
10311             return true;
10312 
10313   // Otherwise assume they may have a different value.
10314   return false;
10315 }
10316 
10317 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10318                                            const SCEV *&LHS, const SCEV *&RHS,
10319                                            unsigned Depth,
10320                                            bool ControllingFiniteLoop) {
10321   bool Changed = false;
10322   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10323   // '0 != 0'.
10324   auto TrivialCase = [&](bool TriviallyTrue) {
10325     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10326     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10327     return true;
10328   };
10329   // If we hit the max recursion limit bail out.
10330   if (Depth >= 3)
10331     return false;
10332 
10333   // Canonicalize a constant to the right side.
10334   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10335     // Check for both operands constant.
10336     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10337       if (ConstantExpr::getICmp(Pred,
10338                                 LHSC->getValue(),
10339                                 RHSC->getValue())->isNullValue())
10340         return TrivialCase(false);
10341       else
10342         return TrivialCase(true);
10343     }
10344     // Otherwise swap the operands to put the constant on the right.
10345     std::swap(LHS, RHS);
10346     Pred = ICmpInst::getSwappedPredicate(Pred);
10347     Changed = true;
10348   }
10349 
10350   // If we're comparing an addrec with a value which is loop-invariant in the
10351   // addrec's loop, put the addrec on the left. Also make a dominance check,
10352   // as both operands could be addrecs loop-invariant in each other's loop.
10353   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10354     const Loop *L = AR->getLoop();
10355     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10356       std::swap(LHS, RHS);
10357       Pred = ICmpInst::getSwappedPredicate(Pred);
10358       Changed = true;
10359     }
10360   }
10361 
10362   // If there's a constant operand, canonicalize comparisons with boundary
10363   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10364   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10365     const APInt &RA = RC->getAPInt();
10366 
10367     bool SimplifiedByConstantRange = false;
10368 
10369     if (!ICmpInst::isEquality(Pred)) {
10370       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10371       if (ExactCR.isFullSet())
10372         return TrivialCase(true);
10373       else if (ExactCR.isEmptySet())
10374         return TrivialCase(false);
10375 
10376       APInt NewRHS;
10377       CmpInst::Predicate NewPred;
10378       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10379           ICmpInst::isEquality(NewPred)) {
10380         // We were able to convert an inequality to an equality.
10381         Pred = NewPred;
10382         RHS = getConstant(NewRHS);
10383         Changed = SimplifiedByConstantRange = true;
10384       }
10385     }
10386 
10387     if (!SimplifiedByConstantRange) {
10388       switch (Pred) {
10389       default:
10390         break;
10391       case ICmpInst::ICMP_EQ:
10392       case ICmpInst::ICMP_NE:
10393         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10394         if (!RA)
10395           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10396             if (const SCEVMulExpr *ME =
10397                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10398               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10399                   ME->getOperand(0)->isAllOnesValue()) {
10400                 RHS = AE->getOperand(1);
10401                 LHS = ME->getOperand(1);
10402                 Changed = true;
10403               }
10404         break;
10405 
10406 
10407         // The "Should have been caught earlier!" messages refer to the fact
10408         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10409         // should have fired on the corresponding cases, and canonicalized the
10410         // check to trivial case.
10411 
10412       case ICmpInst::ICMP_UGE:
10413         assert(!RA.isMinValue() && "Should have been caught earlier!");
10414         Pred = ICmpInst::ICMP_UGT;
10415         RHS = getConstant(RA - 1);
10416         Changed = true;
10417         break;
10418       case ICmpInst::ICMP_ULE:
10419         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10420         Pred = ICmpInst::ICMP_ULT;
10421         RHS = getConstant(RA + 1);
10422         Changed = true;
10423         break;
10424       case ICmpInst::ICMP_SGE:
10425         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10426         Pred = ICmpInst::ICMP_SGT;
10427         RHS = getConstant(RA - 1);
10428         Changed = true;
10429         break;
10430       case ICmpInst::ICMP_SLE:
10431         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10432         Pred = ICmpInst::ICMP_SLT;
10433         RHS = getConstant(RA + 1);
10434         Changed = true;
10435         break;
10436       }
10437     }
10438   }
10439 
10440   // Check for obvious equality.
10441   if (HasSameValue(LHS, RHS)) {
10442     if (ICmpInst::isTrueWhenEqual(Pred))
10443       return TrivialCase(true);
10444     if (ICmpInst::isFalseWhenEqual(Pred))
10445       return TrivialCase(false);
10446   }
10447 
10448   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10449   // adding or subtracting 1 from one of the operands. This can be done for
10450   // one of two reasons:
10451   // 1) The range of the RHS does not include the (signed/unsigned) boundaries
10452   // 2) The loop is finite, with this comparison controlling the exit. Since the
10453   // loop is finite, the bound cannot include the corresponding boundary
10454   // (otherwise it would loop forever).
10455   switch (Pred) {
10456   case ICmpInst::ICMP_SLE:
10457     if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) {
10458       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10459                        SCEV::FlagNSW);
10460       Pred = ICmpInst::ICMP_SLT;
10461       Changed = true;
10462     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10463       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10464                        SCEV::FlagNSW);
10465       Pred = ICmpInst::ICMP_SLT;
10466       Changed = true;
10467     }
10468     break;
10469   case ICmpInst::ICMP_SGE:
10470     if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) {
10471       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10472                        SCEV::FlagNSW);
10473       Pred = ICmpInst::ICMP_SGT;
10474       Changed = true;
10475     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10476       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10477                        SCEV::FlagNSW);
10478       Pred = ICmpInst::ICMP_SGT;
10479       Changed = true;
10480     }
10481     break;
10482   case ICmpInst::ICMP_ULE:
10483     if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) {
10484       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10485                        SCEV::FlagNUW);
10486       Pred = ICmpInst::ICMP_ULT;
10487       Changed = true;
10488     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10489       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10490       Pred = ICmpInst::ICMP_ULT;
10491       Changed = true;
10492     }
10493     break;
10494   case ICmpInst::ICMP_UGE:
10495     if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) {
10496       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10497       Pred = ICmpInst::ICMP_UGT;
10498       Changed = true;
10499     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10500       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10501                        SCEV::FlagNUW);
10502       Pred = ICmpInst::ICMP_UGT;
10503       Changed = true;
10504     }
10505     break;
10506   default:
10507     break;
10508   }
10509 
10510   // TODO: More simplifications are possible here.
10511 
10512   // Recursively simplify until we either hit a recursion limit or nothing
10513   // changes.
10514   if (Changed)
10515     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1,
10516                                 ControllingFiniteLoop);
10517 
10518   return Changed;
10519 }
10520 
10521 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10522   return getSignedRangeMax(S).isNegative();
10523 }
10524 
10525 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10526   return getSignedRangeMin(S).isStrictlyPositive();
10527 }
10528 
10529 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10530   return !getSignedRangeMin(S).isNegative();
10531 }
10532 
10533 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10534   return !getSignedRangeMax(S).isStrictlyPositive();
10535 }
10536 
10537 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10538   return getUnsignedRangeMin(S) != 0;
10539 }
10540 
10541 std::pair<const SCEV *, const SCEV *>
10542 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10543   // Compute SCEV on entry of loop L.
10544   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10545   if (Start == getCouldNotCompute())
10546     return { Start, Start };
10547   // Compute post increment SCEV for loop L.
10548   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10549   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10550   return { Start, PostInc };
10551 }
10552 
10553 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10554                                           const SCEV *LHS, const SCEV *RHS) {
10555   // First collect all loops.
10556   SmallPtrSet<const Loop *, 8> LoopsUsed;
10557   getUsedLoops(LHS, LoopsUsed);
10558   getUsedLoops(RHS, LoopsUsed);
10559 
10560   if (LoopsUsed.empty())
10561     return false;
10562 
10563   // Domination relationship must be a linear order on collected loops.
10564 #ifndef NDEBUG
10565   for (const auto *L1 : LoopsUsed)
10566     for (const auto *L2 : LoopsUsed)
10567       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10568               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10569              "Domination relationship is not a linear order");
10570 #endif
10571 
10572   const Loop *MDL =
10573       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10574                         [&](const Loop *L1, const Loop *L2) {
10575          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10576        });
10577 
10578   // Get init and post increment value for LHS.
10579   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10580   // if LHS contains unknown non-invariant SCEV then bail out.
10581   if (SplitLHS.first == getCouldNotCompute())
10582     return false;
10583   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10584   // Get init and post increment value for RHS.
10585   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10586   // if RHS contains unknown non-invariant SCEV then bail out.
10587   if (SplitRHS.first == getCouldNotCompute())
10588     return false;
10589   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10590   // It is possible that init SCEV contains an invariant load but it does
10591   // not dominate MDL and is not available at MDL loop entry, so we should
10592   // check it here.
10593   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10594       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10595     return false;
10596 
10597   // It seems backedge guard check is faster than entry one so in some cases
10598   // it can speed up whole estimation by short circuit
10599   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10600                                      SplitRHS.second) &&
10601          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10602 }
10603 
10604 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10605                                        const SCEV *LHS, const SCEV *RHS) {
10606   // Canonicalize the inputs first.
10607   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10608 
10609   if (isKnownViaInduction(Pred, LHS, RHS))
10610     return true;
10611 
10612   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10613     return true;
10614 
10615   // Otherwise see what can be done with some simple reasoning.
10616   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10617 }
10618 
10619 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10620                                                   const SCEV *LHS,
10621                                                   const SCEV *RHS) {
10622   if (isKnownPredicate(Pred, LHS, RHS))
10623     return true;
10624   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10625     return false;
10626   return None;
10627 }
10628 
10629 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10630                                          const SCEV *LHS, const SCEV *RHS,
10631                                          const Instruction *CtxI) {
10632   // TODO: Analyze guards and assumes from Context's block.
10633   return isKnownPredicate(Pred, LHS, RHS) ||
10634          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10635 }
10636 
10637 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10638                                                     const SCEV *LHS,
10639                                                     const SCEV *RHS,
10640                                                     const Instruction *CtxI) {
10641   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10642   if (KnownWithoutContext)
10643     return KnownWithoutContext;
10644 
10645   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10646     return true;
10647   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10648                                           ICmpInst::getInversePredicate(Pred),
10649                                           LHS, RHS))
10650     return false;
10651   return None;
10652 }
10653 
10654 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10655                                               const SCEVAddRecExpr *LHS,
10656                                               const SCEV *RHS) {
10657   const Loop *L = LHS->getLoop();
10658   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10659          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10660 }
10661 
10662 Optional<ScalarEvolution::MonotonicPredicateType>
10663 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10664                                            ICmpInst::Predicate Pred) {
10665   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10666 
10667 #ifndef NDEBUG
10668   // Verify an invariant: inverting the predicate should turn a monotonically
10669   // increasing change to a monotonically decreasing one, and vice versa.
10670   if (Result) {
10671     auto ResultSwapped =
10672         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10673 
10674     assert(ResultSwapped && "should be able to analyze both!");
10675     assert(ResultSwapped.value() != Result.value() &&
10676            "monotonicity should flip as we flip the predicate");
10677   }
10678 #endif
10679 
10680   return Result;
10681 }
10682 
10683 Optional<ScalarEvolution::MonotonicPredicateType>
10684 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10685                                                ICmpInst::Predicate Pred) {
10686   // A zero step value for LHS means the induction variable is essentially a
10687   // loop invariant value. We don't really depend on the predicate actually
10688   // flipping from false to true (for increasing predicates, and the other way
10689   // around for decreasing predicates), all we care about is that *if* the
10690   // predicate changes then it only changes from false to true.
10691   //
10692   // A zero step value in itself is not very useful, but there may be places
10693   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10694   // as general as possible.
10695 
10696   // Only handle LE/LT/GE/GT predicates.
10697   if (!ICmpInst::isRelational(Pred))
10698     return None;
10699 
10700   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10701   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10702          "Should be greater or less!");
10703 
10704   // Check that AR does not wrap.
10705   if (ICmpInst::isUnsigned(Pred)) {
10706     if (!LHS->hasNoUnsignedWrap())
10707       return None;
10708     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10709   } else {
10710     assert(ICmpInst::isSigned(Pred) &&
10711            "Relational predicate is either signed or unsigned!");
10712     if (!LHS->hasNoSignedWrap())
10713       return None;
10714 
10715     const SCEV *Step = LHS->getStepRecurrence(*this);
10716 
10717     if (isKnownNonNegative(Step))
10718       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10719 
10720     if (isKnownNonPositive(Step))
10721       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10722 
10723     return None;
10724   }
10725 }
10726 
10727 Optional<ScalarEvolution::LoopInvariantPredicate>
10728 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10729                                            const SCEV *LHS, const SCEV *RHS,
10730                                            const Loop *L) {
10731 
10732   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10733   if (!isLoopInvariant(RHS, L)) {
10734     if (!isLoopInvariant(LHS, L))
10735       return None;
10736 
10737     std::swap(LHS, RHS);
10738     Pred = ICmpInst::getSwappedPredicate(Pred);
10739   }
10740 
10741   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10742   if (!ArLHS || ArLHS->getLoop() != L)
10743     return None;
10744 
10745   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10746   if (!MonotonicType)
10747     return None;
10748   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10749   // true as the loop iterates, and the backedge is control dependent on
10750   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10751   //
10752   //   * if the predicate was false in the first iteration then the predicate
10753   //     is never evaluated again, since the loop exits without taking the
10754   //     backedge.
10755   //   * if the predicate was true in the first iteration then it will
10756   //     continue to be true for all future iterations since it is
10757   //     monotonically increasing.
10758   //
10759   // For both the above possibilities, we can replace the loop varying
10760   // predicate with its value on the first iteration of the loop (which is
10761   // loop invariant).
10762   //
10763   // A similar reasoning applies for a monotonically decreasing predicate, by
10764   // replacing true with false and false with true in the above two bullets.
10765   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10766   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10767 
10768   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10769     return None;
10770 
10771   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10772 }
10773 
10774 Optional<ScalarEvolution::LoopInvariantPredicate>
10775 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10776     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10777     const Instruction *CtxI, const SCEV *MaxIter) {
10778   // Try to prove the following set of facts:
10779   // - The predicate is monotonic in the iteration space.
10780   // - If the check does not fail on the 1st iteration:
10781   //   - No overflow will happen during first MaxIter iterations;
10782   //   - It will not fail on the MaxIter'th iteration.
10783   // If the check does fail on the 1st iteration, we leave the loop and no
10784   // other checks matter.
10785 
10786   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10787   if (!isLoopInvariant(RHS, L)) {
10788     if (!isLoopInvariant(LHS, L))
10789       return None;
10790 
10791     std::swap(LHS, RHS);
10792     Pred = ICmpInst::getSwappedPredicate(Pred);
10793   }
10794 
10795   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10796   if (!AR || AR->getLoop() != L)
10797     return None;
10798 
10799   // The predicate must be relational (i.e. <, <=, >=, >).
10800   if (!ICmpInst::isRelational(Pred))
10801     return None;
10802 
10803   // TODO: Support steps other than +/- 1.
10804   const SCEV *Step = AR->getStepRecurrence(*this);
10805   auto *One = getOne(Step->getType());
10806   auto *MinusOne = getNegativeSCEV(One);
10807   if (Step != One && Step != MinusOne)
10808     return None;
10809 
10810   // Type mismatch here means that MaxIter is potentially larger than max
10811   // unsigned value in start type, which mean we cannot prove no wrap for the
10812   // indvar.
10813   if (AR->getType() != MaxIter->getType())
10814     return None;
10815 
10816   // Value of IV on suggested last iteration.
10817   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10818   // Does it still meet the requirement?
10819   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10820     return None;
10821   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10822   // not exceed max unsigned value of this type), this effectively proves
10823   // that there is no wrap during the iteration. To prove that there is no
10824   // signed/unsigned wrap, we need to check that
10825   // Start <= Last for step = 1 or Start >= Last for step = -1.
10826   ICmpInst::Predicate NoOverflowPred =
10827       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10828   if (Step == MinusOne)
10829     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10830   const SCEV *Start = AR->getStart();
10831   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10832     return None;
10833 
10834   // Everything is fine.
10835   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10836 }
10837 
10838 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10839     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10840   if (HasSameValue(LHS, RHS))
10841     return ICmpInst::isTrueWhenEqual(Pred);
10842 
10843   // This code is split out from isKnownPredicate because it is called from
10844   // within isLoopEntryGuardedByCond.
10845 
10846   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10847                          const ConstantRange &RangeRHS) {
10848     return RangeLHS.icmp(Pred, RangeRHS);
10849   };
10850 
10851   // The check at the top of the function catches the case where the values are
10852   // known to be equal.
