xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <climits>
124 #include <cstdint>
125 #include <cstdlib>
126 #include <map>
127 #include <memory>
128 #include <numeric>
129 #include <optional>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 using namespace PatternMatch;
136 
137 #define DEBUG_TYPE "scalar-evolution"
138 
139 STATISTIC(NumExitCountsComputed,
140           "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed,
142           "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed,
144           "Number of loops with trip counts computed by force");
145 
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV = true;
148 #else
149 bool llvm::VerifySCEV = false;
150 #endif
151 
152 static cl::opt<unsigned>
153     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154                             cl::desc("Maximum number of iterations SCEV will "
155                                      "symbolically execute a constant "
156                                      "derived loop"),
157                             cl::init(100));
158 
159 static cl::opt<bool, true> VerifySCEVOpt(
160     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 
166 static cl::opt<bool> VerifyIR(
167     "scev-verify-ir", cl::Hidden,
168     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169     cl::init(false));
170 
171 static cl::opt<unsigned> MulOpsInlineThreshold(
172     "scev-mulops-inline-threshold", cl::Hidden,
173     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174     cl::init(32));
175 
176 static cl::opt<unsigned> AddOpsInlineThreshold(
177     "scev-addops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining addition operands into a SCEV"),
179     cl::init(500));
180 
181 static cl::opt<unsigned> MaxSCEVCompareDepth(
182     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184     cl::init(32));
185 
186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189     cl::init(2));
190 
191 static cl::opt<unsigned> MaxValueCompareDepth(
192     "scalar-evolution-max-value-compare-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive value complexity comparisons"),
194     cl::init(2));
195 
196 static cl::opt<unsigned>
197     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198                   cl::desc("Maximum depth of recursive arithmetics"),
199                   cl::init(32));
200 
201 static cl::opt<unsigned> MaxConstantEvolvingDepth(
202     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 
205 static cl::opt<unsigned>
206     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208                  cl::init(8));
209 
210 static cl::opt<unsigned>
211     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212                   cl::desc("Max coefficients in AddRec during evolving"),
213                   cl::init(8));
214 
215 static cl::opt<unsigned>
216     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217                   cl::desc("Size of the expression which is considered huge"),
218                   cl::init(4096));
219 
220 static cl::opt<unsigned> RangeIterThreshold(
221     "scev-range-iter-threshold", cl::Hidden,
222     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223     cl::init(32));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239              "Phi strongly connected components"),
240     cl::init(8));
241 
242 static cl::opt<bool>
243     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244                             cl::desc("Handle <= and >= in finite loops"),
245                             cl::init(true));
246 
247 static cl::opt<bool> UseContextForNoWrapFlagInference(
248     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249     cl::desc("Infer nuw/nsw flags using context where suitable"),
250     cl::init(true));
251 
252 //===----------------------------------------------------------------------===//
253 //                           SCEV class definitions
254 //===----------------------------------------------------------------------===//
255 
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
258 //
259 
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261 LLVM_DUMP_METHOD void SCEV::dump() const {
262   print(dbgs());
263   dbgs() << '\n';
264 }
265 #endif
266 
267 void SCEV::print(raw_ostream &OS) const {
268   switch (getSCEVType()) {
269   case scConstant:
270     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
271     return;
272   case scVScale:
273     OS << "vscale";
274     return;
275   case scPtrToInt: {
276     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
277     const SCEV *Op = PtrToInt->getOperand();
278     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279        << *PtrToInt->getType() << ")";
280     return;
281   }
282   case scTruncate: {
283     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
284     const SCEV *Op = Trunc->getOperand();
285     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286        << *Trunc->getType() << ")";
287     return;
288   }
289   case scZeroExtend: {
290     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
291     const SCEV *Op = ZExt->getOperand();
292     OS << "(zext " << *Op->getType() << " " << *Op << " to "
293        << *ZExt->getType() << ")";
294     return;
295   }
296   case scSignExtend: {
297     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
298     const SCEV *Op = SExt->getOperand();
299     OS << "(sext " << *Op->getType() << " " << *Op << " to "
300        << *SExt->getType() << ")";
301     return;
302   }
303   case scAddRecExpr: {
304     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
305     OS << "{" << *AR->getOperand(0);
306     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307       OS << ",+," << *AR->getOperand(i);
308     OS << "}<";
309     if (AR->hasNoUnsignedWrap())
310       OS << "nuw><";
311     if (AR->hasNoSignedWrap())
312       OS << "nsw><";
313     if (AR->hasNoSelfWrap() &&
314         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
315       OS << "nw><";
316     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
317     OS << ">";
318     return;
319   }
320   case scAddExpr:
321   case scMulExpr:
322   case scUMaxExpr:
323   case scSMaxExpr:
324   case scUMinExpr:
325   case scSMinExpr:
326   case scSequentialUMinExpr: {
327     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
328     const char *OpStr = nullptr;
329     switch (NAry->getSCEVType()) {
330     case scAddExpr: OpStr = " + "; break;
331     case scMulExpr: OpStr = " * "; break;
332     case scUMaxExpr: OpStr = " umax "; break;
333     case scSMaxExpr: OpStr = " smax "; break;
334     case scUMinExpr:
335       OpStr = " umin ";
336       break;
337     case scSMinExpr:
338       OpStr = " smin ";
339       break;
340     case scSequentialUMinExpr:
341       OpStr = " umin_seq ";
342       break;
343     default:
344       llvm_unreachable("There are no other nary expression types.");
345     }
346     OS << "(";
347     ListSeparator LS(OpStr);
348     for (const SCEV *Op : NAry->operands())
349       OS << LS << *Op;
350     OS << ")";
351     switch (NAry->getSCEVType()) {
352     case scAddExpr:
353     case scMulExpr:
354       if (NAry->hasNoUnsignedWrap())
355         OS << "<nuw>";
356       if (NAry->hasNoSignedWrap())
357         OS << "<nsw>";
358       break;
359     default:
360       // Nothing to print for other nary expressions.
361       break;
362     }
363     return;
364   }
365   case scUDivExpr: {
366     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
367     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368     return;
369   }
370   case scUnknown:
371     cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
372     return;
373   case scCouldNotCompute:
374     OS << "***COULDNOTCOMPUTE***";
375     return;
376   }
377   llvm_unreachable("Unknown SCEV kind!");
378 }
379 
380 Type *SCEV::getType() const {
381   switch (getSCEVType()) {
382   case scConstant:
383     return cast<SCEVConstant>(this)->getType();
384   case scVScale:
385     return cast<SCEVVScale>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392     return cast<SCEVAddRecExpr>(this)->getType();
393   case scMulExpr:
394     return cast<SCEVMulExpr>(this)->getType();
395   case scUMaxExpr:
396   case scSMaxExpr:
397   case scUMinExpr:
398   case scSMinExpr:
399     return cast<SCEVMinMaxExpr>(this)->getType();
400   case scSequentialUMinExpr:
401     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
402   case scAddExpr:
403     return cast<SCEVAddExpr>(this)->getType();
404   case scUDivExpr:
405     return cast<SCEVUDivExpr>(this)->getType();
406   case scUnknown:
407     return cast<SCEVUnknown>(this)->getType();
408   case scCouldNotCompute:
409     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
410   }
411   llvm_unreachable("Unknown SCEV kind!");
412 }
413 
414 ArrayRef<const SCEV *> SCEV::operands() const {
415   switch (getSCEVType()) {
416   case scConstant:
417   case scVScale:
418   case scUnknown:
419     return {};
420   case scPtrToInt:
421   case scTruncate:
422   case scZeroExtend:
423   case scSignExtend:
424     return cast<SCEVCastExpr>(this)->operands();
425   case scAddRecExpr:
426   case scAddExpr:
427   case scMulExpr:
428   case scUMaxExpr:
429   case scSMaxExpr:
430   case scUMinExpr:
431   case scSMinExpr:
432   case scSequentialUMinExpr:
433     return cast<SCEVNAryExpr>(this)->operands();
434   case scUDivExpr:
435     return cast<SCEVUDivExpr>(this)->operands();
436   case scCouldNotCompute:
437     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
438   }
439   llvm_unreachable("Unknown SCEV kind!");
440 }
441 
442 bool SCEV::isZero() const {
443   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
444     return SC->getValue()->isZero();
445   return false;
446 }
447 
448 bool SCEV::isOne() const {
449   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
450     return SC->getValue()->isOne();
451   return false;
452 }
453 
454 bool SCEV::isAllOnesValue() const {
455   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
456     return SC->getValue()->isMinusOne();
457   return false;
458 }
459 
460 bool SCEV::isNonConstantNegative() const {
461   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
462   if (!Mul) return false;
463 
464   // If there is a constant factor, it will be first.
465   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
466   if (!SC) return false;
467 
468   // Return true if the value is negative, this matches things like (-42 * V).
469   return SC->getAPInt().isNegative();
470 }
471 
472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
474 
475 bool SCEVCouldNotCompute::classof(const SCEV *S) {
476   return S->getSCEVType() == scCouldNotCompute;
477 }
478 
479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480   FoldingSetNodeID ID;
481   ID.AddInteger(scConstant);
482   ID.AddPointer(V);
483   void *IP = nullptr;
484   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
485   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
486   UniqueSCEVs.InsertNode(S, IP);
487   return S;
488 }
489 
490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491   return getConstant(ConstantInt::get(getContext(), Val));
492 }
493 
494 const SCEV *
495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
497   return getConstant(ConstantInt::get(ITy, V, isSigned));
498 }
499 
500 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501   FoldingSetNodeID ID;
502   ID.AddInteger(scVScale);
503   ID.AddPointer(Ty);
504   void *IP = nullptr;
505   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
506     return S;
507   SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
508   UniqueSCEVs.InsertNode(S, IP);
509   return S;
510 }
511 
512 const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) {
513   const SCEV *Res = getConstant(Ty, EC.getKnownMinValue());
514   if (EC.isScalable())
515     Res = getMulExpr(Res, getVScale(Ty));
516   return Res;
517 }
518 
519 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
520                            const SCEV *op, Type *ty)
521     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
522 
523 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
524                                    Type *ITy)
525     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
526   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
527          "Must be a non-bit-width-changing pointer-to-integer cast!");
528 }
529 
530 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
531                                            SCEVTypes SCEVTy, const SCEV *op,
532                                            Type *ty)
533     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
534 
535 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
536                                    Type *ty)
537     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
538   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539          "Cannot truncate non-integer value!");
540 }
541 
542 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
543                                        const SCEV *op, Type *ty)
544     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
545   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546          "Cannot zero extend non-integer value!");
547 }
548 
549 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
550                                        const SCEV *op, Type *ty)
551     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
552   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
553          "Cannot sign extend non-integer value!");
554 }
555 
556 void SCEVUnknown::deleted() {
557   // Clear this SCEVUnknown from various maps.
558   SE->forgetMemoizedResults(this);
559 
560   // Remove this SCEVUnknown from the uniquing map.
561   SE->UniqueSCEVs.RemoveNode(this);
562 
563   // Release the value.
564   setValPtr(nullptr);
565 }
566 
567 void SCEVUnknown::allUsesReplacedWith(Value *New) {
568   // Clear this SCEVUnknown from various maps.
569   SE->forgetMemoizedResults(this);
570 
571   // Remove this SCEVUnknown from the uniquing map.
572   SE->UniqueSCEVs.RemoveNode(this);
573 
574   // Replace the value pointer in case someone is still using this SCEVUnknown.
575   setValPtr(New);
576 }
577 
578 //===----------------------------------------------------------------------===//
579 //                               SCEV Utilities
580 //===----------------------------------------------------------------------===//
581 
582 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
583 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
584 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
585 /// have been previously deemed to be "equally complex" by this routine.  It is
586 /// intended to avoid exponential time complexity in cases like:
587 ///
588 ///   %a = f(%x, %y)
589 ///   %b = f(%a, %a)
590 ///   %c = f(%b, %b)
591 ///
592 ///   %d = f(%x, %y)
593 ///   %e = f(%d, %d)
594 ///   %f = f(%e, %e)
595 ///
596 ///   CompareValueComplexity(%f, %c)
597 ///
598 /// Since we do not continue running this routine on expression trees once we
599 /// have seen unequal values, there is no need to track them in the cache.
600 static int
601 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
602                        const LoopInfo *const LI, Value *LV, Value *RV,
603                        unsigned Depth) {
604   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
605     return 0;
606 
607   // Order pointer values after integer values. This helps SCEVExpander form
608   // GEPs.
609   bool LIsPointer = LV->getType()->isPointerTy(),
610        RIsPointer = RV->getType()->isPointerTy();
611   if (LIsPointer != RIsPointer)
612     return (int)LIsPointer - (int)RIsPointer;
613 
614   // Compare getValueID values.
615   unsigned LID = LV->getValueID(), RID = RV->getValueID();
616   if (LID != RID)
617     return (int)LID - (int)RID;
618 
619   // Sort arguments by their position.
620   if (const auto *LA = dyn_cast<Argument>(LV)) {
621     const auto *RA = cast<Argument>(RV);
622     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
623     return (int)LArgNo - (int)RArgNo;
624   }
625 
626   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
627     const auto *RGV = cast<GlobalValue>(RV);
628 
629     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
630       auto LT = GV->getLinkage();
631       return !(GlobalValue::isPrivateLinkage(LT) ||
632                GlobalValue::isInternalLinkage(LT));
633     };
634 
635     // Use the names to distinguish the two values, but only if the
636     // names are semantically important.
637     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
638       return LGV->getName().compare(RGV->getName());
639   }
640 
641   // For instructions, compare their loop depth, and their operand count.  This
642   // is pretty loose.
643   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
644     const auto *RInst = cast<Instruction>(RV);
645 
646     // Compare loop depths.
647     const BasicBlock *LParent = LInst->getParent(),
648                      *RParent = RInst->getParent();
649     if (LParent != RParent) {
650       unsigned LDepth = LI->getLoopDepth(LParent),
651                RDepth = LI->getLoopDepth(RParent);
652       if (LDepth != RDepth)
653         return (int)LDepth - (int)RDepth;
654     }
655 
656     // Compare the number of operands.
657     unsigned LNumOps = LInst->getNumOperands(),
658              RNumOps = RInst->getNumOperands();
659     if (LNumOps != RNumOps)
660       return (int)LNumOps - (int)RNumOps;
661 
662     for (unsigned Idx : seq(LNumOps)) {
663       int Result =
664           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
665                                  RInst->getOperand(Idx), Depth + 1);
666       if (Result != 0)
667         return Result;
668     }
669   }
670 
671   EqCacheValue.unionSets(LV, RV);
672   return 0;
673 }
674 
675 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
676 // than RHS, respectively. A three-way result allows recursive comparisons to be
677 // more efficient.
678 // If the max analysis depth was reached, return std::nullopt, assuming we do
679 // not know if they are equivalent for sure.
680 static std::optional<int>
681 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
682                       EquivalenceClasses<const Value *> &EqCacheValue,
683                       const LoopInfo *const LI, const SCEV *LHS,
684                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
685   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
686   if (LHS == RHS)
687     return 0;
688 
689   // Primarily, sort the SCEVs by their getSCEVType().
690   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
691   if (LType != RType)
692     return (int)LType - (int)RType;
693 
694   if (EqCacheSCEV.isEquivalent(LHS, RHS))
695     return 0;
696 
697   if (Depth > MaxSCEVCompareDepth)
698     return std::nullopt;
699 
700   // Aside from the getSCEVType() ordering, the particular ordering
701   // isn't very important except that it's beneficial to be consistent,
702   // so that (a + b) and (b + a) don't end up as different expressions.
703   switch (LType) {
704   case scUnknown: {
705     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
706     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
707 
708     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
709                                    RU->getValue(), Depth + 1);
710     if (X == 0)
711       EqCacheSCEV.unionSets(LHS, RHS);
712     return X;
713   }
714 
715   case scConstant: {
716     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
717     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
718 
719     // Compare constant values.
720     const APInt &LA = LC->getAPInt();
721     const APInt &RA = RC->getAPInt();
722     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
723     if (LBitWidth != RBitWidth)
724       return (int)LBitWidth - (int)RBitWidth;
725     return LA.ult(RA) ? -1 : 1;
726   }
727 
728   case scVScale: {
729     const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
730     const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
731     return LTy->getBitWidth() - RTy->getBitWidth();
732   }
733 
734   case scAddRecExpr: {
735     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
736     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
737 
738     // There is always a dominance between two recs that are used by one SCEV,
739     // so we can safely sort recs by loop header dominance. We require such
740     // order in getAddExpr.
741     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
742     if (LLoop != RLoop) {
743       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
744       assert(LHead != RHead && "Two loops share the same header?");
745       if (DT.dominates(LHead, RHead))
746         return 1;
747       assert(DT.dominates(RHead, LHead) &&
748              "No dominance between recurrences used by one SCEV?");
749       return -1;
750     }
751 
752     [[fallthrough]];
753   }
754 
755   case scTruncate:
756   case scZeroExtend:
757   case scSignExtend:
758   case scPtrToInt:
759   case scAddExpr:
760   case scMulExpr:
761   case scUDivExpr:
762   case scSMaxExpr:
763   case scUMaxExpr:
764   case scSMinExpr:
765   case scUMinExpr:
766   case scSequentialUMinExpr: {
767     ArrayRef<const SCEV *> LOps = LHS->operands();
768     ArrayRef<const SCEV *> ROps = RHS->operands();
769 
770     // Lexicographically compare n-ary-like expressions.
771     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
772     if (LNumOps != RNumOps)
773       return (int)LNumOps - (int)RNumOps;
774 
775     for (unsigned i = 0; i != LNumOps; ++i) {
776       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
777                                      ROps[i], DT, Depth + 1);
778       if (X != 0)
779         return X;
780     }
781     EqCacheSCEV.unionSets(LHS, RHS);
782     return 0;
783   }
784 
785   case scCouldNotCompute:
786     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
787   }
788   llvm_unreachable("Unknown SCEV kind!");
789 }
790 
791 /// Given a list of SCEV objects, order them by their complexity, and group
792 /// objects of the same complexity together by value.  When this routine is
793 /// finished, we know that any duplicates in the vector are consecutive and that
794 /// complexity is monotonically increasing.
795 ///
796 /// Note that we go take special precautions to ensure that we get deterministic
797 /// results from this routine.  In other words, we don't want the results of
798 /// this to depend on where the addresses of various SCEV objects happened to
799 /// land in memory.
800 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
801                               LoopInfo *LI, DominatorTree &DT) {
802   if (Ops.size() < 2) return;  // Noop
803 
804   EquivalenceClasses<const SCEV *> EqCacheSCEV;
805   EquivalenceClasses<const Value *> EqCacheValue;
806 
807   // Whether LHS has provably less complexity than RHS.
808   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
809     auto Complexity =
810         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
811     return Complexity && *Complexity < 0;
812   };
813   if (Ops.size() == 2) {
814     // This is the common case, which also happens to be trivially simple.
815     // Special case it.
816     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
817     if (IsLessComplex(RHS, LHS))
818       std::swap(LHS, RHS);
819     return;
820   }
821 
822   // Do the rough sort by complexity.
823   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
824     return IsLessComplex(LHS, RHS);
825   });
826 
827   // Now that we are sorted by complexity, group elements of the same
828   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
829   // be extremely short in practice.  Note that we take this approach because we
830   // do not want to depend on the addresses of the objects we are grouping.
831   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
832     const SCEV *S = Ops[i];
833     unsigned Complexity = S->getSCEVType();
834 
835     // If there are any objects of the same complexity and same value as this
836     // one, group them.
837     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
838       if (Ops[j] == S) { // Found a duplicate.
839         // Move it to immediately after i'th element.
840         std::swap(Ops[i+1], Ops[j]);
841         ++i;   // no need to rescan it.
842         if (i == e-2) return;  // Done!
843       }
844     }
845   }
846 }
847 
848 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
849 /// least HugeExprThreshold nodes).
850 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
851   return any_of(Ops, [](const SCEV *S) {
852     return S->getExpressionSize() >= HugeExprThreshold;
853   });
854 }
855 
856 //===----------------------------------------------------------------------===//
857 //                      Simple SCEV method implementations
858 //===----------------------------------------------------------------------===//
859 
860 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
861 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
862                                        ScalarEvolution &SE,
863                                        Type *ResultTy) {
864   // Handle the simplest case efficiently.
865   if (K == 1)
866     return SE.getTruncateOrZeroExtend(It, ResultTy);
867 
868   // We are using the following formula for BC(It, K):
869   //
870   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
871   //
872   // Suppose, W is the bitwidth of the return value.  We must be prepared for
873   // overflow.  Hence, we must assure that the result of our computation is
874   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
875   // safe in modular arithmetic.
876   //
877   // However, this code doesn't use exactly that formula; the formula it uses
878   // is something like the following, where T is the number of factors of 2 in
879   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
880   // exponentiation:
881   //
882   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
883   //
884   // This formula is trivially equivalent to the previous formula.  However,
885   // this formula can be implemented much more efficiently.  The trick is that
886   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
887   // arithmetic.  To do exact division in modular arithmetic, all we have
888   // to do is multiply by the inverse.  Therefore, this step can be done at
889   // width W.
890   //
891   // The next issue is how to safely do the division by 2^T.  The way this
892   // is done is by doing the multiplication step at a width of at least W + T
893   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
894   // when we perform the division by 2^T (which is equivalent to a right shift
895   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
896   // truncated out after the division by 2^T.
897   //
898   // In comparison to just directly using the first formula, this technique
899   // is much more efficient; using the first formula requires W * K bits,
900   // but this formula less than W + K bits. Also, the first formula requires
901   // a division step, whereas this formula only requires multiplies and shifts.
902   //
903   // It doesn't matter whether the subtraction step is done in the calculation
904   // width or the input iteration count's width; if the subtraction overflows,
905   // the result must be zero anyway.  We prefer here to do it in the width of
906   // the induction variable because it helps a lot for certain cases; CodeGen
907   // isn't smart enough to ignore the overflow, which leads to much less
908   // efficient code if the width of the subtraction is wider than the native
909   // register width.
910   //
911   // (It's possible to not widen at all by pulling out factors of 2 before
912   // the multiplication; for example, K=2 can be calculated as
913   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
914   // extra arithmetic, so it's not an obvious win, and it gets
915   // much more complicated for K > 3.)
916 
917   // Protection from insane SCEVs; this bound is conservative,
918   // but it probably doesn't matter.
919   if (K > 1000)
920     return SE.getCouldNotCompute();
921 
922   unsigned W = SE.getTypeSizeInBits(ResultTy);
923 
924   // Calculate K! / 2^T and T; we divide out the factors of two before
925   // multiplying for calculating K! / 2^T to avoid overflow.
926   // Other overflow doesn't matter because we only care about the bottom
927   // W bits of the result.
928   APInt OddFactorial(W, 1);
929   unsigned T = 1;
930   for (unsigned i = 3; i <= K; ++i) {
931     unsigned TwoFactors = countr_zero(i);
932     T += TwoFactors;
933     OddFactorial *= (i >> TwoFactors);
934   }
935 
936   // We need at least W + T bits for the multiplication step
937   unsigned CalculationBits = W + T;
938 
939   // Calculate 2^T, at width T+W.
940   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
941 
942   // Calculate the multiplicative inverse of K! / 2^T;
943   // this multiplication factor will perform the exact division by
944   // K! / 2^T.
945   APInt MultiplyFactor = OddFactorial.multiplicativeInverse();
946 
947   // Calculate the product, at width T+W
948   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
949                                                       CalculationBits);
950   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
951   for (unsigned i = 1; i != K; ++i) {
952     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
953     Dividend = SE.getMulExpr(Dividend,
954                              SE.getTruncateOrZeroExtend(S, CalculationTy));
955   }
956 
957   // Divide by 2^T
958   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
959 
960   // Truncate the result, and divide by K! / 2^T.
961 
962   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
963                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
964 }
965 
966 /// Return the value of this chain of recurrences at the specified iteration
967 /// number.  We can evaluate this recurrence by multiplying each element in the
968 /// chain by the binomial coefficient corresponding to it.  In other words, we
969 /// can evaluate {A,+,B,+,C,+,D} as:
970 ///
971 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
972 ///
973 /// where BC(It, k) stands for binomial coefficient.
974 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
975                                                 ScalarEvolution &SE) const {
976   return evaluateAtIteration(operands(), It, SE);
977 }
978 
979 const SCEV *
980 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
981                                     const SCEV *It, ScalarEvolution &SE) {
982   assert(Operands.size() > 0);
983   const SCEV *Result = Operands[0];
984   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
985     // The computation is correct in the face of overflow provided that the
986     // multiplication is performed _after_ the evaluation of the binomial
987     // coefficient.
988     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
989     if (isa<SCEVCouldNotCompute>(Coeff))
990       return Coeff;
991 
992     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
993   }
994   return Result;
995 }
996 
997 //===----------------------------------------------------------------------===//
998 //                    SCEV Expression folder implementations
999 //===----------------------------------------------------------------------===//
1000 
1001 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1002                                                      unsigned Depth) {
1003   assert(Depth <= 1 &&
1004          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1005 
1006   // We could be called with an integer-typed operands during SCEV rewrites.
1007   // Since the operand is an integer already, just perform zext/trunc/self cast.
1008   if (!Op->getType()->isPointerTy())
1009     return Op;
1010 
1011   // What would be an ID for such a SCEV cast expression?
1012   FoldingSetNodeID ID;
1013   ID.AddInteger(scPtrToInt);
1014   ID.AddPointer(Op);
1015 
1016   void *IP = nullptr;
1017 
1018   // Is there already an expression for such a cast?
1019   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1020     return S;
1021 
1022   // It isn't legal for optimizations to construct new ptrtoint expressions
1023   // for non-integral pointers.
1024   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1025     return getCouldNotCompute();
1026 
1027   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1028 
1029   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1030   // is sufficiently wide to represent all possible pointer values.
1031   // We could theoretically teach SCEV to truncate wider pointers, but
1032   // that isn't implemented for now.
1033   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1034       getDataLayout().getTypeSizeInBits(IntPtrTy))
1035     return getCouldNotCompute();
1036 
1037   // If not, is this expression something we can't reduce any further?
1038   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1039     // Perform some basic constant folding. If the operand of the ptr2int cast
1040     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1041     // left as-is), but produce a zero constant.
1042     // NOTE: We could handle a more general case, but lack motivational cases.
1043     if (isa<ConstantPointerNull>(U->getValue()))
1044       return getZero(IntPtrTy);
1045 
1046     // Create an explicit cast node.
1047     // We can reuse the existing insert position since if we get here,
1048     // we won't have made any changes which would invalidate it.
1049     SCEV *S = new (SCEVAllocator)
1050         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1051     UniqueSCEVs.InsertNode(S, IP);
1052     registerUser(S, Op);
1053     return S;
1054   }
1055 
1056   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1057                        "non-SCEVUnknown's.");
1058 
1059   // Otherwise, we've got some expression that is more complex than just a
1060   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1061   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1062   // only, and the expressions must otherwise be integer-typed.
1063   // So sink the cast down to the SCEVUnknown's.
1064 
1065   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1066   /// which computes a pointer-typed value, and rewrites the whole expression
1067   /// tree so that *all* the computations are done on integers, and the only
1068   /// pointer-typed operands in the expression are SCEVUnknown.
1069   class SCEVPtrToIntSinkingRewriter
1070       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1071     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1072 
1073   public:
1074     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1075 
1076     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1077       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1078       return Rewriter.visit(Scev);
1079     }
1080 
1081     const SCEV *visit(const SCEV *S) {
1082       Type *STy = S->getType();
1083       // If the expression is not pointer-typed, just keep it as-is.
1084       if (!STy->isPointerTy())
1085         return S;
1086       // Else, recursively sink the cast down into it.
1087       return Base::visit(S);
1088     }
1089 
1090     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1091       SmallVector<const SCEV *, 2> Operands;
1092       bool Changed = false;
1093       for (const auto *Op : Expr->operands()) {
1094         Operands.push_back(visit(Op));
1095         Changed |= Op != Operands.back();
1096       }
1097       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1098     }
1099 
1100     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1101       SmallVector<const SCEV *, 2> Operands;
1102       bool Changed = false;
1103       for (const auto *Op : Expr->operands()) {
1104         Operands.push_back(visit(Op));
1105         Changed |= Op != Operands.back();
1106       }
1107       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1108     }
1109 
1110     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1111       assert(Expr->getType()->isPointerTy() &&
1112              "Should only reach pointer-typed SCEVUnknown's.");
1113       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1114     }
1115   };
1116 
1117   // And actually perform the cast sinking.
1118   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1119   assert(IntOp->getType()->isIntegerTy() &&
1120          "We must have succeeded in sinking the cast, "
1121          "and ending up with an integer-typed expression!");
1122   return IntOp;
1123 }
1124 
1125 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1126   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1127 
1128   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1129   if (isa<SCEVCouldNotCompute>(IntOp))
1130     return IntOp;
1131 
1132   return getTruncateOrZeroExtend(IntOp, Ty);
1133 }
1134 
1135 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1136                                              unsigned Depth) {
1137   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1138          "This is not a truncating conversion!");
1139   assert(isSCEVable(Ty) &&
1140          "This is not a conversion to a SCEVable type!");
1141   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1142   Ty = getEffectiveSCEVType(Ty);
1143 
1144   FoldingSetNodeID ID;
1145   ID.AddInteger(scTruncate);
1146   ID.AddPointer(Op);
1147   ID.AddPointer(Ty);
1148   void *IP = nullptr;
1149   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1150 
1151   // Fold if the operand is constant.
1152   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1153     return getConstant(
1154       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1155 
1156   // trunc(trunc(x)) --> trunc(x)
1157   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1158     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1159 
1160   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1161   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1162     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1163 
1164   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1165   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1166     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1167 
1168   if (Depth > MaxCastDepth) {
1169     SCEV *S =
1170         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1171     UniqueSCEVs.InsertNode(S, IP);
1172     registerUser(S, Op);
1173     return S;
1174   }
1175 
1176   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1177   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1178   // if after transforming we have at most one truncate, not counting truncates
1179   // that replace other casts.
1180   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1181     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1182     SmallVector<const SCEV *, 4> Operands;
1183     unsigned numTruncs = 0;
1184     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1185          ++i) {
1186       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1187       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1188           isa<SCEVTruncateExpr>(S))
1189         numTruncs++;
1190       Operands.push_back(S);
1191     }
1192     if (numTruncs < 2) {
1193       if (isa<SCEVAddExpr>(Op))
1194         return getAddExpr(Operands);
1195       if (isa<SCEVMulExpr>(Op))
1196         return getMulExpr(Operands);
1197       llvm_unreachable("Unexpected SCEV type for Op.");
1198     }
1199     // Although we checked in the beginning that ID is not in the cache, it is
1200     // possible that during recursion and different modification ID was inserted
1201     // into the cache. So if we find it, just return it.
1202     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1203       return S;
1204   }
1205 
1206   // If the input value is a chrec scev, truncate the chrec's operands.
1207   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1208     SmallVector<const SCEV *, 4> Operands;
1209     for (const SCEV *Op : AddRec->operands())
1210       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1211     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1212   }
1213 
1214   // Return zero if truncating to known zeros.
1215   uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1216   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1217     return getZero(Ty);
1218 
1219   // The cast wasn't folded; create an explicit cast node. We can reuse
1220   // the existing insert position since if we get here, we won't have
1221   // made any changes which would invalidate it.
1222   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1223                                                  Op, Ty);
1224   UniqueSCEVs.InsertNode(S, IP);
1225   registerUser(S, Op);
1226   return S;
1227 }
1228 
1229 // Get the limit of a recurrence such that incrementing by Step cannot cause
1230 // signed overflow as long as the value of the recurrence within the
1231 // loop does not exceed this limit before incrementing.
1232 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1233                                                  ICmpInst::Predicate *Pred,
1234                                                  ScalarEvolution *SE) {
1235   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1236   if (SE->isKnownPositive(Step)) {
1237     *Pred = ICmpInst::ICMP_SLT;
1238     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1239                            SE->getSignedRangeMax(Step));
1240   }
1241   if (SE->isKnownNegative(Step)) {
1242     *Pred = ICmpInst::ICMP_SGT;
1243     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1244                            SE->getSignedRangeMin(Step));
1245   }
1246   return nullptr;
1247 }
1248 
1249 // Get the limit of a recurrence such that incrementing by Step cannot cause
1250 // unsigned overflow as long as the value of the recurrence within the loop does
1251 // not exceed this limit before incrementing.
1252 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1253                                                    ICmpInst::Predicate *Pred,
1254                                                    ScalarEvolution *SE) {
1255   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1256   *Pred = ICmpInst::ICMP_ULT;
1257 
1258   return SE->getConstant(APInt::getMinValue(BitWidth) -
1259                          SE->getUnsignedRangeMax(Step));
1260 }
1261 
1262 namespace {
1263 
1264 struct ExtendOpTraitsBase {
1265   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1266                                                           unsigned);
1267 };
1268 
1269 // Used to make code generic over signed and unsigned overflow.
1270 template <typename ExtendOp> struct ExtendOpTraits {
1271   // Members present:
1272   //
1273   // static const SCEV::NoWrapFlags WrapType;
1274   //
1275   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1276   //
1277   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1278   //                                           ICmpInst::Predicate *Pred,
1279   //                                           ScalarEvolution *SE);
1280 };
1281 
1282 template <>
1283 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1284   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1285 
1286   static const GetExtendExprTy GetExtendExpr;
1287 
1288   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1289                                              ICmpInst::Predicate *Pred,
1290                                              ScalarEvolution *SE) {
1291     return getSignedOverflowLimitForStep(Step, Pred, SE);
1292   }
1293 };
1294 
1295 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1296     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1297 
1298 template <>
1299 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1300   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1301 
1302   static const GetExtendExprTy GetExtendExpr;
1303 
1304   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1305                                              ICmpInst::Predicate *Pred,
1306                                              ScalarEvolution *SE) {
1307     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1308   }
1309 };
1310 
1311 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1312     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1313 
1314 } // end anonymous namespace
1315 
1316 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1317 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1318 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1319 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1320 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1321 // expression "Step + sext/zext(PreIncAR)" is congruent with
1322 // "sext/zext(PostIncAR)"
1323 template <typename ExtendOpTy>
1324 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1325                                         ScalarEvolution *SE, unsigned Depth) {
1326   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1327   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1328 
1329   const Loop *L = AR->getLoop();
1330   const SCEV *Start = AR->getStart();
1331   const SCEV *Step = AR->getStepRecurrence(*SE);
1332 
1333   // Check for a simple looking step prior to loop entry.
1334   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1335   if (!SA)
1336     return nullptr;
1337 
1338   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1339   // subtraction is expensive. For this purpose, perform a quick and dirty
1340   // difference, by checking for Step in the operand list. Note, that
1341   // SA might have repeated ops, like %a + %a + ..., so only remove one.
1342   SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1343   for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1344     if (*It == Step) {
1345       DiffOps.erase(It);
1346       break;
1347     }
1348 
1349   if (DiffOps.size() == SA->getNumOperands())
1350     return nullptr;
1351 
1352   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1353   // `Step`:
1354 
1355   // 1. NSW/NUW flags on the step increment.
1356   auto PreStartFlags =
1357     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1358   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1359   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1360       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1361 
1362   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1363   // "S+X does not sign/unsign-overflow".
1364   //
1365 
1366   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1367   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1368       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1369     return PreStart;
1370 
1371   // 2. Direct overflow check on the step operation's expression.
1372   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1373   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1374   const SCEV *OperandExtendedStart =
1375       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1376                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1377   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1378     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1379       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1380       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1381       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1382       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1383     }
1384     return PreStart;
1385   }
1386 
1387   // 3. Loop precondition.
1388   ICmpInst::Predicate Pred;
1389   const SCEV *OverflowLimit =
1390       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1391 
1392   if (OverflowLimit &&
1393       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1394     return PreStart;
1395 
1396   return nullptr;
1397 }
1398 
1399 // Get the normalized zero or sign extended expression for this AddRec's Start.
1400 template <typename ExtendOpTy>
1401 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1402                                         ScalarEvolution *SE,
1403                                         unsigned Depth) {
1404   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1405 
1406   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1407   if (!PreStart)
1408     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1409 
1410   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1411                                              Depth),
1412                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1413 }
1414 
1415 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1416 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1417 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1418 //
1419 // Formally:
1420 //
1421 //     {S,+,X} == {S-T,+,X} + T
1422 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1423 //
1424 // If ({S-T,+,X} + T) does not overflow  ... (1)
1425 //
1426 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1427 //
1428 // If {S-T,+,X} does not overflow  ... (2)
1429 //
1430 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1431 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1432 //
1433 // If (S-T)+T does not overflow  ... (3)
1434 //
1435 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1436 //      == {Ext(S),+,Ext(X)} == LHS
1437 //
1438 // Thus, if (1), (2) and (3) are true for some T, then
1439 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1440 //
1441 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1442 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1443 // to check for (1) and (2).
1444 //
1445 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1446 // is `Delta` (defined below).
1447 template <typename ExtendOpTy>
1448 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1449                                                 const SCEV *Step,
1450                                                 const Loop *L) {
1451   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1452 
1453   // We restrict `Start` to a constant to prevent SCEV from spending too much
1454   // time here.  It is correct (but more expensive) to continue with a
1455   // non-constant `Start` and do a general SCEV subtraction to compute
1456   // `PreStart` below.
1457   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1458   if (!StartC)
1459     return false;
1460 
1461   APInt StartAI = StartC->getAPInt();
1462 
1463   for (unsigned Delta : {-2, -1, 1, 2}) {
1464     const SCEV *PreStart = getConstant(StartAI - Delta);
1465 
1466     FoldingSetNodeID ID;
1467     ID.AddInteger(scAddRecExpr);
1468     ID.AddPointer(PreStart);
1469     ID.AddPointer(Step);
1470     ID.AddPointer(L);
1471     void *IP = nullptr;
1472     const auto *PreAR =
1473       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1474 
1475     // Give up if we don't already have the add recurrence we need because
1476     // actually constructing an add recurrence is relatively expensive.
1477     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1478       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1479       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1480       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1481           DeltaS, &Pred, this);
1482       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1483         return true;
1484     }
1485   }
1486 
1487   return false;
1488 }
1489 
1490 // Finds an integer D for an expression (C + x + y + ...) such that the top
1491 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1492 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1493 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1494 // the (C + x + y + ...) expression is \p WholeAddExpr.
1495 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1496                                             const SCEVConstant *ConstantTerm,
1497                                             const SCEVAddExpr *WholeAddExpr) {
1498   const APInt &C = ConstantTerm->getAPInt();
1499   const unsigned BitWidth = C.getBitWidth();
1500   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1501   uint32_t TZ = BitWidth;
1502   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1503     TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1504   if (TZ) {
1505     // Set D to be as many least significant bits of C as possible while still
1506     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1507     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1508   }
1509   return APInt(BitWidth, 0);
1510 }
1511 
1512 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1513 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1514 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1515 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1516 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1517                                             const APInt &ConstantStart,
1518                                             const SCEV *Step) {
1519   const unsigned BitWidth = ConstantStart.getBitWidth();
1520   const uint32_t TZ = SE.getMinTrailingZeros(Step);
1521   if (TZ)
1522     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1523                          : ConstantStart;
1524   return APInt(BitWidth, 0);
1525 }
1526 
1527 static void insertFoldCacheEntry(
1528     const ScalarEvolution::FoldID &ID, const SCEV *S,
1529     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1530     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1531         &FoldCacheUser) {
1532   auto I = FoldCache.insert({ID, S});
1533   if (!I.second) {
1534     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1535     // entry.
1536     auto &UserIDs = FoldCacheUser[I.first->second];
1537     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1538     for (unsigned I = 0; I != UserIDs.size(); ++I)
1539       if (UserIDs[I] == ID) {
1540         std::swap(UserIDs[I], UserIDs.back());
1541         break;
1542       }
1543     UserIDs.pop_back();
1544     I.first->second = S;
1545   }
1546   auto R = FoldCacheUser.insert({S, {}});
1547   R.first->second.push_back(ID);
1548 }
1549 
1550 const SCEV *
1551 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1552   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1553          "This is not an extending conversion!");
1554   assert(isSCEVable(Ty) &&
1555          "This is not a conversion to a SCEVable type!");
1556   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1557   Ty = getEffectiveSCEVType(Ty);
1558 
1559   FoldID ID(scZeroExtend, Op, Ty);
1560   auto Iter = FoldCache.find(ID);
1561   if (Iter != FoldCache.end())
1562     return Iter->second;
1563 
1564   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1565   if (!isa<SCEVZeroExtendExpr>(S))
1566     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1567   return S;
1568 }
1569 
1570 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1571                                                    unsigned Depth) {
1572   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1573          "This is not an extending conversion!");
1574   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1575   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1576 
1577   // Fold if the operand is constant.
1578   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1579     return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty)));
1580 
1581   // zext(zext(x)) --> zext(x)
1582   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1583     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1584 
1585   // Before doing any expensive analysis, check to see if we've already
1586   // computed a SCEV for this Op and Ty.
1587   FoldingSetNodeID ID;
1588   ID.AddInteger(scZeroExtend);
1589   ID.AddPointer(Op);
1590   ID.AddPointer(Ty);
1591   void *IP = nullptr;
1592   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1593   if (Depth > MaxCastDepth) {
1594     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595                                                      Op, Ty);
1596     UniqueSCEVs.InsertNode(S, IP);
1597     registerUser(S, Op);
1598     return S;
1599   }
1600 
1601   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1602   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1603     // It's possible the bits taken off by the truncate were all zero bits. If
1604     // so, we should be able to simplify this further.
1605     const SCEV *X = ST->getOperand();
1606     ConstantRange CR = getUnsignedRange(X);
1607     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1608     unsigned NewBits = getTypeSizeInBits(Ty);
1609     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1610             CR.zextOrTrunc(NewBits)))
1611       return getTruncateOrZeroExtend(X, Ty, Depth);
1612   }
1613 
1614   // If the input value is a chrec scev, and we can prove that the value
1615   // did not overflow the old, smaller, value, we can zero extend all of the
1616   // operands (often constants).  This allows analysis of something like
1617   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1618   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1619     if (AR->isAffine()) {
1620       const SCEV *Start = AR->getStart();
1621       const SCEV *Step = AR->getStepRecurrence(*this);
1622       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1623       const Loop *L = AR->getLoop();
1624 
1625       // If we have special knowledge that this addrec won't overflow,
1626       // we don't need to do any further analysis.
1627       if (AR->hasNoUnsignedWrap()) {
1628         Start =
1629             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1630         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1631         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1632       }
1633 
1634       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1635       // Note that this serves two purposes: It filters out loops that are
1636       // simply not analyzable, and it covers the case where this code is
1637       // being called from within backedge-taken count analysis, such that
1638       // attempting to ask for the backedge-taken count would likely result
1639       // in infinite recursion. In the later case, the analysis code will
1640       // cope with a conservative value, and it will take care to purge
1641       // that value once it has finished.
1642       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1643       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1644         // Manually compute the final value for AR, checking for overflow.
1645 
1646         // Check whether the backedge-taken count can be losslessly casted to
1647         // the addrec's type. The count is always unsigned.
1648         const SCEV *CastedMaxBECount =
1649             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1650         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1651             CastedMaxBECount, MaxBECount->getType(), Depth);
1652         if (MaxBECount == RecastedMaxBECount) {
1653           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1654           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1655           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1656                                         SCEV::FlagAnyWrap, Depth + 1);
1657           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1658                                                           SCEV::FlagAnyWrap,
1659                                                           Depth + 1),
1660                                                WideTy, Depth + 1);
1661           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1662           const SCEV *WideMaxBECount =
1663             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1664           const SCEV *OperandExtendedAdd =
1665             getAddExpr(WideStart,
1666                        getMulExpr(WideMaxBECount,
1667                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1668                                   SCEV::FlagAnyWrap, Depth + 1),
1669                        SCEV::FlagAnyWrap, Depth + 1);
1670           if (ZAdd == OperandExtendedAdd) {
1671             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1672             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1673             // Return the expression with the addrec on the outside.
1674             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1675                                                              Depth + 1);
1676             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1677             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1678           }
1679           // Similar to above, only this time treat the step value as signed.
1680           // This covers loops that count down.
1681           OperandExtendedAdd =
1682             getAddExpr(WideStart,
1683                        getMulExpr(WideMaxBECount,
1684                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1685                                   SCEV::FlagAnyWrap, Depth + 1),
1686                        SCEV::FlagAnyWrap, Depth + 1);
1687           if (ZAdd == OperandExtendedAdd) {
1688             // Cache knowledge of AR NW, which is propagated to this AddRec.
1689             // Negative step causes unsigned wrap, but it still can't self-wrap.
1690             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1691             // Return the expression with the addrec on the outside.
1692             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1693                                                              Depth + 1);
1694             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1695             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1696           }
1697         }
1698       }
1699 
1700       // Normally, in the cases we can prove no-overflow via a
1701       // backedge guarding condition, we can also compute a backedge
1702       // taken count for the loop.  The exceptions are assumptions and
1703       // guards present in the loop -- SCEV is not great at exploiting
1704       // these to compute max backedge taken counts, but can still use
1705       // these to prove lack of overflow.  Use this fact to avoid
1706       // doing extra work that may not pay off.
1707       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1708           !AC.assumptions().empty()) {
1709 
1710         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1711         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1712         if (AR->hasNoUnsignedWrap()) {
1713           // Same as nuw case above - duplicated here to avoid a compile time
1714           // issue.  It's not clear that the order of checks does matter, but
1715           // it's one of two issue possible causes for a change which was
1716           // reverted.  Be conservative for the moment.
1717           Start =
1718               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1719           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1720           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1721         }
1722 
1723         // For a negative step, we can extend the operands iff doing so only
1724         // traverses values in the range zext([0,UINT_MAX]).
1725         if (isKnownNegative(Step)) {
1726           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1727                                       getSignedRangeMin(Step));
1728           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1729               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1730             // Cache knowledge of AR NW, which is propagated to this
1731             // AddRec.  Negative step causes unsigned wrap, but it
1732             // still can't self-wrap.
1733             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1734             // Return the expression with the addrec on the outside.
1735             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1736                                                              Depth + 1);
1737             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1738             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1739           }
1740         }
1741       }
1742 
1743       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1744       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1745       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1746       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1747         const APInt &C = SC->getAPInt();
1748         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1749         if (D != 0) {
1750           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1751           const SCEV *SResidual =
1752               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1753           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1754           return getAddExpr(SZExtD, SZExtR,
1755                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1756                             Depth + 1);
1757         }
1758       }
1759 
1760       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1761         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1762         Start =
1763             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1764         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1765         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1766       }
1767     }
1768 
1769   // zext(A % B) --> zext(A) % zext(B)
1770   {
1771     const SCEV *LHS;
1772     const SCEV *RHS;
1773     if (matchURem(Op, LHS, RHS))
1774       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1775                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1776   }
1777 
1778   // zext(A / B) --> zext(A) / zext(B).
1779   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1780     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1781                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1782 
1783   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1784     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1785     if (SA->hasNoUnsignedWrap()) {
1786       // If the addition does not unsign overflow then we can, by definition,
1787       // commute the zero extension with the addition operation.
1788       SmallVector<const SCEV *, 4> Ops;
1789       for (const auto *Op : SA->operands())
1790         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1791       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1792     }
1793 
1794     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1795     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1796     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1797     //
1798     // Often address arithmetics contain expressions like
1799     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1800     // This transformation is useful while proving that such expressions are
1801     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1802     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1803       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1804       if (D != 0) {
1805         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1806         const SCEV *SResidual =
1807             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1808         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1809         return getAddExpr(SZExtD, SZExtR,
1810                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1811                           Depth + 1);
1812       }
1813     }
1814   }
1815 
1816   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1817     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1818     if (SM->hasNoUnsignedWrap()) {
1819       // If the multiply does not unsign overflow then we can, by definition,
1820       // commute the zero extension with the multiply operation.
1821       SmallVector<const SCEV *, 4> Ops;
1822       for (const auto *Op : SM->operands())
1823         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1824       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1825     }
1826 
1827     // zext(2^K * (trunc X to iN)) to iM ->
1828     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1829     //
1830     // Proof:
1831     //
1832     //     zext(2^K * (trunc X to iN)) to iM
1833     //   = zext((trunc X to iN) << K) to iM
1834     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1835     //     (because shl removes the top K bits)
1836     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1837     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1838     //
1839     if (SM->getNumOperands() == 2)
1840       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1841         if (MulLHS->getAPInt().isPowerOf2())
1842           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1843             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1844                                MulLHS->getAPInt().logBase2();
1845             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1846             return getMulExpr(
1847                 getZeroExtendExpr(MulLHS, Ty),
1848                 getZeroExtendExpr(
1849                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1850                 SCEV::FlagNUW, Depth + 1);
1851           }
1852   }
1853 
1854   // zext(umin(x, y)) -> umin(zext(x), zext(y))
1855   // zext(umax(x, y)) -> umax(zext(x), zext(y))
1856   if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1857     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1858     SmallVector<const SCEV *, 4> Operands;
1859     for (auto *Operand : MinMax->operands())
1860       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1861     if (isa<SCEVUMinExpr>(MinMax))
1862       return getUMinExpr(Operands);
1863     return getUMaxExpr(Operands);
1864   }
1865 
1866   // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1867   if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1868     assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1869     SmallVector<const SCEV *, 4> Operands;
1870     for (auto *Operand : MinMax->operands())
1871       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1872     return getUMinExpr(Operands, /*Sequential*/ true);
1873   }
1874 
1875   // The cast wasn't folded; create an explicit cast node.
1876   // Recompute the insert position, as it may have been invalidated.
1877   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1878   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1879                                                    Op, Ty);
1880   UniqueSCEVs.InsertNode(S, IP);
1881   registerUser(S, Op);
1882   return S;
1883 }
1884 
1885 const SCEV *
1886 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1887   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1888          "This is not an extending conversion!");
1889   assert(isSCEVable(Ty) &&
1890          "This is not a conversion to a SCEVable type!");
1891   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1892   Ty = getEffectiveSCEVType(Ty);
1893 
1894   FoldID ID(scSignExtend, Op, Ty);
1895   auto Iter = FoldCache.find(ID);
1896   if (Iter != FoldCache.end())
1897     return Iter->second;
1898 
1899   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1900   if (!isa<SCEVSignExtendExpr>(S))
1901     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1902   return S;
1903 }
1904 
1905 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1906                                                    unsigned Depth) {
1907   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1908          "This is not an extending conversion!");
1909   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1910   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1911   Ty = getEffectiveSCEVType(Ty);
1912 
1913   // Fold if the operand is constant.
1914   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1915     return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty)));
1916 
1917   // sext(sext(x)) --> sext(x)
1918   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1919     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1920 
1921   // sext(zext(x)) --> zext(x)
1922   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1923     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1924 
1925   // Before doing any expensive analysis, check to see if we've already
1926   // computed a SCEV for this Op and Ty.
1927   FoldingSetNodeID ID;
1928   ID.AddInteger(scSignExtend);
1929   ID.AddPointer(Op);
1930   ID.AddPointer(Ty);
1931   void *IP = nullptr;
1932   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1933   // Limit recursion depth.
1934   if (Depth > MaxCastDepth) {
1935     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1936                                                      Op, Ty);
1937     UniqueSCEVs.InsertNode(S, IP);
1938     registerUser(S, Op);
1939     return S;
1940   }
1941 
1942   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1943   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1944     // It's possible the bits taken off by the truncate were all sign bits. If
1945     // so, we should be able to simplify this further.
1946     const SCEV *X = ST->getOperand();
1947     ConstantRange CR = getSignedRange(X);
1948     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1949     unsigned NewBits = getTypeSizeInBits(Ty);
1950     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1951             CR.sextOrTrunc(NewBits)))
1952       return getTruncateOrSignExtend(X, Ty, Depth);
1953   }
1954 
1955   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1956     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1957     if (SA->hasNoSignedWrap()) {
1958       // If the addition does not sign overflow then we can, by definition,
1959       // commute the sign extension with the addition operation.
1960       SmallVector<const SCEV *, 4> Ops;
1961       for (const auto *Op : SA->operands())
1962         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1963       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1964     }
1965 
1966     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1967     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1968     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1969     //
1970     // For instance, this will bring two seemingly different expressions:
1971     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1972     //         sext(6 + 20 * %x + 24 * %y)
1973     // to the same form:
1974     //     2 + sext(4 + 20 * %x + 24 * %y)
1975     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1976       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1977       if (D != 0) {
1978         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1979         const SCEV *SResidual =
1980             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1981         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1982         return getAddExpr(SSExtD, SSExtR,
1983                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1984                           Depth + 1);
1985       }
1986     }
1987   }
1988   // If the input value is a chrec scev, and we can prove that the value
1989   // did not overflow the old, smaller, value, we can sign extend all of the
1990   // operands (often constants).  This allows analysis of something like
1991   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1992   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1993     if (AR->isAffine()) {
1994       const SCEV *Start = AR->getStart();
1995       const SCEV *Step = AR->getStepRecurrence(*this);
1996       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1997       const Loop *L = AR->getLoop();
1998 
1999       // If we have special knowledge that this addrec won't overflow,
2000       // we don't need to do any further analysis.
2001       if (AR->hasNoSignedWrap()) {
2002         Start =
2003             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2004         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2005         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2006       }
2007 
2008       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2009       // Note that this serves two purposes: It filters out loops that are
2010       // simply not analyzable, and it covers the case where this code is
2011       // being called from within backedge-taken count analysis, such that
2012       // attempting to ask for the backedge-taken count would likely result
2013       // in infinite recursion. In the later case, the analysis code will
2014       // cope with a conservative value, and it will take care to purge
2015       // that value once it has finished.
2016       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2017       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2018         // Manually compute the final value for AR, checking for
2019         // overflow.
2020 
2021         // Check whether the backedge-taken count can be losslessly casted to
2022         // the addrec's type. The count is always unsigned.
2023         const SCEV *CastedMaxBECount =
2024             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2025         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2026             CastedMaxBECount, MaxBECount->getType(), Depth);
2027         if (MaxBECount == RecastedMaxBECount) {
2028           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2029           // Check whether Start+Step*MaxBECount has no signed overflow.
2030           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2031                                         SCEV::FlagAnyWrap, Depth + 1);
2032           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2033                                                           SCEV::FlagAnyWrap,
2034                                                           Depth + 1),
2035                                                WideTy, Depth + 1);
2036           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2037           const SCEV *WideMaxBECount =
2038             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2039           const SCEV *OperandExtendedAdd =
2040             getAddExpr(WideStart,
2041                        getMulExpr(WideMaxBECount,
2042                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2043                                   SCEV::FlagAnyWrap, Depth + 1),
2044                        SCEV::FlagAnyWrap, Depth + 1);
2045           if (SAdd == OperandExtendedAdd) {
2046             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2047             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2048             // Return the expression with the addrec on the outside.
2049             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2050                                                              Depth + 1);
2051             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2052             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2053           }
2054           // Similar to above, only this time treat the step value as unsigned.
2055           // This covers loops that count up with an unsigned step.
2056           OperandExtendedAdd =
2057             getAddExpr(WideStart,
2058                        getMulExpr(WideMaxBECount,
2059                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2060                                   SCEV::FlagAnyWrap, Depth + 1),
2061                        SCEV::FlagAnyWrap, Depth + 1);
2062           if (SAdd == OperandExtendedAdd) {
2063             // If AR wraps around then
2064             //
2065             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2066             // => SAdd != OperandExtendedAdd
2067             //
2068             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2069             // (SAdd == OperandExtendedAdd => AR is NW)
2070 
2071             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2072 
2073             // Return the expression with the addrec on the outside.
2074             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2075                                                              Depth + 1);
2076             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2077             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2078           }
2079         }
2080       }
2081 
2082       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2083       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2084       if (AR->hasNoSignedWrap()) {
2085         // Same as nsw case above - duplicated here to avoid a compile time
2086         // issue.  It's not clear that the order of checks does matter, but
2087         // it's one of two issue possible causes for a change which was
2088         // reverted.  Be conservative for the moment.
2089         Start =
2090             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2091         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2092         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2093       }
2094 
2095       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2096       // if D + (C - D + Step * n) could be proven to not signed wrap
2097       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2098       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2099         const APInt &C = SC->getAPInt();
2100         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2101         if (D != 0) {
2102           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2103           const SCEV *SResidual =
2104               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2105           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2106           return getAddExpr(SSExtD, SSExtR,
2107                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2108                             Depth + 1);
2109         }
2110       }
2111 
2112       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2113         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2114         Start =
2115             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2116         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2117         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2118       }
2119     }
2120 
2121   // If the input value is provably positive and we could not simplify
2122   // away the sext build a zext instead.
