1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 451 452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 453 const SCEV *op, Type *ty) 454 : SCEVCastExpr(ID, scTruncate, op, ty) { 455 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 456 "Cannot truncate non-integer value!"); 457 } 458 459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 460 const SCEV *op, Type *ty) 461 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 462 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 463 "Cannot zero extend non-integer value!"); 464 } 465 466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 467 const SCEV *op, Type *ty) 468 : SCEVCastExpr(ID, scSignExtend, op, ty) { 469 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 470 "Cannot sign extend non-integer value!"); 471 } 472 473 void SCEVUnknown::deleted() { 474 // Clear this SCEVUnknown from various maps. 475 SE->forgetMemoizedResults(this); 476 477 // Remove this SCEVUnknown from the uniquing map. 478 SE->UniqueSCEVs.RemoveNode(this); 479 480 // Release the value. 481 setValPtr(nullptr); 482 } 483 484 void SCEVUnknown::allUsesReplacedWith(Value *New) { 485 // Remove this SCEVUnknown from the uniquing map. 486 SE->UniqueSCEVs.RemoveNode(this); 487 488 // Update this SCEVUnknown to point to the new value. This is needed 489 // because there may still be outstanding SCEVs which still point to 490 // this SCEVUnknown. 491 setValPtr(New); 492 } 493 494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 495 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 496 if (VCE->getOpcode() == Instruction::PtrToInt) 497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 498 if (CE->getOpcode() == Instruction::GetElementPtr && 499 CE->getOperand(0)->isNullValue() && 500 CE->getNumOperands() == 2) 501 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 502 if (CI->isOne()) { 503 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 504 ->getElementType(); 505 return true; 506 } 507 508 return false; 509 } 510 511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 513 if (VCE->getOpcode() == Instruction::PtrToInt) 514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 515 if (CE->getOpcode() == Instruction::GetElementPtr && 516 CE->getOperand(0)->isNullValue()) { 517 Type *Ty = 518 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 519 if (StructType *STy = dyn_cast<StructType>(Ty)) 520 if (!STy->isPacked() && 521 CE->getNumOperands() == 3 && 522 CE->getOperand(1)->isNullValue()) { 523 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 524 if (CI->isOne() && 525 STy->getNumElements() == 2 && 526 STy->getElementType(0)->isIntegerTy(1)) { 527 AllocTy = STy->getElementType(1); 528 return true; 529 } 530 } 531 } 532 533 return false; 534 } 535 536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 537 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 538 if (VCE->getOpcode() == Instruction::PtrToInt) 539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 540 if (CE->getOpcode() == Instruction::GetElementPtr && 541 CE->getNumOperands() == 3 && 542 CE->getOperand(0)->isNullValue() && 543 CE->getOperand(1)->isNullValue()) { 544 Type *Ty = 545 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 546 // Ignore vector types here so that ScalarEvolutionExpander doesn't 547 // emit getelementptrs that index into vectors. 548 if (Ty->isStructTy() || Ty->isArrayTy()) { 549 CTy = Ty; 550 FieldNo = CE->getOperand(2); 551 return true; 552 } 553 } 554 555 return false; 556 } 557 558 //===----------------------------------------------------------------------===// 559 // SCEV Utilities 560 //===----------------------------------------------------------------------===// 561 562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 564 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 565 /// have been previously deemed to be "equally complex" by this routine. It is 566 /// intended to avoid exponential time complexity in cases like: 567 /// 568 /// %a = f(%x, %y) 569 /// %b = f(%a, %a) 570 /// %c = f(%b, %b) 571 /// 572 /// %d = f(%x, %y) 573 /// %e = f(%d, %d) 574 /// %f = f(%e, %e) 575 /// 576 /// CompareValueComplexity(%f, %c) 577 /// 578 /// Since we do not continue running this routine on expression trees once we 579 /// have seen unequal values, there is no need to track them in the cache. 580 static int 581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 582 const LoopInfo *const LI, Value *LV, Value *RV, 583 unsigned Depth) { 584 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 585 return 0; 586 587 // Order pointer values after integer values. This helps SCEVExpander form 588 // GEPs. 589 bool LIsPointer = LV->getType()->isPointerTy(), 590 RIsPointer = RV->getType()->isPointerTy(); 591 if (LIsPointer != RIsPointer) 592 return (int)LIsPointer - (int)RIsPointer; 593 594 // Compare getValueID values. 595 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 596 if (LID != RID) 597 return (int)LID - (int)RID; 598 599 // Sort arguments by their position. 600 if (const auto *LA = dyn_cast<Argument>(LV)) { 601 const auto *RA = cast<Argument>(RV); 602 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 603 return (int)LArgNo - (int)RArgNo; 604 } 605 606 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 607 const auto *RGV = cast<GlobalValue>(RV); 608 609 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 610 auto LT = GV->getLinkage(); 611 return !(GlobalValue::isPrivateLinkage(LT) || 612 GlobalValue::isInternalLinkage(LT)); 613 }; 614 615 // Use the names to distinguish the two values, but only if the 616 // names are semantically important. 617 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 618 return LGV->getName().compare(RGV->getName()); 619 } 620 621 // For instructions, compare their loop depth, and their operand count. This 622 // is pretty loose. 623 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 624 const auto *RInst = cast<Instruction>(RV); 625 626 // Compare loop depths. 627 const BasicBlock *LParent = LInst->getParent(), 628 *RParent = RInst->getParent(); 629 if (LParent != RParent) { 630 unsigned LDepth = LI->getLoopDepth(LParent), 631 RDepth = LI->getLoopDepth(RParent); 632 if (LDepth != RDepth) 633 return (int)LDepth - (int)RDepth; 634 } 635 636 // Compare the number of operands. 637 unsigned LNumOps = LInst->getNumOperands(), 638 RNumOps = RInst->getNumOperands(); 639 if (LNumOps != RNumOps) 640 return (int)LNumOps - (int)RNumOps; 641 642 for (unsigned Idx : seq(0u, LNumOps)) { 643 int Result = 644 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 645 RInst->getOperand(Idx), Depth + 1); 646 if (Result != 0) 647 return Result; 648 } 649 } 650 651 EqCacheValue.unionSets(LV, RV); 652 return 0; 653 } 654 655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 656 // than RHS, respectively. A three-way result allows recursive comparisons to be 657 // more efficient. 658 static int CompareSCEVComplexity( 659 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 660 EquivalenceClasses<const Value *> &EqCacheValue, 661 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 662 DominatorTree &DT, unsigned Depth = 0) { 663 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 664 if (LHS == RHS) 665 return 0; 666 667 // Primarily, sort the SCEVs by their getSCEVType(). 668 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 669 if (LType != RType) 670 return (int)LType - (int)RType; 671 672 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 673 return 0; 674 // Aside from the getSCEVType() ordering, the particular ordering 675 // isn't very important except that it's beneficial to be consistent, 676 // so that (a + b) and (b + a) don't end up as different expressions. 677 switch (static_cast<SCEVTypes>(LType)) { 678 case scUnknown: { 679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 681 682 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 683 RU->getValue(), Depth + 1); 684 if (X == 0) 685 EqCacheSCEV.unionSets(LHS, RHS); 686 return X; 687 } 688 689 case scConstant: { 690 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 691 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 692 693 // Compare constant values. 694 const APInt &LA = LC->getAPInt(); 695 const APInt &RA = RC->getAPInt(); 696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 697 if (LBitWidth != RBitWidth) 698 return (int)LBitWidth - (int)RBitWidth; 699 return LA.ult(RA) ? -1 : 1; 700 } 701 702 case scAddRecExpr: { 703 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 704 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 705 706 // There is always a dominance between two recs that are used by one SCEV, 707 // so we can safely sort recs by loop header dominance. We require such 708 // order in getAddExpr. 709 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 710 if (LLoop != RLoop) { 711 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 712 assert(LHead != RHead && "Two loops share the same header?"); 713 if (DT.dominates(LHead, RHead)) 714 return 1; 715 else 716 assert(DT.dominates(RHead, LHead) && 717 "No dominance between recurrences used by one SCEV?"); 718 return -1; 719 } 720 721 // Addrec complexity grows with operand count. 722 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 723 if (LNumOps != RNumOps) 724 return (int)LNumOps - (int)RNumOps; 725 726 // Lexicographically compare. 727 for (unsigned i = 0; i != LNumOps; ++i) { 728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 729 LA->getOperand(i), RA->getOperand(i), DT, 730 Depth + 1); 731 if (X != 0) 732 return X; 733 } 734 EqCacheSCEV.unionSets(LHS, RHS); 735 return 0; 736 } 737 738 case scAddExpr: 739 case scMulExpr: 740 case scSMaxExpr: 741 case scUMaxExpr: 742 case scSMinExpr: 743 case scUMinExpr: { 744 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 745 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 746 747 // Lexicographically compare n-ary expressions. 748 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 749 if (LNumOps != RNumOps) 750 return (int)LNumOps - (int)RNumOps; 751 752 for (unsigned i = 0; i != LNumOps; ++i) { 753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 754 LC->getOperand(i), RC->getOperand(i), DT, 755 Depth + 1); 756 if (X != 0) 757 return X; 758 } 759 EqCacheSCEV.unionSets(LHS, RHS); 760 return 0; 761 } 762 763 case scUDivExpr: { 764 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 765 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 766 767 // Lexicographically compare udiv expressions. 768 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 769 RC->getLHS(), DT, Depth + 1); 770 if (X != 0) 771 return X; 772 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 773 RC->getRHS(), DT, Depth + 1); 774 if (X == 0) 775 EqCacheSCEV.unionSets(LHS, RHS); 776 return X; 777 } 778 779 case scTruncate: 780 case scZeroExtend: 781 case scSignExtend: { 782 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 783 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 784 785 // Compare cast expressions by operand. 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(), RC->getOperand(), DT, 788 Depth + 1); 789 if (X == 0) 790 EqCacheSCEV.unionSets(LHS, RHS); 791 return X; 792 } 793 794 case scCouldNotCompute: 795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 796 } 797 llvm_unreachable("Unknown SCEV kind!"); 798 } 799 800 /// Given a list of SCEV objects, order them by their complexity, and group 801 /// objects of the same complexity together by value. When this routine is 802 /// finished, we know that any duplicates in the vector are consecutive and that 803 /// complexity is monotonically increasing. 804 /// 805 /// Note that we go take special precautions to ensure that we get deterministic 806 /// results from this routine. In other words, we don't want the results of 807 /// this to depend on where the addresses of various SCEV objects happened to 808 /// land in memory. 809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 810 LoopInfo *LI, DominatorTree &DT) { 811 if (Ops.size() < 2) return; // Noop 812 813 EquivalenceClasses<const SCEV *> EqCacheSCEV; 814 EquivalenceClasses<const Value *> EqCacheValue; 815 if (Ops.size() == 2) { 816 // This is the common case, which also happens to be trivially simple. 817 // Special case it. 818 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 819 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 820 std::swap(LHS, RHS); 821 return; 822 } 823 824 // Do the rough sort by complexity. 825 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 826 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 827 0; 828 }); 829 830 // Now that we are sorted by complexity, group elements of the same 831 // complexity. Note that this is, at worst, N^2, but the vector is likely to 832 // be extremely short in practice. Note that we take this approach because we 833 // do not want to depend on the addresses of the objects we are grouping. 834 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 835 const SCEV *S = Ops[i]; 836 unsigned Complexity = S->getSCEVType(); 837 838 // If there are any objects of the same complexity and same value as this 839 // one, group them. 840 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 841 if (Ops[j] == S) { // Found a duplicate. 842 // Move it to immediately after i'th element. 843 std::swap(Ops[i+1], Ops[j]); 844 ++i; // no need to rescan it. 845 if (i == e-2) return; // Done! 846 } 847 } 848 } 849 } 850 851 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 852 /// least HugeExprThreshold nodes). 853 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 854 return any_of(Ops, [](const SCEV *S) { 855 return S->getExpressionSize() >= HugeExprThreshold; 856 }); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Simple SCEV method implementations 861 //===----------------------------------------------------------------------===// 862 863 /// Compute BC(It, K). The result has width W. Assume, K > 0. 864 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 865 ScalarEvolution &SE, 866 Type *ResultTy) { 867 // Handle the simplest case efficiently. 868 if (K == 1) 869 return SE.getTruncateOrZeroExtend(It, ResultTy); 870 871 // We are using the following formula for BC(It, K): 872 // 873 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 874 // 875 // Suppose, W is the bitwidth of the return value. We must be prepared for 876 // overflow. Hence, we must assure that the result of our computation is 877 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 878 // safe in modular arithmetic. 879 // 880 // However, this code doesn't use exactly that formula; the formula it uses 881 // is something like the following, where T is the number of factors of 2 in 882 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 883 // exponentiation: 884 // 885 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 886 // 887 // This formula is trivially equivalent to the previous formula. However, 888 // this formula can be implemented much more efficiently. The trick is that 889 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 890 // arithmetic. To do exact division in modular arithmetic, all we have 891 // to do is multiply by the inverse. Therefore, this step can be done at 892 // width W. 893 // 894 // The next issue is how to safely do the division by 2^T. The way this 895 // is done is by doing the multiplication step at a width of at least W + T 896 // bits. This way, the bottom W+T bits of the product are accurate. Then, 897 // when we perform the division by 2^T (which is equivalent to a right shift 898 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 899 // truncated out after the division by 2^T. 900 // 901 // In comparison to just directly using the first formula, this technique 902 // is much more efficient; using the first formula requires W * K bits, 903 // but this formula less than W + K bits. Also, the first formula requires 904 // a division step, whereas this formula only requires multiplies and shifts. 905 // 906 // It doesn't matter whether the subtraction step is done in the calculation 907 // width or the input iteration count's width; if the subtraction overflows, 908 // the result must be zero anyway. We prefer here to do it in the width of 909 // the induction variable because it helps a lot for certain cases; CodeGen 910 // isn't smart enough to ignore the overflow, which leads to much less 911 // efficient code if the width of the subtraction is wider than the native 912 // register width. 913 // 914 // (It's possible to not widen at all by pulling out factors of 2 before 915 // the multiplication; for example, K=2 can be calculated as 916 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 917 // extra arithmetic, so it's not an obvious win, and it gets 918 // much more complicated for K > 3.) 919 920 // Protection from insane SCEVs; this bound is conservative, 921 // but it probably doesn't matter. 922 if (K > 1000) 923 return SE.getCouldNotCompute(); 924 925 unsigned W = SE.getTypeSizeInBits(ResultTy); 926 927 // Calculate K! / 2^T and T; we divide out the factors of two before 928 // multiplying for calculating K! / 2^T to avoid overflow. 929 // Other overflow doesn't matter because we only care about the bottom 930 // W bits of the result. 931 APInt OddFactorial(W, 1); 932 unsigned T = 1; 933 for (unsigned i = 3; i <= K; ++i) { 934 APInt Mult(W, i); 935 unsigned TwoFactors = Mult.countTrailingZeros(); 936 T += TwoFactors; 937 Mult.lshrInPlace(TwoFactors); 938 OddFactorial *= Mult; 939 } 940 941 // We need at least W + T bits for the multiplication step 942 unsigned CalculationBits = W + T; 943 944 // Calculate 2^T, at width T+W. 945 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 946 947 // Calculate the multiplicative inverse of K! / 2^T; 948 // this multiplication factor will perform the exact division by 949 // K! / 2^T. 950 APInt Mod = APInt::getSignedMinValue(W+1); 951 APInt MultiplyFactor = OddFactorial.zext(W+1); 952 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 953 MultiplyFactor = MultiplyFactor.trunc(W); 954 955 // Calculate the product, at width T+W 956 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 957 CalculationBits); 958 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 959 for (unsigned i = 1; i != K; ++i) { 960 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 961 Dividend = SE.getMulExpr(Dividend, 962 SE.getTruncateOrZeroExtend(S, CalculationTy)); 963 } 964 965 // Divide by 2^T 966 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 967 968 // Truncate the result, and divide by K! / 2^T. 969 970 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 971 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 972 } 973 974 /// Return the value of this chain of recurrences at the specified iteration 975 /// number. We can evaluate this recurrence by multiplying each element in the 976 /// chain by the binomial coefficient corresponding to it. In other words, we 977 /// can evaluate {A,+,B,+,C,+,D} as: 978 /// 979 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 980 /// 981 /// where BC(It, k) stands for binomial coefficient. 982 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 983 ScalarEvolution &SE) const { 984 const SCEV *Result = getStart(); 985 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 986 // The computation is correct in the face of overflow provided that the 987 // multiplication is performed _after_ the evaluation of the binomial 988 // coefficient. 989 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 990 if (isa<SCEVCouldNotCompute>(Coeff)) 991 return Coeff; 992 993 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 994 } 995 return Result; 996 } 997 998 //===----------------------------------------------------------------------===// 999 // SCEV Expression folder implementations 1000 //===----------------------------------------------------------------------===// 1001 1002 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1003 unsigned Depth) { 1004 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1005 "This is not a truncating conversion!"); 1006 assert(isSCEVable(Ty) && 1007 "This is not a conversion to a SCEVable type!"); 1008 Ty = getEffectiveSCEVType(Ty); 1009 1010 FoldingSetNodeID ID; 1011 ID.AddInteger(scTruncate); 1012 ID.AddPointer(Op); 1013 ID.AddPointer(Ty); 1014 void *IP = nullptr; 1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1016 1017 // Fold if the operand is constant. 1018 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1019 return getConstant( 1020 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1021 1022 // trunc(trunc(x)) --> trunc(x) 1023 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1024 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1025 1026 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1027 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1028 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1029 1030 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1031 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1032 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1033 1034 if (Depth > MaxCastDepth) { 1035 SCEV *S = 1036 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1037 UniqueSCEVs.InsertNode(S, IP); 1038 addToLoopUseLists(S); 1039 return S; 1040 } 1041 1042 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1043 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1044 // if after transforming we have at most one truncate, not counting truncates 1045 // that replace other casts. 1046 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1047 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1048 SmallVector<const SCEV *, 4> Operands; 1049 unsigned numTruncs = 0; 1050 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1051 ++i) { 1052 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1053 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1054 numTruncs++; 1055 Operands.push_back(S); 1056 } 1057 if (numTruncs < 2) { 1058 if (isa<SCEVAddExpr>(Op)) 1059 return getAddExpr(Operands); 1060 else if (isa<SCEVMulExpr>(Op)) 1061 return getMulExpr(Operands); 1062 else 1063 llvm_unreachable("Unexpected SCEV type for Op."); 1064 } 1065 // Although we checked in the beginning that ID is not in the cache, it is 1066 // possible that during recursion and different modification ID was inserted 1067 // into the cache. So if we find it, just return it. 1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1069 return S; 1070 } 1071 1072 // If the input value is a chrec scev, truncate the chrec's operands. 1073 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1074 SmallVector<const SCEV *, 4> Operands; 1075 for (const SCEV *Op : AddRec->operands()) 1076 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1077 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1078 } 1079 1080 // The cast wasn't folded; create an explicit cast node. We can reuse 1081 // the existing insert position since if we get here, we won't have 1082 // made any changes which would invalidate it. 1083 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1084 Op, Ty); 1085 UniqueSCEVs.InsertNode(S, IP); 1086 addToLoopUseLists(S); 1087 return S; 1088 } 1089 1090 // Get the limit of a recurrence such that incrementing by Step cannot cause 1091 // signed overflow as long as the value of the recurrence within the 1092 // loop does not exceed this limit before incrementing. 1093 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1094 ICmpInst::Predicate *Pred, 1095 ScalarEvolution *SE) { 1096 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1097 if (SE->isKnownPositive(Step)) { 1098 *Pred = ICmpInst::ICMP_SLT; 1099 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1100 SE->getSignedRangeMax(Step)); 1101 } 1102 if (SE->isKnownNegative(Step)) { 1103 *Pred = ICmpInst::ICMP_SGT; 1104 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1105 SE->getSignedRangeMin(Step)); 1106 } 1107 return nullptr; 1108 } 1109 1110 // Get the limit of a recurrence such that incrementing by Step cannot cause 1111 // unsigned overflow as long as the value of the recurrence within the loop does 1112 // not exceed this limit before incrementing. 1113 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1114 ICmpInst::Predicate *Pred, 1115 ScalarEvolution *SE) { 1116 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1117 *Pred = ICmpInst::ICMP_ULT; 1118 1119 return SE->getConstant(APInt::getMinValue(BitWidth) - 1120 SE->getUnsignedRangeMax(Step)); 1121 } 1122 1123 namespace { 1124 1125 struct ExtendOpTraitsBase { 1126 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1127 unsigned); 1128 }; 1129 1130 // Used to make code generic over signed and unsigned overflow. 1131 template <typename ExtendOp> struct ExtendOpTraits { 1132 // Members present: 1133 // 1134 // static const SCEV::NoWrapFlags WrapType; 1135 // 1136 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1137 // 1138 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1139 // ICmpInst::Predicate *Pred, 1140 // ScalarEvolution *SE); 1141 }; 1142 1143 template <> 1144 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1145 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1146 1147 static const GetExtendExprTy GetExtendExpr; 1148 1149 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1150 ICmpInst::Predicate *Pred, 1151 ScalarEvolution *SE) { 1152 return getSignedOverflowLimitForStep(Step, Pred, SE); 1153 } 1154 }; 1155 1156 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1157 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1158 1159 template <> 1160 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1161 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1162 1163 static const GetExtendExprTy GetExtendExpr; 1164 1165 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1166 ICmpInst::Predicate *Pred, 1167 ScalarEvolution *SE) { 1168 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1169 } 1170 }; 1171 1172 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1173 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1174 1175 } // end anonymous namespace 1176 1177 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1178 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1179 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1180 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1181 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1182 // expression "Step + sext/zext(PreIncAR)" is congruent with 1183 // "sext/zext(PostIncAR)" 1184 template <typename ExtendOpTy> 1185 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1186 ScalarEvolution *SE, unsigned Depth) { 1187 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1188 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1189 1190 const Loop *L = AR->getLoop(); 1191 const SCEV *Start = AR->getStart(); 1192 const SCEV *Step = AR->getStepRecurrence(*SE); 1193 1194 // Check for a simple looking step prior to loop entry. 1195 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1196 if (!SA) 1197 return nullptr; 1198 1199 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1200 // subtraction is expensive. For this purpose, perform a quick and dirty 1201 // difference, by checking for Step in the operand list. 1202 SmallVector<const SCEV *, 4> DiffOps; 1203 for (const SCEV *Op : SA->operands()) 1204 if (Op != Step) 1205 DiffOps.push_back(Op); 1206 1207 if (DiffOps.size() == SA->getNumOperands()) 1208 return nullptr; 1209 1210 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1211 // `Step`: 1212 1213 // 1. NSW/NUW flags on the step increment. 1214 auto PreStartFlags = 1215 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1216 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1217 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1218 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1219 1220 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1221 // "S+X does not sign/unsign-overflow". 1222 // 1223 1224 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1225 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1226 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1227 return PreStart; 1228 1229 // 2. Direct overflow check on the step operation's expression. 1230 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1231 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1232 const SCEV *OperandExtendedStart = 1233 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1234 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1235 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1236 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1237 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1238 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1239 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1240 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1241 } 1242 return PreStart; 1243 } 1244 1245 // 3. Loop precondition. 1246 ICmpInst::Predicate Pred; 1247 const SCEV *OverflowLimit = 1248 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1249 1250 if (OverflowLimit && 1251 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1252 return PreStart; 1253 1254 return nullptr; 1255 } 1256 1257 // Get the normalized zero or sign extended expression for this AddRec's Start. 1258 template <typename ExtendOpTy> 1259 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1260 ScalarEvolution *SE, 1261 unsigned Depth) { 1262 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1263 1264 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1265 if (!PreStart) 1266 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1267 1268 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1269 Depth), 1270 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1271 } 1272 1273 // Try to prove away overflow by looking at "nearby" add recurrences. A 1274 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1275 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1276 // 1277 // Formally: 1278 // 1279 // {S,+,X} == {S-T,+,X} + T 1280 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1281 // 1282 // If ({S-T,+,X} + T) does not overflow ... (1) 1283 // 1284 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1285 // 1286 // If {S-T,+,X} does not overflow ... (2) 1287 // 1288 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1289 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1290 // 1291 // If (S-T)+T does not overflow ... (3) 1292 // 1293 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1294 // == {Ext(S),+,Ext(X)} == LHS 1295 // 1296 // Thus, if (1), (2) and (3) are true for some T, then 1297 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1298 // 1299 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1300 // does not overflow" restricted to the 0th iteration. Therefore we only need 1301 // to check for (1) and (2). 1302 // 1303 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1304 // is `Delta` (defined below). 1305 template <typename ExtendOpTy> 1306 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1307 const SCEV *Step, 1308 const Loop *L) { 1309 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1310 1311 // We restrict `Start` to a constant to prevent SCEV from spending too much 1312 // time here. It is correct (but more expensive) to continue with a 1313 // non-constant `Start` and do a general SCEV subtraction to compute 1314 // `PreStart` below. 1315 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1316 if (!StartC) 1317 return false; 1318 1319 APInt StartAI = StartC->getAPInt(); 1320 1321 for (unsigned Delta : {-2, -1, 1, 2}) { 1322 const SCEV *PreStart = getConstant(StartAI - Delta); 1323 1324 FoldingSetNodeID ID; 1325 ID.AddInteger(scAddRecExpr); 1326 ID.AddPointer(PreStart); 1327 ID.AddPointer(Step); 1328 ID.AddPointer(L); 1329 void *IP = nullptr; 1330 const auto *PreAR = 1331 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1332 1333 // Give up if we don't already have the add recurrence we need because 1334 // actually constructing an add recurrence is relatively expensive. 1335 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1336 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1337 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1338 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1339 DeltaS, &Pred, this); 1340 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1341 return true; 1342 } 1343 } 1344 1345 return false; 1346 } 1347 1348 // Finds an integer D for an expression (C + x + y + ...) such that the top 1349 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1350 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1351 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1352 // the (C + x + y + ...) expression is \p WholeAddExpr. 1353 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1354 const SCEVConstant *ConstantTerm, 1355 const SCEVAddExpr *WholeAddExpr) { 1356 const APInt &C = ConstantTerm->getAPInt(); 1357 const unsigned BitWidth = C.getBitWidth(); 1358 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1359 uint32_t TZ = BitWidth; 1360 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1361 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1362 if (TZ) { 1363 // Set D to be as many least significant bits of C as possible while still 1364 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1365 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1366 } 1367 return APInt(BitWidth, 0); 1368 } 1369 1370 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1371 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1372 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1373 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1374 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1375 const APInt &ConstantStart, 1376 const SCEV *Step) { 1377 const unsigned BitWidth = ConstantStart.getBitWidth(); 1378 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1379 if (TZ) 1380 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1381 : ConstantStart; 1382 return APInt(BitWidth, 0); 1383 } 1384 1385 const SCEV * 1386 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1387 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1388 "This is not an extending conversion!"); 1389 assert(isSCEVable(Ty) && 1390 "This is not a conversion to a SCEVable type!"); 1391 Ty = getEffectiveSCEVType(Ty); 1392 1393 // Fold if the operand is constant. 1394 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1395 return getConstant( 1396 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1397 1398 // zext(zext(x)) --> zext(x) 1399 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1400 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1401 1402 // Before doing any expensive analysis, check to see if we've already 1403 // computed a SCEV for this Op and Ty. 1404 FoldingSetNodeID ID; 1405 ID.AddInteger(scZeroExtend); 1406 ID.AddPointer(Op); 1407 ID.AddPointer(Ty); 1408 void *IP = nullptr; 1409 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1410 if (Depth > MaxCastDepth) { 1411 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1412 Op, Ty); 1413 UniqueSCEVs.InsertNode(S, IP); 1414 addToLoopUseLists(S); 1415 return S; 1416 } 1417 1418 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1419 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1420 // It's possible the bits taken off by the truncate were all zero bits. If 1421 // so, we should be able to simplify this further. 1422 const SCEV *X = ST->getOperand(); 1423 ConstantRange CR = getUnsignedRange(X); 1424 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1425 unsigned NewBits = getTypeSizeInBits(Ty); 1426 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1427 CR.zextOrTrunc(NewBits))) 1428 return getTruncateOrZeroExtend(X, Ty, Depth); 1429 } 1430 1431 // If the input value is a chrec scev, and we can prove that the value 1432 // did not overflow the old, smaller, value, we can zero extend all of the 1433 // operands (often constants). This allows analysis of something like 1434 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1435 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1436 if (AR->isAffine()) { 1437 const SCEV *Start = AR->getStart(); 1438 const SCEV *Step = AR->getStepRecurrence(*this); 1439 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1440 const Loop *L = AR->getLoop(); 1441 1442 if (!AR->hasNoUnsignedWrap()) { 1443 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1444 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1445 } 1446 1447 // If we have special knowledge that this addrec won't overflow, 1448 // we don't need to do any further analysis. 1449 if (AR->hasNoUnsignedWrap()) 1450 return getAddRecExpr( 1451 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1452 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1453 1454 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1455 // Note that this serves two purposes: It filters out loops that are 1456 // simply not analyzable, and it covers the case where this code is 1457 // being called from within backedge-taken count analysis, such that 1458 // attempting to ask for the backedge-taken count would likely result 1459 // in infinite recursion. In the later case, the analysis code will 1460 // cope with a conservative value, and it will take care to purge 1461 // that value once it has finished. 1462 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1463 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1464 // Manually compute the final value for AR, checking for 1465 // overflow. 1466 1467 // Check whether the backedge-taken count can be losslessly casted to 1468 // the addrec's type. The count is always unsigned. 1469 const SCEV *CastedMaxBECount = 1470 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1471 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1472 CastedMaxBECount, MaxBECount->getType(), Depth); 1473 if (MaxBECount == RecastedMaxBECount) { 1474 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1475 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1476 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1477 SCEV::FlagAnyWrap, Depth + 1); 1478 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1479 SCEV::FlagAnyWrap, 1480 Depth + 1), 1481 WideTy, Depth + 1); 1482 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1483 const SCEV *WideMaxBECount = 1484 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1485 const SCEV *OperandExtendedAdd = 1486 getAddExpr(WideStart, 1487 getMulExpr(WideMaxBECount, 1488 getZeroExtendExpr(Step, WideTy, Depth + 1), 1489 SCEV::FlagAnyWrap, Depth + 1), 1490 SCEV::FlagAnyWrap, Depth + 1); 1491 if (ZAdd == OperandExtendedAdd) { 1492 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1494 // Return the expression with the addrec on the outside. 1495 return getAddRecExpr( 1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1497 Depth + 1), 1498 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1499 AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy, Depth + 1), 1507 SCEV::FlagAnyWrap, Depth + 1), 1508 SCEV::FlagAnyWrap, Depth + 1); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1516 Depth + 1), 1517 getSignExtendExpr(Step, Ty, Depth + 1), L, 1518 AR->getNoWrapFlags()); 1519 } 1520 } 1521 } 1522 1523 // Normally, in the cases we can prove no-overflow via a 1524 // backedge guarding condition, we can also compute a backedge 1525 // taken count for the loop. The exceptions are assumptions and 1526 // guards present in the loop -- SCEV is not great at exploiting 1527 // these to compute max backedge taken counts, but can still use 1528 // these to prove lack of overflow. Use this fact to avoid 1529 // doing extra work that may not pay off. 1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1531 !AC.assumptions().empty()) { 1532 // If the backedge is guarded by a comparison with the pre-inc 1533 // value the addrec is safe. Also, if the entry is guarded by 1534 // a comparison with the start value and the backedge is 1535 // guarded by a comparison with the post-inc value, the addrec 1536 // is safe. 1537 if (isKnownPositive(Step)) { 1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1539 getUnsignedRangeMax(Step)); 1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1541 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1542 // Cache knowledge of AR NUW, which is propagated to this 1543 // AddRec. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1548 Depth + 1), 1549 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1550 AR->getNoWrapFlags()); 1551 } 1552 } else if (isKnownNegative(Step)) { 1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1554 getSignedRangeMin(Step)); 1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1556 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1557 // Cache knowledge of AR NW, which is propagated to this 1558 // AddRec. Negative step causes unsigned wrap, but it 1559 // still can't self-wrap. 1560 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1561 // Return the expression with the addrec on the outside. 1562 return getAddRecExpr( 1563 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1564 Depth + 1), 1565 getSignExtendExpr(Step, Ty, Depth + 1), L, 1566 AR->getNoWrapFlags()); 1567 } 1568 } 1569 } 1570 1571 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1572 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1573 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1574 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1575 const APInt &C = SC->getAPInt(); 1576 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1577 if (D != 0) { 1578 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1579 const SCEV *SResidual = 1580 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1581 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1582 return getAddExpr(SZExtD, SZExtR, 1583 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1584 Depth + 1); 1585 } 1586 } 1587 1588 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1590 return getAddRecExpr( 1591 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1592 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1593 } 1594 } 1595 1596 // zext(A % B) --> zext(A) % zext(B) 1597 { 1598 const SCEV *LHS; 1599 const SCEV *RHS; 1600 if (matchURem(Op, LHS, RHS)) 1601 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1602 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1603 } 1604 1605 // zext(A / B) --> zext(A) / zext(B). 1606 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1607 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1608 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1609 1610 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1611 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1612 if (SA->hasNoUnsignedWrap()) { 1613 // If the addition does not unsign overflow then we can, by definition, 1614 // commute the zero extension with the addition operation. 1615 SmallVector<const SCEV *, 4> Ops; 1616 for (const auto *Op : SA->operands()) 1617 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1618 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1619 } 1620 1621 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1622 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1623 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1624 // 1625 // Often address arithmetics contain expressions like 1626 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1627 // This transformation is useful while proving that such expressions are 1628 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1629 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1630 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1631 if (D != 0) { 1632 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1633 const SCEV *SResidual = 1634 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1635 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1636 return getAddExpr(SZExtD, SZExtR, 1637 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1638 Depth + 1); 1639 } 1640 } 1641 } 1642 1643 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1644 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1645 if (SM->hasNoUnsignedWrap()) { 1646 // If the multiply does not unsign overflow then we can, by definition, 1647 // commute the zero extension with the multiply operation. 1648 SmallVector<const SCEV *, 4> Ops; 1649 for (const auto *Op : SM->operands()) 1650 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1651 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1652 } 1653 1654 // zext(2^K * (trunc X to iN)) to iM -> 1655 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1656 // 1657 // Proof: 1658 // 1659 // zext(2^K * (trunc X to iN)) to iM 1660 // = zext((trunc X to iN) << K) to iM 1661 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1662 // (because shl removes the top K bits) 1663 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1664 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1665 // 1666 if (SM->getNumOperands() == 2) 1667 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1668 if (MulLHS->getAPInt().isPowerOf2()) 1669 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1670 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1671 MulLHS->getAPInt().logBase2(); 1672 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1673 return getMulExpr( 1674 getZeroExtendExpr(MulLHS, Ty), 1675 getZeroExtendExpr( 1676 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1677 SCEV::FlagNUW, Depth + 1); 1678 } 1679 } 1680 1681 // The cast wasn't folded; create an explicit cast node. 1682 // Recompute the insert position, as it may have been invalidated. 1683 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1684 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1685 Op, Ty); 1686 UniqueSCEVs.InsertNode(S, IP); 1687 addToLoopUseLists(S); 1688 return S; 1689 } 1690 1691 const SCEV * 1692 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1693 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1694 "This is not an extending conversion!"); 1695 assert(isSCEVable(Ty) && 1696 "This is not a conversion to a SCEVable type!"); 1697 Ty = getEffectiveSCEVType(Ty); 1698 1699 // Fold if the operand is constant. 1700 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1701 return getConstant( 1702 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1703 1704 // sext(sext(x)) --> sext(x) 1705 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1706 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1707 1708 // sext(zext(x)) --> zext(x) 1709 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1710 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1711 1712 // Before doing any expensive analysis, check to see if we've already 1713 // computed a SCEV for this Op and Ty. 1714 FoldingSetNodeID ID; 1715 ID.AddInteger(scSignExtend); 1716 ID.AddPointer(Op); 1717 ID.AddPointer(Ty); 1718 void *IP = nullptr; 1719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1720 // Limit recursion depth. 1721 if (Depth > MaxCastDepth) { 1722 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1723 Op, Ty); 1724 UniqueSCEVs.InsertNode(S, IP); 1725 addToLoopUseLists(S); 1726 return S; 1727 } 1728 1729 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1730 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1731 // It's possible the bits taken off by the truncate were all sign bits. If 1732 // so, we should be able to simplify this further. 1733 const SCEV *X = ST->getOperand(); 1734 ConstantRange CR = getSignedRange(X); 1735 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1736 unsigned NewBits = getTypeSizeInBits(Ty); 1737 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1738 CR.sextOrTrunc(NewBits))) 1739 return getTruncateOrSignExtend(X, Ty, Depth); 1740 } 1741 1742 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1743 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1744 if (SA->hasNoSignedWrap()) { 1745 // If the addition does not sign overflow then we can, by definition, 1746 // commute the sign extension with the addition operation. 1747 SmallVector<const SCEV *, 4> Ops; 1748 for (const auto *Op : SA->operands()) 1749 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1750 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1751 } 1752 1753 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1754 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1755 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1756 // 1757 // For instance, this will bring two seemingly different expressions: 1758 // 1 + sext(5 + 20 * %x + 24 * %y) and 1759 // sext(6 + 20 * %x + 24 * %y) 1760 // to the same form: 1761 // 2 + sext(4 + 20 * %x + 24 * %y) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1763 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1764 if (D != 0) { 1765 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1766 const SCEV *SResidual = 1767 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1768 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1769 return getAddExpr(SSExtD, SSExtR, 1770 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1771 Depth + 1); 1772 } 1773 } 1774 } 1775 // If the input value is a chrec scev, and we can prove that the value 1776 // did not overflow the old, smaller, value, we can sign extend all of the 1777 // operands (often constants). This allows analysis of something like 1778 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1779 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1780 if (AR->isAffine()) { 1781 const SCEV *Start = AR->getStart(); 1782 const SCEV *Step = AR->getStepRecurrence(*this); 1783 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1784 const Loop *L = AR->getLoop(); 1785 1786 if (!AR->hasNoSignedWrap()) { 1787 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1788 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1789 } 1790 1791 // If we have special knowledge that this addrec won't overflow, 1792 // we don't need to do any further analysis. 1793 if (AR->hasNoSignedWrap()) 1794 return getAddRecExpr( 1795 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1796 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1797 1798 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1799 // Note that this serves two purposes: It filters out loops that are 1800 // simply not analyzable, and it covers the case where this code is 1801 // being called from within backedge-taken count analysis, such that 1802 // attempting to ask for the backedge-taken count would likely result 1803 // in infinite recursion. In the later case, the analysis code will 1804 // cope with a conservative value, and it will take care to purge 1805 // that value once it has finished. 1806 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1807 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1808 // Manually compute the final value for AR, checking for 1809 // overflow. 1810 1811 // Check whether the backedge-taken count can be losslessly casted to 1812 // the addrec's type. The count is always unsigned. 1813 const SCEV *CastedMaxBECount = 1814 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1815 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1816 CastedMaxBECount, MaxBECount->getType(), Depth); 1817 if (MaxBECount == RecastedMaxBECount) { 1818 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1819 // Check whether Start+Step*MaxBECount has no signed overflow. 1820 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1821 SCEV::FlagAnyWrap, Depth + 1); 1822 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1823 SCEV::FlagAnyWrap, 1824 Depth + 1), 1825 WideTy, Depth + 1); 1826 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1827 const SCEV *WideMaxBECount = 1828 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1829 const SCEV *OperandExtendedAdd = 1830 getAddExpr(WideStart, 1831 getMulExpr(WideMaxBECount, 1832 getSignExtendExpr(Step, WideTy, Depth + 1), 1833 SCEV::FlagAnyWrap, Depth + 1), 1834 SCEV::FlagAnyWrap, Depth + 1); 1835 if (SAdd == OperandExtendedAdd) { 1836 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1837 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1838 // Return the expression with the addrec on the outside. 1839 return getAddRecExpr( 1840 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1841 Depth + 1), 1842 getSignExtendExpr(Step, Ty, Depth + 1), L, 1843 AR->getNoWrapFlags()); 1844 } 1845 // Similar to above, only this time treat the step value as unsigned. 1846 // This covers loops that count up with an unsigned step. 1847 OperandExtendedAdd = 1848 getAddExpr(WideStart, 1849 getMulExpr(WideMaxBECount, 1850 getZeroExtendExpr(Step, WideTy, Depth + 1), 1851 SCEV::FlagAnyWrap, Depth + 1), 1852 SCEV::FlagAnyWrap, Depth + 1); 1853 if (SAdd == OperandExtendedAdd) { 1854 // If AR wraps around then 1855 // 1856 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1857 // => SAdd != OperandExtendedAdd 1858 // 1859 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1860 // (SAdd == OperandExtendedAdd => AR is NW) 1861 1862 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1863 1864 // Return the expression with the addrec on the outside. 1865 return getAddRecExpr( 1866 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1867 Depth + 1), 1868 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1869 AR->getNoWrapFlags()); 1870 } 1871 } 1872 } 1873 1874 // Normally, in the cases we can prove no-overflow via a 1875 // backedge guarding condition, we can also compute a backedge 1876 // taken count for the loop. The exceptions are assumptions and 1877 // guards present in the loop -- SCEV is not great at exploiting 1878 // these to compute max backedge taken counts, but can still use 1879 // these to prove lack of overflow. Use this fact to avoid 1880 // doing extra work that may not pay off. 1881 1882 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1883 !AC.assumptions().empty()) { 1884 // If the backedge is guarded by a comparison with the pre-inc 1885 // value the addrec is safe. Also, if the entry is guarded by 1886 // a comparison with the start value and the backedge is 1887 // guarded by a comparison with the post-inc value, the addrec 1888 // is safe. 1889 ICmpInst::Predicate Pred; 1890 const SCEV *OverflowLimit = 1891 getSignedOverflowLimitForStep(Step, &Pred, this); 1892 if (OverflowLimit && 1893 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1894 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1895 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1896 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1897 return getAddRecExpr( 1898 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1899 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1900 } 1901 } 1902 1903 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 1904 // if D + (C - D + Step * n) could be proven to not signed wrap 1905 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1906 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1907 const APInt &C = SC->getAPInt(); 1908 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1909 if (D != 0) { 1910 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1911 const SCEV *SResidual = 1912 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1913 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1914 return getAddExpr(SSExtD, SSExtR, 1915 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1916 Depth + 1); 1917 } 1918 } 1919 1920 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1921 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1922 return getAddRecExpr( 1923 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1924 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1925 } 1926 } 1927 1928 // If the input value is provably positive and we could not simplify 1929 // away the sext build a zext instead. 