10853   if (Pred == CmpInst::ICMP_EQ)
10854     return false;
10855 
10856   if (Pred == CmpInst::ICMP_NE) {
10857     auto SL = getSignedRange(LHS);
10858     auto SR = getSignedRange(RHS);
10859     if (CheckRanges(SL, SR))
10860       return true;
10861     auto UL = getUnsignedRange(LHS);
10862     auto UR = getUnsignedRange(RHS);
10863     if (CheckRanges(UL, UR))
10864       return true;
10865     auto *Diff = getMinusSCEV(LHS, RHS);
10866     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10867   }
10868 
10869   if (CmpInst::isSigned(Pred)) {
10870     auto SL = getSignedRange(LHS);
10871     auto SR = getSignedRange(RHS);
10872     return CheckRanges(SL, SR);
10873   }
10874 
10875   auto UL = getUnsignedRange(LHS);
10876   auto UR = getUnsignedRange(RHS);
10877   return CheckRanges(UL, UR);
10878 }
10879 
10880 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10881                                                     const SCEV *LHS,
10882                                                     const SCEV *RHS) {
10883   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10884   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10885   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10886   // OutC1 and OutC2.
10887   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10888                                       APInt &OutC1, APInt &OutC2,
10889                                       SCEV::NoWrapFlags ExpectedFlags) {
10890     const SCEV *XNonConstOp, *XConstOp;
10891     const SCEV *YNonConstOp, *YConstOp;
10892     SCEV::NoWrapFlags XFlagsPresent;
10893     SCEV::NoWrapFlags YFlagsPresent;
10894 
10895     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10896       XConstOp = getZero(X->getType());
10897       XNonConstOp = X;
10898       XFlagsPresent = ExpectedFlags;
10899     }
10900     if (!isa<SCEVConstant>(XConstOp) ||
10901         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10902       return false;
10903 
10904     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10905       YConstOp = getZero(Y->getType());
10906       YNonConstOp = Y;
10907       YFlagsPresent = ExpectedFlags;
10908     }
10909 
10910     if (!isa<SCEVConstant>(YConstOp) ||
10911         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10912       return false;
10913 
10914     if (YNonConstOp != XNonConstOp)
10915       return false;
10916 
10917     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10918     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10919 
10920     return true;
10921   };
10922 
10923   APInt C1;
10924   APInt C2;
10925 
10926   switch (Pred) {
10927   default:
10928     break;
10929 
10930   case ICmpInst::ICMP_SGE:
10931     std::swap(LHS, RHS);
10932     LLVM_FALLTHROUGH;
10933   case ICmpInst::ICMP_SLE:
10934     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10935     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10936       return true;
10937 
10938     break;
10939 
10940   case ICmpInst::ICMP_SGT:
10941     std::swap(LHS, RHS);
10942     LLVM_FALLTHROUGH;
10943   case ICmpInst::ICMP_SLT:
10944     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10945     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10946       return true;
10947 
10948     break;
10949 
10950   case ICmpInst::ICMP_UGE:
10951     std::swap(LHS, RHS);
10952     LLVM_FALLTHROUGH;
10953   case ICmpInst::ICMP_ULE:
10954     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10955     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10956       return true;
10957 
10958     break;
10959 
10960   case ICmpInst::ICMP_UGT:
10961     std::swap(LHS, RHS);
10962     LLVM_FALLTHROUGH;
10963   case ICmpInst::ICMP_ULT:
10964     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10965     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10966       return true;
10967     break;
10968   }
10969 
10970   return false;
10971 }
10972 
10973 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10974                                                    const SCEV *LHS,
10975                                                    const SCEV *RHS) {
10976   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10977     return false;
10978 
10979   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10980   // the stack can result in exponential time complexity.
10981   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10982 
10983   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10984   //
10985   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10986   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10987   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10988   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10989   // use isKnownPredicate later if needed.
10990   return isKnownNonNegative(RHS) &&
10991          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10992          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10993 }
10994 
10995 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10996                                         ICmpInst::Predicate Pred,
10997                                         const SCEV *LHS, const SCEV *RHS) {
10998   // No need to even try if we know the module has no guards.
10999   if (!HasGuards)
11000     return false;
11001 
11002   return any_of(*BB, [&](const Instruction &I) {
11003     using namespace llvm::PatternMatch;
11004 
11005     Value *Condition;
11006     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11007                          m_Value(Condition))) &&
11008            isImpliedCond(Pred, LHS, RHS, Condition, false);
11009   });
11010 }
11011 
11012 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11013 /// protected by a conditional between LHS and RHS.  This is used to
11014 /// to eliminate casts.
11015 bool
11016 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11017                                              ICmpInst::Predicate Pred,
11018                                              const SCEV *LHS, const SCEV *RHS) {
11019   // Interpret a null as meaning no loop, where there is obviously no guard
11020   // (interprocedural conditions notwithstanding). Do not bother about
11021   // unreachable loops.
11022   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11023     return true;
11024 
11025   if (VerifyIR)
11026     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11027            "This cannot be done on broken IR!");
11028 
11029 
11030   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11031     return true;
11032 
11033   BasicBlock *Latch = L->getLoopLatch();
11034   if (!Latch)
11035     return false;
11036 
11037   BranchInst *LoopContinuePredicate =
11038     dyn_cast<BranchInst>(Latch->getTerminator());
11039   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11040       isImpliedCond(Pred, LHS, RHS,
11041                     LoopContinuePredicate->getCondition(),
11042                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11043     return true;
11044 
11045   // We don't want more than one activation of the following loops on the stack
11046   // -- that can lead to O(n!) time complexity.
11047   if (WalkingBEDominatingConds)
11048     return false;
11049 
11050   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
11051 
11052   // See if we can exploit a trip count to prove the predicate.
11053   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11054   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11055   if (LatchBECount != getCouldNotCompute()) {
11056     // We know that Latch branches back to the loop header exactly
11057     // LatchBECount times.  This means the backdege condition at Latch is
11058     // equivalent to  "{0,+,1} u< LatchBECount".
11059     Type *Ty = LatchBECount->getType();
11060     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11061     const SCEV *LoopCounter =
11062       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11063     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11064                       LatchBECount))
11065       return true;
11066   }
11067 
11068   // Check conditions due to any @llvm.assume intrinsics.
11069   for (auto &AssumeVH : AC.assumptions()) {
11070     if (!AssumeVH)
11071       continue;
11072     auto *CI = cast<CallInst>(AssumeVH);
11073     if (!DT.dominates(CI, Latch->getTerminator()))
11074       continue;
11075 
11076     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11077       return true;
11078   }
11079 
11080   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11081     return true;
11082 
11083   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11084        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11085     assert(DTN && "should reach the loop header before reaching the root!");
11086 
11087     BasicBlock *BB = DTN->getBlock();
11088     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11089       return true;
11090 
11091     BasicBlock *PBB = BB->getSinglePredecessor();
11092     if (!PBB)
11093       continue;
11094 
11095     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11096     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11097       continue;
11098 
11099     Value *Condition = ContinuePredicate->getCondition();
11100 
11101     // If we have an edge `E` within the loop body that dominates the only
11102     // latch, the condition guarding `E` also guards the backedge.  This
11103     // reasoning works only for loops with a single latch.
11104 
11105     BasicBlockEdge DominatingEdge(PBB, BB);
11106     if (DominatingEdge.isSingleEdge()) {
11107       // We're constructively (and conservatively) enumerating edges within the
11108       // loop body that dominate the latch.  The dominator tree better agree
11109       // with us on this:
11110       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11111 
11112       if (isImpliedCond(Pred, LHS, RHS, Condition,
11113                         BB != ContinuePredicate->getSuccessor(0)))
11114         return true;
11115     }
11116   }
11117 
11118   return false;
11119 }
11120 
11121 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11122                                                      ICmpInst::Predicate Pred,
11123                                                      const SCEV *LHS,
11124                                                      const SCEV *RHS) {
11125   // Do not bother proving facts for unreachable code.
11126   if (!DT.isReachableFromEntry(BB))
11127     return true;
11128   if (VerifyIR)
11129     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11130            "This cannot be done on broken IR!");
11131 
11132   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11133   // the facts (a >= b && a != b) separately. A typical situation is when the
11134   // non-strict comparison is known from ranges and non-equality is known from
11135   // dominating predicates. If we are proving strict comparison, we always try
11136   // to prove non-equality and non-strict comparison separately.
11137   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11138   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11139   bool ProvedNonStrictComparison = false;
11140   bool ProvedNonEquality = false;
11141 
11142   auto SplitAndProve =
11143     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11144     if (!ProvedNonStrictComparison)
11145       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11146     if (!ProvedNonEquality)
11147       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11148     if (ProvedNonStrictComparison && ProvedNonEquality)
11149       return true;
11150     return false;
11151   };
11152 
11153   if (ProvingStrictComparison) {
11154     auto ProofFn = [&](ICmpInst::Predicate P) {
11155       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11156     };
11157     if (SplitAndProve(ProofFn))
11158       return true;
11159   }
11160 
11161   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11162   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11163     const Instruction *CtxI = &BB->front();
11164     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11165       return true;
11166     if (ProvingStrictComparison) {
11167       auto ProofFn = [&](ICmpInst::Predicate P) {
11168         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11169       };
11170       if (SplitAndProve(ProofFn))
11171         return true;
11172     }
11173     return false;
11174   };
11175 
11176   // Starting at the block's predecessor, climb up the predecessor chain, as long
11177   // as there are predecessors that can be found that have unique successors
11178   // leading to the original block.
11179   const Loop *ContainingLoop = LI.getLoopFor(BB);
11180   const BasicBlock *PredBB;
11181   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11182     PredBB = ContainingLoop->getLoopPredecessor();
11183   else
11184     PredBB = BB->getSinglePredecessor();
11185   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11186        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11187     const BranchInst *BlockEntryPredicate =
11188         dyn_cast<BranchInst>(Pair.first->getTerminator());
11189     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11190       continue;
11191 
11192     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11193                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11194       return true;
11195   }
11196 
11197   // Check conditions due to any @llvm.assume intrinsics.
11198   for (auto &AssumeVH : AC.assumptions()) {
11199     if (!AssumeVH)
11200       continue;
11201     auto *CI = cast<CallInst>(AssumeVH);
11202     if (!DT.dominates(CI, BB))
11203       continue;
11204 
11205     if (ProveViaCond(CI->getArgOperand(0), false))
11206       return true;
11207   }
11208 
11209   // Check conditions due to any @llvm.experimental.guard intrinsics.
11210   auto *GuardDecl = F.getParent()->getFunction(
11211       Intrinsic::getName(Intrinsic::experimental_guard));
11212   if (GuardDecl)
11213     for (const auto *GU : GuardDecl->users())
11214       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11215         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11216           if (ProveViaCond(Guard->getArgOperand(0), false))
11217             return true;
11218   return false;
11219 }
11220 
11221 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11222                                                ICmpInst::Predicate Pred,
11223                                                const SCEV *LHS,
11224                                                const SCEV *RHS) {
11225   // Interpret a null as meaning no loop, where there is obviously no guard
11226   // (interprocedural conditions notwithstanding).
11227   if (!L)
11228     return false;
11229 
11230   // Both LHS and RHS must be available at loop entry.
11231   assert(isAvailableAtLoopEntry(LHS, L) &&
11232          "LHS is not available at Loop Entry");
11233   assert(isAvailableAtLoopEntry(RHS, L) &&
11234          "RHS is not available at Loop Entry");
11235 
11236   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11237     return true;
11238 
11239   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11240 }
11241 
11242 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11243                                     const SCEV *RHS,
11244                                     const Value *FoundCondValue, bool Inverse,
11245                                     const Instruction *CtxI) {
11246   // False conditions implies anything. Do not bother analyzing it further.
11247   if (FoundCondValue ==
11248       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11249     return true;
11250 
11251   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11252     return false;
11253 
11254   auto ClearOnExit =
11255       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11256 
11257   // Recursively handle And and Or conditions.
11258   const Value *Op0, *Op1;
11259   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11260     if (!Inverse)
11261       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11262              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11263   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11264     if (Inverse)
11265       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11266              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11267   }
11268 
11269   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11270   if (!ICI) return false;
11271 
11272   // Now that we found a conditional branch that dominates the loop or controls
11273   // the loop latch. Check to see if it is the comparison we are looking for.
11274   ICmpInst::Predicate FoundPred;
11275   if (Inverse)
11276     FoundPred = ICI->getInversePredicate();
11277   else
11278     FoundPred = ICI->getPredicate();
11279 
11280   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11281   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11282 
11283   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11284 }
11285 
11286 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11287                                     const SCEV *RHS,
11288                                     ICmpInst::Predicate FoundPred,
11289                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11290                                     const Instruction *CtxI) {
11291   // Balance the types.
11292   if (getTypeSizeInBits(LHS->getType()) <
11293       getTypeSizeInBits(FoundLHS->getType())) {
11294     // For unsigned and equality predicates, try to prove that both found
11295     // operands fit into narrow unsigned range. If so, try to prove facts in
11296     // narrow types.
11297     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11298         !FoundRHS->getType()->isPointerTy()) {
11299       auto *NarrowType = LHS->getType();
11300       auto *WideType = FoundLHS->getType();
11301       auto BitWidth = getTypeSizeInBits(NarrowType);
11302       const SCEV *MaxValue = getZeroExtendExpr(
11303           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11304       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11305                                           MaxValue) &&
11306           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11307                                           MaxValue)) {
11308         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11309         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11310         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11311                                        TruncFoundRHS, CtxI))
11312           return true;
11313       }
11314     }
11315 
11316     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11317       return false;
11318     if (CmpInst::isSigned(Pred)) {
11319       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11320       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11321     } else {
11322       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11323       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11324     }
11325   } else if (getTypeSizeInBits(LHS->getType()) >
11326       getTypeSizeInBits(FoundLHS->getType())) {
11327     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11328       return false;
11329     if (CmpInst::isSigned(FoundPred)) {
11330       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11331       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11332     } else {
11333       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11334       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11335     }
11336   }
11337   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11338                                     FoundRHS, CtxI);
11339 }
11340 
11341 bool ScalarEvolution::isImpliedCondBalancedTypes(
11342     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11343     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11344     const Instruction *CtxI) {
11345   assert(getTypeSizeInBits(LHS->getType()) ==
11346              getTypeSizeInBits(FoundLHS->getType()) &&
11347          "Types should be balanced!");
11348   // Canonicalize the query to match the way instcombine will have
11349   // canonicalized the comparison.
11350   if (SimplifyICmpOperands(Pred, LHS, RHS))
11351     if (LHS == RHS)
11352       return CmpInst::isTrueWhenEqual(Pred);
11353   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11354     if (FoundLHS == FoundRHS)
11355       return CmpInst::isFalseWhenEqual(FoundPred);
11356 
11357   // Check to see if we can make the LHS or RHS match.
11358   if (LHS == FoundRHS || RHS == FoundLHS) {
11359     if (isa<SCEVConstant>(RHS)) {
11360       std::swap(FoundLHS, FoundRHS);
11361       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11362     } else {
11363       std::swap(LHS, RHS);
11364       Pred = ICmpInst::getSwappedPredicate(Pred);
11365     }
11366   }
11367 
11368   // Check whether the found predicate is the same as the desired predicate.
11369   if (FoundPred == Pred)
11370     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11371 
11372   // Check whether swapping the found predicate makes it the same as the
11373   // desired predicate.
11374   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11375     // We can write the implication
11376     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11377     // using one of the following ways:
11378     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11379     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11380     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11381     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11382     // Forms 1. and 2. require swapping the operands of one condition. Don't
11383     // do this if it would break canonical constant/addrec ordering.
11384     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11385       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11386                                    CtxI);
11387     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11388       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11389 
11390     // There's no clear preference between forms 3. and 4., try both.  Avoid
11391     // forming getNotSCEV of pointer values as the resulting subtract is
11392     // not legal.
11393     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11394         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11395                               FoundLHS, FoundRHS, CtxI))
11396       return true;
11397 
11398     if (!FoundLHS->getType()->isPointerTy() &&
11399         !FoundRHS->getType()->isPointerTy() &&
11400         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11401                               getNotSCEV(FoundRHS), CtxI))
11402       return true;
11403 
11404     return false;
11405   }
11406 
11407   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11408                                    CmpInst::Predicate P2) {
11409     assert(P1 != P2 && "Handled earlier!");
11410     return CmpInst::isRelational(P2) &&
11411            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11412   };
11413   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11414     // Unsigned comparison is the same as signed comparison when both the
11415     // operands are non-negative or negative.
11416     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11417         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11418       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11419     // Create local copies that we can freely swap and canonicalize our
11420     // conditions to "le/lt".
11421     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11422     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11423                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11424     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11425       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11426       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11427       std::swap(CanonicalLHS, CanonicalRHS);
11428       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11429     }
11430     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11431            "Must be!");
11432     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11433             ICmpInst::isLE(CanonicalFoundPred)) &&
11434            "Must be!");
11435     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11436       // Use implication:
11437       // x <u y && y >=s 0 --> x <s y.
11438       // If we can prove the left part, the right part is also proven.