2123   if (isKnownNonNegative(Op))
2124     return getZeroExtendExpr(Op, Ty, Depth + 1);
2125 
2126   // sext(smin(x, y)) -> smin(sext(x), sext(y))
2127   // sext(smax(x, y)) -> smax(sext(x), sext(y))
2128   if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2129     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2130     SmallVector<const SCEV *, 4> Operands;
2131     for (auto *Operand : MinMax->operands())
2132       Operands.push_back(getSignExtendExpr(Operand, Ty));
2133     if (isa<SCEVSMinExpr>(MinMax))
2134       return getSMinExpr(Operands);
2135     return getSMaxExpr(Operands);
2136   }
2137 
2138   // The cast wasn't folded; create an explicit cast node.
2139   // Recompute the insert position, as it may have been invalidated.
2140   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2141   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2142                                                    Op, Ty);
2143   UniqueSCEVs.InsertNode(S, IP);
2144   registerUser(S, { Op });
2145   return S;
2146 }
2147 
2148 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2149                                          Type *Ty) {
2150   switch (Kind) {
2151   case scTruncate:
2152     return getTruncateExpr(Op, Ty);
2153   case scZeroExtend:
2154     return getZeroExtendExpr(Op, Ty);
2155   case scSignExtend:
2156     return getSignExtendExpr(Op, Ty);
2157   case scPtrToInt:
2158     return getPtrToIntExpr(Op, Ty);
2159   default:
2160     llvm_unreachable("Not a SCEV cast expression!");
2161   }
2162 }
2163 
2164 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2165 /// unspecified bits out to the given type.
2166 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2167                                               Type *Ty) {
2168   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2169          "This is not an extending conversion!");
2170   assert(isSCEVable(Ty) &&
2171          "This is not a conversion to a SCEVable type!");
2172   Ty = getEffectiveSCEVType(Ty);
2173 
2174   // Sign-extend negative constants.
2175   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2176     if (SC->getAPInt().isNegative())
2177       return getSignExtendExpr(Op, Ty);
2178 
2179   // Peel off a truncate cast.
2180   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2181     const SCEV *NewOp = T->getOperand();
2182     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2183       return getAnyExtendExpr(NewOp, Ty);
2184     return getTruncateOrNoop(NewOp, Ty);
2185   }
2186 
2187   // Next try a zext cast. If the cast is folded, use it.
2188   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2189   if (!isa<SCEVZeroExtendExpr>(ZExt))
2190     return ZExt;
2191 
2192   // Next try a sext cast. If the cast is folded, use it.
2193   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2194   if (!isa<SCEVSignExtendExpr>(SExt))
2195     return SExt;
2196 
2197   // Force the cast to be folded into the operands of an addrec.
2198   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2199     SmallVector<const SCEV *, 4> Ops;
2200     for (const SCEV *Op : AR->operands())
2201       Ops.push_back(getAnyExtendExpr(Op, Ty));
2202     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2203   }
2204 
2205   // If the expression is obviously signed, use the sext cast value.
2206   if (isa<SCEVSMaxExpr>(Op))
2207     return SExt;
2208 
2209   // Absent any other information, use the zext cast value.
2210   return ZExt;
2211 }
2212 
2213 /// Process the given Ops list, which is a list of operands to be added under
2214 /// the given scale, update the given map. This is a helper function for
2215 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2216 /// that would form an add expression like this:
2217 ///
2218 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2219 ///
2220 /// where A and B are constants, update the map with these values:
2221 ///
2222 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2223 ///
2224 /// and add 13 + A*B*29 to AccumulatedConstant.
2225 /// This will allow getAddRecExpr to produce this:
2226 ///
2227 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2228 ///
2229 /// This form often exposes folding opportunities that are hidden in
2230 /// the original operand list.
2231 ///
2232 /// Return true iff it appears that any interesting folding opportunities
2233 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2234 /// the common case where no interesting opportunities are present, and
2235 /// is also used as a check to avoid infinite recursion.
2236 static bool
2237 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2238                              SmallVectorImpl<const SCEV *> &NewOps,
2239                              APInt &AccumulatedConstant,
2240                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2241                              ScalarEvolution &SE) {
2242   bool Interesting = false;
2243 
2244   // Iterate over the add operands. They are sorted, with constants first.
2245   unsigned i = 0;
2246   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2247     ++i;
2248     // Pull a buried constant out to the outside.
2249     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2250       Interesting = true;
2251     AccumulatedConstant += Scale * C->getAPInt();
2252   }
2253 
2254   // Next comes everything else. We're especially interested in multiplies
2255   // here, but they're in the middle, so just visit the rest with one loop.
2256   for (; i != Ops.size(); ++i) {
2257     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2258     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2259       APInt NewScale =
2260           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2261       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2262         // A multiplication of a constant with another add; recurse.
2263         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2264         Interesting |=
2265           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2266                                        Add->operands(), NewScale, SE);
2267       } else {
2268         // A multiplication of a constant with some other value. Update
2269         // the map.
2270         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2271         const SCEV *Key = SE.getMulExpr(MulOps);
2272         auto Pair = M.insert({Key, NewScale});
2273         if (Pair.second) {
2274           NewOps.push_back(Pair.first->first);
2275         } else {
2276           Pair.first->second += NewScale;
2277           // The map already had an entry for this value, which may indicate
2278           // a folding opportunity.
2279           Interesting = true;
2280         }
2281       }
2282     } else {
2283       // An ordinary operand. Update the map.
2284       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2285           M.insert({Ops[i], Scale});
2286       if (Pair.second) {
2287         NewOps.push_back(Pair.first->first);
2288       } else {
2289         Pair.first->second += Scale;
2290         // The map already had an entry for this value, which may indicate
2291         // a folding opportunity.
2292         Interesting = true;
2293       }
2294     }
2295   }
2296 
2297   return Interesting;
2298 }
2299 
2300 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2301                                       const SCEV *LHS, const SCEV *RHS,
2302                                       const Instruction *CtxI) {
2303   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2304                                             SCEV::NoWrapFlags, unsigned);
2305   switch (BinOp) {
2306   default:
2307     llvm_unreachable("Unsupported binary op");
2308   case Instruction::Add:
2309     Operation = &ScalarEvolution::getAddExpr;
2310     break;
2311   case Instruction::Sub:
2312     Operation = &ScalarEvolution::getMinusSCEV;
2313     break;
2314   case Instruction::Mul:
2315     Operation = &ScalarEvolution::getMulExpr;
2316     break;
2317   }
2318 
2319   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2320       Signed ? &ScalarEvolution::getSignExtendExpr
2321              : &ScalarEvolution::getZeroExtendExpr;
2322 
2323   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2324   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2325   auto *WideTy =
2326       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2327 
2328   const SCEV *A = (this->*Extension)(
2329       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2330   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2331   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2332   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2333   if (A == B)
2334     return true;
2335   // Can we use context to prove the fact we need?
2336   if (!CtxI)
2337     return false;
2338   // TODO: Support mul.
2339   if (BinOp == Instruction::Mul)
2340     return false;
2341   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2342   // TODO: Lift this limitation.
2343   if (!RHSC)
2344     return false;
2345   APInt C = RHSC->getAPInt();
2346   unsigned NumBits = C.getBitWidth();
2347   bool IsSub = (BinOp == Instruction::Sub);
2348   bool IsNegativeConst = (Signed && C.isNegative());
2349   // Compute the direction and magnitude by which we need to check overflow.
2350   bool OverflowDown = IsSub ^ IsNegativeConst;
2351   APInt Magnitude = C;
2352   if (IsNegativeConst) {
2353     if (C == APInt::getSignedMinValue(NumBits))
2354       // TODO: SINT_MIN on inversion gives the same negative value, we don't
2355       // want to deal with that.
2356       return false;
2357     Magnitude = -C;
2358   }
2359 
2360   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2361   if (OverflowDown) {
2362     // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2363     APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2364                        : APInt::getMinValue(NumBits);
2365     APInt Limit = Min + Magnitude;
2366     return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2367   } else {
2368     // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2369     APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2370                        : APInt::getMaxValue(NumBits);
2371     APInt Limit = Max - Magnitude;
2372     return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2373   }
2374 }
2375 
2376 std::optional<SCEV::NoWrapFlags>
2377 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2378     const OverflowingBinaryOperator *OBO) {
2379   // It cannot be done any better.
2380   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2381     return std::nullopt;
2382 
2383   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2384 
2385   if (OBO->hasNoUnsignedWrap())
2386     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2387   if (OBO->hasNoSignedWrap())
2388     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2389 
2390   bool Deduced = false;
2391 
2392   if (OBO->getOpcode() != Instruction::Add &&
2393       OBO->getOpcode() != Instruction::Sub &&
2394       OBO->getOpcode() != Instruction::Mul)
2395     return std::nullopt;
2396 
2397   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2398   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2399 
2400   const Instruction *CtxI =
2401       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2402   if (!OBO->hasNoUnsignedWrap() &&
2403       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2404                       /* Signed */ false, LHS, RHS, CtxI)) {
2405     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     Deduced = true;
2407   }
2408 
2409   if (!OBO->hasNoSignedWrap() &&
2410       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2411                       /* Signed */ true, LHS, RHS, CtxI)) {
2412     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2413     Deduced = true;
2414   }
2415 
2416   if (Deduced)
2417     return Flags;
2418   return std::nullopt;
2419 }
2420 
2421 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2422 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2423 // can't-overflow flags for the operation if possible.
2424 static SCEV::NoWrapFlags
2425 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2426                       const ArrayRef<const SCEV *> Ops,
2427                       SCEV::NoWrapFlags Flags) {
2428   using namespace std::placeholders;
2429 
2430   using OBO = OverflowingBinaryOperator;
2431 
2432   bool CanAnalyze =
2433       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2434   (void)CanAnalyze;
2435   assert(CanAnalyze && "don't call from other places!");
2436 
2437   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2438   SCEV::NoWrapFlags SignOrUnsignWrap =
2439       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2440 
2441   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2442   auto IsKnownNonNegative = [&](const SCEV *S) {
2443     return SE->isKnownNonNegative(S);
2444   };
2445 
2446   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2447     Flags =
2448         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2449 
2450   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2451 
2452   if (SignOrUnsignWrap != SignOrUnsignMask &&
2453       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2454       isa<SCEVConstant>(Ops[0])) {
2455 
2456     auto Opcode = [&] {
2457       switch (Type) {
2458       case scAddExpr:
2459         return Instruction::Add;
2460       case scMulExpr:
2461         return Instruction::Mul;
2462       default:
2463         llvm_unreachable("Unexpected SCEV op.");
2464       }
2465     }();
2466 
2467     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2468 
2469     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2470     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2471       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2472           Opcode, C, OBO::NoSignedWrap);
2473       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2474         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2475     }
2476 
2477     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2478     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2479       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2480           Opcode, C, OBO::NoUnsignedWrap);
2481       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2482         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2483     }
2484   }
2485 
2486   // <0,+,nonnegative><nw> is also nuw
2487   // TODO: Add corresponding nsw case
2488   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2489       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2490       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2491     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2492 
2493   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2494   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2495       Ops.size() == 2) {
2496     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2497       if (UDiv->getOperand(1) == Ops[1])
2498         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2499     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2500       if (UDiv->getOperand(1) == Ops[0])
2501         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2502   }
2503 
2504   return Flags;
2505 }
2506 
2507 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2508   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2509 }
2510 
2511 /// Get a canonical add expression, or something simpler if possible.
2512 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2513                                         SCEV::NoWrapFlags OrigFlags,
2514                                         unsigned Depth) {
2515   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2516          "only nuw or nsw allowed");
2517   assert(!Ops.empty() && "Cannot get empty add!");
2518   if (Ops.size() == 1) return Ops[0];
2519 #ifndef NDEBUG
2520   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2521   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2522     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2523            "SCEVAddExpr operand types don't match!");
2524   unsigned NumPtrs = count_if(
2525       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2526   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2527 #endif
2528 
2529   // Sort by complexity, this groups all similar expression types together.
2530   GroupByComplexity(Ops, &LI, DT);
2531 
2532   // If there are any constants, fold them together.
2533   unsigned Idx = 0;
2534   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2535     ++Idx;
2536     assert(Idx < Ops.size());
2537     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2538       // We found two constants, fold them together!
2539       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2540       if (Ops.size() == 2) return Ops[0];
2541       Ops.erase(Ops.begin()+1);  // Erase the folded element
2542       LHSC = cast<SCEVConstant>(Ops[0]);
2543     }
2544 
2545     // If we are left with a constant zero being added, strip it off.
2546     if (LHSC->getValue()->isZero()) {
2547       Ops.erase(Ops.begin());
2548       --Idx;
2549     }
2550 
2551     if (Ops.size() == 1) return Ops[0];
2552   }
2553 
2554   // Delay expensive flag strengthening until necessary.
2555   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2556     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2557   };
2558 
2559   // Limit recursion calls depth.
2560   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2561     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2562 
2563   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2564     // Don't strengthen flags if we have no new information.
2565     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2566     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2567       Add->setNoWrapFlags(ComputeFlags(Ops));
2568     return S;
2569   }
2570 
2571   // Okay, check to see if the same value occurs in the operand list more than
2572   // once.  If so, merge them together into an multiply expression.  Since we
2573   // sorted the list, these values are required to be adjacent.
2574   Type *Ty = Ops[0]->getType();
2575   bool FoundMatch = false;
2576   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2577     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2578       // Scan ahead to count how many equal operands there are.
2579       unsigned Count = 2;
2580       while (i+Count != e && Ops[i+Count] == Ops[i])
2581         ++Count;
2582       // Merge the values into a multiply.
2583       const SCEV *Scale = getConstant(Ty, Count);
2584       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2585       if (Ops.size() == Count)
2586         return Mul;
2587       Ops[i] = Mul;
2588       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2589       --i; e -= Count - 1;
2590       FoundMatch = true;
2591     }
2592   if (FoundMatch)
2593     return getAddExpr(Ops, OrigFlags, Depth + 1);
2594 
2595   // Check for truncates. If all the operands are truncated from the same
2596   // type, see if factoring out the truncate would permit the result to be
2597   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2598   // if the contents of the resulting outer trunc fold to something simple.
2599   auto FindTruncSrcType = [&]() -> Type * {
2600     // We're ultimately looking to fold an addrec of truncs and muls of only
2601     // constants and truncs, so if we find any other types of SCEV
2602     // as operands of the addrec then we bail and return nullptr here.
2603     // Otherwise, we return the type of the operand of a trunc that we find.
2604     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2605       return T->getOperand()->getType();
2606     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2607       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2608       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2609         return T->getOperand()->getType();
2610     }
2611     return nullptr;
2612   };
2613   if (auto *SrcType = FindTruncSrcType()) {
2614     SmallVector<const SCEV *, 8> LargeOps;
2615     bool Ok = true;
2616     // Check all the operands to see if they can be represented in the
2617     // source type of the truncate.
2618     for (const SCEV *Op : Ops) {
2619       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2620         if (T->getOperand()->getType() != SrcType) {
2621           Ok = false;
2622           break;
2623         }
2624         LargeOps.push_back(T->getOperand());
2625       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Op)) {
2626         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2627       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Op)) {
2628         SmallVector<const SCEV *, 8> LargeMulOps;
2629         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2630           if (const SCEVTruncateExpr *T =
2631                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2632             if (T->getOperand()->getType() != SrcType) {
2633               Ok = false;
2634               break;
2635             }
2636             LargeMulOps.push_back(T->getOperand());
2637           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2638             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2639           } else {
2640             Ok = false;
2641             break;
2642           }
2643         }
2644         if (Ok)
2645           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2646       } else {
2647         Ok = false;
2648         break;
2649       }
2650     }
2651     if (Ok) {
2652       // Evaluate the expression in the larger type.
2653       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2654       // If it folds to something simple, use it. Otherwise, don't.
2655       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2656         return getTruncateExpr(Fold, Ty);
2657     }
2658   }
2659 
2660   if (Ops.size() == 2) {
2661     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2662     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2663     // C1).
2664     const SCEV *A = Ops[0];
2665     const SCEV *B = Ops[1];
2666     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2667     auto *C = dyn_cast<SCEVConstant>(A);
2668     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2669       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2670       auto C2 = C->getAPInt();
2671       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2672 
2673       APInt ConstAdd = C1 + C2;
2674       auto AddFlags = AddExpr->getNoWrapFlags();
2675       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2676       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2677           ConstAdd.ule(C1)) {
2678         PreservedFlags =
2679             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2680       }
2681 
2682       // Adding a constant with the same sign and small magnitude is NSW, if the
2683       // original AddExpr was NSW.
2684       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2685           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2686           ConstAdd.abs().ule(C1.abs())) {
2687         PreservedFlags =
2688             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2689       }
2690 
2691       if (PreservedFlags != SCEV::FlagAnyWrap) {
2692         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2693         NewOps[0] = getConstant(ConstAdd);
2694         return getAddExpr(NewOps, PreservedFlags);
2695       }
2696     }
2697   }
2698 
2699   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2700   if (Ops.size() == 2) {
2701     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2702     if (Mul && Mul->getNumOperands() == 2 &&
2703         Mul->getOperand(0)->isAllOnesValue()) {
2704       const SCEV *X;
2705       const SCEV *Y;
2706       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2707         return getMulExpr(Y, getUDivExpr(X, Y));
2708       }
2709     }
2710   }
2711 
2712   // Skip past any other cast SCEVs.
2713   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2714     ++Idx;
2715 
2716   // If there are add operands they would be next.
2717   if (Idx < Ops.size()) {
2718     bool DeletedAdd = false;
2719     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2720     // common NUW flag for expression after inlining. Other flags cannot be
2721     // preserved, because they may depend on the original order of operations.
2722     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2723     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2724       if (Ops.size() > AddOpsInlineThreshold ||
2725           Add->getNumOperands() > AddOpsInlineThreshold)
2726         break;
2727       // If we have an add, expand the add operands onto the end of the operands
2728       // list.
2729       Ops.erase(Ops.begin()+Idx);
2730       append_range(Ops, Add->operands());
2731       DeletedAdd = true;
2732       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2733     }
2734 
2735     // If we deleted at least one add, we added operands to the end of the list,
2736     // and they are not necessarily sorted.  Recurse to resort and resimplify
2737     // any operands we just acquired.
2738     if (DeletedAdd)
2739       return getAddExpr(Ops, CommonFlags, Depth + 1);
2740   }
2741 
2742   // Skip over the add expression until we get to a multiply.
2743   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2744     ++Idx;
2745 
2746   // Check to see if there are any folding opportunities present with
2747   // operands multiplied by constant values.
2748   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2749     uint64_t BitWidth = getTypeSizeInBits(Ty);
2750     DenseMap<const SCEV *, APInt> M;
2751     SmallVector<const SCEV *, 8> NewOps;
2752     APInt AccumulatedConstant(BitWidth, 0);
2753     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2754                                      Ops, APInt(BitWidth, 1), *this)) {
2755       struct APIntCompare {
2756         bool operator()(const APInt &LHS, const APInt &RHS) const {
2757           return LHS.ult(RHS);
2758         }
2759       };
2760 
2761       // Some interesting folding opportunity is present, so its worthwhile to
2762       // re-generate the operands list. Group the operands by constant scale,
2763       // to avoid multiplying by the same constant scale multiple times.
2764       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2765       for (const SCEV *NewOp : NewOps)
2766         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2767       // Re-generate the operands list.
2768       Ops.clear();
2769       if (AccumulatedConstant != 0)
2770         Ops.push_back(getConstant(AccumulatedConstant));
2771       for (auto &MulOp : MulOpLists) {
2772         if (MulOp.first == 1) {
2773           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2774         } else if (MulOp.first != 0) {
2775           Ops.push_back(getMulExpr(
2776               getConstant(MulOp.first),
2777               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2778               SCEV::FlagAnyWrap, Depth + 1));
2779         }
2780       }
2781       if (Ops.empty())
2782         return getZero(Ty);
2783       if (Ops.size() == 1)
2784         return Ops[0];
2785       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2786     }
2787   }
2788 
2789   // If we are adding something to a multiply expression, make sure the
2790   // something is not already an operand of the multiply.  If so, merge it into
2791   // the multiply.
2792   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2793     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2794     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2795       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2796       if (isa<SCEVConstant>(MulOpSCEV))
2797         continue;
2798       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2799         if (MulOpSCEV == Ops[AddOp]) {
2800           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2801           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2802           if (Mul->getNumOperands() != 2) {
2803             // If the multiply has more than two operands, we must get the
2804             // Y*Z term.
2805             SmallVector<const SCEV *, 4> MulOps(
2806                 Mul->operands().take_front(MulOp));
2807             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2808             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2809           }
2810           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2811           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2812           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2813                                             SCEV::FlagAnyWrap, Depth + 1);
2814           if (Ops.size() == 2) return OuterMul;
2815           if (AddOp < Idx) {
2816             Ops.erase(Ops.begin()+AddOp);
2817             Ops.erase(Ops.begin()+Idx-1);
2818           } else {
2819             Ops.erase(Ops.begin()+Idx);
2820             Ops.erase(Ops.begin()+AddOp-1);
2821           }
2822           Ops.push_back(OuterMul);
2823           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2824         }
2825 
2826       // Check this multiply against other multiplies being added together.
2827       for (unsigned OtherMulIdx = Idx+1;
2828            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2829            ++OtherMulIdx) {
2830         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2831         // If MulOp occurs in OtherMul, we can fold the two multiplies
2832         // together.
2833         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2834              OMulOp != e; ++OMulOp)
2835           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2836             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2837             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2838             if (Mul->getNumOperands() != 2) {
2839               SmallVector<const SCEV *, 4> MulOps(
2840                   Mul->operands().take_front(MulOp));
2841               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2842               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2843             }
2844             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2845             if (OtherMul->getNumOperands() != 2) {
2846               SmallVector<const SCEV *, 4> MulOps(
2847                   OtherMul->operands().take_front(OMulOp));
2848               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2849               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2850             }
2851             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2852             const SCEV *InnerMulSum =
2853                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2854             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2855                                               SCEV::FlagAnyWrap, Depth + 1);
2856             if (Ops.size() == 2) return OuterMul;
2857             Ops.erase(Ops.begin()+Idx);
2858             Ops.erase(Ops.begin()+OtherMulIdx-1);
2859             Ops.push_back(OuterMul);
2860             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2861           }
2862       }
2863     }
2864   }
2865 
2866   // If there are any add recurrences in the operands list, see if any other
2867   // added values are loop invariant.  If so, we can fold them into the
2868   // recurrence.
2869   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2870     ++Idx;
2871 
2872   // Scan over all recurrences, trying to fold loop invariants into them.
2873   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2874     // Scan all of the other operands to this add and add them to the vector if
2875     // they are loop invariant w.r.t. the recurrence.
2876     SmallVector<const SCEV *, 8> LIOps;
2877     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2878     const Loop *AddRecLoop = AddRec->getLoop();
2879     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2880       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2881         LIOps.push_back(Ops[i]);
2882         Ops.erase(Ops.begin()+i);
2883         --i; --e;
2884       }
2885 
2886     // If we found some loop invariants, fold them into the recurrence.
2887     if (!LIOps.empty()) {
2888       // Compute nowrap flags for the addition of the loop-invariant ops and
2889       // the addrec. Temporarily push it as an operand for that purpose. These
2890       // flags are valid in the scope of the addrec only.
2891       LIOps.push_back(AddRec);
2892       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2893       LIOps.pop_back();
2894 
2895       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2896       LIOps.push_back(AddRec->getStart());
2897 
2898       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2899 
2900       // It is not in general safe to propagate flags valid on an add within
2901       // the addrec scope to one outside it.  We must prove that the inner
2902       // scope is guaranteed to execute if the outer one does to be able to
2903       // safely propagate.  We know the program is undefined if poison is
2904       // produced on the inner scoped addrec.  We also know that *for this use*
2905       // the outer scoped add can't overflow (because of the flags we just
2906       // computed for the inner scoped add) without the program being undefined.
2907       // Proving that entry to the outer scope neccesitates entry to the inner
2908       // scope, thus proves the program undefined if the flags would be violated
2909       // in the outer scope.
2910       SCEV::NoWrapFlags AddFlags = Flags;
2911       if (AddFlags != SCEV::FlagAnyWrap) {
2912         auto *DefI = getDefiningScopeBound(LIOps);
2913         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2914         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2915           AddFlags = SCEV::FlagAnyWrap;
2916       }
2917       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2918 
2919       // Build the new addrec. Propagate the NUW and NSW flags if both the
2920       // outer add and the inner addrec are guaranteed to have no overflow.
2921       // Always propagate NW.
2922       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2923       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2924 
2925       // If all of the other operands were loop invariant, we are done.
2926       if (Ops.size() == 1) return NewRec;
2927 
2928       // Otherwise, add the folded AddRec by the non-invariant parts.
2929       for (unsigned i = 0;; ++i)
2930         if (Ops[i] == AddRec) {
2931           Ops[i] = NewRec;
2932           break;
2933         }
2934       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2935     }
2936 
2937     // Okay, if there weren't any loop invariants to be folded, check to see if
2938     // there are multiple AddRec's with the same loop induction variable being
2939     // added together.  If so, we can fold them.
2940     for (unsigned OtherIdx = Idx+1;
2941          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2942          ++OtherIdx) {
2943       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2944       // so that the 1st found AddRecExpr is dominated by all others.
2945       assert(DT.dominates(
2946            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2947            AddRec->getLoop()->getHeader()) &&
2948         "AddRecExprs are not sorted in reverse dominance order?");
2949       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2950         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2951         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2952         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2953              ++OtherIdx) {
2954           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2955           if (OtherAddRec->getLoop() == AddRecLoop) {
2956             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2957                  i != e; ++i) {
2958               if (i >= AddRecOps.size()) {
2959                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2960                 break;
2961               }
2962               SmallVector<const SCEV *, 2> TwoOps = {
2963                   AddRecOps[i], OtherAddRec->getOperand(i)};
2964               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2965             }
2966             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2967           }
2968         }
2969         // Step size has changed, so we cannot guarantee no self-wraparound.
2970         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2971         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2972       }
2973     }
2974 
2975     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2976     // next one.
2977   }
2978 
2979   // Okay, it looks like we really DO need an add expr.  Check to see if we
2980   // already have one, otherwise create a new one.
2981   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2982 }
2983 
2984 const SCEV *
2985 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2986                                     SCEV::NoWrapFlags Flags) {
2987   FoldingSetNodeID ID;
2988   ID.AddInteger(scAddExpr);
2989   for (const SCEV *Op : Ops)
2990     ID.AddPointer(Op);
2991   void *IP = nullptr;
2992   SCEVAddExpr *S =
2993       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2994   if (!S) {
2995     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2996     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2997     S = new (SCEVAllocator)
2998         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2999     UniqueSCEVs.InsertNode(S, IP);
3000     registerUser(S, Ops);
3001   }
3002   S->setNoWrapFlags(Flags);
3003   return S;
3004 }
3005 
3006 const SCEV *
3007 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3008                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3009   FoldingSetNodeID ID;
3010   ID.AddInteger(scAddRecExpr);
3011   for (const SCEV *Op : Ops)
3012     ID.AddPointer(Op);
3013   ID.AddPointer(L);
3014   void *IP = nullptr;
3015   SCEVAddRecExpr *S =
3016       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3017   if (!S) {
3018     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3019     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3020     S = new (SCEVAllocator)
3021         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3022     UniqueSCEVs.InsertNode(S, IP);
3023     LoopUsers[L].push_back(S);
3024     registerUser(S, Ops);
3025   }
3026   setNoWrapFlags(S, Flags);
3027   return S;
3028 }
3029 
3030 const SCEV *
3031 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3032                                     SCEV::NoWrapFlags Flags) {
3033   FoldingSetNodeID ID;
3034   ID.AddInteger(scMulExpr);
3035   for (const SCEV *Op : Ops)
3036     ID.AddPointer(Op);
3037   void *IP = nullptr;
3038   SCEVMulExpr *S =
3039     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3040   if (!S) {
3041     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3042     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3043     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3044                                         O, Ops.size());
3045     UniqueSCEVs.InsertNode(S, IP);
3046     registerUser(S, Ops);
3047   }
3048   S->setNoWrapFlags(Flags);
3049   return S;
3050 }
3051 
3052 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3053   uint64_t k = i*j;
3054   if (j > 1 && k / j != i) Overflow = true;
3055   return k;
3056 }
3057 
3058 /// Compute the result of "n choose k", the binomial coefficient.  If an
3059 /// intermediate computation overflows, Overflow will be set and the return will
3060 /// be garbage. Overflow is not cleared on absence of overflow.
3061 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3062   // We use the multiplicative formula:
3063   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3064   // At each iteration, we take the n-th term of the numeral and divide by the
3065   // (k-n)th term of the denominator.  This division will always produce an
3066   // integral result, and helps reduce the chance of overflow in the
3067   // intermediate computations. However, we can still overflow even when the
3068   // final result would fit.
3069 
3070   if (n == 0 || n == k) return 1;
3071   if (k > n) return 0;
3072 
3073   if (k > n/2)
3074     k = n-k;
3075 
3076   uint64_t r = 1;
3077   for (uint64_t i = 1; i <= k; ++i) {
3078     r = umul_ov(r, n-(i-1), Overflow);
3079     r /= i;
3080   }
3081   return r;
3082 }
3083 
3084 /// Determine if any of the operands in this SCEV are a constant or if
3085 /// any of the add or multiply expressions in this SCEV contain a constant.
3086 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3087   struct FindConstantInAddMulChain {
3088     bool FoundConstant = false;
3089 
3090     bool follow(const SCEV *S) {
3091       FoundConstant |= isa<SCEVConstant>(S);
3092       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3093     }
3094 
3095     bool isDone() const {
3096       return FoundConstant;
3097     }
3098   };
3099 
3100   FindConstantInAddMulChain F;
3101   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3102   ST.visitAll(StartExpr);
3103   return F.FoundConstant;
3104 }
3105 
3106 /// Get a canonical multiply expression, or something simpler if possible.
3107 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3108                                         SCEV::NoWrapFlags OrigFlags,
3109                                         unsigned Depth) {
3110   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3111          "only nuw or nsw allowed");
3112   assert(!Ops.empty() && "Cannot get empty mul!");
3113   if (Ops.size() == 1) return Ops[0];
3114 #ifndef NDEBUG
3115   Type *ETy = Ops[0]->getType();
3116   assert(!ETy->isPointerTy());
3117   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3118     assert(Ops[i]->getType() == ETy &&
3119            "SCEVMulExpr operand types don't match!");
3120 #endif
3121 
3122   // Sort by complexity, this groups all similar expression types together.
3123   GroupByComplexity(Ops, &LI, DT);
3124 
3125   // If there are any constants, fold them together.
3126   unsigned Idx = 0;
3127   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3128     ++Idx;
3129     assert(Idx < Ops.size());
3130     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3131       // We found two constants, fold them together!
3132       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3133       if (Ops.size() == 2) return Ops[0];
3134       Ops.erase(Ops.begin()+1);  // Erase the folded element
3135       LHSC = cast<SCEVConstant>(Ops[0]);
3136     }
3137 
3138     // If we have a multiply of zero, it will always be zero.
3139     if (LHSC->getValue()->isZero())
3140       return LHSC;
3141 
3142     // If we are left with a constant one being multiplied, strip it off.
3143     if (LHSC->getValue()->isOne()) {
3144       Ops.erase(Ops.begin());
3145       --Idx;
3146     }
3147 
3148     if (Ops.size() == 1)
3149       return Ops[0];
3150   }
3151 
3152   // Delay expensive flag strengthening until necessary.
3153   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3154     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3155   };
3156 
3157   // Limit recursion calls depth.
3158   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3159     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3160 
3161   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3162     // Don't strengthen flags if we have no new information.
3163     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3164     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3165       Mul->setNoWrapFlags(ComputeFlags(Ops));
3166     return S;
3167   }
3168 
3169   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3170     if (Ops.size() == 2) {
3171       // C1*(C2+V) -> C1*C2 + C1*V
3172       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3173         // If any of Add's ops are Adds or Muls with a constant, apply this
3174         // transformation as well.
3175         //
3176         // TODO: There are some cases where this transformation is not
3177         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3178         // this transformation should be narrowed down.
3179         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3180           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3181                                        SCEV::FlagAnyWrap, Depth + 1);
3182           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3183                                        SCEV::FlagAnyWrap, Depth + 1);
3184           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3185         }
3186 
3187       if (Ops[0]->isAllOnesValue()) {
3188         // If we have a mul by -1 of an add, try distributing the -1 among the
3189         // add operands.
3190         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3191           SmallVector<const SCEV *, 4> NewOps;
3192           bool AnyFolded = false;
3193           for (const SCEV *AddOp : Add->operands()) {
3194             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3195                                          Depth + 1);
3196             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3197             NewOps.push_back(Mul);
3198           }
3199           if (AnyFolded)
3200             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3201         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3202           // Negation preserves a recurrence's no self-wrap property.
3203           SmallVector<const SCEV *, 4> Operands;
3204           for (const SCEV *AddRecOp : AddRec->operands())
3205             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3206                                           Depth + 1));
3207           // Let M be the minimum representable signed value. AddRec with nsw
3208           // multiplied by -1 can have signed overflow if and only if it takes a
3209           // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3210           // maximum signed value. In all other cases signed overflow is
3211           // impossible.
3212           auto FlagsMask = SCEV::FlagNW;
3213           if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3214             auto MinInt =
3215                 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3216             if (getSignedRangeMin(AddRec) != MinInt)
3217               FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3218           }
3219           return getAddRecExpr(Operands, AddRec->getLoop(),
3220                                AddRec->getNoWrapFlags(FlagsMask));
3221         }
3222       }
3223     }
3224   }
3225 
3226   // Skip over the add expression until we get to a multiply.
3227   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3228     ++Idx;
3229 
3230   // If there are mul operands inline them all into this expression.
3231   if (Idx < Ops.size()) {
3232     bool DeletedMul = false;
3233     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3234       if (Ops.size() > MulOpsInlineThreshold)
3235         break;
3236       // If we have an mul, expand the mul operands onto the end of the
3237       // operands list.
3238       Ops.erase(Ops.begin()+Idx);
3239       append_range(Ops, Mul->operands());
3240       DeletedMul = true;
3241     }
3242 
3243     // If we deleted at least one mul, we added operands to the end of the
3244     // list, and they are not necessarily sorted.  Recurse to resort and
3245     // resimplify any operands we just acquired.
3246     if (DeletedMul)
3247       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3248   }
3249 
3250   // If there are any add recurrences in the operands list, see if any other
3251   // added values are loop invariant.  If so, we can fold them into the
3252   // recurrence.
3253   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3254     ++Idx;
3255 
3256   // Scan over all recurrences, trying to fold loop invariants into them.
3257   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3258     // Scan all of the other operands to this mul and add them to the vector
3259     // if they are loop invariant w.r.t. the recurrence.
3260     SmallVector<const SCEV *, 8> LIOps;
3261     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3262     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3263       if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3264         LIOps.push_back(Ops[i]);
3265         Ops.erase(Ops.begin()+i);
3266         --i; --e;
3267       }
3268 
3269     // If we found some loop invariants, fold them into the recurrence.
3270     if (!LIOps.empty()) {
3271       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3272       SmallVector<const SCEV *, 4> NewOps;
3273       NewOps.reserve(AddRec->getNumOperands());
3274       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3275 
3276       // If both the mul and addrec are nuw, we can preserve nuw.
3277       // If both the mul and addrec are nsw, we can only preserve nsw if either
3278       // a) they are also nuw, or
3279       // b) all multiplications of addrec operands with scale are nsw.
3280       SCEV::NoWrapFlags Flags =
3281           AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec}));
3282 
3283       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3284         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3285                                     SCEV::FlagAnyWrap, Depth + 1));
3286 
3287         if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) {
3288           ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3289               Instruction::Mul, getSignedRange(Scale),
3290               OverflowingBinaryOperator::NoSignedWrap);
3291           if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i))))
3292             Flags = clearFlags(Flags, SCEV::FlagNSW);
3293         }
3294       }
3295 
3296       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags);
3297 
3298       // If all of the other operands were loop invariant, we are done.
3299       if (Ops.size() == 1) return NewRec;
3300 
3301       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3302       for (unsigned i = 0;; ++i)
3303         if (Ops[i] == AddRec) {
3304           Ops[i] = NewRec;
3305           break;
3306         }
3307       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3308     }
3309 
3310     // Okay, if there weren't any loop invariants to be folded, check to see
3311     // if there are multiple AddRec's with the same loop induction variable
3312     // being multiplied together.  If so, we can fold them.
3313 
3314     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3315     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3316     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3317     //   ]]],+,...up to x=2n}.
3318     // Note that the arguments to choose() are always integers with values
3319     // known at compile time, never SCEV objects.
3320     //
3321     // The implementation avoids pointless extra computations when the two
3322     // addrec's are of different length (mathematically, it's equivalent to
3323     // an infinite stream of zeros on the right).
3324     bool OpsModified = false;
3325     for (unsigned OtherIdx = Idx+1;
3326          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3327          ++OtherIdx) {
3328       const SCEVAddRecExpr *OtherAddRec =
3329         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3330       if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3331         continue;
3332 
3333       // Limit max number of arguments to avoid creation of unreasonably big
3334       // SCEVAddRecs with very complex operands.
3335       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3336           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3337         continue;
3338 
3339       bool Overflow = false;
3340       Type *Ty = AddRec->getType();
3341       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3342       SmallVector<const SCEV*, 7> AddRecOps;
3343       for (int x = 0, xe = AddRec->getNumOperands() +
3344              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3345         SmallVector <const SCEV *, 7> SumOps;
3346         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3347           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3348           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3349                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3350                z < ze && !Overflow; ++z) {
3351             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3352             uint64_t Coeff;
3353             if (LargerThan64Bits)
3354               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3355             else
3356               Coeff = Coeff1*Coeff2;
3357             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3358             const SCEV *Term1 = AddRec->getOperand(y-z);
3359             const SCEV *Term2 = OtherAddRec->getOperand(z);
3360             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3361                                         SCEV::FlagAnyWrap, Depth + 1));
3362           }
3363         }
3364         if (SumOps.empty())
3365           SumOps.push_back(getZero(Ty));
3366         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3367       }
3368       if (!Overflow) {
3369         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3370                                               SCEV::FlagAnyWrap);
3371         if (Ops.size() == 2) return NewAddRec;
3372         Ops[Idx] = NewAddRec;
3373         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3374         OpsModified = true;
3375         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3376         if (!AddRec)
3377           break;
3378       }
3379     }
3380     if (OpsModified)
3381       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3382 
3383     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3384     // next one.
3385   }
3386 
3387   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3388   // already have one, otherwise create a new one.
3389   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3390 }
3391 
3392 /// Represents an unsigned remainder expression based on unsigned division.
3393 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3394                                          const SCEV *RHS) {
3395   assert(getEffectiveSCEVType(LHS->getType()) ==
3396          getEffectiveSCEVType(RHS->getType()) &&
3397          "SCEVURemExpr operand types don't match!");
3398 
3399   // Short-circuit easy cases
3400   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3401     // If constant is one, the result is trivial
3402     if (RHSC->getValue()->isOne())
3403       return getZero(LHS->getType()); // X urem 1 --> 0
3404 
3405     // If constant is a power of two, fold into a zext(trunc(LHS)).
3406     if (RHSC->getAPInt().isPowerOf2()) {
3407       Type *FullTy = LHS->getType();
3408       Type *TruncTy =
3409           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3410       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3411     }
3412   }
3413 
3414   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3415   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3416   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3417   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3418 }
3419 
3420 /// Get a canonical unsigned division expression, or something simpler if
3421 /// possible.
3422 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3423                                          const SCEV *RHS) {
3424   assert(!LHS->getType()->isPointerTy() &&
3425          "SCEVUDivExpr operand can't be pointer!");
3426   assert(LHS->getType() == RHS->getType() &&
3427          "SCEVUDivExpr operand types don't match!");
3428 
3429   FoldingSetNodeID ID;
3430   ID.AddInteger(scUDivExpr);
3431   ID.AddPointer(LHS);
3432   ID.AddPointer(RHS);
3433   void *IP = nullptr;
3434   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3435     return S;
3436 
3437   // 0 udiv Y == 0
3438   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3439     if (LHSC->getValue()->isZero())
3440       return LHS;
3441 
3442   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3443     if (RHSC->getValue()->isOne())
3444       return LHS;                               // X udiv 1 --> x
3445     // If the denominator is zero, the result of the udiv is undefined. Don't
3446     // try to analyze it, because the resolution chosen here may differ from
3447     // the resolution chosen in other parts of the compiler.
3448     if (!RHSC->getValue()->isZero()) {
3449       // Determine if the division can be folded into the operands of
3450       // its operands.
3451       // TODO: Generalize this to non-constants by using known-bits information.
3452       Type *Ty = LHS->getType();
3453       unsigned LZ = RHSC->getAPInt().countl_zero();
3454       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3455       // For non-power-of-two values, effectively round the value up to the
3456       // nearest power of two.
3457       if (!RHSC->getAPInt().isPowerOf2())
3458         ++MaxShiftAmt;
3459       IntegerType *ExtTy =
3460         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3461       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3462         if (const SCEVConstant *Step =
3463             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3464           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3465           const APInt &StepInt = Step->getAPInt();
3466           const APInt &DivInt = RHSC->getAPInt();
3467           if (!StepInt.urem(DivInt) &&
3468               getZeroExtendExpr(AR, ExtTy) ==
3469               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3470                             getZeroExtendExpr(Step, ExtTy),
3471                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3472             SmallVector<const SCEV *, 4> Operands;
3473             for (const SCEV *Op : AR->operands())
3474               Operands.push_back(getUDivExpr(Op, RHS));
3475             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3476           }
3477           /// Get a canonical UDivExpr for a recurrence.
3478           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3479           // We can currently only fold X%N if X is constant.
3480           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3481           if (StartC && !DivInt.urem(StepInt) &&
3482               getZeroExtendExpr(AR, ExtTy) ==
3483               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3484                             getZeroExtendExpr(Step, ExtTy),
3485                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3486             const APInt &StartInt = StartC->getAPInt();
3487             const APInt &StartRem = StartInt.urem(StepInt);
3488             if (StartRem != 0) {
3489               const SCEV *NewLHS =
3490                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3491                                 AR->getLoop(), SCEV::FlagNW);
3492               if (LHS != NewLHS) {
3493                 LHS = NewLHS;
3494 
3495                 // Reset the ID to include the new LHS, and check if it is
3496                 // already cached.
3497                 ID.clear();
3498                 ID.AddInteger(scUDivExpr);
3499                 ID.AddPointer(LHS);
3500                 ID.AddPointer(RHS);
3501                 IP = nullptr;
3502                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3503                   return S;
3504               }
3505             }
3506           }
3507         }
3508       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3509       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3510         SmallVector<const SCEV *, 4> Operands;
3511         for (const SCEV *Op : M->operands())
3512           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3513         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3514           // Find an operand that's safely divisible.
3515           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3516             const SCEV *Op = M->getOperand(i);
3517             const SCEV *Div = getUDivExpr(Op, RHSC);
3518             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3519               Operands = SmallVector<const SCEV *, 4>(M->operands());
3520               Operands[i] = Div;
3521               return getMulExpr(Operands);
3522             }
3523           }
3524       }
3525 
3526       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3527       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3528         if (auto *DivisorConstant =
3529                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3530           bool Overflow = false;
3531           APInt NewRHS =
3532               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3533           if (Overflow) {
3534             return getConstant(RHSC->getType(), 0, false);
3535           }
3536           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3537         }
3538       }
3539 
3540       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3541       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3542         SmallVector<const SCEV *, 4> Operands;
3543         for (const SCEV *Op : A->operands())
3544           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3545         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3546           Operands.clear();
3547           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3548             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3549             if (isa<SCEVUDivExpr>(Op) ||
3550                 getMulExpr(Op, RHS) != A->getOperand(i))
3551               break;
3552             Operands.push_back(Op);
3553           }
3554           if (Operands.size() == A->getNumOperands())
3555             return getAddExpr(Operands);
3556         }
3557       }
3558 
3559       // Fold if both operands are constant.
3560       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3561         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3562     }
3563   }
3564 
3565   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3566   // changes). Make sure we get a new one.
3567   IP = nullptr;
3568   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3569   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3570                                              LHS, RHS);
3571   UniqueSCEVs.InsertNode(S, IP);
3572   registerUser(S, {LHS, RHS});
3573   return S;
3574 }
3575 
3576 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3577   APInt A = C1->getAPInt().abs();
3578   APInt B = C2->getAPInt().abs();
3579   uint32_t ABW = A.getBitWidth();
3580   uint32_t BBW = B.getBitWidth();
3581 
3582   if (ABW > BBW)
3583     B = B.zext(ABW);
3584   else if (ABW < BBW)
3585     A = A.zext(BBW);
3586 
3587   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3588 }
3589 
3590 /// Get a canonical unsigned division expression, or something simpler if
3591 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3592 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3593 /// it's not exact because the udiv may be clearing bits.
3594 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3595                                               const SCEV *RHS) {
3596   // TODO: we could try to find factors in all sorts of things, but for now we
3597   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3598   // end of this file for inspiration.
3599 
3600   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3601   if (!Mul || !Mul->hasNoUnsignedWrap())
3602     return getUDivExpr(LHS, RHS);
3603 
3604   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3605     // If the mulexpr multiplies by a constant, then that constant must be the
3606     // first element of the mulexpr.
3607     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3608       if (LHSCst == RHSCst) {
3609         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3610         return getMulExpr(Operands);
3611       }
3612 
3613       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3614       // that there's a factor provided by one of the other terms. We need to
3615       // check.
3616       APInt Factor = gcd(LHSCst, RHSCst);
3617       if (!Factor.isIntN(1)) {
3618         LHSCst =
3619             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3620         RHSCst =
3621             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3622         SmallVector<const SCEV *, 2> Operands;
3623         Operands.push_back(LHSCst);
3624         append_range(Operands, Mul->operands().drop_front());
3625         LHS = getMulExpr(Operands);
3626         RHS = RHSCst;
3627         Mul = dyn_cast<SCEVMulExpr>(LHS);
3628         if (!Mul)
3629           return getUDivExactExpr(LHS, RHS);
3630       }
3631     }
3632   }
3633 
3634   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3635     if (Mul->getOperand(i) == RHS) {
3636       SmallVector<const SCEV *, 2> Operands;
3637       append_range(Operands, Mul->operands().take_front(i));
3638       append_range(Operands, Mul->operands().drop_front(i + 1));
3639       return getMulExpr(Operands);
3640     }
3641   }
3642 
3643   return getUDivExpr(LHS, RHS);
3644 }
3645 
3646 /// Get an add recurrence expression for the specified loop.  Simplify the
3647 /// expression as much as possible.
3648 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3649                                            const Loop *L,
3650                                            SCEV::NoWrapFlags Flags) {
3651   SmallVector<const SCEV *, 4> Operands;
3652   Operands.push_back(Start);
3653   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3654     if (StepChrec->getLoop() == L) {
3655       append_range(Operands, StepChrec->operands());
3656       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3657     }
3658 
3659   Operands.push_back(Step);
3660   return getAddRecExpr(Operands, L, Flags);
3661 }
3662 
3663 /// Get an add recurrence expression for the specified loop.  Simplify the
3664 /// expression as much as possible.
3665 const SCEV *
3666 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3667                                const Loop *L, SCEV::NoWrapFlags Flags) {
3668   if (Operands.size() == 1) return Operands[0];
3669 #ifndef NDEBUG
3670   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3671   for (const SCEV *Op : llvm::drop_begin(Operands)) {
3672     assert(getEffectiveSCEVType(Op->getType()) == ETy &&
3673            "SCEVAddRecExpr operand types don't match!");
3674     assert(!Op->getType()->isPointerTy() && "Step must be integer");
3675   }
3676   for (const SCEV *Op : Operands)
3677     assert(isAvailableAtLoopEntry(Op, L) &&
3678            "SCEVAddRecExpr operand is not available at loop entry!");
3679 #endif
3680 
3681   if (Operands.back()->isZero()) {
3682     Operands.pop_back();
3683     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3684   }
3685 
3686   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3687   // use that information to infer NUW and NSW flags. However, computing a
3688   // BE count requires calling getAddRecExpr, so we may not yet have a
3689   // meaningful BE count at this point (and if we don't, we'd be stuck
3690   // with a SCEVCouldNotCompute as the cached BE count).
3691 
3692   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3693 
3694   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3695   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3696     const Loop *NestedLoop = NestedAR->getLoop();
3697     if (L->contains(NestedLoop)
3698             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3699             : (!NestedLoop->contains(L) &&
3700                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3701       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3702       Operands[0] = NestedAR->getStart();
3703       // AddRecs require their operands be loop-invariant with respect to their
3704       // loops. Don't perform this transformation if it would break this
3705       // requirement.
3706       bool AllInvariant = all_of(
3707           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3708 
3709       if (AllInvariant) {
3710         // Create a recurrence for the outer loop with the same step size.
3711         //
3712         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3713         // inner recurrence has the same property.
3714         SCEV::NoWrapFlags OuterFlags =
3715           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3716 
3717         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3718         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3719           return isLoopInvariant(Op, NestedLoop);
3720         });
3721 
3722         if (AllInvariant) {
3723           // Ok, both add recurrences are valid after the transformation.
3724           //
3725           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3726           // the outer recurrence has the same property.
3727           SCEV::NoWrapFlags InnerFlags =
3728             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3729           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3730         }
3731       }
3732       // Reset Operands to its original state.
3733       Operands[0] = NestedAR;
3734     }
3735   }
3736 
3737   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3738   // already have one, otherwise create a new one.
3739   return getOrCreateAddRecExpr(Operands, L, Flags);
3740 }
3741 
3742 const SCEV *
3743 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3744                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3745   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3746   // getSCEV(Base)->getType() has the same address space as Base->getType()
3747   // because SCEV::getType() preserves the address space.
3748   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3749   GEPNoWrapFlags NW = GEP->getNoWrapFlags();
3750   if (NW != GEPNoWrapFlags::none()) {
3751     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752     // but to do that, we have to ensure that said flag is valid in the entire
3753     // defined scope of the SCEV.
3754     // TODO: non-instructions have global scope.  We might be able to prove
3755     // some global scope cases
3756     auto *GEPI = dyn_cast<Instruction>(GEP);
3757     if (!GEPI || !isSCEVExprNeverPoison(GEPI))
3758       NW = GEPNoWrapFlags::none();
3759   }
3760 
3761   SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap;
3762   if (NW.hasNoUnsignedSignedWrap())
3763     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNSW);
3764   if (NW.hasNoUnsignedWrap())
3765     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNUW);
3766 
3767   Type *CurTy = GEP->getType();
3768   bool FirstIter = true;
3769   SmallVector<const SCEV *, 4> Offsets;
3770   for (const SCEV *IndexExpr : IndexExprs) {
3771     // Compute the (potentially symbolic) offset in bytes for this index.
3772     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3773       // For a struct, add the member offset.
3774       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3775       unsigned FieldNo = Index->getZExtValue();
3776       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3777       Offsets.push_back(FieldOffset);
3778 
3779       // Update CurTy to the type of the field at Index.
3780       CurTy = STy->getTypeAtIndex(Index);
3781     } else {
3782       // Update CurTy to its element type.
3783       if (FirstIter) {
3784         assert(isa<PointerType>(CurTy) &&
3785                "The first index of a GEP indexes a pointer");
3786         CurTy = GEP->getSourceElementType();
3787         FirstIter = false;
3788       } else {
3789         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3790       }
3791       // For an array, add the element offset, explicitly scaled.
3792       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3793       // Getelementptr indices are signed.
3794       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3795 
3796       // Multiply the index by the element size to compute the element offset.
3797       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3798       Offsets.push_back(LocalOffset);
3799     }
3800   }
3801 
3802   // Handle degenerate case of GEP without offsets.
3803   if (Offsets.empty())
3804     return BaseExpr;
3805 
3806   // Add the offsets together, assuming nsw if inbounds.
3807   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3808   // Add the base address and the offset. We cannot use the nsw flag, as the
3809   // base address is unsigned. However, if we know that the offset is
3810   // non-negative, we can use nuw.
3811   bool NUW = NW.hasNoUnsignedWrap() ||
3812              (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset));
3813   SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3814   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3815   assert(BaseExpr->getType() == GEPExpr->getType() &&
3816          "GEP should not change type mid-flight.");
3817   return GEPExpr;
3818 }
3819 
3820 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3821                                                ArrayRef<const SCEV *> Ops) {
3822   FoldingSetNodeID ID;
3823   ID.AddInteger(SCEVType);
3824   for (const SCEV *Op : Ops)
3825     ID.AddPointer(Op);
3826   void *IP = nullptr;
3827   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3828 }
3829 
3830 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3831   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3832   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3833 }
3834 
3835 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3836                                            SmallVectorImpl<const SCEV *> &Ops) {
3837   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3838   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3839   if (Ops.size() == 1) return Ops[0];
3840 #ifndef NDEBUG
3841   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3842   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3843     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3844            "Operand types don't match!");
3845     assert(Ops[0]->getType()->isPointerTy() ==
3846                Ops[i]->getType()->isPointerTy() &&
3847            "min/max should be consistently pointerish");
3848   }
3849 #endif
3850 
3851   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3852   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3853 
3854   // Sort by complexity, this groups all similar expression types together.
3855   GroupByComplexity(Ops, &LI, DT);
3856 
3857   // Check if we have created the same expression before.
3858   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3859     return S;
3860   }
3861 
3862   // If there are any constants, fold them together.
3863   unsigned Idx = 0;
3864   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3865     ++Idx;
3866     assert(Idx < Ops.size());
3867     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3868       switch (Kind) {
3869       case scSMaxExpr:
3870         return APIntOps::smax(LHS, RHS);
3871       case scSMinExpr:
3872         return APIntOps::smin(LHS, RHS);
3873       case scUMaxExpr:
3874         return APIntOps::umax(LHS, RHS);
3875       case scUMinExpr:
3876         return APIntOps::umin(LHS, RHS);
3877       default:
3878         llvm_unreachable("Unknown SCEV min/max opcode");
3879       }
3880     };
3881 
3882     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3883       // We found two constants, fold them together!
3884       ConstantInt *Fold = ConstantInt::get(
3885           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3886       Ops[0] = getConstant(Fold);
3887       Ops.erase(Ops.begin()+1);  // Erase the folded element
3888       if (Ops.size() == 1) return Ops[0];
3889       LHSC = cast<SCEVConstant>(Ops[0]);
3890     }
3891 
3892     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3893     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3894 
3895     if (IsMax ? IsMinV : IsMaxV) {
3896       // If we are left with a constant minimum(/maximum)-int, strip it off.
3897       Ops.erase(Ops.begin());
3898       --Idx;
3899     } else if (IsMax ? IsMaxV : IsMinV) {
3900       // If we have a max(/min) with a constant maximum(/minimum)-int,
3901       // it will always be the extremum.
3902       return LHSC;
3903     }
3904 
3905     if (Ops.size() == 1) return Ops[0];
3906   }
3907 
3908   // Find the first operation of the same kind
3909   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3910     ++Idx;
3911 
3912   // Check to see if one of the operands is of the same kind. If so, expand its
3913   // operands onto our operand list, and recurse to simplify.
3914   if (Idx < Ops.size()) {
3915     bool DeletedAny = false;
3916     while (Ops[Idx]->getSCEVType() == Kind) {
3917       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3918       Ops.erase(Ops.begin()+Idx);
3919       append_range(Ops, SMME->operands());
3920       DeletedAny = true;
3921     }
3922 
3923     if (DeletedAny)
3924       return getMinMaxExpr(Kind, Ops);
3925   }
3926 
3927   // Okay, check to see if the same value occurs in the operand list twice.  If
3928   // so, delete one.  Since we sorted the list, these values are required to
3929   // be adjacent.
3930   llvm::CmpInst::Predicate GEPred =
3931       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3932   llvm::CmpInst::Predicate LEPred =
3933       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3934   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3935   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3936   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3937     if (Ops[i] == Ops[i + 1] ||
3938         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3939       //  X op Y op Y  -->  X op Y
3940       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3941       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3942       --i;
3943       --e;
3944     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3945                                                Ops[i + 1])) {
3946       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3947       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3948       --i;
3949       --e;
3950     }
3951   }
3952 
3953   if (Ops.size() == 1) return Ops[0];
3954 
3955   assert(!Ops.empty() && "Reduced smax down to nothing!");
3956 
3957   // Okay, it looks like we really DO need an expr.  Check to see if we
3958   // already have one, otherwise create a new one.