1930 if (isKnownNonNegative(Op)) 1931 return getZeroExtendExpr(Op, Ty, Depth + 1); 1932 1933 // The cast wasn't folded; create an explicit cast node. 1934 // Recompute the insert position, as it may have been invalidated. 1935 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1936 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1937 Op, Ty); 1938 UniqueSCEVs.InsertNode(S, IP); 1939 addToLoopUseLists(S); 1940 return S; 1941 } 1942 1943 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1944 /// unspecified bits out to the given type. 1945 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1946 Type *Ty) { 1947 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1948 "This is not an extending conversion!"); 1949 assert(isSCEVable(Ty) && 1950 "This is not a conversion to a SCEVable type!"); 1951 Ty = getEffectiveSCEVType(Ty); 1952 1953 // Sign-extend negative constants. 1954 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1955 if (SC->getAPInt().isNegative()) 1956 return getSignExtendExpr(Op, Ty); 1957 1958 // Peel off a truncate cast. 1959 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1960 const SCEV *NewOp = T->getOperand(); 1961 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1962 return getAnyExtendExpr(NewOp, Ty); 1963 return getTruncateOrNoop(NewOp, Ty); 1964 } 1965 1966 // Next try a zext cast. If the cast is folded, use it. 1967 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1968 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1969 return ZExt; 1970 1971 // Next try a sext cast. If the cast is folded, use it. 1972 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1973 if (!isa<SCEVSignExtendExpr>(SExt)) 1974 return SExt; 1975 1976 // Force the cast to be folded into the operands of an addrec. 1977 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1978 SmallVector<const SCEV *, 4> Ops; 1979 for (const SCEV *Op : AR->operands()) 1980 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1981 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1982 } 1983 1984 // If the expression is obviously signed, use the sext cast value. 1985 if (isa<SCEVSMaxExpr>(Op)) 1986 return SExt; 1987 1988 // Absent any other information, use the zext cast value. 1989 return ZExt; 1990 } 1991 1992 /// Process the given Ops list, which is a list of operands to be added under 1993 /// the given scale, update the given map. This is a helper function for 1994 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1995 /// that would form an add expression like this: 1996 /// 1997 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1998 /// 1999 /// where A and B are constants, update the map with these values: 2000 /// 2001 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2002 /// 2003 /// and add 13 + A*B*29 to AccumulatedConstant. 2004 /// This will allow getAddRecExpr to produce this: 2005 /// 2006 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2007 /// 2008 /// This form often exposes folding opportunities that are hidden in 2009 /// the original operand list. 2010 /// 2011 /// Return true iff it appears that any interesting folding opportunities 2012 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2013 /// the common case where no interesting opportunities are present, and 2014 /// is also used as a check to avoid infinite recursion. 2015 static bool 2016 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2017 SmallVectorImpl<const SCEV *> &NewOps, 2018 APInt &AccumulatedConstant, 2019 const SCEV *const *Ops, size_t NumOperands, 2020 const APInt &Scale, 2021 ScalarEvolution &SE) { 2022 bool Interesting = false; 2023 2024 // Iterate over the add operands. They are sorted, with constants first. 2025 unsigned i = 0; 2026 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2027 ++i; 2028 // Pull a buried constant out to the outside. 2029 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2030 Interesting = true; 2031 AccumulatedConstant += Scale * C->getAPInt(); 2032 } 2033 2034 // Next comes everything else. We're especially interested in multiplies 2035 // here, but they're in the middle, so just visit the rest with one loop. 2036 for (; i != NumOperands; ++i) { 2037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2039 APInt NewScale = 2040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2042 // A multiplication of a constant with another add; recurse. 2043 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2044 Interesting |= 2045 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2046 Add->op_begin(), Add->getNumOperands(), 2047 NewScale, SE); 2048 } else { 2049 // A multiplication of a constant with some other value. Update 2050 // the map. 2051 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2052 const SCEV *Key = SE.getMulExpr(MulOps); 2053 auto Pair = M.insert({Key, NewScale}); 2054 if (Pair.second) { 2055 NewOps.push_back(Pair.first->first); 2056 } else { 2057 Pair.first->second += NewScale; 2058 // The map already had an entry for this value, which may indicate 2059 // a folding opportunity. 2060 Interesting = true; 2061 } 2062 } 2063 } else { 2064 // An ordinary operand. Update the map. 2065 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2066 M.insert({Ops[i], Scale}); 2067 if (Pair.second) { 2068 NewOps.push_back(Pair.first->first); 2069 } else { 2070 Pair.first->second += Scale; 2071 // The map already had an entry for this value, which may indicate 2072 // a folding opportunity. 2073 Interesting = true; 2074 } 2075 } 2076 } 2077 2078 return Interesting; 2079 } 2080 2081 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2082 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2083 // can't-overflow flags for the operation if possible. 2084 static SCEV::NoWrapFlags 2085 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2086 const ArrayRef<const SCEV *> Ops, 2087 SCEV::NoWrapFlags Flags) { 2088 using namespace std::placeholders; 2089 2090 using OBO = OverflowingBinaryOperator; 2091 2092 bool CanAnalyze = 2093 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2094 (void)CanAnalyze; 2095 assert(CanAnalyze && "don't call from other places!"); 2096 2097 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2098 SCEV::NoWrapFlags SignOrUnsignWrap = 2099 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2100 2101 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2102 auto IsKnownNonNegative = [&](const SCEV *S) { 2103 return SE->isKnownNonNegative(S); 2104 }; 2105 2106 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2107 Flags = 2108 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2109 2110 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2111 2112 if (SignOrUnsignWrap != SignOrUnsignMask && 2113 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2114 isa<SCEVConstant>(Ops[0])) { 2115 2116 auto Opcode = [&] { 2117 switch (Type) { 2118 case scAddExpr: 2119 return Instruction::Add; 2120 case scMulExpr: 2121 return Instruction::Mul; 2122 default: 2123 llvm_unreachable("Unexpected SCEV op."); 2124 } 2125 }(); 2126 2127 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2128 2129 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2130 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2131 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2132 Opcode, C, OBO::NoSignedWrap); 2133 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2134 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2135 } 2136 2137 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2138 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2139 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2140 Opcode, C, OBO::NoUnsignedWrap); 2141 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2142 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2143 } 2144 } 2145 2146 return Flags; 2147 } 2148 2149 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2150 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2151 } 2152 2153 /// Get a canonical add expression, or something simpler if possible. 2154 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2155 SCEV::NoWrapFlags Flags, 2156 unsigned Depth) { 2157 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2158 "only nuw or nsw allowed"); 2159 assert(!Ops.empty() && "Cannot get empty add!"); 2160 if (Ops.size() == 1) return Ops[0]; 2161 #ifndef NDEBUG 2162 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2163 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2164 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2165 "SCEVAddExpr operand types don't match!"); 2166 #endif 2167 2168 // Sort by complexity, this groups all similar expression types together. 2169 GroupByComplexity(Ops, &LI, DT); 2170 2171 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2172 2173 // If there are any constants, fold them together. 2174 unsigned Idx = 0; 2175 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2176 ++Idx; 2177 assert(Idx < Ops.size()); 2178 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2179 // We found two constants, fold them together! 2180 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2181 if (Ops.size() == 2) return Ops[0]; 2182 Ops.erase(Ops.begin()+1); // Erase the folded element 2183 LHSC = cast<SCEVConstant>(Ops[0]); 2184 } 2185 2186 // If we are left with a constant zero being added, strip it off. 2187 if (LHSC->getValue()->isZero()) { 2188 Ops.erase(Ops.begin()); 2189 --Idx; 2190 } 2191 2192 if (Ops.size() == 1) return Ops[0]; 2193 } 2194 2195 // Limit recursion calls depth. 2196 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2197 return getOrCreateAddExpr(Ops, Flags); 2198 2199 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2200 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2201 return S; 2202 } 2203 2204 // Okay, check to see if the same value occurs in the operand list more than 2205 // once. If so, merge them together into an multiply expression. Since we 2206 // sorted the list, these values are required to be adjacent. 2207 Type *Ty = Ops[0]->getType(); 2208 bool FoundMatch = false; 2209 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2210 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2211 // Scan ahead to count how many equal operands there are. 2212 unsigned Count = 2; 2213 while (i+Count != e && Ops[i+Count] == Ops[i]) 2214 ++Count; 2215 // Merge the values into a multiply. 2216 const SCEV *Scale = getConstant(Ty, Count); 2217 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2218 if (Ops.size() == Count) 2219 return Mul; 2220 Ops[i] = Mul; 2221 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2222 --i; e -= Count - 1; 2223 FoundMatch = true; 2224 } 2225 if (FoundMatch) 2226 return getAddExpr(Ops, Flags, Depth + 1); 2227 2228 // Check for truncates. If all the operands are truncated from the same 2229 // type, see if factoring out the truncate would permit the result to be 2230 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2231 // if the contents of the resulting outer trunc fold to something simple. 2232 auto FindTruncSrcType = [&]() -> Type * { 2233 // We're ultimately looking to fold an addrec of truncs and muls of only 2234 // constants and truncs, so if we find any other types of SCEV 2235 // as operands of the addrec then we bail and return nullptr here. 2236 // Otherwise, we return the type of the operand of a trunc that we find. 2237 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2238 return T->getOperand()->getType(); 2239 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2240 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2241 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2242 return T->getOperand()->getType(); 2243 } 2244 return nullptr; 2245 }; 2246 if (auto *SrcType = FindTruncSrcType()) { 2247 SmallVector<const SCEV *, 8> LargeOps; 2248 bool Ok = true; 2249 // Check all the operands to see if they can be represented in the 2250 // source type of the truncate. 2251 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2252 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2253 if (T->getOperand()->getType() != SrcType) { 2254 Ok = false; 2255 break; 2256 } 2257 LargeOps.push_back(T->getOperand()); 2258 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2259 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2260 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2261 SmallVector<const SCEV *, 8> LargeMulOps; 2262 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2263 if (const SCEVTruncateExpr *T = 2264 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2265 if (T->getOperand()->getType() != SrcType) { 2266 Ok = false; 2267 break; 2268 } 2269 LargeMulOps.push_back(T->getOperand()); 2270 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2271 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2272 } else { 2273 Ok = false; 2274 break; 2275 } 2276 } 2277 if (Ok) 2278 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2279 } else { 2280 Ok = false; 2281 break; 2282 } 2283 } 2284 if (Ok) { 2285 // Evaluate the expression in the larger type. 2286 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2287 // If it folds to something simple, use it. Otherwise, don't. 2288 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2289 return getTruncateExpr(Fold, Ty); 2290 } 2291 } 2292 2293 // Skip past any other cast SCEVs. 2294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2295 ++Idx; 2296 2297 // If there are add operands they would be next. 2298 if (Idx < Ops.size()) { 2299 bool DeletedAdd = false; 2300 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2301 if (Ops.size() > AddOpsInlineThreshold || 2302 Add->getNumOperands() > AddOpsInlineThreshold) 2303 break; 2304 // If we have an add, expand the add operands onto the end of the operands 2305 // list. 2306 Ops.erase(Ops.begin()+Idx); 2307 Ops.append(Add->op_begin(), Add->op_end()); 2308 DeletedAdd = true; 2309 } 2310 2311 // If we deleted at least one add, we added operands to the end of the list, 2312 // and they are not necessarily sorted. Recurse to resort and resimplify 2313 // any operands we just acquired. 2314 if (DeletedAdd) 2315 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2316 } 2317 2318 // Skip over the add expression until we get to a multiply. 2319 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2320 ++Idx; 2321 2322 // Check to see if there are any folding opportunities present with 2323 // operands multiplied by constant values. 2324 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2325 uint64_t BitWidth = getTypeSizeInBits(Ty); 2326 DenseMap<const SCEV *, APInt> M; 2327 SmallVector<const SCEV *, 8> NewOps; 2328 APInt AccumulatedConstant(BitWidth, 0); 2329 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2330 Ops.data(), Ops.size(), 2331 APInt(BitWidth, 1), *this)) { 2332 struct APIntCompare { 2333 bool operator()(const APInt &LHS, const APInt &RHS) const { 2334 return LHS.ult(RHS); 2335 } 2336 }; 2337 2338 // Some interesting folding opportunity is present, so its worthwhile to 2339 // re-generate the operands list. Group the operands by constant scale, 2340 // to avoid multiplying by the same constant scale multiple times. 2341 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2342 for (const SCEV *NewOp : NewOps) 2343 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2344 // Re-generate the operands list. 2345 Ops.clear(); 2346 if (AccumulatedConstant != 0) 2347 Ops.push_back(getConstant(AccumulatedConstant)); 2348 for (auto &MulOp : MulOpLists) 2349 if (MulOp.first != 0) 2350 Ops.push_back(getMulExpr( 2351 getConstant(MulOp.first), 2352 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2353 SCEV::FlagAnyWrap, Depth + 1)); 2354 if (Ops.empty()) 2355 return getZero(Ty); 2356 if (Ops.size() == 1) 2357 return Ops[0]; 2358 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2359 } 2360 } 2361 2362 // If we are adding something to a multiply expression, make sure the 2363 // something is not already an operand of the multiply. If so, merge it into 2364 // the multiply. 2365 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2366 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2367 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2368 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2369 if (isa<SCEVConstant>(MulOpSCEV)) 2370 continue; 2371 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2372 if (MulOpSCEV == Ops[AddOp]) { 2373 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2374 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2375 if (Mul->getNumOperands() != 2) { 2376 // If the multiply has more than two operands, we must get the 2377 // Y*Z term. 2378 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2379 Mul->op_begin()+MulOp); 2380 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2381 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2382 } 2383 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2384 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2385 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2386 SCEV::FlagAnyWrap, Depth + 1); 2387 if (Ops.size() == 2) return OuterMul; 2388 if (AddOp < Idx) { 2389 Ops.erase(Ops.begin()+AddOp); 2390 Ops.erase(Ops.begin()+Idx-1); 2391 } else { 2392 Ops.erase(Ops.begin()+Idx); 2393 Ops.erase(Ops.begin()+AddOp-1); 2394 } 2395 Ops.push_back(OuterMul); 2396 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2397 } 2398 2399 // Check this multiply against other multiplies being added together. 2400 for (unsigned OtherMulIdx = Idx+1; 2401 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2402 ++OtherMulIdx) { 2403 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2404 // If MulOp occurs in OtherMul, we can fold the two multiplies 2405 // together. 2406 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2407 OMulOp != e; ++OMulOp) 2408 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2409 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2410 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2411 if (Mul->getNumOperands() != 2) { 2412 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2413 Mul->op_begin()+MulOp); 2414 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2415 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2416 } 2417 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2418 if (OtherMul->getNumOperands() != 2) { 2419 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2420 OtherMul->op_begin()+OMulOp); 2421 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2422 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2423 } 2424 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2425 const SCEV *InnerMulSum = 2426 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2427 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2428 SCEV::FlagAnyWrap, Depth + 1); 2429 if (Ops.size() == 2) return OuterMul; 2430 Ops.erase(Ops.begin()+Idx); 2431 Ops.erase(Ops.begin()+OtherMulIdx-1); 2432 Ops.push_back(OuterMul); 2433 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2434 } 2435 } 2436 } 2437 } 2438 2439 // If there are any add recurrences in the operands list, see if any other 2440 // added values are loop invariant. If so, we can fold them into the 2441 // recurrence. 2442 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2443 ++Idx; 2444 2445 // Scan over all recurrences, trying to fold loop invariants into them. 2446 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2447 // Scan all of the other operands to this add and add them to the vector if 2448 // they are loop invariant w.r.t. the recurrence. 2449 SmallVector<const SCEV *, 8> LIOps; 2450 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2451 const Loop *AddRecLoop = AddRec->getLoop(); 2452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2453 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2454 LIOps.push_back(Ops[i]); 2455 Ops.erase(Ops.begin()+i); 2456 --i; --e; 2457 } 2458 2459 // If we found some loop invariants, fold them into the recurrence. 2460 if (!LIOps.empty()) { 2461 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2462 LIOps.push_back(AddRec->getStart()); 2463 2464 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2465 AddRec->op_end()); 2466 // This follows from the fact that the no-wrap flags on the outer add 2467 // expression are applicable on the 0th iteration, when the add recurrence 2468 // will be equal to its start value. 2469 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2470 2471 // Build the new addrec. Propagate the NUW and NSW flags if both the 2472 // outer add and the inner addrec are guaranteed to have no overflow. 2473 // Always propagate NW. 2474 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2475 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2476 2477 // If all of the other operands were loop invariant, we are done. 2478 if (Ops.size() == 1) return NewRec; 2479 2480 // Otherwise, add the folded AddRec by the non-invariant parts. 2481 for (unsigned i = 0;; ++i) 2482 if (Ops[i] == AddRec) { 2483 Ops[i] = NewRec; 2484 break; 2485 } 2486 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2487 } 2488 2489 // Okay, if there weren't any loop invariants to be folded, check to see if 2490 // there are multiple AddRec's with the same loop induction variable being 2491 // added together. If so, we can fold them. 2492 for (unsigned OtherIdx = Idx+1; 2493 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2494 ++OtherIdx) { 2495 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2496 // so that the 1st found AddRecExpr is dominated by all others. 2497 assert(DT.dominates( 2498 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2499 AddRec->getLoop()->getHeader()) && 2500 "AddRecExprs are not sorted in reverse dominance order?"); 2501 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2502 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2503 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2504 AddRec->op_end()); 2505 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2506 ++OtherIdx) { 2507 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2508 if (OtherAddRec->getLoop() == AddRecLoop) { 2509 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2510 i != e; ++i) { 2511 if (i >= AddRecOps.size()) { 2512 AddRecOps.append(OtherAddRec->op_begin()+i, 2513 OtherAddRec->op_end()); 2514 break; 2515 } 2516 SmallVector<const SCEV *, 2> TwoOps = { 2517 AddRecOps[i], OtherAddRec->getOperand(i)}; 2518 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2519 } 2520 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2521 } 2522 } 2523 // Step size has changed, so we cannot guarantee no self-wraparound. 2524 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2526 } 2527 } 2528 2529 // Otherwise couldn't fold anything into this recurrence. Move onto the 2530 // next one. 2531 } 2532 2533 // Okay, it looks like we really DO need an add expr. Check to see if we 2534 // already have one, otherwise create a new one. 2535 return getOrCreateAddExpr(Ops, Flags); 2536 } 2537 2538 const SCEV * 2539 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2540 SCEV::NoWrapFlags Flags) { 2541 FoldingSetNodeID ID; 2542 ID.AddInteger(scAddExpr); 2543 for (const SCEV *Op : Ops) 2544 ID.AddPointer(Op); 2545 void *IP = nullptr; 2546 SCEVAddExpr *S = 2547 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2548 if (!S) { 2549 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2550 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2551 S = new (SCEVAllocator) 2552 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2553 UniqueSCEVs.InsertNode(S, IP); 2554 addToLoopUseLists(S); 2555 } 2556 S->setNoWrapFlags(Flags); 2557 return S; 2558 } 2559 2560 const SCEV * 2561 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2562 const Loop *L, SCEV::NoWrapFlags Flags) { 2563 FoldingSetNodeID ID; 2564 ID.AddInteger(scAddRecExpr); 2565 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2566 ID.AddPointer(Ops[i]); 2567 ID.AddPointer(L); 2568 void *IP = nullptr; 2569 SCEVAddRecExpr *S = 2570 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2571 if (!S) { 2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2574 S = new (SCEVAllocator) 2575 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2576 UniqueSCEVs.InsertNode(S, IP); 2577 addToLoopUseLists(S); 2578 } 2579 S->setNoWrapFlags(Flags); 2580 return S; 2581 } 2582 2583 const SCEV * 2584 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2585 SCEV::NoWrapFlags Flags) { 2586 FoldingSetNodeID ID; 2587 ID.AddInteger(scMulExpr); 2588 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2589 ID.AddPointer(Ops[i]); 2590 void *IP = nullptr; 2591 SCEVMulExpr *S = 2592 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2593 if (!S) { 2594 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2595 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2596 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2597 O, Ops.size()); 2598 UniqueSCEVs.InsertNode(S, IP); 2599 addToLoopUseLists(S); 2600 } 2601 S->setNoWrapFlags(Flags); 2602 return S; 2603 } 2604 2605 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2606 uint64_t k = i*j; 2607 if (j > 1 && k / j != i) Overflow = true; 2608 return k; 2609 } 2610 2611 /// Compute the result of "n choose k", the binomial coefficient. If an 2612 /// intermediate computation overflows, Overflow will be set and the return will 2613 /// be garbage. Overflow is not cleared on absence of overflow. 2614 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2615 // We use the multiplicative formula: 2616 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2617 // At each iteration, we take the n-th term of the numeral and divide by the 2618 // (k-n)th term of the denominator. This division will always produce an 2619 // integral result, and helps reduce the chance of overflow in the 2620 // intermediate computations. However, we can still overflow even when the 2621 // final result would fit. 2622 2623 if (n == 0 || n == k) return 1; 2624 if (k > n) return 0; 2625 2626 if (k > n/2) 2627 k = n-k; 2628 2629 uint64_t r = 1; 2630 for (uint64_t i = 1; i <= k; ++i) { 2631 r = umul_ov(r, n-(i-1), Overflow); 2632 r /= i; 2633 } 2634 return r; 2635 } 2636 2637 /// Determine if any of the operands in this SCEV are a constant or if 2638 /// any of the add or multiply expressions in this SCEV contain a constant. 2639 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2640 struct FindConstantInAddMulChain { 2641 bool FoundConstant = false; 2642 2643 bool follow(const SCEV *S) { 2644 FoundConstant |= isa<SCEVConstant>(S); 2645 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2646 } 2647 2648 bool isDone() const { 2649 return FoundConstant; 2650 } 2651 }; 2652 2653 FindConstantInAddMulChain F; 2654 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2655 ST.visitAll(StartExpr); 2656 return F.FoundConstant; 2657 } 2658 2659 /// Get a canonical multiply expression, or something simpler if possible. 2660 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2661 SCEV::NoWrapFlags Flags, 2662 unsigned Depth) { 2663 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2664 "only nuw or nsw allowed"); 2665 assert(!Ops.empty() && "Cannot get empty mul!"); 2666 if (Ops.size() == 1) return Ops[0]; 2667 #ifndef NDEBUG 2668 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2669 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2670 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2671 "SCEVMulExpr operand types don't match!"); 2672 #endif 2673 2674 // Sort by complexity, this groups all similar expression types together. 2675 GroupByComplexity(Ops, &LI, DT); 2676 2677 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2678 2679 // Limit recursion calls depth, but fold all-constant expressions. 2680 // `Ops` is sorted, so it's enough to check just last one. 2681 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) && 2682 !isa<SCEVConstant>(Ops.back())) 2683 return getOrCreateMulExpr(Ops, Flags); 2684 2685 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2686 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2687 return S; 2688 } 2689 2690 // If there are any constants, fold them together. 2691 unsigned Idx = 0; 2692 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2693 2694 if (Ops.size() == 2) 2695 // C1*(C2+V) -> C1*C2 + C1*V 2696 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2697 // If any of Add's ops are Adds or Muls with a constant, apply this 2698 // transformation as well. 2699 // 2700 // TODO: There are some cases where this transformation is not 2701 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2702 // this transformation should be narrowed down. 2703 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2704 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2705 SCEV::FlagAnyWrap, Depth + 1), 2706 getMulExpr(LHSC, Add->getOperand(1), 2707 SCEV::FlagAnyWrap, Depth + 1), 2708 SCEV::FlagAnyWrap, Depth + 1); 2709 2710 ++Idx; 2711 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2712 // We found two constants, fold them together! 2713 ConstantInt *Fold = 2714 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2715 Ops[0] = getConstant(Fold); 2716 Ops.erase(Ops.begin()+1); // Erase the folded element 2717 if (Ops.size() == 1) return Ops[0]; 2718 LHSC = cast<SCEVConstant>(Ops[0]); 2719 } 2720 2721 // If we are left with a constant one being multiplied, strip it off. 2722 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2723 Ops.erase(Ops.begin()); 2724 --Idx; 2725 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2726 // If we have a multiply of zero, it will always be zero. 2727 return Ops[0]; 2728 } else if (Ops[0]->isAllOnesValue()) { 2729 // If we have a mul by -1 of an add, try distributing the -1 among the 2730 // add operands. 2731 if (Ops.size() == 2) { 2732 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2733 SmallVector<const SCEV *, 4> NewOps; 2734 bool AnyFolded = false; 2735 for (const SCEV *AddOp : Add->operands()) { 2736 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2737 Depth + 1); 2738 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2739 NewOps.push_back(Mul); 2740 } 2741 if (AnyFolded) 2742 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2743 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2744 // Negation preserves a recurrence's no self-wrap property. 2745 SmallVector<const SCEV *, 4> Operands; 2746 for (const SCEV *AddRecOp : AddRec->operands()) 2747 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2748 Depth + 1)); 2749 2750 return getAddRecExpr(Operands, AddRec->getLoop(), 2751 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2752 } 2753 } 2754 } 2755 2756 if (Ops.size() == 1) 2757 return Ops[0]; 2758 } 2759 2760 // Skip over the add expression until we get to a multiply. 2761 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2762 ++Idx; 2763 2764 // If there are mul operands inline them all into this expression. 2765 if (Idx < Ops.size()) { 2766 bool DeletedMul = false; 2767 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2768 if (Ops.size() > MulOpsInlineThreshold) 2769 break; 2770 // If we have an mul, expand the mul operands onto the end of the 2771 // operands list. 2772 Ops.erase(Ops.begin()+Idx); 2773 Ops.append(Mul->op_begin(), Mul->op_end()); 2774 DeletedMul = true; 2775 } 2776 2777 // If we deleted at least one mul, we added operands to the end of the 2778 // list, and they are not necessarily sorted. Recurse to resort and 2779 // resimplify any operands we just acquired. 2780 if (DeletedMul) 2781 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2782 } 2783 2784 // If there are any add recurrences in the operands list, see if any other 2785 // added values are loop invariant. If so, we can fold them into the 2786 // recurrence. 2787 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2788 ++Idx; 2789 2790 // Scan over all recurrences, trying to fold loop invariants into them. 2791 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2792 // Scan all of the other operands to this mul and add them to the vector 2793 // if they are loop invariant w.r.t. the recurrence. 2794 SmallVector<const SCEV *, 8> LIOps; 2795 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2796 const Loop *AddRecLoop = AddRec->getLoop(); 2797 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2798 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2799 LIOps.push_back(Ops[i]); 2800 Ops.erase(Ops.begin()+i); 2801 --i; --e; 2802 } 2803 2804 // If we found some loop invariants, fold them into the recurrence. 2805 if (!LIOps.empty()) { 2806 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2807 SmallVector<const SCEV *, 4> NewOps; 2808 NewOps.reserve(AddRec->getNumOperands()); 2809 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2810 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2811 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2812 SCEV::FlagAnyWrap, Depth + 1)); 2813 2814 // Build the new addrec. Propagate the NUW and NSW flags if both the 2815 // outer mul and the inner addrec are guaranteed to have no overflow. 2816 // 2817 // No self-wrap cannot be guaranteed after changing the step size, but 2818 // will be inferred if either NUW or NSW is true. 2819 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2820 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2821 2822 // If all of the other operands were loop invariant, we are done. 2823 if (Ops.size() == 1) return NewRec; 2824 2825 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2826 for (unsigned i = 0;; ++i) 2827 if (Ops[i] == AddRec) { 2828 Ops[i] = NewRec; 2829 break; 2830 } 2831 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2832 } 2833 2834 // Okay, if there weren't any loop invariants to be folded, check to see 2835 // if there are multiple AddRec's with the same loop induction variable 2836 // being multiplied together. If so, we can fold them. 2837 2838 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2839 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2840 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2841 // ]]],+,...up to x=2n}. 2842 // Note that the arguments to choose() are always integers with values 2843 // known at compile time, never SCEV objects. 2844 // 2845 // The implementation avoids pointless extra computations when the two 2846 // addrec's are of different length (mathematically, it's equivalent to 2847 // an infinite stream of zeros on the right). 2848 bool OpsModified = false; 2849 for (unsigned OtherIdx = Idx+1; 2850 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2851 ++OtherIdx) { 2852 const SCEVAddRecExpr *OtherAddRec = 2853 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2854 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2855 continue; 2856 2857 // Limit max number of arguments to avoid creation of unreasonably big 2858 // SCEVAddRecs with very complex operands. 2859 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2860 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2861 continue; 2862 2863 bool Overflow = false; 2864 Type *Ty = AddRec->getType(); 2865 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2866 SmallVector<const SCEV*, 7> AddRecOps; 2867 for (int x = 0, xe = AddRec->getNumOperands() + 2868 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2869 SmallVector <const SCEV *, 7> SumOps; 2870 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2871 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2872 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2873 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2874 z < ze && !Overflow; ++z) { 2875 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2876 uint64_t Coeff; 2877 if (LargerThan64Bits) 2878 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2879 else 2880 Coeff = Coeff1*Coeff2; 2881 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2882 const SCEV *Term1 = AddRec->getOperand(y-z); 2883 const SCEV *Term2 = OtherAddRec->getOperand(z); 2884 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 2885 SCEV::FlagAnyWrap, Depth + 1)); 2886 } 2887 } 2888 if (SumOps.empty()) 2889 SumOps.push_back(getZero(Ty)); 2890 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 2891 } 2892 if (!Overflow) { 2893 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 2894 SCEV::FlagAnyWrap); 2895 if (Ops.size() == 2) return NewAddRec; 2896 Ops[Idx] = NewAddRec; 2897 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2898 OpsModified = true; 2899 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2900 if (!AddRec) 2901 break; 2902 } 2903 } 2904 if (OpsModified) 2905 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2906 2907 // Otherwise couldn't fold anything into this recurrence. Move onto the 2908 // next one. 2909 } 2910 2911 // Okay, it looks like we really DO need an mul expr. Check to see if we 2912 // already have one, otherwise create a new one. 2913 return getOrCreateMulExpr(Ops, Flags); 2914 } 2915 2916 /// Represents an unsigned remainder expression based on unsigned division. 2917 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2918 const SCEV *RHS) { 2919 assert(getEffectiveSCEVType(LHS->getType()) == 2920 getEffectiveSCEVType(RHS->getType()) && 2921 "SCEVURemExpr operand types don't match!"); 2922 2923 // Short-circuit easy cases 2924 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2925 // If constant is one, the result is trivial 2926 if (RHSC->getValue()->isOne()) 2927 return getZero(LHS->getType()); // X urem 1 --> 0 2928 2929 // If constant is a power of two, fold into a zext(trunc(LHS)). 2930 if (RHSC->getAPInt().isPowerOf2()) { 2931 Type *FullTy = LHS->getType(); 2932 Type *TruncTy = 2933 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2934 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2935 } 2936 } 2937 2938 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2939 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2940 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2941 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2942 } 2943 2944 /// Get a canonical unsigned division expression, or something simpler if 2945 /// possible. 2946 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2947 const SCEV *RHS) { 2948 assert(getEffectiveSCEVType(LHS->getType()) == 2949 getEffectiveSCEVType(RHS->getType()) && 2950 "SCEVUDivExpr operand types don't match!"); 2951 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scUDivExpr); 2954 ID.AddPointer(LHS); 2955 ID.AddPointer(RHS); 2956 void *IP = nullptr; 2957 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 2958 return S; 2959 2960 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2961 if (RHSC->getValue()->isOne()) 2962 return LHS; // X udiv 1 --> x 2963 // If the denominator is zero, the result of the udiv is undefined. Don't 2964 // try to analyze it, because the resolution chosen here may differ from 2965 // the resolution chosen in other parts of the compiler. 2966 if (!RHSC->getValue()->isZero()) { 2967 // Determine if the division can be folded into the operands of 2968 // its operands. 2969 // TODO: Generalize this to non-constants by using known-bits information. 2970 Type *Ty = LHS->getType(); 2971 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2972 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2973 // For non-power-of-two values, effectively round the value up to the 2974 // nearest power of two. 2975 if (!RHSC->getAPInt().isPowerOf2()) 2976 ++MaxShiftAmt; 2977 IntegerType *ExtTy = 2978 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2980 if (const SCEVConstant *Step = 2981 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2982 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2983 const APInt &StepInt = Step->getAPInt(); 2984 const APInt &DivInt = RHSC->getAPInt(); 2985 if (!StepInt.urem(DivInt) && 2986 getZeroExtendExpr(AR, ExtTy) == 2987 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2988 getZeroExtendExpr(Step, ExtTy), 2989 AR->getLoop(), SCEV::FlagAnyWrap)) { 2990 SmallVector<const SCEV *, 4> Operands; 2991 for (const SCEV *Op : AR->operands()) 2992 Operands.push_back(getUDivExpr(Op, RHS)); 2993 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2994 } 2995 /// Get a canonical UDivExpr for a recurrence. 2996 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2997 // We can currently only fold X%N if X is constant. 2998 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2999 if (StartC && !DivInt.urem(StepInt) && 3000 getZeroExtendExpr(AR, ExtTy) == 3001 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3002 getZeroExtendExpr(Step, ExtTy), 3003 AR->getLoop(), SCEV::FlagAnyWrap)) { 3004 const APInt &StartInt = StartC->getAPInt(); 3005 const APInt &StartRem = StartInt.urem(StepInt); 3006 if (StartRem != 0) { 3007 const SCEV *NewLHS = 3008 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3009 AR->getLoop(), SCEV::FlagNW); 3010 if (LHS != NewLHS) { 3011 LHS = NewLHS; 3012 3013 // Reset the ID to include the new LHS, and check if it is 3014 // already cached. 3015 ID.clear(); 3016 ID.AddInteger(scUDivExpr); 3017 ID.AddPointer(LHS); 3018 ID.AddPointer(RHS); 3019 IP = nullptr; 3020 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3021 return S; 3022 } 3023 } 3024 } 3025 } 3026 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3027 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3028 SmallVector<const SCEV *, 4> Operands; 3029 for (const SCEV *Op : M->operands()) 3030 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3031 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3032 // Find an operand that's safely divisible. 3033 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3034 const SCEV *Op = M->getOperand(i); 3035 const SCEV *Div = getUDivExpr(Op, RHSC); 3036 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3037 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3038 M->op_end()); 3039 Operands[i] = Div; 3040 return getMulExpr(Operands); 3041 } 3042 } 3043 } 3044 3045 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3046 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3047 if (auto *DivisorConstant = 3048 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3049 bool Overflow = false; 3050 APInt NewRHS = 3051 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3052 if (Overflow) { 3053 return getConstant(RHSC->getType(), 0, false); 3054 } 3055 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3056 } 3057 } 3058 3059 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3060 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3061 SmallVector<const SCEV *, 4> Operands; 3062 for (const SCEV *Op : A->operands()) 3063 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3064 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3065 Operands.clear(); 3066 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3067 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3068 if (isa<SCEVUDivExpr>(Op) || 3069 getMulExpr(Op, RHS) != A->getOperand(i)) 3070 break; 3071 Operands.push_back(Op); 3072 } 3073 if (Operands.size() == A->getNumOperands()) 3074 return getAddExpr(Operands); 3075 } 3076 } 3077 3078 // Fold if both operands are constant. 3079 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3080 Constant *LHSCV = LHSC->getValue(); 3081 Constant *RHSCV = RHSC->getValue(); 3082 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3083 RHSCV))); 3084 } 3085 } 3086 } 3087 3088 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3089 // changes). Make sure we get a new one. 3090 IP = nullptr; 3091 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3092 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3093 LHS, RHS); 3094 UniqueSCEVs.InsertNode(S, IP); 3095 addToLoopUseLists(S); 3096 return S; 3097 } 3098 3099 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3100 APInt A = C1->getAPInt().abs(); 3101 APInt B = C2->getAPInt().abs(); 3102 uint32_t ABW = A.getBitWidth(); 3103 uint32_t BBW = B.getBitWidth(); 3104 3105 if (ABW > BBW) 3106 B = B.zext(ABW); 3107 else if (ABW < BBW) 3108 A = A.zext(BBW); 3109 3110 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3111 } 3112 3113 /// Get a canonical unsigned division expression, or something simpler if 3114 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3115 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3116 /// it's not exact because the udiv may be clearing bits. 3117 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3118 const SCEV *RHS) { 3119 // TODO: we could try to find factors in all sorts of things, but for now we 3120 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3121 // end of this file for inspiration. 3122 3123 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3124 if (!Mul || !Mul->hasNoUnsignedWrap()) 3125 return getUDivExpr(LHS, RHS); 3126 3127 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3128 // If the mulexpr multiplies by a constant, then that constant must be the 3129 // first element of the mulexpr. 3130 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3131 if (LHSCst == RHSCst) { 3132 SmallVector<const SCEV *, 2> Operands; 3133 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3134 return getMulExpr(Operands); 3135 } 3136 3137 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3138 // that there's a factor provided by one of the other terms. We need to 3139 // check. 3140 APInt Factor = gcd(LHSCst, RHSCst); 3141 if (!Factor.isIntN(1)) { 3142 LHSCst = 3143 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3144 RHSCst = 3145 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3146 SmallVector<const SCEV *, 2> Operands; 3147 Operands.push_back(LHSCst); 3148 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3149 LHS = getMulExpr(Operands); 3150 RHS = RHSCst; 3151 Mul = dyn_cast<SCEVMulExpr>(LHS); 3152 if (!Mul) 3153 return getUDivExactExpr(LHS, RHS); 3154 } 3155 } 3156 } 3157 3158 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3159 if (Mul->getOperand(i) == RHS) { 3160 SmallVector<const SCEV *, 2> Operands; 3161 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3162 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3163 return getMulExpr(Operands); 3164 } 3165 } 3166 3167 return getUDivExpr(LHS, RHS); 3168 } 3169 3170 /// Get an add recurrence expression for the specified loop. Simplify the 3171 /// expression as much as possible. 3172 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3173 const Loop *L, 3174 SCEV::NoWrapFlags Flags) { 3175 SmallVector<const SCEV *, 4> Operands; 3176 Operands.push_back(Start); 3177 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3178 if (StepChrec->getLoop() == L) { 3179 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3180 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3181 } 3182 3183 Operands.push_back(Step); 3184 return getAddRecExpr(Operands, L, Flags); 3185 } 3186 3187 /// Get an add recurrence expression for the specified loop. Simplify the 3188 /// expression as much as possible. 3189 const SCEV * 3190 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3191 const Loop *L, SCEV::NoWrapFlags Flags) { 3192 if (Operands.size() == 1) return Operands[0]; 3193 #ifndef NDEBUG 3194 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3195 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3196 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3197 "SCEVAddRecExpr operand types don't match!"); 3198 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3199 assert(isLoopInvariant(Operands[i], L) && 3200 "SCEVAddRecExpr operand is not loop-invariant!"); 3201 #endif 3202 3203 if (Operands.back()->isZero()) { 3204 Operands.pop_back(); 3205 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3206 } 3207 3208 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3209 // use that information to infer NUW and NSW flags. However, computing a 3210 // BE count requires calling getAddRecExpr, so we may not yet have a 3211 // meaningful BE count at this point (and if we don't, we'd be stuck 3212 // with a SCEVCouldNotCompute as the cached BE count). 3213 3214 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3215 3216 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3217 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3218 const Loop *NestedLoop = NestedAR->getLoop(); 3219 if (L->contains(NestedLoop) 3220 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3221 : (!NestedLoop->contains(L) && 3222 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3223 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3224 NestedAR->op_end()); 3225 Operands[0] = NestedAR->getStart(); 3226 // AddRecs require their operands be loop-invariant with respect to their 3227 // loops. Don't perform this transformation if it would break this 3228 // requirement. 3229 bool AllInvariant = all_of( 3230 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3231 3232 if (AllInvariant) { 3233 // Create a recurrence for the outer loop with the same step size. 3234 // 3235 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3236 // inner recurrence has the same property. 3237 SCEV::NoWrapFlags OuterFlags = 3238 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3239 3240 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3241 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3242 return isLoopInvariant(Op, NestedLoop); 3243 }); 3244 3245 if (AllInvariant) { 3246 // Ok, both add recurrences are valid after the transformation. 3247 // 3248 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3249 // the outer recurrence has the same property. 3250 SCEV::NoWrapFlags InnerFlags = 3251 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3252 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3253 } 3254 } 3255 // Reset Operands to its original state. 3256 Operands[0] = NestedAR; 3257 } 3258 } 3259 3260 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3261 // already have one, otherwise create a new one. 3262 return getOrCreateAddRecExpr(Operands, L, Flags); 3263 } 3264 3265 const SCEV * 3266 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3267 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3268 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3269 // getSCEV(Base)->getType() has the same address space as Base->getType() 3270 // because SCEV::getType() preserves the address space. 3271 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3272 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3273 // instruction to its SCEV, because the Instruction may be guarded by control 3274 // flow and the no-overflow bits may not be valid for the expression in any 3275 // context. This can be fixed similarly to how these flags are handled for 3276 // adds. 3277 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3278 : SCEV::FlagAnyWrap; 3279 3280 const SCEV *TotalOffset = getZero(IntIdxTy); 3281 Type *CurTy = GEP->getType(); 3282 bool FirstIter = true; 3283 for (const SCEV *IndexExpr : IndexExprs) { 3284 // Compute the (potentially symbolic) offset in bytes for this index. 3285 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3286 // For a struct, add the member offset. 3287 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3288 unsigned FieldNo = Index->getZExtValue(); 3289 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3290 3291 // Add the field offset to the running total offset. 3292 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3293 3294 // Update CurTy to the type of the field at Index. 3295 CurTy = STy->getTypeAtIndex(Index); 3296 } else { 3297 // Update CurTy to its element type. 3298 if (FirstIter) { 3299 assert(isa<PointerType>(CurTy) && 3300 "The first index of a GEP indexes a pointer"); 3301 CurTy = GEP->getSourceElementType(); 3302 FirstIter = false; 3303 } else { 3304 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3305 } 3306 // For an array, add the element offset, explicitly scaled. 3307 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3308 // Getelementptr indices are signed. 3309 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3310 3311 // Multiply the index by the element size to compute the element offset. 3312 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3313 3314 // Add the element offset to the running total offset. 3315 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3316 } 3317 } 3318 3319 // Add the total offset from all the GEP indices to the base. 3320 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3321 } 3322 3323 std::tuple<SCEV *, FoldingSetNodeID, void *> 3324 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3325 ArrayRef<const SCEV *> Ops) { 3326 FoldingSetNodeID ID; 3327 void *IP = nullptr; 3328 ID.AddInteger(SCEVType); 3329 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3330 ID.AddPointer(Ops[i]); 3331 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3332 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3333 } 3334 3335 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3336 SmallVectorImpl<const SCEV *> &Ops) { 3337 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3338 if (Ops.size() == 1) return Ops[0]; 3339 #ifndef NDEBUG 3340 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3341 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3342 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3343 "Operand types don't match!"); 3344 #endif 3345 3346 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3347 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3348 3349 // Sort by complexity, this groups all similar expression types together. 3350 GroupByComplexity(Ops, &LI, DT); 3351 3352 // Check if we have created the same expression before. 3353 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3354 return S; 3355 } 3356 3357 // If there are any constants, fold them together. 3358 unsigned Idx = 0; 3359 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3360 ++Idx; 3361 assert(Idx < Ops.size()); 3362 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3363 if (Kind == scSMaxExpr) 3364 return APIntOps::smax(LHS, RHS); 3365 else if (Kind == scSMinExpr) 3366 return APIntOps::smin(LHS, RHS); 3367 else if (Kind == scUMaxExpr) 3368 return APIntOps::umax(LHS, RHS); 3369 else if (Kind == scUMinExpr) 3370 return APIntOps::umin(LHS, RHS); 3371 llvm_unreachable("Unknown SCEV min/max opcode"); 3372 }; 3373 3374 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3375 // We found two constants, fold them together! 3376 ConstantInt *Fold = ConstantInt::get( 3377 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3378 Ops[0] = getConstant(Fold); 3379 Ops.erase(Ops.begin()+1); // Erase the folded element 3380 if (Ops.size() == 1) return Ops[0]; 3381 LHSC = cast<SCEVConstant>(Ops[0]); 3382 } 3383 3384 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3385 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3386 3387 if (IsMax ? IsMinV : IsMaxV) { 3388 // If we are left with a constant minimum(/maximum)-int, strip it off. 3389 Ops.erase(Ops.begin()); 3390 --Idx; 3391 } else if (IsMax ? IsMaxV : IsMinV) { 3392 // If we have a max(/min) with a constant maximum(/minimum)-int, 3393 // it will always be the extremum. 