11439       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11440                                    CanonicalRHS, CanonicalFoundLHS,
11441                                    CanonicalFoundRHS);
11442     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11443       // Use implication:
11444       // x <s y && y <s 0 --> x <u y.
11445       // If we can prove the left part, the right part is also proven.
11446       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11447                                    CanonicalRHS, CanonicalFoundLHS,
11448                                    CanonicalFoundRHS);
11449   }
11450 
11451   // Check if we can make progress by sharpening ranges.
11452   if (FoundPred == ICmpInst::ICMP_NE &&
11453       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11454 
11455     const SCEVConstant *C = nullptr;
11456     const SCEV *V = nullptr;
11457 
11458     if (isa<SCEVConstant>(FoundLHS)) {
11459       C = cast<SCEVConstant>(FoundLHS);
11460       V = FoundRHS;
11461     } else {
11462       C = cast<SCEVConstant>(FoundRHS);
11463       V = FoundLHS;
11464     }
11465 
11466     // The guarding predicate tells us that C != V. If the known range
11467     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11468     // range we consider has to correspond to same signedness as the
11469     // predicate we're interested in folding.
11470 
11471     APInt Min = ICmpInst::isSigned(Pred) ?
11472         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11473 
11474     if (Min == C->getAPInt()) {
11475       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11476       // This is true even if (Min + 1) wraps around -- in case of
11477       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11478 
11479       APInt SharperMin = Min + 1;
11480 
11481       switch (Pred) {
11482         case ICmpInst::ICMP_SGE:
11483         case ICmpInst::ICMP_UGE:
11484           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11485           // RHS, we're done.
11486           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11487                                     CtxI))
11488             return true;
11489           LLVM_FALLTHROUGH;
11490 
11491         case ICmpInst::ICMP_SGT:
11492         case ICmpInst::ICMP_UGT:
11493           // We know from the range information that (V `Pred` Min ||
11494           // V == Min).  We know from the guarding condition that !(V
11495           // == Min).  This gives us
11496           //
11497           //       V `Pred` Min || V == Min && !(V == Min)
11498           //   =>  V `Pred` Min
11499           //
11500           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11501 
11502           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11503             return true;
11504           break;
11505 
11506         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11507         case ICmpInst::ICMP_SLE:
11508         case ICmpInst::ICMP_ULE:
11509           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11510                                     LHS, V, getConstant(SharperMin), CtxI))
11511             return true;
11512           LLVM_FALLTHROUGH;
11513 
11514         case ICmpInst::ICMP_SLT:
11515         case ICmpInst::ICMP_ULT:
11516           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11517                                     LHS, V, getConstant(Min), CtxI))
11518             return true;
11519           break;
11520 
11521         default:
11522           // No change
11523           break;
11524       }
11525     }
11526   }
11527 
11528   // Check whether the actual condition is beyond sufficient.
11529   if (FoundPred == ICmpInst::ICMP_EQ)
11530     if (ICmpInst::isTrueWhenEqual(Pred))
11531       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11532         return true;
11533   if (Pred == ICmpInst::ICMP_NE)
11534     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11535       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11536         return true;
11537 
11538   // Otherwise assume the worst.
11539   return false;
11540 }
11541 
11542 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11543                                      const SCEV *&L, const SCEV *&R,
11544                                      SCEV::NoWrapFlags &Flags) {
11545   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11546   if (!AE || AE->getNumOperands() != 2)
11547     return false;
11548 
11549   L = AE->getOperand(0);
11550   R = AE->getOperand(1);
11551   Flags = AE->getNoWrapFlags();
11552   return true;
11553 }
11554 
11555 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
11556                                                            const SCEV *Less) {
11557   // We avoid subtracting expressions here because this function is usually
11558   // fairly deep in the call stack (i.e. is called many times).
11559 
11560   // X - X = 0.
11561   if (More == Less)
11562     return APInt(getTypeSizeInBits(More->getType()), 0);
11563 
11564   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11565     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11566     const auto *MAR = cast<SCEVAddRecExpr>(More);
11567 
11568     if (LAR->getLoop() != MAR->getLoop())
11569       return None;
11570 
11571     // We look at affine expressions only; not for correctness but to keep
11572     // getStepRecurrence cheap.
11573     if (!LAR->isAffine() || !MAR->isAffine())
11574       return None;
11575 
11576     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11577       return None;
11578 
11579     Less = LAR->getStart();
11580     More = MAR->getStart();
11581 
11582     // fall through
11583   }
11584 
11585   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11586     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11587     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11588     return M - L;
11589   }
11590 
11591   SCEV::NoWrapFlags Flags;
11592   const SCEV *LLess = nullptr, *RLess = nullptr;
11593   const SCEV *LMore = nullptr, *RMore = nullptr;
11594   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11595   // Compare (X + C1) vs X.
11596   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11597     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11598       if (RLess == More)
11599         return -(C1->getAPInt());
11600 
11601   // Compare X vs (X + C2).
11602   if (splitBinaryAdd(More, LMore, RMore, Flags))
11603     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11604       if (RMore == Less)
11605         return C2->getAPInt();
11606 
11607   // Compare (X + C1) vs (X + C2).
11608   if (C1 && C2 && RLess == RMore)
11609     return C2->getAPInt() - C1->getAPInt();
11610 
11611   return None;
11612 }
11613 
11614 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11615     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11616     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11617   // Try to recognize the following pattern:
11618   //
11619   //   FoundRHS = ...
11620   // ...
11621   // loop:
11622   //   FoundLHS = {Start,+,W}
11623   // context_bb: // Basic block from the same loop
11624   //   known(Pred, FoundLHS, FoundRHS)
11625   //
11626   // If some predicate is known in the context of a loop, it is also known on
11627   // each iteration of this loop, including the first iteration. Therefore, in
11628   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11629   // prove the original pred using this fact.
11630   if (!CtxI)
11631     return false;
11632   const BasicBlock *ContextBB = CtxI->getParent();
11633   // Make sure AR varies in the context block.
11634   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11635     const Loop *L = AR->getLoop();
11636     // Make sure that context belongs to the loop and executes on 1st iteration
11637     // (if it ever executes at all).
11638     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11639       return false;
11640     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11641       return false;
11642     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11643   }
11644 
11645   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11646     const Loop *L = AR->getLoop();
11647     // Make sure that context belongs to the loop and executes on 1st iteration
11648     // (if it ever executes at all).
11649     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11650       return false;
11651     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11652       return false;
11653     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11654   }
11655 
11656   return false;
11657 }
11658 
11659 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11660     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11661     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11662   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11663     return false;
11664 
11665   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11666   if (!AddRecLHS)
11667     return false;
11668 
11669   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11670   if (!AddRecFoundLHS)
11671     return false;
11672 
11673   // We'd like to let SCEV reason about control dependencies, so we constrain
11674   // both the inequalities to be about add recurrences on the same loop.  This
11675   // way we can use isLoopEntryGuardedByCond later.
11676 
11677   const Loop *L = AddRecFoundLHS->getLoop();
11678   if (L != AddRecLHS->getLoop())
11679     return false;
11680 
11681   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11682   //
11683   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11684   //                                                                  ... (2)
11685   //
11686   // Informal proof for (2), assuming (1) [*]:
11687   //
11688   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11689   //
11690   // Then
11691   //
11692   //       FoundLHS s< FoundRHS s< INT_MIN - C
11693   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11694   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11695   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11696   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11697   // <=>  FoundLHS + C s< FoundRHS + C
11698   //
11699   // [*]: (1) can be proved by ruling out overflow.
11700   //
11701   // [**]: This can be proved by analyzing all the four possibilities:
11702   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11703   //    (A s>= 0, B s>= 0).
11704   //
11705   // Note:
11706   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11707   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11708   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11709   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11710   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11711   // C)".
11712 
11713   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11714   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11715   if (!LDiff || !RDiff || *LDiff != *RDiff)
11716     return false;
11717 
11718   if (LDiff->isMinValue())
11719     return true;
11720 
11721   APInt FoundRHSLimit;
11722 
11723   if (Pred == CmpInst::ICMP_ULT) {
11724     FoundRHSLimit = -(*RDiff);
11725   } else {
11726     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11727     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11728   }
11729 
11730   // Try to prove (1) or (2), as needed.
11731   return isAvailableAtLoopEntry(FoundRHS, L) &&
11732          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11733                                   getConstant(FoundRHSLimit));
11734 }
11735 
11736 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11737                                         const SCEV *LHS, const SCEV *RHS,
11738                                         const SCEV *FoundLHS,
11739                                         const SCEV *FoundRHS, unsigned Depth) {
11740   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11741 
11742   auto ClearOnExit = make_scope_exit([&]() {
11743     if (LPhi) {
11744       bool Erased = PendingMerges.erase(LPhi);
11745       assert(Erased && "Failed to erase LPhi!");
11746       (void)Erased;
11747     }
11748     if (RPhi) {
11749       bool Erased = PendingMerges.erase(RPhi);
11750       assert(Erased && "Failed to erase RPhi!");
11751       (void)Erased;
11752     }
11753   });
11754 
11755   // Find respective Phis and check that they are not being pending.
11756   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11757     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11758       if (!PendingMerges.insert(Phi).second)
11759         return false;
11760       LPhi = Phi;
11761     }
11762   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11763     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11764       // If we detect a loop of Phi nodes being processed by this method, for
11765       // example:
11766       //
11767       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11768       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11769       //
11770       // we don't want to deal with a case that complex, so return conservative
11771       // answer false.
11772       if (!PendingMerges.insert(Phi).second)
11773         return false;
11774       RPhi = Phi;
11775     }
11776 
11777   // If none of LHS, RHS is a Phi, nothing to do here.
11778   if (!LPhi && !RPhi)
11779     return false;
11780 
11781   // If there is a SCEVUnknown Phi we are interested in, make it left.
11782   if (!LPhi) {
11783     std::swap(LHS, RHS);
11784     std::swap(FoundLHS, FoundRHS);
11785     std::swap(LPhi, RPhi);
11786     Pred = ICmpInst::getSwappedPredicate(Pred);
11787   }
11788 
11789   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11790   const BasicBlock *LBB = LPhi->getParent();
11791   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11792 
11793   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11794     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11795            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11796            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11797   };
11798 
11799   if (RPhi && RPhi->getParent() == LBB) {
11800     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11801     // If we compare two Phis from the same block, and for each entry block
11802     // the predicate is true for incoming values from this block, then the
11803     // predicate is also true for the Phis.
11804     for (const BasicBlock *IncBB : predecessors(LBB)) {
11805       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11806       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11807       if (!ProvedEasily(L, R))
11808         return false;
11809     }
11810   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11811     // Case two: RHS is also a Phi from the same basic block, and it is an
11812     // AddRec. It means that there is a loop which has both AddRec and Unknown
11813     // PHIs, for it we can compare incoming values of AddRec from above the loop
11814     // and latch with their respective incoming values of LPhi.
11815     // TODO: Generalize to handle loops with many inputs in a header.
11816     if (LPhi->getNumIncomingValues() != 2) return false;
11817 
11818     auto *RLoop = RAR->getLoop();
11819     auto *Predecessor = RLoop->getLoopPredecessor();
11820     assert(Predecessor && "Loop with AddRec with no predecessor?");
11821     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11822     if (!ProvedEasily(L1, RAR->getStart()))
11823       return false;
11824     auto *Latch = RLoop->getLoopLatch();
11825     assert(Latch && "Loop with AddRec with no latch?");
11826     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11827     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11828       return false;
11829   } else {
11830     // In all other cases go over inputs of LHS and compare each of them to RHS,
11831     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11832     // At this point RHS is either a non-Phi, or it is a Phi from some block
11833     // different from LBB.
11834     for (const BasicBlock *IncBB : predecessors(LBB)) {
11835       // Check that RHS is available in this block.
11836       if (!dominates(RHS, IncBB))
11837         return false;
11838       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11839       // Make sure L does not refer to a value from a potentially previous
11840       // iteration of a loop.
11841       if (!properlyDominates(L, LBB))
11842         return false;
11843       if (!ProvedEasily(L, RHS))
11844         return false;
11845     }
11846   }
11847   return true;
11848 }
11849 
11850 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
11851                                                     const SCEV *LHS,
11852                                                     const SCEV *RHS,
11853                                                     const SCEV *FoundLHS,
11854                                                     const SCEV *FoundRHS) {
11855   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
11856   // sure that we are dealing with same LHS.
11857   if (RHS == FoundRHS) {
11858     std::swap(LHS, RHS);
11859     std::swap(FoundLHS, FoundRHS);
11860     Pred = ICmpInst::getSwappedPredicate(Pred);
11861   }
11862   if (LHS != FoundLHS)
11863     return false;
11864 
11865   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
11866   if (!SUFoundRHS)
11867     return false;
11868 
11869   Value *Shiftee, *ShiftValue;
11870 
11871   using namespace PatternMatch;
11872   if (match(SUFoundRHS->getValue(),
11873             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
11874     auto *ShifteeS = getSCEV(Shiftee);
11875     // Prove one of the following:
11876     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
11877     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
11878     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11879     //   ---> LHS <s RHS
11880     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11881     //   ---> LHS <=s RHS
11882     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
11883       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
11884     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
11885       if (isKnownNonNegative(ShifteeS))
11886         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
11887   }
11888 
11889   return false;
11890 }
11891 
11892 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11893                                             const SCEV *LHS, const SCEV *RHS,
11894                                             const SCEV *FoundLHS,
11895                                             const SCEV *FoundRHS,
11896                                             const Instruction *CtxI) {
11897   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11898     return true;
11899 
11900   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11901     return true;
11902 
11903   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
11904     return true;
11905 
11906   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11907                                           CtxI))
11908     return true;
11909 
11910   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11911                                      FoundLHS, FoundRHS);
11912 }
11913 
11914 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11915 template <typename MinMaxExprType>
11916 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11917                                  const SCEV *Candidate) {
11918   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11919   if (!MinMaxExpr)
11920     return false;
11921 
11922   return is_contained(MinMaxExpr->operands(), Candidate);
11923 }
11924 
11925 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11926                                            ICmpInst::Predicate Pred,
11927                                            const SCEV *LHS, const SCEV *RHS) {
11928   // If both sides are affine addrecs for the same loop, with equal
11929   // steps, and we know the recurrences don't wrap, then we only
11930   // need to check the predicate on the starting values.
11931 
11932   if (!ICmpInst::isRelational(Pred))
11933     return false;
11934 
11935   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11936   if (!LAR)
11937     return false;
11938   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11939   if (!RAR)
11940     return false;
11941   if (LAR->getLoop() != RAR->getLoop())
11942     return false;
11943   if (!LAR->isAffine() || !RAR->isAffine())
11944     return false;
11945 
11946   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11947     return false;
11948 
11949   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11950                          SCEV::FlagNSW : SCEV::FlagNUW;
11951   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11952     return false;
11953 
11954   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11955 }
11956 
11957 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11958 /// expression?
11959 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11960                                         ICmpInst::Predicate Pred,
11961                                         const SCEV *LHS, const SCEV *RHS) {
11962   switch (Pred) {
11963   default:
11964     return false;
11965 
11966   case ICmpInst::ICMP_SGE:
11967     std::swap(LHS, RHS);
11968     LLVM_FALLTHROUGH;
11969   case ICmpInst::ICMP_SLE:
11970     return
11971         // min(A, ...) <= A
11972         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11973         // A <= max(A, ...)
11974         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11975 
11976   case ICmpInst::ICMP_UGE:
11977     std::swap(LHS, RHS);
11978     LLVM_FALLTHROUGH;
11979   case ICmpInst::ICMP_ULE:
11980     return
11981         // min(A, ...) <= A
11982         // FIXME: what about umin_seq?
11983         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11984         // A <= max(A, ...)
11985         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11986   }
11987 
11988   llvm_unreachable("covered switch fell through?!");
11989 }
11990 
11991 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11992                                              const SCEV *LHS, const SCEV *RHS,
11993                                              const SCEV *FoundLHS,
11994                                              const SCEV *FoundRHS,
11995                                              unsigned Depth) {
11996   assert(getTypeSizeInBits(LHS->getType()) ==
11997              getTypeSizeInBits(RHS->getType()) &&
11998          "LHS and RHS have different sizes?");
11999   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12000              getTypeSizeInBits(FoundRHS->getType()) &&
12001          "FoundLHS and FoundRHS have different sizes?");
12002   // We want to avoid hurting the compile time with analysis of too big trees.
12003   if (Depth > MaxSCEVOperationsImplicationDepth)
12004     return false;
12005 
12006   // We only want to work with GT comparison so far.
12007   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12008     Pred = CmpInst::getSwappedPredicate(Pred);
12009     std::swap(LHS, RHS);
12010     std::swap(FoundLHS, FoundRHS);
12011   }
12012 
12013   // For unsigned, try to reduce it to corresponding signed comparison.
12014   if (Pred == ICmpInst::ICMP_UGT)
12015     // We can replace unsigned predicate with its signed counterpart if all
12016     // involved values are non-negative.