3959   FoldingSetNodeID ID;
3960   ID.AddInteger(Kind);
3961   for (const SCEV *Op : Ops)
3962     ID.AddPointer(Op);
3963   void *IP = nullptr;
3964   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3965   if (ExistingSCEV)
3966     return ExistingSCEV;
3967   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3968   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3969   SCEV *S = new (SCEVAllocator)
3970       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3971 
3972   UniqueSCEVs.InsertNode(S, IP);
3973   registerUser(S, Ops);
3974   return S;
3975 }
3976 
3977 namespace {
3978 
3979 class SCEVSequentialMinMaxDeduplicatingVisitor final
3980     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3981                          std::optional<const SCEV *>> {
3982   using RetVal = std::optional<const SCEV *>;
3983   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3984 
3985   ScalarEvolution &SE;
3986   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3987   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3988   SmallPtrSet<const SCEV *, 16> SeenOps;
3989 
3990   bool canRecurseInto(SCEVTypes Kind) const {
3991     // We can only recurse into the SCEV expression of the same effective type
3992     // as the type of our root SCEV expression.
3993     return RootKind == Kind || NonSequentialRootKind == Kind;
3994   };
3995 
3996   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3997     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3998            "Only for min/max expressions.");
3999     SCEVTypes Kind = S->getSCEVType();
4000 
4001     if (!canRecurseInto(Kind))
4002       return S;
4003 
4004     auto *NAry = cast<SCEVNAryExpr>(S);
4005     SmallVector<const SCEV *> NewOps;
4006     bool Changed = visit(Kind, NAry->operands(), NewOps);
4007 
4008     if (!Changed)
4009       return S;
4010     if (NewOps.empty())
4011       return std::nullopt;
4012 
4013     return isa<SCEVSequentialMinMaxExpr>(S)
4014                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
4015                : SE.getMinMaxExpr(Kind, NewOps);
4016   }
4017 
4018   RetVal visit(const SCEV *S) {
4019     // Has the whole operand been seen already?
4020     if (!SeenOps.insert(S).second)
4021       return std::nullopt;
4022     return Base::visit(S);
4023   }
4024 
4025 public:
4026   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4027                                            SCEVTypes RootKind)
4028       : SE(SE), RootKind(RootKind),
4029         NonSequentialRootKind(
4030             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4031                 RootKind)) {}
4032 
4033   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4034                          SmallVectorImpl<const SCEV *> &NewOps) {
4035     bool Changed = false;
4036     SmallVector<const SCEV *> Ops;
4037     Ops.reserve(OrigOps.size());
4038 
4039     for (const SCEV *Op : OrigOps) {
4040       RetVal NewOp = visit(Op);
4041       if (NewOp != Op)
4042         Changed = true;
4043       if (NewOp)
4044         Ops.emplace_back(*NewOp);
4045     }
4046 
4047     if (Changed)
4048       NewOps = std::move(Ops);
4049     return Changed;
4050   }
4051 
4052   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4053 
4054   RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4055 
4056   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4057 
4058   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4059 
4060   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4061 
4062   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4063 
4064   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4065 
4066   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4067 
4068   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4069 
4070   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4071 
4072   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4073     return visitAnyMinMaxExpr(Expr);
4074   }
4075 
4076   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4077     return visitAnyMinMaxExpr(Expr);
4078   }
4079 
4080   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4081     return visitAnyMinMaxExpr(Expr);
4082   }
4083 
4084   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4085     return visitAnyMinMaxExpr(Expr);
4086   }
4087 
4088   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4089     return visitAnyMinMaxExpr(Expr);
4090   }
4091 
4092   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4093 
4094   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4095 };
4096 
4097 } // namespace
4098 
4099 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4100   switch (Kind) {
4101   case scConstant:
4102   case scVScale:
4103   case scTruncate:
4104   case scZeroExtend:
4105   case scSignExtend:
4106   case scPtrToInt:
4107   case scAddExpr:
4108   case scMulExpr:
4109   case scUDivExpr:
4110   case scAddRecExpr:
4111   case scUMaxExpr:
4112   case scSMaxExpr:
4113   case scUMinExpr:
4114   case scSMinExpr:
4115   case scUnknown:
4116     // If any operand is poison, the whole expression is poison.
4117     return true;
4118   case scSequentialUMinExpr:
4119     // FIXME: if the *first* operand is poison, the whole expression is poison.
4120     return false; // Pessimistically, say that it does not propagate poison.
4121   case scCouldNotCompute:
4122     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4123   }
4124   llvm_unreachable("Unknown SCEV kind!");
4125 }
4126 
4127 namespace {
4128 // The only way poison may be introduced in a SCEV expression is from a
4129 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4130 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4131 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4132 //
4133 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4134 // with the notable exception of umin_seq, where only poison from the first
4135 // operand is (unconditionally) propagated.
4136 struct SCEVPoisonCollector {
4137   bool LookThroughMaybePoisonBlocking;
4138   SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4139   SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4140       : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4141 
4142   bool follow(const SCEV *S) {
4143     if (!LookThroughMaybePoisonBlocking &&
4144         !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4145       return false;
4146 
4147     if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4148       if (!isGuaranteedNotToBePoison(SU->getValue()))
4149         MaybePoison.insert(SU);
4150     }
4151     return true;
4152   }
4153   bool isDone() const { return false; }
4154 };
4155 } // namespace
4156 
4157 /// Return true if V is poison given that AssumedPoison is already poison.
4158 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4159   // First collect all SCEVs that might result in AssumedPoison to be poison.
4160   // We need to look through potentially poison-blocking operations here,
4161   // because we want to find all SCEVs that *might* result in poison, not only
4162   // those that are *required* to.
4163   SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4164   visitAll(AssumedPoison, PC1);
4165 
4166   // AssumedPoison is never poison. As the assumption is false, the implication
4167   // is true. Don't bother walking the other SCEV in this case.
4168   if (PC1.MaybePoison.empty())
4169     return true;
4170 
4171   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4172   // as well. We cannot look through potentially poison-blocking operations
4173   // here, as their arguments only *may* make the result poison.
4174   SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4175   visitAll(S, PC2);
4176 
4177   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4178   // it will also make S poison by being part of PC2.MaybePoison.
4179   return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) {
4180     return PC2.MaybePoison.contains(S);
4181   });
4182 }
4183 
4184 void ScalarEvolution::getPoisonGeneratingValues(
4185     SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4186   SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4187   visitAll(S, PC);
4188   for (const SCEVUnknown *SU : PC.MaybePoison)
4189     Result.insert(SU->getValue());
4190 }
4191 
4192 bool ScalarEvolution::canReuseInstruction(
4193     const SCEV *S, Instruction *I,
4194     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
4195   // If the instruction cannot be poison, it's always safe to reuse.
4196   if (programUndefinedIfPoison(I))
4197     return true;
4198 
4199   // Otherwise, it is possible that I is more poisonous that S. Collect the
4200   // poison-contributors of S, and then check whether I has any additional
4201   // poison-contributors. Poison that is contributed through poison-generating
4202   // flags is handled by dropping those flags instead.
4203   SmallPtrSet<const Value *, 8> PoisonVals;
4204   getPoisonGeneratingValues(PoisonVals, S);
4205 
4206   SmallVector<Value *> Worklist;
4207   SmallPtrSet<Value *, 8> Visited;
4208   Worklist.push_back(I);
4209   while (!Worklist.empty()) {
4210     Value *V = Worklist.pop_back_val();
4211     if (!Visited.insert(V).second)
4212       continue;
4213 
4214     // Avoid walking large instruction graphs.
4215     if (Visited.size() > 16)
4216       return false;
4217 
4218     // Either the value can't be poison, or the S would also be poison if it
4219     // is.
4220     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
4221       continue;
4222 
4223     auto *I = dyn_cast<Instruction>(V);
4224     if (!I)
4225       return false;
4226 
4227     // Disjoint or instructions are interpreted as adds by SCEV. However, we
4228     // can't replace an arbitrary add with disjoint or, even if we drop the
4229     // flag. We would need to convert the or into an add.
4230     if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
4231       if (PDI->isDisjoint())
4232         return false;
4233 
4234     // FIXME: Ignore vscale, even though it technically could be poison. Do this
4235     // because SCEV currently assumes it can't be poison. Remove this special
4236     // case once we proper model when vscale can be poison.
4237     if (auto *II = dyn_cast<IntrinsicInst>(I);
4238         II && II->getIntrinsicID() == Intrinsic::vscale)
4239       continue;
4240 
4241     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
4242       return false;
4243 
4244     // If the instruction can't create poison, we can recurse to its operands.
4245     if (I->hasPoisonGeneratingAnnotations())
4246       DropPoisonGeneratingInsts.push_back(I);
4247 
4248     for (Value *Op : I->operands())
4249       Worklist.push_back(Op);
4250   }
4251   return true;
4252 }
4253 
4254 const SCEV *
4255 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4256                                          SmallVectorImpl<const SCEV *> &Ops) {
4257   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4258          "Not a SCEVSequentialMinMaxExpr!");
4259   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4260   if (Ops.size() == 1)
4261     return Ops[0];
4262 #ifndef NDEBUG
4263   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4264   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4265     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4266            "Operand types don't match!");
4267     assert(Ops[0]->getType()->isPointerTy() ==
4268                Ops[i]->getType()->isPointerTy() &&
4269            "min/max should be consistently pointerish");
4270   }
4271 #endif
4272 
4273   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4274   // so we can *NOT* do any kind of sorting of the expressions!
4275 
4276   // Check if we have created the same expression before.
4277   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4278     return S;
4279 
4280   // FIXME: there are *some* simplifications that we can do here.
4281 
4282   // Keep only the first instance of an operand.
4283   {
4284     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4285     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4286     if (Changed)
4287       return getSequentialMinMaxExpr(Kind, Ops);
4288   }
4289 
4290   // Check to see if one of the operands is of the same kind. If so, expand its
4291   // operands onto our operand list, and recurse to simplify.
4292   {
4293     unsigned Idx = 0;
4294     bool DeletedAny = false;
4295     while (Idx < Ops.size()) {
4296       if (Ops[Idx]->getSCEVType() != Kind) {
4297         ++Idx;
4298         continue;
4299       }
4300       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4301       Ops.erase(Ops.begin() + Idx);
4302       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4303                  SMME->operands().end());
4304       DeletedAny = true;
4305     }
4306 
4307     if (DeletedAny)
4308       return getSequentialMinMaxExpr(Kind, Ops);
4309   }
4310 
4311   const SCEV *SaturationPoint;
4312   ICmpInst::Predicate Pred;
4313   switch (Kind) {
4314   case scSequentialUMinExpr:
4315     SaturationPoint = getZero(Ops[0]->getType());
4316     Pred = ICmpInst::ICMP_ULE;
4317     break;
4318   default:
4319     llvm_unreachable("Not a sequential min/max type.");
4320   }
4321 
4322   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4323     // We can replace %x umin_seq %y with %x umin %y if either:
4324     //  * %y being poison implies %x is also poison.
4325     //  * %x cannot be the saturating value (e.g. zero for umin).
4326     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4327         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4328                                         SaturationPoint)) {
4329       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4330       Ops[i - 1] = getMinMaxExpr(
4331           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4332           SeqOps);
4333       Ops.erase(Ops.begin() + i);
4334       return getSequentialMinMaxExpr(Kind, Ops);
4335     }
4336     // Fold %x umin_seq %y to %x if %x ule %y.
4337     // TODO: We might be able to prove the predicate for a later operand.
4338     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4339       Ops.erase(Ops.begin() + i);
4340       return getSequentialMinMaxExpr(Kind, Ops);
4341     }
4342   }
4343 
4344   // Okay, it looks like we really DO need an expr.  Check to see if we
4345   // already have one, otherwise create a new one.
4346   FoldingSetNodeID ID;
4347   ID.AddInteger(Kind);
4348   for (const SCEV *Op : Ops)
4349     ID.AddPointer(Op);
4350   void *IP = nullptr;
4351   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4352   if (ExistingSCEV)
4353     return ExistingSCEV;
4354 
4355   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4356   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4357   SCEV *S = new (SCEVAllocator)
4358       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4359 
4360   UniqueSCEVs.InsertNode(S, IP);
4361   registerUser(S, Ops);
4362   return S;
4363 }
4364 
4365 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4366   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4367   return getSMaxExpr(Ops);
4368 }
4369 
4370 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4371   return getMinMaxExpr(scSMaxExpr, Ops);
4372 }
4373 
4374 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4375   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4376   return getUMaxExpr(Ops);
4377 }
4378 
4379 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4380   return getMinMaxExpr(scUMaxExpr, Ops);
4381 }
4382 
4383 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4384                                          const SCEV *RHS) {
4385   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4386   return getSMinExpr(Ops);
4387 }
4388 
4389 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4390   return getMinMaxExpr(scSMinExpr, Ops);
4391 }
4392 
4393 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4394                                          bool Sequential) {
4395   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4396   return getUMinExpr(Ops, Sequential);
4397 }
4398 
4399 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4400                                          bool Sequential) {
4401   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4402                     : getMinMaxExpr(scUMinExpr, Ops);
4403 }
4404 
4405 const SCEV *
4406 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4407   const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4408   if (Size.isScalable())
4409     Res = getMulExpr(Res, getVScale(IntTy));
4410   return Res;
4411 }
4412 
4413 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4414   return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4415 }
4416 
4417 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4418   return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4419 }
4420 
4421 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4422                                              StructType *STy,
4423                                              unsigned FieldNo) {
4424   // We can bypass creating a target-independent constant expression and then
4425   // folding it back into a ConstantInt. This is just a compile-time
4426   // optimization.
4427   const StructLayout *SL = getDataLayout().getStructLayout(STy);
4428   assert(!SL->getSizeInBits().isScalable() &&
4429          "Cannot get offset for structure containing scalable vector types");
4430   return getConstant(IntTy, SL->getElementOffset(FieldNo));
4431 }
4432 
4433 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4434   // Don't attempt to do anything other than create a SCEVUnknown object
4435   // here.  createSCEV only calls getUnknown after checking for all other
4436   // interesting possibilities, and any other code that calls getUnknown
4437   // is doing so in order to hide a value from SCEV canonicalization.
4438 
4439   FoldingSetNodeID ID;
4440   ID.AddInteger(scUnknown);
4441   ID.AddPointer(V);
4442   void *IP = nullptr;
4443   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4444     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4445            "Stale SCEVUnknown in uniquing map!");
4446     return S;
4447   }
4448   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4449                                             FirstUnknown);
4450   FirstUnknown = cast<SCEVUnknown>(S);
4451   UniqueSCEVs.InsertNode(S, IP);
4452   return S;
4453 }
4454 
4455 //===----------------------------------------------------------------------===//
4456 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4457 //
4458 
4459 /// Test if values of the given type are analyzable within the SCEV
4460 /// framework. This primarily includes integer types, and it can optionally
4461 /// include pointer types if the ScalarEvolution class has access to
4462 /// target-specific information.
4463 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4464   // Integers and pointers are always SCEVable.
4465   return Ty->isIntOrPtrTy();
4466 }
4467 
4468 /// Return the size in bits of the specified type, for which isSCEVable must
4469 /// return true.
4470 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4471   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4472   if (Ty->isPointerTy())
4473     return getDataLayout().getIndexTypeSizeInBits(Ty);
4474   return getDataLayout().getTypeSizeInBits(Ty);
4475 }
4476 
4477 /// Return a type with the same bitwidth as the given type and which represents
4478 /// how SCEV will treat the given type, for which isSCEVable must return
4479 /// true. For pointer types, this is the pointer index sized integer type.
4480 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4481   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4482 
4483   if (Ty->isIntegerTy())
4484     return Ty;
4485 
4486   // The only other support type is pointer.
4487   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4488   return getDataLayout().getIndexType(Ty);
4489 }
4490 
4491 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4492   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4493 }
4494 
4495 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4496                                                         const SCEV *B) {
4497   /// For a valid use point to exist, the defining scope of one operand
4498   /// must dominate the other.
4499   bool PreciseA, PreciseB;
4500   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4501   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4502   if (!PreciseA || !PreciseB)
4503     // Can't tell.
4504     return false;
4505   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4506     DT.dominates(ScopeB, ScopeA);
4507 }
4508 
4509 const SCEV *ScalarEvolution::getCouldNotCompute() {
4510   return CouldNotCompute.get();
4511 }
4512 
4513 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4514   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4515     auto *SU = dyn_cast<SCEVUnknown>(S);
4516     return SU && SU->getValue() == nullptr;
4517   });
4518 
4519   return !ContainsNulls;
4520 }
4521 
4522 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4523   HasRecMapType::iterator I = HasRecMap.find(S);
4524   if (I != HasRecMap.end())
4525     return I->second;
4526 
4527   bool FoundAddRec =
4528       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4529   HasRecMap.insert({S, FoundAddRec});
4530   return FoundAddRec;
4531 }
4532 
4533 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4534 /// by the value and offset from any ValueOffsetPair in the set.
4535 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4536   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4537   if (SI == ExprValueMap.end())
4538     return std::nullopt;
4539   return SI->second.getArrayRef();
4540 }
4541 
4542 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4543 /// cannot be used separately. eraseValueFromMap should be used to remove
4544 /// V from ValueExprMap and ExprValueMap at the same time.
4545 void ScalarEvolution::eraseValueFromMap(Value *V) {
4546   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4547   if (I != ValueExprMap.end()) {
4548     auto EVIt = ExprValueMap.find(I->second);
4549     bool Removed = EVIt->second.remove(V);
4550     (void) Removed;
4551     assert(Removed && "Value not in ExprValueMap?");
4552     ValueExprMap.erase(I);
4553   }
4554 }
4555 
4556 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4557   // A recursive query may have already computed the SCEV. It should be
4558   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4559   // inferred nowrap flags.
4560   auto It = ValueExprMap.find_as(V);
4561   if (It == ValueExprMap.end()) {
4562     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4563     ExprValueMap[S].insert(V);
4564   }
4565 }
4566 
4567 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4568 /// create a new one.
4569 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4570   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4571 
4572   if (const SCEV *S = getExistingSCEV(V))
4573     return S;
4574   return createSCEVIter(V);
4575 }
4576 
4577 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4578   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4579 
4580   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4581   if (I != ValueExprMap.end()) {
4582     const SCEV *S = I->second;
4583     assert(checkValidity(S) &&
4584            "existing SCEV has not been properly invalidated");
4585     return S;
4586   }
4587   return nullptr;
4588 }
4589 
4590 /// Return a SCEV corresponding to -V = -1*V
4591 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4592                                              SCEV::NoWrapFlags Flags) {
4593   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4594     return getConstant(
4595                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4596 
4597   Type *Ty = V->getType();
4598   Ty = getEffectiveSCEVType(Ty);
4599   return getMulExpr(V, getMinusOne(Ty), Flags);
4600 }
4601 
4602 /// If Expr computes ~A, return A else return nullptr
4603 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4604   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4605   if (!Add || Add->getNumOperands() != 2 ||
4606       !Add->getOperand(0)->isAllOnesValue())
4607     return nullptr;
4608 
4609   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4610   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4611       !AddRHS->getOperand(0)->isAllOnesValue())
4612     return nullptr;
4613 
4614   return AddRHS->getOperand(1);
4615 }
4616 
4617 /// Return a SCEV corresponding to ~V = -1-V
4618 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4619   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4620 
4621   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4622     return getConstant(
4623                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4624 
4625   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4626   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4627     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4628       SmallVector<const SCEV *, 2> MatchedOperands;
4629       for (const SCEV *Operand : MME->operands()) {
4630         const SCEV *Matched = MatchNotExpr(Operand);
4631         if (!Matched)
4632           return (const SCEV *)nullptr;
4633         MatchedOperands.push_back(Matched);
4634       }
4635       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4636                            MatchedOperands);
4637     };
4638     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4639       return Replaced;
4640   }
4641 
4642   Type *Ty = V->getType();
4643   Ty = getEffectiveSCEVType(Ty);
4644   return getMinusSCEV(getMinusOne(Ty), V);
4645 }
4646 
4647 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4648   assert(P->getType()->isPointerTy());
4649 
4650   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4651     // The base of an AddRec is the first operand.
4652     SmallVector<const SCEV *> Ops{AddRec->operands()};
4653     Ops[0] = removePointerBase(Ops[0]);
4654     // Don't try to transfer nowrap flags for now. We could in some cases
4655     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4656     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4657   }
4658   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4659     // The base of an Add is the pointer operand.
4660     SmallVector<const SCEV *> Ops{Add->operands()};
4661     const SCEV **PtrOp = nullptr;
4662     for (const SCEV *&AddOp : Ops) {
4663       if (AddOp->getType()->isPointerTy()) {
4664         assert(!PtrOp && "Cannot have multiple pointer ops");
4665         PtrOp = &AddOp;
4666       }
4667     }
4668     *PtrOp = removePointerBase(*PtrOp);
4669     // Don't try to transfer nowrap flags for now. We could in some cases
4670     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4671     return getAddExpr(Ops);
4672   }
4673   // Any other expression must be a pointer base.
4674   return getZero(P->getType());
4675 }
4676 
4677 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4678                                           SCEV::NoWrapFlags Flags,
4679                                           unsigned Depth) {
4680   // Fast path: X - X --> 0.
4681   if (LHS == RHS)
4682     return getZero(LHS->getType());
4683 
4684   // If we subtract two pointers with different pointer bases, bail.
4685   // Eventually, we're going to add an assertion to getMulExpr that we
4686   // can't multiply by a pointer.
4687   if (RHS->getType()->isPointerTy()) {
4688     if (!LHS->getType()->isPointerTy() ||
4689         getPointerBase(LHS) != getPointerBase(RHS))
4690       return getCouldNotCompute();
4691     LHS = removePointerBase(LHS);
4692     RHS = removePointerBase(RHS);
4693   }
4694 
4695   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4696   // makes it so that we cannot make much use of NUW.
4697   auto AddFlags = SCEV::FlagAnyWrap;
4698   const bool RHSIsNotMinSigned =
4699       !getSignedRangeMin(RHS).isMinSignedValue();
4700   if (hasFlags(Flags, SCEV::FlagNSW)) {
4701     // Let M be the minimum representable signed value. Then (-1)*RHS
4702     // signed-wraps if and only if RHS is M. That can happen even for
4703     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4704     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4705     // (-1)*RHS, we need to prove that RHS != M.
4706     //
4707     // If LHS is non-negative and we know that LHS - RHS does not
4708     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4709     // either by proving that RHS > M or that LHS >= 0.
4710     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4711       AddFlags = SCEV::FlagNSW;
4712     }
4713   }
4714 
4715   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4716   // RHS is NSW and LHS >= 0.
4717   //
4718   // The difficulty here is that the NSW flag may have been proven
4719   // relative to a loop that is to be found in a recurrence in LHS and
4720   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4721   // larger scope than intended.
4722   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4723 
4724   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4725 }
4726 
4727 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4728                                                      unsigned Depth) {
4729   Type *SrcTy = V->getType();
4730   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4731          "Cannot truncate or zero extend with non-integer arguments!");
4732   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4733     return V;  // No conversion
4734   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4735     return getTruncateExpr(V, Ty, Depth);
4736   return getZeroExtendExpr(V, Ty, Depth);
4737 }
4738 
4739 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4740                                                      unsigned Depth) {
4741   Type *SrcTy = V->getType();
4742   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4743          "Cannot truncate or zero extend with non-integer arguments!");
4744   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4745     return V;  // No conversion
4746   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4747     return getTruncateExpr(V, Ty, Depth);
4748   return getSignExtendExpr(V, Ty, Depth);
4749 }
4750 
4751 const SCEV *
4752 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4753   Type *SrcTy = V->getType();
4754   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4755          "Cannot noop or zero extend with non-integer arguments!");
4756   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4757          "getNoopOrZeroExtend cannot truncate!");
4758   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4759     return V;  // No conversion
4760   return getZeroExtendExpr(V, Ty);
4761 }
4762 
4763 const SCEV *
4764 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4765   Type *SrcTy = V->getType();
4766   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4767          "Cannot noop or sign extend with non-integer arguments!");
4768   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4769          "getNoopOrSignExtend cannot truncate!");
4770   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4771     return V;  // No conversion
4772   return getSignExtendExpr(V, Ty);
4773 }
4774 
4775 const SCEV *
4776 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4777   Type *SrcTy = V->getType();
4778   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4779          "Cannot noop or any extend with non-integer arguments!");
4780   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4781          "getNoopOrAnyExtend cannot truncate!");
4782   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4783     return V;  // No conversion
4784   return getAnyExtendExpr(V, Ty);
4785 }
4786 
4787 const SCEV *
4788 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4789   Type *SrcTy = V->getType();
4790   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4791          "Cannot truncate or noop with non-integer arguments!");
4792   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4793          "getTruncateOrNoop cannot extend!");
4794   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4795     return V;  // No conversion
4796   return getTruncateExpr(V, Ty);
4797 }
4798 
4799 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4800                                                         const SCEV *RHS) {
4801   const SCEV *PromotedLHS = LHS;
4802   const SCEV *PromotedRHS = RHS;
4803 
4804   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4805     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4806   else
4807     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4808 
4809   return getUMaxExpr(PromotedLHS, PromotedRHS);
4810 }
4811 
4812 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4813                                                         const SCEV *RHS,
4814                                                         bool Sequential) {
4815   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4816   return getUMinFromMismatchedTypes(Ops, Sequential);
4817 }
4818 
4819 const SCEV *
4820 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4821                                             bool Sequential) {
4822   assert(!Ops.empty() && "At least one operand must be!");
4823   // Trivial case.
4824   if (Ops.size() == 1)
4825     return Ops[0];
4826 
4827   // Find the max type first.
4828   Type *MaxType = nullptr;
4829   for (const auto *S : Ops)
4830     if (MaxType)
4831       MaxType = getWiderType(MaxType, S->getType());
4832     else
4833       MaxType = S->getType();
4834   assert(MaxType && "Failed to find maximum type!");
4835 
4836   // Extend all ops to max type.
4837   SmallVector<const SCEV *, 2> PromotedOps;
4838   for (const auto *S : Ops)
4839     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4840 
4841   // Generate umin.
4842   return getUMinExpr(PromotedOps, Sequential);
4843 }
4844 
4845 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4846   // A pointer operand may evaluate to a nonpointer expression, such as null.
4847   if (!V->getType()->isPointerTy())
4848     return V;
4849 
4850   while (true) {
4851     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4852       V = AddRec->getStart();
4853     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4854       const SCEV *PtrOp = nullptr;
4855       for (const SCEV *AddOp : Add->operands()) {
4856         if (AddOp->getType()->isPointerTy()) {
4857           assert(!PtrOp && "Cannot have multiple pointer ops");
4858           PtrOp = AddOp;
4859         }
4860       }
4861       assert(PtrOp && "Must have pointer op");
4862       V = PtrOp;
4863     } else // Not something we can look further into.
4864       return V;
4865   }
4866 }
4867 
4868 /// Push users of the given Instruction onto the given Worklist.
4869 static void PushDefUseChildren(Instruction *I,
4870                                SmallVectorImpl<Instruction *> &Worklist,
4871                                SmallPtrSetImpl<Instruction *> &Visited) {
4872   // Push the def-use children onto the Worklist stack.
4873   for (User *U : I->users()) {
4874     auto *UserInsn = cast<Instruction>(U);
4875     if (Visited.insert(UserInsn).second)
4876       Worklist.push_back(UserInsn);
4877   }
4878 }
4879 
4880 namespace {
4881 
4882 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4883 /// expression in case its Loop is L. If it is not L then
4884 /// if IgnoreOtherLoops is true then use AddRec itself
4885 /// otherwise rewrite cannot be done.
4886 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4887 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4888 public:
4889   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4890                              bool IgnoreOtherLoops = true) {
4891     SCEVInitRewriter Rewriter(L, SE);
4892     const SCEV *Result = Rewriter.visit(S);
4893     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4894       return SE.getCouldNotCompute();
4895     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4896                ? SE.getCouldNotCompute()
4897                : Result;
4898   }
4899 
4900   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4901     if (!SE.isLoopInvariant(Expr, L))
4902       SeenLoopVariantSCEVUnknown = true;
4903     return Expr;
4904   }
4905 
4906   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4907     // Only re-write AddRecExprs for this loop.
4908     if (Expr->getLoop() == L)
4909       return Expr->getStart();
4910     SeenOtherLoops = true;
4911     return Expr;
4912   }
4913 
4914   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4915 
4916   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4917 
4918 private:
4919   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4920       : SCEVRewriteVisitor(SE), L(L) {}
4921 
4922   const Loop *L;
4923   bool SeenLoopVariantSCEVUnknown = false;
4924   bool SeenOtherLoops = false;
4925 };
4926 
4927 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4928 /// increment expression in case its Loop is L. If it is not L then
4929 /// use AddRec itself.
4930 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4931 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4932 public:
4933   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4934     SCEVPostIncRewriter Rewriter(L, SE);
4935     const SCEV *Result = Rewriter.visit(S);
4936     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4937         ? SE.getCouldNotCompute()
4938         : Result;
4939   }
4940 
4941   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4942     if (!SE.isLoopInvariant(Expr, L))
4943       SeenLoopVariantSCEVUnknown = true;
4944     return Expr;
4945   }
4946 
4947   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4948     // Only re-write AddRecExprs for this loop.
4949     if (Expr->getLoop() == L)
4950       return Expr->getPostIncExpr(SE);
4951     SeenOtherLoops = true;
4952     return Expr;
4953   }
4954 
4955   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4956 
4957   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4958 
4959 private:
4960   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4961       : SCEVRewriteVisitor(SE), L(L) {}
4962 
4963   const Loop *L;
4964   bool SeenLoopVariantSCEVUnknown = false;
4965   bool SeenOtherLoops = false;
4966 };
4967 
4968 /// This class evaluates the compare condition by matching it against the
4969 /// condition of loop latch. If there is a match we assume a true value
4970 /// for the condition while building SCEV nodes.
4971 class SCEVBackedgeConditionFolder
4972     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4973 public:
4974   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4975                              ScalarEvolution &SE) {
4976     bool IsPosBECond = false;
4977     Value *BECond = nullptr;
4978     if (BasicBlock *Latch = L->getLoopLatch()) {
4979       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4980       if (BI && BI->isConditional()) {
4981         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4982                "Both outgoing branches should not target same header!");
4983         BECond = BI->getCondition();
4984         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4985       } else {
4986         return S;
4987       }
4988     }
4989     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4990     return Rewriter.visit(S);
4991   }
4992 
4993   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4994     const SCEV *Result = Expr;
4995     bool InvariantF = SE.isLoopInvariant(Expr, L);
4996 
4997     if (!InvariantF) {
4998       Instruction *I = cast<Instruction>(Expr->getValue());
4999       switch (I->getOpcode()) {
5000       case Instruction::Select: {
5001         SelectInst *SI = cast<SelectInst>(I);
5002         std::optional<const SCEV *> Res =
5003             compareWithBackedgeCondition(SI->getCondition());
5004         if (Res) {
5005           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
5006           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
5007         }
5008         break;
5009       }
5010       default: {
5011         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
5012         if (Res)
5013           Result = *Res;
5014         break;
5015       }
5016       }
5017     }
5018     return Result;
5019   }
5020 
5021 private:
5022   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
5023                                        bool IsPosBECond, ScalarEvolution &SE)
5024       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
5025         IsPositiveBECond(IsPosBECond) {}
5026 
5027   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
5028 
5029   const Loop *L;
5030   /// Loop back condition.
5031   Value *BackedgeCond = nullptr;
5032   /// Set to true if loop back is on positive branch condition.
5033   bool IsPositiveBECond;
5034 };
5035 
5036 std::optional<const SCEV *>
5037 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5038 
5039   // If value matches the backedge condition for loop latch,
5040   // then return a constant evolution node based on loopback
5041   // branch taken.
5042   if (BackedgeCond == IC)
5043     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
5044                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
5045   return std::nullopt;
5046 }
5047 
5048 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5049 public:
5050   static const SCEV *rewrite(const SCEV *S, const Loop *L,
5051                              ScalarEvolution &SE) {
5052     SCEVShiftRewriter Rewriter(L, SE);
5053     const SCEV *Result = Rewriter.visit(S);
5054     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5055   }
5056 
5057   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5058     // Only allow AddRecExprs for this loop.
5059     if (!SE.isLoopInvariant(Expr, L))
5060       Valid = false;
5061     return Expr;
5062   }
5063 
5064   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5065     if (Expr->getLoop() == L && Expr->isAffine())
5066       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5067     Valid = false;
5068     return Expr;
5069   }
5070 
5071   bool isValid() { return Valid; }
5072 
5073 private:
5074   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5075       : SCEVRewriteVisitor(SE), L(L) {}
5076 
5077   const Loop *L;
5078   bool Valid = true;
5079 };
5080 
5081 } // end anonymous namespace
5082 
5083 SCEV::NoWrapFlags
5084 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5085   if (!AR->isAffine())
5086     return SCEV::FlagAnyWrap;
5087 
5088   using OBO = OverflowingBinaryOperator;
5089 
5090   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5091 
5092   if (!AR->hasNoSelfWrap()) {
5093     const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5094     if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5095       ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5096       const APInt &BECountAP = BECountMax->getAPInt();
5097       unsigned NoOverflowBitWidth =
5098         BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5099       if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5100         Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5101     }
5102   }
5103 
5104   if (!AR->hasNoSignedWrap()) {
5105     ConstantRange AddRecRange = getSignedRange(AR);
5106     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5107 
5108     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5109         Instruction::Add, IncRange, OBO::NoSignedWrap);
5110     if (NSWRegion.contains(AddRecRange))
5111       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5112   }
5113 
5114   if (!AR->hasNoUnsignedWrap()) {
5115     ConstantRange AddRecRange = getUnsignedRange(AR);
5116     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5117 
5118     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5119         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5120     if (NUWRegion.contains(AddRecRange))
5121       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5122   }
5123 
5124   return Result;
5125 }
5126 
5127 SCEV::NoWrapFlags
5128 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5129   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5130 
5131   if (AR->hasNoSignedWrap())
5132     return Result;
5133 
5134   if (!AR->isAffine())
5135     return Result;
5136 
5137   // This function can be expensive, only try to prove NSW once per AddRec.
5138   if (!SignedWrapViaInductionTried.insert(AR).second)
5139     return Result;
5140 
5141   const SCEV *Step = AR->getStepRecurrence(*this);
5142   const Loop *L = AR->getLoop();
5143 
5144   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5145   // Note that this serves two purposes: It filters out loops that are
5146   // simply not analyzable, and it covers the case where this code is
5147   // being called from within backedge-taken count analysis, such that
5148   // attempting to ask for the backedge-taken count would likely result
5149   // in infinite recursion. In the later case, the analysis code will
5150   // cope with a conservative value, and it will take care to purge
5151   // that value once it has finished.
5152   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5153 
5154   // Normally, in the cases we can prove no-overflow via a
5155   // backedge guarding condition, we can also compute a backedge
5156   // taken count for the loop.  The exceptions are assumptions and
5157   // guards present in the loop -- SCEV is not great at exploiting
5158   // these to compute max backedge taken counts, but can still use
5159   // these to prove lack of overflow.  Use this fact to avoid
5160   // doing extra work that may not pay off.
5161 
5162   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5163       AC.assumptions().empty())
5164     return Result;
5165 
5166   // If the backedge is guarded by a comparison with the pre-inc  value the
5167   // addrec is safe. Also, if the entry is guarded by a comparison with the
5168   // start value and the backedge is guarded by a comparison with the post-inc
5169   // value, the addrec is safe.
5170   ICmpInst::Predicate Pred;
5171   const SCEV *OverflowLimit =
5172     getSignedOverflowLimitForStep(Step, &Pred, this);
5173   if (OverflowLimit &&
5174       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5175        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5176     Result = setFlags(Result, SCEV::FlagNSW);
5177   }
5178   return Result;
5179 }
5180 SCEV::NoWrapFlags
5181 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5182   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5183 
5184   if (AR->hasNoUnsignedWrap())
5185     return Result;
5186 
5187   if (!AR->isAffine())
5188     return Result;
5189 
5190   // This function can be expensive, only try to prove NUW once per AddRec.
5191   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5192     return Result;
5193 
5194   const SCEV *Step = AR->getStepRecurrence(*this);
5195   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5196   const Loop *L = AR->getLoop();
5197 
5198   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5199   // Note that this serves two purposes: It filters out loops that are
5200   // simply not analyzable, and it covers the case where this code is
5201   // being called from within backedge-taken count analysis, such that
5202   // attempting to ask for the backedge-taken count would likely result
5203   // in infinite recursion. In the later case, the analysis code will
5204   // cope with a conservative value, and it will take care to purge
5205   // that value once it has finished.
5206   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5207 
5208   // Normally, in the cases we can prove no-overflow via a
5209   // backedge guarding condition, we can also compute a backedge
5210   // taken count for the loop.  The exceptions are assumptions and
5211   // guards present in the loop -- SCEV is not great at exploiting
5212   // these to compute max backedge taken counts, but can still use
5213   // these to prove lack of overflow.  Use this fact to avoid
5214   // doing extra work that may not pay off.
5215 
5216   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5217       AC.assumptions().empty())
5218     return Result;
5219 
5220   // If the backedge is guarded by a comparison with the pre-inc  value the
5221   // addrec is safe. Also, if the entry is guarded by a comparison with the
5222   // start value and the backedge is guarded by a comparison with the post-inc
5223   // value, the addrec is safe.
5224   if (isKnownPositive(Step)) {
5225     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5226                                 getUnsignedRangeMax(Step));
5227     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5228         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5229       Result = setFlags(Result, SCEV::FlagNUW);
5230     }
5231   }
5232 
5233   return Result;
5234 }
5235 
5236 namespace {
5237 
5238 /// Represents an abstract binary operation.  This may exist as a
5239 /// normal instruction or constant expression, or may have been
5240 /// derived from an expression tree.
5241 struct BinaryOp {
5242   unsigned Opcode;
5243   Value *LHS;
5244   Value *RHS;
5245   bool IsNSW = false;
5246   bool IsNUW = false;
5247 
5248   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5249   /// constant expression.
5250   Operator *Op = nullptr;
5251 
5252   explicit BinaryOp(Operator *Op)
5253       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5254         Op(Op) {
5255     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5256       IsNSW = OBO->hasNoSignedWrap();
5257       IsNUW = OBO->hasNoUnsignedWrap();
5258     }
5259   }
5260 
5261   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5262                     bool IsNUW = false)
5263       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5264 };
5265 
5266 } // end anonymous namespace
5267 
5268 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5269 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5270                                              AssumptionCache &AC,
5271                                              const DominatorTree &DT,
5272                                              const Instruction *CxtI) {
5273   auto *Op = dyn_cast<Operator>(V);
5274   if (!Op)
5275     return std::nullopt;
5276 
5277   // Implementation detail: all the cleverness here should happen without
5278   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5279   // SCEV expressions when possible, and we should not break that.
5280 
5281   switch (Op->getOpcode()) {
5282   case Instruction::Add:
5283   case Instruction::Sub:
5284   case Instruction::Mul:
5285   case Instruction::UDiv:
5286   case Instruction::URem:
5287   case Instruction::And:
5288   case Instruction::AShr:
5289   case Instruction::Shl:
5290     return BinaryOp(Op);
5291 
5292   case Instruction::Or: {
5293     // Convert or disjoint into add nuw nsw.
5294     if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
5295       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5296                       /*IsNSW=*/true, /*IsNUW=*/true);
5297     return BinaryOp(Op);
5298   }
5299 
5300   case Instruction::Xor:
5301     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5302       // If the RHS of the xor is a signmask, then this is just an add.
5303       // Instcombine turns add of signmask into xor as a strength reduction step.
5304       if (RHSC->getValue().isSignMask())
5305         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5306     // Binary `xor` is a bit-wise `add`.
5307     if (V->getType()->isIntegerTy(1))
5308       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5309     return BinaryOp(Op);
5310 
5311   case Instruction::LShr:
5312     // Turn logical shift right of a constant into a unsigned divide.
5313     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5314       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5315 
5316       // If the shift count is not less than the bitwidth, the result of
5317       // the shift is undefined. Don't try to analyze it, because the
5318       // resolution chosen here may differ from the resolution chosen in
5319       // other parts of the compiler.
5320       if (SA->getValue().ult(BitWidth)) {
5321         Constant *X =
5322             ConstantInt::get(SA->getContext(),
5323                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5324         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5325       }
5326     }
5327     return BinaryOp(Op);
5328 
5329   case Instruction::ExtractValue: {
5330     auto *EVI = cast<ExtractValueInst>(Op);
5331     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5332       break;
5333 
5334     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5335     if (!WO)
5336       break;
5337 
5338     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5339     bool Signed = WO->isSigned();
5340     // TODO: Should add nuw/nsw flags for mul as well.
5341     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5342       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5343 
5344     // Now that we know that all uses of the arithmetic-result component of
5345     // CI are guarded by the overflow check, we can go ahead and pretend
5346     // that the arithmetic is non-overflowing.
5347     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5348                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5349   }
5350 
5351   default:
5352     break;
5353   }
5354 
5355   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5356   // semantics as a Sub, return a binary sub expression.
5357   if (auto *II = dyn_cast<IntrinsicInst>(V))
5358     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5359       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5360 
5361   return std::nullopt;
5362 }
5363 
5364 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5365 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5366 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5367 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5368 /// follows one of the following patterns:
5369 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5370 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5371 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5372 /// we return the type of the truncation operation, and indicate whether the
5373 /// truncated type should be treated as signed/unsigned by setting
5374 /// \p Signed to true/false, respectively.
5375 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5376                                bool &Signed, ScalarEvolution &SE) {
5377   // The case where Op == SymbolicPHI (that is, with no type conversions on
5378   // the way) is handled by the regular add recurrence creating logic and
5379   // would have already been triggered in createAddRecForPHI. Reaching it here
5380   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5381   // because one of the other operands of the SCEVAddExpr updating this PHI is
5382   // not invariant).
5383   //
5384   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5385   // this case predicates that allow us to prove that Op == SymbolicPHI will
5386   // be added.
5387   if (Op == SymbolicPHI)
5388     return nullptr;
5389 
5390   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5391   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5392   if (SourceBits != NewBits)
5393     return nullptr;
5394 
5395   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5396   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5397   if (!SExt && !ZExt)
5398     return nullptr;
5399   const SCEVTruncateExpr *Trunc =
5400       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5401            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5402   if (!Trunc)
5403     return nullptr;
5404   const SCEV *X = Trunc->getOperand();
5405   if (X != SymbolicPHI)
5406     return nullptr;
5407   Signed = SExt != nullptr;
5408   return Trunc->getType();
5409 }
5410 
5411 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5412   if (!PN->getType()->isIntegerTy())
5413     return nullptr;
5414   const Loop *L = LI.getLoopFor(PN->getParent());
5415   if (!L || L->getHeader() != PN->getParent())
5416     return nullptr;
5417   return L;
5418 }
5419 
5420 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5421 // computation that updates the phi follows the following pattern:
5422 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5423 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5424 // If so, try to see if it can be rewritten as an AddRecExpr under some
5425 // Predicates. If successful, return them as a pair. Also cache the results
5426 // of the analysis.
5427 //
5428 // Example usage scenario:
5429 //    Say the Rewriter is called for the following SCEV:
5430 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5431 //    where:
5432 //         %X = phi i64 (%Start, %BEValue)
5433 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5434 //    and call this function with %SymbolicPHI = %X.
5435 //
5436 //    The analysis will find that the value coming around the backedge has
5437 //    the following SCEV:
5438 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5439 //    Upon concluding that this matches the desired pattern, the function
5440 //    will return the pair {NewAddRec, SmallPredsVec} where:
5441 //         NewAddRec = {%Start,+,%Step}
5442 //         SmallPredsVec = {P1, P2, P3} as follows:
5443 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5444 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5445 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5446 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5447 //    under the predicates {P1,P2,P3}.
5448 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5449 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5450 //
5451 // TODO's:
5452 //
5453 // 1) Extend the Induction descriptor to also support inductions that involve
5454 //    casts: When needed (namely, when we are called in the context of the
5455 //    vectorizer induction analysis), a Set of cast instructions will be
5456 //    populated by this method, and provided back to isInductionPHI. This is
5457 //    needed to allow the vectorizer to properly record them to be ignored by
5458 //    the cost model and to avoid vectorizing them (otherwise these casts,
5459 //    which are redundant under the runtime overflow checks, will be
5460 //    vectorized, which can be costly).
5461 //
5462 // 2) Support additional induction/PHISCEV patterns: We also want to support
5463 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5464 //    after the induction update operation (the induction increment):
5465 //
5466 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5467 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5468 //
5469 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5470 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5471 //
5472 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5473 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5474 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5475   SmallVector<const SCEVPredicate *, 3> Predicates;
5476 
5477   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5478   // return an AddRec expression under some predicate.
5479 
5480   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5481   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5482   assert(L && "Expecting an integer loop header phi");
5483 
5484   // The loop may have multiple entrances or multiple exits; we can analyze
5485   // this phi as an addrec if it has a unique entry value and a unique
5486   // backedge value.
5487   Value *BEValueV = nullptr, *StartValueV = nullptr;
5488   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5489     Value *V = PN->getIncomingValue(i);
5490     if (L->contains(PN->getIncomingBlock(i))) {
5491       if (!BEValueV) {
5492         BEValueV = V;
5493       } else if (BEValueV != V) {
5494         BEValueV = nullptr;
5495         break;
5496       }
5497     } else if (!StartValueV) {
5498       StartValueV = V;
5499     } else if (StartValueV != V) {
5500       StartValueV = nullptr;
5501       break;
5502     }
5503   }
5504   if (!BEValueV || !StartValueV)
5505     return std::nullopt;
5506 
5507   const SCEV *BEValue = getSCEV(BEValueV);
5508 
5509   // If the value coming around the backedge is an add with the symbolic
5510   // value we just inserted, possibly with casts that we can ignore under
5511   // an appropriate runtime guard, then we found a simple induction variable!
5512   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5513   if (!Add)
5514     return std::nullopt;
5515 
5516   // If there is a single occurrence of the symbolic value, possibly
5517   // casted, replace it with a recurrence.
5518   unsigned FoundIndex = Add->getNumOperands();
5519   Type *TruncTy = nullptr;
5520   bool Signed;
5521   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5522     if ((TruncTy =
5523              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5524       if (FoundIndex == e) {
5525         FoundIndex = i;
5526         break;
5527       }
5528 
5529   if (FoundIndex == Add->getNumOperands())
5530     return std::nullopt;
5531 
5532   // Create an add with everything but the specified operand.
5533   SmallVector<const SCEV *, 8> Ops;
5534   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5535     if (i != FoundIndex)
5536       Ops.push_back(Add->getOperand(i));
5537   const SCEV *Accum = getAddExpr(Ops);
5538 
5539   // The runtime checks will not be valid if the step amount is
5540   // varying inside the loop.
5541   if (!isLoopInvariant(Accum, L))
5542     return std::nullopt;
5543 
5544   // *** Part2: Create the predicates
5545 
5546   // Analysis was successful: we have a phi-with-cast pattern for which we
5547   // can return an AddRec expression under the following predicates:
5548   //
5549   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5550   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5551   // P2: An Equal predicate that guarantees that
5552   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5553   // P3: An Equal predicate that guarantees that
5554   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5555   //
5556   // As we next prove, the above predicates guarantee that:
5557   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5558   //
5559   //
5560   // More formally, we want to prove that:
5561   //     Expr(i+1) = Start + (i+1) * Accum
5562   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5563   //
5564   // Given that:
5565   // 1) Expr(0) = Start
5566   // 2) Expr(1) = Start + Accum
5567   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5568   // 3) Induction hypothesis (step i):
5569   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5570   //
5571   // Proof:
5572   //  Expr(i+1) =
5573   //   = Start + (i+1)*Accum
5574   //   = (Start + i*Accum) + Accum
5575   //   = Expr(i) + Accum
5576   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5577   //                                                             :: from step i
5578   //
5579   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5580   //
5581   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5582   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5583   //     + Accum                                                     :: from P3
5584   //
5585   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5586   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5587   //
5588   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5589   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5590   //
5591   // By induction, the same applies to all iterations 1<=i<n:
5592   //
5593 
5594   // Create a truncated addrec for which we will add a no overflow check (P1).
5595   const SCEV *StartVal = getSCEV(StartValueV);
5596   const SCEV *PHISCEV =
5597       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5598                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5599 
5600   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5601   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5602   // will be constant.
5603   //
5604   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5605   // add P1.
5606   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5607     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5608         Signed ? SCEVWrapPredicate::IncrementNSSW
5609                : SCEVWrapPredicate::IncrementNUSW;
5610     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5611     Predicates.push_back(AddRecPred);
5612   }
5613 
5614   // Create the Equal Predicates P2,P3:
5615 
5616   // It is possible that the predicates P2 and/or P3 are computable at
5617   // compile time due to StartVal and/or Accum being constants.
5618   // If either one is, then we can check that now and escape if either P2
5619   // or P3 is false.
5620 
5621   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5622   // for each of StartVal and Accum
5623   auto getExtendedExpr = [&](const SCEV *Expr,
5624                              bool CreateSignExtend) -> const SCEV * {
5625     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5626     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5627     const SCEV *ExtendedExpr =
5628         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5629                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5630     return ExtendedExpr;
5631   };
5632 
5633   // Given:
5634   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5635   //               = getExtendedExpr(Expr)
5636   // Determine whether the predicate P: Expr == ExtendedExpr
5637   // is known to be false at compile time
5638   auto PredIsKnownFalse = [&](const SCEV *Expr,
5639                               const SCEV *ExtendedExpr) -> bool {
5640     return Expr != ExtendedExpr &&
5641            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5642   };
5643 
5644   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5645   if (PredIsKnownFalse(StartVal, StartExtended)) {
5646     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5647     return std::nullopt;
5648   }
5649 
5650   // The Step is always Signed (because the overflow checks are either
5651   // NSSW or NUSW)
5652   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5653   if (PredIsKnownFalse(Accum, AccumExtended)) {
5654     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5655     return std::nullopt;
5656   }
5657 
5658   auto AppendPredicate = [&](const SCEV *Expr,
5659                              const SCEV *ExtendedExpr) -> void {
5660     if (Expr != ExtendedExpr &&
5661         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5662       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5663       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5664       Predicates.push_back(Pred);
5665     }
5666   };
5667 
5668   AppendPredicate(StartVal, StartExtended);
5669   AppendPredicate(Accum, AccumExtended);
5670 
5671   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5672   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5673   // into NewAR if it will also add the runtime overflow checks specified in
5674   // Predicates.
5675   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5676 
5677   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5678       std::make_pair(NewAR, Predicates);
5679   // Remember the result of the analysis for this SCEV at this locayyytion.
5680   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5681   return PredRewrite;
5682 }
5683 
5684 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5685 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5686   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5687   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5688   if (!L)
5689     return std::nullopt;
5690 
5691   // Check to see if we already analyzed this PHI.
5692   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5693   if (I != PredicatedSCEVRewrites.end()) {
5694     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5695         I->second;
5696     // Analysis was done before and failed to create an AddRec:
5697     if (Rewrite.first == SymbolicPHI)
5698       return std::nullopt;
5699     // Analysis was done before and succeeded to create an AddRec under
5700     // a predicate:
5701     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5702     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5703     return Rewrite;
5704   }
5705 
5706   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5707     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5708 
5709   // Record in the cache that the analysis failed
5710   if (!Rewrite) {
5711     SmallVector<const SCEVPredicate *, 3> Predicates;
5712     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5713     return std::nullopt;
5714   }
5715 
5716   return Rewrite;
5717 }
5718 
5719 // FIXME: This utility is currently required because the Rewriter currently
5720 // does not rewrite this expression:
5721 // {0, +, (sext ix (trunc iy to ix) to iy)}
5722 // into {0, +, %step},
5723 // even when the following Equal predicate exists:
5724 // "%step == (sext ix (trunc iy to ix) to iy)".
5725 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5726     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5727   if (AR1 == AR2)
5728     return true;
5729 
5730   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5731     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5732         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5733       return false;
5734     return true;
5735   };
5736 
5737   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5738       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5739     return false;
5740   return true;
5741 }
5742 
5743 /// A helper function for createAddRecFromPHI to handle simple cases.
5744 ///
5745 /// This function tries to find an AddRec expression for the simplest (yet most
5746 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5747 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5748 /// technique for finding the AddRec expression.
5749 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5750                                                       Value *BEValueV,
5751                                                       Value *StartValueV) {
5752   const Loop *L = LI.getLoopFor(PN->getParent());
5753   assert(L && L->getHeader() == PN->getParent());
5754   assert(BEValueV && StartValueV);
5755 
5756   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5757   if (!BO)
5758     return nullptr;
5759 
5760   if (BO->Opcode != Instruction::Add)
5761     return nullptr;
5762 
5763   const SCEV *Accum = nullptr;
5764   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5765     Accum = getSCEV(BO->RHS);
5766   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5767     Accum = getSCEV(BO->LHS);
5768 
5769   if (!Accum)
5770     return nullptr;
5771 
5772   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5773   if (BO->IsNUW)
5774     Flags = setFlags(Flags, SCEV::FlagNUW);
5775   if (BO->IsNSW)
5776     Flags = setFlags(Flags, SCEV::FlagNSW);
5777 
5778   const SCEV *StartVal = getSCEV(StartValueV);
5779   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5780   insertValueToMap(PN, PHISCEV);
5781 
5782   if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5783     setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5784                    (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5785                                        proveNoWrapViaConstantRanges(AR)));
5786   }
5787 
5788   // We can add Flags to the post-inc expression only if we
5789   // know that it is *undefined behavior* for BEValueV to
5790   // overflow.
5791   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5792     assert(isLoopInvariant(Accum, L) &&
5793            "Accum is defined outside L, but is not invariant?");
5794     if (isAddRecNeverPoison(BEInst, L))
5795       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5796   }
5797 
5798   return PHISCEV;
5799 }
5800 
5801 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5802   const Loop *L = LI.getLoopFor(PN->getParent());
5803   if (!L || L->getHeader() != PN->getParent())
5804     return nullptr;
5805 
5806   // The loop may have multiple entrances or multiple exits; we can analyze
5807   // this phi as an addrec if it has a unique entry value and a unique
5808   // backedge value.
5809   Value *BEValueV = nullptr, *StartValueV = nullptr;
5810   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5811     Value *V = PN->getIncomingValue(i);
5812     if (L->contains(PN->getIncomingBlock(i))) {
5813       if (!BEValueV) {
5814         BEValueV = V;
5815       } else if (BEValueV != V) {
5816         BEValueV = nullptr;
5817         break;
5818       }
5819     } else if (!StartValueV) {
5820       StartValueV = V;
5821     } else if (StartValueV != V) {
5822       StartValueV = nullptr;
5823       break;
5824     }
5825   }
5826   if (!BEValueV || !StartValueV)
5827     return nullptr;
5828 
5829   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5830          "PHI node already processed?");
5831 
5832   // First, try to find AddRec expression without creating a fictituos symbolic
5833   // value for PN.
5834   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5835     return S;
5836 
5837   // Handle PHI node value symbolically.
5838   const SCEV *SymbolicName = getUnknown(PN);
5839   insertValueToMap(PN, SymbolicName);
5840 
5841   // Using this symbolic name for the PHI, analyze the value coming around
5842   // the back-edge.
5843   const SCEV *BEValue = getSCEV(BEValueV);
5844 
5845   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5846   // has a special value for the first iteration of the loop.
5847 
5848   // If the value coming around the backedge is an add with the symbolic
5849   // value we just inserted, then we found a simple induction variable!
5850   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5851     // If there is a single occurrence of the symbolic value, replace it
5852     // with a recurrence.
5853     unsigned FoundIndex = Add->getNumOperands();
5854     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5855       if (Add->getOperand(i) == SymbolicName)
5856         if (FoundIndex == e) {
5857           FoundIndex = i;
5858           break;
5859         }
5860 
5861     if (FoundIndex != Add->getNumOperands()) {
5862       // Create an add with everything but the specified operand.
5863       SmallVector<const SCEV *, 8> Ops;
5864       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5865         if (i != FoundIndex)
5866           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5867                                                              L, *this));
5868       const SCEV *Accum = getAddExpr(Ops);
5869 
5870       // This is not a valid addrec if the step amount is varying each
5871       // loop iteration, but is not itself an addrec in this loop.