3394 return LHSC; 3395 } 3396 3397 if (Ops.size() == 1) return Ops[0]; 3398 } 3399 3400 // Find the first operation of the same kind 3401 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3402 ++Idx; 3403 3404 // Check to see if one of the operands is of the same kind. If so, expand its 3405 // operands onto our operand list, and recurse to simplify. 3406 if (Idx < Ops.size()) { 3407 bool DeletedAny = false; 3408 while (Ops[Idx]->getSCEVType() == Kind) { 3409 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3410 Ops.erase(Ops.begin()+Idx); 3411 Ops.append(SMME->op_begin(), SMME->op_end()); 3412 DeletedAny = true; 3413 } 3414 3415 if (DeletedAny) 3416 return getMinMaxExpr(Kind, Ops); 3417 } 3418 3419 // Okay, check to see if the same value occurs in the operand list twice. If 3420 // so, delete one. Since we sorted the list, these values are required to 3421 // be adjacent. 3422 llvm::CmpInst::Predicate GEPred = 3423 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3424 llvm::CmpInst::Predicate LEPred = 3425 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3426 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3427 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3428 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3429 if (Ops[i] == Ops[i + 1] || 3430 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3431 // X op Y op Y --> X op Y 3432 // X op Y --> X, if we know X, Y are ordered appropriately 3433 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3434 --i; 3435 --e; 3436 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3437 Ops[i + 1])) { 3438 // X op Y --> Y, if we know X, Y are ordered appropriately 3439 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3440 --i; 3441 --e; 3442 } 3443 } 3444 3445 if (Ops.size() == 1) return Ops[0]; 3446 3447 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3448 3449 // Okay, it looks like we really DO need an expr. Check to see if we 3450 // already have one, otherwise create a new one. 3451 const SCEV *ExistingSCEV; 3452 FoldingSetNodeID ID; 3453 void *IP; 3454 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3455 if (ExistingSCEV) 3456 return ExistingSCEV; 3457 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3458 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3459 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3460 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3461 3462 UniqueSCEVs.InsertNode(S, IP); 3463 addToLoopUseLists(S); 3464 return S; 3465 } 3466 3467 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3468 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3469 return getSMaxExpr(Ops); 3470 } 3471 3472 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3473 return getMinMaxExpr(scSMaxExpr, Ops); 3474 } 3475 3476 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3477 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3478 return getUMaxExpr(Ops); 3479 } 3480 3481 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3482 return getMinMaxExpr(scUMaxExpr, Ops); 3483 } 3484 3485 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3486 const SCEV *RHS) { 3487 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3488 return getSMinExpr(Ops); 3489 } 3490 3491 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3492 return getMinMaxExpr(scSMinExpr, Ops); 3493 } 3494 3495 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3496 const SCEV *RHS) { 3497 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3498 return getUMinExpr(Ops); 3499 } 3500 3501 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3502 return getMinMaxExpr(scUMinExpr, Ops); 3503 } 3504 3505 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3506 // We can bypass creating a target-independent 3507 // constant expression and then folding it back into a ConstantInt. 3508 // This is just a compile-time optimization. 3509 if (isa<ScalableVectorType>(AllocTy)) { 3510 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3511 Constant *One = ConstantInt::get(IntTy, 1); 3512 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3513 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3514 } 3515 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3516 } 3517 3518 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3519 StructType *STy, 3520 unsigned FieldNo) { 3521 // We can bypass creating a target-independent 3522 // constant expression and then folding it back into a ConstantInt. 3523 // This is just a compile-time optimization. 3524 return getConstant( 3525 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3526 } 3527 3528 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3529 // Don't attempt to do anything other than create a SCEVUnknown object 3530 // here. createSCEV only calls getUnknown after checking for all other 3531 // interesting possibilities, and any other code that calls getUnknown 3532 // is doing so in order to hide a value from SCEV canonicalization. 3533 3534 FoldingSetNodeID ID; 3535 ID.AddInteger(scUnknown); 3536 ID.AddPointer(V); 3537 void *IP = nullptr; 3538 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3539 assert(cast<SCEVUnknown>(S)->getValue() == V && 3540 "Stale SCEVUnknown in uniquing map!"); 3541 return S; 3542 } 3543 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3544 FirstUnknown); 3545 FirstUnknown = cast<SCEVUnknown>(S); 3546 UniqueSCEVs.InsertNode(S, IP); 3547 return S; 3548 } 3549 3550 //===----------------------------------------------------------------------===// 3551 // Basic SCEV Analysis and PHI Idiom Recognition Code 3552 // 3553 3554 /// Test if values of the given type are analyzable within the SCEV 3555 /// framework. This primarily includes integer types, and it can optionally 3556 /// include pointer types if the ScalarEvolution class has access to 3557 /// target-specific information. 3558 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3559 // Integers and pointers are always SCEVable. 3560 return Ty->isIntOrPtrTy(); 3561 } 3562 3563 /// Return the size in bits of the specified type, for which isSCEVable must 3564 /// return true. 3565 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3566 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3567 if (Ty->isPointerTy()) 3568 return getDataLayout().getIndexTypeSizeInBits(Ty); 3569 return getDataLayout().getTypeSizeInBits(Ty); 3570 } 3571 3572 /// Return a type with the same bitwidth as the given type and which represents 3573 /// how SCEV will treat the given type, for which isSCEVable must return 3574 /// true. For pointer types, this is the pointer index sized integer type. 3575 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3576 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3577 3578 if (Ty->isIntegerTy()) 3579 return Ty; 3580 3581 // The only other support type is pointer. 3582 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3583 return getDataLayout().getIndexType(Ty); 3584 } 3585 3586 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3587 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3588 } 3589 3590 const SCEV *ScalarEvolution::getCouldNotCompute() { 3591 return CouldNotCompute.get(); 3592 } 3593 3594 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3595 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3596 auto *SU = dyn_cast<SCEVUnknown>(S); 3597 return SU && SU->getValue() == nullptr; 3598 }); 3599 3600 return !ContainsNulls; 3601 } 3602 3603 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3604 HasRecMapType::iterator I = HasRecMap.find(S); 3605 if (I != HasRecMap.end()) 3606 return I->second; 3607 3608 bool FoundAddRec = 3609 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3610 HasRecMap.insert({S, FoundAddRec}); 3611 return FoundAddRec; 3612 } 3613 3614 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3615 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3616 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3617 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3618 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3619 if (!Add) 3620 return {S, nullptr}; 3621 3622 if (Add->getNumOperands() != 2) 3623 return {S, nullptr}; 3624 3625 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3626 if (!ConstOp) 3627 return {S, nullptr}; 3628 3629 return {Add->getOperand(1), ConstOp->getValue()}; 3630 } 3631 3632 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3633 /// by the value and offset from any ValueOffsetPair in the set. 3634 SetVector<ScalarEvolution::ValueOffsetPair> * 3635 ScalarEvolution::getSCEVValues(const SCEV *S) { 3636 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3637 if (SI == ExprValueMap.end()) 3638 return nullptr; 3639 #ifndef NDEBUG 3640 if (VerifySCEVMap) { 3641 // Check there is no dangling Value in the set returned. 3642 for (const auto &VE : SI->second) 3643 assert(ValueExprMap.count(VE.first)); 3644 } 3645 #endif 3646 return &SI->second; 3647 } 3648 3649 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3650 /// cannot be used separately. eraseValueFromMap should be used to remove 3651 /// V from ValueExprMap and ExprValueMap at the same time. 3652 void ScalarEvolution::eraseValueFromMap(Value *V) { 3653 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3654 if (I != ValueExprMap.end()) { 3655 const SCEV *S = I->second; 3656 // Remove {V, 0} from the set of ExprValueMap[S] 3657 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3658 SV->remove({V, nullptr}); 3659 3660 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3661 const SCEV *Stripped; 3662 ConstantInt *Offset; 3663 std::tie(Stripped, Offset) = splitAddExpr(S); 3664 if (Offset != nullptr) { 3665 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3666 SV->remove({V, Offset}); 3667 } 3668 ValueExprMap.erase(V); 3669 } 3670 } 3671 3672 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3673 /// TODO: In reality it is better to check the poison recursively 3674 /// but this is better than nothing. 3675 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3676 if (auto *I = dyn_cast<Instruction>(V)) { 3677 if (isa<OverflowingBinaryOperator>(I)) { 3678 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3679 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3680 return true; 3681 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3682 return true; 3683 } 3684 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3685 return true; 3686 } 3687 return false; 3688 } 3689 3690 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3691 /// create a new one. 3692 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3693 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3694 3695 const SCEV *S = getExistingSCEV(V); 3696 if (S == nullptr) { 3697 S = createSCEV(V); 3698 // During PHI resolution, it is possible to create two SCEVs for the same 3699 // V, so it is needed to double check whether V->S is inserted into 3700 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3701 std::pair<ValueExprMapType::iterator, bool> Pair = 3702 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3703 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3704 ExprValueMap[S].insert({V, nullptr}); 3705 3706 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3707 // ExprValueMap. 3708 const SCEV *Stripped = S; 3709 ConstantInt *Offset = nullptr; 3710 std::tie(Stripped, Offset) = splitAddExpr(S); 3711 // If stripped is SCEVUnknown, don't bother to save 3712 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3713 // increase the complexity of the expansion code. 3714 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3715 // because it may generate add/sub instead of GEP in SCEV expansion. 3716 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3717 !isa<GetElementPtrInst>(V)) 3718 ExprValueMap[Stripped].insert({V, Offset}); 3719 } 3720 } 3721 return S; 3722 } 3723 3724 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3725 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3726 3727 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3728 if (I != ValueExprMap.end()) { 3729 const SCEV *S = I->second; 3730 if (checkValidity(S)) 3731 return S; 3732 eraseValueFromMap(V); 3733 forgetMemoizedResults(S); 3734 } 3735 return nullptr; 3736 } 3737 3738 /// Return a SCEV corresponding to -V = -1*V 3739 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3740 SCEV::NoWrapFlags Flags) { 3741 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3742 return getConstant( 3743 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3744 3745 Type *Ty = V->getType(); 3746 Ty = getEffectiveSCEVType(Ty); 3747 return getMulExpr( 3748 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3749 } 3750 3751 /// If Expr computes ~A, return A else return nullptr 3752 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3753 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3754 if (!Add || Add->getNumOperands() != 2 || 3755 !Add->getOperand(0)->isAllOnesValue()) 3756 return nullptr; 3757 3758 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3759 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3760 !AddRHS->getOperand(0)->isAllOnesValue()) 3761 return nullptr; 3762 3763 return AddRHS->getOperand(1); 3764 } 3765 3766 /// Return a SCEV corresponding to ~V = -1-V 3767 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3768 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3769 return getConstant( 3770 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3771 3772 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3773 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3774 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3775 SmallVector<const SCEV *, 2> MatchedOperands; 3776 for (const SCEV *Operand : MME->operands()) { 3777 const SCEV *Matched = MatchNotExpr(Operand); 3778 if (!Matched) 3779 return (const SCEV *)nullptr; 3780 MatchedOperands.push_back(Matched); 3781 } 3782 return getMinMaxExpr( 3783 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3784 MatchedOperands); 3785 }; 3786 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3787 return Replaced; 3788 } 3789 3790 Type *Ty = V->getType(); 3791 Ty = getEffectiveSCEVType(Ty); 3792 const SCEV *AllOnes = 3793 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3794 return getMinusSCEV(AllOnes, V); 3795 } 3796 3797 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3798 SCEV::NoWrapFlags Flags, 3799 unsigned Depth) { 3800 // Fast path: X - X --> 0. 3801 if (LHS == RHS) 3802 return getZero(LHS->getType()); 3803 3804 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3805 // makes it so that we cannot make much use of NUW. 3806 auto AddFlags = SCEV::FlagAnyWrap; 3807 const bool RHSIsNotMinSigned = 3808 !getSignedRangeMin(RHS).isMinSignedValue(); 3809 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3810 // Let M be the minimum representable signed value. Then (-1)*RHS 3811 // signed-wraps if and only if RHS is M. That can happen even for 3812 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3813 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3814 // (-1)*RHS, we need to prove that RHS != M. 3815 // 3816 // If LHS is non-negative and we know that LHS - RHS does not 3817 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3818 // either by proving that RHS > M or that LHS >= 0. 3819 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3820 AddFlags = SCEV::FlagNSW; 3821 } 3822 } 3823 3824 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3825 // RHS is NSW and LHS >= 0. 3826 // 3827 // The difficulty here is that the NSW flag may have been proven 3828 // relative to a loop that is to be found in a recurrence in LHS and 3829 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3830 // larger scope than intended. 3831 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3832 3833 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3834 } 3835 3836 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3837 unsigned Depth) { 3838 Type *SrcTy = V->getType(); 3839 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3840 "Cannot truncate or zero extend with non-integer arguments!"); 3841 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3842 return V; // No conversion 3843 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3844 return getTruncateExpr(V, Ty, Depth); 3845 return getZeroExtendExpr(V, Ty, Depth); 3846 } 3847 3848 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3849 unsigned Depth) { 3850 Type *SrcTy = V->getType(); 3851 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3852 "Cannot truncate or zero extend with non-integer arguments!"); 3853 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3854 return V; // No conversion 3855 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3856 return getTruncateExpr(V, Ty, Depth); 3857 return getSignExtendExpr(V, Ty, Depth); 3858 } 3859 3860 const SCEV * 3861 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3862 Type *SrcTy = V->getType(); 3863 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3864 "Cannot noop or zero extend with non-integer arguments!"); 3865 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3866 "getNoopOrZeroExtend cannot truncate!"); 3867 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3868 return V; // No conversion 3869 return getZeroExtendExpr(V, Ty); 3870 } 3871 3872 const SCEV * 3873 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3874 Type *SrcTy = V->getType(); 3875 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3876 "Cannot noop or sign extend with non-integer arguments!"); 3877 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3878 "getNoopOrSignExtend cannot truncate!"); 3879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3880 return V; // No conversion 3881 return getSignExtendExpr(V, Ty); 3882 } 3883 3884 const SCEV * 3885 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3886 Type *SrcTy = V->getType(); 3887 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3888 "Cannot noop or any extend with non-integer arguments!"); 3889 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3890 "getNoopOrAnyExtend cannot truncate!"); 3891 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3892 return V; // No conversion 3893 return getAnyExtendExpr(V, Ty); 3894 } 3895 3896 const SCEV * 3897 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3898 Type *SrcTy = V->getType(); 3899 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3900 "Cannot truncate or noop with non-integer arguments!"); 3901 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3902 "getTruncateOrNoop cannot extend!"); 3903 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3904 return V; // No conversion 3905 return getTruncateExpr(V, Ty); 3906 } 3907 3908 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3909 const SCEV *RHS) { 3910 const SCEV *PromotedLHS = LHS; 3911 const SCEV *PromotedRHS = RHS; 3912 3913 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3914 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3915 else 3916 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3917 3918 return getUMaxExpr(PromotedLHS, PromotedRHS); 3919 } 3920 3921 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3922 const SCEV *RHS) { 3923 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3924 return getUMinFromMismatchedTypes(Ops); 3925 } 3926 3927 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3928 SmallVectorImpl<const SCEV *> &Ops) { 3929 assert(!Ops.empty() && "At least one operand must be!"); 3930 // Trivial case. 3931 if (Ops.size() == 1) 3932 return Ops[0]; 3933 3934 // Find the max type first. 3935 Type *MaxType = nullptr; 3936 for (auto *S : Ops) 3937 if (MaxType) 3938 MaxType = getWiderType(MaxType, S->getType()); 3939 else 3940 MaxType = S->getType(); 3941 3942 // Extend all ops to max type. 3943 SmallVector<const SCEV *, 2> PromotedOps; 3944 for (auto *S : Ops) 3945 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3946 3947 // Generate umin. 3948 return getUMinExpr(PromotedOps); 3949 } 3950 3951 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3952 // A pointer operand may evaluate to a nonpointer expression, such as null. 3953 if (!V->getType()->isPointerTy()) 3954 return V; 3955 3956 while (true) { 3957 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3958 V = Cast->getOperand(); 3959 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3960 const SCEV *PtrOp = nullptr; 3961 for (const SCEV *NAryOp : NAry->operands()) { 3962 if (NAryOp->getType()->isPointerTy()) { 3963 // Cannot find the base of an expression with multiple pointer ops. 3964 if (PtrOp) 3965 return V; 3966 PtrOp = NAryOp; 3967 } 3968 } 3969 if (!PtrOp) // All operands were non-pointer. 3970 return V; 3971 V = PtrOp; 3972 } else // Not something we can look further into. 3973 return V; 3974 } 3975 } 3976 3977 /// Push users of the given Instruction onto the given Worklist. 3978 static void 3979 PushDefUseChildren(Instruction *I, 3980 SmallVectorImpl<Instruction *> &Worklist) { 3981 // Push the def-use children onto the Worklist stack. 3982 for (User *U : I->users()) 3983 Worklist.push_back(cast<Instruction>(U)); 3984 } 3985 3986 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3987 SmallVector<Instruction *, 16> Worklist; 3988 PushDefUseChildren(PN, Worklist); 3989 3990 SmallPtrSet<Instruction *, 8> Visited; 3991 Visited.insert(PN); 3992 while (!Worklist.empty()) { 3993 Instruction *I = Worklist.pop_back_val(); 3994 if (!Visited.insert(I).second) 3995 continue; 3996 3997 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3998 if (It != ValueExprMap.end()) { 3999 const SCEV *Old = It->second; 4000 4001 // Short-circuit the def-use traversal if the symbolic name 4002 // ceases to appear in expressions. 4003 if (Old != SymName && !hasOperand(Old, SymName)) 4004 continue; 4005 4006 // SCEVUnknown for a PHI either means that it has an unrecognized 4007 // structure, it's a PHI that's in the progress of being computed 4008 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4009 // additional loop trip count information isn't going to change anything. 4010 // In the second case, createNodeForPHI will perform the necessary 4011 // updates on its own when it gets to that point. In the third, we do 4012 // want to forget the SCEVUnknown. 4013 if (!isa<PHINode>(I) || 4014 !isa<SCEVUnknown>(Old) || 4015 (I != PN && Old == SymName)) { 4016 eraseValueFromMap(It->first); 4017 forgetMemoizedResults(Old); 4018 } 4019 } 4020 4021 PushDefUseChildren(I, Worklist); 4022 } 4023 } 4024 4025 namespace { 4026 4027 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4028 /// expression in case its Loop is L. If it is not L then 4029 /// if IgnoreOtherLoops is true then use AddRec itself 4030 /// otherwise rewrite cannot be done. 4031 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4032 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4033 public: 4034 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4035 bool IgnoreOtherLoops = true) { 4036 SCEVInitRewriter Rewriter(L, SE); 4037 const SCEV *Result = Rewriter.visit(S); 4038 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4039 return SE.getCouldNotCompute(); 4040 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4041 ? SE.getCouldNotCompute() 4042 : Result; 4043 } 4044 4045 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4046 if (!SE.isLoopInvariant(Expr, L)) 4047 SeenLoopVariantSCEVUnknown = true; 4048 return Expr; 4049 } 4050 4051 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4052 // Only re-write AddRecExprs for this loop. 4053 if (Expr->getLoop() == L) 4054 return Expr->getStart(); 4055 SeenOtherLoops = true; 4056 return Expr; 4057 } 4058 4059 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4060 4061 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4062 4063 private: 4064 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4065 : SCEVRewriteVisitor(SE), L(L) {} 4066 4067 const Loop *L; 4068 bool SeenLoopVariantSCEVUnknown = false; 4069 bool SeenOtherLoops = false; 4070 }; 4071 4072 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4073 /// increment expression in case its Loop is L. If it is not L then 4074 /// use AddRec itself. 4075 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4076 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4077 public: 4078 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4079 SCEVPostIncRewriter Rewriter(L, SE); 4080 const SCEV *Result = Rewriter.visit(S); 4081 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4082 ? SE.getCouldNotCompute() 4083 : Result; 4084 } 4085 4086 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4087 if (!SE.isLoopInvariant(Expr, L)) 4088 SeenLoopVariantSCEVUnknown = true; 4089 return Expr; 4090 } 4091 4092 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4093 // Only re-write AddRecExprs for this loop. 4094 if (Expr->getLoop() == L) 4095 return Expr->getPostIncExpr(SE); 4096 SeenOtherLoops = true; 4097 return Expr; 4098 } 4099 4100 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4101 4102 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4103 4104 private: 4105 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4106 : SCEVRewriteVisitor(SE), L(L) {} 4107 4108 const Loop *L; 4109 bool SeenLoopVariantSCEVUnknown = false; 4110 bool SeenOtherLoops = false; 4111 }; 4112 4113 /// This class evaluates the compare condition by matching it against the 4114 /// condition of loop latch. If there is a match we assume a true value 4115 /// for the condition while building SCEV nodes. 4116 class SCEVBackedgeConditionFolder 4117 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4118 public: 4119 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4120 ScalarEvolution &SE) { 4121 bool IsPosBECond = false; 4122 Value *BECond = nullptr; 4123 if (BasicBlock *Latch = L->getLoopLatch()) { 4124 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4125 if (BI && BI->isConditional()) { 4126 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4127 "Both outgoing branches should not target same header!"); 4128 BECond = BI->getCondition(); 4129 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4130 } else { 4131 return S; 4132 } 4133 } 4134 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4135 return Rewriter.visit(S); 4136 } 4137 4138 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4139 const SCEV *Result = Expr; 4140 bool InvariantF = SE.isLoopInvariant(Expr, L); 4141 4142 if (!InvariantF) { 4143 Instruction *I = cast<Instruction>(Expr->getValue()); 4144 switch (I->getOpcode()) { 4145 case Instruction::Select: { 4146 SelectInst *SI = cast<SelectInst>(I); 4147 Optional<const SCEV *> Res = 4148 compareWithBackedgeCondition(SI->getCondition()); 4149 if (Res.hasValue()) { 4150 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4151 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4152 } 4153 break; 4154 } 4155 default: { 4156 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4157 if (Res.hasValue()) 4158 Result = Res.getValue(); 4159 break; 4160 } 4161 } 4162 } 4163 return Result; 4164 } 4165 4166 private: 4167 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4168 bool IsPosBECond, ScalarEvolution &SE) 4169 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4170 IsPositiveBECond(IsPosBECond) {} 4171 4172 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4173 4174 const Loop *L; 4175 /// Loop back condition. 4176 Value *BackedgeCond = nullptr; 4177 /// Set to true if loop back is on positive branch condition. 4178 bool IsPositiveBECond; 4179 }; 4180 4181 Optional<const SCEV *> 4182 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4183 4184 // If value matches the backedge condition for loop latch, 4185 // then return a constant evolution node based on loopback 4186 // branch taken. 4187 if (BackedgeCond == IC) 4188 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4189 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4190 return None; 4191 } 4192 4193 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4194 public: 4195 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4196 ScalarEvolution &SE) { 4197 SCEVShiftRewriter Rewriter(L, SE); 4198 const SCEV *Result = Rewriter.visit(S); 4199 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4200 } 4201 4202 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4203 // Only allow AddRecExprs for this loop. 4204 if (!SE.isLoopInvariant(Expr, L)) 4205 Valid = false; 4206 return Expr; 4207 } 4208 4209 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4210 if (Expr->getLoop() == L && Expr->isAffine()) 4211 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4212 Valid = false; 4213 return Expr; 4214 } 4215 4216 bool isValid() { return Valid; } 4217 4218 private: 4219 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4220 : SCEVRewriteVisitor(SE), L(L) {} 4221 4222 const Loop *L; 4223 bool Valid = true; 4224 }; 4225 4226 } // end anonymous namespace 4227 4228 SCEV::NoWrapFlags 4229 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4230 if (!AR->isAffine()) 4231 return SCEV::FlagAnyWrap; 4232 4233 using OBO = OverflowingBinaryOperator; 4234 4235 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4236 4237 if (!AR->hasNoSignedWrap()) { 4238 ConstantRange AddRecRange = getSignedRange(AR); 4239 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4240 4241 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4242 Instruction::Add, IncRange, OBO::NoSignedWrap); 4243 if (NSWRegion.contains(AddRecRange)) 4244 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4245 } 4246 4247 if (!AR->hasNoUnsignedWrap()) { 4248 ConstantRange AddRecRange = getUnsignedRange(AR); 4249 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4250 4251 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4252 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4253 if (NUWRegion.contains(AddRecRange)) 4254 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4255 } 4256 4257 return Result; 4258 } 4259 4260 namespace { 4261 4262 /// Represents an abstract binary operation. This may exist as a 4263 /// normal instruction or constant expression, or may have been 4264 /// derived from an expression tree. 4265 struct BinaryOp { 4266 unsigned Opcode; 4267 Value *LHS; 4268 Value *RHS; 4269 bool IsNSW = false; 4270 bool IsNUW = false; 4271 4272 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4273 /// constant expression. 4274 Operator *Op = nullptr; 4275 4276 explicit BinaryOp(Operator *Op) 4277 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4278 Op(Op) { 4279 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4280 IsNSW = OBO->hasNoSignedWrap(); 4281 IsNUW = OBO->hasNoUnsignedWrap(); 4282 } 4283 } 4284 4285 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4286 bool IsNUW = false) 4287 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4288 }; 4289 4290 } // end anonymous namespace 4291 4292 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4293 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4294 auto *Op = dyn_cast<Operator>(V); 4295 if (!Op) 4296 return None; 4297 4298 // Implementation detail: all the cleverness here should happen without 4299 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4300 // SCEV expressions when possible, and we should not break that. 4301 4302 switch (Op->getOpcode()) { 4303 case Instruction::Add: 4304 case Instruction::Sub: 4305 case Instruction::Mul: 4306 case Instruction::UDiv: 4307 case Instruction::URem: 4308 case Instruction::And: 4309 case Instruction::Or: 4310 case Instruction::AShr: 4311 case Instruction::Shl: 4312 return BinaryOp(Op); 4313 4314 case Instruction::Xor: 4315 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4316 // If the RHS of the xor is a signmask, then this is just an add. 4317 // Instcombine turns add of signmask into xor as a strength reduction step. 4318 if (RHSC->getValue().isSignMask()) 4319 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4320 return BinaryOp(Op); 4321 4322 case Instruction::LShr: 4323 // Turn logical shift right of a constant into a unsigned divide. 4324 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4325 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4326 4327 // If the shift count is not less than the bitwidth, the result of 4328 // the shift is undefined. Don't try to analyze it, because the 4329 // resolution chosen here may differ from the resolution chosen in 4330 // other parts of the compiler. 4331 if (SA->getValue().ult(BitWidth)) { 4332 Constant *X = 4333 ConstantInt::get(SA->getContext(), 4334 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4335 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4336 } 4337 } 4338 return BinaryOp(Op); 4339 4340 case Instruction::ExtractValue: { 4341 auto *EVI = cast<ExtractValueInst>(Op); 4342 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4343 break; 4344 4345 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4346 if (!WO) 4347 break; 4348 4349 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4350 bool Signed = WO->isSigned(); 4351 // TODO: Should add nuw/nsw flags for mul as well. 4352 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4353 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4354 4355 // Now that we know that all uses of the arithmetic-result component of 4356 // CI are guarded by the overflow check, we can go ahead and pretend 4357 // that the arithmetic is non-overflowing. 4358 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4359 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4360 } 4361 4362 default: 4363 break; 4364 } 4365 4366 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4367 // semantics as a Sub, return a binary sub expression. 4368 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4369 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4370 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4371 4372 return None; 4373 } 4374 4375 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4376 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4377 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4378 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4379 /// follows one of the following patterns: 4380 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4381 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4382 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4383 /// we return the type of the truncation operation, and indicate whether the 4384 /// truncated type should be treated as signed/unsigned by setting 4385 /// \p Signed to true/false, respectively. 4386 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4387 bool &Signed, ScalarEvolution &SE) { 4388 // The case where Op == SymbolicPHI (that is, with no type conversions on 4389 // the way) is handled by the regular add recurrence creating logic and 4390 // would have already been triggered in createAddRecForPHI. Reaching it here 4391 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4392 // because one of the other operands of the SCEVAddExpr updating this PHI is 4393 // not invariant). 4394 // 4395 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4396 // this case predicates that allow us to prove that Op == SymbolicPHI will 4397 // be added. 4398 if (Op == SymbolicPHI) 4399 return nullptr; 4400 4401 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4402 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4403 if (SourceBits != NewBits) 4404 return nullptr; 4405 4406 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4407 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4408 if (!SExt && !ZExt) 4409 return nullptr; 4410 const SCEVTruncateExpr *Trunc = 4411 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4412 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4413 if (!Trunc) 4414 return nullptr; 4415 const SCEV *X = Trunc->getOperand(); 4416 if (X != SymbolicPHI) 4417 return nullptr; 4418 Signed = SExt != nullptr; 4419 return Trunc->getType(); 4420 } 4421 4422 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4423 if (!PN->getType()->isIntegerTy()) 4424 return nullptr; 4425 const Loop *L = LI.getLoopFor(PN->getParent()); 4426 if (!L || L->getHeader() != PN->getParent()) 4427 return nullptr; 4428 return L; 4429 } 4430 4431 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4432 // computation that updates the phi follows the following pattern: 4433 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4434 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4435 // If so, try to see if it can be rewritten as an AddRecExpr under some 4436 // Predicates. If successful, return them as a pair. Also cache the results 4437 // of the analysis. 4438 // 4439 // Example usage scenario: 4440 // Say the Rewriter is called for the following SCEV: 4441 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4442 // where: 4443 // %X = phi i64 (%Start, %BEValue) 4444 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4445 // and call this function with %SymbolicPHI = %X. 4446 // 4447 // The analysis will find that the value coming around the backedge has 4448 // the following SCEV: 4449 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4450 // Upon concluding that this matches the desired pattern, the function 4451 // will return the pair {NewAddRec, SmallPredsVec} where: 4452 // NewAddRec = {%Start,+,%Step} 4453 // SmallPredsVec = {P1, P2, P3} as follows: 4454 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4455 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4456 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4457 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4458 // under the predicates {P1,P2,P3}. 4459 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4460 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4461 // 4462 // TODO's: 4463 // 4464 // 1) Extend the Induction descriptor to also support inductions that involve 4465 // casts: When needed (namely, when we are called in the context of the 4466 // vectorizer induction analysis), a Set of cast instructions will be 4467 // populated by this method, and provided back to isInductionPHI. This is 4468 // needed to allow the vectorizer to properly record them to be ignored by 4469 // the cost model and to avoid vectorizing them (otherwise these casts, 4470 // which are redundant under the runtime overflow checks, will be 4471 // vectorized, which can be costly). 4472 // 4473 // 2) Support additional induction/PHISCEV patterns: We also want to support 4474 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4475 // after the induction update operation (the induction increment): 4476 // 4477 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4478 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4479 // 4480 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4481 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4482 // 4483 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4484 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4485 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4486 SmallVector<const SCEVPredicate *, 3> Predicates; 4487 4488 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4489 // return an AddRec expression under some predicate. 4490 4491 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4492 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4493 assert(L && "Expecting an integer loop header phi"); 4494 4495 // The loop may have multiple entrances or multiple exits; we can analyze 4496 // this phi as an addrec if it has a unique entry value and a unique 4497 // backedge value. 4498 Value *BEValueV = nullptr, *StartValueV = nullptr; 4499 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4500 Value *V = PN->getIncomingValue(i); 4501 if (L->contains(PN->getIncomingBlock(i))) { 4502 if (!BEValueV) { 4503 BEValueV = V; 4504 } else if (BEValueV != V) { 4505 BEValueV = nullptr; 4506 break; 4507 } 4508 } else if (!StartValueV) { 4509 StartValueV = V; 4510 } else if (StartValueV != V) { 4511 StartValueV = nullptr; 4512 break; 4513 } 4514 } 4515 if (!BEValueV || !StartValueV) 4516 return None; 4517 4518 const SCEV *BEValue = getSCEV(BEValueV); 4519 4520 // If the value coming around the backedge is an add with the symbolic 4521 // value we just inserted, possibly with casts that we can ignore under 4522 // an appropriate runtime guard, then we found a simple induction variable! 4523 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4524 if (!Add) 4525 return None; 4526 4527 // If there is a single occurrence of the symbolic value, possibly 4528 // casted, replace it with a recurrence. 4529 unsigned FoundIndex = Add->getNumOperands(); 4530 Type *TruncTy = nullptr; 4531 bool Signed; 4532 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4533 if ((TruncTy = 4534 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4535 if (FoundIndex == e) { 4536 FoundIndex = i; 4537 break; 4538 } 4539 4540 if (FoundIndex == Add->getNumOperands()) 4541 return None; 4542 4543 // Create an add with everything but the specified operand. 4544 SmallVector<const SCEV *, 8> Ops; 4545 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4546 if (i != FoundIndex) 4547 Ops.push_back(Add->getOperand(i)); 4548 const SCEV *Accum = getAddExpr(Ops); 4549 4550 // The runtime checks will not be valid if the step amount is 4551 // varying inside the loop. 4552 if (!isLoopInvariant(Accum, L)) 4553 return None; 4554 4555 // *** Part2: Create the predicates 4556 4557 // Analysis was successful: we have a phi-with-cast pattern for which we 4558 // can return an AddRec expression under the following predicates: 4559 // 4560 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4561 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4562 // P2: An Equal predicate that guarantees that 4563 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4564 // P3: An Equal predicate that guarantees that 4565 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4566 // 4567 // As we next prove, the above predicates guarantee that: 4568 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4569 // 4570 // 4571 // More formally, we want to prove that: 4572 // Expr(i+1) = Start + (i+1) * Accum 4573 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4574 // 4575 // Given that: 4576 // 1) Expr(0) = Start 4577 // 2) Expr(1) = Start + Accum 4578 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4579 // 3) Induction hypothesis (step i): 4580 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4581 // 4582 // Proof: 4583 // Expr(i+1) = 4584 // = Start + (i+1)*Accum 4585 // = (Start + i*Accum) + Accum 4586 // = Expr(i) + Accum 4587 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4588 // :: from step i 4589 // 4590 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4591 // 4592 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4593 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4594 // + Accum :: from P3 4595 // 4596 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4597 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4598 // 4599 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4600 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4601 // 4602 // By induction, the same applies to all iterations 1<=i<n: 4603 // 4604 4605 // Create a truncated addrec for which we will add a no overflow check (P1). 4606 const SCEV *StartVal = getSCEV(StartValueV); 4607 const SCEV *PHISCEV = 4608 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4609 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4610 4611 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4612 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4613 // will be constant. 4614 // 4615 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4616 // add P1. 4617 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4618 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4619 Signed ? SCEVWrapPredicate::IncrementNSSW 4620 : SCEVWrapPredicate::IncrementNUSW; 4621 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4622 Predicates.push_back(AddRecPred); 4623 } 4624 4625 // Create the Equal Predicates P2,P3: 4626 4627 // It is possible that the predicates P2 and/or P3 are computable at 4628 // compile time due to StartVal and/or Accum being constants. 4629 // If either one is, then we can check that now and escape if either P2 4630 // or P3 is false. 4631 4632 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4633 // for each of StartVal and Accum 4634 auto getExtendedExpr = [&](const SCEV *Expr, 4635 bool CreateSignExtend) -> const SCEV * { 4636 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4637 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4638 const SCEV *ExtendedExpr = 4639 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4640 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4641 return ExtendedExpr; 4642 }; 4643 4644 // Given: 4645 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4646 // = getExtendedExpr(Expr) 4647 // Determine whether the predicate P: Expr == ExtendedExpr 4648 // is known to be false at compile time 4649 auto PredIsKnownFalse = [&](const SCEV *Expr, 4650 const SCEV *ExtendedExpr) -> bool { 4651 return Expr != ExtendedExpr && 4652 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4653 }; 4654 4655 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4656 if (PredIsKnownFalse(StartVal, StartExtended)) { 4657 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4658 return None; 4659 } 4660 4661 // The Step is always Signed (because the overflow checks are either 4662 // NSSW or NUSW) 4663 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4664 if (PredIsKnownFalse(Accum, AccumExtended)) { 4665 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4666 return None; 4667 } 4668 4669 auto AppendPredicate = [&](const SCEV *Expr, 4670 const SCEV *ExtendedExpr) -> void { 4671 if (Expr != ExtendedExpr && 4672 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4673 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4674 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4675 Predicates.push_back(Pred); 4676 } 4677 }; 4678 4679 AppendPredicate(StartVal, StartExtended); 4680 AppendPredicate(Accum, AccumExtended); 4681 4682 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4683 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4684 // into NewAR if it will also add the runtime overflow checks specified in 4685 // Predicates. 4686 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4687 4688 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4689 std::make_pair(NewAR, Predicates); 4690 // Remember the result of the analysis for this SCEV at this locayyytion. 4691 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4692 return PredRewrite; 4693 } 4694 4695 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4696 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4697 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4698 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4699 if (!L) 4700 return None; 4701 4702 // Check to see if we already analyzed this PHI. 4703 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4704 if (I != PredicatedSCEVRewrites.end()) { 4705 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4706 I->second; 4707 // Analysis was done before and failed to create an AddRec: 4708 if (Rewrite.first == SymbolicPHI) 4709 return None; 4710 // Analysis was done before and succeeded to create an AddRec under 4711 // a predicate: 4712 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4713 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4714 return Rewrite; 4715 } 4716 4717 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4718 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4719 4720 // Record in the cache that the analysis failed 4721 if (!Rewrite) { 4722 SmallVector<const SCEVPredicate *, 3> Predicates; 4723 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4724 return None; 4725 } 4726 4727 return Rewrite; 4728 } 4729 4730 // FIXME: This utility is currently required because the Rewriter currently 4731 // does not rewrite this expression: 4732 // {0, +, (sext ix (trunc iy to ix) to iy)} 4733 // into {0, +, %step}, 4734 // even when the following Equal predicate exists: 4735 // "%step == (sext ix (trunc iy to ix) to iy)". 4736 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4737 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4738 if (AR1 == AR2) 4739 return true; 4740 4741 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4742 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4743 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4744 return false; 4745 return true; 4746 }; 4747 4748 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4749 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4750 return false; 4751 return true; 4752 } 4753 4754 /// A helper function for createAddRecFromPHI to handle simple cases. 4755 /// 4756 /// This function tries to find an AddRec expression for the simplest (yet most 4757 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4758 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4759 /// technique for finding the AddRec expression. 4760 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4761 Value *BEValueV, 4762 Value *StartValueV) { 4763 const Loop *L = LI.getLoopFor(PN->getParent()); 4764 assert(L && L->getHeader() == PN->getParent()); 4765 assert(BEValueV && StartValueV); 4766 4767 auto BO = MatchBinaryOp(BEValueV, DT); 4768 if (!BO) 4769 return nullptr; 4770 4771 if (BO->Opcode != Instruction::Add) 4772 return nullptr; 4773 4774 const SCEV *Accum = nullptr; 4775 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4776 Accum = getSCEV(BO->RHS); 4777 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4778 Accum = getSCEV(BO->LHS); 4779 4780 if (!Accum) 4781 return nullptr; 4782 4783 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4784 if (BO->IsNUW) 4785 Flags = setFlags(Flags, SCEV::FlagNUW); 4786 if (BO->IsNSW) 4787 Flags = setFlags(Flags, SCEV::FlagNSW); 4788 4789 const SCEV *StartVal = getSCEV(StartValueV); 4790 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4791 4792 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4793 4794 // We can add Flags to the post-inc expression only if we 4795 // know that it is *undefined behavior* for BEValueV to 4796 // overflow. 4797 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4798 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4799 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4800 4801 return PHISCEV; 4802 } 4803 4804 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4805 const Loop *L = LI.getLoopFor(PN->getParent()); 4806 if (!L || L->getHeader() != PN->getParent()) 4807 return nullptr; 4808 4809 // The loop may have multiple entrances or multiple exits; we can analyze 4810 // this phi as an addrec if it has a unique entry value and a unique 4811 // backedge value. 4812 Value *BEValueV = nullptr, *StartValueV = nullptr; 4813 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4814 Value *V = PN->getIncomingValue(i); 4815 if (L->contains(PN->getIncomingBlock(i))) { 4816 if (!BEValueV) { 4817 BEValueV = V; 4818 } else if (BEValueV != V) { 4819 BEValueV = nullptr; 4820 break; 4821 } 4822 } else if (!StartValueV) { 4823 StartValueV = V; 4824 } else if (StartValueV != V) { 4825 StartValueV = nullptr; 4826 break; 4827 } 4828 } 4829 if (!BEValueV || !StartValueV) 4830 return nullptr; 4831 4832 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4833 "PHI node already processed?"); 4834 4835 // First, try to find AddRec expression without creating a fictituos symbolic 4836 // value for PN. 4837 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4838 return S; 4839 4840 // Handle PHI node value symbolically. 4841 const SCEV *SymbolicName = getUnknown(PN); 4842 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4843 4844 // Using this symbolic name for the PHI, analyze the value coming around 4845 // the back-edge. 4846 const SCEV *BEValue = getSCEV(BEValueV); 4847 4848 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4849 // has a special value for the first iteration of the loop. 4850 4851 // If the value coming around the backedge is an add with the symbolic 4852 // value we just inserted, then we found a simple induction variable! 4853 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4854 // If there is a single occurrence of the symbolic value, replace it 4855 // with a recurrence. 4856 unsigned FoundIndex = Add->getNumOperands(); 4857 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4858 if (Add->getOperand(i) == SymbolicName) 4859 if (FoundIndex == e) { 4860 FoundIndex = i; 4861 break; 4862 } 4863 4864 if (FoundIndex != Add->getNumOperands()) { 4865 // Create an add with everything but the specified operand. 4866 SmallVector<const SCEV *, 8> Ops; 4867 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4868 if (i != FoundIndex) 4869 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4870 L, *this)); 4871 const SCEV *Accum = getAddExpr(Ops); 4872 4873 // This is not a valid addrec if the step amount is varying each 4874 // loop iteration, but is not itself an addrec in this loop. 4875 if (isLoopInvariant(Accum, L) || 4876 (isa<SCEVAddRecExpr>(Accum) && 4877 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4878 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4879 4880 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4881 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4882 if (BO->IsNUW) 4883 Flags = setFlags(Flags, SCEV::FlagNUW); 4884 if (BO->IsNSW) 4885 Flags = setFlags(Flags, SCEV::FlagNSW); 4886 } 4887 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4888 // If the increment is an inbounds GEP, then we know the address 4889 // space cannot be wrapped around. We cannot make any guarantee 4890 // about signed or unsigned overflow because pointers are 4891 // unsigned but we may have a negative index from the base 4892 // pointer. We can guarantee that no unsigned wrap occurs if the 4893 // indices form a positive value. 4894 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4895 Flags = setFlags(Flags, SCEV::FlagNW); 4896 4897 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4898 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4899 Flags = setFlags(Flags, SCEV::FlagNUW); 4900 } 4901 4902 // We cannot transfer nuw and nsw flags from subtraction 4903 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4904 // for instance. 4905 } 4906 4907 const SCEV *StartVal = getSCEV(StartValueV); 4908 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4909 4910 // Okay, for the entire analysis of this edge we assumed the PHI 4911 // to be symbolic. We now need to go back and purge all of the 4912 // entries for the scalars that use the symbolic expression. 4913 forgetSymbolicName(PN, SymbolicName); 4914 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4915 4916 // We can add Flags to the post-inc expression only if we 4917 // know that it is *undefined behavior* for BEValueV to 4918 // overflow. 