12017     // TODO: We could have better support for unsigned.
12018     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12019       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12020       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12021       // use this fact to prove that LHS and RHS are non-negative.
12022       const SCEV *MinusOne = getMinusOne(LHS->getType());
12023       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12024                                 FoundRHS) &&
12025           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12026                                 FoundRHS))
12027         Pred = ICmpInst::ICMP_SGT;
12028     }
12029 
12030   if (Pred != ICmpInst::ICMP_SGT)
12031     return false;
12032 
12033   auto GetOpFromSExt = [&](const SCEV *S) {
12034     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12035       return Ext->getOperand();
12036     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12037     // the constant in some cases.
12038     return S;
12039   };
12040 
12041   // Acquire values from extensions.
12042   auto *OrigLHS = LHS;
12043   auto *OrigFoundLHS = FoundLHS;
12044   LHS = GetOpFromSExt(LHS);
12045   FoundLHS = GetOpFromSExt(FoundLHS);
12046 
12047   // Is the SGT predicate can be proved trivially or using the found context.
12048   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12049     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12050            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12051                                   FoundRHS, Depth + 1);
12052   };
12053 
12054   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12055     // We want to avoid creation of any new non-constant SCEV. Since we are
12056     // going to compare the operands to RHS, we should be certain that we don't
12057     // need any size extensions for this. So let's decline all cases when the
12058     // sizes of types of LHS and RHS do not match.
12059     // TODO: Maybe try to get RHS from sext to catch more cases?
12060     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12061       return false;
12062 
12063     // Should not overflow.
12064     if (!LHSAddExpr->hasNoSignedWrap())
12065       return false;
12066 
12067     auto *LL = LHSAddExpr->getOperand(0);
12068     auto *LR = LHSAddExpr->getOperand(1);
12069     auto *MinusOne = getMinusOne(RHS->getType());
12070 
12071     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12072     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12073       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12074     };
12075     // Try to prove the following rule:
12076     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12077     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12078     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12079       return true;
12080   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12081     Value *LL, *LR;
12082     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12083 
12084     using namespace llvm::PatternMatch;
12085 
12086     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12087       // Rules for division.
12088       // We are going to perform some comparisons with Denominator and its
12089       // derivative expressions. In general case, creating a SCEV for it may
12090       // lead to a complex analysis of the entire graph, and in particular it
12091       // can request trip count recalculation for the same loop. This would
12092       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12093       // this, we only want to create SCEVs that are constants in this section.
12094       // So we bail if Denominator is not a constant.
12095       if (!isa<ConstantInt>(LR))
12096         return false;
12097 
12098       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12099 
12100       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12101       // then a SCEV for the numerator already exists and matches with FoundLHS.
12102       auto *Numerator = getExistingSCEV(LL);
12103       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12104         return false;
12105 
12106       // Make sure that the numerator matches with FoundLHS and the denominator
12107       // is positive.
12108       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12109         return false;
12110 
12111       auto *DTy = Denominator->getType();
12112       auto *FRHSTy = FoundRHS->getType();
12113       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12114         // One of types is a pointer and another one is not. We cannot extend
12115         // them properly to a wider type, so let us just reject this case.
12116         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12117         // to avoid this check.
12118         return false;
12119 
12120       // Given that:
12121       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12122       auto *WTy = getWiderType(DTy, FRHSTy);
12123       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12124       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12125 
12126       // Try to prove the following rule:
12127       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12128       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12129       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12130       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12131       if (isKnownNonPositive(RHS) &&
12132           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12133         return true;
12134 
12135       // Try to prove the following rule:
12136       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12137       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12138       // If we divide it by Denominator > 2, then:
12139       // 1. If FoundLHS is negative, then the result is 0.
12140       // 2. If FoundLHS is non-negative, then the result is non-negative.
12141       // Anyways, the result is non-negative.
12142       auto *MinusOne = getMinusOne(WTy);
12143       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12144       if (isKnownNegative(RHS) &&
12145           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12146         return true;
12147     }
12148   }
12149 
12150   // If our expression contained SCEVUnknown Phis, and we split it down and now
12151   // need to prove something for them, try to prove the predicate for every
12152   // possible incoming values of those Phis.
12153   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12154     return true;
12155 
12156   return false;
12157 }
12158 
12159 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12160                                         const SCEV *LHS, const SCEV *RHS) {
12161   // zext x u<= sext x, sext x s<= zext x
12162   switch (Pred) {
12163   case ICmpInst::ICMP_SGE:
12164     std::swap(LHS, RHS);
12165     LLVM_FALLTHROUGH;
12166   case ICmpInst::ICMP_SLE: {
12167     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12168     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12169     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12170     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12171       return true;
12172     break;
12173   }
12174   case ICmpInst::ICMP_UGE:
12175     std::swap(LHS, RHS);
12176     LLVM_FALLTHROUGH;
12177   case ICmpInst::ICMP_ULE: {
12178     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12179     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12180     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12181     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12182       return true;
12183     break;
12184   }
12185   default:
12186     break;
12187   };
12188   return false;
12189 }
12190 
12191 bool
12192 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12193                                            const SCEV *LHS, const SCEV *RHS) {
12194   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12195          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12196          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12197          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12198          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12199 }
12200 
12201 bool
12202 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12203                                              const SCEV *LHS, const SCEV *RHS,
12204                                              const SCEV *FoundLHS,
12205                                              const SCEV *FoundRHS) {
12206   switch (Pred) {
12207   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12208   case ICmpInst::ICMP_EQ:
12209   case ICmpInst::ICMP_NE:
12210     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12211       return true;
12212     break;
12213   case ICmpInst::ICMP_SLT:
12214   case ICmpInst::ICMP_SLE:
12215     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12216         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12217       return true;
12218     break;
12219   case ICmpInst::ICMP_SGT:
12220   case ICmpInst::ICMP_SGE:
12221     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12222         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12223       return true;
12224     break;
12225   case ICmpInst::ICMP_ULT:
12226   case ICmpInst::ICMP_ULE:
12227     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12228         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12229       return true;
12230     break;
12231   case ICmpInst::ICMP_UGT:
12232   case ICmpInst::ICMP_UGE:
12233     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12234         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12235       return true;
12236     break;
12237   }
12238 
12239   // Maybe it can be proved via operations?
12240   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12241     return true;
12242 
12243   return false;
12244 }
12245 
12246 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12247                                                      const SCEV *LHS,
12248                                                      const SCEV *RHS,
12249                                                      const SCEV *FoundLHS,
12250                                                      const SCEV *FoundRHS) {
12251   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12252     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12253     // reduce the compile time impact of this optimization.
12254     return false;
12255 
12256   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12257   if (!Addend)
12258     return false;
12259 
12260   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12261 
12262   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12263   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12264   ConstantRange FoundLHSRange =
12265       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
12266 
12267   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12268   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12269 
12270   // We can also compute the range of values for `LHS` that satisfy the
12271   // consequent, "`LHS` `Pred` `RHS`":
12272   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12273   // The antecedent implies the consequent if every value of `LHS` that
12274   // satisfies the antecedent also satisfies the consequent.
12275   return LHSRange.icmp(Pred, ConstRHS);
12276 }
12277 
12278 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12279                                         bool IsSigned) {
12280   assert(isKnownPositive(Stride) && "Positive stride expected!");
12281 
12282   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12283   const SCEV *One = getOne(Stride->getType());
12284 
12285   if (IsSigned) {
12286     APInt MaxRHS = getSignedRangeMax(RHS);
12287     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12288     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12289 
12290     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12291     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12292   }
12293 
12294   APInt MaxRHS = getUnsignedRangeMax(RHS);
12295   APInt MaxValue = APInt::getMaxValue(BitWidth);
12296   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12297 
12298   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12299   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12300 }
12301 
12302 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12303                                         bool IsSigned) {
12304 
12305   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12306   const SCEV *One = getOne(Stride->getType());
12307 
12308   if (IsSigned) {
12309     APInt MinRHS = getSignedRangeMin(RHS);
12310     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12311     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12312 
12313     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12314     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12315   }
12316 
12317   APInt MinRHS = getUnsignedRangeMin(RHS);
12318   APInt MinValue = APInt::getMinValue(BitWidth);
12319   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12320 
12321   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12322   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12323 }
12324 
12325 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12326   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12327   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12328   // expression fixes the case of N=0.
12329   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12330   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12331   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12332 }
12333 
12334 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12335                                                     const SCEV *Stride,
12336                                                     const SCEV *End,
12337                                                     unsigned BitWidth,
12338                                                     bool IsSigned) {
12339   // The logic in this function assumes we can represent a positive stride.
12340   // If we can't, the backedge-taken count must be zero.
12341   if (IsSigned && BitWidth == 1)
12342     return getZero(Stride->getType());
12343 
12344   // This code has only been closely audited for negative strides in the
12345   // unsigned comparison case, it may be correct for signed comparison, but
12346   // that needs to be established.
12347   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
12348          "Stride is expected strictly positive for signed case!");
12349 
12350   // Calculate the maximum backedge count based on the range of values
12351   // permitted by Start, End, and Stride.
12352   APInt MinStart =
12353       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12354 
12355   APInt MinStride =
12356       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12357 
12358   // We assume either the stride is positive, or the backedge-taken count
12359   // is zero. So force StrideForMaxBECount to be at least one.
12360   APInt One(BitWidth, 1);
12361   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12362                                        : APIntOps::umax(One, MinStride);
12363 
12364   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12365                             : APInt::getMaxValue(BitWidth);
12366   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12367 
12368   // Although End can be a MAX expression we estimate MaxEnd considering only
12369   // the case End = RHS of the loop termination condition. This is safe because
12370   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12371   // taken count.
12372   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12373                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12374 
12375   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12376   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12377                     : APIntOps::umax(MaxEnd, MinStart);
12378 
12379   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12380                          getConstant(StrideForMaxBECount) /* Step */);
12381 }
12382 
12383 ScalarEvolution::ExitLimit
12384 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12385                                   const Loop *L, bool IsSigned,
12386                                   bool ControlsExit, bool AllowPredicates) {
12387   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12388 
12389   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12390   bool PredicatedIV = false;
12391 
12392   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12393     // Can we prove this loop *must* be UB if overflow of IV occurs?
12394     // Reasoning goes as follows:
12395     // * Suppose the IV did self wrap.
12396     // * If Stride evenly divides the iteration space, then once wrap
12397     //   occurs, the loop must revisit the same values.
12398     // * We know that RHS is invariant, and that none of those values
12399     //   caused this exit to be taken previously.  Thus, this exit is
12400     //   dynamically dead.
12401     // * If this is the sole exit, then a dead exit implies the loop
12402     //   must be infinite if there are no abnormal exits.
12403     // * If the loop were infinite, then it must either not be mustprogress
12404     //   or have side effects. Otherwise, it must be UB.
12405     // * It can't (by assumption), be UB so we have contradicted our
12406     //   premise and can conclude the IV did not in fact self-wrap.
12407     if (!isLoopInvariant(RHS, L))
12408       return false;
12409 
12410     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12411     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12412       return false;
12413 
12414     if (!ControlsExit || !loopHasNoAbnormalExits(L))
12415       return false;
12416 
12417     return loopIsFiniteByAssumption(L);
12418   };
12419 
12420   if (!IV) {
12421     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12422       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12423       if (AR && AR->getLoop() == L && AR->isAffine()) {
12424         auto canProveNUW = [&]() {
12425           if (!isLoopInvariant(RHS, L))
12426             return false;
12427 
12428           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12429             // We need the sequence defined by AR to strictly increase in the
12430             // unsigned integer domain for the logic below to hold.
12431             return false;
12432 
12433           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12434           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12435           // If RHS <=u Limit, then there must exist a value V in the sequence
12436           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12437           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12438           // overflow occurs.  This limit also implies that a signed comparison
12439           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12440           // the high bits on both sides must be zero.
12441           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12442           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12443           Limit = Limit.zext(OuterBitWidth);
12444           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12445         };
12446         auto Flags = AR->getNoWrapFlags();
12447         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12448           Flags = setFlags(Flags, SCEV::FlagNUW);
12449 
12450         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12451         if (AR->hasNoUnsignedWrap()) {
12452           // Emulate what getZeroExtendExpr would have done during construction
12453           // if we'd been able to infer the fact just above at that time.
12454           const SCEV *Step = AR->getStepRecurrence(*this);
12455           Type *Ty = ZExt->getType();
12456           auto *S = getAddRecExpr(
12457             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12458             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12459           IV = dyn_cast<SCEVAddRecExpr>(S);
12460         }
12461       }
12462     }
12463   }
12464 
12465 
12466   if (!IV && AllowPredicates) {
12467     // Try to make this an AddRec using runtime tests, in the first X
12468     // iterations of this loop, where X is the SCEV expression found by the
12469     // algorithm below.
12470     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12471     PredicatedIV = true;
12472   }
12473 
12474   // Avoid weird loops
12475   if (!IV || IV->getLoop() != L || !IV->isAffine())
12476     return getCouldNotCompute();
12477 
12478   // A precondition of this method is that the condition being analyzed
12479   // reaches an exiting branch which dominates the latch.  Given that, we can
12480   // assume that an increment which violates the nowrap specification and
12481   // produces poison must cause undefined behavior when the resulting poison
12482   // value is branched upon and thus we can conclude that the backedge is
12483   // taken no more often than would be required to produce that poison value.
12484   // Note that a well defined loop can exit on the iteration which violates
12485   // the nowrap specification if there is another exit (either explicit or
12486   // implicit/exceptional) which causes the loop to execute before the
12487   // exiting instruction we're analyzing would trigger UB.
12488   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12489   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12490   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12491 
12492   const SCEV *Stride = IV->getStepRecurrence(*this);
12493 
12494   bool PositiveStride = isKnownPositive(Stride);
12495 
12496   // Avoid negative or zero stride values.
12497   if (!PositiveStride) {
12498     // We can compute the correct backedge taken count for loops with unknown
12499     // strides if we can prove that the loop is not an infinite loop with side
12500     // effects. Here's the loop structure we are trying to handle -
12501     //
12502     // i = start
12503     // do {
12504     //   A[i] = i;
12505     //   i += s;
12506     // } while (i < end);
12507     //
12508     // The backedge taken count for such loops is evaluated as -
12509     // (max(end, start + stride) - start - 1) /u stride
12510     //
12511     // The additional preconditions that we need to check to prove correctness
12512     // of the above formula is as follows -
12513     //
12514     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12515     //    NoWrap flag).
12516     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12517     //    no side effects within the loop)
12518     // c) loop has a single static exit (with no abnormal exits)
12519     //
12520     // Precondition a) implies that if the stride is negative, this is a single
12521     // trip loop. The backedge taken count formula reduces to zero in this case.
12522     //
12523     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12524     // then a zero stride means the backedge can't be taken without executing
12525     // undefined behavior.
12526     //
12527     // The positive stride case is the same as isKnownPositive(Stride) returning
12528     // true (original behavior of the function).
12529     //
12530     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12531         !loopHasNoAbnormalExits(L))
12532       return getCouldNotCompute();
12533 
12534     // This bailout is protecting the logic in computeMaxBECountForLT which
12535     // has not yet been sufficiently auditted or tested with negative strides.
12536     // We used to filter out all known-non-positive cases here, we're in the
12537     // process of being less restrictive bit by bit.
12538     if (IsSigned && isKnownNonPositive(Stride))
12539       return getCouldNotCompute();
12540 
12541     if (!isKnownNonZero(Stride)) {
12542       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12543       // if it might eventually be greater than start and if so, on which
12544       // iteration.  We can't even produce a useful upper bound.
12545       if (!isLoopInvariant(RHS, L))
12546         return getCouldNotCompute();
12547 
12548       // We allow a potentially zero stride, but we need to divide by stride
12549       // below.  Since the loop can't be infinite and this check must control
12550       // the sole exit, we can infer the exit must be taken on the first
12551       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12552       // we know the numerator in the divides below must be zero, so we can
12553       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12554       // and produce the right result.
12555       // FIXME: Handle the case where Stride is poison?
12556       auto wouldZeroStrideBeUB = [&]() {
12557         // Proof by contradiction.  Suppose the stride were zero.  If we can
12558         // prove that the backedge *is* taken on the first iteration, then since
12559         // we know this condition controls the sole exit, we must have an
12560         // infinite loop.  We can't have a (well defined) infinite loop per
12561         // check just above.
12562         // Note: The (Start - Stride) term is used to get the start' term from
12563         // (start' + stride,+,stride). Remember that we only care about the
12564         // result of this expression when stride == 0 at runtime.
12565         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12566         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12567       };
12568       if (!wouldZeroStrideBeUB()) {
12569         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12570       }
12571     }
12572   } else if (!Stride->isOne() && !NoWrap) {
12573     auto isUBOnWrap = [&]() {
12574       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12575       // follows trivially from the fact that every (un)signed-wrapped, but
12576       // not self-wrapped value must be LT than the last value before
12577       // (un)signed wrap.  Since we know that last value didn't exit, nor
12578       // will any smaller one.