5872       if (isLoopInvariant(Accum, L) ||
5873           (isa<SCEVAddRecExpr>(Accum) &&
5874            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5875         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5876 
5877         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5878           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5879             if (BO->IsNUW)
5880               Flags = setFlags(Flags, SCEV::FlagNUW);
5881             if (BO->IsNSW)
5882               Flags = setFlags(Flags, SCEV::FlagNSW);
5883           }
5884         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5885           if (GEP->getOperand(0) == PN) {
5886             GEPNoWrapFlags NW = GEP->getNoWrapFlags();
5887             // If the increment has any nowrap flags, then we know the address
5888             // space cannot be wrapped around.
5889             if (NW != GEPNoWrapFlags::none())
5890               Flags = setFlags(Flags, SCEV::FlagNW);
5891             // If the GEP is nuw or nusw with non-negative offset, we know that
5892             // no unsigned wrap occurs. We cannot set the nsw flag as only the
5893             // offset is treated as signed, while the base is unsigned.
5894             if (NW.hasNoUnsignedWrap() ||
5895                 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum)))
5896               Flags = setFlags(Flags, SCEV::FlagNUW);
5897           }
5898 
5899           // We cannot transfer nuw and nsw flags from subtraction
5900           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5901           // for instance.
5902         }
5903 
5904         const SCEV *StartVal = getSCEV(StartValueV);
5905         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5906 
5907         // Okay, for the entire analysis of this edge we assumed the PHI
5908         // to be symbolic.  We now need to go back and purge all of the
5909         // entries for the scalars that use the symbolic expression.
5910         forgetMemoizedResults(SymbolicName);
5911         insertValueToMap(PN, PHISCEV);
5912 
5913         if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5914           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5915                          (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5916                                              proveNoWrapViaConstantRanges(AR)));
5917         }
5918 
5919         // We can add Flags to the post-inc expression only if we
5920         // know that it is *undefined behavior* for BEValueV to
5921         // overflow.
5922         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5923           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5924             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5925 
5926         return PHISCEV;
5927       }
5928     }
5929   } else {
5930     // Otherwise, this could be a loop like this:
5931     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5932     // In this case, j = {1,+,1}  and BEValue is j.
5933     // Because the other in-value of i (0) fits the evolution of BEValue
5934     // i really is an addrec evolution.
5935     //
5936     // We can generalize this saying that i is the shifted value of BEValue
5937     // by one iteration:
5938     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5939     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5940     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5941     if (Shifted != getCouldNotCompute() &&
5942         Start != getCouldNotCompute()) {
5943       const SCEV *StartVal = getSCEV(StartValueV);
5944       if (Start == StartVal) {
5945         // Okay, for the entire analysis of this edge we assumed the PHI
5946         // to be symbolic.  We now need to go back and purge all of the
5947         // entries for the scalars that use the symbolic expression.
5948         forgetMemoizedResults(SymbolicName);
5949         insertValueToMap(PN, Shifted);
5950         return Shifted;
5951       }
5952     }
5953   }
5954 
5955   // Remove the temporary PHI node SCEV that has been inserted while intending
5956   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5957   // as it will prevent later (possibly simpler) SCEV expressions to be added
5958   // to the ValueExprMap.
5959   eraseValueFromMap(PN);
5960 
5961   return nullptr;
5962 }
5963 
5964 // Try to match a control flow sequence that branches out at BI and merges back
5965 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5966 // match.
5967 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5968                           Value *&C, Value *&LHS, Value *&RHS) {
5969   C = BI->getCondition();
5970 
5971   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5972   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5973 
5974   if (!LeftEdge.isSingleEdge())
5975     return false;
5976 
5977   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5978 
5979   Use &LeftUse = Merge->getOperandUse(0);
5980   Use &RightUse = Merge->getOperandUse(1);
5981 
5982   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5983     LHS = LeftUse;
5984     RHS = RightUse;
5985     return true;
5986   }
5987 
5988   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5989     LHS = RightUse;
5990     RHS = LeftUse;
5991     return true;
5992   }
5993 
5994   return false;
5995 }
5996 
5997 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5998   auto IsReachable =
5999       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
6000   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
6001     // Try to match
6002     //
6003     //  br %cond, label %left, label %right
6004     // left:
6005     //  br label %merge
6006     // right:
6007     //  br label %merge
6008     // merge:
6009     //  V = phi [ %x, %left ], [ %y, %right ]
6010     //
6011     // as "select %cond, %x, %y"
6012 
6013     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
6014     assert(IDom && "At least the entry block should dominate PN");
6015 
6016     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
6017     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
6018 
6019     if (BI && BI->isConditional() &&
6020         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
6021         properlyDominates(getSCEV(LHS), PN->getParent()) &&
6022         properlyDominates(getSCEV(RHS), PN->getParent()))
6023       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
6024   }
6025 
6026   return nullptr;
6027 }
6028 
6029 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6030   if (const SCEV *S = createAddRecFromPHI(PN))
6031     return S;
6032 
6033   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
6034     return getSCEV(V);
6035 
6036   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6037     return S;
6038 
6039   // If it's not a loop phi, we can't handle it yet.
6040   return getUnknown(PN);
6041 }
6042 
6043 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6044                             SCEVTypes RootKind) {
6045   struct FindClosure {
6046     const SCEV *OperandToFind;
6047     const SCEVTypes RootKind; // Must be a sequential min/max expression.
6048     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6049 
6050     bool Found = false;
6051 
6052     bool canRecurseInto(SCEVTypes Kind) const {
6053       // We can only recurse into the SCEV expression of the same effective type
6054       // as the type of our root SCEV expression, and into zero-extensions.
6055       return RootKind == Kind || NonSequentialRootKind == Kind ||
6056              scZeroExtend == Kind;
6057     };
6058 
6059     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6060         : OperandToFind(OperandToFind), RootKind(RootKind),
6061           NonSequentialRootKind(
6062               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6063                   RootKind)) {}
6064 
6065     bool follow(const SCEV *S) {
6066       Found = S == OperandToFind;
6067 
6068       return !isDone() && canRecurseInto(S->getSCEVType());
6069     }
6070 
6071     bool isDone() const { return Found; }
6072   };
6073 
6074   FindClosure FC(OperandToFind, RootKind);
6075   visitAll(Root, FC);
6076   return FC.Found;
6077 }
6078 
6079 std::optional<const SCEV *>
6080 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6081                                                               ICmpInst *Cond,
6082                                                               Value *TrueVal,
6083                                                               Value *FalseVal) {
6084   // Try to match some simple smax or umax patterns.
6085   auto *ICI = Cond;
6086 
6087   Value *LHS = ICI->getOperand(0);
6088   Value *RHS = ICI->getOperand(1);
6089 
6090   switch (ICI->getPredicate()) {
6091   case ICmpInst::ICMP_SLT:
6092   case ICmpInst::ICMP_SLE:
6093   case ICmpInst::ICMP_ULT:
6094   case ICmpInst::ICMP_ULE:
6095     std::swap(LHS, RHS);
6096     [[fallthrough]];
6097   case ICmpInst::ICMP_SGT:
6098   case ICmpInst::ICMP_SGE:
6099   case ICmpInst::ICMP_UGT:
6100   case ICmpInst::ICMP_UGE:
6101     // a > b ? a+x : b+x  ->  max(a, b)+x
6102     // a > b ? b+x : a+x  ->  min(a, b)+x
6103     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6104       bool Signed = ICI->isSigned();
6105       const SCEV *LA = getSCEV(TrueVal);
6106       const SCEV *RA = getSCEV(FalseVal);
6107       const SCEV *LS = getSCEV(LHS);
6108       const SCEV *RS = getSCEV(RHS);
6109       if (LA->getType()->isPointerTy()) {
6110         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6111         // Need to make sure we can't produce weird expressions involving
6112         // negated pointers.
6113         if (LA == LS && RA == RS)
6114           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6115         if (LA == RS && RA == LS)
6116           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6117       }
6118       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6119         if (Op->getType()->isPointerTy()) {
6120           Op = getLosslessPtrToIntExpr(Op);
6121           if (isa<SCEVCouldNotCompute>(Op))
6122             return Op;
6123         }
6124         if (Signed)
6125           Op = getNoopOrSignExtend(Op, Ty);
6126         else
6127           Op = getNoopOrZeroExtend(Op, Ty);
6128         return Op;
6129       };
6130       LS = CoerceOperand(LS);
6131       RS = CoerceOperand(RS);
6132       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6133         break;
6134       const SCEV *LDiff = getMinusSCEV(LA, LS);
6135       const SCEV *RDiff = getMinusSCEV(RA, RS);
6136       if (LDiff == RDiff)
6137         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6138                           LDiff);
6139       LDiff = getMinusSCEV(LA, RS);
6140       RDiff = getMinusSCEV(RA, LS);
6141       if (LDiff == RDiff)
6142         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6143                           LDiff);
6144     }
6145     break;
6146   case ICmpInst::ICMP_NE:
6147     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6148     std::swap(TrueVal, FalseVal);
6149     [[fallthrough]];
6150   case ICmpInst::ICMP_EQ:
6151     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6152     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6153         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6154       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6155       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6156       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6157       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6158       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6159       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6160         return getAddExpr(getUMaxExpr(X, C), Y);
6161     }
6162     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6163     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6164     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6165     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6166     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6167         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6168       const SCEV *X = getSCEV(LHS);
6169       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6170         X = ZExt->getOperand();
6171       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6172         const SCEV *FalseValExpr = getSCEV(FalseVal);
6173         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6174           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6175                              /*Sequential=*/true);
6176       }
6177     }
6178     break;
6179   default:
6180     break;
6181   }
6182 
6183   return std::nullopt;
6184 }
6185 
6186 static std::optional<const SCEV *>
6187 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6188                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6189   assert(CondExpr->getType()->isIntegerTy(1) &&
6190          TrueExpr->getType() == FalseExpr->getType() &&
6191          TrueExpr->getType()->isIntegerTy(1) &&
6192          "Unexpected operands of a select.");
6193 
6194   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6195   //                        -->  C + (umin_seq  cond, x - C)
6196   //
6197   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6198   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6199   //                        -->  C + (umin_seq ~cond, x - C)
6200 
6201   // FIXME: while we can't legally model the case where both of the hands
6202   // are fully variable, we only require that the *difference* is constant.
6203   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6204     return std::nullopt;
6205 
6206   const SCEV *X, *C;
6207   if (isa<SCEVConstant>(TrueExpr)) {
6208     CondExpr = SE->getNotSCEV(CondExpr);
6209     X = FalseExpr;
6210     C = TrueExpr;
6211   } else {
6212     X = TrueExpr;
6213     C = FalseExpr;
6214   }
6215   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6216                                            /*Sequential=*/true));
6217 }
6218 
6219 static std::optional<const SCEV *>
6220 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6221                               Value *FalseVal) {
6222   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6223     return std::nullopt;
6224 
6225   const auto *SECond = SE->getSCEV(Cond);
6226   const auto *SETrue = SE->getSCEV(TrueVal);
6227   const auto *SEFalse = SE->getSCEV(FalseVal);
6228   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6229 }
6230 
6231 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6232     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6233   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6234   assert(TrueVal->getType() == FalseVal->getType() &&
6235          V->getType() == TrueVal->getType() &&
6236          "Types of select hands and of the result must match.");
6237 
6238   // For now, only deal with i1-typed `select`s.
6239   if (!V->getType()->isIntegerTy(1))
6240     return getUnknown(V);
6241 
6242   if (std::optional<const SCEV *> S =
6243           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6244     return *S;
6245 
6246   return getUnknown(V);
6247 }
6248 
6249 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6250                                                       Value *TrueVal,
6251                                                       Value *FalseVal) {
6252   // Handle "constant" branch or select. This can occur for instance when a
6253   // loop pass transforms an inner loop and moves on to process the outer loop.
6254   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6255     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6256 
6257   if (auto *I = dyn_cast<Instruction>(V)) {
6258     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6259       if (std::optional<const SCEV *> S =
6260               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6261                                                            TrueVal, FalseVal))
6262         return *S;
6263     }
6264   }
6265 
6266   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6267 }
6268 
6269 /// Expand GEP instructions into add and multiply operations. This allows them
6270 /// to be analyzed by regular SCEV code.
6271 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6272   assert(GEP->getSourceElementType()->isSized() &&
6273          "GEP source element type must be sized");
6274 
6275   SmallVector<const SCEV *, 4> IndexExprs;
6276   for (Value *Index : GEP->indices())
6277     IndexExprs.push_back(getSCEV(Index));
6278   return getGEPExpr(GEP, IndexExprs);
6279 }
6280 
6281 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6282   uint64_t BitWidth = getTypeSizeInBits(S->getType());
6283   auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6284     return TrailingZeros >= BitWidth
6285                ? APInt::getZero(BitWidth)
6286                : APInt::getOneBitSet(BitWidth, TrailingZeros);
6287   };
6288   auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6289     // The result is GCD of all operands results.
6290     APInt Res = getConstantMultiple(N->getOperand(0));
6291     for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6292       Res = APIntOps::GreatestCommonDivisor(
6293           Res, getConstantMultiple(N->getOperand(I)));
6294     return Res;
6295   };
6296 
6297   switch (S->getSCEVType()) {
6298   case scConstant:
6299     return cast<SCEVConstant>(S)->getAPInt();
6300   case scPtrToInt:
6301     return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6302   case scUDivExpr:
6303   case scVScale:
6304     return APInt(BitWidth, 1);
6305   case scTruncate: {
6306     // Only multiples that are a power of 2 will hold after truncation.
6307     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6308     uint32_t TZ = getMinTrailingZeros(T->getOperand());
6309     return GetShiftedByZeros(TZ);
6310   }
6311   case scZeroExtend: {
6312     const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6313     return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6314   }
6315   case scSignExtend: {
6316     // Only multiples that are a power of 2 will hold after sext.
6317     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6318     uint32_t TZ = getMinTrailingZeros(E->getOperand());
6319     return GetShiftedByZeros(TZ);
6320   }
6321   case scMulExpr: {
6322     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6323     if (M->hasNoUnsignedWrap()) {
6324       // The result is the product of all operand results.
6325       APInt Res = getConstantMultiple(M->getOperand(0));
6326       for (const SCEV *Operand : M->operands().drop_front())
6327         Res = Res * getConstantMultiple(Operand);
6328       return Res;
6329     }
6330 
6331     // If there are no wrap guarentees, find the trailing zeros, which is the
6332     // sum of trailing zeros for all its operands.
6333     uint32_t TZ = 0;
6334     for (const SCEV *Operand : M->operands())
6335       TZ += getMinTrailingZeros(Operand);
6336     return GetShiftedByZeros(TZ);
6337   }
6338   case scAddExpr:
6339   case scAddRecExpr: {
6340     const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6341     if (N->hasNoUnsignedWrap())
6342         return GetGCDMultiple(N);
6343     // Find the trailing bits, which is the minimum of its operands.
6344     uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6345     for (const SCEV *Operand : N->operands().drop_front())
6346       TZ = std::min(TZ, getMinTrailingZeros(Operand));
6347     return GetShiftedByZeros(TZ);
6348   }
6349   case scUMaxExpr:
6350   case scSMaxExpr:
6351   case scUMinExpr:
6352   case scSMinExpr:
6353   case scSequentialUMinExpr:
6354     return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6355   case scUnknown: {
6356     // ask ValueTracking for known bits
6357     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6358     unsigned Known =
6359         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6360             .countMinTrailingZeros();
6361     return GetShiftedByZeros(Known);
6362   }
6363   case scCouldNotCompute:
6364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6365   }
6366   llvm_unreachable("Unknown SCEV kind!");
6367 }
6368 
6369 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6370   auto I = ConstantMultipleCache.find(S);
6371   if (I != ConstantMultipleCache.end())
6372     return I->second;
6373 
6374   APInt Result = getConstantMultipleImpl(S);
6375   auto InsertPair = ConstantMultipleCache.insert({S, Result});
6376   assert(InsertPair.second && "Should insert a new key");
6377   return InsertPair.first->second;
6378 }
6379 
6380 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6381   APInt Multiple = getConstantMultiple(S);
6382   return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6383 }
6384 
6385 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6386   return std::min(getConstantMultiple(S).countTrailingZeros(),
6387                   (unsigned)getTypeSizeInBits(S->getType()));
6388 }
6389 
6390 /// Helper method to assign a range to V from metadata present in the IR.
6391 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6392   if (Instruction *I = dyn_cast<Instruction>(V)) {
6393     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6394       return getConstantRangeFromMetadata(*MD);
6395     if (const auto *CB = dyn_cast<CallBase>(V))
6396       if (std::optional<ConstantRange> Range = CB->getRange())
6397         return Range;
6398   }
6399   if (auto *A = dyn_cast<Argument>(V))
6400     if (std::optional<ConstantRange> Range = A->getRange())
6401       return Range;
6402 
6403   return std::nullopt;
6404 }
6405 
6406 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6407                                      SCEV::NoWrapFlags Flags) {
6408   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6409     AddRec->setNoWrapFlags(Flags);
6410     UnsignedRanges.erase(AddRec);
6411     SignedRanges.erase(AddRec);
6412     ConstantMultipleCache.erase(AddRec);
6413   }
6414 }
6415 
6416 ConstantRange ScalarEvolution::
6417 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6418   const DataLayout &DL = getDataLayout();
6419 
6420   unsigned BitWidth = getTypeSizeInBits(U->getType());
6421   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6422 
6423   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6424   // use information about the trip count to improve our available range.  Note
6425   // that the trip count independent cases are already handled by known bits.
6426   // WARNING: The definition of recurrence used here is subtly different than
6427   // the one used by AddRec (and thus most of this file).  Step is allowed to
6428   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6429   // and other addrecs in the same loop (for non-affine addrecs).  The code
6430   // below intentionally handles the case where step is not loop invariant.
6431   auto *P = dyn_cast<PHINode>(U->getValue());
6432   if (!P)
6433     return FullSet;
6434 
6435   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6436   // even the values that are not available in these blocks may come from them,
6437   // and this leads to false-positive recurrence test.
6438   for (auto *Pred : predecessors(P->getParent()))
6439     if (!DT.isReachableFromEntry(Pred))
6440       return FullSet;
6441 
6442   BinaryOperator *BO;
6443   Value *Start, *Step;
6444   if (!matchSimpleRecurrence(P, BO, Start, Step))
6445     return FullSet;
6446 
6447   // If we found a recurrence in reachable code, we must be in a loop. Note
6448   // that BO might be in some subloop of L, and that's completely okay.
6449   auto *L = LI.getLoopFor(P->getParent());
6450   assert(L && L->getHeader() == P->getParent());
6451   if (!L->contains(BO->getParent()))
6452     // NOTE: This bailout should be an assert instead.  However, asserting
6453     // the condition here exposes a case where LoopFusion is querying SCEV
6454     // with malformed loop information during the midst of the transform.
6455     // There doesn't appear to be an obvious fix, so for the moment bailout
6456     // until the caller issue can be fixed.  PR49566 tracks the bug.
6457     return FullSet;
6458 
6459   // TODO: Extend to other opcodes such as mul, and div
6460   switch (BO->getOpcode()) {
6461   default:
6462     return FullSet;
6463   case Instruction::AShr:
6464   case Instruction::LShr:
6465   case Instruction::Shl:
6466     break;
6467   };
6468 
6469   if (BO->getOperand(0) != P)
6470     // TODO: Handle the power function forms some day.
6471     return FullSet;
6472 
6473   unsigned TC = getSmallConstantMaxTripCount(L);
6474   if (!TC || TC >= BitWidth)
6475     return FullSet;
6476 
6477   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6478   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6479   assert(KnownStart.getBitWidth() == BitWidth &&
6480          KnownStep.getBitWidth() == BitWidth);
6481 
6482   // Compute total shift amount, being careful of overflow and bitwidths.
6483   auto MaxShiftAmt = KnownStep.getMaxValue();
6484   APInt TCAP(BitWidth, TC-1);
6485   bool Overflow = false;
6486   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6487   if (Overflow)
6488     return FullSet;
6489 
6490   switch (BO->getOpcode()) {
6491   default:
6492     llvm_unreachable("filtered out above");
6493   case Instruction::AShr: {
6494     // For each ashr, three cases:
6495     //   shift = 0 => unchanged value
6496     //   saturation => 0 or -1
6497     //   other => a value closer to zero (of the same sign)
6498     // Thus, the end value is closer to zero than the start.
6499     auto KnownEnd = KnownBits::ashr(KnownStart,
6500                                     KnownBits::makeConstant(TotalShift));
6501     if (KnownStart.isNonNegative())
6502       // Analogous to lshr (simply not yet canonicalized)
6503       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6504                                         KnownStart.getMaxValue() + 1);
6505     if (KnownStart.isNegative())
6506       // End >=u Start && End <=s Start
6507       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6508                                         KnownEnd.getMaxValue() + 1);
6509     break;
6510   }
6511   case Instruction::LShr: {
6512     // For each lshr, three cases:
6513     //   shift = 0 => unchanged value
6514     //   saturation => 0
6515     //   other => a smaller positive number
6516     // Thus, the low end of the unsigned range is the last value produced.
6517     auto KnownEnd = KnownBits::lshr(KnownStart,
6518                                     KnownBits::makeConstant(TotalShift));
6519     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6520                                       KnownStart.getMaxValue() + 1);
6521   }
6522   case Instruction::Shl: {
6523     // Iff no bits are shifted out, value increases on every shift.
6524     auto KnownEnd = KnownBits::shl(KnownStart,
6525                                    KnownBits::makeConstant(TotalShift));
6526     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6527       return ConstantRange(KnownStart.getMinValue(),
6528                            KnownEnd.getMaxValue() + 1);
6529     break;
6530   }
6531   };
6532   return FullSet;
6533 }
6534 
6535 const ConstantRange &
6536 ScalarEvolution::getRangeRefIter(const SCEV *S,
6537                                  ScalarEvolution::RangeSignHint SignHint) {
6538   DenseMap<const SCEV *, ConstantRange> &Cache =
6539       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6540                                                        : SignedRanges;
6541   SmallVector<const SCEV *> WorkList;
6542   SmallPtrSet<const SCEV *, 8> Seen;
6543 
6544   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6545   // SCEVUnknown PHI node.
6546   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6547     if (!Seen.insert(Expr).second)
6548       return;
6549     if (Cache.contains(Expr))
6550       return;
6551     switch (Expr->getSCEVType()) {
6552     case scUnknown:
6553       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6554         break;
6555       [[fallthrough]];
6556     case scConstant:
6557     case scVScale:
6558     case scTruncate:
6559     case scZeroExtend:
6560     case scSignExtend:
6561     case scPtrToInt:
6562     case scAddExpr:
6563     case scMulExpr:
6564     case scUDivExpr:
6565     case scAddRecExpr:
6566     case scUMaxExpr:
6567     case scSMaxExpr:
6568     case scUMinExpr:
6569     case scSMinExpr:
6570     case scSequentialUMinExpr:
6571       WorkList.push_back(Expr);
6572       break;
6573     case scCouldNotCompute:
6574       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6575     }
6576   };
6577   AddToWorklist(S);
6578 
6579   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6580   for (unsigned I = 0; I != WorkList.size(); ++I) {
6581     const SCEV *P = WorkList[I];
6582     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6583     // If it is not a `SCEVUnknown`, just recurse into operands.
6584     if (!UnknownS) {
6585       for (const SCEV *Op : P->operands())
6586         AddToWorklist(Op);
6587       continue;
6588     }
6589     // `SCEVUnknown`'s require special treatment.
6590     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6591       if (!PendingPhiRangesIter.insert(P).second)
6592         continue;
6593       for (auto &Op : reverse(P->operands()))
6594         AddToWorklist(getSCEV(Op));
6595     }
6596   }
6597 
6598   if (!WorkList.empty()) {
6599     // Use getRangeRef to compute ranges for items in the worklist in reverse
6600     // order. This will force ranges for earlier operands to be computed before
6601     // their users in most cases.
6602     for (const SCEV *P : reverse(drop_begin(WorkList))) {
6603       getRangeRef(P, SignHint);
6604 
6605       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6606         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6607           PendingPhiRangesIter.erase(P);
6608     }
6609   }
6610 
6611   return getRangeRef(S, SignHint, 0);
6612 }
6613 
6614 /// Determine the range for a particular SCEV.  If SignHint is
6615 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6616 /// with a "cleaner" unsigned (resp. signed) representation.
6617 const ConstantRange &ScalarEvolution::getRangeRef(
6618     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6619   DenseMap<const SCEV *, ConstantRange> &Cache =
6620       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6621                                                        : SignedRanges;
6622   ConstantRange::PreferredRangeType RangeType =
6623       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6624                                                        : ConstantRange::Signed;
6625 
6626   // See if we've computed this range already.
6627   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6628   if (I != Cache.end())
6629     return I->second;
6630 
6631   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6632     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6633 
6634   // Switch to iteratively computing the range for S, if it is part of a deeply
6635   // nested expression.
6636   if (Depth > RangeIterThreshold)
6637     return getRangeRefIter(S, SignHint);
6638 
6639   unsigned BitWidth = getTypeSizeInBits(S->getType());
6640   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6641   using OBO = OverflowingBinaryOperator;
6642 
6643   // If the value has known zeros, the maximum value will have those known zeros
6644   // as well.
6645   if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6646     APInt Multiple = getNonZeroConstantMultiple(S);
6647     APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6648     if (!Remainder.isZero())
6649       ConservativeResult =
6650           ConstantRange(APInt::getMinValue(BitWidth),
6651                         APInt::getMaxValue(BitWidth) - Remainder + 1);
6652   }
6653   else {
6654     uint32_t TZ = getMinTrailingZeros(S);
6655     if (TZ != 0) {
6656       ConservativeResult = ConstantRange(
6657           APInt::getSignedMinValue(BitWidth),
6658           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6659     }
6660   }
6661 
6662   switch (S->getSCEVType()) {
6663   case scConstant:
6664     llvm_unreachable("Already handled above.");
6665   case scVScale:
6666     return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6667   case scTruncate: {
6668     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6669     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6670     return setRange(
6671         Trunc, SignHint,
6672         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6673   }
6674   case scZeroExtend: {
6675     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6676     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6677     return setRange(
6678         ZExt, SignHint,
6679         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6680   }
6681   case scSignExtend: {
6682     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6683     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6684     return setRange(
6685         SExt, SignHint,
6686         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6687   }
6688   case scPtrToInt: {
6689     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6690     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6691     return setRange(PtrToInt, SignHint, X);
6692   }
6693   case scAddExpr: {
6694     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6695     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6696     unsigned WrapType = OBO::AnyWrap;
6697     if (Add->hasNoSignedWrap())
6698       WrapType |= OBO::NoSignedWrap;
6699     if (Add->hasNoUnsignedWrap())
6700       WrapType |= OBO::NoUnsignedWrap;
6701     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6702       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6703                           WrapType, RangeType);
6704     return setRange(Add, SignHint,
6705                     ConservativeResult.intersectWith(X, RangeType));
6706   }
6707   case scMulExpr: {
6708     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6709     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6710     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6711       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6712     return setRange(Mul, SignHint,
6713                     ConservativeResult.intersectWith(X, RangeType));
6714   }
6715   case scUDivExpr: {
6716     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6717     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6718     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6719     return setRange(UDiv, SignHint,
6720                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6721   }
6722   case scAddRecExpr: {
6723     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6724     // If there's no unsigned wrap, the value will never be less than its
6725     // initial value.
6726     if (AddRec->hasNoUnsignedWrap()) {
6727       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6728       if (!UnsignedMinValue.isZero())
6729         ConservativeResult = ConservativeResult.intersectWith(
6730             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6731     }
6732 
6733     // If there's no signed wrap, and all the operands except initial value have
6734     // the same sign or zero, the value won't ever be:
6735     // 1: smaller than initial value if operands are non negative,
6736     // 2: bigger than initial value if operands are non positive.
6737     // For both cases, value can not cross signed min/max boundary.
6738     if (AddRec->hasNoSignedWrap()) {
6739       bool AllNonNeg = true;
6740       bool AllNonPos = true;
6741       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6742         if (!isKnownNonNegative(AddRec->getOperand(i)))
6743           AllNonNeg = false;
6744         if (!isKnownNonPositive(AddRec->getOperand(i)))
6745           AllNonPos = false;
6746       }
6747       if (AllNonNeg)
6748         ConservativeResult = ConservativeResult.intersectWith(
6749             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6750                                        APInt::getSignedMinValue(BitWidth)),
6751             RangeType);
6752       else if (AllNonPos)
6753         ConservativeResult = ConservativeResult.intersectWith(
6754             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6755                                        getSignedRangeMax(AddRec->getStart()) +
6756                                            1),
6757             RangeType);
6758     }
6759 
6760     // TODO: non-affine addrec
6761     if (AddRec->isAffine()) {
6762       const SCEV *MaxBEScev =
6763           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6764       if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6765         APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6766 
6767         // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6768         // MaxBECount's active bits are all <= AddRec's bit width.
6769         if (MaxBECount.getBitWidth() > BitWidth &&
6770             MaxBECount.getActiveBits() <= BitWidth)
6771           MaxBECount = MaxBECount.trunc(BitWidth);
6772         else if (MaxBECount.getBitWidth() < BitWidth)
6773           MaxBECount = MaxBECount.zext(BitWidth);
6774 
6775         if (MaxBECount.getBitWidth() == BitWidth) {
6776           auto RangeFromAffine = getRangeForAffineAR(
6777               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6778           ConservativeResult =
6779               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6780 
6781           auto RangeFromFactoring = getRangeViaFactoring(
6782               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6783           ConservativeResult =
6784               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6785         }
6786       }
6787 
6788       // Now try symbolic BE count and more powerful methods.
6789       if (UseExpensiveRangeSharpening) {
6790         const SCEV *SymbolicMaxBECount =
6791             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6792         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6793             getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6794             AddRec->hasNoSelfWrap()) {
6795           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6796               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6797           ConservativeResult =
6798               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6799         }
6800       }
6801     }
6802 
6803     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6804   }
6805   case scUMaxExpr:
6806   case scSMaxExpr:
6807   case scUMinExpr:
6808   case scSMinExpr:
6809   case scSequentialUMinExpr: {
6810     Intrinsic::ID ID;
6811     switch (S->getSCEVType()) {
6812     case scUMaxExpr:
6813       ID = Intrinsic::umax;
6814       break;
6815     case scSMaxExpr:
6816       ID = Intrinsic::smax;
6817       break;
6818     case scUMinExpr:
6819     case scSequentialUMinExpr:
6820       ID = Intrinsic::umin;
6821       break;
6822     case scSMinExpr:
6823       ID = Intrinsic::smin;
6824       break;
6825     default:
6826       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6827     }
6828 
6829     const auto *NAry = cast<SCEVNAryExpr>(S);
6830     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6831     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6832       X = X.intrinsic(
6833           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6834     return setRange(S, SignHint,
6835                     ConservativeResult.intersectWith(X, RangeType));
6836   }
6837   case scUnknown: {
6838     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6839     Value *V = U->getValue();
6840 
6841     // Check if the IR explicitly contains !range metadata.
6842     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6843     if (MDRange)
6844       ConservativeResult =
6845           ConservativeResult.intersectWith(*MDRange, RangeType);
6846 
6847     // Use facts about recurrences in the underlying IR.  Note that add
6848     // recurrences are AddRecExprs and thus don't hit this path.  This
6849     // primarily handles shift recurrences.
6850     auto CR = getRangeForUnknownRecurrence(U);
6851     ConservativeResult = ConservativeResult.intersectWith(CR);
6852 
6853     // See if ValueTracking can give us a useful range.
6854     const DataLayout &DL = getDataLayout();
6855     KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6856     if (Known.getBitWidth() != BitWidth)
6857       Known = Known.zextOrTrunc(BitWidth);
6858 
6859     // ValueTracking may be able to compute a tighter result for the number of
6860     // sign bits than for the value of those sign bits.
6861     unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6862     if (U->getType()->isPointerTy()) {
6863       // If the pointer size is larger than the index size type, this can cause
6864       // NS to be larger than BitWidth. So compensate for this.
6865       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6866       int ptrIdxDiff = ptrSize - BitWidth;
6867       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6868         NS -= ptrIdxDiff;
6869     }
6870 
6871     if (NS > 1) {
6872       // If we know any of the sign bits, we know all of the sign bits.
6873       if (!Known.Zero.getHiBits(NS).isZero())
6874         Known.Zero.setHighBits(NS);
6875       if (!Known.One.getHiBits(NS).isZero())
6876         Known.One.setHighBits(NS);
6877     }
6878 
6879     if (Known.getMinValue() != Known.getMaxValue() + 1)
6880       ConservativeResult = ConservativeResult.intersectWith(
6881           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6882           RangeType);
6883     if (NS > 1)
6884       ConservativeResult = ConservativeResult.intersectWith(
6885           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6886                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6887           RangeType);
6888 
6889     if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6890       // Strengthen the range if the underlying IR value is a
6891       // global/alloca/heap allocation using the size of the object.
6892       ObjectSizeOpts Opts;
6893       Opts.RoundToAlign = false;
6894       Opts.NullIsUnknownSize = true;
6895       uint64_t ObjSize;
6896       if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) ||
6897            isAllocationFn(V, &TLI)) &&
6898           getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) {
6899         // The highest address the object can start is ObjSize bytes before the
6900         // end (unsigned max value). If this value is not a multiple of the
6901         // alignment, the last possible start value is the next lowest multiple
6902         // of the alignment. Note: The computations below cannot overflow,
6903         // because if they would there's no possible start address for the
6904         // object.
6905         APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize);
6906         uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6907         uint64_t Rem = MaxVal.urem(Align);
6908         MaxVal -= APInt(BitWidth, Rem);
6909         APInt MinVal = APInt::getZero(BitWidth);
6910         if (llvm::isKnownNonZero(V, DL))
6911           MinVal = Align;
6912         ConservativeResult = ConservativeResult.intersectWith(
6913             ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6914       }
6915     }
6916 
6917     // A range of Phi is a subset of union of all ranges of its input.
6918     if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6919       // Make sure that we do not run over cycled Phis.
6920       if (PendingPhiRanges.insert(Phi).second) {
6921         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6922 
6923         for (const auto &Op : Phi->operands()) {
6924           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6925           RangeFromOps = RangeFromOps.unionWith(OpRange);
6926           // No point to continue if we already have a full set.
6927           if (RangeFromOps.isFullSet())
6928             break;
6929         }
6930         ConservativeResult =
6931             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6932         bool Erased = PendingPhiRanges.erase(Phi);
6933         assert(Erased && "Failed to erase Phi properly?");
6934         (void)Erased;
6935       }
6936     }
6937 
6938     // vscale can't be equal to zero
6939     if (const auto *II = dyn_cast<IntrinsicInst>(V))
6940       if (II->getIntrinsicID() == Intrinsic::vscale) {
6941         ConstantRange Disallowed = APInt::getZero(BitWidth);
6942         ConservativeResult = ConservativeResult.difference(Disallowed);
6943       }
6944 
6945     return setRange(U, SignHint, std::move(ConservativeResult));
6946   }
6947   case scCouldNotCompute:
6948     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6949   }
6950 
6951   return setRange(S, SignHint, std::move(ConservativeResult));
6952 }
6953 
6954 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6955 // values that the expression can take. Initially, the expression has a value
6956 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6957 // argument defines if we treat Step as signed or unsigned.
6958 static ConstantRange getRangeForAffineARHelper(APInt Step,
6959                                                const ConstantRange &StartRange,
6960                                                const APInt &MaxBECount,
6961                                                bool Signed) {
6962   unsigned BitWidth = Step.getBitWidth();
6963   assert(BitWidth == StartRange.getBitWidth() &&
6964          BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6965   // If either Step or MaxBECount is 0, then the expression won't change, and we
6966   // just need to return the initial range.
6967   if (Step == 0 || MaxBECount == 0)
6968     return StartRange;
6969 
6970   // If we don't know anything about the initial value (i.e. StartRange is
6971   // FullRange), then we don't know anything about the final range either.
6972   // Return FullRange.
6973   if (StartRange.isFullSet())
6974     return ConstantRange::getFull(BitWidth);
6975 
6976   // If Step is signed and negative, then we use its absolute value, but we also
6977   // note that we're moving in the opposite direction.
6978   bool Descending = Signed && Step.isNegative();
6979 
6980   if (Signed)
6981     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6982     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6983     // This equations hold true due to the well-defined wrap-around behavior of
6984     // APInt.
6985     Step = Step.abs();
6986 
6987   // Check if Offset is more than full span of BitWidth. If it is, the
6988   // expression is guaranteed to overflow.
6989   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6990     return ConstantRange::getFull(BitWidth);
6991 
6992   // Offset is by how much the expression can change. Checks above guarantee no
6993   // overflow here.
6994   APInt Offset = Step * MaxBECount;
6995 
6996   // Minimum value of the final range will match the minimal value of StartRange
6997   // if the expression is increasing and will be decreased by Offset otherwise.
6998   // Maximum value of the final range will match the maximal value of StartRange
6999   // if the expression is decreasing and will be increased by Offset otherwise.
7000   APInt StartLower = StartRange.getLower();
7001   APInt StartUpper = StartRange.getUpper() - 1;
7002   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
7003                                    : (StartUpper + std::move(Offset));
7004 
7005   // It's possible that the new minimum/maximum value will fall into the initial
7006   // range (due to wrap around). This means that the expression can take any
7007   // value in this bitwidth, and we have to return full range.
7008   if (StartRange.contains(MovedBoundary))
7009     return ConstantRange::getFull(BitWidth);
7010 
7011   APInt NewLower =
7012       Descending ? std::move(MovedBoundary) : std::move(StartLower);
7013   APInt NewUpper =
7014       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
7015   NewUpper += 1;
7016 
7017   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7018   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
7019 }
7020 
7021 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
7022                                                    const SCEV *Step,
7023                                                    const APInt &MaxBECount) {
7024   assert(getTypeSizeInBits(Start->getType()) ==
7025              getTypeSizeInBits(Step->getType()) &&
7026          getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
7027          "mismatched bit widths");
7028 
7029   // First, consider step signed.
7030   ConstantRange StartSRange = getSignedRange(Start);
7031   ConstantRange StepSRange = getSignedRange(Step);
7032 
7033   // If Step can be both positive and negative, we need to find ranges for the
7034   // maximum absolute step values in both directions and union them.
7035   ConstantRange SR = getRangeForAffineARHelper(
7036       StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
7037   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
7038                                               StartSRange, MaxBECount,
7039                                               /* Signed = */ true));
7040 
7041   // Next, consider step unsigned.
7042   ConstantRange UR = getRangeForAffineARHelper(
7043       getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
7044       /* Signed = */ false);
7045 
7046   // Finally, intersect signed and unsigned ranges.
7047   return SR.intersectWith(UR, ConstantRange::Smallest);
7048 }
7049 
7050 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7051     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
7052     ScalarEvolution::RangeSignHint SignHint) {
7053   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7054   assert(AddRec->hasNoSelfWrap() &&
7055          "This only works for non-self-wrapping AddRecs!");
7056   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7057   const SCEV *Step = AddRec->getStepRecurrence(*this);
7058   // Only deal with constant step to save compile time.
7059   if (!isa<SCEVConstant>(Step))
7060     return ConstantRange::getFull(BitWidth);
7061   // Let's make sure that we can prove that we do not self-wrap during
7062   // MaxBECount iterations. We need this because MaxBECount is a maximum
7063   // iteration count estimate, and we might infer nw from some exit for which we
7064   // do not know max exit count (or any other side reasoning).
7065   // TODO: Turn into assert at some point.
7066   if (getTypeSizeInBits(MaxBECount->getType()) >
7067       getTypeSizeInBits(AddRec->getType()))
7068     return ConstantRange::getFull(BitWidth);
7069   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
7070   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
7071   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
7072   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
7073   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
7074                                          MaxItersWithoutWrap))
7075     return ConstantRange::getFull(BitWidth);
7076 
7077   ICmpInst::Predicate LEPred =
7078       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7079   ICmpInst::Predicate GEPred =
7080       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7081   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7082 
7083   // We know that there is no self-wrap. Let's take Start and End values and
7084   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7085   // the iteration. They either lie inside the range [Min(Start, End),
7086   // Max(Start, End)] or outside it:
7087   //
7088   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7089   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7090   //
7091   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7092   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7093   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7094   // Start <= End and step is positive, or Start >= End and step is negative.
7095   const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7096   ConstantRange StartRange = getRangeRef(Start, SignHint);
7097   ConstantRange EndRange = getRangeRef(End, SignHint);
7098   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7099   // If they already cover full iteration space, we will know nothing useful
7100   // even if we prove what we want to prove.
7101   if (RangeBetween.isFullSet())
7102     return RangeBetween;
7103   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7104   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7105                                : RangeBetween.isWrappedSet();
7106   if (IsWrappedSet)
7107     return ConstantRange::getFull(BitWidth);
7108 
7109   if (isKnownPositive(Step) &&
7110       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7111     return RangeBetween;
7112   if (isKnownNegative(Step) &&
7113            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7114     return RangeBetween;
7115   return ConstantRange::getFull(BitWidth);
7116 }
7117 
7118 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7119                                                     const SCEV *Step,
7120                                                     const APInt &MaxBECount) {
7121   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7122   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7123 
7124   unsigned BitWidth = MaxBECount.getBitWidth();
7125   assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7126          getTypeSizeInBits(Step->getType()) == BitWidth &&
7127          "mismatched bit widths");
7128 
7129   struct SelectPattern {
7130     Value *Condition = nullptr;
7131     APInt TrueValue;
7132     APInt FalseValue;
7133 
7134     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7135                            const SCEV *S) {
7136       std::optional<unsigned> CastOp;
7137       APInt Offset(BitWidth, 0);
7138 
7139       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7140              "Should be!");
7141 
7142       // Peel off a constant offset:
7143       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7144         // In the future we could consider being smarter here and handle
7145         // {Start+Step,+,Step} too.
7146         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7147           return;
7148 
7149         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7150         S = SA->getOperand(1);
7151       }
7152 
7153       // Peel off a cast operation
7154       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7155         CastOp = SCast->getSCEVType();
7156         S = SCast->getOperand();
7157       }
7158 
7159       using namespace llvm::PatternMatch;
7160 
7161       auto *SU = dyn_cast<SCEVUnknown>(S);
7162       const APInt *TrueVal, *FalseVal;
7163       if (!SU ||
7164           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7165                                           m_APInt(FalseVal)))) {
7166         Condition = nullptr;
7167         return;
7168       }
7169 
7170       TrueValue = *TrueVal;
7171       FalseValue = *FalseVal;
7172 
7173       // Re-apply the cast we peeled off earlier
7174       if (CastOp)
7175         switch (*CastOp) {
7176         default:
7177           llvm_unreachable("Unknown SCEV cast type!");
7178 
7179         case scTruncate:
7180           TrueValue = TrueValue.trunc(BitWidth);
7181           FalseValue = FalseValue.trunc(BitWidth);
7182           break;
7183         case scZeroExtend:
7184           TrueValue = TrueValue.zext(BitWidth);
7185           FalseValue = FalseValue.zext(BitWidth);
7186           break;
7187         case scSignExtend:
7188           TrueValue = TrueValue.sext(BitWidth);
7189           FalseValue = FalseValue.sext(BitWidth);
7190           break;
7191         }
7192 
7193       // Re-apply the constant offset we peeled off earlier
7194       TrueValue += Offset;
7195       FalseValue += Offset;
7196     }
7197 
7198     bool isRecognized() { return Condition != nullptr; }
7199   };
7200 
7201   SelectPattern StartPattern(*this, BitWidth, Start);
7202   if (!StartPattern.isRecognized())
7203     return ConstantRange::getFull(BitWidth);
7204 
7205   SelectPattern StepPattern(*this, BitWidth, Step);
7206   if (!StepPattern.isRecognized())
7207     return ConstantRange::getFull(BitWidth);
7208 
7209   if (StartPattern.Condition != StepPattern.Condition) {
7210     // We don't handle this case today; but we could, by considering four
7211     // possibilities below instead of two. I'm not sure if there are cases where
7212     // that will help over what getRange already does, though.
7213     return ConstantRange::getFull(BitWidth);
7214   }
7215 
7216   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7217   // construct arbitrary general SCEV expressions here.  This function is called
7218   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7219   // say) can end up caching a suboptimal value.
7220 
7221   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7222   // C2352 and C2512 (otherwise it isn't needed).
7223 
7224   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7225   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7226   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7227   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7228 
7229   ConstantRange TrueRange =
7230       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7231   ConstantRange FalseRange =
7232       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7233 
7234   return TrueRange.unionWith(FalseRange);
7235 }
7236 
7237 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7238   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7239   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7240 
7241   // Return early if there are no flags to propagate to the SCEV.
7242   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7243   if (BinOp->hasNoUnsignedWrap())
7244     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7245   if (BinOp->hasNoSignedWrap())
7246     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7247   if (Flags == SCEV::FlagAnyWrap)
7248     return SCEV::FlagAnyWrap;
7249 
7250   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7251 }
7252 
7253 const Instruction *
7254 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7255   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7256     return &*AddRec->getLoop()->getHeader()->begin();
7257   if (auto *U = dyn_cast<SCEVUnknown>(S))
7258     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7259       return I;
7260   return nullptr;
7261 }
7262 
7263 const Instruction *
7264 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7265                                        bool &Precise) {
7266   Precise = true;
7267   // Do a bounded search of the def relation of the requested SCEVs.
7268   SmallSet<const SCEV *, 16> Visited;
7269   SmallVector<const SCEV *> Worklist;
7270   auto pushOp = [&](const SCEV *S) {
7271     if (!Visited.insert(S).second)
7272       return;
7273     // Threshold of 30 here is arbitrary.
7274     if (Visited.size() > 30) {
7275       Precise = false;
7276       return;
7277     }
7278     Worklist.push_back(S);
7279   };
7280 
7281   for (const auto *S : Ops)
7282     pushOp(S);
7283 
7284   const Instruction *Bound = nullptr;
7285   while (!Worklist.empty()) {
7286     auto *S = Worklist.pop_back_val();
7287     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7288       if (!Bound || DT.dominates(Bound, DefI))
7289         Bound = DefI;
7290     } else {
7291       for (const auto *Op : S->operands())
7292         pushOp(Op);
7293     }
7294   }
7295   return Bound ? Bound : &*F.getEntryBlock().begin();
7296 }
7297 
7298 const Instruction *
7299 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7300   bool Discard;
7301   return getDefiningScopeBound(Ops, Discard);
7302 }
7303 
7304 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7305                                                         const Instruction *B) {
7306   if (A->getParent() == B->getParent() &&
7307       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7308                                                  B->getIterator()))
7309     return true;
7310 
7311   auto *BLoop = LI.getLoopFor(B->getParent());
7312   if (BLoop && BLoop->getHeader() == B->getParent() &&
7313       BLoop->getLoopPreheader() == A->getParent() &&
7314       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7315                                                  A->getParent()->end()) &&
7316       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7317                                                  B->getIterator()))
7318     return true;
7319   return false;
7320 }
7321 
7322 
7323 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7324   // Only proceed if we can prove that I does not yield poison.
7325   if (!programUndefinedIfPoison(I))
7326     return false;
7327 
7328   // At this point we know that if I is executed, then it does not wrap
7329   // according to at least one of NSW or NUW. If I is not executed, then we do
7330   // not know if the calculation that I represents would wrap. Multiple
7331   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7332   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7333   // derived from other instructions that map to the same SCEV. We cannot make
7334   // that guarantee for cases where I is not executed. So we need to find a
7335   // upper bound on the defining scope for the SCEV, and prove that I is
7336   // executed every time we enter that scope.  When the bounding scope is a
7337   // loop (the common case), this is equivalent to proving I executes on every
7338   // iteration of that loop.
7339   SmallVector<const SCEV *> SCEVOps;
7340   for (const Use &Op : I->operands()) {
7341     // I could be an extractvalue from a call to an overflow intrinsic.
7342     // TODO: We can do better here in some cases.
7343     if (isSCEVable(Op->getType()))
7344       SCEVOps.push_back(getSCEV(Op));
7345   }
7346   auto *DefI = getDefiningScopeBound(SCEVOps);
7347   return isGuaranteedToTransferExecutionTo(DefI, I);
7348 }
7349 
7350 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7351   // If we know that \c I can never be poison period, then that's enough.
7352   if (isSCEVExprNeverPoison(I))
7353     return true;
7354 
7355   // If the loop only has one exit, then we know that, if the loop is entered,
7356   // any instruction dominating that exit will be executed. If any such
7357   // instruction would result in UB, the addrec cannot be poison.
7358   //
7359   // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7360   // also handles uses outside the loop header (they just need to dominate the
7361   // single exit).
7362 
7363   auto *ExitingBB = L->getExitingBlock();
7364   if (!ExitingBB || !loopHasNoAbnormalExits(L))
7365     return false;
7366 
7367   SmallPtrSet<const Value *, 16> KnownPoison;
7368   SmallVector<const Instruction *, 8> Worklist;
7369 
7370   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7371   // things that are known to be poison under that assumption go on the
7372   // Worklist.
7373   KnownPoison.insert(I);
7374   Worklist.push_back(I);
7375 
7376   while (!Worklist.empty()) {
7377     const Instruction *Poison = Worklist.pop_back_val();
7378 
7379     for (const Use &U : Poison->uses()) {
7380       const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7381       if (mustTriggerUB(PoisonUser, KnownPoison) &&
7382           DT.dominates(PoisonUser->getParent(), ExitingBB))
7383         return true;
7384 
7385       if (propagatesPoison(U) && L->contains(PoisonUser))
7386         if (KnownPoison.insert(PoisonUser).second)
7387           Worklist.push_back(PoisonUser);
7388     }
7389   }
7390 
7391   return false;
7392 }
7393 
7394 ScalarEvolution::LoopProperties
7395 ScalarEvolution::getLoopProperties(const Loop *L) {
7396   using LoopProperties = ScalarEvolution::LoopProperties;
7397 
7398   auto Itr = LoopPropertiesCache.find(L);
7399   if (Itr == LoopPropertiesCache.end()) {
7400     auto HasSideEffects = [](Instruction *I) {
7401       if (auto *SI = dyn_cast<StoreInst>(I))
7402         return !SI->isSimple();
7403 
7404       return I->mayThrow() || I->mayWriteToMemory();
7405     };
7406 
7407     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7408                          /*HasNoSideEffects*/ true};
7409 
7410     for (auto *BB : L->getBlocks())
7411       for (auto &I : *BB) {
7412         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7413           LP.HasNoAbnormalExits = false;
7414         if (HasSideEffects(&I))
7415           LP.HasNoSideEffects = false;
7416         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7417           break; // We're already as pessimistic as we can get.
7418       }
7419 
7420     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7421     assert(InsertPair.second && "We just checked!");
7422     Itr = InsertPair.first;
7423   }
7424 
7425   return Itr->second;
7426 }
7427 
7428 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7429   // A mustprogress loop without side effects must be finite.
7430   // TODO: The check used here is very conservative.  It's only *specific*
7431   // side effects which are well defined in infinite loops.
7432   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7433 }
7434 
7435 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7436   // Worklist item with a Value and a bool indicating whether all operands have
7437   // been visited already.
7438   using PointerTy = PointerIntPair<Value *, 1, bool>;
7439   SmallVector<PointerTy> Stack;
7440 
7441   Stack.emplace_back(V, true);
7442   Stack.emplace_back(V, false);
7443   while (!Stack.empty()) {
7444     auto E = Stack.pop_back_val();
7445     Value *CurV = E.getPointer();
7446 
7447     if (getExistingSCEV(CurV))
7448       continue;
7449 
7450     SmallVector<Value *> Ops;
7451     const SCEV *CreatedSCEV = nullptr;
7452     // If all operands have been visited already, create the SCEV.
7453     if (E.getInt()) {
7454       CreatedSCEV = createSCEV(CurV);
7455     } else {
7456       // Otherwise get the operands we need to create SCEV's for before creating
7457       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7458       // just use it.
7459       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7460     }
7461 
7462     if (CreatedSCEV) {
7463       insertValueToMap(CurV, CreatedSCEV);
7464     } else {
7465       // Queue CurV for SCEV creation, followed by its's operands which need to
7466       // be constructed first.
7467       Stack.emplace_back(CurV, true);
7468       for (Value *Op : Ops)
7469         Stack.emplace_back(Op, false);
7470     }
7471   }
7472 
7473   return getExistingSCEV(V);
7474 }
7475 
7476 const SCEV *
7477 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7478   if (!isSCEVable(V->getType()))
7479     return getUnknown(V);
7480 
7481   if (Instruction *I = dyn_cast<Instruction>(V)) {
7482     // Don't attempt to analyze instructions in blocks that aren't
7483     // reachable. Such instructions don't matter, and they aren't required
7484     // to obey basic rules for definitions dominating uses which this
7485     // analysis depends on.
7486     if (!DT.isReachableFromEntry(I->getParent()))
7487       return getUnknown(PoisonValue::get(V->getType()));
7488   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7489     return getConstant(CI);
7490   else if (isa<GlobalAlias>(V))
7491     return getUnknown(V);
7492   else if (!isa<ConstantExpr>(V))
7493     return getUnknown(V);
7494 
7495   Operator *U = cast<Operator>(V);
7496   if (auto BO =
7497           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7498     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7499     switch (BO->Opcode) {
7500     case Instruction::Add:
7501     case Instruction::Mul: {
7502       // For additions and multiplications, traverse add/mul chains for which we
7503       // can potentially create a single SCEV, to reduce the number of
7504       // get{Add,Mul}Expr calls.
7505       do {
7506         if (BO->Op) {
7507           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7508             Ops.push_back(BO->Op);
7509             break;
7510           }
7511         }
7512         Ops.push_back(BO->RHS);
7513         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7514                                    dyn_cast<Instruction>(V));
7515         if (!NewBO ||
7516             (BO->Opcode == Instruction::Add &&
7517              (NewBO->Opcode != Instruction::Add &&
7518               NewBO->Opcode != Instruction::Sub)) ||
7519             (BO->Opcode == Instruction::Mul &&
7520              NewBO->Opcode != Instruction::Mul)) {
7521           Ops.push_back(BO->LHS);
7522           break;
7523         }
7524         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7525         // requires a SCEV for the LHS.
7526         if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7527           auto *I = dyn_cast<Instruction>(BO->Op);
7528           if (I && programUndefinedIfPoison(I)) {
7529             Ops.push_back(BO->LHS);
7530             break;
7531           }
7532         }
7533         BO = NewBO;
7534       } while (true);
7535       return nullptr;
7536     }
7537     case Instruction::Sub:
7538     case Instruction::UDiv:
7539     case Instruction::URem:
7540       break;
7541     case Instruction::AShr:
7542     case Instruction::Shl:
7543     case Instruction::Xor:
7544       if (!IsConstArg)
7545         return nullptr;
7546       break;
7547     case Instruction::And:
7548     case Instruction::Or:
7549       if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7550         return nullptr;
7551       break;
7552     case Instruction::LShr:
7553       return getUnknown(V);
7554     default:
7555       llvm_unreachable("Unhandled binop");
7556       break;
7557     }
7558 
7559     Ops.push_back(BO->LHS);
7560     Ops.push_back(BO->RHS);
7561     return nullptr;
7562   }
7563 
7564   switch (U->getOpcode()) {
7565   case Instruction::Trunc:
7566   case Instruction::ZExt:
7567   case Instruction::SExt:
7568   case Instruction::PtrToInt:
7569     Ops.push_back(U->getOperand(0));
7570     return nullptr;
7571 
7572   case Instruction::BitCast:
7573     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7574       Ops.push_back(U->getOperand(0));
7575       return nullptr;
7576     }
7577     return getUnknown(V);
7578 
7579   case Instruction::SDiv:
7580   case Instruction::SRem:
7581     Ops.push_back(U->getOperand(0));
7582     Ops.push_back(U->getOperand(1));
7583     return nullptr;
7584 
7585   case Instruction::GetElementPtr:
7586     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7587            "GEP source element type must be sized");
7588     for (Value *Index : U->operands())
7589       Ops.push_back(Index);
7590     return nullptr;
7591 
7592   case Instruction::IntToPtr:
7593     return getUnknown(V);
7594 
7595   case Instruction::PHI:
7596     // Keep constructing SCEVs' for phis recursively for now.
7597     return nullptr;
7598 
7599   case Instruction::Select: {
7600     // Check if U is a select that can be simplified to a SCEVUnknown.