4919 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4920 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4921 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4922 4923 return PHISCEV; 4924 } 4925 } 4926 } else { 4927 // Otherwise, this could be a loop like this: 4928 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4929 // In this case, j = {1,+,1} and BEValue is j. 4930 // Because the other in-value of i (0) fits the evolution of BEValue 4931 // i really is an addrec evolution. 4932 // 4933 // We can generalize this saying that i is the shifted value of BEValue 4934 // by one iteration: 4935 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4936 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4937 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 4938 if (Shifted != getCouldNotCompute() && 4939 Start != getCouldNotCompute()) { 4940 const SCEV *StartVal = getSCEV(StartValueV); 4941 if (Start == StartVal) { 4942 // Okay, for the entire analysis of this edge we assumed the PHI 4943 // to be symbolic. We now need to go back and purge all of the 4944 // entries for the scalars that use the symbolic expression. 4945 forgetSymbolicName(PN, SymbolicName); 4946 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4947 return Shifted; 4948 } 4949 } 4950 } 4951 4952 // Remove the temporary PHI node SCEV that has been inserted while intending 4953 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4954 // as it will prevent later (possibly simpler) SCEV expressions to be added 4955 // to the ValueExprMap. 4956 eraseValueFromMap(PN); 4957 4958 return nullptr; 4959 } 4960 4961 // Checks if the SCEV S is available at BB. S is considered available at BB 4962 // if S can be materialized at BB without introducing a fault. 4963 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4964 BasicBlock *BB) { 4965 struct CheckAvailable { 4966 bool TraversalDone = false; 4967 bool Available = true; 4968 4969 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4970 BasicBlock *BB = nullptr; 4971 DominatorTree &DT; 4972 4973 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4974 : L(L), BB(BB), DT(DT) {} 4975 4976 bool setUnavailable() { 4977 TraversalDone = true; 4978 Available = false; 4979 return false; 4980 } 4981 4982 bool follow(const SCEV *S) { 4983 switch (S->getSCEVType()) { 4984 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4985 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4986 case scUMinExpr: 4987 case scSMinExpr: 4988 // These expressions are available if their operand(s) is/are. 4989 return true; 4990 4991 case scAddRecExpr: { 4992 // We allow add recurrences that are on the loop BB is in, or some 4993 // outer loop. This guarantees availability because the value of the 4994 // add recurrence at BB is simply the "current" value of the induction 4995 // variable. We can relax this in the future; for instance an add 4996 // recurrence on a sibling dominating loop is also available at BB. 4997 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4998 if (L && (ARLoop == L || ARLoop->contains(L))) 4999 return true; 5000 5001 return setUnavailable(); 5002 } 5003 5004 case scUnknown: { 5005 // For SCEVUnknown, we check for simple dominance. 5006 const auto *SU = cast<SCEVUnknown>(S); 5007 Value *V = SU->getValue(); 5008 5009 if (isa<Argument>(V)) 5010 return false; 5011 5012 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5013 return false; 5014 5015 return setUnavailable(); 5016 } 5017 5018 case scUDivExpr: 5019 case scCouldNotCompute: 5020 // We do not try to smart about these at all. 5021 return setUnavailable(); 5022 } 5023 llvm_unreachable("switch should be fully covered!"); 5024 } 5025 5026 bool isDone() { return TraversalDone; } 5027 }; 5028 5029 CheckAvailable CA(L, BB, DT); 5030 SCEVTraversal<CheckAvailable> ST(CA); 5031 5032 ST.visitAll(S); 5033 return CA.Available; 5034 } 5035 5036 // Try to match a control flow sequence that branches out at BI and merges back 5037 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5038 // match. 5039 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5040 Value *&C, Value *&LHS, Value *&RHS) { 5041 C = BI->getCondition(); 5042 5043 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5044 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5045 5046 if (!LeftEdge.isSingleEdge()) 5047 return false; 5048 5049 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5050 5051 Use &LeftUse = Merge->getOperandUse(0); 5052 Use &RightUse = Merge->getOperandUse(1); 5053 5054 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5055 LHS = LeftUse; 5056 RHS = RightUse; 5057 return true; 5058 } 5059 5060 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5061 LHS = RightUse; 5062 RHS = LeftUse; 5063 return true; 5064 } 5065 5066 return false; 5067 } 5068 5069 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5070 auto IsReachable = 5071 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5072 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5073 const Loop *L = LI.getLoopFor(PN->getParent()); 5074 5075 // We don't want to break LCSSA, even in a SCEV expression tree. 5076 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5077 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5078 return nullptr; 5079 5080 // Try to match 5081 // 5082 // br %cond, label %left, label %right 5083 // left: 5084 // br label %merge 5085 // right: 5086 // br label %merge 5087 // merge: 5088 // V = phi [ %x, %left ], [ %y, %right ] 5089 // 5090 // as "select %cond, %x, %y" 5091 5092 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5093 assert(IDom && "At least the entry block should dominate PN"); 5094 5095 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5096 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5097 5098 if (BI && BI->isConditional() && 5099 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5100 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5101 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5102 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5103 } 5104 5105 return nullptr; 5106 } 5107 5108 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5109 if (const SCEV *S = createAddRecFromPHI(PN)) 5110 return S; 5111 5112 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5113 return S; 5114 5115 // If the PHI has a single incoming value, follow that value, unless the 5116 // PHI's incoming blocks are in a different loop, in which case doing so 5117 // risks breaking LCSSA form. Instcombine would normally zap these, but 5118 // it doesn't have DominatorTree information, so it may miss cases. 5119 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5120 if (LI.replacementPreservesLCSSAForm(PN, V)) 5121 return getSCEV(V); 5122 5123 // If it's not a loop phi, we can't handle it yet. 5124 return getUnknown(PN); 5125 } 5126 5127 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5128 Value *Cond, 5129 Value *TrueVal, 5130 Value *FalseVal) { 5131 // Handle "constant" branch or select. This can occur for instance when a 5132 // loop pass transforms an inner loop and moves on to process the outer loop. 5133 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5134 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5135 5136 // Try to match some simple smax or umax patterns. 5137 auto *ICI = dyn_cast<ICmpInst>(Cond); 5138 if (!ICI) 5139 return getUnknown(I); 5140 5141 Value *LHS = ICI->getOperand(0); 5142 Value *RHS = ICI->getOperand(1); 5143 5144 switch (ICI->getPredicate()) { 5145 case ICmpInst::ICMP_SLT: 5146 case ICmpInst::ICMP_SLE: 5147 std::swap(LHS, RHS); 5148 LLVM_FALLTHROUGH; 5149 case ICmpInst::ICMP_SGT: 5150 case ICmpInst::ICMP_SGE: 5151 // a >s b ? a+x : b+x -> smax(a, b)+x 5152 // a >s b ? b+x : a+x -> smin(a, b)+x 5153 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5154 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5155 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5156 const SCEV *LA = getSCEV(TrueVal); 5157 const SCEV *RA = getSCEV(FalseVal); 5158 const SCEV *LDiff = getMinusSCEV(LA, LS); 5159 const SCEV *RDiff = getMinusSCEV(RA, RS); 5160 if (LDiff == RDiff) 5161 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5162 LDiff = getMinusSCEV(LA, RS); 5163 RDiff = getMinusSCEV(RA, LS); 5164 if (LDiff == RDiff) 5165 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5166 } 5167 break; 5168 case ICmpInst::ICMP_ULT: 5169 case ICmpInst::ICMP_ULE: 5170 std::swap(LHS, RHS); 5171 LLVM_FALLTHROUGH; 5172 case ICmpInst::ICMP_UGT: 5173 case ICmpInst::ICMP_UGE: 5174 // a >u b ? a+x : b+x -> umax(a, b)+x 5175 // a >u b ? b+x : a+x -> umin(a, b)+x 5176 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5177 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5178 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5179 const SCEV *LA = getSCEV(TrueVal); 5180 const SCEV *RA = getSCEV(FalseVal); 5181 const SCEV *LDiff = getMinusSCEV(LA, LS); 5182 const SCEV *RDiff = getMinusSCEV(RA, RS); 5183 if (LDiff == RDiff) 5184 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5185 LDiff = getMinusSCEV(LA, RS); 5186 RDiff = getMinusSCEV(RA, LS); 5187 if (LDiff == RDiff) 5188 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5189 } 5190 break; 5191 case ICmpInst::ICMP_NE: 5192 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5193 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5194 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5195 const SCEV *One = getOne(I->getType()); 5196 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5197 const SCEV *LA = getSCEV(TrueVal); 5198 const SCEV *RA = getSCEV(FalseVal); 5199 const SCEV *LDiff = getMinusSCEV(LA, LS); 5200 const SCEV *RDiff = getMinusSCEV(RA, One); 5201 if (LDiff == RDiff) 5202 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5203 } 5204 break; 5205 case ICmpInst::ICMP_EQ: 5206 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5207 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5208 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5209 const SCEV *One = getOne(I->getType()); 5210 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5211 const SCEV *LA = getSCEV(TrueVal); 5212 const SCEV *RA = getSCEV(FalseVal); 5213 const SCEV *LDiff = getMinusSCEV(LA, One); 5214 const SCEV *RDiff = getMinusSCEV(RA, LS); 5215 if (LDiff == RDiff) 5216 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5217 } 5218 break; 5219 default: 5220 break; 5221 } 5222 5223 return getUnknown(I); 5224 } 5225 5226 /// Expand GEP instructions into add and multiply operations. This allows them 5227 /// to be analyzed by regular SCEV code. 5228 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5229 // Don't attempt to analyze GEPs over unsized objects. 5230 if (!GEP->getSourceElementType()->isSized()) 5231 return getUnknown(GEP); 5232 5233 SmallVector<const SCEV *, 4> IndexExprs; 5234 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5235 IndexExprs.push_back(getSCEV(*Index)); 5236 return getGEPExpr(GEP, IndexExprs); 5237 } 5238 5239 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5241 return C->getAPInt().countTrailingZeros(); 5242 5243 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5244 return std::min(GetMinTrailingZeros(T->getOperand()), 5245 (uint32_t)getTypeSizeInBits(T->getType())); 5246 5247 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5248 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5249 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5250 ? getTypeSizeInBits(E->getType()) 5251 : OpRes; 5252 } 5253 5254 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5255 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5256 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5257 ? getTypeSizeInBits(E->getType()) 5258 : OpRes; 5259 } 5260 5261 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5262 // The result is the min of all operands results. 5263 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5264 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5265 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5266 return MinOpRes; 5267 } 5268 5269 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5270 // The result is the sum of all operands results. 5271 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5272 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5273 for (unsigned i = 1, e = M->getNumOperands(); 5274 SumOpRes != BitWidth && i != e; ++i) 5275 SumOpRes = 5276 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5277 return SumOpRes; 5278 } 5279 5280 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5281 // The result is the min of all operands results. 5282 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5283 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5284 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5285 return MinOpRes; 5286 } 5287 5288 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5289 // The result is the min of all operands results. 5290 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5291 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5292 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5293 return MinOpRes; 5294 } 5295 5296 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5297 // The result is the min of all operands results. 5298 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5299 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5300 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5301 return MinOpRes; 5302 } 5303 5304 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5305 // For a SCEVUnknown, ask ValueTracking. 5306 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5307 return Known.countMinTrailingZeros(); 5308 } 5309 5310 // SCEVUDivExpr 5311 return 0; 5312 } 5313 5314 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5315 auto I = MinTrailingZerosCache.find(S); 5316 if (I != MinTrailingZerosCache.end()) 5317 return I->second; 5318 5319 uint32_t Result = GetMinTrailingZerosImpl(S); 5320 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5321 assert(InsertPair.second && "Should insert a new key"); 5322 return InsertPair.first->second; 5323 } 5324 5325 /// Helper method to assign a range to V from metadata present in the IR. 5326 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5327 if (Instruction *I = dyn_cast<Instruction>(V)) 5328 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5329 return getConstantRangeFromMetadata(*MD); 5330 5331 return None; 5332 } 5333 5334 /// Determine the range for a particular SCEV. If SignHint is 5335 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5336 /// with a "cleaner" unsigned (resp. signed) representation. 5337 const ConstantRange & 5338 ScalarEvolution::getRangeRef(const SCEV *S, 5339 ScalarEvolution::RangeSignHint SignHint) { 5340 DenseMap<const SCEV *, ConstantRange> &Cache = 5341 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5342 : SignedRanges; 5343 ConstantRange::PreferredRangeType RangeType = 5344 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5345 ? ConstantRange::Unsigned : ConstantRange::Signed; 5346 5347 // See if we've computed this range already. 5348 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5349 if (I != Cache.end()) 5350 return I->second; 5351 5352 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5353 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5354 5355 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5356 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5357 using OBO = OverflowingBinaryOperator; 5358 5359 // If the value has known zeros, the maximum value will have those known zeros 5360 // as well. 5361 uint32_t TZ = GetMinTrailingZeros(S); 5362 if (TZ != 0) { 5363 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5364 ConservativeResult = 5365 ConstantRange(APInt::getMinValue(BitWidth), 5366 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5367 else 5368 ConservativeResult = ConstantRange( 5369 APInt::getSignedMinValue(BitWidth), 5370 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5371 } 5372 5373 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5374 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5375 unsigned WrapType = OBO::AnyWrap; 5376 if (Add->hasNoSignedWrap()) 5377 WrapType |= OBO::NoSignedWrap; 5378 if (Add->hasNoUnsignedWrap()) 5379 WrapType |= OBO::NoUnsignedWrap; 5380 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5381 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5382 WrapType, RangeType); 5383 return setRange(Add, SignHint, 5384 ConservativeResult.intersectWith(X, RangeType)); 5385 } 5386 5387 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5388 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5389 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5390 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5391 return setRange(Mul, SignHint, 5392 ConservativeResult.intersectWith(X, RangeType)); 5393 } 5394 5395 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5396 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5397 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5398 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5399 return setRange(SMax, SignHint, 5400 ConservativeResult.intersectWith(X, RangeType)); 5401 } 5402 5403 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5404 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5405 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5406 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5407 return setRange(UMax, SignHint, 5408 ConservativeResult.intersectWith(X, RangeType)); 5409 } 5410 5411 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5412 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5413 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5414 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5415 return setRange(SMin, SignHint, 5416 ConservativeResult.intersectWith(X, RangeType)); 5417 } 5418 5419 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5420 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5421 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5422 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5423 return setRange(UMin, SignHint, 5424 ConservativeResult.intersectWith(X, RangeType)); 5425 } 5426 5427 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5428 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5429 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5430 return setRange(UDiv, SignHint, 5431 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5432 } 5433 5434 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5435 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5436 return setRange(ZExt, SignHint, 5437 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5438 RangeType)); 5439 } 5440 5441 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5442 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5443 return setRange(SExt, SignHint, 5444 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5445 RangeType)); 5446 } 5447 5448 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5449 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5450 return setRange(Trunc, SignHint, 5451 ConservativeResult.intersectWith(X.truncate(BitWidth), 5452 RangeType)); 5453 } 5454 5455 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5456 // If there's no unsigned wrap, the value will never be less than its 5457 // initial value. 5458 if (AddRec->hasNoUnsignedWrap()) { 5459 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5460 if (!UnsignedMinValue.isNullValue()) 5461 ConservativeResult = ConservativeResult.intersectWith( 5462 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5463 } 5464 5465 // If there's no signed wrap, and all the operands except initial value have 5466 // the same sign or zero, the value won't ever be: 5467 // 1: smaller than initial value if operands are non negative, 5468 // 2: bigger than initial value if operands are non positive. 5469 // For both cases, value can not cross signed min/max boundary. 5470 if (AddRec->hasNoSignedWrap()) { 5471 bool AllNonNeg = true; 5472 bool AllNonPos = true; 5473 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5474 if (!isKnownNonNegative(AddRec->getOperand(i))) 5475 AllNonNeg = false; 5476 if (!isKnownNonPositive(AddRec->getOperand(i))) 5477 AllNonPos = false; 5478 } 5479 if (AllNonNeg) 5480 ConservativeResult = ConservativeResult.intersectWith( 5481 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5482 APInt::getSignedMinValue(BitWidth)), 5483 RangeType); 5484 else if (AllNonPos) 5485 ConservativeResult = ConservativeResult.intersectWith( 5486 ConstantRange::getNonEmpty( 5487 APInt::getSignedMinValue(BitWidth), 5488 getSignedRangeMax(AddRec->getStart()) + 1), 5489 RangeType); 5490 } 5491 5492 // TODO: non-affine addrec 5493 if (AddRec->isAffine()) { 5494 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5495 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5496 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5497 auto RangeFromAffine = getRangeForAffineAR( 5498 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5499 BitWidth); 5500 if (!RangeFromAffine.isFullSet()) 5501 ConservativeResult = 5502 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5503 5504 auto RangeFromFactoring = getRangeViaFactoring( 5505 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5506 BitWidth); 5507 if (!RangeFromFactoring.isFullSet()) 5508 ConservativeResult = 5509 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5510 } 5511 } 5512 5513 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5514 } 5515 5516 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5517 // Check if the IR explicitly contains !range metadata. 5518 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5519 if (MDRange.hasValue()) 5520 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5521 RangeType); 5522 5523 // Split here to avoid paying the compile-time cost of calling both 5524 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5525 // if needed. 5526 const DataLayout &DL = getDataLayout(); 5527 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5528 // For a SCEVUnknown, ask ValueTracking. 5529 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5530 if (Known.getBitWidth() != BitWidth) 5531 Known = Known.zextOrTrunc(BitWidth); 5532 // If Known does not result in full-set, intersect with it. 5533 if (Known.getMinValue() != Known.getMaxValue() + 1) 5534 ConservativeResult = ConservativeResult.intersectWith( 5535 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5536 RangeType); 5537 } else { 5538 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5539 "generalize as needed!"); 5540 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5541 // If the pointer size is larger than the index size type, this can cause 5542 // NS to be larger than BitWidth. So compensate for this. 5543 if (U->getType()->isPointerTy()) { 5544 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5545 int ptrIdxDiff = ptrSize - BitWidth; 5546 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5547 NS -= ptrIdxDiff; 5548 } 5549 5550 if (NS > 1) 5551 ConservativeResult = ConservativeResult.intersectWith( 5552 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5553 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5554 RangeType); 5555 } 5556 5557 // A range of Phi is a subset of union of all ranges of its input. 5558 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5559 // Make sure that we do not run over cycled Phis. 5560 if (PendingPhiRanges.insert(Phi).second) { 5561 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5562 for (auto &Op : Phi->operands()) { 5563 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5564 RangeFromOps = RangeFromOps.unionWith(OpRange); 5565 // No point to continue if we already have a full set. 5566 if (RangeFromOps.isFullSet()) 5567 break; 5568 } 5569 ConservativeResult = 5570 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5571 bool Erased = PendingPhiRanges.erase(Phi); 5572 assert(Erased && "Failed to erase Phi properly?"); 5573 (void) Erased; 5574 } 5575 } 5576 5577 return setRange(U, SignHint, std::move(ConservativeResult)); 5578 } 5579 5580 return setRange(S, SignHint, std::move(ConservativeResult)); 5581 } 5582 5583 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5584 // values that the expression can take. Initially, the expression has a value 5585 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5586 // argument defines if we treat Step as signed or unsigned. 5587 static ConstantRange getRangeForAffineARHelper(APInt Step, 5588 const ConstantRange &StartRange, 5589 const APInt &MaxBECount, 5590 unsigned BitWidth, bool Signed) { 5591 // If either Step or MaxBECount is 0, then the expression won't change, and we 5592 // just need to return the initial range. 5593 if (Step == 0 || MaxBECount == 0) 5594 return StartRange; 5595 5596 // If we don't know anything about the initial value (i.e. StartRange is 5597 // FullRange), then we don't know anything about the final range either. 5598 // Return FullRange. 5599 if (StartRange.isFullSet()) 5600 return ConstantRange::getFull(BitWidth); 5601 5602 // If Step is signed and negative, then we use its absolute value, but we also 5603 // note that we're moving in the opposite direction. 5604 bool Descending = Signed && Step.isNegative(); 5605 5606 if (Signed) 5607 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5608 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5609 // This equations hold true due to the well-defined wrap-around behavior of 5610 // APInt. 5611 Step = Step.abs(); 5612 5613 // Check if Offset is more than full span of BitWidth. If it is, the 5614 // expression is guaranteed to overflow. 5615 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5616 return ConstantRange::getFull(BitWidth); 5617 5618 // Offset is by how much the expression can change. Checks above guarantee no 5619 // overflow here. 5620 APInt Offset = Step * MaxBECount; 5621 5622 // Minimum value of the final range will match the minimal value of StartRange 5623 // if the expression is increasing and will be decreased by Offset otherwise. 5624 // Maximum value of the final range will match the maximal value of StartRange 5625 // if the expression is decreasing and will be increased by Offset otherwise. 5626 APInt StartLower = StartRange.getLower(); 5627 APInt StartUpper = StartRange.getUpper() - 1; 5628 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5629 : (StartUpper + std::move(Offset)); 5630 5631 // It's possible that the new minimum/maximum value will fall into the initial 5632 // range (due to wrap around). This means that the expression can take any 5633 // value in this bitwidth, and we have to return full range. 5634 if (StartRange.contains(MovedBoundary)) 5635 return ConstantRange::getFull(BitWidth); 5636 5637 APInt NewLower = 5638 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5639 APInt NewUpper = 5640 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5641 NewUpper += 1; 5642 5643 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5644 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5645 } 5646 5647 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5648 const SCEV *Step, 5649 const SCEV *MaxBECount, 5650 unsigned BitWidth) { 5651 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5652 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5653 "Precondition!"); 5654 5655 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5656 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5657 5658 // First, consider step signed. 5659 ConstantRange StartSRange = getSignedRange(Start); 5660 ConstantRange StepSRange = getSignedRange(Step); 5661 5662 // If Step can be both positive and negative, we need to find ranges for the 5663 // maximum absolute step values in both directions and union them. 5664 ConstantRange SR = 5665 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5666 MaxBECountValue, BitWidth, /* Signed = */ true); 5667 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5668 StartSRange, MaxBECountValue, 5669 BitWidth, /* Signed = */ true)); 5670 5671 // Next, consider step unsigned. 5672 ConstantRange UR = getRangeForAffineARHelper( 5673 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5674 MaxBECountValue, BitWidth, /* Signed = */ false); 5675 5676 // Finally, intersect signed and unsigned ranges. 5677 return SR.intersectWith(UR, ConstantRange::Smallest); 5678 } 5679 5680 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5681 const SCEV *Step, 5682 const SCEV *MaxBECount, 5683 unsigned BitWidth) { 5684 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5685 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5686 5687 struct SelectPattern { 5688 Value *Condition = nullptr; 5689 APInt TrueValue; 5690 APInt FalseValue; 5691 5692 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5693 const SCEV *S) { 5694 Optional<unsigned> CastOp; 5695 APInt Offset(BitWidth, 0); 5696 5697 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5698 "Should be!"); 5699 5700 // Peel off a constant offset: 5701 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5702 // In the future we could consider being smarter here and handle 5703 // {Start+Step,+,Step} too. 5704 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5705 return; 5706 5707 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5708 S = SA->getOperand(1); 5709 } 5710 5711 // Peel off a cast operation 5712 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5713 CastOp = SCast->getSCEVType(); 5714 S = SCast->getOperand(); 5715 } 5716 5717 using namespace llvm::PatternMatch; 5718 5719 auto *SU = dyn_cast<SCEVUnknown>(S); 5720 const APInt *TrueVal, *FalseVal; 5721 if (!SU || 5722 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5723 m_APInt(FalseVal)))) { 5724 Condition = nullptr; 5725 return; 5726 } 5727 5728 TrueValue = *TrueVal; 5729 FalseValue = *FalseVal; 5730 5731 // Re-apply the cast we peeled off earlier 5732 if (CastOp.hasValue()) 5733 switch (*CastOp) { 5734 default: 5735 llvm_unreachable("Unknown SCEV cast type!"); 5736 5737 case scTruncate: 5738 TrueValue = TrueValue.trunc(BitWidth); 5739 FalseValue = FalseValue.trunc(BitWidth); 5740 break; 5741 case scZeroExtend: 5742 TrueValue = TrueValue.zext(BitWidth); 5743 FalseValue = FalseValue.zext(BitWidth); 5744 break; 5745 case scSignExtend: 5746 TrueValue = TrueValue.sext(BitWidth); 5747 FalseValue = FalseValue.sext(BitWidth); 5748 break; 5749 } 5750 5751 // Re-apply the constant offset we peeled off earlier 5752 TrueValue += Offset; 5753 FalseValue += Offset; 5754 } 5755 5756 bool isRecognized() { return Condition != nullptr; } 5757 }; 5758 5759 SelectPattern StartPattern(*this, BitWidth, Start); 5760 if (!StartPattern.isRecognized()) 5761 return ConstantRange::getFull(BitWidth); 5762 5763 SelectPattern StepPattern(*this, BitWidth, Step); 5764 if (!StepPattern.isRecognized()) 5765 return ConstantRange::getFull(BitWidth); 5766 5767 if (StartPattern.Condition != StepPattern.Condition) { 5768 // We don't handle this case today; but we could, by considering four 5769 // possibilities below instead of two. I'm not sure if there are cases where 5770 // that will help over what getRange already does, though. 5771 return ConstantRange::getFull(BitWidth); 5772 } 5773 5774 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5775 // construct arbitrary general SCEV expressions here. This function is called 5776 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5777 // say) can end up caching a suboptimal value. 5778 5779 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5780 // C2352 and C2512 (otherwise it isn't needed). 5781 5782 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5783 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5784 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5785 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5786 5787 ConstantRange TrueRange = 5788 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5789 ConstantRange FalseRange = 5790 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5791 5792 return TrueRange.unionWith(FalseRange); 5793 } 5794 5795 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5796 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5797 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5798 5799 // Return early if there are no flags to propagate to the SCEV. 5800 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5801 if (BinOp->hasNoUnsignedWrap()) 5802 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5803 if (BinOp->hasNoSignedWrap()) 5804 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5805 if (Flags == SCEV::FlagAnyWrap) 5806 return SCEV::FlagAnyWrap; 5807 5808 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5809 } 5810 5811 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5812 // Here we check that I is in the header of the innermost loop containing I, 5813 // since we only deal with instructions in the loop header. The actual loop we 5814 // need to check later will come from an add recurrence, but getting that 5815 // requires computing the SCEV of the operands, which can be expensive. This 5816 // check we can do cheaply to rule out some cases early. 5817 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5818 if (InnermostContainingLoop == nullptr || 5819 InnermostContainingLoop->getHeader() != I->getParent()) 5820 return false; 5821 5822 // Only proceed if we can prove that I does not yield poison. 5823 if (!programUndefinedIfPoison(I)) 5824 return false; 5825 5826 // At this point we know that if I is executed, then it does not wrap 5827 // according to at least one of NSW or NUW. If I is not executed, then we do 5828 // not know if the calculation that I represents would wrap. Multiple 5829 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5830 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5831 // derived from other instructions that map to the same SCEV. We cannot make 5832 // that guarantee for cases where I is not executed. So we need to find the 5833 // loop that I is considered in relation to and prove that I is executed for 5834 // every iteration of that loop. That implies that the value that I 5835 // calculates does not wrap anywhere in the loop, so then we can apply the 5836 // flags to the SCEV. 5837 // 5838 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5839 // from different loops, so that we know which loop to prove that I is 5840 // executed in. 5841 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5842 // I could be an extractvalue from a call to an overflow intrinsic. 5843 // TODO: We can do better here in some cases. 5844 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5845 return false; 5846 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5847 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5848 bool AllOtherOpsLoopInvariant = true; 5849 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5850 ++OtherOpIndex) { 5851 if (OtherOpIndex != OpIndex) { 5852 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5853 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5854 AllOtherOpsLoopInvariant = false; 5855 break; 5856 } 5857 } 5858 } 5859 if (AllOtherOpsLoopInvariant && 5860 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5861 return true; 5862 } 5863 } 5864 return false; 5865 } 5866 5867 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5868 // If we know that \c I can never be poison period, then that's enough. 5869 if (isSCEVExprNeverPoison(I)) 5870 return true; 5871 5872 // For an add recurrence specifically, we assume that infinite loops without 5873 // side effects are undefined behavior, and then reason as follows: 5874 // 5875 // If the add recurrence is poison in any iteration, it is poison on all 5876 // future iterations (since incrementing poison yields poison). If the result 5877 // of the add recurrence is fed into the loop latch condition and the loop 5878 // does not contain any throws or exiting blocks other than the latch, we now 5879 // have the ability to "choose" whether the backedge is taken or not (by 5880 // choosing a sufficiently evil value for the poison feeding into the branch) 5881 // for every iteration including and after the one in which \p I first became 5882 // poison. There are two possibilities (let's call the iteration in which \p 5883 // I first became poison as K): 5884 // 5885 // 1. In the set of iterations including and after K, the loop body executes 5886 // no side effects. In this case executing the backege an infinte number 5887 // of times will yield undefined behavior. 5888 // 5889 // 2. In the set of iterations including and after K, the loop body executes 5890 // at least one side effect. In this case, that specific instance of side 5891 // effect is control dependent on poison, which also yields undefined 5892 // behavior. 5893 5894 auto *ExitingBB = L->getExitingBlock(); 5895 auto *LatchBB = L->getLoopLatch(); 5896 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5897 return false; 5898 5899 SmallPtrSet<const Instruction *, 16> Pushed; 5900 SmallVector<const Instruction *, 8> PoisonStack; 5901 5902 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5903 // things that are known to be poison under that assumption go on the 5904 // PoisonStack. 5905 Pushed.insert(I); 5906 PoisonStack.push_back(I); 5907 5908 bool LatchControlDependentOnPoison = false; 5909 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5910 const Instruction *Poison = PoisonStack.pop_back_val(); 5911 5912 for (auto *PoisonUser : Poison->users()) { 5913 if (propagatesPoison(cast<Instruction>(PoisonUser))) { 5914 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5915 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5916 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5917 assert(BI->isConditional() && "Only possibility!"); 5918 if (BI->getParent() == LatchBB) { 5919 LatchControlDependentOnPoison = true; 5920 break; 5921 } 5922 } 5923 } 5924 } 5925 5926 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5927 } 5928 5929 ScalarEvolution::LoopProperties 5930 ScalarEvolution::getLoopProperties(const Loop *L) { 5931 using LoopProperties = ScalarEvolution::LoopProperties; 5932 5933 auto Itr = LoopPropertiesCache.find(L); 5934 if (Itr == LoopPropertiesCache.end()) { 5935 auto HasSideEffects = [](Instruction *I) { 5936 if (auto *SI = dyn_cast<StoreInst>(I)) 5937 return !SI->isSimple(); 5938 5939 return I->mayHaveSideEffects(); 5940 }; 5941 5942 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5943 /*HasNoSideEffects*/ true}; 5944 5945 for (auto *BB : L->getBlocks()) 5946 for (auto &I : *BB) { 5947 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5948 LP.HasNoAbnormalExits = false; 5949 if (HasSideEffects(&I)) 5950 LP.HasNoSideEffects = false; 5951 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5952 break; // We're already as pessimistic as we can get. 5953 } 5954 5955 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5956 assert(InsertPair.second && "We just checked!"); 5957 Itr = InsertPair.first; 5958 } 5959 5960 return Itr->second; 5961 } 5962 5963 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5964 if (!isSCEVable(V->getType())) 5965 return getUnknown(V); 5966 5967 if (Instruction *I = dyn_cast<Instruction>(V)) { 5968 // Don't attempt to analyze instructions in blocks that aren't 5969 // reachable. Such instructions don't matter, and they aren't required 5970 // to obey basic rules for definitions dominating uses which this 5971 // analysis depends on. 5972 if (!DT.isReachableFromEntry(I->getParent())) 5973 return getUnknown(UndefValue::get(V->getType())); 5974 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5975 return getConstant(CI); 5976 else if (isa<ConstantPointerNull>(V)) 5977 return getZero(V->getType()); 5978 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5979 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5980 else if (!isa<ConstantExpr>(V)) 5981 return getUnknown(V); 5982 5983 Operator *U = cast<Operator>(V); 5984 if (auto BO = MatchBinaryOp(U, DT)) { 5985 switch (BO->Opcode) { 5986 case Instruction::Add: { 5987 // The simple thing to do would be to just call getSCEV on both operands 5988 // and call getAddExpr with the result. However if we're looking at a 5989 // bunch of things all added together, this can be quite inefficient, 5990 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5991 // Instead, gather up all the operands and make a single getAddExpr call. 5992 // LLVM IR canonical form means we need only traverse the left operands. 5993 SmallVector<const SCEV *, 4> AddOps; 5994 do { 5995 if (BO->Op) { 5996 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5997 AddOps.push_back(OpSCEV); 5998 break; 5999 } 6000 6001 // If a NUW or NSW flag can be applied to the SCEV for this 6002 // addition, then compute the SCEV for this addition by itself 6003 // with a separate call to getAddExpr. We need to do that 6004 // instead of pushing the operands of the addition onto AddOps, 6005 // since the flags are only known to apply to this particular 6006 // addition - they may not apply to other additions that can be 6007 // formed with operands from AddOps. 6008 const SCEV *RHS = getSCEV(BO->RHS); 6009 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6010 if (Flags != SCEV::FlagAnyWrap) { 6011 const SCEV *LHS = getSCEV(BO->LHS); 6012 if (BO->Opcode == Instruction::Sub) 6013 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6014 else 6015 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6016 break; 6017 } 6018 } 6019 6020 if (BO->Opcode == Instruction::Sub) 6021 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6022 else 6023 AddOps.push_back(getSCEV(BO->RHS)); 6024 6025 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6026 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6027 NewBO->Opcode != Instruction::Sub)) { 6028 AddOps.push_back(getSCEV(BO->LHS)); 6029 break; 6030 } 6031 BO = NewBO; 6032 } while (true); 6033 6034 return getAddExpr(AddOps); 6035 } 6036 6037 case Instruction::Mul: { 6038 SmallVector<const SCEV *, 4> MulOps; 6039 do { 6040 if (BO->Op) { 6041 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6042 MulOps.push_back(OpSCEV); 6043 break; 6044 } 6045 6046 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6047 if (Flags != SCEV::FlagAnyWrap) { 6048 MulOps.push_back( 6049 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6050 break; 6051 } 6052 } 6053 6054 MulOps.push_back(getSCEV(BO->RHS)); 6055 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6056 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6057 MulOps.push_back(getSCEV(BO->LHS)); 6058 break; 6059 } 6060 BO = NewBO; 6061 } while (true); 6062 6063 return getMulExpr(MulOps); 6064 } 6065 case Instruction::UDiv: 6066 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6067 case Instruction::URem: 6068 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6069 case Instruction::Sub: { 6070 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6071 if (BO->Op) 6072 Flags = getNoWrapFlagsFromUB(BO->Op); 6073 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6074 } 6075 case Instruction::And: 6076 // For an expression like x&255 that merely masks off the high bits, 6077 // use zext(trunc(x)) as the SCEV expression. 6078 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6079 if (CI->isZero()) 6080 return getSCEV(BO->RHS); 6081 if (CI->isMinusOne()) 6082 return getSCEV(BO->LHS); 6083 const APInt &A = CI->getValue(); 6084 6085 // Instcombine's ShrinkDemandedConstant may strip bits out of 6086 // constants, obscuring what would otherwise be a low-bits mask. 6087 // Use computeKnownBits to compute what ShrinkDemandedConstant 6088 // knew about to reconstruct a low-bits mask value. 6089 unsigned LZ = A.countLeadingZeros(); 6090 unsigned TZ = A.countTrailingZeros(); 6091 unsigned BitWidth = A.getBitWidth(); 6092 KnownBits Known(BitWidth); 6093 computeKnownBits(BO->LHS, Known, getDataLayout(), 6094 0, &AC, nullptr, &DT); 6095 6096 APInt EffectiveMask = 6097 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6098 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6099 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6100 const SCEV *LHS = getSCEV(BO->LHS); 6101 const SCEV *ShiftedLHS = nullptr; 6102 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6103 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6104 // For an expression like (x * 8) & 8, simplify the multiply. 6105 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6106 unsigned GCD = std::min(MulZeros, TZ); 6107 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6108 SmallVector<const SCEV*, 4> MulOps; 6109 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6110 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6111 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6112 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6113 } 6114 } 6115 if (!ShiftedLHS) 6116 ShiftedLHS = getUDivExpr(LHS, MulCount); 6117 return getMulExpr( 6118 getZeroExtendExpr( 6119 getTruncateExpr(ShiftedLHS, 6120 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6121 BO->LHS->getType()), 6122 MulCount); 6123 } 6124 } 6125 break; 6126 6127 case Instruction::Or: 6128 // If the RHS of the Or is a constant, we may have something like: 6129 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6130 // optimizations will transparently handle this case. 6131 // 6132 // In order for this transformation to be safe, the LHS must be of the 6133 // form X*(2^n) and the Or constant must be less than 2^n. 6134 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6135 const SCEV *LHS = getSCEV(BO->LHS); 6136 const APInt &CIVal = CI->getValue(); 6137 if (GetMinTrailingZeros(LHS) >= 6138 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6139 // Build a plain add SCEV. 6140 return getAddExpr(LHS, getSCEV(CI), 6141 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6142 } 6143 } 6144 break; 6145 6146 case Instruction::Xor: 6147 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6148 // If the RHS of xor is -1, then this is a not operation. 6149 if (CI->isMinusOne()) 6150 return getNotSCEV(getSCEV(BO->LHS)); 6151 6152 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6153 // This is a variant of the check for xor with -1, and it handles 6154 // the case where instcombine has trimmed non-demanded bits out 6155 // of an xor with -1. 6156 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6157 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6158 if (LBO->getOpcode() == Instruction::And && 6159 LCI->getValue() == CI->getValue()) 6160 if (const SCEVZeroExtendExpr *Z = 6161 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6162 Type *UTy = BO->LHS->getType(); 6163 const SCEV *Z0 = Z->getOperand(); 6164 Type *Z0Ty = Z0->getType(); 6165 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6166 6167 // If C is a low-bits mask, the zero extend is serving to 6168 // mask off the high bits. Complement the operand and 6169 // re-apply the zext. 6170 if (CI->getValue().isMask(Z0TySize)) 6171 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6172 6173 // If C is a single bit, it may be in the sign-bit position 6174 // before the zero-extend. In this case, represent the xor 6175 // using an add, which is equivalent, and re-apply the zext. 6176 APInt Trunc = CI->getValue().trunc(Z0TySize); 6177 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6178 Trunc.isSignMask()) 6179 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6180 UTy); 6181 } 6182 } 6183 break; 6184 6185 case Instruction::Shl: 6186 // Turn shift left of a constant amount into a multiply. 6187 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6188 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6189 6190 // If the shift count is not less than the bitwidth, the result of 6191 // the shift is undefined. Don't try to analyze it, because the 6192 // resolution chosen here may differ from the resolution chosen in 6193 // other parts of the compiler. 6194 if (SA->getValue().uge(BitWidth)) 6195 break; 6196 6197 // We can safely preserve the nuw flag in all cases. It's also safe to 6198 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6199 // requires special handling. It can be preserved as long as we're not 6200 // left shifting by bitwidth - 1. 6201 auto Flags = SCEV::FlagAnyWrap; 6202 if (BO->Op) { 6203 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6204 if ((MulFlags & SCEV::FlagNSW) && 6205 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6206 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6207 if (MulFlags & SCEV::FlagNUW) 6208 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6209 } 6210 6211 Constant *X = ConstantInt::get( 6212 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6213 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6214 } 6215 break; 6216 6217 case Instruction::AShr: { 6218 // AShr X, C, where C is a constant. 6219 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6220 if (!CI) 6221 break; 6222 6223 Type *OuterTy = BO->LHS->getType(); 6224 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6225 // If the shift count is not less than the bitwidth, the result of 6226 // the shift is undefined. Don't try to analyze it, because the 6227 // resolution chosen here may differ from the resolution chosen in 6228 // other parts of the compiler. 6229 if (CI->getValue().uge(BitWidth)) 6230 break; 6231 6232 if (CI->isZero()) 6233 return getSCEV(BO->LHS); // shift by zero --> noop 6234 6235 uint64_t AShrAmt = CI->getZExtValue(); 6236 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6237 6238 Operator *L = dyn_cast<Operator>(BO->LHS); 6239 if (L && L->getOpcode() == Instruction::Shl) { 6240 // X = Shl A, n 6241 // Y = AShr X, m 6242 // Both n and m are constant. 6243 6244 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6245 if (L->getOperand(1) == BO->RHS) 6246 // For a two-shift sext-inreg, i.e. n = m, 6247 // use sext(trunc(x)) as the SCEV expression. 6248 return getSignExtendExpr( 6249 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6250 6251 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6252 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6253 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6254 if (ShlAmt > AShrAmt) { 6255 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6256 // expression. We already checked that ShlAmt < BitWidth, so 6257 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6258 // ShlAmt - AShrAmt < Amt. 6259 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6260 ShlAmt - AShrAmt); 6261 return getSignExtendExpr( 6262 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6263 getConstant(Mul)), OuterTy); 6264 } 6265 } 6266 } 6267 break; 6268 } 6269 } 6270 } 6271 6272 switch (U->getOpcode()) { 6273 case Instruction::Trunc: 6274 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6275 6276 case Instruction::ZExt: 6277 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6278 6279 case Instruction::SExt: 6280 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6281 // The NSW flag of a subtract does not always survive the conversion to 6282 // A + (-1)*B. By pushing sign extension onto its operands we are much 6283 // more likely to preserve NSW and allow later AddRec optimisations. 6284 // 6285 // NOTE: This is effectively duplicating this logic from getSignExtend: 6286 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6287 // but by that point the NSW information has potentially been lost. 6288 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6289 Type *Ty = U->getType(); 6290 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6291 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6292 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6293 } 6294 } 6295 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6296 6297 case Instruction::BitCast: 6298 // BitCasts are no-op casts so we just eliminate the cast. 6299 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6300 return getSCEV(U->getOperand(0)); 6301 break; 6302 6303 case Instruction::SDiv: 6304 // If both operands are non-negative, this is just an udiv. 6305 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6306 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6307 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6308 break; 6309 6310 case Instruction::SRem: 6311 // If both operands are non-negative, this is just an urem. 6312 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6313 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6314 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6315 break; 6316 6317 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6318 // lead to pointer expressions which cannot safely be expanded to GEPs, 6319 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6320 // simplifying integer expressions. 6321 6322 case Instruction::GetElementPtr: 6323 return createNodeForGEP(cast<GEPOperator>(U)); 6324 6325 case Instruction::PHI: 6326 return createNodeForPHI(cast<PHINode>(U)); 6327 6328 case Instruction::Select: 6329 // U can also be a select constant expr, which let fall through. Since 6330 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6331 // constant expressions cannot have instructions as operands, we'd have 6332 // returned getUnknown for a select constant expressions anyway. 6333 if (isa<Instruction>(U)) 6334 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6335 U->getOperand(1), U->getOperand(2)); 6336 break; 6337 6338 case Instruction::Call: 6339 case Instruction::Invoke: 6340 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6341 return getSCEV(RV); 6342 break; 6343 } 6344 6345 return getUnknown(V); 6346 } 6347 6348 //===----------------------------------------------------------------------===// 6349 // Iteration Count Computation Code 6350 // 6351 6352 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6353 if (!ExitCount) 6354 return 0; 6355 6356 ConstantInt *ExitConst = ExitCount->getValue(); 6357 6358 // Guard against huge trip counts. 6359 if (ExitConst->getValue().getActiveBits() > 32) 6360 return 0; 6361 6362 // In case of integer overflow, this returns 0, which is correct. 6363 return ((unsigned)ExitConst->getZExtValue()) + 1; 6364 } 6365 6366 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6367 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6368 return getSmallConstantTripCount(L, ExitingBB); 6369 6370 // No trip count information for multiple exits. 6371 return 0; 6372 } 6373 6374 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6375 BasicBlock *ExitingBlock) { 6376 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6377 assert(L->isLoopExiting(ExitingBlock) && 6378 "Exiting block must actually branch out of the loop!"); 6379 const SCEVConstant *ExitCount = 6380 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6381 return getConstantTripCount(ExitCount); 6382 } 6383 6384 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6385 const auto *MaxExitCount = 6386 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6387 return getConstantTripCount(MaxExitCount); 6388 } 6389 6390 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6391 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6392 return getSmallConstantTripMultiple(L, ExitingBB); 6393 6394 // No trip multiple information for multiple exits. 6395 return 0; 6396 } 6397 6398 /// Returns the largest constant divisor of the trip count of this loop as a 6399 /// normal unsigned value, if possible. This means that the actual trip count is 6400 /// always a multiple of the returned value (don't forget the trip count could 6401 /// very well be zero as well!). 