12579       return canAssumeNoSelfWrap(IV);
12580     };
12581 
12582     // Avoid proven overflow cases: this will ensure that the backedge taken
12583     // count will not generate any unsigned overflow. Relaxed no-overflow
12584     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12585     // undefined behaviors like the case of C language.
12586     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12587       return getCouldNotCompute();
12588   }
12589 
12590   // On all paths just preceeding, we established the following invariant:
12591   //   IV can be assumed not to overflow up to and including the exiting
12592   //   iteration.  We proved this in one of two ways:
12593   //   1) We can show overflow doesn't occur before the exiting iteration
12594   //      1a) canIVOverflowOnLT, and b) step of one
12595   //   2) We can show that if overflow occurs, the loop must execute UB
12596   //      before any possible exit.
12597   // Note that we have not yet proved RHS invariant (in general).
12598 
12599   const SCEV *Start = IV->getStart();
12600 
12601   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12602   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12603   // Use integer-typed versions for actual computation; we can't subtract
12604   // pointers in general.
12605   const SCEV *OrigStart = Start;
12606   const SCEV *OrigRHS = RHS;
12607   if (Start->getType()->isPointerTy()) {
12608     Start = getLosslessPtrToIntExpr(Start);
12609     if (isa<SCEVCouldNotCompute>(Start))
12610       return Start;
12611   }
12612   if (RHS->getType()->isPointerTy()) {
12613     RHS = getLosslessPtrToIntExpr(RHS);
12614     if (isa<SCEVCouldNotCompute>(RHS))
12615       return RHS;
12616   }
12617 
12618   // When the RHS is not invariant, we do not know the end bound of the loop and
12619   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12620   // calculate the MaxBECount, given the start, stride and max value for the end
12621   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12622   // checked above).
12623   if (!isLoopInvariant(RHS, L)) {
12624     const SCEV *MaxBECount = computeMaxBECountForLT(
12625         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12626     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12627                      false /*MaxOrZero*/, Predicates);
12628   }
12629 
12630   // We use the expression (max(End,Start)-Start)/Stride to describe the
12631   // backedge count, as if the backedge is taken at least once max(End,Start)
12632   // is End and so the result is as above, and if not max(End,Start) is Start
12633   // so we get a backedge count of zero.
12634   const SCEV *BECount = nullptr;
12635   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12636   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12637   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12638   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12639   // Can we prove (max(RHS,Start) > Start - Stride?
12640   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12641       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12642     // In this case, we can use a refined formula for computing backedge taken
12643     // count.  The general formula remains:
12644     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12645     // We want to use the alternate formula:
12646     //   "((End - 1) - (Start - Stride)) /u Stride"
12647     // Let's do a quick case analysis to show these are equivalent under
12648     // our precondition that max(RHS,Start) > Start - Stride.
12649     // * For RHS <= Start, the backedge-taken count must be zero.
12650     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12651     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12652     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12653     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12654     //     this to the stride of 1 case.
12655     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12656     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12657     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12658     //   "((RHS - (Start - Stride) - 1) /u Stride".
12659     //   Our preconditions trivially imply no overflow in that form.
12660     const SCEV *MinusOne = getMinusOne(Stride->getType());
12661     const SCEV *Numerator =
12662         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12663     BECount = getUDivExpr(Numerator, Stride);
12664   }
12665 
12666   const SCEV *BECountIfBackedgeTaken = nullptr;
12667   if (!BECount) {
12668     auto canProveRHSGreaterThanEqualStart = [&]() {
12669       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12670       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12671         return true;
12672 
12673       // (RHS > Start - 1) implies RHS >= Start.
12674       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12675       //   "Start - 1" doesn't overflow.
12676       // * For signed comparison, if Start - 1 does overflow, it's equal
12677       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12678       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12679       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12680       //
12681       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12682       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12683       auto *StartMinusOne = getAddExpr(OrigStart,
12684                                        getMinusOne(OrigStart->getType()));
12685       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12686     };
12687 
12688     // If we know that RHS >= Start in the context of loop, then we know that
12689     // max(RHS, Start) = RHS at this point.
12690     const SCEV *End;
12691     if (canProveRHSGreaterThanEqualStart()) {
12692       End = RHS;
12693     } else {
12694       // If RHS < Start, the backedge will be taken zero times.  So in
12695       // general, we can write the backedge-taken count as:
12696       //
12697       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12698       //
12699       // We convert it to the following to make it more convenient for SCEV:
12700       //
12701       //     ceil(max(RHS, Start) - Start) / Stride
12702       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12703 
12704       // See what would happen if we assume the backedge is taken. This is
12705       // used to compute MaxBECount.
12706       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12707     }
12708 
12709     // At this point, we know:
12710     //
12711     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12712     // 2. The index variable doesn't overflow.
12713     //
12714     // Therefore, we know N exists such that
12715     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12716     // doesn't overflow.
12717     //
12718     // Using this information, try to prove whether the addition in
12719     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12720     const SCEV *One = getOne(Stride->getType());
12721     bool MayAddOverflow = [&] {
12722       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12723         if (StrideC->getAPInt().isPowerOf2()) {
12724           // Suppose Stride is a power of two, and Start/End are unsigned
12725           // integers.  Let UMAX be the largest representable unsigned
12726           // integer.
12727           //
12728           // By the preconditions of this function, we know
12729           // "(Start + Stride * N) >= End", and this doesn't overflow.
12730           // As a formula:
12731           //
12732           //   End <= (Start + Stride * N) <= UMAX
12733           //
12734           // Subtracting Start from all the terms:
12735           //
12736           //   End - Start <= Stride * N <= UMAX - Start
12737           //
12738           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12739           //
12740           //   End - Start <= Stride * N <= UMAX
12741           //
12742           // Stride * N is a multiple of Stride. Therefore,
12743           //
12744           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12745           //
12746           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12747           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12748           //
12749           //   End - Start <= Stride * N <= UMAX - Stride - 1
12750           //
12751           // Dropping the middle term:
12752           //
12753           //   End - Start <= UMAX - Stride - 1
12754           //
12755           // Adding Stride - 1 to both sides:
12756           //
12757           //   (End - Start) + (Stride - 1) <= UMAX
12758           //
12759           // In other words, the addition doesn't have unsigned overflow.
12760           //
12761           // A similar proof works if we treat Start/End as signed values.
12762           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12763           // use signed max instead of unsigned max. Note that we're trying
12764           // to prove a lack of unsigned overflow in either case.
12765           return false;
12766         }
12767       }
12768       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12769         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12770         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12771         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12772         //
12773         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12774         return false;
12775       }
12776       return true;
12777     }();
12778 
12779     const SCEV *Delta = getMinusSCEV(End, Start);
12780     if (!MayAddOverflow) {
12781       // floor((D + (S - 1)) / S)
12782       // We prefer this formulation if it's legal because it's fewer operations.
12783       BECount =
12784           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12785     } else {
12786       BECount = getUDivCeilSCEV(Delta, Stride);
12787     }
12788   }
12789 
12790   const SCEV *MaxBECount;
12791   bool MaxOrZero = false;
12792   if (isa<SCEVConstant>(BECount)) {
12793     MaxBECount = BECount;
12794   } else if (BECountIfBackedgeTaken &&
12795              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12796     // If we know exactly how many times the backedge will be taken if it's
12797     // taken at least once, then the backedge count will either be that or
12798     // zero.
12799     MaxBECount = BECountIfBackedgeTaken;
12800     MaxOrZero = true;
12801   } else {
12802     MaxBECount = computeMaxBECountForLT(
12803         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12804   }
12805 
12806   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12807       !isa<SCEVCouldNotCompute>(BECount))
12808     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12809 
12810   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12811 }
12812 
12813 ScalarEvolution::ExitLimit
12814 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12815                                      const Loop *L, bool IsSigned,
12816                                      bool ControlsExit, bool AllowPredicates) {
12817   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12818   // We handle only IV > Invariant
12819   if (!isLoopInvariant(RHS, L))
12820     return getCouldNotCompute();
12821 
12822   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12823   if (!IV && AllowPredicates)
12824     // Try to make this an AddRec using runtime tests, in the first X
12825     // iterations of this loop, where X is the SCEV expression found by the
12826     // algorithm below.
12827     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12828 
12829   // Avoid weird loops
12830   if (!IV || IV->getLoop() != L || !IV->isAffine())
12831     return getCouldNotCompute();
12832 
12833   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12834   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12835   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12836 
12837   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12838 
12839   // Avoid negative or zero stride values
12840   if (!isKnownPositive(Stride))
12841     return getCouldNotCompute();
12842 
12843   // Avoid proven overflow cases: this will ensure that the backedge taken count
12844   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12845   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12846   // behaviors like the case of C language.
12847   if (!Stride->isOne() && !NoWrap)
12848     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12849       return getCouldNotCompute();
12850 
12851   const SCEV *Start = IV->getStart();
12852   const SCEV *End = RHS;
12853   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12854     // If we know that Start >= RHS in the context of loop, then we know that
12855     // min(RHS, Start) = RHS at this point.
12856     if (isLoopEntryGuardedByCond(
12857             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12858       End = RHS;
12859     else
12860       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12861   }
12862 
12863   if (Start->getType()->isPointerTy()) {
12864     Start = getLosslessPtrToIntExpr(Start);
12865     if (isa<SCEVCouldNotCompute>(Start))
12866       return Start;
12867   }
12868   if (End->getType()->isPointerTy()) {
12869     End = getLosslessPtrToIntExpr(End);
12870     if (isa<SCEVCouldNotCompute>(End))
12871       return End;
12872   }
12873 
12874   // Compute ((Start - End) + (Stride - 1)) / Stride.
12875   // FIXME: This can overflow. Holding off on fixing this for now;
12876   // howManyGreaterThans will hopefully be gone soon.
12877   const SCEV *One = getOne(Stride->getType());
12878   const SCEV *BECount = getUDivExpr(
12879       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12880 
12881   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12882                             : getUnsignedRangeMax(Start);
12883 
12884   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12885                              : getUnsignedRangeMin(Stride);
12886 
12887   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12888   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12889                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12890 
12891   // Although End can be a MIN expression we estimate MinEnd considering only
12892   // the case End = RHS. This is safe because in the other case (Start - End)
12893   // is zero, leading to a zero maximum backedge taken count.
12894   APInt MinEnd =
12895     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12896              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12897 
12898   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12899                                ? BECount
12900                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12901                                                  getConstant(MinStride));
12902 
12903   if (isa<SCEVCouldNotCompute>(MaxBECount))
12904     MaxBECount = BECount;
12905 
12906   return ExitLimit(BECount, MaxBECount, false, Predicates);
12907 }
12908 
12909 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12910                                                     ScalarEvolution &SE) const {
12911   if (Range.isFullSet())  // Infinite loop.
12912     return SE.getCouldNotCompute();
12913 
12914   // If the start is a non-zero constant, shift the range to simplify things.
12915   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12916     if (!SC->getValue()->isZero()) {
12917       SmallVector<const SCEV *, 4> Operands(operands());
12918       Operands[0] = SE.getZero(SC->getType());
12919       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12920                                              getNoWrapFlags(FlagNW));
12921       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12922         return ShiftedAddRec->getNumIterationsInRange(
12923             Range.subtract(SC->getAPInt()), SE);
12924       // This is strange and shouldn't happen.
12925       return SE.getCouldNotCompute();
12926     }
12927 
12928   // The only time we can solve this is when we have all constant indices.
12929   // Otherwise, we cannot determine the overflow conditions.
12930   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12931     return SE.getCouldNotCompute();
12932 
12933   // Okay at this point we know that all elements of the chrec are constants and
12934   // that the start element is zero.
12935 
12936   // First check to see if the range contains zero.  If not, the first
12937   // iteration exits.
12938   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12939   if (!Range.contains(APInt(BitWidth, 0)))
12940     return SE.getZero(getType());
12941 
12942   if (isAffine()) {
12943     // If this is an affine expression then we have this situation:
12944     //   Solve {0,+,A} in Range  ===  Ax in Range
12945 
12946     // We know that zero is in the range.  If A is positive then we know that
12947     // the upper value of the range must be the first possible exit value.
12948     // If A is negative then the lower of the range is the last possible loop
12949     // value.  Also note that we already checked for a full range.
12950     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12951     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12952 
12953     // The exit value should be (End+A)/A.
12954     APInt ExitVal = (End + A).udiv(A);
12955     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12956 
12957     // Evaluate at the exit value.  If we really did fall out of the valid
12958     // range, then we computed our trip count, otherwise wrap around or other
12959     // things must have happened.
12960     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12961     if (Range.contains(Val->getValue()))
12962       return SE.getCouldNotCompute();  // Something strange happened
12963 
12964     // Ensure that the previous value is in the range.
12965     assert(Range.contains(
12966            EvaluateConstantChrecAtConstant(this,
12967            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12968            "Linear scev computation is off in a bad way!");
12969     return SE.getConstant(ExitValue);
12970   }
12971 
12972   if (isQuadratic()) {
12973     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12974       return SE.getConstant(*S);
12975   }
12976 
12977   return SE.getCouldNotCompute();
12978 }
12979 
12980 const SCEVAddRecExpr *
12981 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12982   assert(getNumOperands() > 1 && "AddRec with zero step?");
12983   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12984   // but in this case we cannot guarantee that the value returned will be an
12985   // AddRec because SCEV does not have a fixed point where it stops
12986   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12987   // may happen if we reach arithmetic depth limit while simplifying. So we
12988   // construct the returned value explicitly.
12989   SmallVector<const SCEV *, 3> Ops;
12990   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12991   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12992   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12993     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12994   // We know that the last operand is not a constant zero (otherwise it would
12995   // have been popped out earlier). This guarantees us that if the result has
12996   // the same last operand, then it will also not be popped out, meaning that
12997   // the returned value will be an AddRec.
12998   const SCEV *Last = getOperand(getNumOperands() - 1);
12999   assert(!Last->isZero() && "Recurrency with zero step?");
13000   Ops.push_back(Last);
13001   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13002                                                SCEV::FlagAnyWrap));
13003 }
13004 
13005 // Return true when S contains at least an undef value.
13006 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13007   return SCEVExprContains(S, [](const SCEV *S) {
13008     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13009       return isa<UndefValue>(SU->getValue());
13010     return false;
13011   });
13012 }
13013 
13014 // Return true when S contains a value that is a nullptr.
13015 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13016   return SCEVExprContains(S, [](const SCEV *S) {
13017     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13018       return SU->getValue() == nullptr;
13019     return false;
13020   });
13021 }
13022 
13023 /// Return the size of an element read or written by Inst.
13024 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13025   Type *Ty;
13026   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13027     Ty = Store->getValueOperand()->getType();
13028   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13029     Ty = Load->getType();
13030   else
13031     return nullptr;
13032 
13033   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13034   return getSizeOfExpr(ETy, Ty);
13035 }
13036 
13037 //===----------------------------------------------------------------------===//
13038 //                   SCEVCallbackVH Class Implementation
13039 //===----------------------------------------------------------------------===//
13040 
13041 void ScalarEvolution::SCEVCallbackVH::deleted() {
13042   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13043   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13044     SE->ConstantEvolutionLoopExitValue.erase(PN);
13045   SE->eraseValueFromMap(getValPtr());
13046   // this now dangles!
13047 }
13048 
13049 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13050   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13051 
13052   // Forget all the expressions associated with users of the old value,
13053   // so that future queries will recompute the expressions using the new
13054   // value.
13055   Value *Old = getValPtr();
13056   SmallVector<User *, 16> Worklist(Old->users());
13057   SmallPtrSet<User *, 8> Visited;
13058   while (!Worklist.empty()) {
13059     User *U = Worklist.pop_back_val();
13060     // Deleting the Old value will cause this to dangle. Postpone
13061     // that until everything else is done.
13062     if (U == Old)
13063       continue;
13064     if (!Visited.insert(U).second)
13065       continue;
13066     if (PHINode *PN = dyn_cast<PHINode>(U))
13067       SE->ConstantEvolutionLoopExitValue.erase(PN);
13068     SE->eraseValueFromMap(U);
13069     llvm::append_range(Worklist, U->users());
13070   }
13071   // Delete the Old value.
13072   if (PHINode *PN = dyn_cast<PHINode>(Old))
13073     SE->ConstantEvolutionLoopExitValue.erase(PN);
13074   SE->eraseValueFromMap(Old);
13075   // this now dangles!