7601     auto CanSimplifyToUnknown = [this, U]() {
7602       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7603         return false;
7604 
7605       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7606       if (!ICI)
7607         return false;
7608       Value *LHS = ICI->getOperand(0);
7609       Value *RHS = ICI->getOperand(1);
7610       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7611           ICI->getPredicate() == CmpInst::ICMP_NE) {
7612         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7613           return true;
7614       } else if (getTypeSizeInBits(LHS->getType()) >
7615                  getTypeSizeInBits(U->getType()))
7616         return true;
7617       return false;
7618     };
7619     if (CanSimplifyToUnknown())
7620       return getUnknown(U);
7621 
7622     for (Value *Inc : U->operands())
7623       Ops.push_back(Inc);
7624     return nullptr;
7625     break;
7626   }
7627   case Instruction::Call:
7628   case Instruction::Invoke:
7629     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7630       Ops.push_back(RV);
7631       return nullptr;
7632     }
7633 
7634     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7635       switch (II->getIntrinsicID()) {
7636       case Intrinsic::abs:
7637         Ops.push_back(II->getArgOperand(0));
7638         return nullptr;
7639       case Intrinsic::umax:
7640       case Intrinsic::umin:
7641       case Intrinsic::smax:
7642       case Intrinsic::smin:
7643       case Intrinsic::usub_sat:
7644       case Intrinsic::uadd_sat:
7645         Ops.push_back(II->getArgOperand(0));
7646         Ops.push_back(II->getArgOperand(1));
7647         return nullptr;
7648       case Intrinsic::start_loop_iterations:
7649       case Intrinsic::annotation:
7650       case Intrinsic::ptr_annotation:
7651         Ops.push_back(II->getArgOperand(0));
7652         return nullptr;
7653       default:
7654         break;
7655       }
7656     }
7657     break;
7658   }
7659 
7660   return nullptr;
7661 }
7662 
7663 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7664   if (!isSCEVable(V->getType()))
7665     return getUnknown(V);
7666 
7667   if (Instruction *I = dyn_cast<Instruction>(V)) {
7668     // Don't attempt to analyze instructions in blocks that aren't
7669     // reachable. Such instructions don't matter, and they aren't required
7670     // to obey basic rules for definitions dominating uses which this
7671     // analysis depends on.
7672     if (!DT.isReachableFromEntry(I->getParent()))
7673       return getUnknown(PoisonValue::get(V->getType()));
7674   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7675     return getConstant(CI);
7676   else if (isa<GlobalAlias>(V))
7677     return getUnknown(V);
7678   else if (!isa<ConstantExpr>(V))
7679     return getUnknown(V);
7680 
7681   const SCEV *LHS;
7682   const SCEV *RHS;
7683 
7684   Operator *U = cast<Operator>(V);
7685   if (auto BO =
7686           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7687     switch (BO->Opcode) {
7688     case Instruction::Add: {
7689       // The simple thing to do would be to just call getSCEV on both operands
7690       // and call getAddExpr with the result. However if we're looking at a
7691       // bunch of things all added together, this can be quite inefficient,
7692       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7693       // Instead, gather up all the operands and make a single getAddExpr call.
7694       // LLVM IR canonical form means we need only traverse the left operands.
7695       SmallVector<const SCEV *, 4> AddOps;
7696       do {
7697         if (BO->Op) {
7698           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7699             AddOps.push_back(OpSCEV);
7700             break;
7701           }
7702 
7703           // If a NUW or NSW flag can be applied to the SCEV for this
7704           // addition, then compute the SCEV for this addition by itself
7705           // with a separate call to getAddExpr. We need to do that
7706           // instead of pushing the operands of the addition onto AddOps,
7707           // since the flags are only known to apply to this particular
7708           // addition - they may not apply to other additions that can be
7709           // formed with operands from AddOps.
7710           const SCEV *RHS = getSCEV(BO->RHS);
7711           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7712           if (Flags != SCEV::FlagAnyWrap) {
7713             const SCEV *LHS = getSCEV(BO->LHS);
7714             if (BO->Opcode == Instruction::Sub)
7715               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7716             else
7717               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7718             break;
7719           }
7720         }
7721 
7722         if (BO->Opcode == Instruction::Sub)
7723           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7724         else
7725           AddOps.push_back(getSCEV(BO->RHS));
7726 
7727         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7728                                    dyn_cast<Instruction>(V));
7729         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7730                        NewBO->Opcode != Instruction::Sub)) {
7731           AddOps.push_back(getSCEV(BO->LHS));
7732           break;
7733         }
7734         BO = NewBO;
7735       } while (true);
7736 
7737       return getAddExpr(AddOps);
7738     }
7739 
7740     case Instruction::Mul: {
7741       SmallVector<const SCEV *, 4> MulOps;
7742       do {
7743         if (BO->Op) {
7744           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7745             MulOps.push_back(OpSCEV);
7746             break;
7747           }
7748 
7749           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7750           if (Flags != SCEV::FlagAnyWrap) {
7751             LHS = getSCEV(BO->LHS);
7752             RHS = getSCEV(BO->RHS);
7753             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7754             break;
7755           }
7756         }
7757 
7758         MulOps.push_back(getSCEV(BO->RHS));
7759         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7760                                    dyn_cast<Instruction>(V));
7761         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7762           MulOps.push_back(getSCEV(BO->LHS));
7763           break;
7764         }
7765         BO = NewBO;
7766       } while (true);
7767 
7768       return getMulExpr(MulOps);
7769     }
7770     case Instruction::UDiv:
7771       LHS = getSCEV(BO->LHS);
7772       RHS = getSCEV(BO->RHS);
7773       return getUDivExpr(LHS, RHS);
7774     case Instruction::URem:
7775       LHS = getSCEV(BO->LHS);
7776       RHS = getSCEV(BO->RHS);
7777       return getURemExpr(LHS, RHS);
7778     case Instruction::Sub: {
7779       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7780       if (BO->Op)
7781         Flags = getNoWrapFlagsFromUB(BO->Op);
7782       LHS = getSCEV(BO->LHS);
7783       RHS = getSCEV(BO->RHS);
7784       return getMinusSCEV(LHS, RHS, Flags);
7785     }
7786     case Instruction::And:
7787       // For an expression like x&255 that merely masks off the high bits,
7788       // use zext(trunc(x)) as the SCEV expression.
7789       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7790         if (CI->isZero())
7791           return getSCEV(BO->RHS);
7792         if (CI->isMinusOne())
7793           return getSCEV(BO->LHS);
7794         const APInt &A = CI->getValue();
7795 
7796         // Instcombine's ShrinkDemandedConstant may strip bits out of
7797         // constants, obscuring what would otherwise be a low-bits mask.
7798         // Use computeKnownBits to compute what ShrinkDemandedConstant
7799         // knew about to reconstruct a low-bits mask value.
7800         unsigned LZ = A.countl_zero();
7801         unsigned TZ = A.countr_zero();
7802         unsigned BitWidth = A.getBitWidth();
7803         KnownBits Known(BitWidth);
7804         computeKnownBits(BO->LHS, Known, getDataLayout(),
7805                          0, &AC, nullptr, &DT);
7806 
7807         APInt EffectiveMask =
7808             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7809         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7810           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7811           const SCEV *LHS = getSCEV(BO->LHS);
7812           const SCEV *ShiftedLHS = nullptr;
7813           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7814             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7815               // For an expression like (x * 8) & 8, simplify the multiply.
7816               unsigned MulZeros = OpC->getAPInt().countr_zero();
7817               unsigned GCD = std::min(MulZeros, TZ);
7818               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7819               SmallVector<const SCEV*, 4> MulOps;
7820               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7821               append_range(MulOps, LHSMul->operands().drop_front());
7822               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7823               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7824             }
7825           }
7826           if (!ShiftedLHS)
7827             ShiftedLHS = getUDivExpr(LHS, MulCount);
7828           return getMulExpr(
7829               getZeroExtendExpr(
7830                   getTruncateExpr(ShiftedLHS,
7831                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7832                   BO->LHS->getType()),
7833               MulCount);
7834         }
7835       }
7836       // Binary `and` is a bit-wise `umin`.
7837       if (BO->LHS->getType()->isIntegerTy(1)) {
7838         LHS = getSCEV(BO->LHS);
7839         RHS = getSCEV(BO->RHS);
7840         return getUMinExpr(LHS, RHS);
7841       }
7842       break;
7843 
7844     case Instruction::Or:
7845       // Binary `or` is a bit-wise `umax`.
7846       if (BO->LHS->getType()->isIntegerTy(1)) {
7847         LHS = getSCEV(BO->LHS);
7848         RHS = getSCEV(BO->RHS);
7849         return getUMaxExpr(LHS, RHS);
7850       }
7851       break;
7852 
7853     case Instruction::Xor:
7854       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7855         // If the RHS of xor is -1, then this is a not operation.
7856         if (CI->isMinusOne())
7857           return getNotSCEV(getSCEV(BO->LHS));
7858 
7859         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7860         // This is a variant of the check for xor with -1, and it handles
7861         // the case where instcombine has trimmed non-demanded bits out
7862         // of an xor with -1.
7863         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7864           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7865             if (LBO->getOpcode() == Instruction::And &&
7866                 LCI->getValue() == CI->getValue())
7867               if (const SCEVZeroExtendExpr *Z =
7868                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7869                 Type *UTy = BO->LHS->getType();
7870                 const SCEV *Z0 = Z->getOperand();
7871                 Type *Z0Ty = Z0->getType();
7872                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7873 
7874                 // If C is a low-bits mask, the zero extend is serving to
7875                 // mask off the high bits. Complement the operand and
7876                 // re-apply the zext.
7877                 if (CI->getValue().isMask(Z0TySize))
7878                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7879 
7880                 // If C is a single bit, it may be in the sign-bit position
7881                 // before the zero-extend. In this case, represent the xor
7882                 // using an add, which is equivalent, and re-apply the zext.
7883                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7884                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7885                     Trunc.isSignMask())
7886                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7887                                            UTy);
7888               }
7889       }
7890       break;
7891 
7892     case Instruction::Shl:
7893       // Turn shift left of a constant amount into a multiply.
7894       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7895         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7896 
7897         // If the shift count is not less than the bitwidth, the result of
7898         // the shift is undefined. Don't try to analyze it, because the
7899         // resolution chosen here may differ from the resolution chosen in
7900         // other parts of the compiler.
7901         if (SA->getValue().uge(BitWidth))
7902           break;
7903 
7904         // We can safely preserve the nuw flag in all cases. It's also safe to
7905         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7906         // requires special handling. It can be preserved as long as we're not
7907         // left shifting by bitwidth - 1.
7908         auto Flags = SCEV::FlagAnyWrap;
7909         if (BO->Op) {
7910           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7911           if ((MulFlags & SCEV::FlagNSW) &&
7912               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7913             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7914           if (MulFlags & SCEV::FlagNUW)
7915             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7916         }
7917 
7918         ConstantInt *X = ConstantInt::get(
7919             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7920         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7921       }
7922       break;
7923 
7924     case Instruction::AShr:
7925       // AShr X, C, where C is a constant.
7926       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7927       if (!CI)
7928         break;
7929 
7930       Type *OuterTy = BO->LHS->getType();
7931       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7932       // If the shift count is not less than the bitwidth, the result of
7933       // the shift is undefined. Don't try to analyze it, because the
7934       // resolution chosen here may differ from the resolution chosen in
7935       // other parts of the compiler.
7936       if (CI->getValue().uge(BitWidth))
7937         break;
7938 
7939       if (CI->isZero())
7940         return getSCEV(BO->LHS); // shift by zero --> noop
7941 
7942       uint64_t AShrAmt = CI->getZExtValue();
7943       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7944 
7945       Operator *L = dyn_cast<Operator>(BO->LHS);
7946       const SCEV *AddTruncateExpr = nullptr;
7947       ConstantInt *ShlAmtCI = nullptr;
7948       const SCEV *AddConstant = nullptr;
7949 
7950       if (L && L->getOpcode() == Instruction::Add) {
7951         // X = Shl A, n
7952         // Y = Add X, c
7953         // Z = AShr Y, m
7954         // n, c and m are constants.
7955 
7956         Operator *LShift = dyn_cast<Operator>(L->getOperand(0));
7957         ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1));
7958         if (LShift && LShift->getOpcode() == Instruction::Shl) {
7959           if (AddOperandCI) {
7960             const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0));
7961             ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1));
7962             // since we truncate to TruncTy, the AddConstant should be of the
7963             // same type, so create a new Constant with type same as TruncTy.
7964             // Also, the Add constant should be shifted right by AShr amount.
7965             APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt);
7966             AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt));
7967             // we model the expression as sext(add(trunc(A), c << n)), since the
7968             // sext(trunc) part is already handled below, we create a
7969             // AddExpr(TruncExp) which will be used later.
7970             AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7971           }
7972         }
7973       } else if (L && L->getOpcode() == Instruction::Shl) {
7974         // X = Shl A, n
7975         // Y = AShr X, m
7976         // Both n and m are constant.
7977 
7978         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7979         ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7980         AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7981       }
7982 
7983       if (AddTruncateExpr && ShlAmtCI) {
7984         // We can merge the two given cases into a single SCEV statement,
7985         // incase n = m, the mul expression will be 2^0, so it gets resolved to
7986         // a simpler case. The following code handles the two cases:
7987         //
7988         // 1) For a two-shift sext-inreg, i.e. n = m,
7989         //    use sext(trunc(x)) as the SCEV expression.
7990         //
7991         // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7992         //    expression. We already checked that ShlAmt < BitWidth, so
7993         //    the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7994         //    ShlAmt - AShrAmt < Amt.
7995         const APInt &ShlAmt = ShlAmtCI->getValue();
7996         if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) {
7997           APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7998                                           ShlAmtCI->getZExtValue() - AShrAmt);
7999           const SCEV *CompositeExpr =
8000               getMulExpr(AddTruncateExpr, getConstant(Mul));
8001           if (L->getOpcode() != Instruction::Shl)
8002             CompositeExpr = getAddExpr(CompositeExpr, AddConstant);
8003 
8004           return getSignExtendExpr(CompositeExpr, OuterTy);
8005         }
8006       }
8007       break;
8008     }
8009   }
8010 
8011   switch (U->getOpcode()) {
8012   case Instruction::Trunc:
8013     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
8014 
8015   case Instruction::ZExt:
8016     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8017 
8018   case Instruction::SExt:
8019     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
8020                                 dyn_cast<Instruction>(V))) {
8021       // The NSW flag of a subtract does not always survive the conversion to
8022       // A + (-1)*B.  By pushing sign extension onto its operands we are much
8023       // more likely to preserve NSW and allow later AddRec optimisations.
8024       //
8025       // NOTE: This is effectively duplicating this logic from getSignExtend:
8026       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8027       // but by that point the NSW information has potentially been lost.
8028       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8029         Type *Ty = U->getType();
8030         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
8031         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
8032         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
8033       }
8034     }
8035     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8036 
8037   case Instruction::BitCast:
8038     // BitCasts are no-op casts so we just eliminate the cast.
8039     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
8040       return getSCEV(U->getOperand(0));
8041     break;
8042 
8043   case Instruction::PtrToInt: {
8044     // Pointer to integer cast is straight-forward, so do model it.
8045     const SCEV *Op = getSCEV(U->getOperand(0));
8046     Type *DstIntTy = U->getType();
8047     // But only if effective SCEV (integer) type is wide enough to represent
8048     // all possible pointer values.
8049     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
8050     if (isa<SCEVCouldNotCompute>(IntOp))
8051       return getUnknown(V);
8052     return IntOp;
8053   }
8054   case Instruction::IntToPtr:
8055     // Just don't deal with inttoptr casts.
8056     return getUnknown(V);
8057 
8058   case Instruction::SDiv:
8059     // If both operands are non-negative, this is just an udiv.
8060     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8061         isKnownNonNegative(getSCEV(U->getOperand(1))))
8062       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8063     break;
8064 
8065   case Instruction::SRem:
8066     // If both operands are non-negative, this is just an urem.
8067     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8068         isKnownNonNegative(getSCEV(U->getOperand(1))))
8069       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8070     break;
8071 
8072   case Instruction::GetElementPtr:
8073     return createNodeForGEP(cast<GEPOperator>(U));
8074 
8075   case Instruction::PHI:
8076     return createNodeForPHI(cast<PHINode>(U));
8077 
8078   case Instruction::Select:
8079     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8080                                     U->getOperand(2));
8081 
8082   case Instruction::Call:
8083   case Instruction::Invoke:
8084     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8085       return getSCEV(RV);
8086 
8087     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8088       switch (II->getIntrinsicID()) {
8089       case Intrinsic::abs:
8090         return getAbsExpr(
8091             getSCEV(II->getArgOperand(0)),
8092             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8093       case Intrinsic::umax:
8094         LHS = getSCEV(II->getArgOperand(0));
8095         RHS = getSCEV(II->getArgOperand(1));
8096         return getUMaxExpr(LHS, RHS);
8097       case Intrinsic::umin:
8098         LHS = getSCEV(II->getArgOperand(0));
8099         RHS = getSCEV(II->getArgOperand(1));
8100         return getUMinExpr(LHS, RHS);
8101       case Intrinsic::smax:
8102         LHS = getSCEV(II->getArgOperand(0));
8103         RHS = getSCEV(II->getArgOperand(1));
8104         return getSMaxExpr(LHS, RHS);
8105       case Intrinsic::smin:
8106         LHS = getSCEV(II->getArgOperand(0));
8107         RHS = getSCEV(II->getArgOperand(1));
8108         return getSMinExpr(LHS, RHS);
8109       case Intrinsic::usub_sat: {
8110         const SCEV *X = getSCEV(II->getArgOperand(0));
8111         const SCEV *Y = getSCEV(II->getArgOperand(1));
8112         const SCEV *ClampedY = getUMinExpr(X, Y);
8113         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8114       }
8115       case Intrinsic::uadd_sat: {
8116         const SCEV *X = getSCEV(II->getArgOperand(0));
8117         const SCEV *Y = getSCEV(II->getArgOperand(1));
8118         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8119         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8120       }
8121       case Intrinsic::start_loop_iterations:
8122       case Intrinsic::annotation:
8123       case Intrinsic::ptr_annotation:
8124         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8125         // just eqivalent to the first operand for SCEV purposes.
8126         return getSCEV(II->getArgOperand(0));
8127       case Intrinsic::vscale:
8128         return getVScale(II->getType());
8129       default:
8130         break;
8131       }
8132     }
8133     break;
8134   }
8135 
8136   return getUnknown(V);
8137 }
8138 
8139 //===----------------------------------------------------------------------===//
8140 //                   Iteration Count Computation Code
8141 //
8142 
8143 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8144   if (isa<SCEVCouldNotCompute>(ExitCount))
8145     return getCouldNotCompute();
8146 
8147   auto *ExitCountType = ExitCount->getType();
8148   assert(ExitCountType->isIntegerTy());
8149   auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8150                                  1 + ExitCountType->getScalarSizeInBits());
8151   return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8152 }
8153 
8154 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8155                                                        Type *EvalTy,
8156                                                        const Loop *L) {
8157   if (isa<SCEVCouldNotCompute>(ExitCount))
8158     return getCouldNotCompute();
8159 
8160   unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8161   unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8162 
8163   auto CanAddOneWithoutOverflow = [&]() {
8164     ConstantRange ExitCountRange =
8165       getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8166     if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8167       return true;
8168 
8169     return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8170                                          getMinusOne(ExitCount->getType()));
8171   };
8172 
8173   // If we need to zero extend the backedge count, check if we can add one to
8174   // it prior to zero extending without overflow. Provided this is safe, it
8175   // allows better simplification of the +1.
8176   if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8177     return getZeroExtendExpr(
8178         getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8179 
8180   // Get the total trip count from the count by adding 1.  This may wrap.
8181   return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8182 }
8183 
8184 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8185   if (!ExitCount)
8186     return 0;
8187 
8188   ConstantInt *ExitConst = ExitCount->getValue();
8189 
8190   // Guard against huge trip counts.
8191   if (ExitConst->getValue().getActiveBits() > 32)
8192     return 0;
8193 
8194   // In case of integer overflow, this returns 0, which is correct.
8195   return ((unsigned)ExitConst->getZExtValue()) + 1;
8196 }
8197 
8198 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8199   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8200   return getConstantTripCount(ExitCount);
8201 }
8202 
8203 unsigned
8204 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8205                                            const BasicBlock *ExitingBlock) {
8206   assert(ExitingBlock && "Must pass a non-null exiting block!");
8207   assert(L->isLoopExiting(ExitingBlock) &&
8208          "Exiting block must actually branch out of the loop!");
8209   const SCEVConstant *ExitCount =
8210       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8211   return getConstantTripCount(ExitCount);
8212 }
8213 
8214 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8215   const auto *MaxExitCount =
8216       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8217   return getConstantTripCount(MaxExitCount);
8218 }
8219 
8220 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8221   SmallVector<BasicBlock *, 8> ExitingBlocks;
8222   L->getExitingBlocks(ExitingBlocks);
8223 
8224   std::optional<unsigned> Res;
8225   for (auto *ExitingBB : ExitingBlocks) {
8226     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8227     if (!Res)
8228       Res = Multiple;
8229     Res = (unsigned)std::gcd(*Res, Multiple);
8230   }
8231   return Res.value_or(1);
8232 }
8233 
8234 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8235                                                        const SCEV *ExitCount) {
8236   if (ExitCount == getCouldNotCompute())
8237     return 1;
8238 
8239   // Get the trip count
8240   const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8241 
8242   APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8243   // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8244   // the greatest power of 2 divisor less than 2^32.
8245   return Multiple.getActiveBits() > 32
8246              ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8247              : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8248 }
8249 
8250 /// Returns the largest constant divisor of the trip count of this loop as a
8251 /// normal unsigned value, if possible. This means that the actual trip count is
8252 /// always a multiple of the returned value (don't forget the trip count could
8253 /// very well be zero as well!).
8254 ///
8255 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8256 /// multiple of a constant (which is also the case if the trip count is simply
8257 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8258 /// if the trip count is very large (>= 2^32).
8259 ///
8260 /// As explained in the comments for getSmallConstantTripCount, this assumes
8261 /// that control exits the loop via ExitingBlock.
8262 unsigned
8263 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8264                                               const BasicBlock *ExitingBlock) {
8265   assert(ExitingBlock && "Must pass a non-null exiting block!");
8266   assert(L->isLoopExiting(ExitingBlock) &&
8267          "Exiting block must actually branch out of the loop!");
8268   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8269   return getSmallConstantTripMultiple(L, ExitCount);
8270 }
8271 
8272 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8273                                           const BasicBlock *ExitingBlock,
8274                                           ExitCountKind Kind) {
8275   switch (Kind) {
8276   case Exact:
8277     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8278   case SymbolicMaximum:
8279     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8280   case ConstantMaximum:
8281     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8282   };
8283   llvm_unreachable("Invalid ExitCountKind!");
8284 }
8285 
8286 const SCEV *
8287 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8288                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8289   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8290 }
8291 
8292 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8293                                                    ExitCountKind Kind) {
8294   switch (Kind) {
8295   case Exact:
8296     return getBackedgeTakenInfo(L).getExact(L, this);
8297   case ConstantMaximum:
8298     return getBackedgeTakenInfo(L).getConstantMax(this);
8299   case SymbolicMaximum:
8300     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8301   };
8302   llvm_unreachable("Invalid ExitCountKind!");
8303 }
8304 
8305 const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount(
8306     const Loop *L, SmallVector<const SCEVPredicate *, 4> &Preds) {
8307   return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, this, &Preds);
8308 }
8309 
8310 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8311   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8312 }
8313 
8314 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8315 static void PushLoopPHIs(const Loop *L,
8316                          SmallVectorImpl<Instruction *> &Worklist,
8317                          SmallPtrSetImpl<Instruction *> &Visited) {
8318   BasicBlock *Header = L->getHeader();
8319 
8320   // Push all Loop-header PHIs onto the Worklist stack.
8321   for (PHINode &PN : Header->phis())
8322     if (Visited.insert(&PN).second)
8323       Worklist.push_back(&PN);
8324 }
8325 
8326 ScalarEvolution::BackedgeTakenInfo &
8327 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8328   auto &BTI = getBackedgeTakenInfo(L);
8329   if (BTI.hasFullInfo())
8330     return BTI;
8331 
8332   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8333 
8334   if (!Pair.second)
8335     return Pair.first->second;
8336 
8337   BackedgeTakenInfo Result =
8338       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8339 
8340   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8341 }
8342 
8343 ScalarEvolution::BackedgeTakenInfo &
8344 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8345   // Initially insert an invalid entry for this loop. If the insertion
8346   // succeeds, proceed to actually compute a backedge-taken count and
8347   // update the value. The temporary CouldNotCompute value tells SCEV
8348   // code elsewhere that it shouldn't attempt to request a new
8349   // backedge-taken count, which could result in infinite recursion.
8350   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8351       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8352   if (!Pair.second)
8353     return Pair.first->second;
8354 
8355   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8356   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8357   // must be cleared in this scope.
8358   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8359 
8360   // Now that we know more about the trip count for this loop, forget any
8361   // existing SCEV values for PHI nodes in this loop since they are only
8362   // conservative estimates made without the benefit of trip count
8363   // information. This invalidation is not necessary for correctness, and is
8364   // only done to produce more precise results.
8365   if (Result.hasAnyInfo()) {
8366     // Invalidate any expression using an addrec in this loop.
8367     SmallVector<const SCEV *, 8> ToForget;
8368     auto LoopUsersIt = LoopUsers.find(L);
8369     if (LoopUsersIt != LoopUsers.end())
8370       append_range(ToForget, LoopUsersIt->second);
8371     forgetMemoizedResults(ToForget);
8372 
8373     // Invalidate constant-evolved loop header phis.
8374     for (PHINode &PN : L->getHeader()->phis())
8375       ConstantEvolutionLoopExitValue.erase(&PN);
8376   }
8377 
8378   // Re-lookup the insert position, since the call to
8379   // computeBackedgeTakenCount above could result in a
8380   // recusive call to getBackedgeTakenInfo (on a different
8381   // loop), which would invalidate the iterator computed
8382   // earlier.
8383   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8384 }
8385 
8386 void ScalarEvolution::forgetAllLoops() {
8387   // This method is intended to forget all info about loops. It should
8388   // invalidate caches as if the following happened:
8389   // - The trip counts of all loops have changed arbitrarily
8390   // - Every llvm::Value has been updated in place to produce a different
8391   // result.
8392   BackedgeTakenCounts.clear();
8393   PredicatedBackedgeTakenCounts.clear();
8394   BECountUsers.clear();
8395   LoopPropertiesCache.clear();
8396   ConstantEvolutionLoopExitValue.clear();
8397   ValueExprMap.clear();
8398   ValuesAtScopes.clear();
8399   ValuesAtScopesUsers.clear();
8400   LoopDispositions.clear();
8401   BlockDispositions.clear();
8402   UnsignedRanges.clear();
8403   SignedRanges.clear();
8404   ExprValueMap.clear();
8405   HasRecMap.clear();
8406   ConstantMultipleCache.clear();
8407   PredicatedSCEVRewrites.clear();
8408   FoldCache.clear();
8409   FoldCacheUser.clear();
8410 }
8411 void ScalarEvolution::visitAndClearUsers(
8412     SmallVectorImpl<Instruction *> &Worklist,
8413     SmallPtrSetImpl<Instruction *> &Visited,
8414     SmallVectorImpl<const SCEV *> &ToForget) {
8415   while (!Worklist.empty()) {
8416     Instruction *I = Worklist.pop_back_val();
8417     if (!isSCEVable(I->getType()) && !isa<WithOverflowInst>(I))
8418       continue;
8419 
8420     ValueExprMapType::iterator It =
8421         ValueExprMap.find_as(static_cast<Value *>(I));
8422     if (It != ValueExprMap.end()) {
8423       eraseValueFromMap(It->first);
8424       ToForget.push_back(It->second);
8425       if (PHINode *PN = dyn_cast<PHINode>(I))
8426         ConstantEvolutionLoopExitValue.erase(PN);
8427     }
8428 
8429     PushDefUseChildren(I, Worklist, Visited);
8430   }
8431 }
8432 
8433 void ScalarEvolution::forgetLoop(const Loop *L) {
8434   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8435   SmallVector<Instruction *, 32> Worklist;
8436   SmallPtrSet<Instruction *, 16> Visited;
8437   SmallVector<const SCEV *, 16> ToForget;
8438 
8439   // Iterate over all the loops and sub-loops to drop SCEV information.
8440   while (!LoopWorklist.empty()) {
8441     auto *CurrL = LoopWorklist.pop_back_val();
8442 
8443     // Drop any stored trip count value.
8444     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8445     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8446 
8447     // Drop information about predicated SCEV rewrites for this loop.
8448     for (auto I = PredicatedSCEVRewrites.begin();
8449          I != PredicatedSCEVRewrites.end();) {
8450       std::pair<const SCEV *, const Loop *> Entry = I->first;
8451       if (Entry.second == CurrL)
8452         PredicatedSCEVRewrites.erase(I++);
8453       else
8454         ++I;
8455     }
8456 
8457     auto LoopUsersItr = LoopUsers.find(CurrL);
8458     if (LoopUsersItr != LoopUsers.end()) {
8459       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8460                 LoopUsersItr->second.end());
8461     }
8462 
8463     // Drop information about expressions based on loop-header PHIs.
8464     PushLoopPHIs(CurrL, Worklist, Visited);
8465     visitAndClearUsers(Worklist, Visited, ToForget);
8466 
8467     LoopPropertiesCache.erase(CurrL);
8468     // Forget all contained loops too, to avoid dangling entries in the
8469     // ValuesAtScopes map.
8470     LoopWorklist.append(CurrL->begin(), CurrL->end());
8471   }
8472   forgetMemoizedResults(ToForget);
8473 }
8474 
8475 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8476   forgetLoop(L->getOutermostLoop());
8477 }
8478 
8479 void ScalarEvolution::forgetValue(Value *V) {
8480   Instruction *I = dyn_cast<Instruction>(V);
8481   if (!I) return;
8482 
8483   // Drop information about expressions based on loop-header PHIs.
8484   SmallVector<Instruction *, 16> Worklist;
8485   SmallPtrSet<Instruction *, 8> Visited;
8486   SmallVector<const SCEV *, 8> ToForget;
8487   Worklist.push_back(I);
8488   Visited.insert(I);
8489   visitAndClearUsers(Worklist, Visited, ToForget);
8490 
8491   forgetMemoizedResults(ToForget);
8492 }
8493 
8494 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8495   if (!isSCEVable(V->getType()))
8496     return;
8497 
8498   // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8499   // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8500   // extra predecessor is added, this is no longer valid. Find all Unknowns and
8501   // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8502   if (const SCEV *S = getExistingSCEV(V)) {
8503     struct InvalidationRootCollector {
8504       Loop *L;
8505       SmallVector<const SCEV *, 8> Roots;
8506 
8507       InvalidationRootCollector(Loop *L) : L(L) {}
8508 
8509       bool follow(const SCEV *S) {
8510         if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
8511           if (auto *I = dyn_cast<Instruction>(SU->getValue()))
8512             if (L->contains(I))
8513               Roots.push_back(S);
8514         } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
8515           if (L->contains(AddRec->getLoop()))
8516             Roots.push_back(S);
8517         }
8518         return true;
8519       }
8520       bool isDone() const { return false; }
8521     };
8522 
8523     InvalidationRootCollector C(L);
8524     visitAll(S, C);
8525     forgetMemoizedResults(C.Roots);
8526   }
8527 
8528   // Also perform the normal invalidation.
8529   forgetValue(V);
8530 }
8531 
8532 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8533 
8534 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8535   // Unless a specific value is passed to invalidation, completely clear both
8536   // caches.
8537   if (!V) {
8538     BlockDispositions.clear();
8539     LoopDispositions.clear();
8540     return;
8541   }
8542 
8543   if (!isSCEVable(V->getType()))
8544     return;
8545 
8546   const SCEV *S = getExistingSCEV(V);
8547   if (!S)
8548     return;
8549 
8550   // Invalidate the block and loop dispositions cached for S. Dispositions of
8551   // S's users may change if S's disposition changes (i.e. a user may change to
8552   // loop-invariant, if S changes to loop invariant), so also invalidate
8553   // dispositions of S's users recursively.
8554   SmallVector<const SCEV *, 8> Worklist = {S};
8555   SmallPtrSet<const SCEV *, 8> Seen = {S};
8556   while (!Worklist.empty()) {
8557     const SCEV *Curr = Worklist.pop_back_val();
8558     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8559     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8560     if (!LoopDispoRemoved && !BlockDispoRemoved)
8561       continue;
8562     auto Users = SCEVUsers.find(Curr);
8563     if (Users != SCEVUsers.end())
8564       for (const auto *User : Users->second)
8565         if (Seen.insert(User).second)
8566           Worklist.push_back(User);
8567   }
8568 }
8569 
8570 /// Get the exact loop backedge taken count considering all loop exits. A
8571 /// computable result can only be returned for loops with all exiting blocks
8572 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8573 /// is never skipped. This is a valid assumption as long as the loop exits via
8574 /// that test. For precise results, it is the caller's responsibility to specify
8575 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8576 const SCEV *
8577 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8578                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8579   // If any exits were not computable, the loop is not computable.
8580   if (!isComplete() || ExitNotTaken.empty())
8581     return SE->getCouldNotCompute();
8582 
8583   const BasicBlock *Latch = L->getLoopLatch();
8584   // All exiting blocks we have collected must dominate the only backedge.
8585   if (!Latch)
8586     return SE->getCouldNotCompute();
8587 
8588   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8589   // count is simply a minimum out of all these calculated exit counts.
8590   SmallVector<const SCEV *, 2> Ops;
8591   for (const auto &ENT : ExitNotTaken) {
8592     const SCEV *BECount = ENT.ExactNotTaken;
8593     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8594     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8595            "We should only have known counts for exiting blocks that dominate "
8596            "latch!");
8597 
8598     Ops.push_back(BECount);
8599 
8600     if (Preds)
8601       for (const auto *P : ENT.Predicates)
8602         Preds->push_back(P);
8603 
8604     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8605            "Predicate should be always true!");
8606   }
8607 
8608   // If an earlier exit exits on the first iteration (exit count zero), then
8609   // a later poison exit count should not propagate into the result. This are
8610   // exactly the semantics provided by umin_seq.
8611   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8612 }
8613 
8614 /// Get the exact not taken count for this loop exit.
8615 const SCEV *
8616 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8617                                              ScalarEvolution *SE) const {
8618   for (const auto &ENT : ExitNotTaken)
8619     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8620       return ENT.ExactNotTaken;
8621 
8622   return SE->getCouldNotCompute();
8623 }
8624 
8625 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8626     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8627   for (const auto &ENT : ExitNotTaken)
8628     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8629       return ENT.ConstantMaxNotTaken;
8630 
8631   return SE->getCouldNotCompute();
8632 }
8633 
8634 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8635     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8636   for (const auto &ENT : ExitNotTaken)
8637     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8638       return ENT.SymbolicMaxNotTaken;
8639 
8640   return SE->getCouldNotCompute();
8641 }
8642 
8643 /// getConstantMax - Get the constant max backedge taken count for the loop.
8644 const SCEV *
8645 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8646   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8647     return !ENT.hasAlwaysTruePredicate();
8648   };
8649 
8650   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8651     return SE->getCouldNotCompute();
8652 
8653   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8654           isa<SCEVConstant>(getConstantMax())) &&
8655          "No point in having a non-constant max backedge taken count!");
8656   return getConstantMax();
8657 }
8658 
8659 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8660     const Loop *L, ScalarEvolution *SE,
8661     SmallVector<const SCEVPredicate *, 4> *Predicates) {
8662   if (!SymbolicMax) {
8663     // Form an expression for the maximum exit count possible for this loop. We
8664     // merge the max and exact information to approximate a version of
8665     // getConstantMaxBackedgeTakenCount which isn't restricted to just
8666     // constants.
8667     SmallVector<const SCEV *, 4> ExitCounts;
8668 
8669     for (const auto &ENT : ExitNotTaken) {
8670       const SCEV *ExitCount = ENT.SymbolicMaxNotTaken;
8671       if (!isa<SCEVCouldNotCompute>(ExitCount)) {
8672         assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) &&
8673                "We should only have known counts for exiting blocks that "
8674                "dominate latch!");
8675         ExitCounts.push_back(ExitCount);
8676         if (Predicates)
8677           for (const auto *P : ENT.Predicates)
8678             Predicates->push_back(P);
8679 
8680         assert((Predicates || ENT.hasAlwaysTruePredicate()) &&
8681                "Predicate should be always true!");
8682       }
8683     }
8684     if (ExitCounts.empty())
8685       SymbolicMax = SE->getCouldNotCompute();
8686     else
8687       SymbolicMax =
8688           SE->getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
8689   }
8690   return SymbolicMax;
8691 }
8692 
8693 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8694     ScalarEvolution *SE) const {
8695   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8696     return !ENT.hasAlwaysTruePredicate();
8697   };
8698   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8699 }
8700 
8701 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8702     : ExitLimit(E, E, E, false, std::nullopt) {}
8703 
8704 ScalarEvolution::ExitLimit::ExitLimit(
8705     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8706     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8707     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8708     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8709       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8710   // If we prove the max count is zero, so is the symbolic bound.  This happens
8711   // in practice due to differences in a) how context sensitive we've chosen
8712   // to be and b) how we reason about bounds implied by UB.
8713   if (ConstantMaxNotTaken->isZero()) {
8714     this->ExactNotTaken = E = ConstantMaxNotTaken;
8715     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8716   }
8717 
8718   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8719           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8720          "Exact is not allowed to be less precise than Constant Max");
8721   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8722           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8723          "Exact is not allowed to be less precise than Symbolic Max");
8724   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8725           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8726          "Symbolic Max is not allowed to be less precise than Constant Max");
8727   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8728           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8729          "No point in having a non-constant max backedge taken count!");
8730   for (const auto *PredSet : PredSetList)
8731     for (const auto *P : *PredSet)
8732       addPredicate(P);
8733   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8734          "Backedge count should be int");
8735   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8736           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8737          "Max backedge count should be int");
8738 }
8739 
8740 ScalarEvolution::ExitLimit::ExitLimit(
8741     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8742     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8743     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8744     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8745                 { &PredSet }) {}
8746 
8747 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8748 /// computable exit into a persistent ExitNotTakenInfo array.
8749 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8750     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8751     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8752     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8753   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8754 
8755   ExitNotTaken.reserve(ExitCounts.size());
8756   std::transform(ExitCounts.begin(), ExitCounts.end(),
8757                  std::back_inserter(ExitNotTaken),
8758                  [&](const EdgeExitInfo &EEI) {
8759         BasicBlock *ExitBB = EEI.first;
8760         const ExitLimit &EL = EEI.second;
8761         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8762                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8763                                 EL.Predicates);
8764   });
8765   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8766           isa<SCEVConstant>(ConstantMax)) &&
8767          "No point in having a non-constant max backedge taken count!");
8768 }
8769 
8770 /// Compute the number of times the backedge of the specified loop will execute.
8771 ScalarEvolution::BackedgeTakenInfo
8772 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8773                                            bool AllowPredicates) {
8774   SmallVector<BasicBlock *, 8> ExitingBlocks;
8775   L->getExitingBlocks(ExitingBlocks);
8776 
8777   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8778 
8779   SmallVector<EdgeExitInfo, 4> ExitCounts;
8780   bool CouldComputeBECount = true;
8781   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8782   const SCEV *MustExitMaxBECount = nullptr;
8783   const SCEV *MayExitMaxBECount = nullptr;
8784   bool MustExitMaxOrZero = false;
8785   bool IsOnlyExit = ExitingBlocks.size() == 1;
8786 
8787   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8788   // and compute maxBECount.
8789   // Do a union of all the predicates here.
8790   for (BasicBlock *ExitBB : ExitingBlocks) {
8791     // We canonicalize untaken exits to br (constant), ignore them so that
8792     // proving an exit untaken doesn't negatively impact our ability to reason
8793     // about the loop as whole.
8794     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8795       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8796         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8797         if (ExitIfTrue == CI->isZero())
8798           continue;
8799       }
8800 
8801     ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates);
8802 
8803     assert((AllowPredicates || EL.Predicates.empty()) &&
8804            "Predicated exit limit when predicates are not allowed!");
8805 
8806     // 1. For each exit that can be computed, add an entry to ExitCounts.
8807     // CouldComputeBECount is true only if all exits can be computed.
8808     if (EL.ExactNotTaken != getCouldNotCompute())
8809       ++NumExitCountsComputed;
8810     else
8811       // We couldn't compute an exact value for this exit, so
8812       // we won't be able to compute an exact value for the loop.
8813       CouldComputeBECount = false;
8814     // Remember exit count if either exact or symbolic is known. Because
8815     // Exact always implies symbolic, only check symbolic.
8816     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8817       ExitCounts.emplace_back(ExitBB, EL);
8818     else {
8819       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8820              "Exact is known but symbolic isn't?");
8821       ++NumExitCountsNotComputed;
8822     }
8823 
8824     // 2. Derive the loop's MaxBECount from each exit's max number of
8825     // non-exiting iterations. Partition the loop exits into two kinds:
8826     // LoopMustExits and LoopMayExits.
8827     //
8828     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8829     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8830     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8831     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8832     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8833     // any
8834     // computable EL.ConstantMaxNotTaken.
8835     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8836         DT.dominates(ExitBB, Latch)) {
8837       if (!MustExitMaxBECount) {
8838         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8839         MustExitMaxOrZero = EL.MaxOrZero;
8840       } else {
8841         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8842                                                         EL.ConstantMaxNotTaken);
8843       }
8844     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8845       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8846         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8847       else {
8848         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8849                                                        EL.ConstantMaxNotTaken);
8850       }
8851     }
8852   }
8853   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8854     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8855   // The loop backedge will be taken the maximum or zero times if there's
8856   // a single exit that must be taken the maximum or zero times.
8857   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8858 
8859   // Remember which SCEVs are used in exit limits for invalidation purposes.
8860   // We only care about non-constant SCEVs here, so we can ignore
8861   // EL.ConstantMaxNotTaken
8862   // and MaxBECount, which must be SCEVConstant.
8863   for (const auto &Pair : ExitCounts) {
8864     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8865       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8866     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8867       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8868           {L, AllowPredicates});
8869   }
8870   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8871                            MaxBECount, MaxOrZero);
8872 }
8873 
8874 ScalarEvolution::ExitLimit
8875 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8876                                   bool IsOnlyExit, bool AllowPredicates) {
8877   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8878   // If our exiting block does not dominate the latch, then its connection with
8879   // loop's exit limit may be far from trivial.
8880   const BasicBlock *Latch = L->getLoopLatch();
8881   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8882     return getCouldNotCompute();
8883 
8884   Instruction *Term = ExitingBlock->getTerminator();
8885   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8886     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8887     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8888     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8889            "It should have one successor in loop and one exit block!");
8890     // Proceed to the next level to examine the exit condition expression.
8891     return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8892                                     /*ControlsOnlyExit=*/IsOnlyExit,
8893                                     AllowPredicates);
8894   }
8895 
8896   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8897     // For switch, make sure that there is a single exit from the loop.
8898     BasicBlock *Exit = nullptr;
8899     for (auto *SBB : successors(ExitingBlock))
8900       if (!L->contains(SBB)) {
8901         if (Exit) // Multiple exit successors.
8902           return getCouldNotCompute();
8903         Exit = SBB;
8904       }
8905     assert(Exit && "Exiting block must have at least one exit");
8906     return computeExitLimitFromSingleExitSwitch(
8907         L, SI, Exit, /*ControlsOnlyExit=*/IsOnlyExit);
8908   }
8909 
8910   return getCouldNotCompute();
8911 }
8912 
8913 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8914     const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8915     bool AllowPredicates) {
8916   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8917   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8918                                         ControlsOnlyExit, AllowPredicates);
8919 }
8920 
8921 std::optional<ScalarEvolution::ExitLimit>
8922 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8923                                       bool ExitIfTrue, bool ControlsOnlyExit,
8924                                       bool AllowPredicates) {
8925   (void)this->L;
8926   (void)this->ExitIfTrue;
8927   (void)this->AllowPredicates;
8928 
8929   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8930          this->AllowPredicates == AllowPredicates &&
8931          "Variance in assumed invariant key components!");
8932   auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8933   if (Itr == TripCountMap.end())
8934     return std::nullopt;
8935   return Itr->second;
8936 }
8937 
8938 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8939                                              bool ExitIfTrue,
8940                                              bool ControlsOnlyExit,
8941                                              bool AllowPredicates,
8942                                              const ExitLimit &EL) {
8943   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8944          this->AllowPredicates == AllowPredicates &&
8945          "Variance in assumed invariant key components!");
8946 
8947   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
8948   assert(InsertResult.second && "Expected successful insertion!");
8949   (void)InsertResult;
8950   (void)ExitIfTrue;
8951 }
8952 
8953 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8954     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8955     bool ControlsOnlyExit, bool AllowPredicates) {
8956 
8957   if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8958                                 AllowPredicates))
8959     return *MaybeEL;
8960 
8961   ExitLimit EL = computeExitLimitFromCondImpl(
8962       Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8963   Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8964   return EL;
8965 }
8966 
8967 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8968     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8969     bool ControlsOnlyExit, bool AllowPredicates) {
8970   // Handle BinOp conditions (And, Or).
8971   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8972           Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8973     return *LimitFromBinOp;
8974 
8975   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8976   // Proceed to the next level to examine the icmp.
8977   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8978     ExitLimit EL =
8979         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
8980     if (EL.hasFullInfo() || !AllowPredicates)
8981       return EL;
8982 
8983     // Try again, but use SCEV predicates this time.
8984     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
8985                                     ControlsOnlyExit,
8986                                     /*AllowPredicates=*/true);
8987   }
8988 
8989   // Check for a constant condition. These are normally stripped out by
8990   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8991   // preserve the CFG and is temporarily leaving constant conditions
8992   // in place.
8993   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8994     if (ExitIfTrue == !CI->getZExtValue())
8995       // The backedge is always taken.
8996       return getCouldNotCompute();
8997     // The backedge is never taken.
8998     return getZero(CI->getType());
8999   }
9000 
9001   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
9002   // with a constant step, we can form an equivalent icmp predicate and figure
9003   // out how many iterations will be taken before we exit.
9004   const WithOverflowInst *WO;
9005   const APInt *C;
9006   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
9007       match(WO->getRHS(), m_APInt(C))) {
9008     ConstantRange NWR =
9009       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
9010                                            WO->getNoWrapKind());
9011     CmpInst::Predicate Pred;
9012     APInt NewRHSC, Offset;
9013     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
9014     if (!ExitIfTrue)
9015       Pred = ICmpInst::getInversePredicate(Pred);
9016     auto *LHS = getSCEV(WO->getLHS());
9017     if (Offset != 0)
9018       LHS = getAddExpr(LHS, getConstant(Offset));
9019     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
9020                                        ControlsOnlyExit, AllowPredicates);
9021     if (EL.hasAnyInfo())
9022       return EL;
9023   }
9024 
9025   // If it's not an integer or pointer comparison then compute it the hard way.
9026   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9027 }
9028 
9029 std::optional<ScalarEvolution::ExitLimit>
9030 ScalarEvolution::computeExitLimitFromCondFromBinOp(
9031     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9032     bool ControlsOnlyExit, bool AllowPredicates) {
9033   // Check if the controlling expression for this loop is an And or Or.
9034   Value *Op0, *Op1;
9035   bool IsAnd = false;
9036   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
9037     IsAnd = true;
9038   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
9039     IsAnd = false;
9040   else
9041     return std::nullopt;
9042 
9043   // EitherMayExit is true in these two cases:
9044   //   br (and Op0 Op1), loop, exit
9045   //   br (or  Op0 Op1), exit, loop
9046   bool EitherMayExit = IsAnd ^ ExitIfTrue;
9047   ExitLimit EL0 = computeExitLimitFromCondCached(
9048       Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9049       AllowPredicates);
9050   ExitLimit EL1 = computeExitLimitFromCondCached(
9051       Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9052       AllowPredicates);
9053 
9054   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9055   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
9056   if (isa<ConstantInt>(Op1))
9057     return Op1 == NeutralElement ? EL0 : EL1;
9058   if (isa<ConstantInt>(Op0))
9059     return Op0 == NeutralElement ? EL1 : EL0;
9060 
9061   const SCEV *BECount = getCouldNotCompute();
9062   const SCEV *ConstantMaxBECount = getCouldNotCompute();
9063   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9064   if (EitherMayExit) {
9065     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
9066     // Both conditions must be same for the loop to continue executing.
9067     // Choose the less conservative count.
9068     if (EL0.ExactNotTaken != getCouldNotCompute() &&
9069         EL1.ExactNotTaken != getCouldNotCompute()) {
9070       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
9071                                            UseSequentialUMin);
9072     }
9073     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9074       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9075     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9076       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9077     else
9078       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
9079                                                       EL1.ConstantMaxNotTaken);
9080     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9081       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9082     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9083       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9084     else
9085       SymbolicMaxBECount = getUMinFromMismatchedTypes(
9086           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9087   } else {
9088     // Both conditions must be same at the same time for the loop to exit.
9089     // For now, be conservative.
9090     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9091       BECount = EL0.ExactNotTaken;
9092   }
9093 
9094   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9095   // to be more aggressive when computing BECount than when computing
9096   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
9097   // and
9098   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9099   // EL1.ConstantMaxNotTaken to not.
9100   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
9101       !isa<SCEVCouldNotCompute>(BECount))
9102     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
9103   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
9104     SymbolicMaxBECount =
9105         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9106   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9107                    { &EL0.Predicates, &EL1.Predicates });
9108 }
9109 
9110 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9111     const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9112     bool AllowPredicates) {
9113   // If the condition was exit on true, convert the condition to exit on false
9114   ICmpInst::Predicate Pred;
9115   if (!ExitIfTrue)
9116     Pred = ExitCond->getPredicate();
9117   else
9118     Pred = ExitCond->getInversePredicate();
9119   const ICmpInst::Predicate OriginalPred = Pred;
9120 
9121   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9122   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9123 
9124   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
9125                                           AllowPredicates);
9126   if (EL.hasAnyInfo())
9127     return EL;
9128 
9129   auto *ExhaustiveCount =
9130       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9131 
9132   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9133     return ExhaustiveCount;
9134 
9135   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9136                                       ExitCond->getOperand(1), L, OriginalPred);
9137 }
9138 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9139     const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9140     bool ControlsOnlyExit, bool AllowPredicates) {
9141 
9142   // Try to evaluate any dependencies out of the loop.
9143   LHS = getSCEVAtScope(LHS, L);
9144   RHS = getSCEVAtScope(RHS, L);
9145 
9146   // At this point, we would like to compute how many iterations of the
9147   // loop the predicate will return true for these inputs.
9148   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9149     // If there is a loop-invariant, force it into the RHS.
9150     std::swap(LHS, RHS);
9151     Pred = ICmpInst::getSwappedPredicate(Pred);
9152   }
9153 
9154   bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9155                                loopIsFiniteByAssumption(L);
9156   // Simplify the operands before analyzing them.
9157   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9158 
9159   // If we have a comparison of a chrec against a constant, try to use value
9160   // ranges to answer this query.
9161   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9162     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9163       if (AddRec->getLoop() == L) {
9164         // Form the constant range.
9165         ConstantRange CompRange =
9166             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9167 
9168         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9169         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9170       }
9171 
9172   // If this loop must exit based on this condition (or execute undefined
9173   // behaviour), and we can prove the test sequence produced must repeat
9174   // the same values on self-wrap of the IV, then we can infer that IV
9175   // doesn't self wrap because if it did, we'd have an infinite (undefined)
9176   // loop.
9177   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9178     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9179     // invariant terms are effectively constants for our purposes here.
9180     auto *InnerLHS = LHS;
9181     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9182       InnerLHS = ZExt->getOperand();
9183     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9184       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9185       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9186           StrideC && StrideC->getAPInt().isPowerOf2()) {
9187         auto Flags = AR->getNoWrapFlags();
9188         Flags = setFlags(Flags, SCEV::FlagNW);
9189         SmallVector<const SCEV*> Operands{AR->operands()};
9190         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9191         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9192       }
9193     }
9194   }
9195 
9196   switch (Pred) {
9197   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9198     // Convert to: while (X-Y != 0)
9199     if (LHS->getType()->isPointerTy()) {
9200       LHS = getLosslessPtrToIntExpr(LHS);
9201       if (isa<SCEVCouldNotCompute>(LHS))
9202         return LHS;
9203     }
9204     if (RHS->getType()->isPointerTy()) {
9205       RHS = getLosslessPtrToIntExpr(RHS);
9206       if (isa<SCEVCouldNotCompute>(RHS))
9207         return RHS;
9208     }
9209     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9210                                 AllowPredicates);
9211     if (EL.hasAnyInfo())
9212       return EL;
9213     break;
9214   }
9215   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9216     // Convert to: while (X-Y == 0)
9217     if (LHS->getType()->isPointerTy()) {
9218       LHS = getLosslessPtrToIntExpr(LHS);
9219       if (isa<SCEVCouldNotCompute>(LHS))
9220         return LHS;
9221     }
9222     if (RHS->getType()->isPointerTy()) {
9223       RHS = getLosslessPtrToIntExpr(RHS);
9224       if (isa<SCEVCouldNotCompute>(RHS))
9225         return RHS;
9226     }
9227     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9228     if (EL.hasAnyInfo()) return EL;
9229     break;
9230   }
9231   case ICmpInst::ICMP_SLE:
9232   case ICmpInst::ICMP_ULE:
9233     // Since the loop is finite, an invariant RHS cannot include the boundary
9234     // value, otherwise it would loop forever.
9235     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9236         !isLoopInvariant(RHS, L)) {
9237       // Otherwise, perform the addition in a wider type, to avoid overflow.
9238       // If the LHS is an addrec with the appropriate nowrap flag, the
9239       // extension will be sunk into it and the exit count can be analyzed.
9240       auto *OldType = dyn_cast<IntegerType>(LHS->getType());
9241       if (!OldType)
9242         break;
9243       // Prefer doubling the bitwidth over adding a single bit to make it more
9244       // likely that we use a legal type.
9245       auto *NewType =
9246           Type::getIntNTy(OldType->getContext(), OldType->getBitWidth() * 2);
9247       if (ICmpInst::isSigned(Pred)) {
9248         LHS = getSignExtendExpr(LHS, NewType);
9249         RHS = getSignExtendExpr(RHS, NewType);
9250       } else {
9251         LHS = getZeroExtendExpr(LHS, NewType);
9252         RHS = getZeroExtendExpr(RHS, NewType);
9253       }
9254     }
9255     RHS = getAddExpr(getOne(RHS->getType()), RHS);
9256     [[fallthrough]];
9257   case ICmpInst::ICMP_SLT:
9258   case ICmpInst::ICMP_ULT: { // while (X < Y)
9259     bool IsSigned = ICmpInst::isSigned(Pred);
9260     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9261                                     AllowPredicates);
9262     if (EL.hasAnyInfo())
9263       return EL;
9264     break;
9265   }
9266   case ICmpInst::ICMP_SGE:
9267   case ICmpInst::ICMP_UGE:
9268     // Since the loop is finite, an invariant RHS cannot include the boundary
9269     // value, otherwise it would loop forever.
9270     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9271         !isLoopInvariant(RHS, L))
9272       break;
9273     RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9274     [[fallthrough]];
9275   case ICmpInst::ICMP_SGT:
9276   case ICmpInst::ICMP_UGT: { // while (X > Y)
9277     bool IsSigned = ICmpInst::isSigned(Pred);
9278     ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9279                                        AllowPredicates);
9280     if (EL.hasAnyInfo())
9281       return EL;
9282     break;
9283   }
9284   default:
9285     break;
9286   }
9287 
9288   return getCouldNotCompute();
9289 }
9290 
9291 ScalarEvolution::ExitLimit
9292 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9293                                                       SwitchInst *Switch,
9294                                                       BasicBlock *ExitingBlock,
9295                                                       bool ControlsOnlyExit) {
9296   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9297 
9298   // Give up if the exit is the default dest of a switch.
9299   if (Switch->getDefaultDest() == ExitingBlock)
9300     return getCouldNotCompute();
9301 
9302   assert(L->contains(Switch->getDefaultDest()) &&
9303          "Default case must not exit the loop!");
9304   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9305   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9306 
9307   // while (X != Y) --> while (X-Y != 0)
9308   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9309   if (EL.hasAnyInfo())
9310     return EL;
9311 
9312   return getCouldNotCompute();
9313 }
9314 
9315 static ConstantInt *
9316 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9317                                 ScalarEvolution &SE) {
9318   const SCEV *InVal = SE.getConstant(C);
9319   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9320   assert(isa<SCEVConstant>(Val) &&
9321          "Evaluation of SCEV at constant didn't fold correctly?");
9322   return cast<SCEVConstant>(Val)->getValue();
9323 }
9324 
9325 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9326     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9327   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9328   if (!RHS)
9329     return getCouldNotCompute();
9330 
9331   const BasicBlock *Latch = L->getLoopLatch();
9332   if (!Latch)
9333     return getCouldNotCompute();
9334 
9335   const BasicBlock *Predecessor = L->getLoopPredecessor();
9336   if (!Predecessor)
9337     return getCouldNotCompute();
9338 
9339   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9340   // Return LHS in OutLHS and shift_opt in OutOpCode.