6402 /// 6403 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6404 /// multiple of a constant (which is also the case if the trip count is simply 6405 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6406 /// if the trip count is very large (>= 2^32). 6407 /// 6408 /// As explained in the comments for getSmallConstantTripCount, this assumes 6409 /// that control exits the loop via ExitingBlock. 6410 unsigned 6411 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6412 BasicBlock *ExitingBlock) { 6413 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6414 assert(L->isLoopExiting(ExitingBlock) && 6415 "Exiting block must actually branch out of the loop!"); 6416 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6417 if (ExitCount == getCouldNotCompute()) 6418 return 1; 6419 6420 // Get the trip count from the BE count by adding 1. 6421 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6422 6423 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6424 if (!TC) 6425 // Attempt to factor more general cases. Returns the greatest power of 6426 // two divisor. If overflow happens, the trip count expression is still 6427 // divisible by the greatest power of 2 divisor returned. 6428 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6429 6430 ConstantInt *Result = TC->getValue(); 6431 6432 // Guard against huge trip counts (this requires checking 6433 // for zero to handle the case where the trip count == -1 and the 6434 // addition wraps). 6435 if (!Result || Result->getValue().getActiveBits() > 32 || 6436 Result->getValue().getActiveBits() == 0) 6437 return 1; 6438 6439 return (unsigned)Result->getZExtValue(); 6440 } 6441 6442 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6443 BasicBlock *ExitingBlock, 6444 ExitCountKind Kind) { 6445 switch (Kind) { 6446 case Exact: 6447 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6448 case ConstantMaximum: 6449 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6450 }; 6451 llvm_unreachable("Invalid ExitCountKind!"); 6452 } 6453 6454 const SCEV * 6455 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6456 SCEVUnionPredicate &Preds) { 6457 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6458 } 6459 6460 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6461 ExitCountKind Kind) { 6462 switch (Kind) { 6463 case Exact: 6464 return getBackedgeTakenInfo(L).getExact(L, this); 6465 case ConstantMaximum: 6466 return getBackedgeTakenInfo(L).getMax(this); 6467 }; 6468 llvm_unreachable("Invalid ExitCountKind!"); 6469 } 6470 6471 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6472 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6473 } 6474 6475 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6476 static void 6477 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6478 BasicBlock *Header = L->getHeader(); 6479 6480 // Push all Loop-header PHIs onto the Worklist stack. 6481 for (PHINode &PN : Header->phis()) 6482 Worklist.push_back(&PN); 6483 } 6484 6485 const ScalarEvolution::BackedgeTakenInfo & 6486 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6487 auto &BTI = getBackedgeTakenInfo(L); 6488 if (BTI.hasFullInfo()) 6489 return BTI; 6490 6491 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6492 6493 if (!Pair.second) 6494 return Pair.first->second; 6495 6496 BackedgeTakenInfo Result = 6497 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6498 6499 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6500 } 6501 6502 const ScalarEvolution::BackedgeTakenInfo & 6503 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6504 // Initially insert an invalid entry for this loop. If the insertion 6505 // succeeds, proceed to actually compute a backedge-taken count and 6506 // update the value. The temporary CouldNotCompute value tells SCEV 6507 // code elsewhere that it shouldn't attempt to request a new 6508 // backedge-taken count, which could result in infinite recursion. 6509 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6510 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6511 if (!Pair.second) 6512 return Pair.first->second; 6513 6514 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6515 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6516 // must be cleared in this scope. 6517 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6518 6519 // In product build, there are no usage of statistic. 6520 (void)NumTripCountsComputed; 6521 (void)NumTripCountsNotComputed; 6522 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6523 const SCEV *BEExact = Result.getExact(L, this); 6524 if (BEExact != getCouldNotCompute()) { 6525 assert(isLoopInvariant(BEExact, L) && 6526 isLoopInvariant(Result.getMax(this), L) && 6527 "Computed backedge-taken count isn't loop invariant for loop!"); 6528 ++NumTripCountsComputed; 6529 } 6530 else if (Result.getMax(this) == getCouldNotCompute() && 6531 isa<PHINode>(L->getHeader()->begin())) { 6532 // Only count loops that have phi nodes as not being computable. 6533 ++NumTripCountsNotComputed; 6534 } 6535 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6536 6537 // Now that we know more about the trip count for this loop, forget any 6538 // existing SCEV values for PHI nodes in this loop since they are only 6539 // conservative estimates made without the benefit of trip count 6540 // information. This is similar to the code in forgetLoop, except that 6541 // it handles SCEVUnknown PHI nodes specially. 6542 if (Result.hasAnyInfo()) { 6543 SmallVector<Instruction *, 16> Worklist; 6544 PushLoopPHIs(L, Worklist); 6545 6546 SmallPtrSet<Instruction *, 8> Discovered; 6547 while (!Worklist.empty()) { 6548 Instruction *I = Worklist.pop_back_val(); 6549 6550 ValueExprMapType::iterator It = 6551 ValueExprMap.find_as(static_cast<Value *>(I)); 6552 if (It != ValueExprMap.end()) { 6553 const SCEV *Old = It->second; 6554 6555 // SCEVUnknown for a PHI either means that it has an unrecognized 6556 // structure, or it's a PHI that's in the progress of being computed 6557 // by createNodeForPHI. In the former case, additional loop trip 6558 // count information isn't going to change anything. In the later 6559 // case, createNodeForPHI will perform the necessary updates on its 6560 // own when it gets to that point. 6561 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6562 eraseValueFromMap(It->first); 6563 forgetMemoizedResults(Old); 6564 } 6565 if (PHINode *PN = dyn_cast<PHINode>(I)) 6566 ConstantEvolutionLoopExitValue.erase(PN); 6567 } 6568 6569 // Since we don't need to invalidate anything for correctness and we're 6570 // only invalidating to make SCEV's results more precise, we get to stop 6571 // early to avoid invalidating too much. This is especially important in 6572 // cases like: 6573 // 6574 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6575 // loop0: 6576 // %pn0 = phi 6577 // ... 6578 // loop1: 6579 // %pn1 = phi 6580 // ... 6581 // 6582 // where both loop0 and loop1's backedge taken count uses the SCEV 6583 // expression for %v. If we don't have the early stop below then in cases 6584 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6585 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6586 // count for loop1, effectively nullifying SCEV's trip count cache. 6587 for (auto *U : I->users()) 6588 if (auto *I = dyn_cast<Instruction>(U)) { 6589 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6590 if (LoopForUser && L->contains(LoopForUser) && 6591 Discovered.insert(I).second) 6592 Worklist.push_back(I); 6593 } 6594 } 6595 } 6596 6597 // Re-lookup the insert position, since the call to 6598 // computeBackedgeTakenCount above could result in a 6599 // recusive call to getBackedgeTakenInfo (on a different 6600 // loop), which would invalidate the iterator computed 6601 // earlier. 6602 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6603 } 6604 6605 void ScalarEvolution::forgetAllLoops() { 6606 // This method is intended to forget all info about loops. It should 6607 // invalidate caches as if the following happened: 6608 // - The trip counts of all loops have changed arbitrarily 6609 // - Every llvm::Value has been updated in place to produce a different 6610 // result. 6611 BackedgeTakenCounts.clear(); 6612 PredicatedBackedgeTakenCounts.clear(); 6613 LoopPropertiesCache.clear(); 6614 ConstantEvolutionLoopExitValue.clear(); 6615 ValueExprMap.clear(); 6616 ValuesAtScopes.clear(); 6617 LoopDispositions.clear(); 6618 BlockDispositions.clear(); 6619 UnsignedRanges.clear(); 6620 SignedRanges.clear(); 6621 ExprValueMap.clear(); 6622 HasRecMap.clear(); 6623 MinTrailingZerosCache.clear(); 6624 PredicatedSCEVRewrites.clear(); 6625 } 6626 6627 void ScalarEvolution::forgetLoop(const Loop *L) { 6628 // Drop any stored trip count value. 6629 auto RemoveLoopFromBackedgeMap = 6630 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6631 auto BTCPos = Map.find(L); 6632 if (BTCPos != Map.end()) { 6633 BTCPos->second.clear(); 6634 Map.erase(BTCPos); 6635 } 6636 }; 6637 6638 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6639 SmallVector<Instruction *, 32> Worklist; 6640 SmallPtrSet<Instruction *, 16> Visited; 6641 6642 // Iterate over all the loops and sub-loops to drop SCEV information. 6643 while (!LoopWorklist.empty()) { 6644 auto *CurrL = LoopWorklist.pop_back_val(); 6645 6646 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6647 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6648 6649 // Drop information about predicated SCEV rewrites for this loop. 6650 for (auto I = PredicatedSCEVRewrites.begin(); 6651 I != PredicatedSCEVRewrites.end();) { 6652 std::pair<const SCEV *, const Loop *> Entry = I->first; 6653 if (Entry.second == CurrL) 6654 PredicatedSCEVRewrites.erase(I++); 6655 else 6656 ++I; 6657 } 6658 6659 auto LoopUsersItr = LoopUsers.find(CurrL); 6660 if (LoopUsersItr != LoopUsers.end()) { 6661 for (auto *S : LoopUsersItr->second) 6662 forgetMemoizedResults(S); 6663 LoopUsers.erase(LoopUsersItr); 6664 } 6665 6666 // Drop information about expressions based on loop-header PHIs. 6667 PushLoopPHIs(CurrL, Worklist); 6668 6669 while (!Worklist.empty()) { 6670 Instruction *I = Worklist.pop_back_val(); 6671 if (!Visited.insert(I).second) 6672 continue; 6673 6674 ValueExprMapType::iterator It = 6675 ValueExprMap.find_as(static_cast<Value *>(I)); 6676 if (It != ValueExprMap.end()) { 6677 eraseValueFromMap(It->first); 6678 forgetMemoizedResults(It->second); 6679 if (PHINode *PN = dyn_cast<PHINode>(I)) 6680 ConstantEvolutionLoopExitValue.erase(PN); 6681 } 6682 6683 PushDefUseChildren(I, Worklist); 6684 } 6685 6686 LoopPropertiesCache.erase(CurrL); 6687 // Forget all contained loops too, to avoid dangling entries in the 6688 // ValuesAtScopes map. 6689 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6690 } 6691 } 6692 6693 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6694 while (Loop *Parent = L->getParentLoop()) 6695 L = Parent; 6696 forgetLoop(L); 6697 } 6698 6699 void ScalarEvolution::forgetValue(Value *V) { 6700 Instruction *I = dyn_cast<Instruction>(V); 6701 if (!I) return; 6702 6703 // Drop information about expressions based on loop-header PHIs. 6704 SmallVector<Instruction *, 16> Worklist; 6705 Worklist.push_back(I); 6706 6707 SmallPtrSet<Instruction *, 8> Visited; 6708 while (!Worklist.empty()) { 6709 I = Worklist.pop_back_val(); 6710 if (!Visited.insert(I).second) 6711 continue; 6712 6713 ValueExprMapType::iterator It = 6714 ValueExprMap.find_as(static_cast<Value *>(I)); 6715 if (It != ValueExprMap.end()) { 6716 eraseValueFromMap(It->first); 6717 forgetMemoizedResults(It->second); 6718 if (PHINode *PN = dyn_cast<PHINode>(I)) 6719 ConstantEvolutionLoopExitValue.erase(PN); 6720 } 6721 6722 PushDefUseChildren(I, Worklist); 6723 } 6724 } 6725 6726 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 6727 LoopDispositions.clear(); 6728 } 6729 6730 /// Get the exact loop backedge taken count considering all loop exits. A 6731 /// computable result can only be returned for loops with all exiting blocks 6732 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6733 /// is never skipped. This is a valid assumption as long as the loop exits via 6734 /// that test. For precise results, it is the caller's responsibility to specify 6735 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6736 const SCEV * 6737 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6738 SCEVUnionPredicate *Preds) const { 6739 // If any exits were not computable, the loop is not computable. 6740 if (!isComplete() || ExitNotTaken.empty()) 6741 return SE->getCouldNotCompute(); 6742 6743 const BasicBlock *Latch = L->getLoopLatch(); 6744 // All exiting blocks we have collected must dominate the only backedge. 6745 if (!Latch) 6746 return SE->getCouldNotCompute(); 6747 6748 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6749 // count is simply a minimum out of all these calculated exit counts. 6750 SmallVector<const SCEV *, 2> Ops; 6751 for (auto &ENT : ExitNotTaken) { 6752 const SCEV *BECount = ENT.ExactNotTaken; 6753 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6754 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6755 "We should only have known counts for exiting blocks that dominate " 6756 "latch!"); 6757 6758 Ops.push_back(BECount); 6759 6760 if (Preds && !ENT.hasAlwaysTruePredicate()) 6761 Preds->add(ENT.Predicate.get()); 6762 6763 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6764 "Predicate should be always true!"); 6765 } 6766 6767 return SE->getUMinFromMismatchedTypes(Ops); 6768 } 6769 6770 /// Get the exact not taken count for this loop exit. 6771 const SCEV * 6772 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6773 ScalarEvolution *SE) const { 6774 for (auto &ENT : ExitNotTaken) 6775 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6776 return ENT.ExactNotTaken; 6777 6778 return SE->getCouldNotCompute(); 6779 } 6780 6781 const SCEV * 6782 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, 6783 ScalarEvolution *SE) const { 6784 for (auto &ENT : ExitNotTaken) 6785 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6786 return ENT.MaxNotTaken; 6787 6788 return SE->getCouldNotCompute(); 6789 } 6790 6791 /// getMax - Get the max backedge taken count for the loop. 6792 const SCEV * 6793 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6794 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6795 return !ENT.hasAlwaysTruePredicate(); 6796 }; 6797 6798 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6799 return SE->getCouldNotCompute(); 6800 6801 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6802 "No point in having a non-constant max backedge taken count!"); 6803 return getMax(); 6804 } 6805 6806 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6807 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6808 return !ENT.hasAlwaysTruePredicate(); 6809 }; 6810 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6811 } 6812 6813 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6814 ScalarEvolution *SE) const { 6815 if (getMax() && getMax() != SE->getCouldNotCompute() && 6816 SE->hasOperand(getMax(), S)) 6817 return true; 6818 6819 for (auto &ENT : ExitNotTaken) 6820 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6821 SE->hasOperand(ENT.ExactNotTaken, S)) 6822 return true; 6823 6824 return false; 6825 } 6826 6827 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6828 : ExactNotTaken(E), MaxNotTaken(E) { 6829 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6830 isa<SCEVConstant>(MaxNotTaken)) && 6831 "No point in having a non-constant max backedge taken count!"); 6832 } 6833 6834 ScalarEvolution::ExitLimit::ExitLimit( 6835 const SCEV *E, const SCEV *M, bool MaxOrZero, 6836 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6837 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6838 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6839 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6840 "Exact is not allowed to be less precise than Max"); 6841 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6842 isa<SCEVConstant>(MaxNotTaken)) && 6843 "No point in having a non-constant max backedge taken count!"); 6844 for (auto *PredSet : PredSetList) 6845 for (auto *P : *PredSet) 6846 addPredicate(P); 6847 } 6848 6849 ScalarEvolution::ExitLimit::ExitLimit( 6850 const SCEV *E, const SCEV *M, bool MaxOrZero, 6851 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6852 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6853 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6854 isa<SCEVConstant>(MaxNotTaken)) && 6855 "No point in having a non-constant max backedge taken count!"); 6856 } 6857 6858 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6859 bool MaxOrZero) 6860 : ExitLimit(E, M, MaxOrZero, None) { 6861 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6862 isa<SCEVConstant>(MaxNotTaken)) && 6863 "No point in having a non-constant max backedge taken count!"); 6864 } 6865 6866 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6867 /// computable exit into a persistent ExitNotTakenInfo array. 6868 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6869 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6870 ExitCounts, 6871 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6872 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6873 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6874 6875 ExitNotTaken.reserve(ExitCounts.size()); 6876 std::transform( 6877 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6878 [&](const EdgeExitInfo &EEI) { 6879 BasicBlock *ExitBB = EEI.first; 6880 const ExitLimit &EL = EEI.second; 6881 if (EL.Predicates.empty()) 6882 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6883 nullptr); 6884 6885 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6886 for (auto *Pred : EL.Predicates) 6887 Predicate->add(Pred); 6888 6889 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6890 std::move(Predicate)); 6891 }); 6892 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6893 "No point in having a non-constant max backedge taken count!"); 6894 } 6895 6896 /// Invalidate this result and free the ExitNotTakenInfo array. 6897 void ScalarEvolution::BackedgeTakenInfo::clear() { 6898 ExitNotTaken.clear(); 6899 } 6900 6901 /// Compute the number of times the backedge of the specified loop will execute. 6902 ScalarEvolution::BackedgeTakenInfo 6903 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6904 bool AllowPredicates) { 6905 SmallVector<BasicBlock *, 8> ExitingBlocks; 6906 L->getExitingBlocks(ExitingBlocks); 6907 6908 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6909 6910 SmallVector<EdgeExitInfo, 4> ExitCounts; 6911 bool CouldComputeBECount = true; 6912 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6913 const SCEV *MustExitMaxBECount = nullptr; 6914 const SCEV *MayExitMaxBECount = nullptr; 6915 bool MustExitMaxOrZero = false; 6916 6917 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6918 // and compute maxBECount. 6919 // Do a union of all the predicates here. 6920 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6921 BasicBlock *ExitBB = ExitingBlocks[i]; 6922 6923 // We canonicalize untaken exits to br (constant), ignore them so that 6924 // proving an exit untaken doesn't negatively impact our ability to reason 6925 // about the loop as whole. 6926 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 6927 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 6928 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6929 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 6930 continue; 6931 } 6932 6933 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6934 6935 assert((AllowPredicates || EL.Predicates.empty()) && 6936 "Predicated exit limit when predicates are not allowed!"); 6937 6938 // 1. For each exit that can be computed, add an entry to ExitCounts. 6939 // CouldComputeBECount is true only if all exits can be computed. 6940 if (EL.ExactNotTaken == getCouldNotCompute()) 6941 // We couldn't compute an exact value for this exit, so 6942 // we won't be able to compute an exact value for the loop. 6943 CouldComputeBECount = false; 6944 else 6945 ExitCounts.emplace_back(ExitBB, EL); 6946 6947 // 2. Derive the loop's MaxBECount from each exit's max number of 6948 // non-exiting iterations. Partition the loop exits into two kinds: 6949 // LoopMustExits and LoopMayExits. 6950 // 6951 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6952 // is a LoopMayExit. If any computable LoopMustExit is found, then 6953 // MaxBECount is the minimum EL.MaxNotTaken of computable 6954 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6955 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6956 // computable EL.MaxNotTaken. 6957 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6958 DT.dominates(ExitBB, Latch)) { 6959 if (!MustExitMaxBECount) { 6960 MustExitMaxBECount = EL.MaxNotTaken; 6961 MustExitMaxOrZero = EL.MaxOrZero; 6962 } else { 6963 MustExitMaxBECount = 6964 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6965 } 6966 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6967 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6968 MayExitMaxBECount = EL.MaxNotTaken; 6969 else { 6970 MayExitMaxBECount = 6971 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6972 } 6973 } 6974 } 6975 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6976 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6977 // The loop backedge will be taken the maximum or zero times if there's 6978 // a single exit that must be taken the maximum or zero times. 6979 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6980 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6981 MaxBECount, MaxOrZero); 6982 } 6983 6984 ScalarEvolution::ExitLimit 6985 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6986 bool AllowPredicates) { 6987 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 6988 // If our exiting block does not dominate the latch, then its connection with 6989 // loop's exit limit may be far from trivial. 6990 const BasicBlock *Latch = L->getLoopLatch(); 6991 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 6992 return getCouldNotCompute(); 6993 6994 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6995 Instruction *Term = ExitingBlock->getTerminator(); 6996 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6997 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6998 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6999 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7000 "It should have one successor in loop and one exit block!"); 7001 // Proceed to the next level to examine the exit condition expression. 7002 return computeExitLimitFromCond( 7003 L, BI->getCondition(), ExitIfTrue, 7004 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7005 } 7006 7007 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7008 // For switch, make sure that there is a single exit from the loop. 7009 BasicBlock *Exit = nullptr; 7010 for (auto *SBB : successors(ExitingBlock)) 7011 if (!L->contains(SBB)) { 7012 if (Exit) // Multiple exit successors. 7013 return getCouldNotCompute(); 7014 Exit = SBB; 7015 } 7016 assert(Exit && "Exiting block must have at least one exit"); 7017 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7018 /*ControlsExit=*/IsOnlyExit); 7019 } 7020 7021 return getCouldNotCompute(); 7022 } 7023 7024 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7025 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7026 bool ControlsExit, bool AllowPredicates) { 7027 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7028 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7029 ControlsExit, AllowPredicates); 7030 } 7031 7032 Optional<ScalarEvolution::ExitLimit> 7033 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7034 bool ExitIfTrue, bool ControlsExit, 7035 bool AllowPredicates) { 7036 (void)this->L; 7037 (void)this->ExitIfTrue; 7038 (void)this->AllowPredicates; 7039 7040 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7041 this->AllowPredicates == AllowPredicates && 7042 "Variance in assumed invariant key components!"); 7043 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7044 if (Itr == TripCountMap.end()) 7045 return None; 7046 return Itr->second; 7047 } 7048 7049 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7050 bool ExitIfTrue, 7051 bool ControlsExit, 7052 bool AllowPredicates, 7053 const ExitLimit &EL) { 7054 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7055 this->AllowPredicates == AllowPredicates && 7056 "Variance in assumed invariant key components!"); 7057 7058 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7059 assert(InsertResult.second && "Expected successful insertion!"); 7060 (void)InsertResult; 7061 (void)ExitIfTrue; 7062 } 7063 7064 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7065 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7066 bool ControlsExit, bool AllowPredicates) { 7067 7068 if (auto MaybeEL = 7069 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7070 return *MaybeEL; 7071 7072 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7073 ControlsExit, AllowPredicates); 7074 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7075 return EL; 7076 } 7077 7078 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7079 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7080 bool ControlsExit, bool AllowPredicates) { 7081 // Check if the controlling expression for this loop is an And or Or. 7082 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7083 if (BO->getOpcode() == Instruction::And) { 7084 // Recurse on the operands of the and. 7085 bool EitherMayExit = !ExitIfTrue; 7086 ExitLimit EL0 = computeExitLimitFromCondCached( 7087 Cache, L, BO->getOperand(0), ExitIfTrue, 7088 ControlsExit && !EitherMayExit, AllowPredicates); 7089 ExitLimit EL1 = computeExitLimitFromCondCached( 7090 Cache, L, BO->getOperand(1), ExitIfTrue, 7091 ControlsExit && !EitherMayExit, AllowPredicates); 7092 // Be robust against unsimplified IR for the form "and i1 X, true" 7093 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7094 return CI->isOne() ? EL0 : EL1; 7095 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7096 return CI->isOne() ? EL1 : EL0; 7097 const SCEV *BECount = getCouldNotCompute(); 7098 const SCEV *MaxBECount = getCouldNotCompute(); 7099 if (EitherMayExit) { 7100 // Both conditions must be true for the loop to continue executing. 7101 // Choose the less conservative count. 7102 if (EL0.ExactNotTaken == getCouldNotCompute() || 7103 EL1.ExactNotTaken == getCouldNotCompute()) 7104 BECount = getCouldNotCompute(); 7105 else 7106 BECount = 7107 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7108 if (EL0.MaxNotTaken == getCouldNotCompute()) 7109 MaxBECount = EL1.MaxNotTaken; 7110 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7111 MaxBECount = EL0.MaxNotTaken; 7112 else 7113 MaxBECount = 7114 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7115 } else { 7116 // Both conditions must be true at the same time for the loop to exit. 7117 // For now, be conservative. 7118 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7119 MaxBECount = EL0.MaxNotTaken; 7120 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7121 BECount = EL0.ExactNotTaken; 7122 } 7123 7124 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7125 // to be more aggressive when computing BECount than when computing 7126 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7127 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7128 // to not. 7129 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7130 !isa<SCEVCouldNotCompute>(BECount)) 7131 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7132 7133 return ExitLimit(BECount, MaxBECount, false, 7134 {&EL0.Predicates, &EL1.Predicates}); 7135 } 7136 if (BO->getOpcode() == Instruction::Or) { 7137 // Recurse on the operands of the or. 7138 bool EitherMayExit = ExitIfTrue; 7139 ExitLimit EL0 = computeExitLimitFromCondCached( 7140 Cache, L, BO->getOperand(0), ExitIfTrue, 7141 ControlsExit && !EitherMayExit, AllowPredicates); 7142 ExitLimit EL1 = computeExitLimitFromCondCached( 7143 Cache, L, BO->getOperand(1), ExitIfTrue, 7144 ControlsExit && !EitherMayExit, AllowPredicates); 7145 // Be robust against unsimplified IR for the form "or i1 X, true" 7146 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7147 return CI->isZero() ? EL0 : EL1; 7148 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7149 return CI->isZero() ? EL1 : EL0; 7150 const SCEV *BECount = getCouldNotCompute(); 7151 const SCEV *MaxBECount = getCouldNotCompute(); 7152 if (EitherMayExit) { 7153 // Both conditions must be false for the loop to continue executing. 7154 // Choose the less conservative count. 7155 if (EL0.ExactNotTaken == getCouldNotCompute() || 7156 EL1.ExactNotTaken == getCouldNotCompute()) 7157 BECount = getCouldNotCompute(); 7158 else 7159 BECount = 7160 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7161 if (EL0.MaxNotTaken == getCouldNotCompute()) 7162 MaxBECount = EL1.MaxNotTaken; 7163 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7164 MaxBECount = EL0.MaxNotTaken; 7165 else 7166 MaxBECount = 7167 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7168 } else { 7169 // Both conditions must be false at the same time for the loop to exit. 7170 // For now, be conservative. 7171 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7172 MaxBECount = EL0.MaxNotTaken; 7173 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7174 BECount = EL0.ExactNotTaken; 7175 } 7176 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7177 // to be more aggressive when computing BECount than when computing 7178 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7179 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7180 // to not. 7181 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7182 !isa<SCEVCouldNotCompute>(BECount)) 7183 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7184 7185 return ExitLimit(BECount, MaxBECount, false, 7186 {&EL0.Predicates, &EL1.Predicates}); 7187 } 7188 } 7189 7190 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7191 // Proceed to the next level to examine the icmp. 7192 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7193 ExitLimit EL = 7194 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7195 if (EL.hasFullInfo() || !AllowPredicates) 7196 return EL; 7197 7198 // Try again, but use SCEV predicates this time. 7199 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7200 /*AllowPredicates=*/true); 7201 } 7202 7203 // Check for a constant condition. These are normally stripped out by 7204 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7205 // preserve the CFG and is temporarily leaving constant conditions 7206 // in place. 7207 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7208 if (ExitIfTrue == !CI->getZExtValue()) 7209 // The backedge is always taken. 7210 return getCouldNotCompute(); 7211 else 7212 // The backedge is never taken. 7213 return getZero(CI->getType()); 7214 } 7215 7216 // If it's not an integer or pointer comparison then compute it the hard way. 7217 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7218 } 7219 7220 ScalarEvolution::ExitLimit 7221 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7222 ICmpInst *ExitCond, 7223 bool ExitIfTrue, 7224 bool ControlsExit, 7225 bool AllowPredicates) { 7226 // If the condition was exit on true, convert the condition to exit on false 7227 ICmpInst::Predicate Pred; 7228 if (!ExitIfTrue) 7229 Pred = ExitCond->getPredicate(); 7230 else 7231 Pred = ExitCond->getInversePredicate(); 7232 const ICmpInst::Predicate OriginalPred = Pred; 7233 7234 // Handle common loops like: for (X = "string"; *X; ++X) 7235 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7236 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7237 ExitLimit ItCnt = 7238 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7239 if (ItCnt.hasAnyInfo()) 7240 return ItCnt; 7241 } 7242 7243 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7244 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7245 7246 // Try to evaluate any dependencies out of the loop. 7247 LHS = getSCEVAtScope(LHS, L); 7248 RHS = getSCEVAtScope(RHS, L); 7249 7250 // At this point, we would like to compute how many iterations of the 7251 // loop the predicate will return true for these inputs. 7252 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7253 // If there is a loop-invariant, force it into the RHS. 7254 std::swap(LHS, RHS); 7255 Pred = ICmpInst::getSwappedPredicate(Pred); 7256 } 7257 7258 // Simplify the operands before analyzing them. 7259 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7260 7261 // If we have a comparison of a chrec against a constant, try to use value 7262 // ranges to answer this query. 7263 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7264 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7265 if (AddRec->getLoop() == L) { 7266 // Form the constant range. 7267 ConstantRange CompRange = 7268 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7269 7270 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7271 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7272 } 7273 7274 switch (Pred) { 7275 case ICmpInst::ICMP_NE: { // while (X != Y) 7276 // Convert to: while (X-Y != 0) 7277 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7278 AllowPredicates); 7279 if (EL.hasAnyInfo()) return EL; 7280 break; 7281 } 7282 case ICmpInst::ICMP_EQ: { // while (X == Y) 7283 // Convert to: while (X-Y == 0) 7284 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7285 if (EL.hasAnyInfo()) return EL; 7286 break; 7287 } 7288 case ICmpInst::ICMP_SLT: 7289 case ICmpInst::ICMP_ULT: { // while (X < Y) 7290 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7291 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7292 AllowPredicates); 7293 if (EL.hasAnyInfo()) return EL; 7294 break; 7295 } 7296 case ICmpInst::ICMP_SGT: 7297 case ICmpInst::ICMP_UGT: { // while (X > Y) 7298 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7299 ExitLimit EL = 7300 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7301 AllowPredicates); 7302 if (EL.hasAnyInfo()) return EL; 7303 break; 7304 } 7305 default: 7306 break; 7307 } 7308 7309 auto *ExhaustiveCount = 7310 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7311 7312 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7313 return ExhaustiveCount; 7314 7315 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7316 ExitCond->getOperand(1), L, OriginalPred); 7317 } 7318 7319 ScalarEvolution::ExitLimit 7320 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7321 SwitchInst *Switch, 7322 BasicBlock *ExitingBlock, 7323 bool ControlsExit) { 7324 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7325 7326 // Give up if the exit is the default dest of a switch. 7327 if (Switch->getDefaultDest() == ExitingBlock) 7328 return getCouldNotCompute(); 7329 7330 assert(L->contains(Switch->getDefaultDest()) && 7331 "Default case must not exit the loop!"); 7332 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7333 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7334 7335 // while (X != Y) --> while (X-Y != 0) 7336 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7337 if (EL.hasAnyInfo()) 7338 return EL; 7339 7340 return getCouldNotCompute(); 7341 } 7342 7343 static ConstantInt * 7344 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7345 ScalarEvolution &SE) { 7346 const SCEV *InVal = SE.getConstant(C); 7347 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7348 assert(isa<SCEVConstant>(Val) && 7349 "Evaluation of SCEV at constant didn't fold correctly?"); 7350 return cast<SCEVConstant>(Val)->getValue(); 7351 } 7352 7353 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7354 /// compute the backedge execution count. 7355 ScalarEvolution::ExitLimit 7356 ScalarEvolution::computeLoadConstantCompareExitLimit( 7357 LoadInst *LI, 7358 Constant *RHS, 7359 const Loop *L, 7360 ICmpInst::Predicate predicate) { 7361 if (LI->isVolatile()) return getCouldNotCompute(); 7362 7363 // Check to see if the loaded pointer is a getelementptr of a global. 7364 // TODO: Use SCEV instead of manually grubbing with GEPs. 7365 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7366 if (!GEP) return getCouldNotCompute(); 7367 7368 // Make sure that it is really a constant global we are gepping, with an 7369 // initializer, and make sure the first IDX is really 0. 7370 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7371 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7372 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7373 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7374 return getCouldNotCompute(); 7375 7376 // Okay, we allow one non-constant index into the GEP instruction. 7377 Value *VarIdx = nullptr; 7378 std::vector<Constant*> Indexes; 7379 unsigned VarIdxNum = 0; 7380 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7381 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7382 Indexes.push_back(CI); 7383 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7384 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7385 VarIdx = GEP->getOperand(i); 7386 VarIdxNum = i-2; 7387 Indexes.push_back(nullptr); 7388 } 7389 7390 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7391 if (!VarIdx) 7392 return getCouldNotCompute(); 7393 7394 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7395 // Check to see if X is a loop variant variable value now. 7396 const SCEV *Idx = getSCEV(VarIdx); 7397 Idx = getSCEVAtScope(Idx, L); 7398 7399 // We can only recognize very limited forms of loop index expressions, in 7400 // particular, only affine AddRec's like {C1,+,C2}. 7401 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7402 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7403 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7404 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7405 return getCouldNotCompute(); 7406 7407 unsigned MaxSteps = MaxBruteForceIterations; 7408 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7409 ConstantInt *ItCst = ConstantInt::get( 7410 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7411 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7412 7413 // Form the GEP offset. 7414 Indexes[VarIdxNum] = Val; 7415 7416 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7417 Indexes); 7418 if (!Result) break; // Cannot compute! 7419 7420 // Evaluate the condition for this iteration. 7421 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7422 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7423 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7424 ++NumArrayLenItCounts; 7425 return getConstant(ItCst); // Found terminating iteration! 7426 } 7427 } 7428 return getCouldNotCompute(); 7429 } 7430 7431 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7432 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7433 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7434 if (!RHS) 7435 return getCouldNotCompute(); 7436 7437 const BasicBlock *Latch = L->getLoopLatch(); 7438 if (!Latch) 7439 return getCouldNotCompute(); 7440 7441 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7442 if (!Predecessor) 7443 return getCouldNotCompute(); 7444 7445 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7446 // Return LHS in OutLHS and shift_opt in OutOpCode. 7447 auto MatchPositiveShift = 7448 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7449 7450 using namespace PatternMatch; 7451 7452 ConstantInt *ShiftAmt; 7453 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7454 OutOpCode = Instruction::LShr; 7455 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7456 OutOpCode = Instruction::AShr; 7457 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7458 OutOpCode = Instruction::Shl; 7459 else 7460 return false; 7461 7462 return ShiftAmt->getValue().isStrictlyPositive(); 7463 }; 7464 7465 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7466 // 7467 // loop: 7468 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7469 // %iv.shifted = lshr i32 %iv, <positive constant> 7470 // 7471 // Return true on a successful match. Return the corresponding PHI node (%iv 7472 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7473 auto MatchShiftRecurrence = 7474 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7475 Optional<Instruction::BinaryOps> PostShiftOpCode; 7476 7477 { 7478 Instruction::BinaryOps OpC; 7479 Value *V; 7480 7481 // If we encounter a shift instruction, "peel off" the shift operation, 7482 // and remember that we did so. Later when we inspect %iv's backedge 7483 // value, we will make sure that the backedge value uses the same 7484 // operation. 7485 // 7486 // Note: the peeled shift operation does not have to be the same 7487 // instruction as the one feeding into the PHI's backedge value. We only 7488 // really care about it being the same *kind* of shift instruction -- 7489 // that's all that is required for our later inferences to hold. 7490 if (MatchPositiveShift(LHS, V, OpC)) { 7491 PostShiftOpCode = OpC; 7492 LHS = V; 7493 } 7494 } 7495 7496 PNOut = dyn_cast<PHINode>(LHS); 7497 if (!PNOut || PNOut->getParent() != L->getHeader()) 7498 return false; 7499 7500 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7501 Value *OpLHS; 7502 7503 return 7504 // The backedge value for the PHI node must be a shift by a positive 7505 // amount 7506 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7507 7508 // of the PHI node itself 7509 OpLHS == PNOut && 7510 7511 // and the kind of shift should be match the kind of shift we peeled 7512 // off, if any. 7513 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7514 }; 7515 7516 PHINode *PN; 7517 Instruction::BinaryOps OpCode; 7518 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7519 return getCouldNotCompute(); 7520 7521 const DataLayout &DL = getDataLayout(); 7522 7523 // The key rationale for this optimization is that for some kinds of shift 7524 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7525 // within a finite number of iterations. If the condition guarding the 7526 // backedge (in the sense that the backedge is taken if the condition is true) 7527 // is false for the value the shift recurrence stabilizes to, then we know 7528 // that the backedge is taken only a finite number of times. 7529 7530 ConstantInt *StableValue = nullptr; 7531 switch (OpCode) { 7532 default: 7533 llvm_unreachable("Impossible case!"); 7534 7535 case Instruction::AShr: { 7536 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7537 // bitwidth(K) iterations. 7538 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7539 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7540 Predecessor->getTerminator(), &DT); 7541 auto *Ty = cast<IntegerType>(RHS->getType()); 7542 if (Known.isNonNegative()) 7543 StableValue = ConstantInt::get(Ty, 0); 7544 else if (Known.isNegative()) 7545 StableValue = ConstantInt::get(Ty, -1, true); 7546 else 7547 return getCouldNotCompute(); 7548 7549 break; 7550 } 7551 case Instruction::LShr: 7552 case Instruction::Shl: 7553 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7554 // stabilize to 0 in at most bitwidth(K) iterations. 7555 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7556 break; 7557 } 7558 7559 auto *Result = 7560 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7561 assert(Result->getType()->isIntegerTy(1) && 7562 "Otherwise cannot be an operand to a branch instruction"); 7563 7564 if (Result->isZeroValue()) { 7565 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7566 const SCEV *UpperBound = 7567 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7568 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7569 } 7570 7571 return getCouldNotCompute(); 7572 } 7573 7574 /// Return true if we can constant fold an instruction of the specified type, 7575 /// assuming that all operands were constants. 7576 static bool CanConstantFold(const Instruction *I) { 7577 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7578 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7579 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7580 return true; 7581 7582 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7583 if (const Function *F = CI->getCalledFunction()) 7584 return canConstantFoldCallTo(CI, F); 7585 return false; 7586 } 7587 7588 /// Determine whether this instruction can constant evolve within this loop 7589 /// assuming its operands can all constant evolve. 7590 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7591 // An instruction outside of the loop can't be derived from a loop PHI. 7592 if (!L->contains(I)) return false; 7593 7594 if (isa<PHINode>(I)) { 7595 // We don't currently keep track of the control flow needed to evaluate 7596 // PHIs, so we cannot handle PHIs inside of loops. 7597 return L->getHeader() == I->getParent(); 7598 } 7599 7600 // If we won't be able to constant fold this expression even if the operands 7601 // are constants, bail early. 7602 return CanConstantFold(I); 7603 } 7604 7605 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7606 /// recursing through each instruction operand until reaching a loop header phi. 7607 static PHINode * 7608 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7609 DenseMap<Instruction *, PHINode *> &PHIMap, 7610 unsigned Depth) { 7611 if (Depth > MaxConstantEvolvingDepth) 7612 return nullptr; 7613 7614 // Otherwise, we can evaluate this instruction if all of its operands are 7615 // constant or derived from a PHI node themselves. 7616 PHINode *PHI = nullptr; 7617 for (Value *Op : UseInst->operands()) { 7618 if (isa<Constant>(Op)) continue; 7619 7620 Instruction *OpInst = dyn_cast<Instruction>(Op); 7621 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7622 7623 PHINode *P = dyn_cast<PHINode>(OpInst); 7624 if (!P) 7625 // If this operand is already visited, reuse the prior result. 7626 // We may have P != PHI if this is the deepest point at which the 7627 // inconsistent paths meet. 7628 P = PHIMap.lookup(OpInst); 7629 if (!P) { 7630 // Recurse and memoize the results, whether a phi is found or not. 7631 // This recursive call invalidates pointers into PHIMap. 7632 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7633 PHIMap[OpInst] = P; 7634 } 7635 if (!P) 7636 return nullptr; // Not evolving from PHI 7637 if (PHI && PHI != P) 7638 return nullptr; // Evolving from multiple different PHIs. 7639 PHI = P; 7640 } 7641 // This is a expression evolving from a constant PHI! 7642 return PHI; 7643 } 7644 7645 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7646 /// in the loop that V is derived from. We allow arbitrary operations along the 7647 /// way, but the operands of an operation must either be constants or a value 7648 /// derived from a constant PHI. If this expression does not fit with these 7649 /// constraints, return null. 7650 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7651 Instruction *I = dyn_cast<Instruction>(V); 7652 if (!I || !canConstantEvolve(I, L)) return nullptr; 7653 7654 if (PHINode *PN = dyn_cast<PHINode>(I)) 7655 return PN; 7656 7657 // Record non-constant instructions contained by the loop. 7658 DenseMap<Instruction *, PHINode *> PHIMap; 7659 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7660 } 7661 7662 /// EvaluateExpression - Given an expression that passes the 7663 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7664 /// in the loop has the value PHIVal. If we can't fold this expression for some 7665 /// reason, return null. 7666 static Constant *EvaluateExpression(Value *V, const Loop *L, 7667 DenseMap<Instruction *, Constant *> &Vals, 7668 const DataLayout &DL, 7669 const TargetLibraryInfo *TLI) { 7670 // Convenient constant check, but redundant for recursive calls. 7671 if (Constant *C = dyn_cast<Constant>(V)) return C; 7672 Instruction *I = dyn_cast<Instruction>(V); 7673 if (!I) return nullptr; 7674 7675 if (Constant *C = Vals.lookup(I)) return C; 7676 7677 // An instruction inside the loop depends on a value outside the loop that we 7678 // weren't given a mapping for, or a value such as a call inside the loop. 7679 if (!canConstantEvolve(I, L)) return nullptr; 7680 7681 // An unmapped PHI can be due to a branch or another loop inside this loop, 7682 // or due to this not being the initial iteration through a loop where we 7683 // couldn't compute the evolution of this particular PHI last time. 7684 if (isa<PHINode>(I)) return nullptr; 7685 7686 std::vector<Constant*> Operands(I->getNumOperands()); 7687 7688 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7689 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7690 if (!Operand) { 7691 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7692 if (!Operands[i]) return nullptr; 7693 continue; 7694 } 7695 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7696 Vals[Operand] = C; 7697 if (!C) return nullptr; 7698 Operands[i] = C; 7699 } 7700 7701 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7702 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7703 Operands[1], DL, TLI); 7704 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7705 if (!LI->isVolatile()) 7706 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7707 } 7708 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7709 } 7710 7711 7712 // If every incoming value to PN except the one for BB is a specific Constant, 7713 // return that, else return nullptr. 7714 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7715 Constant *IncomingVal = nullptr; 7716 7717 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7718 if (PN->getIncomingBlock(i) == BB) 7719 continue; 7720 7721 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7722 if (!CurrentVal) 7723 return nullptr; 7724 7725 if (IncomingVal != CurrentVal) { 7726 if (IncomingVal) 7727 return nullptr; 7728 IncomingVal = CurrentVal; 7729 } 7730 } 7731 7732 return IncomingVal; 7733 } 7734 7735 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7736 /// in the header of its containing loop, we know the loop executes a 7737 /// constant number of times, and the PHI node is just a recurrence 7738 /// involving constants, fold it. 7739 Constant * 7740 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7741 const APInt &BEs, 7742 const Loop *L) { 7743 auto I = ConstantEvolutionLoopExitValue.find(PN); 7744 if (I != ConstantEvolutionLoopExitValue.end()) 7745 return I->second; 7746 7747 if (BEs.ugt(MaxBruteForceIterations)) 7748 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7749 7750 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7751 7752 DenseMap<Instruction *, Constant *> CurrentIterVals; 7753 BasicBlock *Header = L->getHeader(); 7754 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7755 7756 BasicBlock *Latch = L->getLoopLatch(); 7757 if (!Latch) 7758 return nullptr; 7759 7760 for (PHINode &PHI : Header->phis()) { 7761 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7762 CurrentIterVals[&PHI] = StartCST; 7763 } 7764 if (!CurrentIterVals.count(PN)) 7765 return RetVal = nullptr; 7766 7767 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7768 7769 // Execute the loop symbolically to determine the exit value. 7770 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7771 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7772 7773 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7774 unsigned IterationNum = 0; 7775 const DataLayout &DL = getDataLayout(); 7776 for (; ; ++IterationNum) { 7777 if (IterationNum == NumIterations) 7778 return RetVal = CurrentIterVals[PN]; // Got exit value! 7779 7780 // Compute the value of the PHIs for the next iteration. 7781 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7782 DenseMap<Instruction *, Constant *> NextIterVals; 7783 Constant *NextPHI = 7784 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7785 if (!NextPHI) 7786 return nullptr; // Couldn't evaluate! 7787 NextIterVals[PN] = NextPHI; 7788 7789 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7790 7791 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7792 // cease to be able to evaluate one of them or if they stop evolving, 7793 // because that doesn't necessarily prevent us from computing PN. 7794 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7795 for (const auto &I : CurrentIterVals) { 7796 PHINode *PHI = dyn_cast<PHINode>(I.first); 7797 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7798 PHIsToCompute.emplace_back(PHI, I.second); 7799 } 7800 // We use two distinct loops because EvaluateExpression may invalidate any 7801 // iterators into CurrentIterVals. 7802 for (const auto &I : PHIsToCompute) { 7803 PHINode *PHI = I.first; 7804 Constant *&NextPHI = NextIterVals[PHI]; 7805 if (!NextPHI) { // Not already computed. 7806 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7807 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7808 } 7809 if (NextPHI != I.second) 7810 StoppedEvolving = false; 7811 } 7812 7813 // If all entries in CurrentIterVals == NextIterVals then we can stop 7814 // iterating, the loop can't continue to change. 7815 if (StoppedEvolving) 7816 return RetVal = CurrentIterVals[PN]; 7817 7818 CurrentIterVals.swap(NextIterVals); 7819 } 7820 } 7821 7822 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7823 Value *Cond, 7824 bool ExitWhen) { 7825 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7826 if (!PN) return getCouldNotCompute(); 7827 7828 // If the loop is canonicalized, the PHI will have exactly two entries. 7829 // That's the only form we support here. 7830 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7831 7832 DenseMap<Instruction *, Constant *> CurrentIterVals; 7833 BasicBlock *Header = L->getHeader(); 7834 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7835 7836 BasicBlock *Latch = L->getLoopLatch(); 7837 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7838 7839 for (PHINode &PHI : Header->phis()) { 7840 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7841 CurrentIterVals[&PHI] = StartCST; 7842 } 7843 if (!CurrentIterVals.count(PN)) 7844 return getCouldNotCompute(); 7845 7846 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7847 // the loop symbolically to determine when the condition gets a value of 7848 // "ExitWhen". 7849 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7850 const DataLayout &DL = getDataLayout(); 7851 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7852 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7853 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7854 7855 // Couldn't symbolically evaluate. 7856 if (!CondVal) return getCouldNotCompute(); 7857 7858 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7859 ++NumBruteForceTripCountsComputed; 7860 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7861 } 7862 7863 // Update all the PHI nodes for the next iteration. 7864 DenseMap<Instruction *, Constant *> NextIterVals; 7865 7866 // Create a list of which PHIs we need to compute. We want to do this before 7867 // calling EvaluateExpression on them because that may invalidate iterators 7868 // into CurrentIterVals. 7869 SmallVector<PHINode *, 8> PHIsToCompute; 7870 for (const auto &I : CurrentIterVals) { 7871 PHINode *PHI = dyn_cast<PHINode>(I.first); 7872 if (!PHI || PHI->getParent() != Header) continue; 7873 PHIsToCompute.push_back(PHI); 7874 } 7875 for (PHINode *PHI : PHIsToCompute) { 7876 Constant *&NextPHI = NextIterVals[PHI]; 7877 if (NextPHI) continue; // Already computed! 