13076 }
13077 
13078 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13079   : CallbackVH(V), SE(se) {}
13080 
13081 //===----------------------------------------------------------------------===//
13082 //                   ScalarEvolution Class Implementation
13083 //===----------------------------------------------------------------------===//
13084 
13085 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13086                                  AssumptionCache &AC, DominatorTree &DT,
13087                                  LoopInfo &LI)
13088     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13089       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13090       LoopDispositions(64), BlockDispositions(64) {
13091   // To use guards for proving predicates, we need to scan every instruction in
13092   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13093   // time if the IR does not actually contain any calls to
13094   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13095   //
13096   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13097   // to _add_ guards to the module when there weren't any before, and wants
13098   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13099   // efficient in lieu of being smart in that rather obscure case.
13100 
13101   auto *GuardDecl = F.getParent()->getFunction(
13102       Intrinsic::getName(Intrinsic::experimental_guard));
13103   HasGuards = GuardDecl && !GuardDecl->use_empty();
13104 }
13105 
13106 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13107     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
13108       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13109       ValueExprMap(std::move(Arg.ValueExprMap)),
13110       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13111       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13112       PendingMerges(std::move(Arg.PendingMerges)),
13113       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
13114       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13115       PredicatedBackedgeTakenCounts(
13116           std::move(Arg.PredicatedBackedgeTakenCounts)),
13117       BECountUsers(std::move(Arg.BECountUsers)),
13118       ConstantEvolutionLoopExitValue(
13119           std::move(Arg.ConstantEvolutionLoopExitValue)),
13120       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13121       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13122       LoopDispositions(std::move(Arg.LoopDispositions)),
13123       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13124       BlockDispositions(std::move(Arg.BlockDispositions)),
13125       SCEVUsers(std::move(Arg.SCEVUsers)),
13126       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13127       SignedRanges(std::move(Arg.SignedRanges)),
13128       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13129       UniquePreds(std::move(Arg.UniquePreds)),
13130       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13131       LoopUsers(std::move(Arg.LoopUsers)),
13132       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13133       FirstUnknown(Arg.FirstUnknown) {
13134   Arg.FirstUnknown = nullptr;
13135 }
13136 
13137 ScalarEvolution::~ScalarEvolution() {
13138   // Iterate through all the SCEVUnknown instances and call their
13139   // destructors, so that they release their references to their values.
13140   for (SCEVUnknown *U = FirstUnknown; U;) {
13141     SCEVUnknown *Tmp = U;
13142     U = U->Next;
13143     Tmp->~SCEVUnknown();
13144   }
13145   FirstUnknown = nullptr;
13146 
13147   ExprValueMap.clear();
13148   ValueExprMap.clear();
13149   HasRecMap.clear();
13150   BackedgeTakenCounts.clear();
13151   PredicatedBackedgeTakenCounts.clear();
13152 
13153   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13154   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13155   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13156   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13157   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13158 }
13159 
13160 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13161   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13162 }
13163 
13164 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13165                           const Loop *L) {
13166   // Print all inner loops first
13167   for (Loop *I : *L)
13168     PrintLoopInfo(OS, SE, I);
13169 
13170   OS << "Loop ";
13171   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13172   OS << ": ";
13173 
13174   SmallVector<BasicBlock *, 8> ExitingBlocks;
13175   L->getExitingBlocks(ExitingBlocks);
13176   if (ExitingBlocks.size() != 1)
13177     OS << "<multiple exits> ";
13178 
13179   if (SE->hasLoopInvariantBackedgeTakenCount(L))
13180     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13181   else
13182     OS << "Unpredictable backedge-taken count.\n";
13183 
13184   if (ExitingBlocks.size() > 1)
13185     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13186       OS << "  exit count for " << ExitingBlock->getName() << ": "
13187          << *SE->getExitCount(L, ExitingBlock) << "\n";
13188     }
13189 
13190   OS << "Loop ";
13191   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13192   OS << ": ";
13193 
13194   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
13195     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
13196     if (SE->isBackedgeTakenCountMaxOrZero(L))
13197       OS << ", actual taken count either this or zero.";
13198   } else {
13199     OS << "Unpredictable max backedge-taken count. ";
13200   }
13201 
13202   OS << "\n"
13203         "Loop ";
13204   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13205   OS << ": ";
13206 
13207   SmallVector<const SCEVPredicate *, 4> Preds;
13208   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13209   if (!isa<SCEVCouldNotCompute>(PBT)) {
13210     OS << "Predicated backedge-taken count is " << *PBT << "\n";
13211     OS << " Predicates:\n";
13212     for (const auto *P : Preds)
13213       P->print(OS, 4);
13214   } else {
13215     OS << "Unpredictable predicated backedge-taken count. ";
13216   }
13217   OS << "\n";
13218 
13219   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13220     OS << "Loop ";
13221     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13222     OS << ": ";
13223     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13224   }
13225 }
13226 
13227 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
13228   switch (LD) {
13229   case ScalarEvolution::LoopVariant:
13230     return "Variant";
13231   case ScalarEvolution::LoopInvariant:
13232     return "Invariant";
13233   case ScalarEvolution::LoopComputable:
13234     return "Computable";
13235   }
13236   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
13237 }
13238 
13239 void ScalarEvolution::print(raw_ostream &OS) const {
13240   // ScalarEvolution's implementation of the print method is to print
13241   // out SCEV values of all instructions that are interesting. Doing
13242   // this potentially causes it to create new SCEV objects though,
13243   // which technically conflicts with the const qualifier. This isn't
13244   // observable from outside the class though, so casting away the
13245   // const isn't dangerous.
13246   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13247 
13248   if (ClassifyExpressions) {
13249     OS << "Classifying expressions for: ";
13250     F.printAsOperand(OS, /*PrintType=*/false);
13251     OS << "\n";
13252     for (Instruction &I : instructions(F))
13253       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13254         OS << I << '\n';
13255         OS << "  -->  ";
13256         const SCEV *SV = SE.getSCEV(&I);
13257         SV->print(OS);
13258         if (!isa<SCEVCouldNotCompute>(SV)) {
13259           OS << " U: ";
13260           SE.getUnsignedRange(SV).print(OS);
13261           OS << " S: ";
13262           SE.getSignedRange(SV).print(OS);
13263         }
13264 
13265         const Loop *L = LI.getLoopFor(I.getParent());
13266 
13267         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13268         if (AtUse != SV) {
13269           OS << "  -->  ";
13270           AtUse->print(OS);
13271           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13272             OS << " U: ";
13273             SE.getUnsignedRange(AtUse).print(OS);
13274             OS << " S: ";
13275             SE.getSignedRange(AtUse).print(OS);
13276           }
13277         }
13278 
13279         if (L) {
13280           OS << "\t\t" "Exits: ";
13281           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13282           if (!SE.isLoopInvariant(ExitValue, L)) {
13283             OS << "<<Unknown>>";
13284           } else {
13285             OS << *ExitValue;
13286           }
13287 
13288           bool First = true;
13289           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13290             if (First) {
13291               OS << "\t\t" "LoopDispositions: { ";
13292               First = false;
13293             } else {
13294               OS << ", ";
13295             }
13296 
13297             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13298             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
13299           }
13300 
13301           for (const auto *InnerL : depth_first(L)) {
13302             if (InnerL == L)
13303               continue;
13304             if (First) {
13305               OS << "\t\t" "LoopDispositions: { ";
13306               First = false;
13307             } else {
13308               OS << ", ";
13309             }
13310 
13311             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13312             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
13313           }
13314 
13315           OS << " }";
13316         }
13317 
13318         OS << "\n";
13319       }
13320   }
13321 
13322   OS << "Determining loop execution counts for: ";
13323   F.printAsOperand(OS, /*PrintType=*/false);
13324   OS << "\n";
13325   for (Loop *I : LI)
13326     PrintLoopInfo(OS, &SE, I);
13327 }
13328 
13329 ScalarEvolution::LoopDisposition
13330 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13331   auto &Values = LoopDispositions[S];
13332   for (auto &V : Values) {
13333     if (V.getPointer() == L)
13334       return V.getInt();
13335   }
13336   Values.emplace_back(L, LoopVariant);
13337   LoopDisposition D = computeLoopDisposition(S, L);
13338   auto &Values2 = LoopDispositions[S];
13339   for (auto &V : llvm::reverse(Values2)) {
13340     if (V.getPointer() == L) {
13341       V.setInt(D);
13342       break;
13343     }
13344   }
13345   return D;
13346 }
13347 
13348 ScalarEvolution::LoopDisposition
13349 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13350   switch (S->getSCEVType()) {
13351   case scConstant:
13352     return LoopInvariant;
13353   case scPtrToInt:
13354   case scTruncate:
13355   case scZeroExtend:
13356   case scSignExtend:
13357     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
13358   case scAddRecExpr: {
13359     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13360 
13361     // If L is the addrec's loop, it's computable.
13362     if (AR->getLoop() == L)
13363       return LoopComputable;
13364 
13365     // Add recurrences are never invariant in the function-body (null loop).
13366     if (!L)
13367       return LoopVariant;
13368 
13369     // Everything that is not defined at loop entry is variant.
13370     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13371       return LoopVariant;
13372     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13373            " dominate the contained loop's header?");
13374 
13375     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13376     if (AR->getLoop()->contains(L))
13377       return LoopInvariant;
13378 
13379     // This recurrence is variant w.r.t. L if any of its operands
13380     // are variant.
13381     for (const auto *Op : AR->operands())
13382       if (!isLoopInvariant(Op, L))
13383         return LoopVariant;
13384 
13385     // Otherwise it's loop-invariant.
13386     return LoopInvariant;
13387   }
13388   case scAddExpr:
13389   case scMulExpr:
13390   case scUMaxExpr:
13391   case scSMaxExpr:
13392   case scUMinExpr:
13393   case scSMinExpr:
13394   case scSequentialUMinExpr: {
13395     bool HasVarying = false;
13396     for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13397       LoopDisposition D = getLoopDisposition(Op, L);
13398       if (D == LoopVariant)
13399         return LoopVariant;
13400       if (D == LoopComputable)
13401         HasVarying = true;
13402     }
13403     return HasVarying ? LoopComputable : LoopInvariant;
13404   }
13405   case scUDivExpr: {
13406     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13407     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13408     if (LD == LoopVariant)
13409       return LoopVariant;
13410     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13411     if (RD == LoopVariant)
13412       return LoopVariant;
13413     return (LD == LoopInvariant && RD == LoopInvariant) ?
13414            LoopInvariant : LoopComputable;
13415   }
13416   case scUnknown:
13417     // All non-instruction values are loop invariant.  All instructions are loop
13418     // invariant if they are not contained in the specified loop.
13419     // Instructions are never considered invariant in the function body
13420     // (null loop) because they are defined within the "loop".
13421     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13422       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13423     return LoopInvariant;
13424   case scCouldNotCompute:
13425     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13426   }
13427   llvm_unreachable("Unknown SCEV kind!");
13428 }
13429 
13430 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13431   return getLoopDisposition(S, L) == LoopInvariant;
13432 }
13433 
13434 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13435   return getLoopDisposition(S, L) == LoopComputable;
13436 }
13437 
13438 ScalarEvolution::BlockDisposition
13439 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13440   auto &Values = BlockDispositions[S];
13441   for (auto &V : Values) {
13442     if (V.getPointer() == BB)
13443       return V.getInt();
13444   }
13445   Values.emplace_back(BB, DoesNotDominateBlock);
13446   BlockDisposition D = computeBlockDisposition(S, BB);
13447   auto &Values2 = BlockDispositions[S];
13448   for (auto &V : llvm::reverse(Values2)) {
13449     if (V.getPointer() == BB) {
13450       V.setInt(D);
13451       break;
13452     }
13453   }
13454   return D;
13455 }
13456 
13457 ScalarEvolution::BlockDisposition
13458 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13459   switch (S->getSCEVType()) {
13460   case scConstant:
13461     return ProperlyDominatesBlock;
13462   case scPtrToInt:
13463   case scTruncate:
13464   case scZeroExtend:
13465   case scSignExtend:
13466     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13467   case scAddRecExpr: {
13468     // This uses a "dominates" query instead of "properly dominates" query
13469     // to test for proper dominance too, because the instruction which
13470     // produces the addrec's value is a PHI, and a PHI effectively properly
13471     // dominates its entire containing block.
13472     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13473     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13474       return DoesNotDominateBlock;
13475 
13476     // Fall through into SCEVNAryExpr handling.
13477     LLVM_FALLTHROUGH;
13478   }
13479   case scAddExpr:
13480   case scMulExpr:
13481   case scUMaxExpr:
13482   case scSMaxExpr:
13483   case scUMinExpr:
13484   case scSMinExpr:
13485   case scSequentialUMinExpr: {
13486     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13487     bool Proper = true;
13488     for (const SCEV *NAryOp : NAry->operands()) {
13489       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13490       if (D == DoesNotDominateBlock)
13491         return DoesNotDominateBlock;
13492       if (D == DominatesBlock)
13493         Proper = false;
13494     }
13495     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13496   }
13497   case scUDivExpr: {
13498     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13499     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13500     BlockDisposition LD = getBlockDisposition(LHS, BB);
13501     if (LD == DoesNotDominateBlock)
13502       return DoesNotDominateBlock;
13503     BlockDisposition RD = getBlockDisposition(RHS, BB);
13504     if (RD == DoesNotDominateBlock)
13505       return DoesNotDominateBlock;
13506     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13507       ProperlyDominatesBlock : DominatesBlock;
13508   }
13509   case scUnknown:
13510     if (Instruction *I =
13511           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13512       if (I->getParent() == BB)
13513         return DominatesBlock;
13514       if (DT.properlyDominates(I->getParent(), BB))
13515         return ProperlyDominatesBlock;
13516       return DoesNotDominateBlock;
13517     }
13518     return ProperlyDominatesBlock;
13519   case scCouldNotCompute:
13520     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13521   }
13522   llvm_unreachable("Unknown SCEV kind!");
13523 }
13524 
13525 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13526   return getBlockDisposition(S, BB) >= DominatesBlock;
13527 }
13528 
13529 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13530   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13531 }
13532 
13533 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13534   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13535 }
13536 
13537 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13538                                                 bool Predicated) {
13539   auto &BECounts =
13540       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13541   auto It = BECounts.find(L);
13542   if (It != BECounts.end()) {
13543     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13544       if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13545         auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13546         assert(UserIt != BECountUsers.end());
13547         UserIt->second.erase({L, Predicated});
13548       }
13549     }
13550     BECounts.erase(It);
13551   }
13552 }
13553 
13554 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13555   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13556   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13557 
13558   while (!Worklist.empty()) {
13559     const SCEV *Curr = Worklist.pop_back_val();
13560     auto Users = SCEVUsers.find(Curr);
13561     if (Users != SCEVUsers.end())
13562       for (const auto *User : Users->second)
13563         if (ToForget.insert(User).second)
13564           Worklist.push_back(User);
13565   }
13566 
13567   for (const auto *S : ToForget)
13568     forgetMemoizedResultsImpl(S);
13569 
13570   for (auto I = PredicatedSCEVRewrites.begin();
13571        I != PredicatedSCEVRewrites.end();) {
13572     std::pair<const SCEV *, const Loop *> Entry = I->first;
13573     if (ToForget.count(Entry.first))
13574       PredicatedSCEVRewrites.erase(I++);
13575     else
13576       ++I;
13577   }
13578 }
13579 
13580 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13581   LoopDispositions.erase(S);
13582   BlockDispositions.erase(S);
13583   UnsignedRanges.erase(S);
13584   SignedRanges.erase(S);
13585   HasRecMap.erase(S);
13586   MinTrailingZerosCache.erase(S);
13587 
13588   auto ExprIt = ExprValueMap.find(S);
13589   if (ExprIt != ExprValueMap.end()) {
13590     for (Value *V : ExprIt->second) {
13591       auto ValueIt = ValueExprMap.find_as(V);
13592       if (ValueIt != ValueExprMap.end())
13593         ValueExprMap.erase(ValueIt);
13594     }
13595     ExprValueMap.erase(ExprIt);
13596   }
13597 
13598   auto ScopeIt = ValuesAtScopes.find(S);
13599   if (ScopeIt != ValuesAtScopes.end()) {
13600     for (const auto &Pair : ScopeIt->second)
13601       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13602         erase_value(ValuesAtScopesUsers[Pair.second],
13603                     std::make_pair(Pair.first, S));
13604     ValuesAtScopes.erase(ScopeIt);
13605   }
13606 
13607   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13608   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13609     for (const auto &Pair : ScopeUserIt->second)
13610       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13611     ValuesAtScopesUsers.erase(ScopeUserIt);
13612   }
13613 
13614   auto BEUsersIt = BECountUsers.find(S);
13615   if (BEUsersIt != BECountUsers.end()) {
13616     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13617     auto Copy = BEUsersIt->second;
13618     for (const auto &Pair : Copy)
13619       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13620     BECountUsers.erase(BEUsersIt);
13621   }
13622 }
13623 
13624 void
13625 ScalarEvolution::getUsedLoops(const SCEV *S,
13626                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13627   struct FindUsedLoops {
13628     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13629         : LoopsUsed(LoopsUsed) {}
13630     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13631     bool follow(const SCEV *S) {
13632       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13633         LoopsUsed.insert(AR->getLoop());
13634       return true;
13635     }
13636 
13637     bool isDone() const { return false; }
13638   };
13639 
13640   FindUsedLoops F(LoopsUsed);
13641   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13642 }
13643 
13644 void ScalarEvolution::getReachableBlocks(
13645     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13646   SmallVector<BasicBlock *> Worklist;
13647   Worklist.push_back(&F.getEntryBlock());
13648   while (!Worklist.empty()) {
13649     BasicBlock *BB = Worklist.pop_back_val();
13650     if (!Reachable.insert(BB).second)
13651       continue;
13652 
13653     Value *Cond;
13654     BasicBlock *TrueBB, *FalseBB;
13655     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
13656                                         m_BasicBlock(FalseBB)))) {
13657       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
13658         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
13659         continue;
13660       }
13661 
13662       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13663         const SCEV *L = getSCEV(Cmp->getOperand(0));
13664         const SCEV *R = getSCEV(Cmp->getOperand(1));
13665         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
13666           Worklist.push_back(TrueBB);
13667           continue;
13668         }
13669         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
13670                                               R)) {
13671           Worklist.push_back(FalseBB);
13672           continue;
13673         }
13674       }
13675     }
13676 
13677     append_range(Worklist, successors(BB));
13678   }
13679 }
13680 
13681 void ScalarEvolution::verify() const {
13682   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13683   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13684 
13685   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13686 
13687   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13688   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13689     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13690 
13691     const SCEV *visitConstant(const SCEVConstant *Constant) {
13692       return SE.getConstant(Constant->getAPInt());
13693     }
13694 
13695     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13696       return SE.getUnknown(Expr->getValue());
13697     }
13698 
13699     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13700       return SE.getCouldNotCompute();
13701     }
13702   };
13703 
13704   SCEVMapper SCM(SE2);
13705   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
13706   SE2.getReachableBlocks(ReachableBlocks, F);
13707 
13708   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
13709     if (containsUndefs(Old) || containsUndefs(New)) {
13710       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13711       // not propagate undef aggressively).  This means we can (and do) fail
13712       // verification in cases where a transform makes a value go from "undef"
13713       // to "undef+1" (say).  The transform is fine, since in both cases the
13714       // result is "undef", but SCEV thinks the value increased by 1.