9341   auto MatchPositiveShift =
9342       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9343 
9344     using namespace PatternMatch;
9345 
9346     ConstantInt *ShiftAmt;
9347     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9348       OutOpCode = Instruction::LShr;
9349     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9350       OutOpCode = Instruction::AShr;
9351     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9352       OutOpCode = Instruction::Shl;
9353     else
9354       return false;
9355 
9356     return ShiftAmt->getValue().isStrictlyPositive();
9357   };
9358 
9359   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9360   //
9361   // loop:
9362   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9363   //   %iv.shifted = lshr i32 %iv, <positive constant>
9364   //
9365   // Return true on a successful match.  Return the corresponding PHI node (%iv
9366   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9367   auto MatchShiftRecurrence =
9368       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9369     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9370 
9371     {
9372       Instruction::BinaryOps OpC;
9373       Value *V;
9374 
9375       // If we encounter a shift instruction, "peel off" the shift operation,
9376       // and remember that we did so.  Later when we inspect %iv's backedge
9377       // value, we will make sure that the backedge value uses the same
9378       // operation.
9379       //
9380       // Note: the peeled shift operation does not have to be the same
9381       // instruction as the one feeding into the PHI's backedge value.  We only
9382       // really care about it being the same *kind* of shift instruction --
9383       // that's all that is required for our later inferences to hold.
9384       if (MatchPositiveShift(LHS, V, OpC)) {
9385         PostShiftOpCode = OpC;
9386         LHS = V;
9387       }
9388     }
9389 
9390     PNOut = dyn_cast<PHINode>(LHS);
9391     if (!PNOut || PNOut->getParent() != L->getHeader())
9392       return false;
9393 
9394     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9395     Value *OpLHS;
9396 
9397     return
9398         // The backedge value for the PHI node must be a shift by a positive
9399         // amount
9400         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9401 
9402         // of the PHI node itself
9403         OpLHS == PNOut &&
9404 
9405         // and the kind of shift should be match the kind of shift we peeled
9406         // off, if any.
9407         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9408   };
9409 
9410   PHINode *PN;
9411   Instruction::BinaryOps OpCode;
9412   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9413     return getCouldNotCompute();
9414 
9415   const DataLayout &DL = getDataLayout();
9416 
9417   // The key rationale for this optimization is that for some kinds of shift
9418   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9419   // within a finite number of iterations.  If the condition guarding the
9420   // backedge (in the sense that the backedge is taken if the condition is true)
9421   // is false for the value the shift recurrence stabilizes to, then we know
9422   // that the backedge is taken only a finite number of times.
9423 
9424   ConstantInt *StableValue = nullptr;
9425   switch (OpCode) {
9426   default:
9427     llvm_unreachable("Impossible case!");
9428 
9429   case Instruction::AShr: {
9430     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9431     // bitwidth(K) iterations.
9432     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9433     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9434                                        Predecessor->getTerminator(), &DT);
9435     auto *Ty = cast<IntegerType>(RHS->getType());
9436     if (Known.isNonNegative())
9437       StableValue = ConstantInt::get(Ty, 0);
9438     else if (Known.isNegative())
9439       StableValue = ConstantInt::get(Ty, -1, true);
9440     else
9441       return getCouldNotCompute();
9442 
9443     break;
9444   }
9445   case Instruction::LShr:
9446   case Instruction::Shl:
9447     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9448     // stabilize to 0 in at most bitwidth(K) iterations.
9449     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9450     break;
9451   }
9452 
9453   auto *Result =
9454       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9455   assert(Result->getType()->isIntegerTy(1) &&
9456          "Otherwise cannot be an operand to a branch instruction");
9457 
9458   if (Result->isZeroValue()) {
9459     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9460     const SCEV *UpperBound =
9461         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9462     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9463   }
9464 
9465   return getCouldNotCompute();
9466 }
9467 
9468 /// Return true if we can constant fold an instruction of the specified type,
9469 /// assuming that all operands were constants.
9470 static bool CanConstantFold(const Instruction *I) {
9471   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9472       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9473       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9474     return true;
9475 
9476   if (const CallInst *CI = dyn_cast<CallInst>(I))
9477     if (const Function *F = CI->getCalledFunction())
9478       return canConstantFoldCallTo(CI, F);
9479   return false;
9480 }
9481 
9482 /// Determine whether this instruction can constant evolve within this loop
9483 /// assuming its operands can all constant evolve.
9484 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9485   // An instruction outside of the loop can't be derived from a loop PHI.
9486   if (!L->contains(I)) return false;
9487 
9488   if (isa<PHINode>(I)) {
9489     // We don't currently keep track of the control flow needed to evaluate
9490     // PHIs, so we cannot handle PHIs inside of loops.
9491     return L->getHeader() == I->getParent();
9492   }
9493 
9494   // If we won't be able to constant fold this expression even if the operands
9495   // are constants, bail early.
9496   return CanConstantFold(I);
9497 }
9498 
9499 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9500 /// recursing through each instruction operand until reaching a loop header phi.
9501 static PHINode *
9502 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9503                                DenseMap<Instruction *, PHINode *> &PHIMap,
9504                                unsigned Depth) {
9505   if (Depth > MaxConstantEvolvingDepth)
9506     return nullptr;
9507 
9508   // Otherwise, we can evaluate this instruction if all of its operands are
9509   // constant or derived from a PHI node themselves.
9510   PHINode *PHI = nullptr;
9511   for (Value *Op : UseInst->operands()) {
9512     if (isa<Constant>(Op)) continue;
9513 
9514     Instruction *OpInst = dyn_cast<Instruction>(Op);
9515     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9516 
9517     PHINode *P = dyn_cast<PHINode>(OpInst);
9518     if (!P)
9519       // If this operand is already visited, reuse the prior result.
9520       // We may have P != PHI if this is the deepest point at which the
9521       // inconsistent paths meet.
9522       P = PHIMap.lookup(OpInst);
9523     if (!P) {
9524       // Recurse and memoize the results, whether a phi is found or not.
9525       // This recursive call invalidates pointers into PHIMap.
9526       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9527       PHIMap[OpInst] = P;
9528     }
9529     if (!P)
9530       return nullptr;  // Not evolving from PHI
9531     if (PHI && PHI != P)
9532       return nullptr;  // Evolving from multiple different PHIs.
9533     PHI = P;
9534   }
9535   // This is a expression evolving from a constant PHI!
9536   return PHI;
9537 }
9538 
9539 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9540 /// in the loop that V is derived from.  We allow arbitrary operations along the
9541 /// way, but the operands of an operation must either be constants or a value
9542 /// derived from a constant PHI.  If this expression does not fit with these
9543 /// constraints, return null.
9544 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9545   Instruction *I = dyn_cast<Instruction>(V);
9546   if (!I || !canConstantEvolve(I, L)) return nullptr;
9547 
9548   if (PHINode *PN = dyn_cast<PHINode>(I))
9549     return PN;
9550 
9551   // Record non-constant instructions contained by the loop.
9552   DenseMap<Instruction *, PHINode *> PHIMap;
9553   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9554 }
9555 
9556 /// EvaluateExpression - Given an expression that passes the
9557 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9558 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9559 /// reason, return null.
9560 static Constant *EvaluateExpression(Value *V, const Loop *L,
9561                                     DenseMap<Instruction *, Constant *> &Vals,
9562                                     const DataLayout &DL,
9563                                     const TargetLibraryInfo *TLI) {
9564   // Convenient constant check, but redundant for recursive calls.
9565   if (Constant *C = dyn_cast<Constant>(V)) return C;
9566   Instruction *I = dyn_cast<Instruction>(V);
9567   if (!I) return nullptr;
9568 
9569   if (Constant *C = Vals.lookup(I)) return C;
9570 
9571   // An instruction inside the loop depends on a value outside the loop that we
9572   // weren't given a mapping for, or a value such as a call inside the loop.
9573   if (!canConstantEvolve(I, L)) return nullptr;
9574 
9575   // An unmapped PHI can be due to a branch or another loop inside this loop,
9576   // or due to this not being the initial iteration through a loop where we
9577   // couldn't compute the evolution of this particular PHI last time.
9578   if (isa<PHINode>(I)) return nullptr;
9579 
9580   std::vector<Constant*> Operands(I->getNumOperands());
9581 
9582   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9583     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9584     if (!Operand) {
9585       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9586       if (!Operands[i]) return nullptr;
9587       continue;
9588     }
9589     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9590     Vals[Operand] = C;
9591     if (!C) return nullptr;
9592     Operands[i] = C;
9593   }
9594 
9595   return ConstantFoldInstOperands(I, Operands, DL, TLI,
9596                                   /*AllowNonDeterministic=*/false);
9597 }
9598 
9599 
9600 // If every incoming value to PN except the one for BB is a specific Constant,
9601 // return that, else return nullptr.
9602 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9603   Constant *IncomingVal = nullptr;
9604 
9605   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9606     if (PN->getIncomingBlock(i) == BB)
9607       continue;
9608 
9609     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9610     if (!CurrentVal)
9611       return nullptr;
9612 
9613     if (IncomingVal != CurrentVal) {
9614       if (IncomingVal)
9615         return nullptr;
9616       IncomingVal = CurrentVal;
9617     }
9618   }
9619 
9620   return IncomingVal;
9621 }
9622 
9623 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9624 /// in the header of its containing loop, we know the loop executes a
9625 /// constant number of times, and the PHI node is just a recurrence
9626 /// involving constants, fold it.
9627 Constant *
9628 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9629                                                    const APInt &BEs,
9630                                                    const Loop *L) {
9631   auto I = ConstantEvolutionLoopExitValue.find(PN);
9632   if (I != ConstantEvolutionLoopExitValue.end())
9633     return I->second;
9634 
9635   if (BEs.ugt(MaxBruteForceIterations))
9636     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9637 
9638   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9639 
9640   DenseMap<Instruction *, Constant *> CurrentIterVals;
9641   BasicBlock *Header = L->getHeader();
9642   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9643 
9644   BasicBlock *Latch = L->getLoopLatch();
9645   if (!Latch)
9646     return nullptr;
9647 
9648   for (PHINode &PHI : Header->phis()) {
9649     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9650       CurrentIterVals[&PHI] = StartCST;
9651   }
9652   if (!CurrentIterVals.count(PN))
9653     return RetVal = nullptr;
9654 
9655   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9656 
9657   // Execute the loop symbolically to determine the exit value.
9658   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9659          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9660 
9661   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9662   unsigned IterationNum = 0;
9663   const DataLayout &DL = getDataLayout();
9664   for (; ; ++IterationNum) {
9665     if (IterationNum == NumIterations)
9666       return RetVal = CurrentIterVals[PN];  // Got exit value!
9667 
9668     // Compute the value of the PHIs for the next iteration.
9669     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9670     DenseMap<Instruction *, Constant *> NextIterVals;
9671     Constant *NextPHI =
9672         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9673     if (!NextPHI)
9674       return nullptr;        // Couldn't evaluate!
9675     NextIterVals[PN] = NextPHI;
9676 
9677     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9678 
9679     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9680     // cease to be able to evaluate one of them or if they stop evolving,
9681     // because that doesn't necessarily prevent us from computing PN.
9682     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9683     for (const auto &I : CurrentIterVals) {
9684       PHINode *PHI = dyn_cast<PHINode>(I.first);
9685       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9686       PHIsToCompute.emplace_back(PHI, I.second);
9687     }
9688     // We use two distinct loops because EvaluateExpression may invalidate any
9689     // iterators into CurrentIterVals.
9690     for (const auto &I : PHIsToCompute) {
9691       PHINode *PHI = I.first;
9692       Constant *&NextPHI = NextIterVals[PHI];
9693       if (!NextPHI) {   // Not already computed.
9694         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9695         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9696       }
9697       if (NextPHI != I.second)
9698         StoppedEvolving = false;
9699     }
9700 
9701     // If all entries in CurrentIterVals == NextIterVals then we can stop
9702     // iterating, the loop can't continue to change.
9703     if (StoppedEvolving)
9704       return RetVal = CurrentIterVals[PN];
9705 
9706     CurrentIterVals.swap(NextIterVals);
9707   }
9708 }
9709 
9710 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9711                                                           Value *Cond,
9712                                                           bool ExitWhen) {
9713   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9714   if (!PN) return getCouldNotCompute();
9715 
9716   // If the loop is canonicalized, the PHI will have exactly two entries.
9717   // That's the only form we support here.
9718   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9719 
9720   DenseMap<Instruction *, Constant *> CurrentIterVals;
9721   BasicBlock *Header = L->getHeader();
9722   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9723 
9724   BasicBlock *Latch = L->getLoopLatch();
9725   assert(Latch && "Should follow from NumIncomingValues == 2!");
9726 
9727   for (PHINode &PHI : Header->phis()) {
9728     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9729       CurrentIterVals[&PHI] = StartCST;
9730   }
9731   if (!CurrentIterVals.count(PN))
9732     return getCouldNotCompute();
9733 
9734   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9735   // the loop symbolically to determine when the condition gets a value of
9736   // "ExitWhen".
9737   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9738   const DataLayout &DL = getDataLayout();
9739   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9740     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9741         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9742 
9743     // Couldn't symbolically evaluate.
9744     if (!CondVal) return getCouldNotCompute();
9745 
9746     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9747       ++NumBruteForceTripCountsComputed;
9748       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9749     }
9750 
9751     // Update all the PHI nodes for the next iteration.
9752     DenseMap<Instruction *, Constant *> NextIterVals;
9753 
9754     // Create a list of which PHIs we need to compute. We want to do this before
9755     // calling EvaluateExpression on them because that may invalidate iterators
9756     // into CurrentIterVals.
9757     SmallVector<PHINode *, 8> PHIsToCompute;
9758     for (const auto &I : CurrentIterVals) {
9759       PHINode *PHI = dyn_cast<PHINode>(I.first);
9760       if (!PHI || PHI->getParent() != Header) continue;
9761       PHIsToCompute.push_back(PHI);
9762     }
9763     for (PHINode *PHI : PHIsToCompute) {
9764       Constant *&NextPHI = NextIterVals[PHI];
9765       if (NextPHI) continue;    // Already computed!
9766 
9767       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9768       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9769     }
9770     CurrentIterVals.swap(NextIterVals);
9771   }
9772 
9773   // Too many iterations were needed to evaluate.
9774   return getCouldNotCompute();
9775 }
9776 
9777 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9778   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9779       ValuesAtScopes[V];
9780   // Check to see if we've folded this expression at this loop before.
9781   for (auto &LS : Values)
9782     if (LS.first == L)
9783       return LS.second ? LS.second : V;
9784 
9785   Values.emplace_back(L, nullptr);
9786 
9787   // Otherwise compute it.
9788   const SCEV *C = computeSCEVAtScope(V, L);
9789   for (auto &LS : reverse(ValuesAtScopes[V]))
9790     if (LS.first == L) {
9791       LS.second = C;
9792       if (!isa<SCEVConstant>(C))
9793         ValuesAtScopesUsers[C].push_back({L, V});
9794       break;
9795     }
9796   return C;
9797 }
9798 
9799 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9800 /// will return Constants for objects which aren't represented by a
9801 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9802 /// Returns NULL if the SCEV isn't representable as a Constant.
9803 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9804   switch (V->getSCEVType()) {
9805   case scCouldNotCompute:
9806   case scAddRecExpr:
9807   case scVScale:
9808     return nullptr;
9809   case scConstant:
9810     return cast<SCEVConstant>(V)->getValue();
9811   case scUnknown:
9812     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9813   case scPtrToInt: {
9814     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9815     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9816       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9817 
9818     return nullptr;
9819   }
9820   case scTruncate: {
9821     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9822     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9823       return ConstantExpr::getTrunc(CastOp, ST->getType());
9824     return nullptr;
9825   }
9826   case scAddExpr: {
9827     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9828     Constant *C = nullptr;
9829     for (const SCEV *Op : SA->operands()) {
9830       Constant *OpC = BuildConstantFromSCEV(Op);
9831       if (!OpC)
9832         return nullptr;
9833       if (!C) {
9834         C = OpC;
9835         continue;
9836       }
9837       assert(!C->getType()->isPointerTy() &&
9838              "Can only have one pointer, and it must be last");
9839       if (OpC->getType()->isPointerTy()) {
9840         // The offsets have been converted to bytes.  We can add bytes using
9841         // an i8 GEP.
9842         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9843                                            OpC, C);
9844       } else {
9845         C = ConstantExpr::getAdd(C, OpC);
9846       }
9847     }
9848     return C;
9849   }
9850   case scMulExpr:
9851   case scSignExtend:
9852   case scZeroExtend:
9853   case scUDivExpr:
9854   case scSMaxExpr:
9855   case scUMaxExpr:
9856   case scSMinExpr:
9857   case scUMinExpr:
9858   case scSequentialUMinExpr:
9859     return nullptr;
9860   }
9861   llvm_unreachable("Unknown SCEV kind!");
9862 }
9863 
9864 const SCEV *
9865 ScalarEvolution::getWithOperands(const SCEV *S,
9866                                  SmallVectorImpl<const SCEV *> &NewOps) {
9867   switch (S->getSCEVType()) {
9868   case scTruncate:
9869   case scZeroExtend:
9870   case scSignExtend:
9871   case scPtrToInt:
9872     return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9873   case scAddRecExpr: {
9874     auto *AddRec = cast<SCEVAddRecExpr>(S);
9875     return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9876   }
9877   case scAddExpr:
9878     return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9879   case scMulExpr:
9880     return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9881   case scUDivExpr:
9882     return getUDivExpr(NewOps[0], NewOps[1]);
9883   case scUMaxExpr:
9884   case scSMaxExpr:
9885   case scUMinExpr:
9886   case scSMinExpr:
9887     return getMinMaxExpr(S->getSCEVType(), NewOps);
9888   case scSequentialUMinExpr:
9889     return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9890   case scConstant:
9891   case scVScale:
9892   case scUnknown:
9893     return S;
9894   case scCouldNotCompute:
9895     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9896   }
9897   llvm_unreachable("Unknown SCEV kind!");
9898 }
9899 
9900 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9901   switch (V->getSCEVType()) {
9902   case scConstant:
9903   case scVScale:
9904     return V;
9905   case scAddRecExpr: {
9906     // If this is a loop recurrence for a loop that does not contain L, then we
9907     // are dealing with the final value computed by the loop.
9908     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9909     // First, attempt to evaluate each operand.
9910     // Avoid performing the look-up in the common case where the specified
9911     // expression has no loop-variant portions.
9912     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9913       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9914       if (OpAtScope == AddRec->getOperand(i))
9915         continue;
9916 
9917       // Okay, at least one of these operands is loop variant but might be
9918       // foldable.  Build a new instance of the folded commutative expression.
9919       SmallVector<const SCEV *, 8> NewOps;
9920       NewOps.reserve(AddRec->getNumOperands());
9921       append_range(NewOps, AddRec->operands().take_front(i));
9922       NewOps.push_back(OpAtScope);
9923       for (++i; i != e; ++i)
9924         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9925 
9926       const SCEV *FoldedRec = getAddRecExpr(
9927           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9928       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9929       // The addrec may be folded to a nonrecurrence, for example, if the
9930       // induction variable is multiplied by zero after constant folding. Go
9931       // ahead and return the folded value.
9932       if (!AddRec)
9933         return FoldedRec;
9934       break;
9935     }
9936 
9937     // If the scope is outside the addrec's loop, evaluate it by using the
9938     // loop exit value of the addrec.
9939     if (!AddRec->getLoop()->contains(L)) {
9940       // To evaluate this recurrence, we need to know how many times the AddRec
9941       // loop iterates.  Compute this now.
9942       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9943       if (BackedgeTakenCount == getCouldNotCompute())
9944         return AddRec;
9945 
9946       // Then, evaluate the AddRec.
9947       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9948     }
9949 
9950     return AddRec;
9951   }
9952   case scTruncate:
9953   case scZeroExtend:
9954   case scSignExtend:
9955   case scPtrToInt:
9956   case scAddExpr:
9957   case scMulExpr:
9958   case scUDivExpr:
9959   case scUMaxExpr:
9960   case scSMaxExpr:
9961   case scUMinExpr:
9962   case scSMinExpr:
9963   case scSequentialUMinExpr: {
9964     ArrayRef<const SCEV *> Ops = V->operands();
9965     // Avoid performing the look-up in the common case where the specified
9966     // expression has no loop-variant portions.
9967     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9968       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9969       if (OpAtScope != Ops[i]) {
9970         // Okay, at least one of these operands is loop variant but might be
9971         // foldable.  Build a new instance of the folded commutative expression.
9972         SmallVector<const SCEV *, 8> NewOps;
9973         NewOps.reserve(Ops.size());
9974         append_range(NewOps, Ops.take_front(i));
9975         NewOps.push_back(OpAtScope);
9976 
9977         for (++i; i != e; ++i) {
9978           OpAtScope = getSCEVAtScope(Ops[i], L);
9979           NewOps.push_back(OpAtScope);
9980         }
9981 
9982         return getWithOperands(V, NewOps);
9983       }
9984     }
9985     // If we got here, all operands are loop invariant.
9986     return V;
9987   }
9988   case scUnknown: {
9989     // If this instruction is evolved from a constant-evolving PHI, compute the
9990     // exit value from the loop without using SCEVs.
9991     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9992     Instruction *I = dyn_cast<Instruction>(SU->getValue());
9993     if (!I)
9994       return V; // This is some other type of SCEVUnknown, just return it.
9995 
9996     if (PHINode *PN = dyn_cast<PHINode>(I)) {
9997       const Loop *CurrLoop = this->LI[I->getParent()];
9998       // Looking for loop exit value.
9999       if (CurrLoop && CurrLoop->getParentLoop() == L &&
10000           PN->getParent() == CurrLoop->getHeader()) {
10001         // Okay, there is no closed form solution for the PHI node.  Check
10002         // to see if the loop that contains it has a known backedge-taken
10003         // count.  If so, we may be able to force computation of the exit
10004         // value.
10005         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
10006         // This trivial case can show up in some degenerate cases where
10007         // the incoming IR has not yet been fully simplified.
10008         if (BackedgeTakenCount->isZero()) {
10009           Value *InitValue = nullptr;
10010           bool MultipleInitValues = false;
10011           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
10012             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
10013               if (!InitValue)
10014                 InitValue = PN->getIncomingValue(i);
10015               else if (InitValue != PN->getIncomingValue(i)) {
10016                 MultipleInitValues = true;
10017                 break;
10018               }
10019             }
10020           }
10021           if (!MultipleInitValues && InitValue)
10022             return getSCEV(InitValue);
10023         }
10024         // Do we have a loop invariant value flowing around the backedge
10025         // for a loop which must execute the backedge?
10026         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
10027             isKnownNonZero(BackedgeTakenCount) &&
10028             PN->getNumIncomingValues() == 2) {
10029 
10030           unsigned InLoopPred =
10031               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
10032           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
10033           if (CurrLoop->isLoopInvariant(BackedgeVal))
10034             return getSCEV(BackedgeVal);
10035         }
10036         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
10037           // Okay, we know how many times the containing loop executes.  If
10038           // this is a constant evolving PHI node, get the final value at
10039           // the specified iteration number.
10040           Constant *RV =
10041               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
10042           if (RV)
10043             return getSCEV(RV);
10044         }
10045       }
10046     }
10047 
10048     // Okay, this is an expression that we cannot symbolically evaluate
10049     // into a SCEV.  Check to see if it's possible to symbolically evaluate
10050     // the arguments into constants, and if so, try to constant propagate the
10051     // result.  This is particularly useful for computing loop exit values.
10052     if (!CanConstantFold(I))
10053       return V; // This is some other type of SCEVUnknown, just return it.
10054 
10055     SmallVector<Constant *, 4> Operands;
10056     Operands.reserve(I->getNumOperands());
10057     bool MadeImprovement = false;
10058     for (Value *Op : I->operands()) {
10059       if (Constant *C = dyn_cast<Constant>(Op)) {
10060         Operands.push_back(C);
10061         continue;
10062       }
10063 
10064       // If any of the operands is non-constant and if they are
10065       // non-integer and non-pointer, don't even try to analyze them
10066       // with scev techniques.
10067       if (!isSCEVable(Op->getType()))
10068         return V;
10069 
10070       const SCEV *OrigV = getSCEV(Op);
10071       const SCEV *OpV = getSCEVAtScope(OrigV, L);
10072       MadeImprovement |= OrigV != OpV;
10073 
10074       Constant *C = BuildConstantFromSCEV(OpV);
10075       if (!C)
10076         return V;
10077       assert(C->getType() == Op->getType() && "Type mismatch");
10078       Operands.push_back(C);
10079     }
10080 
10081     // Check to see if getSCEVAtScope actually made an improvement.
10082     if (!MadeImprovement)
10083       return V; // This is some other type of SCEVUnknown, just return it.
10084 
10085     Constant *C = nullptr;
10086     const DataLayout &DL = getDataLayout();
10087     C = ConstantFoldInstOperands(I, Operands, DL, &TLI,
10088                                  /*AllowNonDeterministic=*/false);
10089     if (!C)
10090       return V;
10091     return getSCEV(C);
10092   }
10093   case scCouldNotCompute:
10094     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10095   }
10096   llvm_unreachable("Unknown SCEV type!");
10097 }
10098 
10099 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10100   return getSCEVAtScope(getSCEV(V), L);
10101 }
10102 
10103 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10104   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
10105     return stripInjectiveFunctions(ZExt->getOperand());
10106   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10107     return stripInjectiveFunctions(SExt->getOperand());
10108   return S;
10109 }
10110 
10111 /// Finds the minimum unsigned root of the following equation:
10112 ///
10113 ///     A * X = B (mod N)
10114 ///
10115 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10116 /// A and B isn't important.
10117 ///
10118 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10119 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10120                                                ScalarEvolution &SE) {
10121   uint32_t BW = A.getBitWidth();
10122   assert(BW == SE.getTypeSizeInBits(B->getType()));
10123   assert(A != 0 && "A must be non-zero.");
10124 
10125   // 1. D = gcd(A, N)
10126   //
10127   // The gcd of A and N may have only one prime factor: 2. The number of
10128   // trailing zeros in A is its multiplicity
10129   uint32_t Mult2 = A.countr_zero();
10130   // D = 2^Mult2
10131 
10132   // 2. Check if B is divisible by D.
10133   //
10134   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10135   // is not less than multiplicity of this prime factor for D.
10136   if (SE.getMinTrailingZeros(B) < Mult2)
10137     return SE.getCouldNotCompute();
10138 
10139   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10140   // modulo (N / D).
10141   //
10142   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10143   // (N / D) in general. The inverse itself always fits into BW bits, though,
10144   // so we immediately truncate it.
10145   APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D
10146   APInt I = AD.multiplicativeInverse().zext(BW);
10147 
10148   // 4. Compute the minimum unsigned root of the equation:
10149   // I * (B / D) mod (N / D)
10150   // To simplify the computation, we factor out the divide by D:
10151   // (I * B mod N) / D
10152   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10153   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10154 }
10155 
10156 /// For a given quadratic addrec, generate coefficients of the corresponding
10157 /// quadratic equation, multiplied by a common value to ensure that they are
10158 /// integers.
10159 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10160 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10161 /// were multiplied by, and BitWidth is the bit width of the original addrec
10162 /// coefficients.
10163 /// This function returns std::nullopt if the addrec coefficients are not
10164 /// compile- time constants.
10165 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10166 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10167   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10168   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10169   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10170   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10171   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10172                     << *AddRec << '\n');
10173 
10174   // We currently can only solve this if the coefficients are constants.
10175   if (!LC || !MC || !NC) {
10176     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10177     return std::nullopt;
10178   }
10179 
10180   APInt L = LC->getAPInt();
10181   APInt M = MC->getAPInt();
10182   APInt N = NC->getAPInt();
10183   assert(!N.isZero() && "This is not a quadratic addrec");
10184 
10185   unsigned BitWidth = LC->getAPInt().getBitWidth();
10186   unsigned NewWidth = BitWidth + 1;
10187   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10188                     << BitWidth << '\n');
10189   // The sign-extension (as opposed to a zero-extension) here matches the
10190   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10191   N = N.sext(NewWidth);
10192   M = M.sext(NewWidth);
10193   L = L.sext(NewWidth);
10194 
10195   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10196   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10197   //   L+M, L+2M+N, L+3M+3N, ...
10198   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10199   //
10200   // The equation Acc = 0 is then
10201   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10202   // In a quadratic form it becomes:
10203   //   N n^2 + (2M-N) n + 2L = 0.
10204 
10205   APInt A = N;
10206   APInt B = 2 * M - A;
10207   APInt C = 2 * L;
10208   APInt T = APInt(NewWidth, 2);
10209   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10210                     << "x + " << C << ", coeff bw: " << NewWidth
10211                     << ", multiplied by " << T << '\n');
10212   return std::make_tuple(A, B, C, T, BitWidth);
10213 }
10214 
10215 /// Helper function to compare optional APInts:
10216 /// (a) if X and Y both exist, return min(X, Y),
10217 /// (b) if neither X nor Y exist, return std::nullopt,
10218 /// (c) if exactly one of X and Y exists, return that value.
10219 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10220                                         std::optional<APInt> Y) {
10221   if (X && Y) {
10222     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10223     APInt XW = X->sext(W);
10224     APInt YW = Y->sext(W);
10225     return XW.slt(YW) ? *X : *Y;
10226   }
10227   if (!X && !Y)
10228     return std::nullopt;
10229   return X ? *X : *Y;
10230 }
10231 
10232 /// Helper function to truncate an optional APInt to a given BitWidth.
10233 /// When solving addrec-related equations, it is preferable to return a value
10234 /// that has the same bit width as the original addrec's coefficients. If the
10235 /// solution fits in the original bit width, truncate it (except for i1).
10236 /// Returning a value of a different bit width may inhibit some optimizations.
10237 ///
10238 /// In general, a solution to a quadratic equation generated from an addrec
10239 /// may require BW+1 bits, where BW is the bit width of the addrec's
10240 /// coefficients. The reason is that the coefficients of the quadratic
10241 /// equation are BW+1 bits wide (to avoid truncation when converting from
10242 /// the addrec to the equation).
10243 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10244                                             unsigned BitWidth) {
10245   if (!X)
10246     return std::nullopt;
10247   unsigned W = X->getBitWidth();
10248   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10249     return X->trunc(BitWidth);
10250   return X;
10251 }
10252 
10253 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10254 /// iterations. The values L, M, N are assumed to be signed, and they
10255 /// should all have the same bit widths.
10256 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10257 /// where BW is the bit width of the addrec's coefficients.
10258 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10259 /// returned as such, otherwise the bit width of the returned value may
10260 /// be greater than BW.
10261 ///
10262 /// This function returns std::nullopt if
10263 /// (a) the addrec coefficients are not constant, or
10264 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10265 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10266 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10267 static std::optional<APInt>
10268 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10269   APInt A, B, C, M;
10270   unsigned BitWidth;
10271   auto T = GetQuadraticEquation(AddRec);
10272   if (!T)
10273     return std::nullopt;
10274 
10275   std::tie(A, B, C, M, BitWidth) = *T;
10276   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10277   std::optional<APInt> X =
10278       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10279   if (!X)
10280     return std::nullopt;
10281 
10282   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10283   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10284   if (!V->isZero())
10285     return std::nullopt;
10286 
10287   return TruncIfPossible(X, BitWidth);
10288 }
10289 
10290 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10291 /// iterations. The values M, N are assumed to be signed, and they
10292 /// should all have the same bit widths.
10293 /// Find the least n such that c(n) does not belong to the given range,
10294 /// while c(n-1) does.
10295 ///
10296 /// This function returns std::nullopt if
10297 /// (a) the addrec coefficients are not constant, or
10298 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10299 ///     bounds of the range.
10300 static std::optional<APInt>
10301 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10302                           const ConstantRange &Range, ScalarEvolution &SE) {
10303   assert(AddRec->getOperand(0)->isZero() &&
10304          "Starting value of addrec should be 0");
10305   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10306                     << Range << ", addrec " << *AddRec << '\n');
10307   // This case is handled in getNumIterationsInRange. Here we can assume that
10308   // we start in the range.
10309   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10310          "Addrec's initial value should be in range");
10311 
10312   APInt A, B, C, M;
10313   unsigned BitWidth;
10314   auto T = GetQuadraticEquation(AddRec);
10315   if (!T)
10316     return std::nullopt;
10317 
10318   // Be careful about the return value: there can be two reasons for not
10319   // returning an actual number. First, if no solutions to the equations
10320   // were found, and second, if the solutions don't leave the given range.
10321   // The first case means that the actual solution is "unknown", the second
10322   // means that it's known, but not valid. If the solution is unknown, we
10323   // cannot make any conclusions.
10324   // Return a pair: the optional solution and a flag indicating if the
10325   // solution was found.
10326   auto SolveForBoundary =
10327       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10328     // Solve for signed overflow and unsigned overflow, pick the lower
10329     // solution.
10330     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10331                       << Bound << " (before multiplying by " << M << ")\n");
10332     Bound *= M; // The quadratic equation multiplier.
10333 
10334     std::optional<APInt> SO;
10335     if (BitWidth > 1) {
10336       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10337                            "signed overflow\n");
10338       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10339     }
10340     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10341                          "unsigned overflow\n");
10342     std::optional<APInt> UO =
10343         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10344 
10345     auto LeavesRange = [&] (const APInt &X) {
10346       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10347       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10348       if (Range.contains(V0->getValue()))
10349         return false;
10350       // X should be at least 1, so X-1 is non-negative.
10351       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10352       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10353       if (Range.contains(V1->getValue()))
10354         return true;
10355       return false;
10356     };
10357 
10358     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10359     // can be a solution, but the function failed to find it. We cannot treat it
10360     // as "no solution".
10361     if (!SO || !UO)
10362       return {std::nullopt, false};
10363 
10364     // Check the smaller value first to see if it leaves the range.
10365     // At this point, both SO and UO must have values.
10366     std::optional<APInt> Min = MinOptional(SO, UO);
10367     if (LeavesRange(*Min))
10368       return { Min, true };
10369     std::optional<APInt> Max = Min == SO ? UO : SO;
10370     if (LeavesRange(*Max))
10371       return { Max, true };
10372 
10373     // Solutions were found, but were eliminated, hence the "true".
10374     return {std::nullopt, true};
10375   };
10376 
10377   std::tie(A, B, C, M, BitWidth) = *T;
10378   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10379   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10380   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10381   auto SL = SolveForBoundary(Lower);
10382   auto SU = SolveForBoundary(Upper);
10383   // If any of the solutions was unknown, no meaninigful conclusions can
10384   // be made.
10385   if (!SL.second || !SU.second)
10386     return std::nullopt;
10387 
10388   // Claim: The correct solution is not some value between Min and Max.
10389   //
10390   // Justification: Assuming that Min and Max are different values, one of
10391   // them is when the first signed overflow happens, the other is when the
10392   // first unsigned overflow happens. Crossing the range boundary is only
10393   // possible via an overflow (treating 0 as a special case of it, modeling
10394   // an overflow as crossing k*2^W for some k).
10395   //
10396   // The interesting case here is when Min was eliminated as an invalid
10397   // solution, but Max was not. The argument is that if there was another
10398   // overflow between Min and Max, it would also have been eliminated if
10399   // it was considered.
10400   //
10401   // For a given boundary, it is possible to have two overflows of the same
10402   // type (signed/unsigned) without having the other type in between: this
10403   // can happen when the vertex of the parabola is between the iterations
10404   // corresponding to the overflows. This is only possible when the two
10405   // overflows cross k*2^W for the same k. In such case, if the second one
10406   // left the range (and was the first one to do so), the first overflow
10407   // would have to enter the range, which would mean that either we had left
10408   // the range before or that we started outside of it. Both of these cases
10409   // are contradictions.
10410   //
10411   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10412   // solution is not some value between the Max for this boundary and the
10413   // Min of the other boundary.
10414   //
10415   // Justification: Assume that we had such Max_A and Min_B corresponding
10416   // to range boundaries A and B and such that Max_A < Min_B. If there was
10417   // a solution between Max_A and Min_B, it would have to be caused by an
10418   // overflow corresponding to either A or B. It cannot correspond to B,
10419   // since Min_B is the first occurrence of such an overflow. If it
10420   // corresponded to A, it would have to be either a signed or an unsigned
10421   // overflow that is larger than both eliminated overflows for A. But
10422   // between the eliminated overflows and this overflow, the values would
10423   // cover the entire value space, thus crossing the other boundary, which
10424   // is a contradiction.
10425 
10426   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10427 }
10428 
10429 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10430                                                          const Loop *L,
10431                                                          bool ControlsOnlyExit,
10432                                                          bool AllowPredicates) {
10433 
10434   // This is only used for loops with a "x != y" exit test. The exit condition
10435   // is now expressed as a single expression, V = x-y. So the exit test is
10436   // effectively V != 0.  We know and take advantage of the fact that this
10437   // expression only being used in a comparison by zero context.
10438 
10439   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10440   // If the value is a constant
10441   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10442     // If the value is already zero, the branch will execute zero times.
10443     if (C->getValue()->isZero()) return C;
10444     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10445   }
10446 
10447   const SCEVAddRecExpr *AddRec =
10448       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10449 
10450   if (!AddRec && AllowPredicates)
10451     // Try to make this an AddRec using runtime tests, in the first X
10452     // iterations of this loop, where X is the SCEV expression found by the
10453     // algorithm below.
10454     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10455 
10456   if (!AddRec || AddRec->getLoop() != L)
10457     return getCouldNotCompute();
10458 
10459   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10460   // the quadratic equation to solve it.
10461   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10462     // We can only use this value if the chrec ends up with an exact zero
10463     // value at this index.  When solving for "X*X != 5", for example, we
10464     // should not accept a root of 2.
10465     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10466       const auto *R = cast<SCEVConstant>(getConstant(*S));
10467       return ExitLimit(R, R, R, false, Predicates);
10468     }
10469     return getCouldNotCompute();
10470   }
10471 
10472   // Otherwise we can only handle this if it is affine.
10473   if (!AddRec->isAffine())
10474     return getCouldNotCompute();
10475 
10476   // If this is an affine expression, the execution count of this branch is
10477   // the minimum unsigned root of the following equation:
10478   //
10479   //     Start + Step*N = 0 (mod 2^BW)
10480   //
10481   // equivalent to:
10482   //
10483   //             Step*N = -Start (mod 2^BW)
10484   //
10485   // where BW is the common bit width of Start and Step.
10486 
10487   // Get the initial value for the loop.
10488   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10489   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10490   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10491 
10492   if (!isLoopInvariant(Step, L))
10493     return getCouldNotCompute();
10494 
10495   LoopGuards Guards = LoopGuards::collect(L, *this);
10496   // Specialize step for this loop so we get context sensitive facts below.
10497   const SCEV *StepWLG = applyLoopGuards(Step, Guards);
10498 
10499   // For positive steps (counting up until unsigned overflow):
10500   //   N = -Start/Step (as unsigned)
10501   // For negative steps (counting down to zero):
10502   //   N = Start/-Step
10503   // First compute the unsigned distance from zero in the direction of Step.
10504   bool CountDown = isKnownNegative(StepWLG);
10505   if (!CountDown && !isKnownNonNegative(StepWLG))
10506     return getCouldNotCompute();
10507 
10508   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10509   // Handle unitary steps, which cannot wraparound.
10510   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10511   //   N = Distance (as unsigned)
10512   if (StepC &&
10513       (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne())) {
10514     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, Guards));
10515     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10516 
10517     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10518     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10519     // case, and see if we can improve the bound.
10520     //
10521     // Explicitly handling this here is necessary because getUnsignedRange
10522     // isn't context-sensitive; it doesn't know that we only care about the
10523     // range inside the loop.
10524     const SCEV *Zero = getZero(Distance->getType());
10525     const SCEV *One = getOne(Distance->getType());
10526     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10527     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10528       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10529       // as "unsigned_max(Distance + 1) - 1".
10530       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10531       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10532     }
10533     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10534                      Predicates);
10535   }
10536 
10537   // If the condition controls loop exit (the loop exits only if the expression
10538   // is true) and the addition is no-wrap we can use unsigned divide to
10539   // compute the backedge count.  In this case, the step may not divide the
10540   // distance, but we don't care because if the condition is "missed" the loop
10541   // will have undefined behavior due to wrapping.
10542   if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10543       loopHasNoAbnormalExits(AddRec->getLoop())) {
10544 
10545     // If the stride is zero, the loop must be infinite.  In C++, most loops
10546     // are finite by assumption, in which case the step being zero implies
10547     // UB must execute if the loop is entered.
10548     if (!loopIsFiniteByAssumption(L) && !isKnownNonZero(StepWLG))
10549       return getCouldNotCompute();
10550 
10551     const SCEV *Exact =
10552         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10553     const SCEV *ConstantMax = getCouldNotCompute();
10554     if (Exact != getCouldNotCompute()) {
10555       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, Guards));
10556       ConstantMax =
10557           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10558     }
10559     const SCEV *SymbolicMax =
10560         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10561     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10562   }
10563 
10564   // Solve the general equation.
10565   if (!StepC || StepC->getValue()->isZero())
10566     return getCouldNotCompute();
10567   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10568                                                getNegativeSCEV(Start), *this);
10569 
10570   const SCEV *M = E;
10571   if (E != getCouldNotCompute()) {
10572     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, Guards));
10573     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10574   }
10575   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10576   return ExitLimit(E, M, S, false, Predicates);
10577 }
10578 
10579 ScalarEvolution::ExitLimit
10580 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10581   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10582   // handle them yet except for the trivial case.  This could be expanded in the
10583   // future as needed.
10584 
10585   // If the value is a constant, check to see if it is known to be non-zero
10586   // already.  If so, the backedge will execute zero times.
10587   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10588     if (!C->getValue()->isZero())
10589       return getZero(C->getType());
10590     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10591   }
10592 
10593   // We could implement others, but I really doubt anyone writes loops like
10594   // this, and if they did, they would already be constant folded.
10595   return getCouldNotCompute();
10596 }
10597 
10598 std::pair<const BasicBlock *, const BasicBlock *>
10599 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10600     const {
10601   // If the block has a unique predecessor, then there is no path from the
10602   // predecessor to the block that does not go through the direct edge
10603   // from the predecessor to the block.
10604   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10605     return {Pred, BB};
10606 
10607   // A loop's header is defined to be a block that dominates the loop.
10608   // If the header has a unique predecessor outside the loop, it must be
10609   // a block that has exactly one successor that can reach the loop.
10610   if (const Loop *L = LI.getLoopFor(BB))
10611     return {L->getLoopPredecessor(), L->getHeader()};
10612 
10613   return {nullptr, nullptr};
10614 }
10615 
10616 /// SCEV structural equivalence is usually sufficient for testing whether two
10617 /// expressions are equal, however for the purposes of looking for a condition
10618 /// guarding a loop, it can be useful to be a little more general, since a
10619 /// front-end may have replicated the controlling expression.
10620 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10621   // Quick check to see if they are the same SCEV.
10622   if (A == B) return true;
10623 
10624   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10625     // Not all instructions that are "identical" compute the same value.  For
10626     // instance, two distinct alloca instructions allocating the same type are
10627     // identical and do not read memory; but compute distinct values.
10628     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10629   };
10630 
10631   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10632   // two different instructions with the same value. Check for this case.
10633   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10634     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10635       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10636         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10637           if (ComputesEqualValues(AI, BI))
10638             return true;
10639 
10640   // Otherwise assume they may have a different value.
10641   return false;
10642 }
10643 
10644 static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) {
10645   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S);
10646   if (!Add || Add->getNumOperands() != 2)
10647     return false;
10648   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
10649       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10650     LHS = Add->getOperand(1);
10651     RHS = ME->getOperand(1);
10652     return true;
10653   }
10654   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10655       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10656     LHS = Add->getOperand(0);
10657     RHS = ME->getOperand(1);
10658     return true;
10659   }
10660   return false;
10661 }
10662 
10663 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10664                                            const SCEV *&LHS, const SCEV *&RHS,
10665                                            unsigned Depth) {
10666   bool Changed = false;
10667   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10668   // '0 != 0'.
10669   auto TrivialCase = [&](bool TriviallyTrue) {
10670     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10671     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10672     return true;
10673   };
10674   // If we hit the max recursion limit bail out.
10675   if (Depth >= 3)
10676     return false;
10677 
10678   // Canonicalize a constant to the right side.
10679   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10680     // Check for both operands constant.
10681     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10682       if (!ICmpInst::compare(LHSC->getAPInt(), RHSC->getAPInt(), Pred))
10683         return TrivialCase(false);
10684       return TrivialCase(true);
10685     }
10686     // Otherwise swap the operands to put the constant on the right.
10687     std::swap(LHS, RHS);
10688     Pred = ICmpInst::getSwappedPredicate(Pred);
10689     Changed = true;
10690   }
10691 
10692   // If we're comparing an addrec with a value which is loop-invariant in the
10693   // addrec's loop, put the addrec on the left. Also make a dominance check,
10694   // as both operands could be addrecs loop-invariant in each other's loop.
10695   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10696     const Loop *L = AR->getLoop();
10697     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10698       std::swap(LHS, RHS);
10699       Pred = ICmpInst::getSwappedPredicate(Pred);
10700       Changed = true;
10701     }
10702   }
10703 
10704   // If there's a constant operand, canonicalize comparisons with boundary
10705   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10706   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10707     const APInt &RA = RC->getAPInt();
10708 
10709     bool SimplifiedByConstantRange = false;
10710 
10711     if (!ICmpInst::isEquality(Pred)) {
10712       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10713       if (ExactCR.isFullSet())
10714         return TrivialCase(true);
10715       if (ExactCR.isEmptySet())
10716         return TrivialCase(false);
10717 
10718       APInt NewRHS;
10719       CmpInst::Predicate NewPred;
10720       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10721           ICmpInst::isEquality(NewPred)) {
10722         // We were able to convert an inequality to an equality.
10723         Pred = NewPred;
10724         RHS = getConstant(NewRHS);
10725         Changed = SimplifiedByConstantRange = true;
10726       }
10727     }
10728 
10729     if (!SimplifiedByConstantRange) {
10730       switch (Pred) {
10731       default:
10732         break;
10733       case ICmpInst::ICMP_EQ:
10734       case ICmpInst::ICMP_NE:
10735         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10736         if (RA.isZero() && MatchBinarySub(LHS, LHS, RHS))
10737           Changed = true;
10738         break;
10739 
10740         // The "Should have been caught earlier!" messages refer to the fact
10741         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10742         // should have fired on the corresponding cases, and canonicalized the
10743         // check to trivial case.
10744 
10745       case ICmpInst::ICMP_UGE:
10746         assert(!RA.isMinValue() && "Should have been caught earlier!");
10747         Pred = ICmpInst::ICMP_UGT;
10748         RHS = getConstant(RA - 1);
10749         Changed = true;
10750         break;
10751       case ICmpInst::ICMP_ULE:
10752         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10753         Pred = ICmpInst::ICMP_ULT;
10754         RHS = getConstant(RA + 1);
10755         Changed = true;
10756         break;
10757       case ICmpInst::ICMP_SGE:
10758         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10759         Pred = ICmpInst::ICMP_SGT;
10760         RHS = getConstant(RA - 1);
10761         Changed = true;
10762         break;
10763       case ICmpInst::ICMP_SLE:
10764         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10765         Pred = ICmpInst::ICMP_SLT;
10766         RHS = getConstant(RA + 1);
10767         Changed = true;
10768         break;
10769       }
10770     }
10771   }
10772 
10773   // Check for obvious equality.
10774   if (HasSameValue(LHS, RHS)) {
10775     if (ICmpInst::isTrueWhenEqual(Pred))
10776       return TrivialCase(true);
10777     if (ICmpInst::isFalseWhenEqual(Pred))
10778       return TrivialCase(false);
10779   }
10780 
10781   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10782   // adding or subtracting 1 from one of the operands.
10783   switch (Pred) {
10784   case ICmpInst::ICMP_SLE:
10785     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10786       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10787                        SCEV::FlagNSW);
10788       Pred = ICmpInst::ICMP_SLT;
10789       Changed = true;
10790     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10791       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10792                        SCEV::FlagNSW);
10793       Pred = ICmpInst::ICMP_SLT;
10794       Changed = true;
10795     }
10796     break;
10797   case ICmpInst::ICMP_SGE:
10798     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10799       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10800                        SCEV::FlagNSW);
10801       Pred = ICmpInst::ICMP_SGT;
10802       Changed = true;
10803     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10804       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10805                        SCEV::FlagNSW);
10806       Pred = ICmpInst::ICMP_SGT;
10807       Changed = true;
10808     }
10809     break;
10810   case ICmpInst::ICMP_ULE:
10811     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10812       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10813                        SCEV::FlagNUW);
10814       Pred = ICmpInst::ICMP_ULT;
10815       Changed = true;
10816     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10817       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10818       Pred = ICmpInst::ICMP_ULT;
10819       Changed = true;
10820     }
10821     break;
10822   case ICmpInst::ICMP_UGE:
10823     if (!getUnsignedRangeMin(RHS).isMinValue()) {
10824       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10825       Pred = ICmpInst::ICMP_UGT;
10826       Changed = true;
10827     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10828       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10829                        SCEV::FlagNUW);
10830       Pred = ICmpInst::ICMP_UGT;
10831       Changed = true;
10832     }
10833     break;
10834   default:
10835     break;
10836   }
10837 
10838   // TODO: More simplifications are possible here.
10839 
10840   // Recursively simplify until we either hit a recursion limit or nothing
10841   // changes.
10842   if (Changed)
10843     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10844 
10845   return Changed;
10846 }
10847 
10848 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10849   return getSignedRangeMax(S).isNegative();
10850 }
10851 
10852 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10853   return getSignedRangeMin(S).isStrictlyPositive();
10854 }
10855 
10856 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10857   return !getSignedRangeMin(S).isNegative();
10858 }
10859 
10860 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10861   return !getSignedRangeMax(S).isStrictlyPositive();
10862 }
10863 
10864 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10865   // Query push down for cases where the unsigned range is
10866   // less than sufficient.
10867   if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10868     return isKnownNonZero(SExt->getOperand(0));
10869   return getUnsignedRangeMin(S) != 0;
10870 }
10871 
10872 std::pair<const SCEV *, const SCEV *>
10873 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10874   // Compute SCEV on entry of loop L.
10875   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10876   if (Start == getCouldNotCompute())
10877     return { Start, Start };
10878   // Compute post increment SCEV for loop L.
10879   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10880   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10881   return { Start, PostInc };
10882 }
10883 
10884 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10885                                           const SCEV *LHS, const SCEV *RHS) {
10886   // First collect all loops.
10887   SmallPtrSet<const Loop *, 8> LoopsUsed;
10888   getUsedLoops(LHS, LoopsUsed);
10889   getUsedLoops(RHS, LoopsUsed);
10890 
10891   if (LoopsUsed.empty())
10892     return false;
10893 
10894   // Domination relationship must be a linear order on collected loops.
10895 #ifndef NDEBUG
10896   for (const auto *L1 : LoopsUsed)
10897     for (const auto *L2 : LoopsUsed)
10898       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10899               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10900              "Domination relationship is not a linear order");
10901 #endif
10902 
10903   const Loop *MDL =
10904       *llvm::max_element(LoopsUsed, [&](const Loop *L1, const Loop *L2) {
10905         return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10906       });
10907 
10908   // Get init and post increment value for LHS.
10909   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10910   // if LHS contains unknown non-invariant SCEV then bail out.
10911   if (SplitLHS.first == getCouldNotCompute())
10912     return false;
10913   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10914   // Get init and post increment value for RHS.
10915   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10916   // if RHS contains unknown non-invariant SCEV then bail out.
10917   if (SplitRHS.first == getCouldNotCompute())
10918     return false;
10919   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10920   // It is possible that init SCEV contains an invariant load but it does
10921   // not dominate MDL and is not available at MDL loop entry, so we should
10922   // check it here.
10923   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10924       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10925     return false;
10926 
10927   // It seems backedge guard check is faster than entry one so in some cases
10928   // it can speed up whole estimation by short circuit
10929   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10930                                      SplitRHS.second) &&
10931          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10932 }
10933 
10934 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10935                                        const SCEV *LHS, const SCEV *RHS) {
10936   // Canonicalize the inputs first.
10937   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10938 
10939   if (isKnownViaInduction(Pred, LHS, RHS))
10940     return true;
10941 
10942   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10943     return true;
10944 
10945   // Otherwise see what can be done with some simple reasoning.
10946   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10947 }
10948 
10949 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10950                                                        const SCEV *LHS,
10951                                                        const SCEV *RHS) {
10952   if (isKnownPredicate(Pred, LHS, RHS))
10953     return true;
10954   if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10955     return false;
10956   return std::nullopt;
10957 }
10958 
10959 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10960                                          const SCEV *LHS, const SCEV *RHS,
10961                                          const Instruction *CtxI) {
10962   // TODO: Analyze guards and assumes from Context's block.
10963   return isKnownPredicate(Pred, LHS, RHS) ||
10964          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10965 }
10966 
10967 std::optional<bool>
10968 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10969                                      const SCEV *RHS, const Instruction *CtxI) {
10970   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10971   if (KnownWithoutContext)
10972     return KnownWithoutContext;
10973 
10974   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10975     return true;
10976   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10977                                           ICmpInst::getInversePredicate(Pred),
10978                                           LHS, RHS))
10979     return false;
10980   return std::nullopt;
10981 }
10982 
10983 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10984                                               const SCEVAddRecExpr *LHS,
10985                                               const SCEV *RHS) {
10986   const Loop *L = LHS->getLoop();
10987   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10988          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10989 }
10990 
10991 std::optional<ScalarEvolution::MonotonicPredicateType>
10992 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10993                                            ICmpInst::Predicate Pred) {
10994   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10995 
10996 #ifndef NDEBUG
10997   // Verify an invariant: inverting the predicate should turn a monotonically
10998   // increasing change to a monotonically decreasing one, and vice versa.
10999   if (Result) {
11000     auto ResultSwapped =
11001         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
11002 
11003     assert(*ResultSwapped != *Result &&
11004            "monotonicity should flip as we flip the predicate");
11005   }
11006 #endif
11007 
11008   return Result;
11009 }
11010 
11011 std::optional<ScalarEvolution::MonotonicPredicateType>
11012 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
11013                                                ICmpInst::Predicate Pred) {
11014   // A zero step value for LHS means the induction variable is essentially a
11015   // loop invariant value. We don't really depend on the predicate actually
11016   // flipping from false to true (for increasing predicates, and the other way
11017   // around for decreasing predicates), all we care about is that *if* the
11018   // predicate changes then it only changes from false to true.
11019   //
11020   // A zero step value in itself is not very useful, but there may be places
11021   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
11022   // as general as possible.
11023 
11024   // Only handle LE/LT/GE/GT predicates.
11025   if (!ICmpInst::isRelational(Pred))
11026     return std::nullopt;
11027 
11028   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
11029   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
11030          "Should be greater or less!");
11031 
11032   // Check that AR does not wrap.
11033   if (ICmpInst::isUnsigned(Pred)) {
11034     if (!LHS->hasNoUnsignedWrap())
11035       return std::nullopt;
11036     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11037   }
11038   assert(ICmpInst::isSigned(Pred) &&
11039          "Relational predicate is either signed or unsigned!");
11040   if (!LHS->hasNoSignedWrap())
11041     return std::nullopt;
11042 
11043   const SCEV *Step = LHS->getStepRecurrence(*this);
11044 
11045   if (isKnownNonNegative(Step))
11046     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11047 
11048   if (isKnownNonPositive(Step))
11049     return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11050 
11051   return std::nullopt;
11052 }
11053 
11054 std::optional<ScalarEvolution::LoopInvariantPredicate>
11055 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
11056                                            const SCEV *LHS, const SCEV *RHS,
11057                                            const Loop *L,
11058                                            const Instruction *CtxI) {
11059   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11060   if (!isLoopInvariant(RHS, L)) {
11061     if (!isLoopInvariant(LHS, L))
11062       return std::nullopt;
11063 
11064     std::swap(LHS, RHS);
11065     Pred = ICmpInst::getSwappedPredicate(Pred);
11066   }
11067 
11068   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11069   if (!ArLHS || ArLHS->getLoop() != L)
11070     return std::nullopt;
11071 
11072   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
11073   if (!MonotonicType)
11074     return std::nullopt;
11075   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
11076   // true as the loop iterates, and the backedge is control dependent on
11077   // "ArLHS `Pred` RHS" == true then we can reason as follows:
11078   //
11079   //   * if the predicate was false in the first iteration then the predicate
11080   //     is never evaluated again, since the loop exits without taking the
11081   //     backedge.