7878 7879 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7880 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7881 } 7882 CurrentIterVals.swap(NextIterVals); 7883 } 7884 7885 // Too many iterations were needed to evaluate. 7886 return getCouldNotCompute(); 7887 } 7888 7889 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7890 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7891 ValuesAtScopes[V]; 7892 // Check to see if we've folded this expression at this loop before. 7893 for (auto &LS : Values) 7894 if (LS.first == L) 7895 return LS.second ? LS.second : V; 7896 7897 Values.emplace_back(L, nullptr); 7898 7899 // Otherwise compute it. 7900 const SCEV *C = computeSCEVAtScope(V, L); 7901 for (auto &LS : reverse(ValuesAtScopes[V])) 7902 if (LS.first == L) { 7903 LS.second = C; 7904 break; 7905 } 7906 return C; 7907 } 7908 7909 /// This builds up a Constant using the ConstantExpr interface. That way, we 7910 /// will return Constants for objects which aren't represented by a 7911 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7912 /// Returns NULL if the SCEV isn't representable as a Constant. 7913 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7914 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7915 case scCouldNotCompute: 7916 case scAddRecExpr: 7917 break; 7918 case scConstant: 7919 return cast<SCEVConstant>(V)->getValue(); 7920 case scUnknown: 7921 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7922 case scSignExtend: { 7923 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7924 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7925 return ConstantExpr::getSExt(CastOp, SS->getType()); 7926 break; 7927 } 7928 case scZeroExtend: { 7929 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7930 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7931 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7932 break; 7933 } 7934 case scTruncate: { 7935 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7936 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7937 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7938 break; 7939 } 7940 case scAddExpr: { 7941 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7942 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7943 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7944 unsigned AS = PTy->getAddressSpace(); 7945 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7946 C = ConstantExpr::getBitCast(C, DestPtrTy); 7947 } 7948 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7949 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7950 if (!C2) return nullptr; 7951 7952 // First pointer! 7953 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7954 unsigned AS = C2->getType()->getPointerAddressSpace(); 7955 std::swap(C, C2); 7956 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7957 // The offsets have been converted to bytes. We can add bytes to an 7958 // i8* by GEP with the byte count in the first index. 7959 C = ConstantExpr::getBitCast(C, DestPtrTy); 7960 } 7961 7962 // Don't bother trying to sum two pointers. We probably can't 7963 // statically compute a load that results from it anyway. 7964 if (C2->getType()->isPointerTy()) 7965 return nullptr; 7966 7967 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7968 if (PTy->getElementType()->isStructTy()) 7969 C2 = ConstantExpr::getIntegerCast( 7970 C2, Type::getInt32Ty(C->getContext()), true); 7971 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7972 } else 7973 C = ConstantExpr::getAdd(C, C2); 7974 } 7975 return C; 7976 } 7977 break; 7978 } 7979 case scMulExpr: { 7980 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7981 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7982 // Don't bother with pointers at all. 7983 if (C->getType()->isPointerTy()) return nullptr; 7984 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7985 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7986 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7987 C = ConstantExpr::getMul(C, C2); 7988 } 7989 return C; 7990 } 7991 break; 7992 } 7993 case scUDivExpr: { 7994 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7995 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7996 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7997 if (LHS->getType() == RHS->getType()) 7998 return ConstantExpr::getUDiv(LHS, RHS); 7999 break; 8000 } 8001 case scSMaxExpr: 8002 case scUMaxExpr: 8003 case scSMinExpr: 8004 case scUMinExpr: 8005 break; // TODO: smax, umax, smin, umax. 8006 } 8007 return nullptr; 8008 } 8009 8010 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8011 if (isa<SCEVConstant>(V)) return V; 8012 8013 // If this instruction is evolved from a constant-evolving PHI, compute the 8014 // exit value from the loop without using SCEVs. 8015 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8016 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8017 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8018 const Loop *LI = this->LI[I->getParent()]; 8019 // Looking for loop exit value. 8020 if (LI && LI->getParentLoop() == L && 8021 PN->getParent() == LI->getHeader()) { 8022 // Okay, there is no closed form solution for the PHI node. Check 8023 // to see if the loop that contains it has a known backedge-taken 8024 // count. If so, we may be able to force computation of the exit 8025 // value. 8026 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8027 // This trivial case can show up in some degenerate cases where 8028 // the incoming IR has not yet been fully simplified. 8029 if (BackedgeTakenCount->isZero()) { 8030 Value *InitValue = nullptr; 8031 bool MultipleInitValues = false; 8032 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8033 if (!LI->contains(PN->getIncomingBlock(i))) { 8034 if (!InitValue) 8035 InitValue = PN->getIncomingValue(i); 8036 else if (InitValue != PN->getIncomingValue(i)) { 8037 MultipleInitValues = true; 8038 break; 8039 } 8040 } 8041 } 8042 if (!MultipleInitValues && InitValue) 8043 return getSCEV(InitValue); 8044 } 8045 // Do we have a loop invariant value flowing around the backedge 8046 // for a loop which must execute the backedge? 8047 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8048 isKnownPositive(BackedgeTakenCount) && 8049 PN->getNumIncomingValues() == 2) { 8050 8051 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8052 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8053 if (LI->isLoopInvariant(BackedgeVal)) 8054 return getSCEV(BackedgeVal); 8055 } 8056 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8057 // Okay, we know how many times the containing loop executes. If 8058 // this is a constant evolving PHI node, get the final value at 8059 // the specified iteration number. 8060 Constant *RV = 8061 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8062 if (RV) return getSCEV(RV); 8063 } 8064 } 8065 8066 // If there is a single-input Phi, evaluate it at our scope. If we can 8067 // prove that this replacement does not break LCSSA form, use new value. 8068 if (PN->getNumOperands() == 1) { 8069 const SCEV *Input = getSCEV(PN->getOperand(0)); 8070 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8071 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8072 // for the simplest case just support constants. 8073 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8074 } 8075 } 8076 8077 // Okay, this is an expression that we cannot symbolically evaluate 8078 // into a SCEV. Check to see if it's possible to symbolically evaluate 8079 // the arguments into constants, and if so, try to constant propagate the 8080 // result. This is particularly useful for computing loop exit values. 8081 if (CanConstantFold(I)) { 8082 SmallVector<Constant *, 4> Operands; 8083 bool MadeImprovement = false; 8084 for (Value *Op : I->operands()) { 8085 if (Constant *C = dyn_cast<Constant>(Op)) { 8086 Operands.push_back(C); 8087 continue; 8088 } 8089 8090 // If any of the operands is non-constant and if they are 8091 // non-integer and non-pointer, don't even try to analyze them 8092 // with scev techniques. 8093 if (!isSCEVable(Op->getType())) 8094 return V; 8095 8096 const SCEV *OrigV = getSCEV(Op); 8097 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8098 MadeImprovement |= OrigV != OpV; 8099 8100 Constant *C = BuildConstantFromSCEV(OpV); 8101 if (!C) return V; 8102 if (C->getType() != Op->getType()) 8103 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8104 Op->getType(), 8105 false), 8106 C, Op->getType()); 8107 Operands.push_back(C); 8108 } 8109 8110 // Check to see if getSCEVAtScope actually made an improvement. 8111 if (MadeImprovement) { 8112 Constant *C = nullptr; 8113 const DataLayout &DL = getDataLayout(); 8114 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8115 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8116 Operands[1], DL, &TLI); 8117 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8118 if (!LI->isVolatile()) 8119 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8120 } else 8121 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8122 if (!C) return V; 8123 return getSCEV(C); 8124 } 8125 } 8126 } 8127 8128 // This is some other type of SCEVUnknown, just return it. 8129 return V; 8130 } 8131 8132 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8133 // Avoid performing the look-up in the common case where the specified 8134 // expression has no loop-variant portions. 8135 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8136 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8137 if (OpAtScope != Comm->getOperand(i)) { 8138 // Okay, at least one of these operands is loop variant but might be 8139 // foldable. Build a new instance of the folded commutative expression. 8140 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8141 Comm->op_begin()+i); 8142 NewOps.push_back(OpAtScope); 8143 8144 for (++i; i != e; ++i) { 8145 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8146 NewOps.push_back(OpAtScope); 8147 } 8148 if (isa<SCEVAddExpr>(Comm)) 8149 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8150 if (isa<SCEVMulExpr>(Comm)) 8151 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8152 if (isa<SCEVMinMaxExpr>(Comm)) 8153 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8154 llvm_unreachable("Unknown commutative SCEV type!"); 8155 } 8156 } 8157 // If we got here, all operands are loop invariant. 8158 return Comm; 8159 } 8160 8161 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8162 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8163 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8164 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8165 return Div; // must be loop invariant 8166 return getUDivExpr(LHS, RHS); 8167 } 8168 8169 // If this is a loop recurrence for a loop that does not contain L, then we 8170 // are dealing with the final value computed by the loop. 8171 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8172 // First, attempt to evaluate each operand. 8173 // Avoid performing the look-up in the common case where the specified 8174 // expression has no loop-variant portions. 8175 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8176 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8177 if (OpAtScope == AddRec->getOperand(i)) 8178 continue; 8179 8180 // Okay, at least one of these operands is loop variant but might be 8181 // foldable. Build a new instance of the folded commutative expression. 8182 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8183 AddRec->op_begin()+i); 8184 NewOps.push_back(OpAtScope); 8185 for (++i; i != e; ++i) 8186 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8187 8188 const SCEV *FoldedRec = 8189 getAddRecExpr(NewOps, AddRec->getLoop(), 8190 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8191 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8192 // The addrec may be folded to a nonrecurrence, for example, if the 8193 // induction variable is multiplied by zero after constant folding. Go 8194 // ahead and return the folded value. 8195 if (!AddRec) 8196 return FoldedRec; 8197 break; 8198 } 8199 8200 // If the scope is outside the addrec's loop, evaluate it by using the 8201 // loop exit value of the addrec. 8202 if (!AddRec->getLoop()->contains(L)) { 8203 // To evaluate this recurrence, we need to know how many times the AddRec 8204 // loop iterates. Compute this now. 8205 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8206 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8207 8208 // Then, evaluate the AddRec. 8209 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8210 } 8211 8212 return AddRec; 8213 } 8214 8215 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8216 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8217 if (Op == Cast->getOperand()) 8218 return Cast; // must be loop invariant 8219 return getZeroExtendExpr(Op, Cast->getType()); 8220 } 8221 8222 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8223 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8224 if (Op == Cast->getOperand()) 8225 return Cast; // must be loop invariant 8226 return getSignExtendExpr(Op, Cast->getType()); 8227 } 8228 8229 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8230 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8231 if (Op == Cast->getOperand()) 8232 return Cast; // must be loop invariant 8233 return getTruncateExpr(Op, Cast->getType()); 8234 } 8235 8236 llvm_unreachable("Unknown SCEV type!"); 8237 } 8238 8239 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8240 return getSCEVAtScope(getSCEV(V), L); 8241 } 8242 8243 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8244 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8245 return stripInjectiveFunctions(ZExt->getOperand()); 8246 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8247 return stripInjectiveFunctions(SExt->getOperand()); 8248 return S; 8249 } 8250 8251 /// Finds the minimum unsigned root of the following equation: 8252 /// 8253 /// A * X = B (mod N) 8254 /// 8255 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8256 /// A and B isn't important. 8257 /// 8258 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8259 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8260 ScalarEvolution &SE) { 8261 uint32_t BW = A.getBitWidth(); 8262 assert(BW == SE.getTypeSizeInBits(B->getType())); 8263 assert(A != 0 && "A must be non-zero."); 8264 8265 // 1. D = gcd(A, N) 8266 // 8267 // The gcd of A and N may have only one prime factor: 2. The number of 8268 // trailing zeros in A is its multiplicity 8269 uint32_t Mult2 = A.countTrailingZeros(); 8270 // D = 2^Mult2 8271 8272 // 2. Check if B is divisible by D. 8273 // 8274 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8275 // is not less than multiplicity of this prime factor for D. 8276 if (SE.GetMinTrailingZeros(B) < Mult2) 8277 return SE.getCouldNotCompute(); 8278 8279 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8280 // modulo (N / D). 8281 // 8282 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8283 // (N / D) in general. The inverse itself always fits into BW bits, though, 8284 // so we immediately truncate it. 8285 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8286 APInt Mod(BW + 1, 0); 8287 Mod.setBit(BW - Mult2); // Mod = N / D 8288 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8289 8290 // 4. Compute the minimum unsigned root of the equation: 8291 // I * (B / D) mod (N / D) 8292 // To simplify the computation, we factor out the divide by D: 8293 // (I * B mod N) / D 8294 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8295 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8296 } 8297 8298 /// For a given quadratic addrec, generate coefficients of the corresponding 8299 /// quadratic equation, multiplied by a common value to ensure that they are 8300 /// integers. 8301 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8302 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8303 /// were multiplied by, and BitWidth is the bit width of the original addrec 8304 /// coefficients. 8305 /// This function returns None if the addrec coefficients are not compile- 8306 /// time constants. 8307 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8308 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8309 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8310 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8311 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8312 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8313 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8314 << *AddRec << '\n'); 8315 8316 // We currently can only solve this if the coefficients are constants. 8317 if (!LC || !MC || !NC) { 8318 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8319 return None; 8320 } 8321 8322 APInt L = LC->getAPInt(); 8323 APInt M = MC->getAPInt(); 8324 APInt N = NC->getAPInt(); 8325 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8326 8327 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8328 unsigned NewWidth = BitWidth + 1; 8329 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8330 << BitWidth << '\n'); 8331 // The sign-extension (as opposed to a zero-extension) here matches the 8332 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8333 N = N.sext(NewWidth); 8334 M = M.sext(NewWidth); 8335 L = L.sext(NewWidth); 8336 8337 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8338 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8339 // L+M, L+2M+N, L+3M+3N, ... 8340 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8341 // 8342 // The equation Acc = 0 is then 8343 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8344 // In a quadratic form it becomes: 8345 // N n^2 + (2M-N) n + 2L = 0. 8346 8347 APInt A = N; 8348 APInt B = 2 * M - A; 8349 APInt C = 2 * L; 8350 APInt T = APInt(NewWidth, 2); 8351 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8352 << "x + " << C << ", coeff bw: " << NewWidth 8353 << ", multiplied by " << T << '\n'); 8354 return std::make_tuple(A, B, C, T, BitWidth); 8355 } 8356 8357 /// Helper function to compare optional APInts: 8358 /// (a) if X and Y both exist, return min(X, Y), 8359 /// (b) if neither X nor Y exist, return None, 8360 /// (c) if exactly one of X and Y exists, return that value. 8361 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8362 if (X.hasValue() && Y.hasValue()) { 8363 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8364 APInt XW = X->sextOrSelf(W); 8365 APInt YW = Y->sextOrSelf(W); 8366 return XW.slt(YW) ? *X : *Y; 8367 } 8368 if (!X.hasValue() && !Y.hasValue()) 8369 return None; 8370 return X.hasValue() ? *X : *Y; 8371 } 8372 8373 /// Helper function to truncate an optional APInt to a given BitWidth. 8374 /// When solving addrec-related equations, it is preferable to return a value 8375 /// that has the same bit width as the original addrec's coefficients. If the 8376 /// solution fits in the original bit width, truncate it (except for i1). 8377 /// Returning a value of a different bit width may inhibit some optimizations. 8378 /// 8379 /// In general, a solution to a quadratic equation generated from an addrec 8380 /// may require BW+1 bits, where BW is the bit width of the addrec's 8381 /// coefficients. The reason is that the coefficients of the quadratic 8382 /// equation are BW+1 bits wide (to avoid truncation when converting from 8383 /// the addrec to the equation). 8384 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8385 if (!X.hasValue()) 8386 return None; 8387 unsigned W = X->getBitWidth(); 8388 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8389 return X->trunc(BitWidth); 8390 return X; 8391 } 8392 8393 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8394 /// iterations. The values L, M, N are assumed to be signed, and they 8395 /// should all have the same bit widths. 8396 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8397 /// where BW is the bit width of the addrec's coefficients. 8398 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8399 /// returned as such, otherwise the bit width of the returned value may 8400 /// be greater than BW. 8401 /// 8402 /// This function returns None if 8403 /// (a) the addrec coefficients are not constant, or 8404 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8405 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8406 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8407 static Optional<APInt> 8408 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8409 APInt A, B, C, M; 8410 unsigned BitWidth; 8411 auto T = GetQuadraticEquation(AddRec); 8412 if (!T.hasValue()) 8413 return None; 8414 8415 std::tie(A, B, C, M, BitWidth) = *T; 8416 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8417 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8418 if (!X.hasValue()) 8419 return None; 8420 8421 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8422 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8423 if (!V->isZero()) 8424 return None; 8425 8426 return TruncIfPossible(X, BitWidth); 8427 } 8428 8429 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8430 /// iterations. The values M, N are assumed to be signed, and they 8431 /// should all have the same bit widths. 8432 /// Find the least n such that c(n) does not belong to the given range, 8433 /// while c(n-1) does. 8434 /// 8435 /// This function returns None if 8436 /// (a) the addrec coefficients are not constant, or 8437 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8438 /// bounds of the range. 8439 static Optional<APInt> 8440 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8441 const ConstantRange &Range, ScalarEvolution &SE) { 8442 assert(AddRec->getOperand(0)->isZero() && 8443 "Starting value of addrec should be 0"); 8444 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8445 << Range << ", addrec " << *AddRec << '\n'); 8446 // This case is handled in getNumIterationsInRange. Here we can assume that 8447 // we start in the range. 8448 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8449 "Addrec's initial value should be in range"); 8450 8451 APInt A, B, C, M; 8452 unsigned BitWidth; 8453 auto T = GetQuadraticEquation(AddRec); 8454 if (!T.hasValue()) 8455 return None; 8456 8457 // Be careful about the return value: there can be two reasons for not 8458 // returning an actual number. First, if no solutions to the equations 8459 // were found, and second, if the solutions don't leave the given range. 8460 // The first case means that the actual solution is "unknown", the second 8461 // means that it's known, but not valid. If the solution is unknown, we 8462 // cannot make any conclusions. 8463 // Return a pair: the optional solution and a flag indicating if the 8464 // solution was found. 8465 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8466 // Solve for signed overflow and unsigned overflow, pick the lower 8467 // solution. 8468 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8469 << Bound << " (before multiplying by " << M << ")\n"); 8470 Bound *= M; // The quadratic equation multiplier. 8471 8472 Optional<APInt> SO = None; 8473 if (BitWidth > 1) { 8474 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8475 "signed overflow\n"); 8476 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8477 } 8478 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8479 "unsigned overflow\n"); 8480 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8481 BitWidth+1); 8482 8483 auto LeavesRange = [&] (const APInt &X) { 8484 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8485 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8486 if (Range.contains(V0->getValue())) 8487 return false; 8488 // X should be at least 1, so X-1 is non-negative. 8489 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8490 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8491 if (Range.contains(V1->getValue())) 8492 return true; 8493 return false; 8494 }; 8495 8496 // If SolveQuadraticEquationWrap returns None, it means that there can 8497 // be a solution, but the function failed to find it. We cannot treat it 8498 // as "no solution". 8499 if (!SO.hasValue() || !UO.hasValue()) 8500 return { None, false }; 8501 8502 // Check the smaller value first to see if it leaves the range. 8503 // At this point, both SO and UO must have values. 8504 Optional<APInt> Min = MinOptional(SO, UO); 8505 if (LeavesRange(*Min)) 8506 return { Min, true }; 8507 Optional<APInt> Max = Min == SO ? UO : SO; 8508 if (LeavesRange(*Max)) 8509 return { Max, true }; 8510 8511 // Solutions were found, but were eliminated, hence the "true". 8512 return { None, true }; 8513 }; 8514 8515 std::tie(A, B, C, M, BitWidth) = *T; 8516 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8517 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8518 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8519 auto SL = SolveForBoundary(Lower); 8520 auto SU = SolveForBoundary(Upper); 8521 // If any of the solutions was unknown, no meaninigful conclusions can 8522 // be made. 8523 if (!SL.second || !SU.second) 8524 return None; 8525 8526 // Claim: The correct solution is not some value between Min and Max. 8527 // 8528 // Justification: Assuming that Min and Max are different values, one of 8529 // them is when the first signed overflow happens, the other is when the 8530 // first unsigned overflow happens. Crossing the range boundary is only 8531 // possible via an overflow (treating 0 as a special case of it, modeling 8532 // an overflow as crossing k*2^W for some k). 8533 // 8534 // The interesting case here is when Min was eliminated as an invalid 8535 // solution, but Max was not. The argument is that if there was another 8536 // overflow between Min and Max, it would also have been eliminated if 8537 // it was considered. 8538 // 8539 // For a given boundary, it is possible to have two overflows of the same 8540 // type (signed/unsigned) without having the other type in between: this 8541 // can happen when the vertex of the parabola is between the iterations 8542 // corresponding to the overflows. This is only possible when the two 8543 // overflows cross k*2^W for the same k. In such case, if the second one 8544 // left the range (and was the first one to do so), the first overflow 8545 // would have to enter the range, which would mean that either we had left 8546 // the range before or that we started outside of it. Both of these cases 8547 // are contradictions. 8548 // 8549 // Claim: In the case where SolveForBoundary returns None, the correct 8550 // solution is not some value between the Max for this boundary and the 8551 // Min of the other boundary. 8552 // 8553 // Justification: Assume that we had such Max_A and Min_B corresponding 8554 // to range boundaries A and B and such that Max_A < Min_B. If there was 8555 // a solution between Max_A and Min_B, it would have to be caused by an 8556 // overflow corresponding to either A or B. It cannot correspond to B, 8557 // since Min_B is the first occurrence of such an overflow. If it 8558 // corresponded to A, it would have to be either a signed or an unsigned 8559 // overflow that is larger than both eliminated overflows for A. But 8560 // between the eliminated overflows and this overflow, the values would 8561 // cover the entire value space, thus crossing the other boundary, which 8562 // is a contradiction. 8563 8564 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8565 } 8566 8567 ScalarEvolution::ExitLimit 8568 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8569 bool AllowPredicates) { 8570 8571 // This is only used for loops with a "x != y" exit test. The exit condition 8572 // is now expressed as a single expression, V = x-y. So the exit test is 8573 // effectively V != 0. We know and take advantage of the fact that this 8574 // expression only being used in a comparison by zero context. 8575 8576 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8577 // If the value is a constant 8578 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8579 // If the value is already zero, the branch will execute zero times. 8580 if (C->getValue()->isZero()) return C; 8581 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8582 } 8583 8584 const SCEVAddRecExpr *AddRec = 8585 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8586 8587 if (!AddRec && AllowPredicates) 8588 // Try to make this an AddRec using runtime tests, in the first X 8589 // iterations of this loop, where X is the SCEV expression found by the 8590 // algorithm below. 8591 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8592 8593 if (!AddRec || AddRec->getLoop() != L) 8594 return getCouldNotCompute(); 8595 8596 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8597 // the quadratic equation to solve it. 8598 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8599 // We can only use this value if the chrec ends up with an exact zero 8600 // value at this index. When solving for "X*X != 5", for example, we 8601 // should not accept a root of 2. 8602 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8603 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8604 return ExitLimit(R, R, false, Predicates); 8605 } 8606 return getCouldNotCompute(); 8607 } 8608 8609 // Otherwise we can only handle this if it is affine. 8610 if (!AddRec->isAffine()) 8611 return getCouldNotCompute(); 8612 8613 // If this is an affine expression, the execution count of this branch is 8614 // the minimum unsigned root of the following equation: 8615 // 8616 // Start + Step*N = 0 (mod 2^BW) 8617 // 8618 // equivalent to: 8619 // 8620 // Step*N = -Start (mod 2^BW) 8621 // 8622 // where BW is the common bit width of Start and Step. 8623 8624 // Get the initial value for the loop. 8625 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8626 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8627 8628 // For now we handle only constant steps. 8629 // 8630 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8631 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8632 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8633 // We have not yet seen any such cases. 8634 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8635 if (!StepC || StepC->getValue()->isZero()) 8636 return getCouldNotCompute(); 8637 8638 // For positive steps (counting up until unsigned overflow): 8639 // N = -Start/Step (as unsigned) 8640 // For negative steps (counting down to zero): 8641 // N = Start/-Step 8642 // First compute the unsigned distance from zero in the direction of Step. 8643 bool CountDown = StepC->getAPInt().isNegative(); 8644 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8645 8646 // Handle unitary steps, which cannot wraparound. 8647 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8648 // N = Distance (as unsigned) 8649 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8650 APInt MaxBECount = getUnsignedRangeMax(Distance); 8651 8652 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8653 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8654 // case, and see if we can improve the bound. 8655 // 8656 // Explicitly handling this here is necessary because getUnsignedRange 8657 // isn't context-sensitive; it doesn't know that we only care about the 8658 // range inside the loop. 8659 const SCEV *Zero = getZero(Distance->getType()); 8660 const SCEV *One = getOne(Distance->getType()); 8661 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8662 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8663 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8664 // as "unsigned_max(Distance + 1) - 1". 8665 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8666 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8667 } 8668 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8669 } 8670 8671 // If the condition controls loop exit (the loop exits only if the expression 8672 // is true) and the addition is no-wrap we can use unsigned divide to 8673 // compute the backedge count. In this case, the step may not divide the 8674 // distance, but we don't care because if the condition is "missed" the loop 8675 // will have undefined behavior due to wrapping. 8676 if (ControlsExit && AddRec->hasNoSelfWrap() && 8677 loopHasNoAbnormalExits(AddRec->getLoop())) { 8678 const SCEV *Exact = 8679 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8680 const SCEV *Max = 8681 Exact == getCouldNotCompute() 8682 ? Exact 8683 : getConstant(getUnsignedRangeMax(Exact)); 8684 return ExitLimit(Exact, Max, false, Predicates); 8685 } 8686 8687 // Solve the general equation. 8688 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8689 getNegativeSCEV(Start), *this); 8690 const SCEV *M = E == getCouldNotCompute() 8691 ? E 8692 : getConstant(getUnsignedRangeMax(E)); 8693 return ExitLimit(E, M, false, Predicates); 8694 } 8695 8696 ScalarEvolution::ExitLimit 8697 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8698 // Loops that look like: while (X == 0) are very strange indeed. We don't 8699 // handle them yet except for the trivial case. This could be expanded in the 8700 // future as needed. 8701 8702 // If the value is a constant, check to see if it is known to be non-zero 8703 // already. If so, the backedge will execute zero times. 8704 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8705 if (!C->getValue()->isZero()) 8706 return getZero(C->getType()); 8707 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8708 } 8709 8710 // We could implement others, but I really doubt anyone writes loops like 8711 // this, and if they did, they would already be constant folded. 8712 return getCouldNotCompute(); 8713 } 8714 8715 std::pair<BasicBlock *, BasicBlock *> 8716 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8717 // If the block has a unique predecessor, then there is no path from the 8718 // predecessor to the block that does not go through the direct edge 8719 // from the predecessor to the block. 8720 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8721 return {Pred, BB}; 8722 8723 // A loop's header is defined to be a block that dominates the loop. 8724 // If the header has a unique predecessor outside the loop, it must be 8725 // a block that has exactly one successor that can reach the loop. 8726 if (Loop *L = LI.getLoopFor(BB)) 8727 return {L->getLoopPredecessor(), L->getHeader()}; 8728 8729 return {nullptr, nullptr}; 8730 } 8731 8732 /// SCEV structural equivalence is usually sufficient for testing whether two 8733 /// expressions are equal, however for the purposes of looking for a condition 8734 /// guarding a loop, it can be useful to be a little more general, since a 8735 /// front-end may have replicated the controlling expression. 8736 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8737 // Quick check to see if they are the same SCEV. 8738 if (A == B) return true; 8739 8740 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8741 // Not all instructions that are "identical" compute the same value. For 8742 // instance, two distinct alloca instructions allocating the same type are 8743 // identical and do not read memory; but compute distinct values. 8744 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8745 }; 8746 8747 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8748 // two different instructions with the same value. Check for this case. 8749 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8750 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8751 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8752 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8753 if (ComputesEqualValues(AI, BI)) 8754 return true; 8755 8756 // Otherwise assume they may have a different value. 8757 return false; 8758 } 8759 8760 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8761 const SCEV *&LHS, const SCEV *&RHS, 8762 unsigned Depth) { 8763 bool Changed = false; 8764 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8765 // '0 != 0'. 8766 auto TrivialCase = [&](bool TriviallyTrue) { 8767 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8768 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8769 return true; 8770 }; 8771 // If we hit the max recursion limit bail out. 8772 if (Depth >= 3) 8773 return false; 8774 8775 // Canonicalize a constant to the right side. 8776 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8777 // Check for both operands constant. 8778 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8779 if (ConstantExpr::getICmp(Pred, 8780 LHSC->getValue(), 8781 RHSC->getValue())->isNullValue()) 8782 return TrivialCase(false); 8783 else 8784 return TrivialCase(true); 8785 } 8786 // Otherwise swap the operands to put the constant on the right. 8787 std::swap(LHS, RHS); 8788 Pred = ICmpInst::getSwappedPredicate(Pred); 8789 Changed = true; 8790 } 8791 8792 // If we're comparing an addrec with a value which is loop-invariant in the 8793 // addrec's loop, put the addrec on the left. Also make a dominance check, 8794 // as both operands could be addrecs loop-invariant in each other's loop. 8795 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8796 const Loop *L = AR->getLoop(); 8797 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8798 std::swap(LHS, RHS); 8799 Pred = ICmpInst::getSwappedPredicate(Pred); 8800 Changed = true; 8801 } 8802 } 8803 8804 // If there's a constant operand, canonicalize comparisons with boundary 8805 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8806 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8807 const APInt &RA = RC->getAPInt(); 8808 8809 bool SimplifiedByConstantRange = false; 8810 8811 if (!ICmpInst::isEquality(Pred)) { 8812 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8813 if (ExactCR.isFullSet()) 8814 return TrivialCase(true); 8815 else if (ExactCR.isEmptySet()) 8816 return TrivialCase(false); 8817 8818 APInt NewRHS; 8819 CmpInst::Predicate NewPred; 8820 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8821 ICmpInst::isEquality(NewPred)) { 8822 // We were able to convert an inequality to an equality. 8823 Pred = NewPred; 8824 RHS = getConstant(NewRHS); 8825 Changed = SimplifiedByConstantRange = true; 8826 } 8827 } 8828 8829 if (!SimplifiedByConstantRange) { 8830 switch (Pred) { 8831 default: 8832 break; 8833 case ICmpInst::ICMP_EQ: 8834 case ICmpInst::ICMP_NE: 8835 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8836 if (!RA) 8837 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8838 if (const SCEVMulExpr *ME = 8839 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8840 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8841 ME->getOperand(0)->isAllOnesValue()) { 8842 RHS = AE->getOperand(1); 8843 LHS = ME->getOperand(1); 8844 Changed = true; 8845 } 8846 break; 8847 8848 8849 // The "Should have been caught earlier!" messages refer to the fact 8850 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8851 // should have fired on the corresponding cases, and canonicalized the 8852 // check to trivial case. 8853 8854 case ICmpInst::ICMP_UGE: 8855 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8856 Pred = ICmpInst::ICMP_UGT; 8857 RHS = getConstant(RA - 1); 8858 Changed = true; 8859 break; 8860 case ICmpInst::ICMP_ULE: 8861 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8862 Pred = ICmpInst::ICMP_ULT; 8863 RHS = getConstant(RA + 1); 8864 Changed = true; 8865 break; 8866 case ICmpInst::ICMP_SGE: 8867 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8868 Pred = ICmpInst::ICMP_SGT; 8869 RHS = getConstant(RA - 1); 8870 Changed = true; 8871 break; 8872 case ICmpInst::ICMP_SLE: 8873 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8874 Pred = ICmpInst::ICMP_SLT; 8875 RHS = getConstant(RA + 1); 8876 Changed = true; 8877 break; 8878 } 8879 } 8880 } 8881 8882 // Check for obvious equality. 8883 if (HasSameValue(LHS, RHS)) { 8884 if (ICmpInst::isTrueWhenEqual(Pred)) 8885 return TrivialCase(true); 8886 if (ICmpInst::isFalseWhenEqual(Pred)) 8887 return TrivialCase(false); 8888 } 8889 8890 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8891 // adding or subtracting 1 from one of the operands. 8892 switch (Pred) { 8893 case ICmpInst::ICMP_SLE: 8894 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8895 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8896 SCEV::FlagNSW); 8897 Pred = ICmpInst::ICMP_SLT; 8898 Changed = true; 8899 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8900 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8901 SCEV::FlagNSW); 8902 Pred = ICmpInst::ICMP_SLT; 8903 Changed = true; 8904 } 8905 break; 8906 case ICmpInst::ICMP_SGE: 8907 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8908 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8909 SCEV::FlagNSW); 8910 Pred = ICmpInst::ICMP_SGT; 8911 Changed = true; 8912 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8913 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8914 SCEV::FlagNSW); 8915 Pred = ICmpInst::ICMP_SGT; 8916 Changed = true; 8917 } 8918 break; 8919 case ICmpInst::ICMP_ULE: 8920 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8921 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8922 SCEV::FlagNUW); 8923 Pred = ICmpInst::ICMP_ULT; 8924 Changed = true; 8925 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8926 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8927 Pred = ICmpInst::ICMP_ULT; 8928 Changed = true; 8929 } 8930 break; 8931 case ICmpInst::ICMP_UGE: 8932 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8933 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8934 Pred = ICmpInst::ICMP_UGT; 8935 Changed = true; 8936 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8937 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8938 SCEV::FlagNUW); 8939 Pred = ICmpInst::ICMP_UGT; 8940 Changed = true; 8941 } 8942 break; 8943 default: 8944 break; 8945 } 8946 8947 // TODO: More simplifications are possible here. 8948 8949 // Recursively simplify until we either hit a recursion limit or nothing 8950 // changes. 8951 if (Changed) 8952 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8953 8954 return Changed; 8955 } 8956 8957 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8958 return getSignedRangeMax(S).isNegative(); 8959 } 8960 8961 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8962 return getSignedRangeMin(S).isStrictlyPositive(); 8963 } 8964 8965 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8966 return !getSignedRangeMin(S).isNegative(); 8967 } 8968 8969 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8970 return !getSignedRangeMax(S).isStrictlyPositive(); 8971 } 8972 8973 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8974 return isKnownNegative(S) || isKnownPositive(S); 8975 } 8976 8977 std::pair<const SCEV *, const SCEV *> 8978 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 8979 // Compute SCEV on entry of loop L. 8980 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 8981 if (Start == getCouldNotCompute()) 8982 return { Start, Start }; 8983 // Compute post increment SCEV for loop L. 8984 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 8985 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 8986 return { Start, PostInc }; 8987 } 8988 8989 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 8990 const SCEV *LHS, const SCEV *RHS) { 8991 // First collect all loops. 8992 SmallPtrSet<const Loop *, 8> LoopsUsed; 8993 getUsedLoops(LHS, LoopsUsed); 8994 getUsedLoops(RHS, LoopsUsed); 8995 8996 if (LoopsUsed.empty()) 8997 return false; 8998 8999 // Domination relationship must be a linear order on collected loops. 9000 #ifndef NDEBUG 9001 for (auto *L1 : LoopsUsed) 9002 for (auto *L2 : LoopsUsed) 9003 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9004 DT.dominates(L2->getHeader(), L1->getHeader())) && 9005 "Domination relationship is not a linear order"); 9006 #endif 9007 9008 const Loop *MDL = 9009 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9010 [&](const Loop *L1, const Loop *L2) { 9011 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9012 }); 9013 9014 // Get init and post increment value for LHS. 9015 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9016 // if LHS contains unknown non-invariant SCEV then bail out. 9017 if (SplitLHS.first == getCouldNotCompute()) 9018 return false; 9019 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9020 // Get init and post increment value for RHS. 9021 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9022 // if RHS contains unknown non-invariant SCEV then bail out. 9023 if (SplitRHS.first == getCouldNotCompute()) 9024 return false; 9025 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9026 // It is possible that init SCEV contains an invariant load but it does 9027 // not dominate MDL and is not available at MDL loop entry, so we should 9028 // check it here. 9029 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9030 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9031 return false; 9032 9033 // It seems backedge guard check is faster than entry one so in some cases 9034 // it can speed up whole estimation by short circuit 9035 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9036 SplitRHS.second) && 9037 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9038 } 9039 9040 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9041 const SCEV *LHS, const SCEV *RHS) { 9042 // Canonicalize the inputs first. 9043 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9044 9045 if (isKnownViaInduction(Pred, LHS, RHS)) 9046 return true; 9047 9048 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9049 return true; 9050 9051 // Otherwise see what can be done with some simple reasoning. 9052 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9053 } 9054 9055 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9056 const SCEVAddRecExpr *LHS, 9057 const SCEV *RHS) { 9058 const Loop *L = LHS->getLoop(); 9059 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9060 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9061 } 9062 9063 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9064 ICmpInst::Predicate Pred, 9065 bool &Increasing) { 9066 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9067 9068 #ifndef NDEBUG 9069 // Verify an invariant: inverting the predicate should turn a monotonically 9070 // increasing change to a monotonically decreasing one, and vice versa. 9071 bool IncreasingSwapped; 9072 bool ResultSwapped = isMonotonicPredicateImpl( 9073 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9074 9075 assert(Result == ResultSwapped && "should be able to analyze both!"); 9076 if (ResultSwapped) 9077 assert(Increasing == !IncreasingSwapped && 9078 "monotonicity should flip as we flip the predicate"); 9079 #endif 9080 9081 return Result; 9082 } 9083 9084 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9085 ICmpInst::Predicate Pred, 9086 bool &Increasing) { 9087 9088 // A zero step value for LHS means the induction variable is essentially a 9089 // loop invariant value. We don't really depend on the predicate actually 9090 // flipping from false to true (for increasing predicates, and the other way 9091 // around for decreasing predicates), all we care about is that *if* the 9092 // predicate changes then it only changes from false to true. 9093 // 9094 // A zero step value in itself is not very useful, but there may be places 9095 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9096 // as general as possible. 9097 9098 switch (Pred) { 9099 default: 9100 return false; // Conservative answer 9101 9102 case ICmpInst::ICMP_UGT: 9103 case ICmpInst::ICMP_UGE: 9104 case ICmpInst::ICMP_ULT: 9105 case ICmpInst::ICMP_ULE: 9106 if (!LHS->hasNoUnsignedWrap()) 9107 return false; 9108 9109 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9110 return true; 9111 9112 case ICmpInst::ICMP_SGT: 9113 case ICmpInst::ICMP_SGE: 9114 case ICmpInst::ICMP_SLT: 9115 case ICmpInst::ICMP_SLE: { 9116 if (!LHS->hasNoSignedWrap()) 9117 return false; 9118 9119 const SCEV *Step = LHS->getStepRecurrence(*this); 9120 9121 if (isKnownNonNegative(Step)) { 9122 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9123 return true; 9124 } 9125 9126 if (isKnownNonPositive(Step)) { 9127 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9128 return true; 9129 } 9130 9131 return false; 9132 } 9133 9134 } 9135 9136 llvm_unreachable("switch has default clause!"); 9137 } 9138 9139 bool ScalarEvolution::isLoopInvariantPredicate( 9140 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9141 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9142 const SCEV *&InvariantRHS) { 9143 9144 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9145 if (!isLoopInvariant(RHS, L)) { 9146 if (!isLoopInvariant(LHS, L)) 9147 return false; 9148 9149 std::swap(LHS, RHS); 9150 Pred = ICmpInst::getSwappedPredicate(Pred); 9151 } 9152 9153 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9154 if (!ArLHS || ArLHS->getLoop() != L) 9155 return false; 9156 9157 bool Increasing; 9158 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9159 return false; 9160 9161 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9162 // true as the loop iterates, and the backedge is control dependent on 9163 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9164 // 9165 // * if the predicate was false in the first iteration then the predicate 9166 // is never evaluated again, since the loop exits without taking the 9167 // backedge. 9168 // * if the predicate was true in the first iteration then it will 9169 // continue to be true for all future iterations since it is 9170 // monotonically increasing. 9171 // 9172 // For both the above possibilities, we can replace the loop varying 9173 // predicate with its value on the first iteration of the loop (which is 9174 // loop invariant). 9175 // 9176 // A similar reasoning applies for a monotonically decreasing predicate, by 9177 // replacing true with false and false with true in the above two bullets. 9178 9179 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9180 9181 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9182 return false; 9183 9184 InvariantPred = Pred; 9185 InvariantLHS = ArLHS->getStart(); 9186 InvariantRHS = RHS; 9187 return true; 9188 } 9189 9190 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9191 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9192 if (HasSameValue(LHS, RHS)) 9193 return ICmpInst::isTrueWhenEqual(Pred); 9194 9195 // This code is split out from isKnownPredicate because it is called from 9196 // within isLoopEntryGuardedByCond. 9197 9198 auto CheckRanges = 9199 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9200 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9201 .contains(RangeLHS); 9202 }; 9203 9204 // The check at the top of the function catches the case where the values are 9205 // known to be equal. 9206 if (Pred == CmpInst::ICMP_EQ) 9207 return false; 9208 9209 if (Pred == CmpInst::ICMP_NE) 9210 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9211 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9212 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9213 9214 if (CmpInst::isSigned(Pred)) 9215 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9216 9217 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9218 } 9219 9220 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9221 const SCEV *LHS, 9222 const SCEV *RHS) { 9223 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9224 // Return Y via OutY. 9225 auto MatchBinaryAddToConst = 9226 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9227 SCEV::NoWrapFlags ExpectedFlags) { 9228 const SCEV *NonConstOp, *ConstOp; 9229 SCEV::NoWrapFlags FlagsPresent; 9230 9231 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9232 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9233 return false; 9234 9235 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9236 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9237 }; 9238 9239 APInt C; 9240 9241 switch (Pred) { 9242 default: 9243 break; 9244 9245 case ICmpInst::ICMP_SGE: 9246 std::swap(LHS, RHS); 9247 LLVM_FALLTHROUGH; 9248 case ICmpInst::ICMP_SLE: 9249 // X s<= (X + C)<nsw> if C >= 0 9250 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9251 return true; 9252 9253 // (X + C)<nsw> s<= X if C <= 0 9254 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9255 !C.isStrictlyPositive()) 9256 return true; 9257 break; 9258 9259 case ICmpInst::ICMP_SGT: 9260 std::swap(LHS, RHS); 9261 LLVM_FALLTHROUGH; 9262 case ICmpInst::ICMP_SLT: 9263 // X s< (X + C)<nsw> if C > 0 9264 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9265 C.isStrictlyPositive()) 9266 return true; 9267 9268 // (X + C)<nsw> s< X if C < 0 9269 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9270 return true; 9271 break; 9272 } 9273 9274 return false; 9275 } 9276 9277 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9278 const SCEV *LHS, 9279 const SCEV *RHS) { 9280 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9281 return false; 9282 9283 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9284 // the stack can result in exponential time complexity. 9285 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9286 9287 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9288 // 9289 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9290 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9291 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9292 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9293 // use isKnownPredicate later if needed. 9294 return isKnownNonNegative(RHS) && 9295 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9296 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9297 } 9298 9299 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9300 ICmpInst::Predicate Pred, 9301 const SCEV *LHS, const SCEV *RHS) { 9302 // No need to even try if we know the module has no guards. 9303 if (!HasGuards) 9304 return false; 9305 9306 return any_of(*BB, [&](Instruction &I) { 9307 using namespace llvm::PatternMatch; 9308 9309 Value *Condition; 9310 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9311 m_Value(Condition))) && 9312 isImpliedCond(Pred, LHS, RHS, Condition, false); 9313 }); 9314 } 9315 9316 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9317 /// protected by a conditional between LHS and RHS. This is used to 9318 /// to eliminate casts. 9319 bool 9320 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9321 ICmpInst::Predicate Pred, 9322 const SCEV *LHS, const SCEV *RHS) { 9323 // Interpret a null as meaning no loop, where there is obviously no guard 9324 // (interprocedural conditions notwithstanding). 9325 if (!L) return true; 9326 9327 if (VerifyIR) 9328 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9329 "This cannot be done on broken IR!"); 9330 9331 9332 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9333 return true; 9334 9335 BasicBlock *Latch = L->getLoopLatch(); 9336 if (!Latch) 9337 return false; 9338 9339 BranchInst *LoopContinuePredicate = 9340 dyn_cast<BranchInst>(Latch->getTerminator()); 9341 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9342 isImpliedCond(Pred, LHS, RHS, 9343 LoopContinuePredicate->getCondition(), 9344 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9345 return true; 9346 9347 // We don't want more than one activation of the following loops on the stack 9348 // -- that can lead to O(n!) time complexity. 