13715       return nullptr;
13716     }
13717 
13718     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13719     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
13720     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
13721       return nullptr;
13722 
13723     return Delta;
13724   };
13725 
13726   while (!LoopStack.empty()) {
13727     auto *L = LoopStack.pop_back_val();
13728     llvm::append_range(LoopStack, *L);
13729 
13730     // Only verify BECounts in reachable loops. For an unreachable loop,
13731     // any BECount is legal.
13732     if (!ReachableBlocks.contains(L->getHeader()))
13733       continue;
13734 
13735     // Only verify cached BECounts. Computing new BECounts may change the
13736     // results of subsequent SCEV uses.
13737     auto It = BackedgeTakenCounts.find(L);
13738     if (It == BackedgeTakenCounts.end())
13739       continue;
13740 
13741     auto *CurBECount =
13742         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
13743     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13744 
13745     if (CurBECount == SE2.getCouldNotCompute() ||
13746         NewBECount == SE2.getCouldNotCompute()) {
13747       // NB! This situation is legal, but is very suspicious -- whatever pass
13748       // change the loop to make a trip count go from could not compute to
13749       // computable or vice-versa *should have* invalidated SCEV.  However, we
13750       // choose not to assert here (for now) since we don't want false
13751       // positives.
13752       continue;
13753     }
13754 
13755     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13756         SE.getTypeSizeInBits(NewBECount->getType()))
13757       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13758     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13759              SE.getTypeSizeInBits(NewBECount->getType()))
13760       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13761 
13762     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
13763     if (Delta && !Delta->isZero()) {
13764       dbgs() << "Trip Count for " << *L << " Changed!\n";
13765       dbgs() << "Old: " << *CurBECount << "\n";
13766       dbgs() << "New: " << *NewBECount << "\n";
13767       dbgs() << "Delta: " << *Delta << "\n";
13768       std::abort();
13769     }
13770   }
13771 
13772   // Collect all valid loops currently in LoopInfo.
13773   SmallPtrSet<Loop *, 32> ValidLoops;
13774   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13775   while (!Worklist.empty()) {
13776     Loop *L = Worklist.pop_back_val();
13777     if (ValidLoops.insert(L).second)
13778       Worklist.append(L->begin(), L->end());
13779   }
13780   for (const auto &KV : ValueExprMap) {
13781 #ifndef NDEBUG
13782     // Check for SCEV expressions referencing invalid/deleted loops.
13783     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13784       assert(ValidLoops.contains(AR->getLoop()) &&
13785              "AddRec references invalid loop");
13786     }
13787 #endif
13788 
13789     // Check that the value is also part of the reverse map.
13790     auto It = ExprValueMap.find(KV.second);
13791     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
13792       dbgs() << "Value " << *KV.first
13793              << " is in ValueExprMap but not in ExprValueMap\n";
13794       std::abort();
13795     }
13796 
13797     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
13798       if (!ReachableBlocks.contains(I->getParent()))
13799         continue;
13800       const SCEV *OldSCEV = SCM.visit(KV.second);
13801       const SCEV *NewSCEV = SE2.getSCEV(I);
13802       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
13803       if (Delta && !Delta->isZero()) {
13804         dbgs() << "SCEV for value " << *I << " changed!\n"
13805                << "Old: " << *OldSCEV << "\n"
13806                << "New: " << *NewSCEV << "\n"
13807                << "Delta: " << *Delta << "\n";
13808         std::abort();
13809       }
13810     }
13811   }
13812 
13813   for (const auto &KV : ExprValueMap) {
13814     for (Value *V : KV.second) {
13815       auto It = ValueExprMap.find_as(V);
13816       if (It == ValueExprMap.end()) {
13817         dbgs() << "Value " << *V
13818                << " is in ExprValueMap but not in ValueExprMap\n";
13819         std::abort();
13820       }
13821       if (It->second != KV.first) {
13822         dbgs() << "Value " << *V << " mapped to " << *It->second
13823                << " rather than " << *KV.first << "\n";
13824         std::abort();
13825       }
13826     }
13827   }
13828 
13829   // Verify integrity of SCEV users.
13830   for (const auto &S : UniqueSCEVs) {
13831     SmallVector<const SCEV *, 4> Ops;
13832     collectUniqueOps(&S, Ops);
13833     for (const auto *Op : Ops) {
13834       // We do not store dependencies of constants.
13835       if (isa<SCEVConstant>(Op))
13836         continue;
13837       auto It = SCEVUsers.find(Op);
13838       if (It != SCEVUsers.end() && It->second.count(&S))
13839         continue;
13840       dbgs() << "Use of operand  " << *Op << " by user " << S
13841              << " is not being tracked!\n";
13842       std::abort();
13843     }
13844   }
13845 
13846   // Verify integrity of ValuesAtScopes users.
13847   for (const auto &ValueAndVec : ValuesAtScopes) {
13848     const SCEV *Value = ValueAndVec.first;
13849     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13850       const Loop *L = LoopAndValueAtScope.first;
13851       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13852       if (!isa<SCEVConstant>(ValueAtScope)) {
13853         auto It = ValuesAtScopesUsers.find(ValueAtScope);
13854         if (It != ValuesAtScopesUsers.end() &&
13855             is_contained(It->second, std::make_pair(L, Value)))
13856           continue;
13857         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13858                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
13859         std::abort();
13860       }
13861     }
13862   }
13863 
13864   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13865     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13866     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13867       const Loop *L = LoopAndValue.first;
13868       const SCEV *Value = LoopAndValue.second;
13869       assert(!isa<SCEVConstant>(Value));
13870       auto It = ValuesAtScopes.find(Value);
13871       if (It != ValuesAtScopes.end() &&
13872           is_contained(It->second, std::make_pair(L, ValueAtScope)))
13873         continue;
13874       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13875              << *ValueAtScope << " missing in ValuesAtScopes\n";
13876       std::abort();
13877     }
13878   }
13879 
13880   // Verify integrity of BECountUsers.
13881   auto VerifyBECountUsers = [&](bool Predicated) {
13882     auto &BECounts =
13883         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13884     for (const auto &LoopAndBEInfo : BECounts) {
13885       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13886         if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13887           auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13888           if (UserIt != BECountUsers.end() &&
13889               UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13890             continue;
13891           dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13892                  << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13893           std::abort();
13894         }
13895       }
13896     }
13897   };
13898   VerifyBECountUsers(/* Predicated */ false);
13899   VerifyBECountUsers(/* Predicated */ true);
13900 }
13901 
13902 bool ScalarEvolution::invalidate(
13903     Function &F, const PreservedAnalyses &PA,
13904     FunctionAnalysisManager::Invalidator &Inv) {
13905   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13906   // of its dependencies is invalidated.
13907   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13908   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13909          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13910          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13911          Inv.invalidate<LoopAnalysis>(F, PA);
13912 }
13913 
13914 AnalysisKey ScalarEvolutionAnalysis::Key;
13915 
13916 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13917                                              FunctionAnalysisManager &AM) {
13918   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13919                          AM.getResult<AssumptionAnalysis>(F),
13920                          AM.getResult<DominatorTreeAnalysis>(F),
13921                          AM.getResult<LoopAnalysis>(F));
13922 }
13923 
13924 PreservedAnalyses
13925 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13926   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13927   return PreservedAnalyses::all();
13928 }
13929 
13930 PreservedAnalyses
13931 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13932   // For compatibility with opt's -analyze feature under legacy pass manager
13933   // which was not ported to NPM. This keeps tests using
13934   // update_analyze_test_checks.py working.
13935   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13936      << F.getName() << "':\n";
13937   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13938   return PreservedAnalyses::all();
13939 }
13940 
13941 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13942                       "Scalar Evolution Analysis", false, true)
13943 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13944 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13945 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13946 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13947 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13948                     "Scalar Evolution Analysis", false, true)
13949 
13950 char ScalarEvolutionWrapperPass::ID = 0;
13951 
13952 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13953   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13954 }
13955 
13956 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13957   SE.reset(new ScalarEvolution(
13958       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13959       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13960       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13961       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13962   return false;
13963 }
13964 
13965 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13966 
13967 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13968   SE->print(OS);
13969 }
13970 
13971 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13972   if (!VerifySCEV)
13973     return;
13974 
13975   SE->verify();
13976 }
13977 
13978 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13979   AU.setPreservesAll();
13980   AU.addRequiredTransitive<AssumptionCacheTracker>();
13981   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13982   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13983   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13984 }
13985 
13986 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13987                                                         const SCEV *RHS) {
13988   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
13989 }
13990 
13991 const SCEVPredicate *
13992 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
13993                                      const SCEV *LHS, const SCEV *RHS) {
13994   FoldingSetNodeID ID;
13995   assert(LHS->getType() == RHS->getType() &&
13996          "Type mismatch between LHS and RHS");
13997   // Unique this node based on the arguments
13998   ID.AddInteger(SCEVPredicate::P_Compare);
13999   ID.AddInteger(Pred);
14000   ID.AddPointer(LHS);
14001   ID.AddPointer(RHS);
14002   void *IP = nullptr;
14003   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14004     return S;
14005   SCEVComparePredicate *Eq = new (SCEVAllocator)
14006     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14007   UniquePreds.InsertNode(Eq, IP);
14008   return Eq;
14009 }
14010 
14011 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14012     const SCEVAddRecExpr *AR,
14013     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14014   FoldingSetNodeID ID;
14015   // Unique this node based on the arguments
14016   ID.AddInteger(SCEVPredicate::P_Wrap);
14017   ID.AddPointer(AR);
14018   ID.AddInteger(AddedFlags);
14019   void *IP = nullptr;
14020   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14021     return S;
14022   auto *OF = new (SCEVAllocator)
14023       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14024   UniquePreds.InsertNode(OF, IP);
14025   return OF;
14026 }
14027 
14028 namespace {
14029 
14030 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14031 public:
14032 
14033   /// Rewrites \p S in the context of a loop L and the SCEV predication
14034   /// infrastructure.
14035   ///
14036   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14037   /// equivalences present in \p Pred.
14038   ///
14039   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14040   /// \p NewPreds such that the result will be an AddRecExpr.
14041   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14042                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14043                              const SCEVPredicate *Pred) {
14044     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14045     return Rewriter.visit(S);
14046   }
14047 
14048   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14049     if (Pred) {
14050       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14051         for (const auto *Pred : U->getPredicates())
14052           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14053             if (IPred->getLHS() == Expr &&
14054                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14055               return IPred->getRHS();
14056       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14057         if (IPred->getLHS() == Expr &&
14058             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14059           return IPred->getRHS();
14060       }
14061     }
14062     return convertToAddRecWithPreds(Expr);
14063   }
14064 
14065   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14066     const SCEV *Operand = visit(Expr->getOperand());
14067     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14068     if (AR && AR->getLoop() == L && AR->isAffine()) {
14069       // This couldn't be folded because the operand didn't have the nuw
14070       // flag. Add the nusw flag as an assumption that we could make.
14071       const SCEV *Step = AR->getStepRecurrence(SE);
14072       Type *Ty = Expr->getType();
14073       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14074         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14075                                 SE.getSignExtendExpr(Step, Ty), L,
14076                                 AR->getNoWrapFlags());
14077     }
14078     return SE.getZeroExtendExpr(Operand, Expr->getType());
14079   }
14080 
14081   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14082     const SCEV *Operand = visit(Expr->getOperand());
14083     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14084     if (AR && AR->getLoop() == L && AR->isAffine()) {
14085       // This couldn't be folded because the operand didn't have the nsw
14086       // flag. Add the nssw flag as an assumption that we could make.
14087       const SCEV *Step = AR->getStepRecurrence(SE);
14088       Type *Ty = Expr->getType();
14089       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14090         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14091                                 SE.getSignExtendExpr(Step, Ty), L,
14092                                 AR->getNoWrapFlags());
14093     }
14094     return SE.getSignExtendExpr(Operand, Expr->getType());
14095   }
14096 
14097 private:
14098   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14099                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14100                         const SCEVPredicate *Pred)
14101       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14102 
14103   bool addOverflowAssumption(const SCEVPredicate *P) {
14104     if (!NewPreds) {
14105       // Check if we've already made this assumption.
14106       return Pred && Pred->implies(P);
14107     }
14108     NewPreds->insert(P);
14109     return true;
14110   }
14111 
14112   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14113                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14114     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14115     return addOverflowAssumption(A);
14116   }
14117 
14118   // If \p Expr represents a PHINode, we try to see if it can be represented
14119   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14120   // to add this predicate as a runtime overflow check, we return the AddRec.
14121   // If \p Expr does not meet these conditions (is not a PHI node, or we
14122   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14123   // return \p Expr.
14124   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14125     if (!isa<PHINode>(Expr->getValue()))
14126       return Expr;
14127     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14128     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14129     if (!PredicatedRewrite)
14130       return Expr;
14131     for (const auto *P : PredicatedRewrite->second){
14132       // Wrap predicates from outer loops are not supported.
14133       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14134         if (L != WP->getExpr()->getLoop())
14135           return Expr;
14136       }
14137       if (!addOverflowAssumption(P))
14138         return Expr;
14139     }
14140     return PredicatedRewrite->first;
14141   }
14142 
14143   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14144   const SCEVPredicate *Pred;
14145   const Loop *L;
14146 };
14147 
14148 } // end anonymous namespace
14149 
14150 const SCEV *
14151 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14152                                        const SCEVPredicate &Preds) {
14153   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14154 }
14155 
14156 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14157     const SCEV *S, const Loop *L,
14158     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14159   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14160   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14161   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14162 
14163   if (!AddRec)
14164     return nullptr;
14165 
14166   // Since the transformation was successful, we can now transfer the SCEV
14167   // predicates.
14168   for (const auto *P : TransformPreds)
14169     Preds.insert(P);
14170 
14171   return AddRec;
14172 }
14173 
14174 /// SCEV predicates
14175 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14176                              SCEVPredicateKind Kind)
14177     : FastID(ID), Kind(Kind) {}
14178 
14179 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14180                                    const ICmpInst::Predicate Pred,
14181                                    const SCEV *LHS, const SCEV *RHS)
14182   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14183   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14184   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14185 }
14186 
14187 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14188   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14189 
14190   if (!Op)
14191     return false;
14192 
14193   if (Pred != ICmpInst::ICMP_EQ)
14194     return false;
14195 
14196   return Op->LHS == LHS && Op->RHS == RHS;
14197 }
14198 
14199 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14200 
14201 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14202   if (Pred == ICmpInst::ICMP_EQ)
14203     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14204   else
14205     OS.indent(Depth) << "Compare predicate: " << *LHS
14206                      << " " << CmpInst::getPredicateName(Pred) << ") "
14207                      << *RHS << "\n";
14208 
14209 }
14210 
14211 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14212                                      const SCEVAddRecExpr *AR,
14213                                      IncrementWrapFlags Flags)
14214     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14215 
14216 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14217 
14218 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14219   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14220 
14221   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14222 }
14223 
14224 bool SCEVWrapPredicate::isAlwaysTrue() const {
14225   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14226   IncrementWrapFlags IFlags = Flags;
14227 
14228   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14229     IFlags = clearFlags(IFlags, IncrementNSSW);
14230 
14231   return IFlags == IncrementAnyWrap;
14232 }
14233 
14234 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14235   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14236   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14237     OS << "<nusw>";
14238   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14239     OS << "<nssw>";
14240   OS << "\n";
14241 }
14242 
14243 SCEVWrapPredicate::IncrementWrapFlags
14244 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14245                                    ScalarEvolution &SE) {
14246   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14247   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14248 
14249   // We can safely transfer the NSW flag as NSSW.