11082   //   * if the predicate was true in the first iteration then it will
11083   //     continue to be true for all future iterations since it is
11084   //     monotonically increasing.
11085   //
11086   // For both the above possibilities, we can replace the loop varying
11087   // predicate with its value on the first iteration of the loop (which is
11088   // loop invariant).
11089   //
11090   // A similar reasoning applies for a monotonically decreasing predicate, by
11091   // replacing true with false and false with true in the above two bullets.
11092   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11093   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
11094 
11095   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
11096     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11097                                                    RHS);
11098 
11099   if (!CtxI)
11100     return std::nullopt;
11101   // Try to prove via context.
11102   // TODO: Support other cases.
11103   switch (Pred) {
11104   default:
11105     break;
11106   case ICmpInst::ICMP_ULE:
11107   case ICmpInst::ICMP_ULT: {
11108     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11109     // Given preconditions
11110     // (1) ArLHS does not cross the border of positive and negative parts of
11111     //     range because of:
11112     //     - Positive step; (TODO: lift this limitation)
11113     //     - nuw - does not cross zero boundary;
11114     //     - nsw - does not cross SINT_MAX boundary;
11115     // (2) ArLHS <s RHS
11116     // (3) RHS >=s 0
11117     // we can replace the loop variant ArLHS <u RHS condition with loop
11118     // invariant Start(ArLHS) <u RHS.
11119     //
11120     // Because of (1) there are two options:
11121     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11122     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11123     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
11124     //   Because of (2) ArLHS <u RHS is trivially true.
11125     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11126     // We can strengthen this to Start(ArLHS) <u RHS.
11127     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
11128     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11129         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
11130         isKnownNonNegative(RHS) &&
11131         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
11132       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11133                                                      RHS);
11134   }
11135   }
11136 
11137   return std::nullopt;
11138 }
11139 
11140 std::optional<ScalarEvolution::LoopInvariantPredicate>
11141 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11142     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11143     const Instruction *CtxI, const SCEV *MaxIter) {
11144   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11145           Pred, LHS, RHS, L, CtxI, MaxIter))
11146     return LIP;
11147   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11148     // Number of iterations expressed as UMIN isn't always great for expressing
11149     // the value on the last iteration. If the straightforward approach didn't
11150     // work, try the following trick: if the a predicate is invariant for X, it
11151     // is also invariant for umin(X, ...). So try to find something that works
11152     // among subexpressions of MaxIter expressed as umin.
11153     for (auto *Op : UMin->operands())
11154       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11155               Pred, LHS, RHS, L, CtxI, Op))
11156         return LIP;
11157   return std::nullopt;
11158 }
11159 
11160 std::optional<ScalarEvolution::LoopInvariantPredicate>
11161 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11162     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11163     const Instruction *CtxI, const SCEV *MaxIter) {
11164   // Try to prove the following set of facts:
11165   // - The predicate is monotonic in the iteration space.
11166   // - If the check does not fail on the 1st iteration:
11167   //   - No overflow will happen during first MaxIter iterations;
11168   //   - It will not fail on the MaxIter'th iteration.
11169   // If the check does fail on the 1st iteration, we leave the loop and no
11170   // other checks matter.
11171 
11172   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11173   if (!isLoopInvariant(RHS, L)) {
11174     if (!isLoopInvariant(LHS, L))
11175       return std::nullopt;
11176 
11177     std::swap(LHS, RHS);
11178     Pred = ICmpInst::getSwappedPredicate(Pred);
11179   }
11180 
11181   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11182   if (!AR || AR->getLoop() != L)
11183     return std::nullopt;
11184 
11185   // The predicate must be relational (i.e. <, <=, >=, >).
11186   if (!ICmpInst::isRelational(Pred))
11187     return std::nullopt;
11188 
11189   // TODO: Support steps other than +/- 1.
11190   const SCEV *Step = AR->getStepRecurrence(*this);
11191   auto *One = getOne(Step->getType());
11192   auto *MinusOne = getNegativeSCEV(One);
11193   if (Step != One && Step != MinusOne)
11194     return std::nullopt;
11195 
11196   // Type mismatch here means that MaxIter is potentially larger than max
11197   // unsigned value in start type, which mean we cannot prove no wrap for the
11198   // indvar.
11199   if (AR->getType() != MaxIter->getType())
11200     return std::nullopt;
11201 
11202   // Value of IV on suggested last iteration.
11203   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11204   // Does it still meet the requirement?
11205   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11206     return std::nullopt;
11207   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11208   // not exceed max unsigned value of this type), this effectively proves
11209   // that there is no wrap during the iteration. To prove that there is no
11210   // signed/unsigned wrap, we need to check that
11211   // Start <= Last for step = 1 or Start >= Last for step = -1.
11212   ICmpInst::Predicate NoOverflowPred =
11213       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11214   if (Step == MinusOne)
11215     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11216   const SCEV *Start = AR->getStart();
11217   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11218     return std::nullopt;
11219 
11220   // Everything is fine.
11221   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11222 }
11223 
11224 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11225     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11226   if (HasSameValue(LHS, RHS))
11227     return ICmpInst::isTrueWhenEqual(Pred);
11228 
11229   // This code is split out from isKnownPredicate because it is called from
11230   // within isLoopEntryGuardedByCond.
11231 
11232   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11233                          const ConstantRange &RangeRHS) {
11234     return RangeLHS.icmp(Pred, RangeRHS);
11235   };
11236 
11237   // The check at the top of the function catches the case where the values are
11238   // known to be equal.
11239   if (Pred == CmpInst::ICMP_EQ)
11240     return false;
11241 
11242   if (Pred == CmpInst::ICMP_NE) {
11243     auto SL = getSignedRange(LHS);
11244     auto SR = getSignedRange(RHS);
11245     if (CheckRanges(SL, SR))
11246       return true;
11247     auto UL = getUnsignedRange(LHS);
11248     auto UR = getUnsignedRange(RHS);
11249     if (CheckRanges(UL, UR))
11250       return true;
11251     auto *Diff = getMinusSCEV(LHS, RHS);
11252     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11253   }
11254 
11255   if (CmpInst::isSigned(Pred)) {
11256     auto SL = getSignedRange(LHS);
11257     auto SR = getSignedRange(RHS);
11258     return CheckRanges(SL, SR);
11259   }
11260 
11261   auto UL = getUnsignedRange(LHS);
11262   auto UR = getUnsignedRange(RHS);
11263   return CheckRanges(UL, UR);
11264 }
11265 
11266 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11267                                                     const SCEV *LHS,
11268                                                     const SCEV *RHS) {
11269   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11270   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11271   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11272   // OutC1 and OutC2.
11273   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11274                                       APInt &OutC1, APInt &OutC2,
11275                                       SCEV::NoWrapFlags ExpectedFlags) {
11276     const SCEV *XNonConstOp, *XConstOp;
11277     const SCEV *YNonConstOp, *YConstOp;
11278     SCEV::NoWrapFlags XFlagsPresent;
11279     SCEV::NoWrapFlags YFlagsPresent;
11280 
11281     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11282       XConstOp = getZero(X->getType());
11283       XNonConstOp = X;
11284       XFlagsPresent = ExpectedFlags;
11285     }
11286     if (!isa<SCEVConstant>(XConstOp) ||
11287         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11288       return false;
11289 
11290     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11291       YConstOp = getZero(Y->getType());
11292       YNonConstOp = Y;
11293       YFlagsPresent = ExpectedFlags;
11294     }
11295 
11296     if (!isa<SCEVConstant>(YConstOp) ||
11297         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11298       return false;
11299 
11300     if (YNonConstOp != XNonConstOp)
11301       return false;
11302 
11303     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11304     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11305 
11306     return true;
11307   };
11308 
11309   APInt C1;
11310   APInt C2;
11311 
11312   switch (Pred) {
11313   default:
11314     break;
11315 
11316   case ICmpInst::ICMP_SGE:
11317     std::swap(LHS, RHS);
11318     [[fallthrough]];
11319   case ICmpInst::ICMP_SLE:
11320     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11321     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11322       return true;
11323 
11324     break;
11325 
11326   case ICmpInst::ICMP_SGT:
11327     std::swap(LHS, RHS);
11328     [[fallthrough]];
11329   case ICmpInst::ICMP_SLT:
11330     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11331     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11332       return true;
11333 
11334     break;
11335 
11336   case ICmpInst::ICMP_UGE:
11337     std::swap(LHS, RHS);
11338     [[fallthrough]];
11339   case ICmpInst::ICMP_ULE:
11340     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11341     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(C2))
11342       return true;
11343 
11344     break;
11345 
11346   case ICmpInst::ICMP_UGT:
11347     std::swap(LHS, RHS);
11348     [[fallthrough]];
11349   case ICmpInst::ICMP_ULT:
11350     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11351     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(C2))
11352       return true;
11353     break;
11354   }
11355 
11356   return false;
11357 }
11358 
11359 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11360                                                    const SCEV *LHS,
11361                                                    const SCEV *RHS) {
11362   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11363     return false;
11364 
11365   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11366   // the stack can result in exponential time complexity.
11367   SaveAndRestore Restore(ProvingSplitPredicate, true);
11368 
11369   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11370   //
11371   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11372   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11373   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11374   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11375   // use isKnownPredicate later if needed.
11376   return isKnownNonNegative(RHS) &&
11377          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11378          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11379 }
11380 
11381 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11382                                         ICmpInst::Predicate Pred,
11383                                         const SCEV *LHS, const SCEV *RHS) {
11384   // No need to even try if we know the module has no guards.
11385   if (!HasGuards)
11386     return false;
11387 
11388   return any_of(*BB, [&](const Instruction &I) {
11389     using namespace llvm::PatternMatch;
11390 
11391     Value *Condition;
11392     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11393                          m_Value(Condition))) &&
11394            isImpliedCond(Pred, LHS, RHS, Condition, false);
11395   });
11396 }
11397 
11398 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11399 /// protected by a conditional between LHS and RHS.  This is used to
11400 /// to eliminate casts.
11401 bool
11402 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11403                                              ICmpInst::Predicate Pred,
11404                                              const SCEV *LHS, const SCEV *RHS) {
11405   // Interpret a null as meaning no loop, where there is obviously no guard
11406   // (interprocedural conditions notwithstanding). Do not bother about
11407   // unreachable loops.
11408   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11409     return true;
11410 
11411   if (VerifyIR)
11412     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11413            "This cannot be done on broken IR!");
11414 
11415 
11416   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11417     return true;
11418 
11419   BasicBlock *Latch = L->getLoopLatch();
11420   if (!Latch)
11421     return false;
11422 
11423   BranchInst *LoopContinuePredicate =
11424     dyn_cast<BranchInst>(Latch->getTerminator());
11425   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11426       isImpliedCond(Pred, LHS, RHS,
11427                     LoopContinuePredicate->getCondition(),
11428                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11429     return true;
11430 
11431   // We don't want more than one activation of the following loops on the stack
11432   // -- that can lead to O(n!) time complexity.
11433   if (WalkingBEDominatingConds)
11434     return false;
11435 
11436   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11437 
11438   // See if we can exploit a trip count to prove the predicate.
11439   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11440   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11441   if (LatchBECount != getCouldNotCompute()) {
11442     // We know that Latch branches back to the loop header exactly
11443     // LatchBECount times.  This means the backdege condition at Latch is
11444     // equivalent to  "{0,+,1} u< LatchBECount".
11445     Type *Ty = LatchBECount->getType();
11446     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11447     const SCEV *LoopCounter =
11448       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11449     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11450                       LatchBECount))
11451       return true;
11452   }
11453 
11454   // Check conditions due to any @llvm.assume intrinsics.
11455   for (auto &AssumeVH : AC.assumptions()) {
11456     if (!AssumeVH)
11457       continue;
11458     auto *CI = cast<CallInst>(AssumeVH);
11459     if (!DT.dominates(CI, Latch->getTerminator()))
11460       continue;
11461 
11462     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11463       return true;
11464   }
11465 
11466   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11467     return true;
11468 
11469   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11470        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11471     assert(DTN && "should reach the loop header before reaching the root!");
11472 
11473     BasicBlock *BB = DTN->getBlock();
11474     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11475       return true;
11476 
11477     BasicBlock *PBB = BB->getSinglePredecessor();
11478     if (!PBB)
11479       continue;
11480 
11481     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11482     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11483       continue;
11484 
11485     Value *Condition = ContinuePredicate->getCondition();
11486 
11487     // If we have an edge `E` within the loop body that dominates the only
11488     // latch, the condition guarding `E` also guards the backedge.  This
11489     // reasoning works only for loops with a single latch.
11490 
11491     BasicBlockEdge DominatingEdge(PBB, BB);
11492     if (DominatingEdge.isSingleEdge()) {
11493       // We're constructively (and conservatively) enumerating edges within the
11494       // loop body that dominate the latch.  The dominator tree better agree
11495       // with us on this:
11496       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11497 
11498       if (isImpliedCond(Pred, LHS, RHS, Condition,
11499                         BB != ContinuePredicate->getSuccessor(0)))
11500         return true;
11501     }
11502   }
11503 
11504   return false;
11505 }
11506 
11507 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11508                                                      ICmpInst::Predicate Pred,
11509                                                      const SCEV *LHS,
11510                                                      const SCEV *RHS) {
11511   // Do not bother proving facts for unreachable code.
11512   if (!DT.isReachableFromEntry(BB))
11513     return true;
11514   if (VerifyIR)
11515     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11516            "This cannot be done on broken IR!");
11517 
11518   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11519   // the facts (a >= b && a != b) separately. A typical situation is when the
11520   // non-strict comparison is known from ranges and non-equality is known from
11521   // dominating predicates. If we are proving strict comparison, we always try
11522   // to prove non-equality and non-strict comparison separately.
11523   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11524   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11525   bool ProvedNonStrictComparison = false;
11526   bool ProvedNonEquality = false;
11527 
11528   auto SplitAndProve =
11529     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11530     if (!ProvedNonStrictComparison)
11531       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11532     if (!ProvedNonEquality)
11533       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11534     if (ProvedNonStrictComparison && ProvedNonEquality)
11535       return true;
11536     return false;
11537   };
11538 
11539   if (ProvingStrictComparison) {
11540     auto ProofFn = [&](ICmpInst::Predicate P) {
11541       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11542     };
11543     if (SplitAndProve(ProofFn))
11544       return true;
11545   }
11546 
11547   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11548   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11549     const Instruction *CtxI = &BB->front();
11550     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11551       return true;
11552     if (ProvingStrictComparison) {
11553       auto ProofFn = [&](ICmpInst::Predicate P) {
11554         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11555       };
11556       if (SplitAndProve(ProofFn))
11557         return true;
11558     }
11559     return false;
11560   };
11561 
11562   // Starting at the block's predecessor, climb up the predecessor chain, as long
11563   // as there are predecessors that can be found that have unique successors
11564   // leading to the original block.
11565   const Loop *ContainingLoop = LI.getLoopFor(BB);
11566   const BasicBlock *PredBB;
11567   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11568     PredBB = ContainingLoop->getLoopPredecessor();
11569   else
11570     PredBB = BB->getSinglePredecessor();
11571   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11572        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11573     const BranchInst *BlockEntryPredicate =
11574         dyn_cast<BranchInst>(Pair.first->getTerminator());
11575     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11576       continue;
11577 
11578     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11579                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11580       return true;
11581   }
11582 
11583   // Check conditions due to any @llvm.assume intrinsics.
11584   for (auto &AssumeVH : AC.assumptions()) {
11585     if (!AssumeVH)
11586       continue;
11587     auto *CI = cast<CallInst>(AssumeVH);
11588     if (!DT.dominates(CI, BB))
11589       continue;
11590 
11591     if (ProveViaCond(CI->getArgOperand(0), false))
11592       return true;
11593   }
11594 
11595   // Check conditions due to any @llvm.experimental.guard intrinsics.
11596   auto *GuardDecl = F.getParent()->getFunction(
11597       Intrinsic::getName(Intrinsic::experimental_guard));
11598   if (GuardDecl)
11599     for (const auto *GU : GuardDecl->users())
11600       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11601         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11602           if (ProveViaCond(Guard->getArgOperand(0), false))
11603             return true;
11604   return false;
11605 }
11606 
11607 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11608                                                ICmpInst::Predicate Pred,
11609                                                const SCEV *LHS,
11610                                                const SCEV *RHS) {
11611   // Interpret a null as meaning no loop, where there is obviously no guard
11612   // (interprocedural conditions notwithstanding).
11613   if (!L)
11614     return false;
11615 
11616   // Both LHS and RHS must be available at loop entry.
11617   assert(isAvailableAtLoopEntry(LHS, L) &&
11618          "LHS is not available at Loop Entry");
11619   assert(isAvailableAtLoopEntry(RHS, L) &&
11620          "RHS is not available at Loop Entry");
11621 
11622   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11623     return true;
11624 
11625   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11626 }
11627 
11628 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11629                                     const SCEV *RHS,
11630                                     const Value *FoundCondValue, bool Inverse,
11631                                     const Instruction *CtxI) {
11632   // False conditions implies anything. Do not bother analyzing it further.
11633   if (FoundCondValue ==
11634       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11635     return true;
11636 
11637   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11638     return false;
11639 
11640   auto ClearOnExit =
11641       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11642 
11643   // Recursively handle And and Or conditions.
11644   const Value *Op0, *Op1;
11645   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11646     if (!Inverse)
11647       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11648              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11649   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11650     if (Inverse)
11651       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11652              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11653   }
11654 
11655   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11656   if (!ICI) return false;
11657 
11658   // Now that we found a conditional branch that dominates the loop or controls
11659   // the loop latch. Check to see if it is the comparison we are looking for.
11660   ICmpInst::Predicate FoundPred;
11661   if (Inverse)
11662     FoundPred = ICI->getInversePredicate();
11663   else
11664     FoundPred = ICI->getPredicate();
11665 
11666   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11667   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11668 
11669   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11670 }
11671 
11672 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11673                                     const SCEV *RHS,
11674                                     ICmpInst::Predicate FoundPred,
11675                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11676                                     const Instruction *CtxI) {
11677   // Balance the types.
11678   if (getTypeSizeInBits(LHS->getType()) <
11679       getTypeSizeInBits(FoundLHS->getType())) {
11680     // For unsigned and equality predicates, try to prove that both found
11681     // operands fit into narrow unsigned range. If so, try to prove facts in
11682     // narrow types.
11683     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11684         !FoundRHS->getType()->isPointerTy()) {
11685       auto *NarrowType = LHS->getType();
11686       auto *WideType = FoundLHS->getType();
11687       auto BitWidth = getTypeSizeInBits(NarrowType);
11688       const SCEV *MaxValue = getZeroExtendExpr(
11689           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11690       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11691                                           MaxValue) &&
11692           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11693                                           MaxValue)) {
11694         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11695         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11696         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11697                                        TruncFoundRHS, CtxI))
11698           return true;
11699       }
11700     }
11701 
11702     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11703       return false;
11704     if (CmpInst::isSigned(Pred)) {
11705       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11706       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11707     } else {
11708       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11709       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11710     }
11711   } else if (getTypeSizeInBits(LHS->getType()) >
11712       getTypeSizeInBits(FoundLHS->getType())) {
11713     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11714       return false;
11715     if (CmpInst::isSigned(FoundPred)) {
11716       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11717       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11718     } else {
11719       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11720       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11721     }
11722   }
11723   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11724                                     FoundRHS, CtxI);
11725 }
11726 
11727 bool ScalarEvolution::isImpliedCondBalancedTypes(
11728     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11729     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11730     const Instruction *CtxI) {
11731   assert(getTypeSizeInBits(LHS->getType()) ==
11732              getTypeSizeInBits(FoundLHS->getType()) &&
11733          "Types should be balanced!");
11734   // Canonicalize the query to match the way instcombine will have
11735   // canonicalized the comparison.
11736   if (SimplifyICmpOperands(Pred, LHS, RHS))
11737     if (LHS == RHS)
11738       return CmpInst::isTrueWhenEqual(Pred);
11739   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11740     if (FoundLHS == FoundRHS)
11741       return CmpInst::isFalseWhenEqual(FoundPred);
11742 
11743   // Check to see if we can make the LHS or RHS match.
11744   if (LHS == FoundRHS || RHS == FoundLHS) {
11745     if (isa<SCEVConstant>(RHS)) {
11746       std::swap(FoundLHS, FoundRHS);
11747       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11748     } else {
11749       std::swap(LHS, RHS);
11750       Pred = ICmpInst::getSwappedPredicate(Pred);
11751     }
11752   }
11753 
11754   // Check whether the found predicate is the same as the desired predicate.
11755   if (FoundPred == Pred)
11756     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11757 
11758   // Check whether swapping the found predicate makes it the same as the
11759   // desired predicate.
11760   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11761     // We can write the implication
11762     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11763     // using one of the following ways:
11764     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11765     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11766     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11767     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11768     // Forms 1. and 2. require swapping the operands of one condition. Don't
11769     // do this if it would break canonical constant/addrec ordering.
11770     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11771       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11772                                    CtxI);
11773     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11774       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11775 
11776     // There's no clear preference between forms 3. and 4., try both.  Avoid
11777     // forming getNotSCEV of pointer values as the resulting subtract is
11778     // not legal.
11779     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11780         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11781                               FoundLHS, FoundRHS, CtxI))
11782       return true;
11783 
11784     if (!FoundLHS->getType()->isPointerTy() &&
11785         !FoundRHS->getType()->isPointerTy() &&
11786         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11787                               getNotSCEV(FoundRHS), CtxI))
11788       return true;
11789 
11790     return false;
11791   }
11792 
11793   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11794                                    CmpInst::Predicate P2) {
11795     assert(P1 != P2 && "Handled earlier!");
11796     return CmpInst::isRelational(P2) &&
11797            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11798   };
11799   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11800     // Unsigned comparison is the same as signed comparison when both the
11801     // operands are non-negative or negative.
11802     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11803         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11804       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11805     // Create local copies that we can freely swap and canonicalize our
11806     // conditions to "le/lt".
11807     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11808     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11809                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11810     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11811       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11812       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11813       std::swap(CanonicalLHS, CanonicalRHS);
11814       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11815     }
11816     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11817            "Must be!");
11818     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11819             ICmpInst::isLE(CanonicalFoundPred)) &&
11820            "Must be!");
11821     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11822       // Use implication:
11823       // x <u y && y >=s 0 --> x <s y.
11824       // If we can prove the left part, the right part is also proven.
11825       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11826                                    CanonicalRHS, CanonicalFoundLHS,
11827                                    CanonicalFoundRHS);
11828     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11829       // Use implication:
11830       // x <s y && y <s 0 --> x <u y.
11831       // If we can prove the left part, the right part is also proven.
11832       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11833                                    CanonicalRHS, CanonicalFoundLHS,
11834                                    CanonicalFoundRHS);
11835   }
11836 
11837   // Check if we can make progress by sharpening ranges.
11838   if (FoundPred == ICmpInst::ICMP_NE &&
11839       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11840 
11841     const SCEVConstant *C = nullptr;
11842     const SCEV *V = nullptr;
11843 
11844     if (isa<SCEVConstant>(FoundLHS)) {
11845       C = cast<SCEVConstant>(FoundLHS);
11846       V = FoundRHS;
11847     } else {
11848       C = cast<SCEVConstant>(FoundRHS);
11849       V = FoundLHS;
11850     }
11851 
11852     // The guarding predicate tells us that C != V. If the known range
11853     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11854     // range we consider has to correspond to same signedness as the
11855     // predicate we're interested in folding.
11856 
11857     APInt Min = ICmpInst::isSigned(Pred) ?
11858         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11859 
11860     if (Min == C->getAPInt()) {
11861       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11862       // This is true even if (Min + 1) wraps around -- in case of
11863       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11864 
11865       APInt SharperMin = Min + 1;
11866 
11867       switch (Pred) {
11868         case ICmpInst::ICMP_SGE:
11869         case ICmpInst::ICMP_UGE:
11870           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11871           // RHS, we're done.
11872           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11873                                     CtxI))
11874             return true;
11875           [[fallthrough]];
11876 
11877         case ICmpInst::ICMP_SGT:
11878         case ICmpInst::ICMP_UGT:
11879           // We know from the range information that (V `Pred` Min ||
11880           // V == Min).  We know from the guarding condition that !(V
11881           // == Min).  This gives us
11882           //
11883           //       V `Pred` Min || V == Min && !(V == Min)
11884           //   =>  V `Pred` Min
11885           //
11886           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11887 
11888           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11889             return true;
11890           break;
11891 
11892         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11893         case ICmpInst::ICMP_SLE:
11894         case ICmpInst::ICMP_ULE:
11895           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11896                                     LHS, V, getConstant(SharperMin), CtxI))
11897             return true;
11898           [[fallthrough]];
11899 
11900         case ICmpInst::ICMP_SLT:
11901         case ICmpInst::ICMP_ULT:
11902           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11903                                     LHS, V, getConstant(Min), CtxI))
11904             return true;
11905           break;
11906 
11907         default:
11908           // No change
11909           break;
11910       }
11911     }
11912   }
11913 
11914   // Check whether the actual condition is beyond sufficient.
11915   if (FoundPred == ICmpInst::ICMP_EQ)
11916     if (ICmpInst::isTrueWhenEqual(Pred))
11917       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11918         return true;
11919   if (Pred == ICmpInst::ICMP_NE)
11920     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11921       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11922         return true;
11923 
11924   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
11925     return true;
11926 
11927   // Otherwise assume the worst.
11928   return false;
11929 }
11930 
11931 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11932                                      const SCEV *&L, const SCEV *&R,
11933                                      SCEV::NoWrapFlags &Flags) {
11934   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11935   if (!AE || AE->getNumOperands() != 2)
11936     return false;
11937 
11938   L = AE->getOperand(0);
11939   R = AE->getOperand(1);
11940   Flags = AE->getNoWrapFlags();
11941   return true;
11942 }
11943 
11944 std::optional<APInt>
11945 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11946   // We avoid subtracting expressions here because this function is usually
11947   // fairly deep in the call stack (i.e. is called many times).
11948 
11949   // X - X = 0.
11950   if (More == Less)
11951     return APInt(getTypeSizeInBits(More->getType()), 0);
11952 
11953   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11954     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11955     const auto *MAR = cast<SCEVAddRecExpr>(More);
11956 
11957     if (LAR->getLoop() != MAR->getLoop())
11958       return std::nullopt;
11959 
11960     // We look at affine expressions only; not for correctness but to keep
11961     // getStepRecurrence cheap.
11962     if (!LAR->isAffine() || !MAR->isAffine())
11963       return std::nullopt;
11964 
11965     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11966       return std::nullopt;
11967 
11968     Less = LAR->getStart();
11969     More = MAR->getStart();
11970 
11971     // fall through
11972   }
11973 
11974   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11975     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11976     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11977     return M - L;
11978   }
11979 
11980   SCEV::NoWrapFlags Flags;
11981   const SCEV *LLess = nullptr, *RLess = nullptr;
11982   const SCEV *LMore = nullptr, *RMore = nullptr;
11983   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11984   // Compare (X + C1) vs X.
11985   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11986     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11987       if (RLess == More)
11988         return -(C1->getAPInt());
11989 
11990   // Compare X vs (X + C2).
11991   if (splitBinaryAdd(More, LMore, RMore, Flags))
11992     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11993       if (RMore == Less)
11994         return C2->getAPInt();
11995 
11996   // Compare (X + C1) vs (X + C2).
11997   if (C1 && C2 && RLess == RMore)
11998     return C2->getAPInt() - C1->getAPInt();
11999 
12000   return std::nullopt;
12001 }
12002 
12003 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
12004     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
12005     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
12006   // Try to recognize the following pattern:
12007   //
12008   //   FoundRHS = ...
12009   // ...
12010   // loop:
12011   //   FoundLHS = {Start,+,W}
12012   // context_bb: // Basic block from the same loop
12013   //   known(Pred, FoundLHS, FoundRHS)
12014   //
12015   // If some predicate is known in the context of a loop, it is also known on
12016   // each iteration of this loop, including the first iteration. Therefore, in
12017   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
12018   // prove the original pred using this fact.
12019   if (!CtxI)
12020     return false;
12021   const BasicBlock *ContextBB = CtxI->getParent();
12022   // Make sure AR varies in the context block.
12023   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
12024     const Loop *L = AR->getLoop();
12025     // Make sure that context belongs to the loop and executes on 1st iteration
12026     // (if it ever executes at all).
12027     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12028       return false;
12029     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
12030       return false;
12031     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
12032   }
12033 
12034   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
12035     const Loop *L = AR->getLoop();
12036     // Make sure that context belongs to the loop and executes on 1st iteration
12037     // (if it ever executes at all).
12038     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12039       return false;
12040     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
12041       return false;
12042     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
12043   }
12044 
12045   return false;
12046 }
12047 
12048 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
12049     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
12050     const SCEV *FoundLHS, const SCEV *FoundRHS) {
12051   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
12052     return false;
12053 
12054   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
12055   if (!AddRecLHS)
12056     return false;
12057 
12058   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
12059   if (!AddRecFoundLHS)
12060     return false;
12061 
12062   // We'd like to let SCEV reason about control dependencies, so we constrain
12063   // both the inequalities to be about add recurrences on the same loop.  This
12064   // way we can use isLoopEntryGuardedByCond later.
12065 
12066   const Loop *L = AddRecFoundLHS->getLoop();
12067   if (L != AddRecLHS->getLoop())
12068     return false;
12069 
12070   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
12071   //
12072   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
12073   //                                                                  ... (2)
12074   //
12075   // Informal proof for (2), assuming (1) [*]:
12076   //
12077   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12078   //
12079   // Then
12080   //
12081   //       FoundLHS s< FoundRHS s< INT_MIN - C
12082   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
12083   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12084   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
12085   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12086   // <=>  FoundLHS + C s< FoundRHS + C
12087   //
12088   // [*]: (1) can be proved by ruling out overflow.
12089   //
12090   // [**]: This can be proved by analyzing all the four possibilities:
12091   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12092   //    (A s>= 0, B s>= 0).
12093   //
12094   // Note:
12095   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12096   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
12097   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
12098   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
12099   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12100   // C)".
12101 
12102   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
12103   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
12104   if (!LDiff || !RDiff || *LDiff != *RDiff)
12105     return false;
12106 
12107   if (LDiff->isMinValue())
12108     return true;
12109 
12110   APInt FoundRHSLimit;
12111 
12112   if (Pred == CmpInst::ICMP_ULT) {
12113     FoundRHSLimit = -(*RDiff);
12114   } else {
12115     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12116     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
12117   }
12118 
12119   // Try to prove (1) or (2), as needed.
12120   return isAvailableAtLoopEntry(FoundRHS, L) &&
12121          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
12122                                   getConstant(FoundRHSLimit));
12123 }
12124 
12125 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
12126                                         const SCEV *LHS, const SCEV *RHS,
12127                                         const SCEV *FoundLHS,
12128                                         const SCEV *FoundRHS, unsigned Depth) {
12129   const PHINode *LPhi = nullptr, *RPhi = nullptr;
12130 
12131   auto ClearOnExit = make_scope_exit([&]() {
12132     if (LPhi) {
12133       bool Erased = PendingMerges.erase(LPhi);
12134       assert(Erased && "Failed to erase LPhi!");
12135       (void)Erased;
12136     }
12137     if (RPhi) {
12138       bool Erased = PendingMerges.erase(RPhi);
12139       assert(Erased && "Failed to erase RPhi!");
12140       (void)Erased;
12141     }
12142   });
12143 
12144   // Find respective Phis and check that they are not being pending.
12145   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12146     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12147       if (!PendingMerges.insert(Phi).second)
12148         return false;
12149       LPhi = Phi;
12150     }
12151   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12152     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12153       // If we detect a loop of Phi nodes being processed by this method, for
12154       // example:
12155       //
12156       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12157       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12158       //
12159       // we don't want to deal with a case that complex, so return conservative
12160       // answer false.
12161       if (!PendingMerges.insert(Phi).second)
12162         return false;
12163       RPhi = Phi;
12164     }
12165 
12166   // If none of LHS, RHS is a Phi, nothing to do here.
12167   if (!LPhi && !RPhi)
12168     return false;
12169 
12170   // If there is a SCEVUnknown Phi we are interested in, make it left.
12171   if (!LPhi) {
12172     std::swap(LHS, RHS);
12173     std::swap(FoundLHS, FoundRHS);
12174     std::swap(LPhi, RPhi);
12175     Pred = ICmpInst::getSwappedPredicate(Pred);
12176   }
12177 
12178   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12179   const BasicBlock *LBB = LPhi->getParent();
12180   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12181 
12182   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12183     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12184            isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) ||
12185            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12186   };
12187 
12188   if (RPhi && RPhi->getParent() == LBB) {
12189     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12190     // If we compare two Phis from the same block, and for each entry block
12191     // the predicate is true for incoming values from this block, then the
12192     // predicate is also true for the Phis.
12193     for (const BasicBlock *IncBB : predecessors(LBB)) {
12194       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12195       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12196       if (!ProvedEasily(L, R))
12197         return false;
12198     }
12199   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12200     // Case two: RHS is also a Phi from the same basic block, and it is an
12201     // AddRec. It means that there is a loop which has both AddRec and Unknown
12202     // PHIs, for it we can compare incoming values of AddRec from above the loop
12203     // and latch with their respective incoming values of LPhi.
12204     // TODO: Generalize to handle loops with many inputs in a header.
12205     if (LPhi->getNumIncomingValues() != 2) return false;
12206 
12207     auto *RLoop = RAR->getLoop();
12208     auto *Predecessor = RLoop->getLoopPredecessor();
12209     assert(Predecessor && "Loop with AddRec with no predecessor?");
12210     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12211     if (!ProvedEasily(L1, RAR->getStart()))
12212       return false;
12213     auto *Latch = RLoop->getLoopLatch();
12214     assert(Latch && "Loop with AddRec with no latch?");
12215     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12216     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12217       return false;
12218   } else {
12219     // In all other cases go over inputs of LHS and compare each of them to RHS,
12220     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12221     // At this point RHS is either a non-Phi, or it is a Phi from some block
12222     // different from LBB.
12223     for (const BasicBlock *IncBB : predecessors(LBB)) {
12224       // Check that RHS is available in this block.
12225       if (!dominates(RHS, IncBB))
12226         return false;
12227       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12228       // Make sure L does not refer to a value from a potentially previous
12229       // iteration of a loop.
12230       if (!properlyDominates(L, LBB))
12231         return false;
12232       if (!ProvedEasily(L, RHS))
12233         return false;
12234     }
12235   }
12236   return true;
12237 }
12238 
12239 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12240                                                     const SCEV *LHS,
12241                                                     const SCEV *RHS,
12242                                                     const SCEV *FoundLHS,
12243                                                     const SCEV *FoundRHS) {
12244   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12245   // sure that we are dealing with same LHS.
12246   if (RHS == FoundRHS) {
12247     std::swap(LHS, RHS);
12248     std::swap(FoundLHS, FoundRHS);
12249     Pred = ICmpInst::getSwappedPredicate(Pred);
12250   }
12251   if (LHS != FoundLHS)
12252     return false;
12253 
12254   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12255   if (!SUFoundRHS)
12256     return false;
12257 
12258   Value *Shiftee, *ShiftValue;
12259 
12260   using namespace PatternMatch;
12261   if (match(SUFoundRHS->getValue(),
12262             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12263     auto *ShifteeS = getSCEV(Shiftee);
12264     // Prove one of the following:
12265     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12266     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12267     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12268     //   ---> LHS <s RHS
12269     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12270     //   ---> LHS <=s RHS
12271     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12272       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12273     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12274       if (isKnownNonNegative(ShifteeS))
12275         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12276   }
12277 
12278   return false;
12279 }
12280 
12281 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12282                                             const SCEV *LHS, const SCEV *RHS,
12283                                             const SCEV *FoundLHS,
12284                                             const SCEV *FoundRHS,
12285                                             const Instruction *CtxI) {
12286   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS))
12287     return true;
12288 
12289   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12290     return true;
12291 
12292   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12293     return true;
12294 
12295   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12296                                           CtxI))
12297     return true;
12298 
12299   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12300                                      FoundLHS, FoundRHS);
12301 }
12302 
12303 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12304 template <typename MinMaxExprType>
12305 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12306                                  const SCEV *Candidate) {
12307   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12308   if (!MinMaxExpr)
12309     return false;
12310 
12311   return is_contained(MinMaxExpr->operands(), Candidate);
12312 }
12313 
12314 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12315                                            ICmpInst::Predicate Pred,
12316                                            const SCEV *LHS, const SCEV *RHS) {
12317   // If both sides are affine addrecs for the same loop, with equal
12318   // steps, and we know the recurrences don't wrap, then we only
12319   // need to check the predicate on the starting values.
12320 
12321   if (!ICmpInst::isRelational(Pred))
12322     return false;
12323 
12324   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12325   if (!LAR)
12326     return false;
12327   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12328   if (!RAR)
12329     return false;
12330   if (LAR->getLoop() != RAR->getLoop())
12331     return false;
12332   if (!LAR->isAffine() || !RAR->isAffine())
12333     return false;
12334 
12335   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12336     return false;
12337 
12338   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12339                          SCEV::FlagNSW : SCEV::FlagNUW;
12340   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12341     return false;
12342 
12343   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12344 }
12345 
12346 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12347 /// expression?
12348 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12349                                         ICmpInst::Predicate Pred,
12350                                         const SCEV *LHS, const SCEV *RHS) {
12351   switch (Pred) {
12352   default:
12353     return false;
12354 
12355   case ICmpInst::ICMP_SGE:
12356     std::swap(LHS, RHS);
12357     [[fallthrough]];
12358   case ICmpInst::ICMP_SLE:
12359     return
12360         // min(A, ...) <= A
12361         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12362         // A <= max(A, ...)
12363         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12364 
12365   case ICmpInst::ICMP_UGE:
12366     std::swap(LHS, RHS);
12367     [[fallthrough]];
12368   case ICmpInst::ICMP_ULE:
12369     return
12370         // min(A, ...) <= A
12371         // FIXME: what about umin_seq?
12372         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12373         // A <= max(A, ...)
12374         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12375   }
12376 
12377   llvm_unreachable("covered switch fell through?!");
12378 }
12379 
12380 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12381                                              const SCEV *LHS, const SCEV *RHS,
12382                                              const SCEV *FoundLHS,
12383                                              const SCEV *FoundRHS,
12384                                              unsigned Depth) {
12385   assert(getTypeSizeInBits(LHS->getType()) ==
12386              getTypeSizeInBits(RHS->getType()) &&
12387          "LHS and RHS have different sizes?");
12388   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12389              getTypeSizeInBits(FoundRHS->getType()) &&
12390          "FoundLHS and FoundRHS have different sizes?");
12391   // We want to avoid hurting the compile time with analysis of too big trees.
12392   if (Depth > MaxSCEVOperationsImplicationDepth)
12393     return false;
12394 
12395   // We only want to work with GT comparison so far.
12396   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12397     Pred = CmpInst::getSwappedPredicate(Pred);
12398     std::swap(LHS, RHS);
12399     std::swap(FoundLHS, FoundRHS);
12400   }
12401 
12402   // For unsigned, try to reduce it to corresponding signed comparison.
12403   if (Pred == ICmpInst::ICMP_UGT)
12404     // We can replace unsigned predicate with its signed counterpart if all
12405     // involved values are non-negative.
12406     // TODO: We could have better support for unsigned.
12407     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12408       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12409       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12410       // use this fact to prove that LHS and RHS are non-negative.
12411       const SCEV *MinusOne = getMinusOne(LHS->getType());
12412       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12413                                 FoundRHS) &&
12414           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12415                                 FoundRHS))
12416         Pred = ICmpInst::ICMP_SGT;
12417     }
12418 
12419   if (Pred != ICmpInst::ICMP_SGT)
12420     return false;
12421 
12422   auto GetOpFromSExt = [&](const SCEV *S) {
12423     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12424       return Ext->getOperand();
12425     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12426     // the constant in some cases.
12427     return S;
12428   };
12429 
12430   // Acquire values from extensions.
12431   auto *OrigLHS = LHS;
12432   auto *OrigFoundLHS = FoundLHS;
12433   LHS = GetOpFromSExt(LHS);
12434   FoundLHS = GetOpFromSExt(FoundLHS);
12435 
12436   // Is the SGT predicate can be proved trivially or using the found context.
12437   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12438     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12439            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12440                                   FoundRHS, Depth + 1);
12441   };
12442 
12443   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12444     // We want to avoid creation of any new non-constant SCEV. Since we are
12445     // going to compare the operands to RHS, we should be certain that we don't
12446     // need any size extensions for this. So let's decline all cases when the
12447     // sizes of types of LHS and RHS do not match.
12448     // TODO: Maybe try to get RHS from sext to catch more cases?
12449     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12450       return false;
12451 
12452     // Should not overflow.
12453     if (!LHSAddExpr->hasNoSignedWrap())
12454       return false;
12455 
12456     auto *LL = LHSAddExpr->getOperand(0);
12457     auto *LR = LHSAddExpr->getOperand(1);
12458     auto *MinusOne = getMinusOne(RHS->getType());
12459 
12460     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12461     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12462       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12463     };
12464     // Try to prove the following rule:
12465     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12466     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12467     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12468       return true;
12469   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12470     Value *LL, *LR;
12471     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12472 
12473     using namespace llvm::PatternMatch;
12474 
12475     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12476       // Rules for division.
12477       // We are going to perform some comparisons with Denominator and its
12478       // derivative expressions. In general case, creating a SCEV for it may
12479       // lead to a complex analysis of the entire graph, and in particular it
12480       // can request trip count recalculation for the same loop. This would
12481       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12482       // this, we only want to create SCEVs that are constants in this section.
12483       // So we bail if Denominator is not a constant.
12484       if (!isa<ConstantInt>(LR))
12485         return false;
12486 
12487       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12488 
12489       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12490       // then a SCEV for the numerator already exists and matches with FoundLHS.
12491       auto *Numerator = getExistingSCEV(LL);
12492       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12493         return false;
12494 
12495       // Make sure that the numerator matches with FoundLHS and the denominator
12496       // is positive.
12497       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12498         return false;
12499 
12500       auto *DTy = Denominator->getType();
12501       auto *FRHSTy = FoundRHS->getType();
12502       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12503         // One of types is a pointer and another one is not. We cannot extend
12504         // them properly to a wider type, so let us just reject this case.
12505         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12506         // to avoid this check.
12507         return false;
12508 
12509       // Given that:
12510       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12511       auto *WTy = getWiderType(DTy, FRHSTy);
12512       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12513       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12514 
12515       // Try to prove the following rule:
12516       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12517       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12518       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12519       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12520       if (isKnownNonPositive(RHS) &&
12521           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12522         return true;
12523 
12524       // Try to prove the following rule:
12525       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12526       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12527       // If we divide it by Denominator > 2, then:
12528       // 1. If FoundLHS is negative, then the result is 0.
12529       // 2. If FoundLHS is non-negative, then the result is non-negative.
12530       // Anyways, the result is non-negative.
12531       auto *MinusOne = getMinusOne(WTy);
12532       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12533       if (isKnownNegative(RHS) &&
12534           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12535         return true;
12536     }
12537   }
12538 
12539   // If our expression contained SCEVUnknown Phis, and we split it down and now
12540   // need to prove something for them, try to prove the predicate for every
12541   // possible incoming values of those Phis.
12542   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12543     return true;
12544 
12545   return false;
12546 }
12547 
12548 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12549                                         const SCEV *LHS, const SCEV *RHS) {
12550   // zext x u<= sext x, sext x s<= zext x
12551   switch (Pred) {
12552   case ICmpInst::ICMP_SGE:
12553     std::swap(LHS, RHS);
12554     [[fallthrough]];
12555   case ICmpInst::ICMP_SLE: {
12556     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12557     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12558     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12559     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12560       return true;
12561     break;
12562   }
12563   case ICmpInst::ICMP_UGE:
12564     std::swap(LHS, RHS);
12565     [[fallthrough]];
12566   case ICmpInst::ICMP_ULE: {
12567     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12568     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12569     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12570     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12571       return true;
12572     break;
12573   }
12574   default:
12575     break;
12576   };
12577   return false;
12578 }
12579 
12580 bool
12581 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12582                                            const SCEV *LHS, const SCEV *RHS) {
12583   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12584          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12585          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12586          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12587          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12588 }
12589 
12590 bool
12591 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12592                                              const SCEV *LHS, const SCEV *RHS,
12593                                              const SCEV *FoundLHS,
12594                                              const SCEV *FoundRHS) {
12595   switch (Pred) {
12596   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12597   case ICmpInst::ICMP_EQ:
12598   case ICmpInst::ICMP_NE:
12599     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12600       return true;
12601     break;
12602   case ICmpInst::ICMP_SLT:
12603   case ICmpInst::ICMP_SLE:
12604     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12605         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12606       return true;
12607     break;
12608   case ICmpInst::ICMP_SGT:
12609   case ICmpInst::ICMP_SGE:
12610     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12611         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12612       return true;
12613     break;
12614   case ICmpInst::ICMP_ULT:
12615   case ICmpInst::ICMP_ULE:
12616     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12617         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12618       return true;
12619     break;
12620   case ICmpInst::ICMP_UGT:
12621   case ICmpInst::ICMP_UGE:
12622     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12623         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12624       return true;
12625     break;
12626   }
12627 
12628   // Maybe it can be proved via operations?
12629   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12630     return true;
12631 
12632   return false;
12633 }
12634 
12635 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12636                                                      const SCEV *LHS,
12637                                                      const SCEV *RHS,
12638                                                      ICmpInst::Predicate FoundPred,
12639                                                      const SCEV *FoundLHS,
12640                                                      const SCEV *FoundRHS) {
12641   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12642     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12643     // reduce the compile time impact of this optimization.
12644     return false;
12645 
12646   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12647   if (!Addend)
12648     return false;
12649 
12650   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12651 
12652   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12653   // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12654   ConstantRange FoundLHSRange =
12655       ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS);
12656 
12657   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12658   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12659 
12660   // We can also compute the range of values for `LHS` that satisfy the
12661   // consequent, "`LHS` `Pred` `RHS`":
12662   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12663   // The antecedent implies the consequent if every value of `LHS` that
12664   // satisfies the antecedent also satisfies the consequent.
12665   return LHSRange.icmp(Pred, ConstRHS);
12666 }
12667 
12668 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12669                                         bool IsSigned) {
12670   assert(isKnownPositive(Stride) && "Positive stride expected!");
12671 
12672   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12673   const SCEV *One = getOne(Stride->getType());
12674 
12675   if (IsSigned) {
12676     APInt MaxRHS = getSignedRangeMax(RHS);
12677     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12678     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12679 
12680     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12681     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12682   }
12683 
12684   APInt MaxRHS = getUnsignedRangeMax(RHS);
12685   APInt MaxValue = APInt::getMaxValue(BitWidth);
12686   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12687 
12688   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12689   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12690 }
12691 
12692 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12693                                         bool IsSigned) {
12694 
12695   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12696   const SCEV *One = getOne(Stride->getType());
12697 
12698   if (IsSigned) {
12699     APInt MinRHS = getSignedRangeMin(RHS);
12700     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12701     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12702 
12703     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12704     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12705   }
12706 
12707   APInt MinRHS = getUnsignedRangeMin(RHS);
12708   APInt MinValue = APInt::getMinValue(BitWidth);
12709   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12710 
12711   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12712   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12713 }
12714 
12715 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12716   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12717   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12718   // expression fixes the case of N=0.
12719   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12720   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12721   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12722 }
12723 
12724 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12725                                                     const SCEV *Stride,
12726                                                     const SCEV *End,
12727                                                     unsigned BitWidth,
12728                                                     bool IsSigned) {
12729   // The logic in this function assumes we can represent a positive stride.
12730   // If we can't, the backedge-taken count must be zero.
12731   if (IsSigned && BitWidth == 1)
12732     return getZero(Stride->getType());
12733 
12734   // This code below only been closely audited for negative strides in the
12735   // unsigned comparison case, it may be correct for signed comparison, but
12736   // that needs to be established.
12737   if (IsSigned && isKnownNegative(Stride))
12738     return getCouldNotCompute();
12739 
12740   // Calculate the maximum backedge count based on the range of values
12741   // permitted by Start, End, and Stride.
12742   APInt MinStart =
12743       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12744 
12745   APInt MinStride =
12746       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12747 
12748   // We assume either the stride is positive, or the backedge-taken count
12749   // is zero. So force StrideForMaxBECount to be at least one.
12750   APInt One(BitWidth, 1);
12751   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12752                                        : APIntOps::umax(One, MinStride);
12753 
12754   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12755                             : APInt::getMaxValue(BitWidth);
12756   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12757 
12758   // Although End can be a MAX expression we estimate MaxEnd considering only
12759   // the case End = RHS of the loop termination condition. This is safe because
12760   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12761   // taken count.
12762   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12763                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12764 
12765   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12766   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12767                     : APIntOps::umax(MaxEnd, MinStart);
12768 
12769   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12770                          getConstant(StrideForMaxBECount) /* Step */);
12771 }
12772 
12773 ScalarEvolution::ExitLimit
12774 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12775                                   const Loop *L, bool IsSigned,
12776                                   bool ControlsOnlyExit, bool AllowPredicates) {
12777   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12778 
12779   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12780   bool PredicatedIV = false;
12781 
12782   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12783     // Can we prove this loop *must* be UB if overflow of IV occurs?
12784     // Reasoning goes as follows:
12785     // * Suppose the IV did self wrap.
12786     // * If Stride evenly divides the iteration space, then once wrap
12787     //   occurs, the loop must revisit the same values.
12788     // * We know that RHS is invariant, and that none of those values
12789     //   caused this exit to be taken previously.  Thus, this exit is
12790     //   dynamically dead.
12791     // * If this is the sole exit, then a dead exit implies the loop
12792     //   must be infinite if there are no abnormal exits.
12793     // * If the loop were infinite, then it must either not be mustprogress
12794     //   or have side effects. Otherwise, it must be UB.
12795     // * It can't (by assumption), be UB so we have contradicted our
12796     //   premise and can conclude the IV did not in fact self-wrap.
12797     if (!isLoopInvariant(RHS, L))
12798       return false;
12799 
12800     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12801     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12802       return false;
12803 
12804     if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12805       return false;
12806 
12807     return loopIsFiniteByAssumption(L);
12808   };
12809 
12810   if (!IV) {
12811     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12812       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12813       if (AR && AR->getLoop() == L && AR->isAffine()) {
12814         auto canProveNUW = [&]() {
12815           // We can use the comparison to infer no-wrap flags only if it fully
12816           // controls the loop exit.
12817           if (!ControlsOnlyExit)
12818             return false;
12819 
12820           if (!isLoopInvariant(RHS, L))
12821             return false;
12822 
12823           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12824             // We need the sequence defined by AR to strictly increase in the
12825             // unsigned integer domain for the logic below to hold.
12826             return false;
12827 
12828           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12829           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12830           // If RHS <=u Limit, then there must exist a value V in the sequence
12831           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12832           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12833           // overflow occurs.  This limit also implies that a signed comparison
12834           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12835           // the high bits on both sides must be zero.
12836           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12837           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12838           Limit = Limit.zext(OuterBitWidth);
12839           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12840         };
12841         auto Flags = AR->getNoWrapFlags();
12842         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12843           Flags = setFlags(Flags, SCEV::FlagNUW);
12844 
12845         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12846         if (AR->hasNoUnsignedWrap()) {
12847           // Emulate what getZeroExtendExpr would have done during construction
12848           // if we'd been able to infer the fact just above at that time.
12849           const SCEV *Step = AR->getStepRecurrence(*this);
12850           Type *Ty = ZExt->getType();
12851           auto *S = getAddRecExpr(
12852             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12853             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12854           IV = dyn_cast<SCEVAddRecExpr>(S);
12855         }
12856       }
12857     }
12858   }
12859 
12860 
12861   if (!IV && AllowPredicates) {
12862     // Try to make this an AddRec using runtime tests, in the first X
12863     // iterations of this loop, where X is the SCEV expression found by the
12864     // algorithm below.
12865     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12866     PredicatedIV = true;
12867   }
12868 
12869   // Avoid weird loops
12870   if (!IV || IV->getLoop() != L || !IV->isAffine())
12871     return getCouldNotCompute();
12872 
12873   // A precondition of this method is that the condition being analyzed
12874   // reaches an exiting branch which dominates the latch.  Given that, we can
12875   // assume that an increment which violates the nowrap specification and
12876   // produces poison must cause undefined behavior when the resulting poison
12877   // value is branched upon and thus we can conclude that the backedge is
12878   // taken no more often than would be required to produce that poison value.
12879   // Note that a well defined loop can exit on the iteration which violates
12880   // the nowrap specification if there is another exit (either explicit or
12881   // implicit/exceptional) which causes the loop to execute before the
12882   // exiting instruction we're analyzing would trigger UB.
12883   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12884   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
12885   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12886 
12887   const SCEV *Stride = IV->getStepRecurrence(*this);
12888 
12889   bool PositiveStride = isKnownPositive(Stride);
12890 
12891   // Avoid negative or zero stride values.
12892   if (!PositiveStride) {
12893     // We can compute the correct backedge taken count for loops with unknown
12894     // strides if we can prove that the loop is not an infinite loop with side
12895     // effects. Here's the loop structure we are trying to handle -
12896     //
12897     // i = start
12898     // do {
12899     //   A[i] = i;
12900     //   i += s;
12901     // } while (i < end);
12902     //
12903     // The backedge taken count for such loops is evaluated as -
12904     // (max(end, start + stride) - start - 1) /u stride
12905     //
12906     // The additional preconditions that we need to check to prove correctness
12907     // of the above formula is as follows -
12908     //
12909     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12910     //    NoWrap flag).
12911     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12912     //    no side effects within the loop)
12913     // c) loop has a single static exit (with no abnormal exits)
12914     //
12915     // Precondition a) implies that if the stride is negative, this is a single
12916     // trip loop. The backedge taken count formula reduces to zero in this case.
12917     //
12918     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12919     // then a zero stride means the backedge can't be taken without executing
12920     // undefined behavior.
12921     //
12922     // The positive stride case is the same as isKnownPositive(Stride) returning
12923     // true (original behavior of the function).
12924     //
12925     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12926         !loopHasNoAbnormalExits(L))
12927       return getCouldNotCompute();
12928 
12929     if (!isKnownNonZero(Stride)) {
12930       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12931       // if it might eventually be greater than start and if so, on which
12932       // iteration.  We can't even produce a useful upper bound.
12933       if (!isLoopInvariant(RHS, L))
12934         return getCouldNotCompute();
12935 
12936       // We allow a potentially zero stride, but we need to divide by stride
12937       // below.  Since the loop can't be infinite and this check must control
12938       // the sole exit, we can infer the exit must be taken on the first
12939       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12940       // we know the numerator in the divides below must be zero, so we can
12941       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12942       // and produce the right result.
12943       // FIXME: Handle the case where Stride is poison?
12944       auto wouldZeroStrideBeUB = [&]() {
12945         // Proof by contradiction.  Suppose the stride were zero.  If we can
12946         // prove that the backedge *is* taken on the first iteration, then since
12947         // we know this condition controls the sole exit, we must have an
12948         // infinite loop.  We can't have a (well defined) infinite loop per
12949         // check just above.
12950         // Note: The (Start - Stride) term is used to get the start' term from
12951         // (start' + stride,+,stride). Remember that we only care about the
12952         // result of this expression when stride == 0 at runtime.
12953         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12954         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12955       };
12956       if (!wouldZeroStrideBeUB()) {
12957         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12958       }
12959     }
12960   } else if (!Stride->isOne() && !NoWrap) {
12961     auto isUBOnWrap = [&]() {
12962       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12963       // follows trivially from the fact that every (un)signed-wrapped, but
12964       // not self-wrapped value must be LT than the last value before
12965       // (un)signed wrap.  Since we know that last value didn't exit, nor
12966       // will any smaller one.