9349 if (WalkingBEDominatingConds) 9350 return false; 9351 9352 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9353 9354 // See if we can exploit a trip count to prove the predicate. 9355 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9356 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9357 if (LatchBECount != getCouldNotCompute()) { 9358 // We know that Latch branches back to the loop header exactly 9359 // LatchBECount times. This means the backdege condition at Latch is 9360 // equivalent to "{0,+,1} u< LatchBECount". 9361 Type *Ty = LatchBECount->getType(); 9362 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9363 const SCEV *LoopCounter = 9364 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9365 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9366 LatchBECount)) 9367 return true; 9368 } 9369 9370 // Check conditions due to any @llvm.assume intrinsics. 9371 for (auto &AssumeVH : AC.assumptions()) { 9372 if (!AssumeVH) 9373 continue; 9374 auto *CI = cast<CallInst>(AssumeVH); 9375 if (!DT.dominates(CI, Latch->getTerminator())) 9376 continue; 9377 9378 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9379 return true; 9380 } 9381 9382 // If the loop is not reachable from the entry block, we risk running into an 9383 // infinite loop as we walk up into the dom tree. These loops do not matter 9384 // anyway, so we just return a conservative answer when we see them. 9385 if (!DT.isReachableFromEntry(L->getHeader())) 9386 return false; 9387 9388 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9389 return true; 9390 9391 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9392 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9393 assert(DTN && "should reach the loop header before reaching the root!"); 9394 9395 BasicBlock *BB = DTN->getBlock(); 9396 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9397 return true; 9398 9399 BasicBlock *PBB = BB->getSinglePredecessor(); 9400 if (!PBB) 9401 continue; 9402 9403 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9404 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9405 continue; 9406 9407 Value *Condition = ContinuePredicate->getCondition(); 9408 9409 // If we have an edge `E` within the loop body that dominates the only 9410 // latch, the condition guarding `E` also guards the backedge. This 9411 // reasoning works only for loops with a single latch. 9412 9413 BasicBlockEdge DominatingEdge(PBB, BB); 9414 if (DominatingEdge.isSingleEdge()) { 9415 // We're constructively (and conservatively) enumerating edges within the 9416 // loop body that dominate the latch. The dominator tree better agree 9417 // with us on this: 9418 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9419 9420 if (isImpliedCond(Pred, LHS, RHS, Condition, 9421 BB != ContinuePredicate->getSuccessor(0))) 9422 return true; 9423 } 9424 } 9425 9426 return false; 9427 } 9428 9429 bool 9430 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9431 ICmpInst::Predicate Pred, 9432 const SCEV *LHS, const SCEV *RHS) { 9433 // Interpret a null as meaning no loop, where there is obviously no guard 9434 // (interprocedural conditions notwithstanding). 9435 if (!L) return false; 9436 9437 if (VerifyIR) 9438 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9439 "This cannot be done on broken IR!"); 9440 9441 // Both LHS and RHS must be available at loop entry. 9442 assert(isAvailableAtLoopEntry(LHS, L) && 9443 "LHS is not available at Loop Entry"); 9444 assert(isAvailableAtLoopEntry(RHS, L) && 9445 "RHS is not available at Loop Entry"); 9446 9447 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9448 return true; 9449 9450 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9451 // the facts (a >= b && a != b) separately. A typical situation is when the 9452 // non-strict comparison is known from ranges and non-equality is known from 9453 // dominating predicates. If we are proving strict comparison, we always try 9454 // to prove non-equality and non-strict comparison separately. 9455 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9456 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9457 bool ProvedNonStrictComparison = false; 9458 bool ProvedNonEquality = false; 9459 9460 if (ProvingStrictComparison) { 9461 ProvedNonStrictComparison = 9462 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9463 ProvedNonEquality = 9464 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9465 if (ProvedNonStrictComparison && ProvedNonEquality) 9466 return true; 9467 } 9468 9469 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9470 auto ProveViaGuard = [&](BasicBlock *Block) { 9471 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9472 return true; 9473 if (ProvingStrictComparison) { 9474 if (!ProvedNonStrictComparison) 9475 ProvedNonStrictComparison = 9476 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9477 if (!ProvedNonEquality) 9478 ProvedNonEquality = 9479 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9480 if (ProvedNonStrictComparison && ProvedNonEquality) 9481 return true; 9482 } 9483 return false; 9484 }; 9485 9486 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9487 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9488 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9489 return true; 9490 if (ProvingStrictComparison) { 9491 if (!ProvedNonStrictComparison) 9492 ProvedNonStrictComparison = 9493 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9494 if (!ProvedNonEquality) 9495 ProvedNonEquality = 9496 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9497 if (ProvedNonStrictComparison && ProvedNonEquality) 9498 return true; 9499 } 9500 return false; 9501 }; 9502 9503 // Starting at the loop predecessor, climb up the predecessor chain, as long 9504 // as there are predecessors that can be found that have unique successors 9505 // leading to the original header. 9506 for (std::pair<BasicBlock *, BasicBlock *> 9507 Pair(L->getLoopPredecessor(), L->getHeader()); 9508 Pair.first; 9509 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9510 9511 if (ProveViaGuard(Pair.first)) 9512 return true; 9513 9514 BranchInst *LoopEntryPredicate = 9515 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9516 if (!LoopEntryPredicate || 9517 LoopEntryPredicate->isUnconditional()) 9518 continue; 9519 9520 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9521 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9522 return true; 9523 } 9524 9525 // Check conditions due to any @llvm.assume intrinsics. 9526 for (auto &AssumeVH : AC.assumptions()) { 9527 if (!AssumeVH) 9528 continue; 9529 auto *CI = cast<CallInst>(AssumeVH); 9530 if (!DT.dominates(CI, L->getHeader())) 9531 continue; 9532 9533 if (ProveViaCond(CI->getArgOperand(0), false)) 9534 return true; 9535 } 9536 9537 return false; 9538 } 9539 9540 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9541 const SCEV *LHS, const SCEV *RHS, 9542 Value *FoundCondValue, 9543 bool Inverse) { 9544 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9545 return false; 9546 9547 auto ClearOnExit = 9548 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9549 9550 // Recursively handle And and Or conditions. 9551 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9552 if (BO->getOpcode() == Instruction::And) { 9553 if (!Inverse) 9554 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9555 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9556 } else if (BO->getOpcode() == Instruction::Or) { 9557 if (Inverse) 9558 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9559 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9560 } 9561 } 9562 9563 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9564 if (!ICI) return false; 9565 9566 // Now that we found a conditional branch that dominates the loop or controls 9567 // the loop latch. Check to see if it is the comparison we are looking for. 9568 ICmpInst::Predicate FoundPred; 9569 if (Inverse) 9570 FoundPred = ICI->getInversePredicate(); 9571 else 9572 FoundPred = ICI->getPredicate(); 9573 9574 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9575 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9576 9577 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9578 } 9579 9580 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9581 const SCEV *RHS, 9582 ICmpInst::Predicate FoundPred, 9583 const SCEV *FoundLHS, 9584 const SCEV *FoundRHS) { 9585 // Balance the types. 9586 if (getTypeSizeInBits(LHS->getType()) < 9587 getTypeSizeInBits(FoundLHS->getType())) { 9588 if (CmpInst::isSigned(Pred)) { 9589 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9590 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9591 } else { 9592 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9593 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9594 } 9595 } else if (getTypeSizeInBits(LHS->getType()) > 9596 getTypeSizeInBits(FoundLHS->getType())) { 9597 if (CmpInst::isSigned(FoundPred)) { 9598 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9599 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9600 } else { 9601 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9602 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9603 } 9604 } 9605 9606 // Canonicalize the query to match the way instcombine will have 9607 // canonicalized the comparison. 9608 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9609 if (LHS == RHS) 9610 return CmpInst::isTrueWhenEqual(Pred); 9611 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9612 if (FoundLHS == FoundRHS) 9613 return CmpInst::isFalseWhenEqual(FoundPred); 9614 9615 // Check to see if we can make the LHS or RHS match. 9616 if (LHS == FoundRHS || RHS == FoundLHS) { 9617 if (isa<SCEVConstant>(RHS)) { 9618 std::swap(FoundLHS, FoundRHS); 9619 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9620 } else { 9621 std::swap(LHS, RHS); 9622 Pred = ICmpInst::getSwappedPredicate(Pred); 9623 } 9624 } 9625 9626 // Check whether the found predicate is the same as the desired predicate. 9627 if (FoundPred == Pred) 9628 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9629 9630 // Check whether swapping the found predicate makes it the same as the 9631 // desired predicate. 9632 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9633 if (isa<SCEVConstant>(RHS)) 9634 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9635 else 9636 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9637 RHS, LHS, FoundLHS, FoundRHS); 9638 } 9639 9640 // Unsigned comparison is the same as signed comparison when both the operands 9641 // are non-negative. 9642 if (CmpInst::isUnsigned(FoundPred) && 9643 CmpInst::getSignedPredicate(FoundPred) == Pred && 9644 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9645 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9646 9647 // Check if we can make progress by sharpening ranges. 9648 if (FoundPred == ICmpInst::ICMP_NE && 9649 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9650 9651 const SCEVConstant *C = nullptr; 9652 const SCEV *V = nullptr; 9653 9654 if (isa<SCEVConstant>(FoundLHS)) { 9655 C = cast<SCEVConstant>(FoundLHS); 9656 V = FoundRHS; 9657 } else { 9658 C = cast<SCEVConstant>(FoundRHS); 9659 V = FoundLHS; 9660 } 9661 9662 // The guarding predicate tells us that C != V. If the known range 9663 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9664 // range we consider has to correspond to same signedness as the 9665 // predicate we're interested in folding. 9666 9667 APInt Min = ICmpInst::isSigned(Pred) ? 9668 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9669 9670 if (Min == C->getAPInt()) { 9671 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9672 // This is true even if (Min + 1) wraps around -- in case of 9673 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9674 9675 APInt SharperMin = Min + 1; 9676 9677 switch (Pred) { 9678 case ICmpInst::ICMP_SGE: 9679 case ICmpInst::ICMP_UGE: 9680 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9681 // RHS, we're done. 9682 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9683 getConstant(SharperMin))) 9684 return true; 9685 LLVM_FALLTHROUGH; 9686 9687 case ICmpInst::ICMP_SGT: 9688 case ICmpInst::ICMP_UGT: 9689 // We know from the range information that (V `Pred` Min || 9690 // V == Min). We know from the guarding condition that !(V 9691 // == Min). This gives us 9692 // 9693 // V `Pred` Min || V == Min && !(V == Min) 9694 // => V `Pred` Min 9695 // 9696 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9697 9698 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9699 return true; 9700 LLVM_FALLTHROUGH; 9701 9702 default: 9703 // No change 9704 break; 9705 } 9706 } 9707 } 9708 9709 // Check whether the actual condition is beyond sufficient. 9710 if (FoundPred == ICmpInst::ICMP_EQ) 9711 if (ICmpInst::isTrueWhenEqual(Pred)) 9712 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9713 return true; 9714 if (Pred == ICmpInst::ICMP_NE) 9715 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9716 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9717 return true; 9718 9719 // Otherwise assume the worst. 9720 return false; 9721 } 9722 9723 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9724 const SCEV *&L, const SCEV *&R, 9725 SCEV::NoWrapFlags &Flags) { 9726 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9727 if (!AE || AE->getNumOperands() != 2) 9728 return false; 9729 9730 L = AE->getOperand(0); 9731 R = AE->getOperand(1); 9732 Flags = AE->getNoWrapFlags(); 9733 return true; 9734 } 9735 9736 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9737 const SCEV *Less) { 9738 // We avoid subtracting expressions here because this function is usually 9739 // fairly deep in the call stack (i.e. is called many times). 9740 9741 // X - X = 0. 9742 if (More == Less) 9743 return APInt(getTypeSizeInBits(More->getType()), 0); 9744 9745 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9746 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9747 const auto *MAR = cast<SCEVAddRecExpr>(More); 9748 9749 if (LAR->getLoop() != MAR->getLoop()) 9750 return None; 9751 9752 // We look at affine expressions only; not for correctness but to keep 9753 // getStepRecurrence cheap. 9754 if (!LAR->isAffine() || !MAR->isAffine()) 9755 return None; 9756 9757 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9758 return None; 9759 9760 Less = LAR->getStart(); 9761 More = MAR->getStart(); 9762 9763 // fall through 9764 } 9765 9766 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9767 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9768 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9769 return M - L; 9770 } 9771 9772 SCEV::NoWrapFlags Flags; 9773 const SCEV *LLess = nullptr, *RLess = nullptr; 9774 const SCEV *LMore = nullptr, *RMore = nullptr; 9775 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9776 // Compare (X + C1) vs X. 9777 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9778 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9779 if (RLess == More) 9780 return -(C1->getAPInt()); 9781 9782 // Compare X vs (X + C2). 9783 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9784 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9785 if (RMore == Less) 9786 return C2->getAPInt(); 9787 9788 // Compare (X + C1) vs (X + C2). 9789 if (C1 && C2 && RLess == RMore) 9790 return C2->getAPInt() - C1->getAPInt(); 9791 9792 return None; 9793 } 9794 9795 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9796 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9797 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9798 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9799 return false; 9800 9801 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9802 if (!AddRecLHS) 9803 return false; 9804 9805 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9806 if (!AddRecFoundLHS) 9807 return false; 9808 9809 // We'd like to let SCEV reason about control dependencies, so we constrain 9810 // both the inequalities to be about add recurrences on the same loop. This 9811 // way we can use isLoopEntryGuardedByCond later. 9812 9813 const Loop *L = AddRecFoundLHS->getLoop(); 9814 if (L != AddRecLHS->getLoop()) 9815 return false; 9816 9817 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9818 // 9819 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9820 // ... (2) 9821 // 9822 // Informal proof for (2), assuming (1) [*]: 9823 // 9824 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9825 // 9826 // Then 9827 // 9828 // FoundLHS s< FoundRHS s< INT_MIN - C 9829 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9830 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9831 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9832 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9833 // <=> FoundLHS + C s< FoundRHS + C 9834 // 9835 // [*]: (1) can be proved by ruling out overflow. 9836 // 9837 // [**]: This can be proved by analyzing all the four possibilities: 9838 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9839 // (A s>= 0, B s>= 0). 9840 // 9841 // Note: 9842 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9843 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9844 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9845 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9846 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9847 // C)". 9848 9849 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9850 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9851 if (!LDiff || !RDiff || *LDiff != *RDiff) 9852 return false; 9853 9854 if (LDiff->isMinValue()) 9855 return true; 9856 9857 APInt FoundRHSLimit; 9858 9859 if (Pred == CmpInst::ICMP_ULT) { 9860 FoundRHSLimit = -(*RDiff); 9861 } else { 9862 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9863 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9864 } 9865 9866 // Try to prove (1) or (2), as needed. 9867 return isAvailableAtLoopEntry(FoundRHS, L) && 9868 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9869 getConstant(FoundRHSLimit)); 9870 } 9871 9872 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9873 const SCEV *LHS, const SCEV *RHS, 9874 const SCEV *FoundLHS, 9875 const SCEV *FoundRHS, unsigned Depth) { 9876 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9877 9878 auto ClearOnExit = make_scope_exit([&]() { 9879 if (LPhi) { 9880 bool Erased = PendingMerges.erase(LPhi); 9881 assert(Erased && "Failed to erase LPhi!"); 9882 (void)Erased; 9883 } 9884 if (RPhi) { 9885 bool Erased = PendingMerges.erase(RPhi); 9886 assert(Erased && "Failed to erase RPhi!"); 9887 (void)Erased; 9888 } 9889 }); 9890 9891 // Find respective Phis and check that they are not being pending. 9892 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9893 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9894 if (!PendingMerges.insert(Phi).second) 9895 return false; 9896 LPhi = Phi; 9897 } 9898 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9899 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9900 // If we detect a loop of Phi nodes being processed by this method, for 9901 // example: 9902 // 9903 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9904 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9905 // 9906 // we don't want to deal with a case that complex, so return conservative 9907 // answer false. 9908 if (!PendingMerges.insert(Phi).second) 9909 return false; 9910 RPhi = Phi; 9911 } 9912 9913 // If none of LHS, RHS is a Phi, nothing to do here. 9914 if (!LPhi && !RPhi) 9915 return false; 9916 9917 // If there is a SCEVUnknown Phi we are interested in, make it left. 9918 if (!LPhi) { 9919 std::swap(LHS, RHS); 9920 std::swap(FoundLHS, FoundRHS); 9921 std::swap(LPhi, RPhi); 9922 Pred = ICmpInst::getSwappedPredicate(Pred); 9923 } 9924 9925 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9926 const BasicBlock *LBB = LPhi->getParent(); 9927 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9928 9929 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9930 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9931 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9932 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9933 }; 9934 9935 if (RPhi && RPhi->getParent() == LBB) { 9936 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9937 // If we compare two Phis from the same block, and for each entry block 9938 // the predicate is true for incoming values from this block, then the 9939 // predicate is also true for the Phis. 9940 for (const BasicBlock *IncBB : predecessors(LBB)) { 9941 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9942 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9943 if (!ProvedEasily(L, R)) 9944 return false; 9945 } 9946 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9947 // Case two: RHS is also a Phi from the same basic block, and it is an 9948 // AddRec. It means that there is a loop which has both AddRec and Unknown 9949 // PHIs, for it we can compare incoming values of AddRec from above the loop 9950 // and latch with their respective incoming values of LPhi. 9951 // TODO: Generalize to handle loops with many inputs in a header. 9952 if (LPhi->getNumIncomingValues() != 2) return false; 9953 9954 auto *RLoop = RAR->getLoop(); 9955 auto *Predecessor = RLoop->getLoopPredecessor(); 9956 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9957 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9958 if (!ProvedEasily(L1, RAR->getStart())) 9959 return false; 9960 auto *Latch = RLoop->getLoopLatch(); 9961 assert(Latch && "Loop with AddRec with no latch?"); 9962 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9963 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9964 return false; 9965 } else { 9966 // In all other cases go over inputs of LHS and compare each of them to RHS, 9967 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9968 // At this point RHS is either a non-Phi, or it is a Phi from some block 9969 // different from LBB. 9970 for (const BasicBlock *IncBB : predecessors(LBB)) { 9971 // Check that RHS is available in this block. 9972 if (!dominates(RHS, IncBB)) 9973 return false; 9974 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9975 if (!ProvedEasily(L, RHS)) 9976 return false; 9977 } 9978 } 9979 return true; 9980 } 9981 9982 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9983 const SCEV *LHS, const SCEV *RHS, 9984 const SCEV *FoundLHS, 9985 const SCEV *FoundRHS) { 9986 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9987 return true; 9988 9989 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9990 return true; 9991 9992 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9993 FoundLHS, FoundRHS) || 9994 // ~x < ~y --> x > y 9995 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9996 getNotSCEV(FoundRHS), 9997 getNotSCEV(FoundLHS)); 9998 } 9999 10000 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10001 template <typename MinMaxExprType> 10002 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10003 const SCEV *Candidate) { 10004 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10005 if (!MinMaxExpr) 10006 return false; 10007 10008 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10009 } 10010 10011 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10012 ICmpInst::Predicate Pred, 10013 const SCEV *LHS, const SCEV *RHS) { 10014 // If both sides are affine addrecs for the same loop, with equal 10015 // steps, and we know the recurrences don't wrap, then we only 10016 // need to check the predicate on the starting values. 10017 10018 if (!ICmpInst::isRelational(Pred)) 10019 return false; 10020 10021 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10022 if (!LAR) 10023 return false; 10024 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10025 if (!RAR) 10026 return false; 10027 if (LAR->getLoop() != RAR->getLoop()) 10028 return false; 10029 if (!LAR->isAffine() || !RAR->isAffine()) 10030 return false; 10031 10032 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10033 return false; 10034 10035 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10036 SCEV::FlagNSW : SCEV::FlagNUW; 10037 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10038 return false; 10039 10040 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10041 } 10042 10043 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10044 /// expression? 10045 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10046 ICmpInst::Predicate Pred, 10047 const SCEV *LHS, const SCEV *RHS) { 10048 switch (Pred) { 10049 default: 10050 return false; 10051 10052 case ICmpInst::ICMP_SGE: 10053 std::swap(LHS, RHS); 10054 LLVM_FALLTHROUGH; 10055 case ICmpInst::ICMP_SLE: 10056 return 10057 // min(A, ...) <= A 10058 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10059 // A <= max(A, ...) 10060 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10061 10062 case ICmpInst::ICMP_UGE: 10063 std::swap(LHS, RHS); 10064 LLVM_FALLTHROUGH; 10065 case ICmpInst::ICMP_ULE: 10066 return 10067 // min(A, ...) <= A 10068 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10069 // A <= max(A, ...) 10070 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10071 } 10072 10073 llvm_unreachable("covered switch fell through?!"); 10074 } 10075 10076 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10077 const SCEV *LHS, const SCEV *RHS, 10078 const SCEV *FoundLHS, 10079 const SCEV *FoundRHS, 10080 unsigned Depth) { 10081 assert(getTypeSizeInBits(LHS->getType()) == 10082 getTypeSizeInBits(RHS->getType()) && 10083 "LHS and RHS have different sizes?"); 10084 assert(getTypeSizeInBits(FoundLHS->getType()) == 10085 getTypeSizeInBits(FoundRHS->getType()) && 10086 "FoundLHS and FoundRHS have different sizes?"); 10087 // We want to avoid hurting the compile time with analysis of too big trees. 10088 if (Depth > MaxSCEVOperationsImplicationDepth) 10089 return false; 10090 // We only want to work with ICMP_SGT comparison so far. 10091 // TODO: Extend to ICMP_UGT? 10092 if (Pred == ICmpInst::ICMP_SLT) { 10093 Pred = ICmpInst::ICMP_SGT; 10094 std::swap(LHS, RHS); 10095 std::swap(FoundLHS, FoundRHS); 10096 } 10097 if (Pred != ICmpInst::ICMP_SGT) 10098 return false; 10099 10100 auto GetOpFromSExt = [&](const SCEV *S) { 10101 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10102 return Ext->getOperand(); 10103 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10104 // the constant in some cases. 10105 return S; 10106 }; 10107 10108 // Acquire values from extensions. 10109 auto *OrigLHS = LHS; 10110 auto *OrigFoundLHS = FoundLHS; 10111 LHS = GetOpFromSExt(LHS); 10112 FoundLHS = GetOpFromSExt(FoundLHS); 10113 10114 // Is the SGT predicate can be proved trivially or using the found context. 10115 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10116 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10117 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10118 FoundRHS, Depth + 1); 10119 }; 10120 10121 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10122 // We want to avoid creation of any new non-constant SCEV. Since we are 10123 // going to compare the operands to RHS, we should be certain that we don't 10124 // need any size extensions for this. So let's decline all cases when the 10125 // sizes of types of LHS and RHS do not match. 10126 // TODO: Maybe try to get RHS from sext to catch more cases? 10127 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10128 return false; 10129 10130 // Should not overflow. 10131 if (!LHSAddExpr->hasNoSignedWrap()) 10132 return false; 10133 10134 auto *LL = LHSAddExpr->getOperand(0); 10135 auto *LR = LHSAddExpr->getOperand(1); 10136 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10137 10138 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10139 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10140 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10141 }; 10142 // Try to prove the following rule: 10143 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10144 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10145 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10146 return true; 10147 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10148 Value *LL, *LR; 10149 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10150 10151 using namespace llvm::PatternMatch; 10152 10153 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10154 // Rules for division. 10155 // We are going to perform some comparisons with Denominator and its 10156 // derivative expressions. In general case, creating a SCEV for it may 10157 // lead to a complex analysis of the entire graph, and in particular it 10158 // can request trip count recalculation for the same loop. This would 10159 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10160 // this, we only want to create SCEVs that are constants in this section. 10161 // So we bail if Denominator is not a constant. 10162 if (!isa<ConstantInt>(LR)) 10163 return false; 10164 10165 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10166 10167 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10168 // then a SCEV for the numerator already exists and matches with FoundLHS. 10169 auto *Numerator = getExistingSCEV(LL); 10170 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10171 return false; 10172 10173 // Make sure that the numerator matches with FoundLHS and the denominator 10174 // is positive. 10175 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10176 return false; 10177 10178 auto *DTy = Denominator->getType(); 10179 auto *FRHSTy = FoundRHS->getType(); 10180 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10181 // One of types is a pointer and another one is not. We cannot extend 10182 // them properly to a wider type, so let us just reject this case. 10183 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10184 // to avoid this check. 10185 return false; 10186 10187 // Given that: 10188 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10189 auto *WTy = getWiderType(DTy, FRHSTy); 10190 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10191 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10192 10193 // Try to prove the following rule: 10194 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10195 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10196 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10197 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10198 if (isKnownNonPositive(RHS) && 10199 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10200 return true; 10201 10202 // Try to prove the following rule: 10203 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10204 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10205 // If we divide it by Denominator > 2, then: 10206 // 1. If FoundLHS is negative, then the result is 0. 10207 // 2. If FoundLHS is non-negative, then the result is non-negative. 10208 // Anyways, the result is non-negative. 10209 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10210 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10211 if (isKnownNegative(RHS) && 10212 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10213 return true; 10214 } 10215 } 10216 10217 // If our expression contained SCEVUnknown Phis, and we split it down and now 10218 // need to prove something for them, try to prove the predicate for every 10219 // possible incoming values of those Phis. 10220 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10221 return true; 10222 10223 return false; 10224 } 10225 10226 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10227 const SCEV *LHS, const SCEV *RHS) { 10228 // zext x u<= sext x, sext x s<= zext x 10229 switch (Pred) { 10230 case ICmpInst::ICMP_SGE: 10231 std::swap(LHS, RHS); 10232 LLVM_FALLTHROUGH; 10233 case ICmpInst::ICMP_SLE: { 10234 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10235 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10236 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10237 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10238 return true; 10239 break; 10240 } 10241 case ICmpInst::ICMP_UGE: 10242 std::swap(LHS, RHS); 10243 LLVM_FALLTHROUGH; 10244 case ICmpInst::ICMP_ULE: { 10245 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10246 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10247 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10248 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10249 return true; 10250 break; 10251 } 10252 default: 10253 break; 10254 }; 10255 return false; 10256 } 10257 10258 bool 10259 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10260 const SCEV *LHS, const SCEV *RHS) { 10261 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10262 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10263 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10264 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10265 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10266 } 10267 10268 bool 10269 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10270 const SCEV *LHS, const SCEV *RHS, 10271 const SCEV *FoundLHS, 10272 const SCEV *FoundRHS) { 10273 switch (Pred) { 10274 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10275 case ICmpInst::ICMP_EQ: 10276 case ICmpInst::ICMP_NE: 10277 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10278 return true; 10279 break; 10280 case ICmpInst::ICMP_SLT: 10281 case ICmpInst::ICMP_SLE: 10282 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10283 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10284 return true; 10285 break; 10286 case ICmpInst::ICMP_SGT: 10287 case ICmpInst::ICMP_SGE: 10288 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10289 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10290 return true; 10291 break; 10292 case ICmpInst::ICMP_ULT: 10293 case ICmpInst::ICMP_ULE: 10294 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10295 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10296 return true; 10297 break; 10298 case ICmpInst::ICMP_UGT: 10299 case ICmpInst::ICMP_UGE: 10300 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10301 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10302 return true; 10303 break; 10304 } 10305 10306 // Maybe it can be proved via operations? 10307 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10308 return true; 10309 10310 return false; 10311 } 10312 10313 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10314 const SCEV *LHS, 10315 const SCEV *RHS, 10316 const SCEV *FoundLHS, 10317 const SCEV *FoundRHS) { 10318 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10319 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10320 // reduce the compile time impact of this optimization. 10321 return false; 10322 10323 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10324 if (!Addend) 10325 return false; 10326 10327 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10328 10329 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10330 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10331 ConstantRange FoundLHSRange = 10332 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10333 10334 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10335 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10336 10337 // We can also compute the range of values for `LHS` that satisfy the 10338 // consequent, "`LHS` `Pred` `RHS`": 10339 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10340 ConstantRange SatisfyingLHSRange = 10341 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10342 10343 // The antecedent implies the consequent if every value of `LHS` that 10344 // satisfies the antecedent also satisfies the consequent. 10345 return SatisfyingLHSRange.contains(LHSRange); 10346 } 10347 10348 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10349 bool IsSigned, bool NoWrap) { 10350 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10351 10352 if (NoWrap) return false; 10353 10354 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10355 const SCEV *One = getOne(Stride->getType()); 10356 10357 if (IsSigned) { 10358 APInt MaxRHS = getSignedRangeMax(RHS); 10359 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10360 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10361 10362 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10363 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10364 } 10365 10366 APInt MaxRHS = getUnsignedRangeMax(RHS); 10367 APInt MaxValue = APInt::getMaxValue(BitWidth); 10368 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10369 10370 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10371 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10372 } 10373 10374 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10375 bool IsSigned, bool NoWrap) { 10376 if (NoWrap) return false; 10377 10378 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10379 const SCEV *One = getOne(Stride->getType()); 10380 10381 if (IsSigned) { 10382 APInt MinRHS = getSignedRangeMin(RHS); 10383 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10384 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10385 10386 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10387 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10388 } 10389 10390 APInt MinRHS = getUnsignedRangeMin(RHS); 10391 APInt MinValue = APInt::getMinValue(BitWidth); 10392 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10393 10394 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10395 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10396 } 10397 10398 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10399 bool Equality) { 10400 const SCEV *One = getOne(Step->getType()); 10401 Delta = Equality ? getAddExpr(Delta, Step) 10402 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10403 return getUDivExpr(Delta, Step); 10404 } 10405 10406 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10407 const SCEV *Stride, 10408 const SCEV *End, 10409 unsigned BitWidth, 10410 bool IsSigned) { 10411 10412 assert(!isKnownNonPositive(Stride) && 10413 "Stride is expected strictly positive!"); 10414 // Calculate the maximum backedge count based on the range of values 10415 // permitted by Start, End, and Stride. 10416 const SCEV *MaxBECount; 10417 APInt MinStart = 10418 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10419 10420 APInt StrideForMaxBECount = 10421 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10422 10423 // We already know that the stride is positive, so we paper over conservatism 10424 // in our range computation by forcing StrideForMaxBECount to be at least one. 10425 // In theory this is unnecessary, but we expect MaxBECount to be a 10426 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10427 // is nothing to constant fold it to). 10428 APInt One(BitWidth, 1, IsSigned); 10429 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10430 10431 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10432 : APInt::getMaxValue(BitWidth); 10433 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10434 10435 // Although End can be a MAX expression we estimate MaxEnd considering only 10436 // the case End = RHS of the loop termination condition. This is safe because 10437 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10438 // taken count. 10439 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10440 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10441 10442 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10443 getConstant(StrideForMaxBECount) /* Step */, 10444 false /* Equality */); 10445 10446 return MaxBECount; 10447 } 10448 10449 ScalarEvolution::ExitLimit 10450 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10451 const Loop *L, bool IsSigned, 10452 bool ControlsExit, bool AllowPredicates) { 10453 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10454 10455 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10456 bool PredicatedIV = false; 10457 10458 if (!IV && AllowPredicates) { 10459 // Try to make this an AddRec using runtime tests, in the first X 10460 // iterations of this loop, where X is the SCEV expression found by the 10461 // algorithm below. 10462 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10463 PredicatedIV = true; 10464 } 10465 10466 // Avoid weird loops 10467 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10468 return getCouldNotCompute(); 10469 10470 bool NoWrap = ControlsExit && 10471 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10472 10473 const SCEV *Stride = IV->getStepRecurrence(*this); 10474 10475 bool PositiveStride = isKnownPositive(Stride); 10476 10477 // Avoid negative or zero stride values. 10478 if (!PositiveStride) { 10479 // We can compute the correct backedge taken count for loops with unknown 10480 // strides if we can prove that the loop is not an infinite loop with side 10481 // effects. Here's the loop structure we are trying to handle - 10482 // 10483 // i = start 10484 // do { 10485 // A[i] = i; 10486 // i += s; 10487 // } while (i < end); 10488 // 10489 // The backedge taken count for such loops is evaluated as - 10490 // (max(end, start + stride) - start - 1) /u stride 10491 // 10492 // The additional preconditions that we need to check to prove correctness 10493 // of the above formula is as follows - 10494 // 10495 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10496 // NoWrap flag). 10497 // b) loop is single exit with no side effects. 10498 // 10499 // 10500 // Precondition a) implies that if the stride is negative, this is a single 10501 // trip loop. The backedge taken count formula reduces to zero in this case. 10502 // 10503 // Precondition b) implies that the unknown stride cannot be zero otherwise 10504 // we have UB. 10505 // 10506 // The positive stride case is the same as isKnownPositive(Stride) returning 10507 // true (original behavior of the function). 10508 // 10509 // We want to make sure that the stride is truly unknown as there are edge 10510 // cases where ScalarEvolution propagates no wrap flags to the 10511 // post-increment/decrement IV even though the increment/decrement operation 10512 // itself is wrapping. The computed backedge taken count may be wrong in 10513 // such cases. This is prevented by checking that the stride is not known to 10514 // be either positive or non-positive. For example, no wrap flags are 10515 // propagated to the post-increment IV of this loop with a trip count of 2 - 10516 // 10517 // unsigned char i; 10518 // for(i=127; i<128; i+=129) 10519 // A[i] = i; 10520 // 10521 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10522 !loopHasNoSideEffects(L)) 10523 return getCouldNotCompute(); 10524 } else if (!Stride->isOne() && 10525 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10526 // Avoid proven overflow cases: this will ensure that the backedge taken 10527 // count will not generate any unsigned overflow. Relaxed no-overflow 10528 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10529 // undefined behaviors like the case of C language. 10530 return getCouldNotCompute(); 10531 10532 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10533 : ICmpInst::ICMP_ULT; 10534 const SCEV *Start = IV->getStart(); 10535 const SCEV *End = RHS; 10536 // When the RHS is not invariant, we do not know the end bound of the loop and 10537 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10538 // calculate the MaxBECount, given the start, stride and max value for the end 10539 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10540 // checked above). 10541 if (!isLoopInvariant(RHS, L)) { 10542 const SCEV *MaxBECount = computeMaxBECountForLT( 10543 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10544 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10545 false /*MaxOrZero*/, Predicates); 10546 } 10547 // If the backedge is taken at least once, then it will be taken 10548 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10549 // is the LHS value of the less-than comparison the first time it is evaluated 10550 // and End is the RHS. 10551 const SCEV *BECountIfBackedgeTaken = 10552 computeBECount(getMinusSCEV(End, Start), Stride, false); 10553 // If the loop entry is guarded by the result of the backedge test of the 10554 // first loop iteration, then we know the backedge will be taken at least 10555 // once and so the backedge taken count is as above. If not then we use the 10556 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10557 // as if the backedge is taken at least once max(End,Start) is End and so the 10558 // result is as above, and if not max(End,Start) is Start so we get a backedge 10559 // count of zero. 10560 const SCEV *BECount; 10561 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10562 BECount = BECountIfBackedgeTaken; 10563 else { 10564 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10565 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10566 } 10567 10568 const SCEV *MaxBECount; 10569 bool MaxOrZero = false; 10570 if (isa<SCEVConstant>(BECount)) 10571 MaxBECount = BECount; 10572 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10573 // If we know exactly how many times the backedge will be taken if it's 10574 // taken at least once, then the backedge count will either be that or 10575 // zero. 10576 MaxBECount = BECountIfBackedgeTaken; 10577 MaxOrZero = true; 10578 } else { 10579 MaxBECount = computeMaxBECountForLT( 10580 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10581 } 10582 10583 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10584 !isa<SCEVCouldNotCompute>(BECount)) 10585 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10586 10587 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10588 } 10589 10590 ScalarEvolution::ExitLimit 10591 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10592 const Loop *L, bool IsSigned, 10593 bool ControlsExit, bool AllowPredicates) { 10594 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10595 // We handle only IV > Invariant 10596 if (!isLoopInvariant(RHS, L)) 10597 return getCouldNotCompute(); 10598 10599 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10600 if (!IV && AllowPredicates) 10601 // Try to make this an AddRec using runtime tests, in the first X 10602 // iterations of this loop, where X is the SCEV expression found by the 10603 // algorithm below. 10604 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10605 10606 // Avoid weird loops 10607 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10608 return getCouldNotCompute(); 10609 10610 bool NoWrap = ControlsExit && 10611 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10612 10613 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10614 10615 // Avoid negative or zero stride values 10616 if (!isKnownPositive(Stride)) 10617 return getCouldNotCompute(); 10618 10619 // Avoid proven overflow cases: this will ensure that the backedge taken count 10620 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10621 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10622 // behaviors like the case of C language. 10623 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10624 return getCouldNotCompute(); 10625 10626 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10627 : ICmpInst::ICMP_UGT; 10628 10629 const SCEV *Start = IV->getStart(); 10630 const SCEV *End = RHS; 10631 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10632 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10633 10634 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10635 10636 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10637 : getUnsignedRangeMax(Start); 10638 10639 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10640 : getUnsignedRangeMin(Stride); 10641 10642 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10643 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10644 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10645 10646 // Although End can be a MIN expression we estimate MinEnd considering only 10647 // the case End = RHS. This is safe because in the other case (Start - End) 10648 // is zero, leading to a zero maximum backedge taken count. 10649 APInt MinEnd = 10650 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10651 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10652 10653 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10654 ? BECount 10655 : computeBECount(getConstant(MaxStart - MinEnd), 10656 getConstant(MinStride), false); 10657 10658 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10659 MaxBECount = BECount; 10660 10661 return ExitLimit(BECount, MaxBECount, false, Predicates); 10662 } 10663 10664 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10665 ScalarEvolution &SE) const { 10666 if (Range.isFullSet()) // Infinite loop. 10667 return SE.getCouldNotCompute(); 10668 10669 // If the start is a non-zero constant, shift the range to simplify things. 10670 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10671 if (!SC->getValue()->isZero()) { 10672 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10673 Operands[0] = SE.getZero(SC->getType()); 10674 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10675 getNoWrapFlags(FlagNW)); 10676 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10677 return ShiftedAddRec->getNumIterationsInRange( 10678 Range.subtract(SC->getAPInt()), SE); 10679 // This is strange and shouldn't happen. 10680 return SE.getCouldNotCompute(); 10681 } 10682 10683 // The only time we can solve this is when we have all constant indices. 10684 // Otherwise, we cannot determine the overflow conditions. 10685 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10686 return SE.getCouldNotCompute(); 10687 10688 // Okay at this point we know that all elements of the chrec are constants and 10689 // that the start element is zero. 10690 10691 // First check to see if the range contains zero. If not, the first 10692 // iteration exits. 10693 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10694 if (!Range.contains(APInt(BitWidth, 0))) 10695 return SE.getZero(getType()); 10696 10697 if (isAffine()) { 10698 // If this is an affine expression then we have this situation: 10699 // Solve {0,+,A} in Range === Ax in Range 10700 10701 // We know that zero is in the range. If A is positive then we know that 10702 // the upper value of the range must be the first possible exit value. 10703 // If A is negative then the lower of the range is the last possible loop 10704 // value. Also note that we already checked for a full range. 10705 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10706 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10707 10708 // The exit value should be (End+A)/A. 10709 APInt ExitVal = (End + A).udiv(A); 10710 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10711 10712 // Evaluate at the exit value. If we really did fall out of the valid 10713 // range, then we computed our trip count, otherwise wrap around or other 10714 // things must have happened. 10715 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10716 if (Range.contains(Val->getValue())) 10717 return SE.getCouldNotCompute(); // Something strange happened 10718 10719 // Ensure that the previous value is in the range. This is a sanity check. 10720 assert(Range.contains( 10721 EvaluateConstantChrecAtConstant(this, 10722 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10723 "Linear scev computation is off in a bad way!"); 10724 return SE.getConstant(ExitValue); 10725 } 10726 10727 if (isQuadratic()) { 10728 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10729 return SE.getConstant(S.getValue()); 10730 } 10731 10732 return SE.getCouldNotCompute(); 10733 } 10734 10735 const SCEVAddRecExpr * 10736 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10737 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10738 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10739 // but in this case we cannot guarantee that the value returned will be an 10740 // AddRec because SCEV does not have a fixed point where it stops 10741 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10742 // may happen if we reach arithmetic depth limit while simplifying. So we 10743 // construct the returned value explicitly. 10744 SmallVector<const SCEV *, 3> Ops; 10745 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10746 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10747 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10748 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10749 // We know that the last operand is not a constant zero (otherwise it would 10750 // have been popped out earlier). This guarantees us that if the result has 10751 // the same last operand, then it will also not be popped out, meaning that 10752 // the returned value will be an AddRec. 10753 const SCEV *Last = getOperand(getNumOperands() - 1); 10754 assert(!Last->isZero() && "Recurrency with zero step?"); 10755 Ops.push_back(Last); 10756 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10757 SCEV::FlagAnyWrap)); 10758 } 10759 10760 // Return true when S contains at least an undef value. 10761 static inline bool containsUndefs(const SCEV *S) { 10762 return SCEVExprContains(S, [](const SCEV *S) { 10763 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10764 return isa<UndefValue>(SU->getValue()); 10765 return false; 10766 }); 10767 } 10768 10769 namespace { 10770 10771 // Collect all steps of SCEV expressions. 10772 struct SCEVCollectStrides { 10773 ScalarEvolution &SE; 10774 SmallVectorImpl<const SCEV *> &Strides; 10775 10776 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10777 : SE(SE), Strides(S) {} 10778 10779 bool follow(const SCEV *S) { 10780 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10781 Strides.push_back(AR->getStepRecurrence(SE)); 10782 return true; 10783 } 10784 10785 bool isDone() const { return false; } 10786 }; 10787 10788 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10789 struct SCEVCollectTerms { 10790 SmallVectorImpl<const SCEV *> &Terms; 10791 10792 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10793 10794 bool follow(const SCEV *S) { 10795 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10796 isa<SCEVSignExtendExpr>(S)) { 10797 if (!containsUndefs(S)) 10798 Terms.push_back(S); 10799 10800 // Stop recursion: once we collected a term, do not walk its operands. 10801 return false; 10802 } 10803 10804 // Keep looking. 10805 return true; 10806 } 10807 10808 bool isDone() const { return false; } 10809 }; 10810 10811 // Check if a SCEV contains an AddRecExpr. 10812 struct SCEVHasAddRec { 10813 bool &ContainsAddRec; 10814 10815 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10816 ContainsAddRec = false; 10817 } 10818 10819 bool follow(const SCEV *S) { 10820 if (isa<SCEVAddRecExpr>(S)) { 10821 ContainsAddRec = true; 10822 10823 // Stop recursion: once we collected a term, do not walk its operands. 10824 return false; 10825 } 10826 10827 // Keep looking. 10828 return true; 10829 } 10830 10831 bool isDone() const { return false; } 10832 }; 10833 10834 // Find factors that are multiplied with an expression that (possibly as a 10835 // subexpression) contains an AddRecExpr. In the expression: 10836 // 10837 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10838 // 10839 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10840 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10841 // parameters as they form a product with an induction variable. 10842 // 10843 // This collector expects all array size parameters to be in the same MulExpr. 