14250   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14251     ImpliedFlags = IncrementNSSW;
14252 
14253   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14254     // If the increment is positive, the SCEV NUW flag will also imply the
14255     // WrapPredicate NUSW flag.
14256     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14257       if (Step->getValue()->getValue().isNonNegative())
14258         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14259   }
14260 
14261   return ImpliedFlags;
14262 }
14263 
14264 /// Union predicates don't get cached so create a dummy set ID for it.
14265 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14266   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14267   for (const auto *P : Preds)
14268     add(P);
14269 }
14270 
14271 bool SCEVUnionPredicate::isAlwaysTrue() const {
14272   return all_of(Preds,
14273                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14274 }
14275 
14276 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14277   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14278     return all_of(Set->Preds,
14279                   [this](const SCEVPredicate *I) { return this->implies(I); });
14280 
14281   return any_of(Preds,
14282                 [N](const SCEVPredicate *I) { return I->implies(N); });
14283 }
14284 
14285 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14286   for (const auto *Pred : Preds)
14287     Pred->print(OS, Depth);
14288 }
14289 
14290 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14291   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14292     for (const auto *Pred : Set->Preds)
14293       add(Pred);
14294     return;
14295   }
14296 
14297   Preds.push_back(N);
14298 }
14299 
14300 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14301                                                      Loop &L)
14302     : SE(SE), L(L) {
14303   SmallVector<const SCEVPredicate*, 4> Empty;
14304   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14305 }
14306 
14307 void ScalarEvolution::registerUser(const SCEV *User,
14308                                    ArrayRef<const SCEV *> Ops) {
14309   for (const auto *Op : Ops)
14310     // We do not expect that forgetting cached data for SCEVConstants will ever
14311     // open any prospects for sharpening or introduce any correctness issues,
14312     // so we don't bother storing their dependencies.
14313     if (!isa<SCEVConstant>(Op))
14314       SCEVUsers[Op].insert(User);
14315 }
14316 
14317 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14318   const SCEV *Expr = SE.getSCEV(V);
14319   RewriteEntry &Entry = RewriteMap[Expr];
14320 
14321   // If we already have an entry and the version matches, return it.
14322   if (Entry.second && Generation == Entry.first)
14323     return Entry.second;
14324 
14325   // We found an entry but it's stale. Rewrite the stale entry
14326   // according to the current predicate.
14327   if (Entry.second)
14328     Expr = Entry.second;
14329 
14330   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14331   Entry = {Generation, NewSCEV};
14332 
14333   return NewSCEV;
14334 }
14335 
14336 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14337   if (!BackedgeCount) {
14338     SmallVector<const SCEVPredicate *, 4> Preds;
14339     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14340     for (const auto *P : Preds)
14341       addPredicate(*P);
14342   }
14343   return BackedgeCount;
14344 }
14345 
14346 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14347   if (Preds->implies(&Pred))
14348     return;
14349 
14350   auto &OldPreds = Preds->getPredicates();
14351   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14352   NewPreds.push_back(&Pred);
14353   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14354   updateGeneration();
14355 }
14356 
14357 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14358   return *Preds;
14359 }
14360 
14361 void PredicatedScalarEvolution::updateGeneration() {
14362   // If the generation number wrapped recompute everything.
14363   if (++Generation == 0) {
14364     for (auto &II : RewriteMap) {
14365       const SCEV *Rewritten = II.second.second;
14366       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14367     }
14368   }
14369 }
14370 
14371 void PredicatedScalarEvolution::setNoOverflow(
14372     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14373   const SCEV *Expr = getSCEV(V);
14374   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14375 
14376   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14377 
14378   // Clear the statically implied flags.
14379   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14380   addPredicate(*SE.getWrapPredicate(AR, Flags));
14381 
14382   auto II = FlagsMap.insert({V, Flags});
14383   if (!II.second)
14384     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14385 }
14386 
14387 bool PredicatedScalarEvolution::hasNoOverflow(
14388     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14389   const SCEV *Expr = getSCEV(V);
14390   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14391 
14392   Flags = SCEVWrapPredicate::clearFlags(
14393       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14394 
14395   auto II = FlagsMap.find(V);
14396 
14397   if (II != FlagsMap.end())
14398     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14399 
14400   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14401 }
14402 
14403 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14404   const SCEV *Expr = this->getSCEV(V);
14405   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14406   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14407 
14408   if (!New)
14409     return nullptr;
14410 
14411   for (const auto *P : NewPreds)
14412     addPredicate(*P);
14413 
14414   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14415   return New;
14416 }
14417 
14418 PredicatedScalarEvolution::PredicatedScalarEvolution(
14419     const PredicatedScalarEvolution &Init)
14420   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14421     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14422     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14423   for (auto I : Init.FlagsMap)
14424     FlagsMap.insert(I);
14425 }
14426 
14427 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14428   // For each block.
14429   for (auto *BB : L.getBlocks())
14430     for (auto &I : *BB) {
14431       if (!SE.isSCEVable(I.getType()))
14432         continue;
14433 
14434       auto *Expr = SE.getSCEV(&I);
14435       auto II = RewriteMap.find(Expr);
14436 
14437       if (II == RewriteMap.end())
14438         continue;
14439 
14440       // Don't print things that are not interesting.
14441       if (II->second.second == Expr)
14442         continue;
14443 
14444       OS.indent(Depth) << "[PSE]" << I << ":\n";
14445       OS.indent(Depth + 2) << *Expr << "\n";
14446       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14447     }
14448 }
14449 
14450 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14451 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14452 // for URem with constant power-of-2 second operands.
14453 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14454 // 4, A / B becomes X / 8).
14455 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14456                                 const SCEV *&RHS) {
14457   // Try to match 'zext (trunc A to iB) to iY', which is used
14458   // for URem with constant power-of-2 second operands. Make sure the size of
14459   // the operand A matches the size of the whole expressions.
14460   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14461     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14462       LHS = Trunc->getOperand();
14463       // Bail out if the type of the LHS is larger than the type of the
14464       // expression for now.
14465       if (getTypeSizeInBits(LHS->getType()) >
14466           getTypeSizeInBits(Expr->getType()))
14467         return false;
14468       if (LHS->getType() != Expr->getType())
14469         LHS = getZeroExtendExpr(LHS, Expr->getType());
14470       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14471                         << getTypeSizeInBits(Trunc->getType()));
14472       return true;
14473     }
14474   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14475   if (Add == nullptr || Add->getNumOperands() != 2)
14476     return false;
14477 
14478   const SCEV *A = Add->getOperand(1);
14479   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14480 
14481   if (Mul == nullptr)
14482     return false;
14483 
14484   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14485     // (SomeExpr + (-(SomeExpr / B) * B)).
14486     if (Expr == getURemExpr(A, B)) {
14487       LHS = A;
14488       RHS = B;
14489       return true;
14490     }
14491     return false;
14492   };
14493 
14494   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14495   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14496     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14497            MatchURemWithDivisor(Mul->getOperand(2));
14498 
14499   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14500   if (Mul->getNumOperands() == 2)
14501     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14502            MatchURemWithDivisor(Mul->getOperand(0)) ||
14503            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14504            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14505   return false;
14506 }
14507 
14508 const SCEV *
14509 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14510   SmallVector<BasicBlock*, 16> ExitingBlocks;
14511   L->getExitingBlocks(ExitingBlocks);
14512 
14513   // Form an expression for the maximum exit count possible for this loop. We
14514   // merge the max and exact information to approximate a version of
14515   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14516   SmallVector<const SCEV*, 4> ExitCounts;
14517   for (BasicBlock *ExitingBB : ExitingBlocks) {
14518     const SCEV *ExitCount = getExitCount(L, ExitingBB);
14519     if (isa<SCEVCouldNotCompute>(ExitCount))
14520       ExitCount = getExitCount(L, ExitingBB,
14521                                   ScalarEvolution::ConstantMaximum);
14522     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14523       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14524              "We should only have known counts for exiting blocks that "
14525              "dominate latch!");
14526       ExitCounts.push_back(ExitCount);
14527     }
14528   }
14529   if (ExitCounts.empty())
14530     return getCouldNotCompute();
14531   return getUMinFromMismatchedTypes(ExitCounts);
14532 }
14533 
14534 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14535 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14536 /// replacement is loop invariant in the loop of the AddRec.
14537 ///
14538 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14539 /// supported.
14540 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14541   const DenseMap<const SCEV *, const SCEV *> &Map;
14542 
14543 public:
14544   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14545                         DenseMap<const SCEV *, const SCEV *> &M)
14546       : SCEVRewriteVisitor(SE), Map(M) {}
14547 
14548   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14549 
14550   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14551     auto I = Map.find(Expr);
14552     if (I == Map.end())
14553       return Expr;
14554     return I->second;
14555   }
14556 
14557   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14558     auto I = Map.find(Expr);
14559     if (I == Map.end())
14560       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14561           Expr);
14562     return I->second;
14563   }
14564 };
14565 
14566 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14567   SmallVector<const SCEV *> ExprsToRewrite;
14568   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14569                               const SCEV *RHS,
14570                               DenseMap<const SCEV *, const SCEV *>
14571                                   &RewriteMap) {
14572     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14573     // replacement SCEV which isn't directly implied by the structure of that
14574     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14575     // legal.  See the scoping rules for flags in the header to understand why.
14576 
14577     // If LHS is a constant, apply information to the other expression.
14578     if (isa<SCEVConstant>(LHS)) {
14579       std::swap(LHS, RHS);
14580       Predicate = CmpInst::getSwappedPredicate(Predicate);
14581     }
14582 
14583     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14584     // create this form when combining two checks of the form (X u< C2 + C1) and
14585     // (X >=u C1).
14586     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14587                                  &ExprsToRewrite]() {
14588       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14589       if (!AddExpr || AddExpr->getNumOperands() != 2)
14590         return false;
14591 
14592       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14593       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14594       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14595       if (!C1 || !C2 || !LHSUnknown)
14596         return false;
14597 
14598       auto ExactRegion =
14599           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14600               .sub(C1->getAPInt());
14601 
14602       // Bail out, unless we have a non-wrapping, monotonic range.
14603       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14604         return false;
14605       auto I = RewriteMap.find(LHSUnknown);
14606       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14607       RewriteMap[LHSUnknown] = getUMaxExpr(
14608           getConstant(ExactRegion.getUnsignedMin()),
14609           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14610       ExprsToRewrite.push_back(LHSUnknown);
14611       return true;
14612     };
14613     if (MatchRangeCheckIdiom())
14614       return;
14615 
14616     // If we have LHS == 0, check if LHS is computing a property of some unknown
14617     // SCEV %v which we can rewrite %v to express explicitly.
14618     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
14619     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
14620         RHSC->getValue()->isNullValue()) {
14621       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
14622       // explicitly express that.
14623       const SCEV *URemLHS = nullptr;
14624       const SCEV *URemRHS = nullptr;
14625       if (matchURem(LHS, URemLHS, URemRHS)) {
14626         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
14627           auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
14628           RewriteMap[LHSUnknown] = Multiple;
14629           ExprsToRewrite.push_back(LHSUnknown);
14630           return;
14631         }
14632       }
14633     }
14634 
14635     // Do not apply information for constants or if RHS contains an AddRec.
14636     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
14637       return;
14638 
14639     // If RHS is SCEVUnknown, make sure the information is applied to it.
14640     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
14641       std::swap(LHS, RHS);
14642       Predicate = CmpInst::getSwappedPredicate(Predicate);
14643     }
14644 
14645     // Limit to expressions that can be rewritten.
14646     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
14647       return;
14648 
14649     // Check whether LHS has already been rewritten. In that case we want to
14650     // chain further rewrites onto the already rewritten value.
14651     auto I = RewriteMap.find(LHS);
14652     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
14653 
14654     const SCEV *RewrittenRHS = nullptr;
14655     switch (Predicate) {
14656     case CmpInst::ICMP_ULT:
14657       RewrittenRHS =
14658           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14659       break;
14660     case CmpInst::ICMP_SLT:
14661       RewrittenRHS =
14662           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14663       break;
14664     case CmpInst::ICMP_ULE:
14665       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14666       break;
14667     case CmpInst::ICMP_SLE:
14668       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14669       break;
14670     case CmpInst::ICMP_UGT:
14671       RewrittenRHS =
14672           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14673       break;
14674     case CmpInst::ICMP_SGT:
14675       RewrittenRHS =
14676           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14677       break;
14678     case CmpInst::ICMP_UGE:
14679       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14680       break;
14681     case CmpInst::ICMP_SGE:
14682       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14683       break;
14684     case CmpInst::ICMP_EQ:
14685       if (isa<SCEVConstant>(RHS))
14686         RewrittenRHS = RHS;
14687       break;
14688     case CmpInst::ICMP_NE:
14689       if (isa<SCEVConstant>(RHS) &&
14690           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14691         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14692       break;
14693     default:
14694       break;
14695     }
14696 
14697     if (RewrittenRHS) {
14698       RewriteMap[LHS] = RewrittenRHS;
14699       if (LHS == RewrittenLHS)
14700         ExprsToRewrite.push_back(LHS);
14701     }
14702   };
14703 
14704   SmallVector<std::pair<Value *, bool>> Terms;
14705   // First, collect information from assumptions dominating the loop.
14706   for (auto &AssumeVH : AC.assumptions()) {
14707     if (!AssumeVH)
14708       continue;
14709     auto *AssumeI = cast<CallInst>(AssumeVH);
14710     if (!DT.dominates(AssumeI, L->getHeader()))
14711       continue;
14712     Terms.emplace_back(AssumeI->getOperand(0), true);
14713   }
14714 
14715   // Second, collect conditions from dominating branches. Starting at the loop
14716   // predecessor, climb up the predecessor chain, as long as there are
14717   // predecessors that can be found that have unique successors leading to the
14718   // original header.
14719   // TODO: share this logic with isLoopEntryGuardedByCond.
14720   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14721            L->getLoopPredecessor(), L->getHeader());
14722        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14723 
14724     const BranchInst *LoopEntryPredicate =
14725         dyn_cast<BranchInst>(Pair.first->getTerminator());
14726     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14727       continue;
14728 
14729     Terms.emplace_back(LoopEntryPredicate->getCondition(),
14730                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
14731   }
14732 
14733   // Now apply the information from the collected conditions to RewriteMap.
14734   // Conditions are processed in reverse order, so the earliest conditions is
14735   // processed first. This ensures the SCEVs with the shortest dependency chains
14736   // are constructed first.
14737   DenseMap<const SCEV *, const SCEV *> RewriteMap;
14738   for (auto &E : reverse(Terms)) {
14739     bool EnterIfTrue = E.second;
14740     SmallVector<Value *, 8> Worklist;
14741     SmallPtrSet<Value *, 8> Visited;
14742     Worklist.push_back(E.first);
14743     while (!Worklist.empty()) {
14744       Value *Cond = Worklist.pop_back_val();
14745       if (!Visited.insert(Cond).second)
14746         continue;
14747 
14748       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14749         auto Predicate =
14750             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14751         const auto *LHS = getSCEV(Cmp->getOperand(0));
14752         const auto *RHS = getSCEV(Cmp->getOperand(1));
14753         CollectCondition(Predicate, LHS, RHS, RewriteMap);
14754         continue;
14755       }
14756 
14757       Value *L, *R;
14758       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14759                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14760         Worklist.push_back(L);
14761         Worklist.push_back(R);
14762       }
14763     }
14764   }
14765 
14766   if (RewriteMap.empty())
14767     return Expr;
14768 
14769   // Now that all rewrite information is collect, rewrite the collected
14770   // expressions with the information in the map. This applies information to
14771   // sub-expressions.
14772   if (ExprsToRewrite.size() > 1) {
14773     for (const SCEV *Expr : ExprsToRewrite) {
14774       const SCEV *RewriteTo = RewriteMap[Expr];
14775       RewriteMap.erase(Expr);
14776       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14777       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14778     }
14779   }
14780 
14781   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14782   return Rewriter.visit(Expr);
14783 }
14784