10844 // It might be necessary to later add support for collecting parameters that are 10845 // spread over different nested MulExpr. 10846 struct SCEVCollectAddRecMultiplies { 10847 SmallVectorImpl<const SCEV *> &Terms; 10848 ScalarEvolution &SE; 10849 10850 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10851 : Terms(T), SE(SE) {} 10852 10853 bool follow(const SCEV *S) { 10854 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10855 bool HasAddRec = false; 10856 SmallVector<const SCEV *, 0> Operands; 10857 for (auto Op : Mul->operands()) { 10858 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10859 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10860 Operands.push_back(Op); 10861 } else if (Unknown) { 10862 HasAddRec = true; 10863 } else { 10864 bool ContainsAddRec = false; 10865 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10866 visitAll(Op, ContiansAddRec); 10867 HasAddRec |= ContainsAddRec; 10868 } 10869 } 10870 if (Operands.size() == 0) 10871 return true; 10872 10873 if (!HasAddRec) 10874 return false; 10875 10876 Terms.push_back(SE.getMulExpr(Operands)); 10877 // Stop recursion: once we collected a term, do not walk its operands. 10878 return false; 10879 } 10880 10881 // Keep looking. 10882 return true; 10883 } 10884 10885 bool isDone() const { return false; } 10886 }; 10887 10888 } // end anonymous namespace 10889 10890 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10891 /// two places: 10892 /// 1) The strides of AddRec expressions. 10893 /// 2) Unknowns that are multiplied with AddRec expressions. 10894 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10895 SmallVectorImpl<const SCEV *> &Terms) { 10896 SmallVector<const SCEV *, 4> Strides; 10897 SCEVCollectStrides StrideCollector(*this, Strides); 10898 visitAll(Expr, StrideCollector); 10899 10900 LLVM_DEBUG({ 10901 dbgs() << "Strides:\n"; 10902 for (const SCEV *S : Strides) 10903 dbgs() << *S << "\n"; 10904 }); 10905 10906 for (const SCEV *S : Strides) { 10907 SCEVCollectTerms TermCollector(Terms); 10908 visitAll(S, TermCollector); 10909 } 10910 10911 LLVM_DEBUG({ 10912 dbgs() << "Terms:\n"; 10913 for (const SCEV *T : Terms) 10914 dbgs() << *T << "\n"; 10915 }); 10916 10917 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10918 visitAll(Expr, MulCollector); 10919 } 10920 10921 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10922 SmallVectorImpl<const SCEV *> &Terms, 10923 SmallVectorImpl<const SCEV *> &Sizes) { 10924 int Last = Terms.size() - 1; 10925 const SCEV *Step = Terms[Last]; 10926 10927 // End of recursion. 10928 if (Last == 0) { 10929 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10930 SmallVector<const SCEV *, 2> Qs; 10931 for (const SCEV *Op : M->operands()) 10932 if (!isa<SCEVConstant>(Op)) 10933 Qs.push_back(Op); 10934 10935 Step = SE.getMulExpr(Qs); 10936 } 10937 10938 Sizes.push_back(Step); 10939 return true; 10940 } 10941 10942 for (const SCEV *&Term : Terms) { 10943 // Normalize the terms before the next call to findArrayDimensionsRec. 10944 const SCEV *Q, *R; 10945 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10946 10947 // Bail out when GCD does not evenly divide one of the terms. 10948 if (!R->isZero()) 10949 return false; 10950 10951 Term = Q; 10952 } 10953 10954 // Remove all SCEVConstants. 10955 Terms.erase( 10956 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10957 Terms.end()); 10958 10959 if (Terms.size() > 0) 10960 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10961 return false; 10962 10963 Sizes.push_back(Step); 10964 return true; 10965 } 10966 10967 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10968 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10969 for (const SCEV *T : Terms) 10970 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 10971 return true; 10972 10973 return false; 10974 } 10975 10976 // Return the number of product terms in S. 10977 static inline int numberOfTerms(const SCEV *S) { 10978 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10979 return Expr->getNumOperands(); 10980 return 1; 10981 } 10982 10983 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10984 if (isa<SCEVConstant>(T)) 10985 return nullptr; 10986 10987 if (isa<SCEVUnknown>(T)) 10988 return T; 10989 10990 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10991 SmallVector<const SCEV *, 2> Factors; 10992 for (const SCEV *Op : M->operands()) 10993 if (!isa<SCEVConstant>(Op)) 10994 Factors.push_back(Op); 10995 10996 return SE.getMulExpr(Factors); 10997 } 10998 10999 return T; 11000 } 11001 11002 /// Return the size of an element read or written by Inst. 11003 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11004 Type *Ty; 11005 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11006 Ty = Store->getValueOperand()->getType(); 11007 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11008 Ty = Load->getType(); 11009 else 11010 return nullptr; 11011 11012 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11013 return getSizeOfExpr(ETy, Ty); 11014 } 11015 11016 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11017 SmallVectorImpl<const SCEV *> &Sizes, 11018 const SCEV *ElementSize) { 11019 if (Terms.size() < 1 || !ElementSize) 11020 return; 11021 11022 // Early return when Terms do not contain parameters: we do not delinearize 11023 // non parametric SCEVs. 11024 if (!containsParameters(Terms)) 11025 return; 11026 11027 LLVM_DEBUG({ 11028 dbgs() << "Terms:\n"; 11029 for (const SCEV *T : Terms) 11030 dbgs() << *T << "\n"; 11031 }); 11032 11033 // Remove duplicates. 11034 array_pod_sort(Terms.begin(), Terms.end()); 11035 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11036 11037 // Put larger terms first. 11038 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11039 return numberOfTerms(LHS) > numberOfTerms(RHS); 11040 }); 11041 11042 // Try to divide all terms by the element size. If term is not divisible by 11043 // element size, proceed with the original term. 11044 for (const SCEV *&Term : Terms) { 11045 const SCEV *Q, *R; 11046 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11047 if (!Q->isZero()) 11048 Term = Q; 11049 } 11050 11051 SmallVector<const SCEV *, 4> NewTerms; 11052 11053 // Remove constant factors. 11054 for (const SCEV *T : Terms) 11055 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11056 NewTerms.push_back(NewT); 11057 11058 LLVM_DEBUG({ 11059 dbgs() << "Terms after sorting:\n"; 11060 for (const SCEV *T : NewTerms) 11061 dbgs() << *T << "\n"; 11062 }); 11063 11064 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11065 Sizes.clear(); 11066 return; 11067 } 11068 11069 // The last element to be pushed into Sizes is the size of an element. 11070 Sizes.push_back(ElementSize); 11071 11072 LLVM_DEBUG({ 11073 dbgs() << "Sizes:\n"; 11074 for (const SCEV *S : Sizes) 11075 dbgs() << *S << "\n"; 11076 }); 11077 } 11078 11079 void ScalarEvolution::computeAccessFunctions( 11080 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11081 SmallVectorImpl<const SCEV *> &Sizes) { 11082 // Early exit in case this SCEV is not an affine multivariate function. 11083 if (Sizes.empty()) 11084 return; 11085 11086 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11087 if (!AR->isAffine()) 11088 return; 11089 11090 const SCEV *Res = Expr; 11091 int Last = Sizes.size() - 1; 11092 for (int i = Last; i >= 0; i--) { 11093 const SCEV *Q, *R; 11094 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11095 11096 LLVM_DEBUG({ 11097 dbgs() << "Res: " << *Res << "\n"; 11098 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11099 dbgs() << "Res divided by Sizes[i]:\n"; 11100 dbgs() << "Quotient: " << *Q << "\n"; 11101 dbgs() << "Remainder: " << *R << "\n"; 11102 }); 11103 11104 Res = Q; 11105 11106 // Do not record the last subscript corresponding to the size of elements in 11107 // the array. 11108 if (i == Last) { 11109 11110 // Bail out if the remainder is too complex. 11111 if (isa<SCEVAddRecExpr>(R)) { 11112 Subscripts.clear(); 11113 Sizes.clear(); 11114 return; 11115 } 11116 11117 continue; 11118 } 11119 11120 // Record the access function for the current subscript. 11121 Subscripts.push_back(R); 11122 } 11123 11124 // Also push in last position the remainder of the last division: it will be 11125 // the access function of the innermost dimension. 11126 Subscripts.push_back(Res); 11127 11128 std::reverse(Subscripts.begin(), Subscripts.end()); 11129 11130 LLVM_DEBUG({ 11131 dbgs() << "Subscripts:\n"; 11132 for (const SCEV *S : Subscripts) 11133 dbgs() << *S << "\n"; 11134 }); 11135 } 11136 11137 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11138 /// sizes of an array access. Returns the remainder of the delinearization that 11139 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11140 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11141 /// expressions in the stride and base of a SCEV corresponding to the 11142 /// computation of a GCD (greatest common divisor) of base and stride. When 11143 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11144 /// 11145 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11146 /// 11147 /// void foo(long n, long m, long o, double A[n][m][o]) { 11148 /// 11149 /// for (long i = 0; i < n; i++) 11150 /// for (long j = 0; j < m; j++) 11151 /// for (long k = 0; k < o; k++) 11152 /// A[i][j][k] = 1.0; 11153 /// } 11154 /// 11155 /// the delinearization input is the following AddRec SCEV: 11156 /// 11157 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11158 /// 11159 /// From this SCEV, we are able to say that the base offset of the access is %A 11160 /// because it appears as an offset that does not divide any of the strides in 11161 /// the loops: 11162 /// 11163 /// CHECK: Base offset: %A 11164 /// 11165 /// and then SCEV->delinearize determines the size of some of the dimensions of 11166 /// the array as these are the multiples by which the strides are happening: 11167 /// 11168 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11169 /// 11170 /// Note that the outermost dimension remains of UnknownSize because there are 11171 /// no strides that would help identifying the size of the last dimension: when 11172 /// the array has been statically allocated, one could compute the size of that 11173 /// dimension by dividing the overall size of the array by the size of the known 11174 /// dimensions: %m * %o * 8. 11175 /// 11176 /// Finally delinearize provides the access functions for the array reference 11177 /// that does correspond to A[i][j][k] of the above C testcase: 11178 /// 11179 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11180 /// 11181 /// The testcases are checking the output of a function pass: 11182 /// DelinearizationPass that walks through all loads and stores of a function 11183 /// asking for the SCEV of the memory access with respect to all enclosing 11184 /// loops, calling SCEV->delinearize on that and printing the results. 11185 void ScalarEvolution::delinearize(const SCEV *Expr, 11186 SmallVectorImpl<const SCEV *> &Subscripts, 11187 SmallVectorImpl<const SCEV *> &Sizes, 11188 const SCEV *ElementSize) { 11189 // First step: collect parametric terms. 11190 SmallVector<const SCEV *, 4> Terms; 11191 collectParametricTerms(Expr, Terms); 11192 11193 if (Terms.empty()) 11194 return; 11195 11196 // Second step: find subscript sizes. 11197 findArrayDimensions(Terms, Sizes, ElementSize); 11198 11199 if (Sizes.empty()) 11200 return; 11201 11202 // Third step: compute the access functions for each subscript. 11203 computeAccessFunctions(Expr, Subscripts, Sizes); 11204 11205 if (Subscripts.empty()) 11206 return; 11207 11208 LLVM_DEBUG({ 11209 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11210 dbgs() << "ArrayDecl[UnknownSize]"; 11211 for (const SCEV *S : Sizes) 11212 dbgs() << "[" << *S << "]"; 11213 11214 dbgs() << "\nArrayRef"; 11215 for (const SCEV *S : Subscripts) 11216 dbgs() << "[" << *S << "]"; 11217 dbgs() << "\n"; 11218 }); 11219 } 11220 11221 bool ScalarEvolution::getIndexExpressionsFromGEP( 11222 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11223 SmallVectorImpl<int> &Sizes) { 11224 assert(Subscripts.empty() && Sizes.empty() && 11225 "Expected output lists to be empty on entry to this function."); 11226 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11227 Type *Ty = GEP->getPointerOperandType(); 11228 bool DroppedFirstDim = false; 11229 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11230 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11231 if (i == 1) { 11232 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11233 Ty = PtrTy->getElementType(); 11234 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11235 Ty = ArrayTy->getElementType(); 11236 } else { 11237 Subscripts.clear(); 11238 Sizes.clear(); 11239 return false; 11240 } 11241 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11242 if (Const->getValue()->isZero()) { 11243 DroppedFirstDim = true; 11244 continue; 11245 } 11246 Subscripts.push_back(Expr); 11247 continue; 11248 } 11249 11250 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11251 if (!ArrayTy) { 11252 Subscripts.clear(); 11253 Sizes.clear(); 11254 return false; 11255 } 11256 11257 Subscripts.push_back(Expr); 11258 if (!(DroppedFirstDim && i == 2)) 11259 Sizes.push_back(ArrayTy->getNumElements()); 11260 11261 Ty = ArrayTy->getElementType(); 11262 } 11263 return !Subscripts.empty(); 11264 } 11265 11266 //===----------------------------------------------------------------------===// 11267 // SCEVCallbackVH Class Implementation 11268 //===----------------------------------------------------------------------===// 11269 11270 void ScalarEvolution::SCEVCallbackVH::deleted() { 11271 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11272 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11273 SE->ConstantEvolutionLoopExitValue.erase(PN); 11274 SE->eraseValueFromMap(getValPtr()); 11275 // this now dangles! 11276 } 11277 11278 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11279 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11280 11281 // Forget all the expressions associated with users of the old value, 11282 // so that future queries will recompute the expressions using the new 11283 // value. 11284 Value *Old = getValPtr(); 11285 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11286 SmallPtrSet<User *, 8> Visited; 11287 while (!Worklist.empty()) { 11288 User *U = Worklist.pop_back_val(); 11289 // Deleting the Old value will cause this to dangle. Postpone 11290 // that until everything else is done. 11291 if (U == Old) 11292 continue; 11293 if (!Visited.insert(U).second) 11294 continue; 11295 if (PHINode *PN = dyn_cast<PHINode>(U)) 11296 SE->ConstantEvolutionLoopExitValue.erase(PN); 11297 SE->eraseValueFromMap(U); 11298 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11299 } 11300 // Delete the Old value. 11301 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11302 SE->ConstantEvolutionLoopExitValue.erase(PN); 11303 SE->eraseValueFromMap(Old); 11304 // this now dangles! 11305 } 11306 11307 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11308 : CallbackVH(V), SE(se) {} 11309 11310 //===----------------------------------------------------------------------===// 11311 // ScalarEvolution Class Implementation 11312 //===----------------------------------------------------------------------===// 11313 11314 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11315 AssumptionCache &AC, DominatorTree &DT, 11316 LoopInfo &LI) 11317 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11318 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11319 LoopDispositions(64), BlockDispositions(64) { 11320 // To use guards for proving predicates, we need to scan every instruction in 11321 // relevant basic blocks, and not just terminators. Doing this is a waste of 11322 // time if the IR does not actually contain any calls to 11323 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11324 // 11325 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11326 // to _add_ guards to the module when there weren't any before, and wants 11327 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11328 // efficient in lieu of being smart in that rather obscure case. 11329 11330 auto *GuardDecl = F.getParent()->getFunction( 11331 Intrinsic::getName(Intrinsic::experimental_guard)); 11332 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11333 } 11334 11335 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11336 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11337 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11338 ValueExprMap(std::move(Arg.ValueExprMap)), 11339 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11340 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11341 PendingMerges(std::move(Arg.PendingMerges)), 11342 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11343 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11344 PredicatedBackedgeTakenCounts( 11345 std::move(Arg.PredicatedBackedgeTakenCounts)), 11346 ConstantEvolutionLoopExitValue( 11347 std::move(Arg.ConstantEvolutionLoopExitValue)), 11348 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11349 LoopDispositions(std::move(Arg.LoopDispositions)), 11350 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11351 BlockDispositions(std::move(Arg.BlockDispositions)), 11352 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11353 SignedRanges(std::move(Arg.SignedRanges)), 11354 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11355 UniquePreds(std::move(Arg.UniquePreds)), 11356 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11357 LoopUsers(std::move(Arg.LoopUsers)), 11358 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11359 FirstUnknown(Arg.FirstUnknown) { 11360 Arg.FirstUnknown = nullptr; 11361 } 11362 11363 ScalarEvolution::~ScalarEvolution() { 11364 // Iterate through all the SCEVUnknown instances and call their 11365 // destructors, so that they release their references to their values. 11366 for (SCEVUnknown *U = FirstUnknown; U;) { 11367 SCEVUnknown *Tmp = U; 11368 U = U->Next; 11369 Tmp->~SCEVUnknown(); 11370 } 11371 FirstUnknown = nullptr; 11372 11373 ExprValueMap.clear(); 11374 ValueExprMap.clear(); 11375 HasRecMap.clear(); 11376 11377 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11378 // that a loop had multiple computable exits. 11379 for (auto &BTCI : BackedgeTakenCounts) 11380 BTCI.second.clear(); 11381 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11382 BTCI.second.clear(); 11383 11384 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11385 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11386 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11387 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11388 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11389 } 11390 11391 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11392 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11393 } 11394 11395 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11396 const Loop *L) { 11397 // Print all inner loops first 11398 for (Loop *I : *L) 11399 PrintLoopInfo(OS, SE, I); 11400 11401 OS << "Loop "; 11402 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11403 OS << ": "; 11404 11405 SmallVector<BasicBlock *, 8> ExitingBlocks; 11406 L->getExitingBlocks(ExitingBlocks); 11407 if (ExitingBlocks.size() != 1) 11408 OS << "<multiple exits> "; 11409 11410 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11411 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11412 else 11413 OS << "Unpredictable backedge-taken count.\n"; 11414 11415 if (ExitingBlocks.size() > 1) 11416 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11417 OS << " exit count for " << ExitingBlock->getName() << ": " 11418 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11419 } 11420 11421 OS << "Loop "; 11422 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11423 OS << ": "; 11424 11425 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11426 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11427 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11428 OS << ", actual taken count either this or zero."; 11429 } else { 11430 OS << "Unpredictable max backedge-taken count. "; 11431 } 11432 11433 OS << "\n" 11434 "Loop "; 11435 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11436 OS << ": "; 11437 11438 SCEVUnionPredicate Pred; 11439 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11440 if (!isa<SCEVCouldNotCompute>(PBT)) { 11441 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11442 OS << " Predicates:\n"; 11443 Pred.print(OS, 4); 11444 } else { 11445 OS << "Unpredictable predicated backedge-taken count. "; 11446 } 11447 OS << "\n"; 11448 11449 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11450 OS << "Loop "; 11451 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11452 OS << ": "; 11453 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11454 } 11455 } 11456 11457 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11458 switch (LD) { 11459 case ScalarEvolution::LoopVariant: 11460 return "Variant"; 11461 case ScalarEvolution::LoopInvariant: 11462 return "Invariant"; 11463 case ScalarEvolution::LoopComputable: 11464 return "Computable"; 11465 } 11466 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11467 } 11468 11469 void ScalarEvolution::print(raw_ostream &OS) const { 11470 // ScalarEvolution's implementation of the print method is to print 11471 // out SCEV values of all instructions that are interesting. Doing 11472 // this potentially causes it to create new SCEV objects though, 11473 // which technically conflicts with the const qualifier. This isn't 11474 // observable from outside the class though, so casting away the 11475 // const isn't dangerous. 11476 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11477 11478 if (ClassifyExpressions) { 11479 OS << "Classifying expressions for: "; 11480 F.printAsOperand(OS, /*PrintType=*/false); 11481 OS << "\n"; 11482 for (Instruction &I : instructions(F)) 11483 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11484 OS << I << '\n'; 11485 OS << " --> "; 11486 const SCEV *SV = SE.getSCEV(&I); 11487 SV->print(OS); 11488 if (!isa<SCEVCouldNotCompute>(SV)) { 11489 OS << " U: "; 11490 SE.getUnsignedRange(SV).print(OS); 11491 OS << " S: "; 11492 SE.getSignedRange(SV).print(OS); 11493 } 11494 11495 const Loop *L = LI.getLoopFor(I.getParent()); 11496 11497 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11498 if (AtUse != SV) { 11499 OS << " --> "; 11500 AtUse->print(OS); 11501 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11502 OS << " U: "; 11503 SE.getUnsignedRange(AtUse).print(OS); 11504 OS << " S: "; 11505 SE.getSignedRange(AtUse).print(OS); 11506 } 11507 } 11508 11509 if (L) { 11510 OS << "\t\t" "Exits: "; 11511 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11512 if (!SE.isLoopInvariant(ExitValue, L)) { 11513 OS << "<<Unknown>>"; 11514 } else { 11515 OS << *ExitValue; 11516 } 11517 11518 bool First = true; 11519 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11520 if (First) { 11521 OS << "\t\t" "LoopDispositions: { "; 11522 First = false; 11523 } else { 11524 OS << ", "; 11525 } 11526 11527 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11528 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11529 } 11530 11531 for (auto *InnerL : depth_first(L)) { 11532 if (InnerL == L) 11533 continue; 11534 if (First) { 11535 OS << "\t\t" "LoopDispositions: { "; 11536 First = false; 11537 } else { 11538 OS << ", "; 11539 } 11540 11541 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11542 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11543 } 11544 11545 OS << " }"; 11546 } 11547 11548 OS << "\n"; 11549 } 11550 } 11551 11552 OS << "Determining loop execution counts for: "; 11553 F.printAsOperand(OS, /*PrintType=*/false); 11554 OS << "\n"; 11555 for (Loop *I : LI) 11556 PrintLoopInfo(OS, &SE, I); 11557 } 11558 11559 ScalarEvolution::LoopDisposition 11560 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11561 auto &Values = LoopDispositions[S]; 11562 for (auto &V : Values) { 11563 if (V.getPointer() == L) 11564 return V.getInt(); 11565 } 11566 Values.emplace_back(L, LoopVariant); 11567 LoopDisposition D = computeLoopDisposition(S, L); 11568 auto &Values2 = LoopDispositions[S]; 11569 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11570 if (V.getPointer() == L) { 11571 V.setInt(D); 11572 break; 11573 } 11574 } 11575 return D; 11576 } 11577 11578 ScalarEvolution::LoopDisposition 11579 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11580 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11581 case scConstant: 11582 return LoopInvariant; 11583 case scTruncate: 11584 case scZeroExtend: 11585 case scSignExtend: 11586 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11587 case scAddRecExpr: { 11588 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11589 11590 // If L is the addrec's loop, it's computable. 11591 if (AR->getLoop() == L) 11592 return LoopComputable; 11593 11594 // Add recurrences are never invariant in the function-body (null loop). 11595 if (!L) 11596 return LoopVariant; 11597 11598 // Everything that is not defined at loop entry is variant. 11599 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11600 return LoopVariant; 11601 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11602 " dominate the contained loop's header?"); 11603 11604 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11605 if (AR->getLoop()->contains(L)) 11606 return LoopInvariant; 11607 11608 // This recurrence is variant w.r.t. L if any of its operands 11609 // are variant. 11610 for (auto *Op : AR->operands()) 11611 if (!isLoopInvariant(Op, L)) 11612 return LoopVariant; 11613 11614 // Otherwise it's loop-invariant. 11615 return LoopInvariant; 11616 } 11617 case scAddExpr: 11618 case scMulExpr: 11619 case scUMaxExpr: 11620 case scSMaxExpr: 11621 case scUMinExpr: 11622 case scSMinExpr: { 11623 bool HasVarying = false; 11624 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11625 LoopDisposition D = getLoopDisposition(Op, L); 11626 if (D == LoopVariant) 11627 return LoopVariant; 11628 if (D == LoopComputable) 11629 HasVarying = true; 11630 } 11631 return HasVarying ? LoopComputable : LoopInvariant; 11632 } 11633 case scUDivExpr: { 11634 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11635 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11636 if (LD == LoopVariant) 11637 return LoopVariant; 11638 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11639 if (RD == LoopVariant) 11640 return LoopVariant; 11641 return (LD == LoopInvariant && RD == LoopInvariant) ? 11642 LoopInvariant : LoopComputable; 11643 } 11644 case scUnknown: 11645 // All non-instruction values are loop invariant. All instructions are loop 11646 // invariant if they are not contained in the specified loop. 11647 // Instructions are never considered invariant in the function body 11648 // (null loop) because they are defined within the "loop". 11649 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11650 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11651 return LoopInvariant; 11652 case scCouldNotCompute: 11653 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11654 } 11655 llvm_unreachable("Unknown SCEV kind!"); 11656 } 11657 11658 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11659 return getLoopDisposition(S, L) == LoopInvariant; 11660 } 11661 11662 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11663 return getLoopDisposition(S, L) == LoopComputable; 11664 } 11665 11666 ScalarEvolution::BlockDisposition 11667 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11668 auto &Values = BlockDispositions[S]; 11669 for (auto &V : Values) { 11670 if (V.getPointer() == BB) 11671 return V.getInt(); 11672 } 11673 Values.emplace_back(BB, DoesNotDominateBlock); 11674 BlockDisposition D = computeBlockDisposition(S, BB); 11675 auto &Values2 = BlockDispositions[S]; 11676 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11677 if (V.getPointer() == BB) { 11678 V.setInt(D); 11679 break; 11680 } 11681 } 11682 return D; 11683 } 11684 11685 ScalarEvolution::BlockDisposition 11686 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11687 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11688 case scConstant: 11689 return ProperlyDominatesBlock; 11690 case scTruncate: 11691 case scZeroExtend: 11692 case scSignExtend: 11693 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11694 case scAddRecExpr: { 11695 // This uses a "dominates" query instead of "properly dominates" query 11696 // to test for proper dominance too, because the instruction which 11697 // produces the addrec's value is a PHI, and a PHI effectively properly 11698 // dominates its entire containing block. 11699 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11700 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11701 return DoesNotDominateBlock; 11702 11703 // Fall through into SCEVNAryExpr handling. 11704 LLVM_FALLTHROUGH; 11705 } 11706 case scAddExpr: 11707 case scMulExpr: 11708 case scUMaxExpr: 11709 case scSMaxExpr: 11710 case scUMinExpr: 11711 case scSMinExpr: { 11712 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11713 bool Proper = true; 11714 for (const SCEV *NAryOp : NAry->operands()) { 11715 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11716 if (D == DoesNotDominateBlock) 11717 return DoesNotDominateBlock; 11718 if (D == DominatesBlock) 11719 Proper = false; 11720 } 11721 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11722 } 11723 case scUDivExpr: { 11724 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11725 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11726 BlockDisposition LD = getBlockDisposition(LHS, BB); 11727 if (LD == DoesNotDominateBlock) 11728 return DoesNotDominateBlock; 11729 BlockDisposition RD = getBlockDisposition(RHS, BB); 11730 if (RD == DoesNotDominateBlock) 11731 return DoesNotDominateBlock; 11732 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11733 ProperlyDominatesBlock : DominatesBlock; 11734 } 11735 case scUnknown: 11736 if (Instruction *I = 11737 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11738 if (I->getParent() == BB) 11739 return DominatesBlock; 11740 if (DT.properlyDominates(I->getParent(), BB)) 11741 return ProperlyDominatesBlock; 11742 return DoesNotDominateBlock; 11743 } 11744 return ProperlyDominatesBlock; 11745 case scCouldNotCompute: 11746 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11747 } 11748 llvm_unreachable("Unknown SCEV kind!"); 11749 } 11750 11751 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11752 return getBlockDisposition(S, BB) >= DominatesBlock; 11753 } 11754 11755 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11756 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11757 } 11758 11759 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11760 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11761 } 11762 11763 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11764 auto IsS = [&](const SCEV *X) { return S == X; }; 11765 auto ContainsS = [&](const SCEV *X) { 11766 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11767 }; 11768 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11769 } 11770 11771 void 11772 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11773 ValuesAtScopes.erase(S); 11774 LoopDispositions.erase(S); 11775 BlockDispositions.erase(S); 11776 UnsignedRanges.erase(S); 11777 SignedRanges.erase(S); 11778 ExprValueMap.erase(S); 11779 HasRecMap.erase(S); 11780 MinTrailingZerosCache.erase(S); 11781 11782 for (auto I = PredicatedSCEVRewrites.begin(); 11783 I != PredicatedSCEVRewrites.end();) { 11784 std::pair<const SCEV *, const Loop *> Entry = I->first; 11785 if (Entry.first == S) 11786 PredicatedSCEVRewrites.erase(I++); 11787 else 11788 ++I; 11789 } 11790 11791 auto RemoveSCEVFromBackedgeMap = 11792 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11793 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11794 BackedgeTakenInfo &BEInfo = I->second; 11795 if (BEInfo.hasOperand(S, this)) { 11796 BEInfo.clear(); 11797 Map.erase(I++); 11798 } else 11799 ++I; 11800 } 11801 }; 11802 11803 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11804 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11805 } 11806 11807 void 11808 ScalarEvolution::getUsedLoops(const SCEV *S, 11809 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11810 struct FindUsedLoops { 11811 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11812 : LoopsUsed(LoopsUsed) {} 11813 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11814 bool follow(const SCEV *S) { 11815 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11816 LoopsUsed.insert(AR->getLoop()); 11817 return true; 11818 } 11819 11820 bool isDone() const { return false; } 11821 }; 11822 11823 FindUsedLoops F(LoopsUsed); 11824 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11825 } 11826 11827 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11828 SmallPtrSet<const Loop *, 8> LoopsUsed; 11829 getUsedLoops(S, LoopsUsed); 11830 for (auto *L : LoopsUsed) 11831 LoopUsers[L].push_back(S); 11832 } 11833 11834 void ScalarEvolution::verify() const { 11835 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11836 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11837 11838 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11839 11840 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11841 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11842 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11843 11844 const SCEV *visitConstant(const SCEVConstant *Constant) { 11845 return SE.getConstant(Constant->getAPInt()); 11846 } 11847 11848 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11849 return SE.getUnknown(Expr->getValue()); 11850 } 11851 11852 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11853 return SE.getCouldNotCompute(); 11854 } 11855 }; 11856 11857 SCEVMapper SCM(SE2); 11858 11859 while (!LoopStack.empty()) { 11860 auto *L = LoopStack.pop_back_val(); 11861 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11862 11863 auto *CurBECount = SCM.visit( 11864 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11865 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11866 11867 if (CurBECount == SE2.getCouldNotCompute() || 11868 NewBECount == SE2.getCouldNotCompute()) { 11869 // NB! This situation is legal, but is very suspicious -- whatever pass 11870 // change the loop to make a trip count go from could not compute to 11871 // computable or vice-versa *should have* invalidated SCEV. However, we 11872 // choose not to assert here (for now) since we don't want false 11873 // positives. 11874 continue; 11875 } 11876 11877 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11878 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11879 // not propagate undef aggressively). This means we can (and do) fail 11880 // verification in cases where a transform makes the trip count of a loop 11881 // go from "undef" to "undef+1" (say). The transform is fine, since in 11882 // both cases the loop iterates "undef" times, but SCEV thinks we 11883 // increased the trip count of the loop by 1 incorrectly. 11884 continue; 11885 } 11886 11887 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11888 SE.getTypeSizeInBits(NewBECount->getType())) 11889 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11890 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11891 SE.getTypeSizeInBits(NewBECount->getType())) 11892 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11893 11894 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 11895 11896 // Unless VerifySCEVStrict is set, we only compare constant deltas. 11897 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 11898 dbgs() << "Trip Count for " << *L << " Changed!\n"; 11899 dbgs() << "Old: " << *CurBECount << "\n"; 11900 dbgs() << "New: " << *NewBECount << "\n"; 11901 dbgs() << "Delta: " << *Delta << "\n"; 11902 std::abort(); 11903 } 11904 } 11905 } 11906 11907 bool ScalarEvolution::invalidate( 11908 Function &F, const PreservedAnalyses &PA, 11909 FunctionAnalysisManager::Invalidator &Inv) { 11910 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11911 // of its dependencies is invalidated. 11912 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11913 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11914 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11915 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11916 Inv.invalidate<LoopAnalysis>(F, PA); 11917 } 11918 11919 AnalysisKey ScalarEvolutionAnalysis::Key; 11920 11921 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11922 FunctionAnalysisManager &AM) { 11923 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11924 AM.getResult<AssumptionAnalysis>(F), 11925 AM.getResult<DominatorTreeAnalysis>(F), 11926 AM.getResult<LoopAnalysis>(F)); 11927 } 11928 11929 PreservedAnalyses 11930 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 11931 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 11932 return PreservedAnalyses::all(); 11933 } 11934 11935 PreservedAnalyses 11936 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11937 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11938 return PreservedAnalyses::all(); 11939 } 11940 11941 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11942 "Scalar Evolution Analysis", false, true) 11943 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11944 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11945 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11946 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11947 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11948 "Scalar Evolution Analysis", false, true) 11949 11950 char ScalarEvolutionWrapperPass::ID = 0; 11951 11952 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11953 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11954 } 11955 11956 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11957 SE.reset(new ScalarEvolution( 11958 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 11959 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11960 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11961 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11962 return false; 11963 } 11964 11965 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11966 11967 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11968 SE->print(OS); 11969 } 11970 11971 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11972 if (!VerifySCEV) 11973 return; 11974 11975 SE->verify(); 11976 } 11977 11978 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11979 AU.setPreservesAll(); 11980 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11981 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11982 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11983 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11984 } 11985 11986 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11987 const SCEV *RHS) { 11988 FoldingSetNodeID ID; 11989 assert(LHS->getType() == RHS->getType() && 11990 "Type mismatch between LHS and RHS"); 11991 // Unique this node based on the arguments 11992 ID.AddInteger(SCEVPredicate::P_Equal); 11993 ID.AddPointer(LHS); 11994 ID.AddPointer(RHS); 11995 void *IP = nullptr; 11996 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11997 return S; 11998 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11999 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12000 UniquePreds.InsertNode(Eq, IP); 12001 return Eq; 12002 } 12003 12004 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12005 const SCEVAddRecExpr *AR, 12006 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12007 FoldingSetNodeID ID; 12008 // Unique this node based on the arguments 12009 ID.AddInteger(SCEVPredicate::P_Wrap); 12010 ID.AddPointer(AR); 12011 ID.AddInteger(AddedFlags); 12012 void *IP = nullptr; 12013 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12014 return S; 12015 auto *OF = new (SCEVAllocator) 12016 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12017 UniquePreds.InsertNode(OF, IP); 12018 return OF; 12019 } 12020 12021 namespace { 12022 12023 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12024 public: 12025 12026 /// Rewrites \p S in the context of a loop L and the SCEV predication 12027 /// infrastructure. 12028 /// 12029 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12030 /// equivalences present in \p Pred. 12031 /// 12032 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12033 /// \p NewPreds such that the result will be an AddRecExpr. 12034 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12035 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12036 SCEVUnionPredicate *Pred) { 12037 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12038 return Rewriter.visit(S); 12039 } 12040 12041 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12042 if (Pred) { 12043 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12044 for (auto *Pred : ExprPreds) 12045 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12046 if (IPred->getLHS() == Expr) 12047 return IPred->getRHS(); 12048 } 12049 return convertToAddRecWithPreds(Expr); 12050 } 12051 12052 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12053 const SCEV *Operand = visit(Expr->getOperand()); 12054 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12055 if (AR && AR->getLoop() == L && AR->isAffine()) { 12056 // This couldn't be folded because the operand didn't have the nuw 12057 // flag. Add the nusw flag as an assumption that we could make. 12058 const SCEV *Step = AR->getStepRecurrence(SE); 12059 Type *Ty = Expr->getType(); 12060 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12061 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12062 SE.getSignExtendExpr(Step, Ty), L, 12063 AR->getNoWrapFlags()); 12064 } 12065 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12066 } 12067 12068 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12069 const SCEV *Operand = visit(Expr->getOperand()); 12070 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12071 if (AR && AR->getLoop() == L && AR->isAffine()) { 12072 // This couldn't be folded because the operand didn't have the nsw 12073 // flag. Add the nssw flag as an assumption that we could make. 12074 const SCEV *Step = AR->getStepRecurrence(SE); 12075 Type *Ty = Expr->getType(); 12076 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12077 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12078 SE.getSignExtendExpr(Step, Ty), L, 12079 AR->getNoWrapFlags()); 12080 } 12081 return SE.getSignExtendExpr(Operand, Expr->getType()); 12082 } 12083 12084 private: 12085 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12086 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12087 SCEVUnionPredicate *Pred) 12088 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12089 12090 bool addOverflowAssumption(const SCEVPredicate *P) { 12091 if (!NewPreds) { 12092 // Check if we've already made this assumption. 12093 return Pred && Pred->implies(P); 12094 } 12095 NewPreds->insert(P); 12096 return true; 12097 } 12098 12099 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12100 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12101 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12102 return addOverflowAssumption(A); 12103 } 12104 12105 // If \p Expr represents a PHINode, we try to see if it can be represented 12106 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12107 // to add this predicate as a runtime overflow check, we return the AddRec. 12108 // If \p Expr does not meet these conditions (is not a PHI node, or we 12109 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12110 // return \p Expr. 12111 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12112 if (!isa<PHINode>(Expr->getValue())) 12113 return Expr; 12114 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12115 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12116 if (!PredicatedRewrite) 12117 return Expr; 12118 for (auto *P : PredicatedRewrite->second){ 12119 // Wrap predicates from outer loops are not supported. 12120 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12121 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12122 if (L != AR->getLoop()) 12123 return Expr; 12124 } 12125 if (!addOverflowAssumption(P)) 12126 return Expr; 12127 } 12128 return PredicatedRewrite->first; 12129 } 12130 12131 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12132 SCEVUnionPredicate *Pred; 12133 const Loop *L; 12134 }; 12135 12136 } // end anonymous namespace 12137 12138 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12139 SCEVUnionPredicate &Preds) { 12140 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12141 } 12142 12143 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12144 const SCEV *S, const Loop *L, 12145 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12146 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12147 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12148 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12149 12150 if (!AddRec) 12151 return nullptr; 12152 12153 // Since the transformation was successful, we can now transfer the SCEV 12154 // predicates. 12155 for (auto *P : TransformPreds) 12156 Preds.insert(P); 12157 12158 return AddRec; 12159 } 12160 12161 /// SCEV predicates 12162 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12163 SCEVPredicateKind Kind) 12164 : FastID(ID), Kind(Kind) {} 12165 12166 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12167 const SCEV *LHS, const SCEV *RHS) 12168 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12169 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12170 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12171 } 12172 12173 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12174 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12175 12176 if (!Op) 12177 return false; 12178 12179 return Op->LHS == LHS && Op->RHS == RHS; 12180 } 12181 12182 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12183 12184 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12185 12186 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12187 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12188 } 12189 12190 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12191 const SCEVAddRecExpr *AR, 12192 IncrementWrapFlags Flags) 12193 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12194 12195 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12196 12197 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12198 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12199 12200 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12201 } 12202 12203 bool SCEVWrapPredicate::isAlwaysTrue() const { 12204 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12205 IncrementWrapFlags IFlags = Flags; 12206 12207 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12208 IFlags = clearFlags(IFlags, IncrementNSSW); 12209 12210 return IFlags == IncrementAnyWrap; 12211 } 12212 12213 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12214 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12215 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12216 OS << "<nusw>"; 12217 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12218 OS << "<nssw>"; 12219 OS << "\n"; 12220 } 12221 12222 SCEVWrapPredicate::IncrementWrapFlags 12223 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12224 ScalarEvolution &SE) { 12225 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12226 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12227 12228 // We can safely transfer the NSW flag as NSSW. 12229 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12230 ImpliedFlags = IncrementNSSW; 12231 12232 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12233 // If the increment is positive, the SCEV NUW flag will also imply the 12234 // WrapPredicate NUSW flag. 12235 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12236 if (Step->getValue()->getValue().isNonNegative()) 12237 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12238 } 12239 12240 return ImpliedFlags; 12241 } 12242 12243 /// Union predicates don't get cached so create a dummy set ID for it. 12244 SCEVUnionPredicate::SCEVUnionPredicate() 12245 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12246 12247 bool SCEVUnionPredicate::isAlwaysTrue() const { 12248 return all_of(Preds, 12249 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12250 } 12251 12252 ArrayRef<const SCEVPredicate *> 12253 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12254 auto I = SCEVToPreds.find(Expr); 12255 if (I == SCEVToPreds.end()) 12256 return ArrayRef<const SCEVPredicate *>(); 12257 return I->second; 12258 } 12259 12260 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12261 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12262 return all_of(Set->Preds, 12263 [this](const SCEVPredicate *I) { return this->implies(I); }); 12264 12265 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12266 if (ScevPredsIt == SCEVToPreds.end()) 12267 return false; 12268 auto &SCEVPreds = ScevPredsIt->second; 12269 12270 return any_of(SCEVPreds, 12271 [N](const SCEVPredicate *I) { return I->implies(N); }); 12272 } 12273 12274 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12275 12276 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12277 for (auto Pred : Preds) 12278 Pred->print(OS, Depth); 12279 } 12280 12281 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12282 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12283 for (auto Pred : Set->Preds) 12284 add(Pred); 12285 return; 12286 } 12287 12288 if (implies(N)) 12289 return; 12290 12291 const SCEV *Key = N->getExpr(); 12292 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12293 " associated expression!"); 12294 12295 SCEVToPreds[Key].push_back(N); 12296 Preds.push_back(N); 12297 } 12298 12299 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12300 Loop &L) 12301 : SE(SE), L(L) {} 12302 12303 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12304 const SCEV *Expr = SE.getSCEV(V); 12305 RewriteEntry &Entry = RewriteMap[Expr]; 12306 12307 // If we already have an entry and the version matches, return it. 12308 if (Entry.second && Generation == Entry.first) 12309 return Entry.second; 12310 12311 // We found an entry but it's stale. Rewrite the stale entry 12312 // according to the current predicate. 12313 if (Entry.second) 12314 Expr = Entry.second; 12315 12316 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12317 Entry = {Generation, NewSCEV}; 12318 12319 return NewSCEV; 12320 } 12321 12322 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12323 if (!BackedgeCount) { 12324 SCEVUnionPredicate BackedgePred; 12325 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12326 addPredicate(BackedgePred); 12327 } 12328 return BackedgeCount; 12329 } 12330 12331 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12332 if (Preds.implies(&Pred)) 12333 return; 12334 Preds.add(&Pred); 12335 updateGeneration(); 12336 } 12337 12338 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12339 return Preds; 12340 } 12341 12342 void PredicatedScalarEvolution::updateGeneration() { 12343 // If the generation number wrapped recompute everything. 12344 if (++Generation == 0) { 12345 for (auto &II : RewriteMap) { 12346 const SCEV *Rewritten = II.second.second; 12347 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12348 } 12349 } 12350 } 12351 12352 void PredicatedScalarEvolution::setNoOverflow( 12353 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12354 const SCEV *Expr = getSCEV(V); 12355 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12356 12357 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12358 12359 // Clear the statically implied flags. 12360 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12361 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12362 12363 auto II = FlagsMap.insert({V, Flags}); 12364 if (!II.second) 12365 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12366 } 12367 12368 bool PredicatedScalarEvolution::hasNoOverflow( 12369 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12370 const SCEV *Expr = getSCEV(V); 12371 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12372 12373 Flags = SCEVWrapPredicate::clearFlags( 12374 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12375 12376 auto II = FlagsMap.find(V); 12377 12378 if (II != FlagsMap.end()) 12379 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12380 12381 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12382 } 12383 12384 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12385 const SCEV *Expr = this->getSCEV(V); 12386 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12387 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12388 12389 if (!New) 12390 return nullptr; 12391 12392 for (auto *P : NewPreds) 12393 Preds.add(P); 12394 12395 updateGeneration(); 12396 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12397 return New; 12398 } 12399 12400 PredicatedScalarEvolution::PredicatedScalarEvolution( 12401 const PredicatedScalarEvolution &Init) 12402 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12403 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12404 for (auto I : Init.FlagsMap) 12405 FlagsMap.insert(I); 12406 } 12407 12408 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12409 // For each block. 12410 for (auto *BB : L.getBlocks()) 12411 for (auto &I : *BB) { 12412 if (!SE.isSCEVable(I.getType())) 12413 continue; 12414 12415 auto *Expr = SE.getSCEV(&I); 12416 auto II = RewriteMap.find(Expr); 12417 12418 if (II == RewriteMap.end()) 12419 continue; 12420 12421 // Don't print things that are not interesting. 12422 if (II->second.second == Expr) 12423 continue; 12424 12425 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12426 OS.indent(Depth + 2) << *Expr << "\n"; 12427 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12428 } 12429 } 12430 12431 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12432 // arbitrary expressions. 12433 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12434 // 4, A / B becomes X / 8). 12435 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12436 const SCEV *&RHS) { 12437 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12438 if (Add == nullptr || Add->getNumOperands() != 2) 12439 return false; 12440 12441 const SCEV *A = Add->getOperand(1); 12442 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12443 12444 if (Mul == nullptr) 12445 return false; 12446 12447 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12448 // (SomeExpr + (-(SomeExpr / B) * B)). 12449 if (Expr == getURemExpr(A, B)) { 12450 LHS = A; 12451 RHS = B; 12452 return true; 12453 } 12454 return false; 12455 }; 12456 12457 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12458 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12459 return MatchURemWithDivisor(Mul->getOperand(1)) || 12460 MatchURemWithDivisor(Mul->getOperand(2)); 12461 12462 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12463 if (Mul->getNumOperands() == 2) 12464 return MatchURemWithDivisor(Mul->getOperand(1)) || 12465 MatchURemWithDivisor(Mul->getOperand(0)) || 12466 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12467 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12468 return false; 12469 } 12470