12967       return canAssumeNoSelfWrap(IV);
12968     };
12969 
12970     // Avoid proven overflow cases: this will ensure that the backedge taken
12971     // count will not generate any unsigned overflow. Relaxed no-overflow
12972     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12973     // undefined behaviors like the case of C language.
12974     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12975       return getCouldNotCompute();
12976   }
12977 
12978   // On all paths just preceeding, we established the following invariant:
12979   //   IV can be assumed not to overflow up to and including the exiting
12980   //   iteration.  We proved this in one of two ways:
12981   //   1) We can show overflow doesn't occur before the exiting iteration
12982   //      1a) canIVOverflowOnLT, and b) step of one
12983   //   2) We can show that if overflow occurs, the loop must execute UB
12984   //      before any possible exit.
12985   // Note that we have not yet proved RHS invariant (in general).
12986 
12987   const SCEV *Start = IV->getStart();
12988 
12989   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12990   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12991   // Use integer-typed versions for actual computation; we can't subtract
12992   // pointers in general.
12993   const SCEV *OrigStart = Start;
12994   const SCEV *OrigRHS = RHS;
12995   if (Start->getType()->isPointerTy()) {
12996     Start = getLosslessPtrToIntExpr(Start);
12997     if (isa<SCEVCouldNotCompute>(Start))
12998       return Start;
12999   }
13000   if (RHS->getType()->isPointerTy()) {
13001     RHS = getLosslessPtrToIntExpr(RHS);
13002     if (isa<SCEVCouldNotCompute>(RHS))
13003       return RHS;
13004   }
13005 
13006   const SCEV *End = nullptr, *BECount = nullptr,
13007              *BECountIfBackedgeTaken = nullptr;
13008   if (!isLoopInvariant(RHS, L)) {
13009     const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS);
13010     if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L &&
13011         RHSAddRec->getNoWrapFlags()) {
13012       // The structure of loop we are trying to calculate backedge count of:
13013       //
13014       //  left = left_start
13015       //  right = right_start
13016       //
13017       //  while(left < right){
13018       //    ... do something here ...
13019       //    left += s1; // stride of left is s1 (s1 > 0)
13020       //    right += s2; // stride of right is s2 (s2 < 0)
13021       //  }
13022       //
13023 
13024       const SCEV *RHSStart = RHSAddRec->getStart();
13025       const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this);
13026 
13027       // If Stride - RHSStride is positive and does not overflow, we can write
13028       // backedge count as ->
13029       //    ceil((End - Start) /u (Stride - RHSStride))
13030       //    Where, End = max(RHSStart, Start)
13031 
13032       // Check if RHSStride < 0 and Stride - RHSStride will not overflow.
13033       if (isKnownNegative(RHSStride) &&
13034           willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride,
13035                           RHSStride)) {
13036 
13037         const SCEV *Denominator = getMinusSCEV(Stride, RHSStride);
13038         if (isKnownPositive(Denominator)) {
13039           End = IsSigned ? getSMaxExpr(RHSStart, Start)
13040                          : getUMaxExpr(RHSStart, Start);
13041 
13042           // We can do this because End >= Start, as End = max(RHSStart, Start)
13043           const SCEV *Delta = getMinusSCEV(End, Start);
13044 
13045           BECount = getUDivCeilSCEV(Delta, Denominator);
13046           BECountIfBackedgeTaken =
13047               getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator);
13048         }
13049       }
13050     }
13051     if (BECount == nullptr) {
13052       // If we cannot calculate ExactBECount, we can calculate the MaxBECount,
13053       // given the start, stride and max value for the end bound of the
13054       // loop (RHS), and the fact that IV does not overflow (which is
13055       // checked above).
13056       const SCEV *MaxBECount = computeMaxBECountForLT(
13057           Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13058       return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
13059                        MaxBECount, false /*MaxOrZero*/, Predicates);
13060     }
13061   } else {
13062     // We use the expression (max(End,Start)-Start)/Stride to describe the
13063     // backedge count, as if the backedge is taken at least once
13064     // max(End,Start) is End and so the result is as above, and if not
13065     // max(End,Start) is Start so we get a backedge count of zero.
13066     auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
13067     assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
13068     assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
13069     assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
13070     // Can we prove (max(RHS,Start) > Start - Stride?
13071     if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
13072         isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
13073       // In this case, we can use a refined formula for computing backedge
13074       // taken count.  The general formula remains:
13075       //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
13076       // We want to use the alternate formula:
13077       //   "((End - 1) - (Start - Stride)) /u Stride"
13078       // Let's do a quick case analysis to show these are equivalent under
13079       // our precondition that max(RHS,Start) > Start - Stride.
13080       // * For RHS <= Start, the backedge-taken count must be zero.
13081       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13082       //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
13083       //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
13084       //     of Stride.  For 0 stride, we've use umin(1,Stride) above,
13085       //     reducing this to the stride of 1 case.
13086       // * For RHS >= Start, the backedge count must be "RHS-Start /uceil
13087       // Stride".
13088       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13089       //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
13090       //   "((RHS - (Start - Stride) - 1) /u Stride".
13091       //   Our preconditions trivially imply no overflow in that form.
13092       const SCEV *MinusOne = getMinusOne(Stride->getType());
13093       const SCEV *Numerator =
13094           getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
13095       BECount = getUDivExpr(Numerator, Stride);
13096     }
13097 
13098     if (!BECount) {
13099       auto canProveRHSGreaterThanEqualStart = [&]() {
13100         auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13101         const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
13102         const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
13103 
13104         if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
13105             isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
13106           return true;
13107 
13108         // (RHS > Start - 1) implies RHS >= Start.
13109         // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
13110         //   "Start - 1" doesn't overflow.
13111         // * For signed comparison, if Start - 1 does overflow, it's equal
13112         //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
13113         // * For unsigned comparison, if Start - 1 does overflow, it's equal
13114         //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
13115         //
13116         // FIXME: Should isLoopEntryGuardedByCond do this for us?
13117         auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13118         auto *StartMinusOne =
13119             getAddExpr(OrigStart, getMinusOne(OrigStart->getType()));
13120         return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
13121       };
13122 
13123       // If we know that RHS >= Start in the context of loop, then we know
13124       // that max(RHS, Start) = RHS at this point.
13125       if (canProveRHSGreaterThanEqualStart()) {
13126         End = RHS;
13127       } else {
13128         // If RHS < Start, the backedge will be taken zero times.  So in
13129         // general, we can write the backedge-taken count as:
13130         //
13131         //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
13132         //
13133         // We convert it to the following to make it more convenient for SCEV:
13134         //
13135         //     ceil(max(RHS, Start) - Start) / Stride
13136         End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
13137 
13138         // See what would happen if we assume the backedge is taken. This is
13139         // used to compute MaxBECount.
13140         BECountIfBackedgeTaken =
13141             getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
13142       }
13143 
13144       // At this point, we know:
13145       //
13146       // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13147       // 2. The index variable doesn't overflow.
13148       //
13149       // Therefore, we know N exists such that
13150       // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13151       // doesn't overflow.
13152       //
13153       // Using this information, try to prove whether the addition in
13154       // "(Start - End) + (Stride - 1)" has unsigned overflow.
13155       const SCEV *One = getOne(Stride->getType());
13156       bool MayAddOverflow = [&] {
13157         if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
13158           if (StrideC->getAPInt().isPowerOf2()) {
13159             // Suppose Stride is a power of two, and Start/End are unsigned
13160             // integers.  Let UMAX be the largest representable unsigned
13161             // integer.
13162             //
13163             // By the preconditions of this function, we know
13164             // "(Start + Stride * N) >= End", and this doesn't overflow.
13165             // As a formula:
13166             //
13167             //   End <= (Start + Stride * N) <= UMAX
13168             //
13169             // Subtracting Start from all the terms:
13170             //
13171             //   End - Start <= Stride * N <= UMAX - Start
13172             //
13173             // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
13174             //
13175             //   End - Start <= Stride * N <= UMAX
13176             //
13177             // Stride * N is a multiple of Stride. Therefore,
13178             //
13179             //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13180             //
13181             // Since Stride is a power of two, UMAX + 1 is divisible by
13182             // Stride. Therefore, UMAX mod Stride == Stride - 1.  So we can
13183             // write:
13184             //
13185             //   End - Start <= Stride * N <= UMAX - Stride - 1
13186             //
13187             // Dropping the middle term:
13188             //
13189             //   End - Start <= UMAX - Stride - 1
13190             //
13191             // Adding Stride - 1 to both sides:
13192             //
13193             //   (End - Start) + (Stride - 1) <= UMAX
13194             //
13195             // In other words, the addition doesn't have unsigned overflow.
13196             //
13197             // A similar proof works if we treat Start/End as signed values.
13198             // Just rewrite steps before "End - Start <= Stride * N <= UMAX"
13199             // to use signed max instead of unsigned max. Note that we're
13200             // trying to prove a lack of unsigned overflow in either case.
13201             return false;
13202           }
13203         }
13204         if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13205           // If Start is equal to Stride, (End - Start) + (Stride - 1) == End
13206           // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1
13207           // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End -
13208           // 1 <s End.
13209           //
13210           // If Start is equal to Stride - 1, (End - Start) + Stride - 1 ==
13211           // End.
13212           return false;
13213         }
13214         return true;
13215       }();
13216 
13217       const SCEV *Delta = getMinusSCEV(End, Start);
13218       if (!MayAddOverflow) {
13219         // floor((D + (S - 1)) / S)
13220         // We prefer this formulation if it's legal because it's fewer
13221         // operations.
13222         BECount =
13223             getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13224       } else {
13225         BECount = getUDivCeilSCEV(Delta, Stride);
13226       }
13227     }
13228   }
13229 
13230   const SCEV *ConstantMaxBECount;
13231   bool MaxOrZero = false;
13232   if (isa<SCEVConstant>(BECount)) {
13233     ConstantMaxBECount = BECount;
13234   } else if (BECountIfBackedgeTaken &&
13235              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13236     // If we know exactly how many times the backedge will be taken if it's
13237     // taken at least once, then the backedge count will either be that or
13238     // zero.
13239     ConstantMaxBECount = BECountIfBackedgeTaken;
13240     MaxOrZero = true;
13241   } else {
13242     ConstantMaxBECount = computeMaxBECountForLT(
13243         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13244   }
13245 
13246   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13247       !isa<SCEVCouldNotCompute>(BECount))
13248     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13249 
13250   const SCEV *SymbolicMaxBECount =
13251       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13252   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13253                    Predicates);
13254 }
13255 
13256 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13257     const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13258     bool ControlsOnlyExit, bool AllowPredicates) {
13259   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13260   // We handle only IV > Invariant
13261   if (!isLoopInvariant(RHS, L))
13262     return getCouldNotCompute();
13263 
13264   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13265   if (!IV && AllowPredicates)
13266     // Try to make this an AddRec using runtime tests, in the first X
13267     // iterations of this loop, where X is the SCEV expression found by the
13268     // algorithm below.
13269     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13270 
13271   // Avoid weird loops
13272   if (!IV || IV->getLoop() != L || !IV->isAffine())
13273     return getCouldNotCompute();
13274 
13275   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13276   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13277   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13278 
13279   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13280 
13281   // Avoid negative or zero stride values
13282   if (!isKnownPositive(Stride))
13283     return getCouldNotCompute();
13284 
13285   // Avoid proven overflow cases: this will ensure that the backedge taken count
13286   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13287   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13288   // behaviors like the case of C language.
13289   if (!Stride->isOne() && !NoWrap)
13290     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13291       return getCouldNotCompute();
13292 
13293   const SCEV *Start = IV->getStart();
13294   const SCEV *End = RHS;
13295   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13296     // If we know that Start >= RHS in the context of loop, then we know that
13297     // min(RHS, Start) = RHS at this point.
13298     if (isLoopEntryGuardedByCond(
13299             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13300       End = RHS;
13301     else
13302       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13303   }
13304 
13305   if (Start->getType()->isPointerTy()) {
13306     Start = getLosslessPtrToIntExpr(Start);
13307     if (isa<SCEVCouldNotCompute>(Start))
13308       return Start;
13309   }
13310   if (End->getType()->isPointerTy()) {
13311     End = getLosslessPtrToIntExpr(End);
13312     if (isa<SCEVCouldNotCompute>(End))
13313       return End;
13314   }
13315 
13316   // Compute ((Start - End) + (Stride - 1)) / Stride.
13317   // FIXME: This can overflow. Holding off on fixing this for now;
13318   // howManyGreaterThans will hopefully be gone soon.
13319   const SCEV *One = getOne(Stride->getType());
13320   const SCEV *BECount = getUDivExpr(
13321       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13322 
13323   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13324                             : getUnsignedRangeMax(Start);
13325 
13326   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13327                              : getUnsignedRangeMin(Stride);
13328 
13329   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13330   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13331                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13332 
13333   // Although End can be a MIN expression we estimate MinEnd considering only
13334   // the case End = RHS. This is safe because in the other case (Start - End)
13335   // is zero, leading to a zero maximum backedge taken count.
13336   APInt MinEnd =
13337     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13338              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13339 
13340   const SCEV *ConstantMaxBECount =
13341       isa<SCEVConstant>(BECount)
13342           ? BECount
13343           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13344                             getConstant(MinStride));
13345 
13346   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13347     ConstantMaxBECount = BECount;
13348   const SCEV *SymbolicMaxBECount =
13349       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13350 
13351   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13352                    Predicates);
13353 }
13354 
13355 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13356                                                     ScalarEvolution &SE) const {
13357   if (Range.isFullSet())  // Infinite loop.
13358     return SE.getCouldNotCompute();
13359 
13360   // If the start is a non-zero constant, shift the range to simplify things.
13361   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13362     if (!SC->getValue()->isZero()) {
13363       SmallVector<const SCEV *, 4> Operands(operands());
13364       Operands[0] = SE.getZero(SC->getType());
13365       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13366                                              getNoWrapFlags(FlagNW));
13367       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13368         return ShiftedAddRec->getNumIterationsInRange(
13369             Range.subtract(SC->getAPInt()), SE);
13370       // This is strange and shouldn't happen.
13371       return SE.getCouldNotCompute();
13372     }
13373 
13374   // The only time we can solve this is when we have all constant indices.
13375   // Otherwise, we cannot determine the overflow conditions.
13376   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13377     return SE.getCouldNotCompute();
13378 
13379   // Okay at this point we know that all elements of the chrec are constants and
13380   // that the start element is zero.
13381 
13382   // First check to see if the range contains zero.  If not, the first
13383   // iteration exits.
13384   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13385   if (!Range.contains(APInt(BitWidth, 0)))
13386     return SE.getZero(getType());
13387 
13388   if (isAffine()) {
13389     // If this is an affine expression then we have this situation:
13390     //   Solve {0,+,A} in Range  ===  Ax in Range
13391 
13392     // We know that zero is in the range.  If A is positive then we know that
13393     // the upper value of the range must be the first possible exit value.
13394     // If A is negative then the lower of the range is the last possible loop
13395     // value.  Also note that we already checked for a full range.
13396     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13397     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13398 
13399     // The exit value should be (End+A)/A.
13400     APInt ExitVal = (End + A).udiv(A);
13401     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13402 
13403     // Evaluate at the exit value.  If we really did fall out of the valid
13404     // range, then we computed our trip count, otherwise wrap around or other
13405     // things must have happened.
13406     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13407     if (Range.contains(Val->getValue()))
13408       return SE.getCouldNotCompute();  // Something strange happened
13409 
13410     // Ensure that the previous value is in the range.
13411     assert(Range.contains(
13412            EvaluateConstantChrecAtConstant(this,
13413            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13414            "Linear scev computation is off in a bad way!");
13415     return SE.getConstant(ExitValue);
13416   }
13417 
13418   if (isQuadratic()) {
13419     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13420       return SE.getConstant(*S);
13421   }
13422 
13423   return SE.getCouldNotCompute();
13424 }
13425 
13426 const SCEVAddRecExpr *
13427 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13428   assert(getNumOperands() > 1 && "AddRec with zero step?");
13429   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13430   // but in this case we cannot guarantee that the value returned will be an
13431   // AddRec because SCEV does not have a fixed point where it stops
13432   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13433   // may happen if we reach arithmetic depth limit while simplifying. So we
13434   // construct the returned value explicitly.
13435   SmallVector<const SCEV *, 3> Ops;
13436   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13437   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13438   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13439     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13440   // We know that the last operand is not a constant zero (otherwise it would
13441   // have been popped out earlier). This guarantees us that if the result has
13442   // the same last operand, then it will also not be popped out, meaning that
13443   // the returned value will be an AddRec.
13444   const SCEV *Last = getOperand(getNumOperands() - 1);
13445   assert(!Last->isZero() && "Recurrency with zero step?");
13446   Ops.push_back(Last);
13447   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13448                                                SCEV::FlagAnyWrap));
13449 }
13450 
13451 // Return true when S contains at least an undef value.
13452 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13453   return SCEVExprContains(S, [](const SCEV *S) {
13454     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13455       return isa<UndefValue>(SU->getValue());
13456     return false;
13457   });
13458 }
13459 
13460 // Return true when S contains a value that is a nullptr.
13461 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13462   return SCEVExprContains(S, [](const SCEV *S) {
13463     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13464       return SU->getValue() == nullptr;
13465     return false;
13466   });
13467 }
13468 
13469 /// Return the size of an element read or written by Inst.
13470 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13471   Type *Ty;
13472   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13473     Ty = Store->getValueOperand()->getType();
13474   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13475     Ty = Load->getType();
13476   else
13477     return nullptr;
13478 
13479   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13480   return getSizeOfExpr(ETy, Ty);
13481 }
13482 
13483 //===----------------------------------------------------------------------===//
13484 //                   SCEVCallbackVH Class Implementation
13485 //===----------------------------------------------------------------------===//
13486 
13487 void ScalarEvolution::SCEVCallbackVH::deleted() {
13488   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13489   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13490     SE->ConstantEvolutionLoopExitValue.erase(PN);
13491   SE->eraseValueFromMap(getValPtr());
13492   // this now dangles!
13493 }
13494 
13495 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13496   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13497 
13498   // Forget all the expressions associated with users of the old value,
13499   // so that future queries will recompute the expressions using the new
13500   // value.
13501   SE->forgetValue(getValPtr());
13502   // this now dangles!
13503 }
13504 
13505 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13506   : CallbackVH(V), SE(se) {}
13507 
13508 //===----------------------------------------------------------------------===//
13509 //                   ScalarEvolution Class Implementation
13510 //===----------------------------------------------------------------------===//
13511 
13512 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13513                                  AssumptionCache &AC, DominatorTree &DT,
13514                                  LoopInfo &LI)
13515     : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI),
13516       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13517       LoopDispositions(64), BlockDispositions(64) {
13518   // To use guards for proving predicates, we need to scan every instruction in
13519   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13520   // time if the IR does not actually contain any calls to
13521   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13522   //
13523   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13524   // to _add_ guards to the module when there weren't any before, and wants
13525   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13526   // efficient in lieu of being smart in that rather obscure case.
13527 
13528   auto *GuardDecl = F.getParent()->getFunction(
13529       Intrinsic::getName(Intrinsic::experimental_guard));
13530   HasGuards = GuardDecl && !GuardDecl->use_empty();
13531 }
13532 
13533 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13534     : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC),
13535       DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13536       ValueExprMap(std::move(Arg.ValueExprMap)),
13537       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13538       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13539       PendingMerges(std::move(Arg.PendingMerges)),
13540       ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13541       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13542       PredicatedBackedgeTakenCounts(
13543           std::move(Arg.PredicatedBackedgeTakenCounts)),
13544       BECountUsers(std::move(Arg.BECountUsers)),
13545       ConstantEvolutionLoopExitValue(
13546           std::move(Arg.ConstantEvolutionLoopExitValue)),
13547       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13548       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13549       LoopDispositions(std::move(Arg.LoopDispositions)),
13550       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13551       BlockDispositions(std::move(Arg.BlockDispositions)),
13552       SCEVUsers(std::move(Arg.SCEVUsers)),
13553       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13554       SignedRanges(std::move(Arg.SignedRanges)),
13555       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13556       UniquePreds(std::move(Arg.UniquePreds)),
13557       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13558       LoopUsers(std::move(Arg.LoopUsers)),
13559       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13560       FirstUnknown(Arg.FirstUnknown) {
13561   Arg.FirstUnknown = nullptr;
13562 }
13563 
13564 ScalarEvolution::~ScalarEvolution() {
13565   // Iterate through all the SCEVUnknown instances and call their
13566   // destructors, so that they release their references to their values.
13567   for (SCEVUnknown *U = FirstUnknown; U;) {
13568     SCEVUnknown *Tmp = U;
13569     U = U->Next;
13570     Tmp->~SCEVUnknown();
13571   }
13572   FirstUnknown = nullptr;
13573 
13574   ExprValueMap.clear();
13575   ValueExprMap.clear();
13576   HasRecMap.clear();
13577   BackedgeTakenCounts.clear();
13578   PredicatedBackedgeTakenCounts.clear();
13579 
13580   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13581   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13582   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13583   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13584   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13585 }
13586 
13587 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13588   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13589 }
13590 
13591 /// When printing a top-level SCEV for trip counts, it's helpful to include
13592 /// a type for constants which are otherwise hard to disambiguate.
13593 static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) {
13594   if (isa<SCEVConstant>(S))
13595     OS << *S->getType() << " ";
13596   OS << *S;
13597 }
13598 
13599 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13600                           const Loop *L) {
13601   // Print all inner loops first
13602   for (Loop *I : *L)
13603     PrintLoopInfo(OS, SE, I);
13604 
13605   OS << "Loop ";
13606   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13607   OS << ": ";
13608 
13609   SmallVector<BasicBlock *, 8> ExitingBlocks;
13610   L->getExitingBlocks(ExitingBlocks);
13611   if (ExitingBlocks.size() != 1)
13612     OS << "<multiple exits> ";
13613 
13614   auto *BTC = SE->getBackedgeTakenCount(L);
13615   if (!isa<SCEVCouldNotCompute>(BTC)) {
13616     OS << "backedge-taken count is ";
13617     PrintSCEVWithTypeHint(OS, BTC);
13618   } else
13619     OS << "Unpredictable backedge-taken count.";
13620   OS << "\n";
13621 
13622   if (ExitingBlocks.size() > 1)
13623     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13624       OS << "  exit count for " << ExitingBlock->getName() << ": ";
13625       PrintSCEVWithTypeHint(OS, SE->getExitCount(L, ExitingBlock));
13626       OS << "\n";
13627     }
13628 
13629   OS << "Loop ";
13630   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13631   OS << ": ";
13632 
13633   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13634   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13635     OS << "constant max backedge-taken count is ";
13636     PrintSCEVWithTypeHint(OS, ConstantBTC);
13637     if (SE->isBackedgeTakenCountMaxOrZero(L))
13638       OS << ", actual taken count either this or zero.";
13639   } else {
13640     OS << "Unpredictable constant max backedge-taken count. ";
13641   }
13642 
13643   OS << "\n"
13644         "Loop ";
13645   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13646   OS << ": ";
13647 
13648   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13649   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13650     OS << "symbolic max backedge-taken count is ";
13651     PrintSCEVWithTypeHint(OS, SymbolicBTC);
13652     if (SE->isBackedgeTakenCountMaxOrZero(L))
13653       OS << ", actual taken count either this or zero.";
13654   } else {
13655     OS << "Unpredictable symbolic max backedge-taken count. ";
13656   }
13657   OS << "\n";
13658 
13659   if (ExitingBlocks.size() > 1)
13660     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13661       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": ";
13662       auto *ExitBTC = SE->getExitCount(L, ExitingBlock,
13663                                        ScalarEvolution::SymbolicMaximum);
13664       PrintSCEVWithTypeHint(OS, ExitBTC);
13665       OS << "\n";
13666     }
13667 
13668   SmallVector<const SCEVPredicate *, 4> Preds;
13669   auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13670   if (PBT != BTC || !Preds.empty()) {
13671     OS << "Loop ";
13672     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13673     OS << ": ";
13674     if (!isa<SCEVCouldNotCompute>(PBT)) {
13675       OS << "Predicated backedge-taken count is ";
13676       PrintSCEVWithTypeHint(OS, PBT);
13677     } else
13678       OS << "Unpredictable predicated backedge-taken count.";
13679     OS << "\n";
13680     OS << " Predicates:\n";
13681     for (const auto *P : Preds)
13682       P->print(OS, 4);
13683   }
13684 
13685   Preds.clear();
13686   auto *PredSymbolicMax =
13687       SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds);
13688   if (SymbolicBTC != PredSymbolicMax) {
13689     OS << "Loop ";
13690     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13691     OS << ": ";
13692     if (!isa<SCEVCouldNotCompute>(PredSymbolicMax)) {
13693       OS << "Predicated symbolic max backedge-taken count is ";
13694       PrintSCEVWithTypeHint(OS, PredSymbolicMax);
13695     } else
13696       OS << "Unpredictable predicated symbolic max backedge-taken count.";
13697     OS << "\n";
13698     OS << " Predicates:\n";
13699     for (const auto *P : Preds)
13700       P->print(OS, 4);
13701   }
13702 
13703   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13704     OS << "Loop ";
13705     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13706     OS << ": ";
13707     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13708   }
13709 }
13710 
13711 namespace llvm {
13712 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13713   switch (LD) {
13714   case ScalarEvolution::LoopVariant:
13715     OS << "Variant";
13716     break;
13717   case ScalarEvolution::LoopInvariant:
13718     OS << "Invariant";
13719     break;
13720   case ScalarEvolution::LoopComputable:
13721     OS << "Computable";
13722     break;
13723   }
13724   return OS;
13725 }
13726 
13727 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13728   switch (BD) {
13729   case ScalarEvolution::DoesNotDominateBlock:
13730     OS << "DoesNotDominate";
13731     break;
13732   case ScalarEvolution::DominatesBlock:
13733     OS << "Dominates";
13734     break;
13735   case ScalarEvolution::ProperlyDominatesBlock:
13736     OS << "ProperlyDominates";
13737     break;
13738   }
13739   return OS;
13740 }
13741 } // namespace llvm
13742 
13743 void ScalarEvolution::print(raw_ostream &OS) const {
13744   // ScalarEvolution's implementation of the print method is to print
13745   // out SCEV values of all instructions that are interesting. Doing
13746   // this potentially causes it to create new SCEV objects though,
13747   // which technically conflicts with the const qualifier. This isn't
13748   // observable from outside the class though, so casting away the
13749   // const isn't dangerous.
13750   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13751 
13752   if (ClassifyExpressions) {
13753     OS << "Classifying expressions for: ";
13754     F.printAsOperand(OS, /*PrintType=*/false);
13755     OS << "\n";
13756     for (Instruction &I : instructions(F))
13757       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13758         OS << I << '\n';
13759         OS << "  -->  ";
13760         const SCEV *SV = SE.getSCEV(&I);
13761         SV->print(OS);
13762         if (!isa<SCEVCouldNotCompute>(SV)) {
13763           OS << " U: ";
13764           SE.getUnsignedRange(SV).print(OS);
13765           OS << " S: ";
13766           SE.getSignedRange(SV).print(OS);
13767         }
13768 
13769         const Loop *L = LI.getLoopFor(I.getParent());
13770 
13771         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13772         if (AtUse != SV) {
13773           OS << "  -->  ";
13774           AtUse->print(OS);
13775           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13776             OS << " U: ";
13777             SE.getUnsignedRange(AtUse).print(OS);
13778             OS << " S: ";
13779             SE.getSignedRange(AtUse).print(OS);
13780           }
13781         }
13782 
13783         if (L) {
13784           OS << "\t\t" "Exits: ";
13785           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13786           if (!SE.isLoopInvariant(ExitValue, L)) {
13787             OS << "<<Unknown>>";
13788           } else {
13789             OS << *ExitValue;
13790           }
13791 
13792           bool First = true;
13793           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13794             if (First) {
13795               OS << "\t\t" "LoopDispositions: { ";
13796               First = false;
13797             } else {
13798               OS << ", ";
13799             }
13800 
13801             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13802             OS << ": " << SE.getLoopDisposition(SV, Iter);
13803           }
13804 
13805           for (const auto *InnerL : depth_first(L)) {
13806             if (InnerL == L)
13807               continue;
13808             if (First) {
13809               OS << "\t\t" "LoopDispositions: { ";
13810               First = false;
13811             } else {
13812               OS << ", ";
13813             }
13814 
13815             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13816             OS << ": " << SE.getLoopDisposition(SV, InnerL);
13817           }
13818 
13819           OS << " }";
13820         }
13821 
13822         OS << "\n";
13823       }
13824   }
13825 
13826   OS << "Determining loop execution counts for: ";
13827   F.printAsOperand(OS, /*PrintType=*/false);
13828   OS << "\n";
13829   for (Loop *I : LI)
13830     PrintLoopInfo(OS, &SE, I);
13831 }
13832 
13833 ScalarEvolution::LoopDisposition
13834 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13835   auto &Values = LoopDispositions[S];
13836   for (auto &V : Values) {
13837     if (V.getPointer() == L)
13838       return V.getInt();
13839   }
13840   Values.emplace_back(L, LoopVariant);
13841   LoopDisposition D = computeLoopDisposition(S, L);
13842   auto &Values2 = LoopDispositions[S];
13843   for (auto &V : llvm::reverse(Values2)) {
13844     if (V.getPointer() == L) {
13845       V.setInt(D);
13846       break;
13847     }
13848   }
13849   return D;
13850 }
13851 
13852 ScalarEvolution::LoopDisposition
13853 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13854   switch (S->getSCEVType()) {
13855   case scConstant:
13856   case scVScale:
13857     return LoopInvariant;
13858   case scAddRecExpr: {
13859     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13860 
13861     // If L is the addrec's loop, it's computable.
13862     if (AR->getLoop() == L)
13863       return LoopComputable;
13864 
13865     // Add recurrences are never invariant in the function-body (null loop).
13866     if (!L)
13867       return LoopVariant;
13868 
13869     // Everything that is not defined at loop entry is variant.
13870     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13871       return LoopVariant;
13872     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13873            " dominate the contained loop's header?");
13874 
13875     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13876     if (AR->getLoop()->contains(L))
13877       return LoopInvariant;
13878 
13879     // This recurrence is variant w.r.t. L if any of its operands
13880     // are variant.
13881     for (const auto *Op : AR->operands())
13882       if (!isLoopInvariant(Op, L))
13883         return LoopVariant;
13884 
13885     // Otherwise it's loop-invariant.
13886     return LoopInvariant;
13887   }
13888   case scTruncate:
13889   case scZeroExtend:
13890   case scSignExtend:
13891   case scPtrToInt:
13892   case scAddExpr:
13893   case scMulExpr:
13894   case scUDivExpr:
13895   case scUMaxExpr:
13896   case scSMaxExpr:
13897   case scUMinExpr:
13898   case scSMinExpr:
13899   case scSequentialUMinExpr: {
13900     bool HasVarying = false;
13901     for (const auto *Op : S->operands()) {
13902       LoopDisposition D = getLoopDisposition(Op, L);
13903       if (D == LoopVariant)
13904         return LoopVariant;
13905       if (D == LoopComputable)
13906         HasVarying = true;
13907     }
13908     return HasVarying ? LoopComputable : LoopInvariant;
13909   }
13910   case scUnknown:
13911     // All non-instruction values are loop invariant.  All instructions are loop
13912     // invariant if they are not contained in the specified loop.
13913     // Instructions are never considered invariant in the function body
13914     // (null loop) because they are defined within the "loop".
13915     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13916       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13917     return LoopInvariant;
13918   case scCouldNotCompute:
13919     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13920   }
13921   llvm_unreachable("Unknown SCEV kind!");
13922 }
13923 
13924 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13925   return getLoopDisposition(S, L) == LoopInvariant;
13926 }
13927 
13928 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13929   return getLoopDisposition(S, L) == LoopComputable;
13930 }
13931 
13932 ScalarEvolution::BlockDisposition
13933 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13934   auto &Values = BlockDispositions[S];
13935   for (auto &V : Values) {
13936     if (V.getPointer() == BB)
13937       return V.getInt();
13938   }
13939   Values.emplace_back(BB, DoesNotDominateBlock);
13940   BlockDisposition D = computeBlockDisposition(S, BB);
13941   auto &Values2 = BlockDispositions[S];
13942   for (auto &V : llvm::reverse(Values2)) {
13943     if (V.getPointer() == BB) {
13944       V.setInt(D);
13945       break;
13946     }
13947   }
13948   return D;
13949 }
13950 
13951 ScalarEvolution::BlockDisposition
13952 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13953   switch (S->getSCEVType()) {
13954   case scConstant:
13955   case scVScale:
13956     return ProperlyDominatesBlock;
13957   case scAddRecExpr: {
13958     // This uses a "dominates" query instead of "properly dominates" query
13959     // to test for proper dominance too, because the instruction which
13960     // produces the addrec's value is a PHI, and a PHI effectively properly
13961     // dominates its entire containing block.
13962     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13963     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13964       return DoesNotDominateBlock;
13965 
13966     // Fall through into SCEVNAryExpr handling.
13967     [[fallthrough]];
13968   }
13969   case scTruncate:
13970   case scZeroExtend:
13971   case scSignExtend:
13972   case scPtrToInt:
13973   case scAddExpr:
13974   case scMulExpr:
13975   case scUDivExpr:
13976   case scUMaxExpr:
13977   case scSMaxExpr:
13978   case scUMinExpr:
13979   case scSMinExpr:
13980   case scSequentialUMinExpr: {
13981     bool Proper = true;
13982     for (const SCEV *NAryOp : S->operands()) {
13983       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13984       if (D == DoesNotDominateBlock)
13985         return DoesNotDominateBlock;
13986       if (D == DominatesBlock)
13987         Proper = false;
13988     }
13989     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13990   }
13991   case scUnknown:
13992     if (Instruction *I =
13993           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13994       if (I->getParent() == BB)
13995         return DominatesBlock;
13996       if (DT.properlyDominates(I->getParent(), BB))
13997         return ProperlyDominatesBlock;
13998       return DoesNotDominateBlock;
13999     }
14000     return ProperlyDominatesBlock;
14001   case scCouldNotCompute:
14002     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14003   }
14004   llvm_unreachable("Unknown SCEV kind!");
14005 }
14006 
14007 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
14008   return getBlockDisposition(S, BB) >= DominatesBlock;
14009 }
14010 
14011 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
14012   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
14013 }
14014 
14015 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
14016   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
14017 }
14018 
14019 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
14020                                                 bool Predicated) {
14021   auto &BECounts =
14022       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14023   auto It = BECounts.find(L);
14024   if (It != BECounts.end()) {
14025     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
14026       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14027         if (!isa<SCEVConstant>(S)) {
14028           auto UserIt = BECountUsers.find(S);
14029           assert(UserIt != BECountUsers.end());
14030           UserIt->second.erase({L, Predicated});
14031         }
14032       }
14033     }
14034     BECounts.erase(It);
14035   }
14036 }
14037 
14038 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
14039   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
14040   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
14041 
14042   while (!Worklist.empty()) {
14043     const SCEV *Curr = Worklist.pop_back_val();
14044     auto Users = SCEVUsers.find(Curr);
14045     if (Users != SCEVUsers.end())
14046       for (const auto *User : Users->second)
14047         if (ToForget.insert(User).second)
14048           Worklist.push_back(User);
14049   }
14050 
14051   for (const auto *S : ToForget)
14052     forgetMemoizedResultsImpl(S);
14053 
14054   for (auto I = PredicatedSCEVRewrites.begin();
14055        I != PredicatedSCEVRewrites.end();) {
14056     std::pair<const SCEV *, const Loop *> Entry = I->first;
14057     if (ToForget.count(Entry.first))
14058       PredicatedSCEVRewrites.erase(I++);
14059     else
14060       ++I;
14061   }
14062 }
14063 
14064 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
14065   LoopDispositions.erase(S);
14066   BlockDispositions.erase(S);
14067   UnsignedRanges.erase(S);
14068   SignedRanges.erase(S);
14069   HasRecMap.erase(S);
14070   ConstantMultipleCache.erase(S);
14071 
14072   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
14073     UnsignedWrapViaInductionTried.erase(AR);
14074     SignedWrapViaInductionTried.erase(AR);
14075   }
14076 
14077   auto ExprIt = ExprValueMap.find(S);
14078   if (ExprIt != ExprValueMap.end()) {
14079     for (Value *V : ExprIt->second) {
14080       auto ValueIt = ValueExprMap.find_as(V);
14081       if (ValueIt != ValueExprMap.end())
14082         ValueExprMap.erase(ValueIt);
14083     }
14084     ExprValueMap.erase(ExprIt);
14085   }
14086 
14087   auto ScopeIt = ValuesAtScopes.find(S);
14088   if (ScopeIt != ValuesAtScopes.end()) {
14089     for (const auto &Pair : ScopeIt->second)
14090       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
14091         llvm::erase(ValuesAtScopesUsers[Pair.second],
14092                     std::make_pair(Pair.first, S));
14093     ValuesAtScopes.erase(ScopeIt);
14094   }
14095 
14096   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
14097   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
14098     for (const auto &Pair : ScopeUserIt->second)
14099       llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
14100     ValuesAtScopesUsers.erase(ScopeUserIt);
14101   }
14102 
14103   auto BEUsersIt = BECountUsers.find(S);
14104   if (BEUsersIt != BECountUsers.end()) {
14105     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
14106     auto Copy = BEUsersIt->second;
14107     for (const auto &Pair : Copy)
14108       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
14109     BECountUsers.erase(BEUsersIt);
14110   }
14111 
14112   auto FoldUser = FoldCacheUser.find(S);
14113   if (FoldUser != FoldCacheUser.end())
14114     for (auto &KV : FoldUser->second)
14115       FoldCache.erase(KV);
14116   FoldCacheUser.erase(S);
14117 }
14118 
14119 void
14120 ScalarEvolution::getUsedLoops(const SCEV *S,
14121                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
14122   struct FindUsedLoops {
14123     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
14124         : LoopsUsed(LoopsUsed) {}
14125     SmallPtrSetImpl<const Loop *> &LoopsUsed;
14126     bool follow(const SCEV *S) {
14127       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
14128         LoopsUsed.insert(AR->getLoop());
14129       return true;
14130     }
14131 
14132     bool isDone() const { return false; }
14133   };
14134 
14135   FindUsedLoops F(LoopsUsed);
14136   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
14137 }
14138 
14139 void ScalarEvolution::getReachableBlocks(
14140     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
14141   SmallVector<BasicBlock *> Worklist;
14142   Worklist.push_back(&F.getEntryBlock());
14143   while (!Worklist.empty()) {
14144     BasicBlock *BB = Worklist.pop_back_val();
14145     if (!Reachable.insert(BB).second)
14146       continue;
14147 
14148     Value *Cond;
14149     BasicBlock *TrueBB, *FalseBB;
14150     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
14151                                         m_BasicBlock(FalseBB)))) {
14152       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
14153         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
14154         continue;
14155       }
14156 
14157       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14158         const SCEV *L = getSCEV(Cmp->getOperand(0));
14159         const SCEV *R = getSCEV(Cmp->getOperand(1));
14160         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
14161           Worklist.push_back(TrueBB);
14162           continue;
14163         }
14164         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
14165                                               R)) {
14166           Worklist.push_back(FalseBB);
14167           continue;
14168         }
14169       }
14170     }
14171 
14172     append_range(Worklist, successors(BB));
14173   }
14174 }
14175 
14176 void ScalarEvolution::verify() const {
14177   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14178   ScalarEvolution SE2(F, TLI, AC, DT, LI);
14179 
14180   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14181 
14182   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14183   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14184     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14185 
14186     const SCEV *visitConstant(const SCEVConstant *Constant) {
14187       return SE.getConstant(Constant->getAPInt());
14188     }
14189 
14190     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14191       return SE.getUnknown(Expr->getValue());
14192     }
14193 
14194     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14195       return SE.getCouldNotCompute();
14196     }
14197   };
14198 
14199   SCEVMapper SCM(SE2);
14200   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14201   SE2.getReachableBlocks(ReachableBlocks, F);
14202 
14203   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14204     if (containsUndefs(Old) || containsUndefs(New)) {
14205       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14206       // not propagate undef aggressively).  This means we can (and do) fail
14207       // verification in cases where a transform makes a value go from "undef"
14208       // to "undef+1" (say).  The transform is fine, since in both cases the
14209       // result is "undef", but SCEV thinks the value increased by 1.
14210       return nullptr;
14211     }
14212 
14213     // Unless VerifySCEVStrict is set, we only compare constant deltas.
14214     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
14215     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
14216       return nullptr;
14217 
14218     return Delta;
14219   };
14220 
14221   while (!LoopStack.empty()) {
14222     auto *L = LoopStack.pop_back_val();
14223     llvm::append_range(LoopStack, *L);
14224 
14225     // Only verify BECounts in reachable loops. For an unreachable loop,
14226     // any BECount is legal.
14227     if (!ReachableBlocks.contains(L->getHeader()))
14228       continue;
14229 
14230     // Only verify cached BECounts. Computing new BECounts may change the
14231     // results of subsequent SCEV uses.
14232     auto It = BackedgeTakenCounts.find(L);
14233     if (It == BackedgeTakenCounts.end())
14234       continue;
14235 
14236     auto *CurBECount =
14237         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14238     auto *NewBECount = SE2.getBackedgeTakenCount(L);
14239 
14240     if (CurBECount == SE2.getCouldNotCompute() ||
14241         NewBECount == SE2.getCouldNotCompute()) {
14242       // NB! This situation is legal, but is very suspicious -- whatever pass
14243       // change the loop to make a trip count go from could not compute to
14244       // computable or vice-versa *should have* invalidated SCEV.  However, we
14245       // choose not to assert here (for now) since we don't want false
14246       // positives.
14247       continue;
14248     }
14249 
14250     if (SE.getTypeSizeInBits(CurBECount->getType()) >
14251         SE.getTypeSizeInBits(NewBECount->getType()))
14252       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14253     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14254              SE.getTypeSizeInBits(NewBECount->getType()))
14255       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14256 
14257     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14258     if (Delta && !Delta->isZero()) {
14259       dbgs() << "Trip Count for " << *L << " Changed!\n";
14260       dbgs() << "Old: " << *CurBECount << "\n";
14261       dbgs() << "New: " << *NewBECount << "\n";
14262       dbgs() << "Delta: " << *Delta << "\n";
14263       std::abort();
14264     }
14265   }
14266 
14267   // Collect all valid loops currently in LoopInfo.
14268   SmallPtrSet<Loop *, 32> ValidLoops;
14269   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14270   while (!Worklist.empty()) {
14271     Loop *L = Worklist.pop_back_val();
14272     if (ValidLoops.insert(L).second)
14273       Worklist.append(L->begin(), L->end());
14274   }
14275   for (const auto &KV : ValueExprMap) {
14276 #ifndef NDEBUG
14277     // Check for SCEV expressions referencing invalid/deleted loops.
14278     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14279       assert(ValidLoops.contains(AR->getLoop()) &&
14280              "AddRec references invalid loop");
14281     }
14282 #endif
14283 
14284     // Check that the value is also part of the reverse map.
14285     auto It = ExprValueMap.find(KV.second);
14286     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14287       dbgs() << "Value " << *KV.first
14288              << " is in ValueExprMap but not in ExprValueMap\n";
14289       std::abort();
14290     }
14291 
14292     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14293       if (!ReachableBlocks.contains(I->getParent()))
14294         continue;
14295       const SCEV *OldSCEV = SCM.visit(KV.second);
14296       const SCEV *NewSCEV = SE2.getSCEV(I);
14297       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14298       if (Delta && !Delta->isZero()) {
14299         dbgs() << "SCEV for value " << *I << " changed!\n"
14300                << "Old: " << *OldSCEV << "\n"
14301                << "New: " << *NewSCEV << "\n"
14302                << "Delta: " << *Delta << "\n";
14303         std::abort();
14304       }
14305     }
14306   }
14307 
14308   for (const auto &KV : ExprValueMap) {
14309     for (Value *V : KV.second) {
14310       auto It = ValueExprMap.find_as(V);
14311       if (It == ValueExprMap.end()) {
14312         dbgs() << "Value " << *V
14313                << " is in ExprValueMap but not in ValueExprMap\n";
14314         std::abort();
14315       }
14316       if (It->second != KV.first) {
14317         dbgs() << "Value " << *V << " mapped to " << *It->second
14318                << " rather than " << *KV.first << "\n";
14319         std::abort();
14320       }
14321     }
14322   }
14323 
14324   // Verify integrity of SCEV users.
14325   for (const auto &S : UniqueSCEVs) {
14326     for (const auto *Op : S.operands()) {
14327       // We do not store dependencies of constants.
14328       if (isa<SCEVConstant>(Op))
14329         continue;
14330       auto It = SCEVUsers.find(Op);
14331       if (It != SCEVUsers.end() && It->second.count(&S))
14332         continue;
14333       dbgs() << "Use of operand  " << *Op << " by user " << S
14334              << " is not being tracked!\n";
14335       std::abort();
14336     }
14337   }
14338 
14339   // Verify integrity of ValuesAtScopes users.
14340   for (const auto &ValueAndVec : ValuesAtScopes) {
14341     const SCEV *Value = ValueAndVec.first;
14342     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14343       const Loop *L = LoopAndValueAtScope.first;
14344       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14345       if (!isa<SCEVConstant>(ValueAtScope)) {
14346         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14347         if (It != ValuesAtScopesUsers.end() &&
14348             is_contained(It->second, std::make_pair(L, Value)))
14349           continue;
14350         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14351                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14352         std::abort();
14353       }
14354     }
14355   }
14356 
14357   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14358     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14359     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14360       const Loop *L = LoopAndValue.first;
14361       const SCEV *Value = LoopAndValue.second;
14362       assert(!isa<SCEVConstant>(Value));
14363       auto It = ValuesAtScopes.find(Value);
14364       if (It != ValuesAtScopes.end() &&
14365           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14366         continue;
14367       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14368              << *ValueAtScope << " missing in ValuesAtScopes\n";
14369       std::abort();
14370     }
14371   }
14372 
14373   // Verify integrity of BECountUsers.
14374   auto VerifyBECountUsers = [&](bool Predicated) {
14375     auto &BECounts =
14376         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14377     for (const auto &LoopAndBEInfo : BECounts) {
14378       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14379         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14380           if (!isa<SCEVConstant>(S)) {
14381             auto UserIt = BECountUsers.find(S);
14382             if (UserIt != BECountUsers.end() &&
14383                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14384               continue;
14385             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14386                    << " missing from BECountUsers\n";
14387             std::abort();
14388           }
14389         }
14390       }
14391     }
14392   };
14393   VerifyBECountUsers(/* Predicated */ false);
14394   VerifyBECountUsers(/* Predicated */ true);
14395 
14396   // Verify intergity of loop disposition cache.
14397   for (auto &[S, Values] : LoopDispositions) {
14398     for (auto [Loop, CachedDisposition] : Values) {
14399       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14400       if (CachedDisposition != RecomputedDisposition) {
14401         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14402                << " is incorrect: cached " << CachedDisposition << ", actual "
14403                << RecomputedDisposition << "\n";
14404         std::abort();
14405       }
14406     }
14407   }
14408 
14409   // Verify integrity of the block disposition cache.
14410   for (auto &[S, Values] : BlockDispositions) {
14411     for (auto [BB, CachedDisposition] : Values) {
14412       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14413       if (CachedDisposition != RecomputedDisposition) {
14414         dbgs() << "Cached disposition of " << *S << " for block %"
14415                << BB->getName() << " is incorrect: cached " << CachedDisposition
14416                << ", actual " << RecomputedDisposition << "\n";
14417         std::abort();
14418       }
14419     }
14420   }
14421 
14422   // Verify FoldCache/FoldCacheUser caches.
14423   for (auto [FoldID, Expr] : FoldCache) {
14424     auto I = FoldCacheUser.find(Expr);
14425     if (I == FoldCacheUser.end()) {
14426       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14427              << "!\n";
14428       std::abort();
14429     }
14430     if (!is_contained(I->second, FoldID)) {
14431       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14432       std::abort();
14433     }
14434   }
14435   for (auto [Expr, IDs] : FoldCacheUser) {
14436     for (auto &FoldID : IDs) {
14437       auto I = FoldCache.find(FoldID);
14438       if (I == FoldCache.end()) {
14439         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14440                << "!\n";
14441         std::abort();
14442       }
14443       if (I->second != Expr) {
14444         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14445                << *I->second << " != " << *Expr << "!\n";
14446         std::abort();
14447       }
14448     }
14449   }
14450 
14451   // Verify that ConstantMultipleCache computations are correct. We check that
14452   // cached multiples and recomputed multiples are multiples of each other to
14453   // verify correctness. It is possible that a recomputed multiple is different
14454   // from the cached multiple due to strengthened no wrap flags or changes in
14455   // KnownBits computations.
14456   for (auto [S, Multiple] : ConstantMultipleCache) {
14457     APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14458     if ((Multiple != 0 && RecomputedMultiple != 0 &&
14459          Multiple.urem(RecomputedMultiple) != 0 &&
14460          RecomputedMultiple.urem(Multiple) != 0)) {
14461       dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14462              << *S << " : Computed " << RecomputedMultiple
14463              << " but cache contains " << Multiple << "!\n";
14464       std::abort();
14465     }
14466   }
14467 }
14468 
14469 bool ScalarEvolution::invalidate(
14470     Function &F, const PreservedAnalyses &PA,
14471     FunctionAnalysisManager::Invalidator &Inv) {
14472   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14473   // of its dependencies is invalidated.
14474   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14475   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14476          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14477          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14478          Inv.invalidate<LoopAnalysis>(F, PA);
14479 }
14480 
14481 AnalysisKey ScalarEvolutionAnalysis::Key;
14482 
14483 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14484                                              FunctionAnalysisManager &AM) {
14485   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14486   auto &AC = AM.getResult<AssumptionAnalysis>(F);
14487   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14488   auto &LI = AM.getResult<LoopAnalysis>(F);
14489   return ScalarEvolution(F, TLI, AC, DT, LI);
14490 }
14491 
14492 PreservedAnalyses
14493 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14494   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14495   return PreservedAnalyses::all();
14496 }
14497 
14498 PreservedAnalyses
14499 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14500   // For compatibility with opt's -analyze feature under legacy pass manager
14501   // which was not ported to NPM. This keeps tests using
14502   // update_analyze_test_checks.py working.
14503   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14504      << F.getName() << "':\n";
14505   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14506   return PreservedAnalyses::all();
14507 }
14508 
14509 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14510                       "Scalar Evolution Analysis", false, true)
14511 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14512 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14513 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14514 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14515 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14516                     "Scalar Evolution Analysis", false, true)
14517 
14518 char ScalarEvolutionWrapperPass::ID = 0;
14519 
14520 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14521   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14522 }
14523 
14524 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14525   SE.reset(new ScalarEvolution(
14526       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14527       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14528       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14529       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14530   return false;
14531 }
14532 
14533 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14534 
14535 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14536   SE->print(OS);
14537 }
14538 
14539 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14540   if (!VerifySCEV)
14541     return;
14542 
14543   SE->verify();
14544 }
14545 
14546 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14547   AU.setPreservesAll();
14548   AU.addRequiredTransitive<AssumptionCacheTracker>();
14549   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14550   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14551   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14552 }
14553 
14554 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14555                                                         const SCEV *RHS) {
14556   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14557 }
14558 
14559 const SCEVPredicate *
14560 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14561                                      const SCEV *LHS, const SCEV *RHS) {
14562   FoldingSetNodeID ID;
14563   assert(LHS->getType() == RHS->getType() &&
14564          "Type mismatch between LHS and RHS");
14565   // Unique this node based on the arguments
14566   ID.AddInteger(SCEVPredicate::P_Compare);
14567   ID.AddInteger(Pred);
14568   ID.AddPointer(LHS);
14569   ID.AddPointer(RHS);
14570   void *IP = nullptr;
14571   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14572     return S;
14573   SCEVComparePredicate *Eq = new (SCEVAllocator)
14574     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14575   UniquePreds.InsertNode(Eq, IP);
14576   return Eq;
14577 }
14578 
14579 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14580     const SCEVAddRecExpr *AR,
14581     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14582   FoldingSetNodeID ID;
14583   // Unique this node based on the arguments
14584   ID.AddInteger(SCEVPredicate::P_Wrap);
14585   ID.AddPointer(AR);
14586   ID.AddInteger(AddedFlags);
14587   void *IP = nullptr;
14588   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14589     return S;
14590   auto *OF = new (SCEVAllocator)
14591       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14592   UniquePreds.InsertNode(OF, IP);
14593   return OF;
14594 }
14595 
14596 namespace {
14597 
14598 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14599 public:
14600 
14601   /// Rewrites \p S in the context of a loop L and the SCEV predication
14602   /// infrastructure.
14603   ///
14604   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14605   /// equivalences present in \p Pred.
14606   ///
14607   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14608   /// \p NewPreds such that the result will be an AddRecExpr.
14609   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14610                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14611                              const SCEVPredicate *Pred) {
14612     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14613     return Rewriter.visit(S);
14614   }
14615 
14616   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14617     if (Pred) {
14618       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14619         for (const auto *Pred : U->getPredicates())
14620           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14621             if (IPred->getLHS() == Expr &&
14622                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14623               return IPred->getRHS();
14624       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14625         if (IPred->getLHS() == Expr &&
14626             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14627           return IPred->getRHS();
14628       }
14629     }
14630     return convertToAddRecWithPreds(Expr);
14631   }
14632 
14633   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14634     const SCEV *Operand = visit(Expr->getOperand());
14635     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14636     if (AR && AR->getLoop() == L && AR->isAffine()) {
14637       // This couldn't be folded because the operand didn't have the nuw
14638       // flag. Add the nusw flag as an assumption that we could make.
14639       const SCEV *Step = AR->getStepRecurrence(SE);
14640       Type *Ty = Expr->getType();
14641       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14642         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14643                                 SE.getSignExtendExpr(Step, Ty), L,
14644                                 AR->getNoWrapFlags());
14645     }
14646     return SE.getZeroExtendExpr(Operand, Expr->getType());
14647   }
14648 
14649   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14650     const SCEV *Operand = visit(Expr->getOperand());
14651     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14652     if (AR && AR->getLoop() == L && AR->isAffine()) {
14653       // This couldn't be folded because the operand didn't have the nsw
14654       // flag. Add the nssw flag as an assumption that we could make.
14655       const SCEV *Step = AR->getStepRecurrence(SE);
14656       Type *Ty = Expr->getType();
14657       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14658         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14659                                 SE.getSignExtendExpr(Step, Ty), L,
14660                                 AR->getNoWrapFlags());
14661     }
14662     return SE.getSignExtendExpr(Operand, Expr->getType());
14663   }
14664 
14665 private:
14666   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14667                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14668                         const SCEVPredicate *Pred)
14669       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14670 
14671   bool addOverflowAssumption(const SCEVPredicate *P) {
14672     if (!NewPreds) {
14673       // Check if we've already made this assumption.
14674       return Pred && Pred->implies(P);
14675     }
14676     NewPreds->insert(P);
14677     return true;
14678   }
14679 
14680   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14681                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14682     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14683     return addOverflowAssumption(A);
14684   }
14685 
14686   // If \p Expr represents a PHINode, we try to see if it can be represented
14687   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14688   // to add this predicate as a runtime overflow check, we return the AddRec.
14689   // If \p Expr does not meet these conditions (is not a PHI node, or we
14690   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14691   // return \p Expr.
14692   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14693     if (!isa<PHINode>(Expr->getValue()))
14694       return Expr;
14695     std::optional<
14696         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14697         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14698     if (!PredicatedRewrite)
14699       return Expr;
14700     for (const auto *P : PredicatedRewrite->second){
14701       // Wrap predicates from outer loops are not supported.
14702       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14703         if (L != WP->getExpr()->getLoop())
14704           return Expr;
14705       }
14706       if (!addOverflowAssumption(P))
14707         return Expr;
14708     }
14709     return PredicatedRewrite->first;
14710   }
14711 
14712   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14713   const SCEVPredicate *Pred;
14714   const Loop *L;
14715 };
14716 
14717 } // end anonymous namespace
14718 
14719 const SCEV *
14720 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14721                                        const SCEVPredicate &Preds) {
14722   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14723 }
14724 
14725 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14726     const SCEV *S, const Loop *L,
14727     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14728   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14729   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14730   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14731 
14732   if (!AddRec)
14733     return nullptr;
14734 
14735   // Since the transformation was successful, we can now transfer the SCEV
14736   // predicates.
14737   for (const auto *P : TransformPreds)
14738     Preds.insert(P);
14739 
14740   return AddRec;
14741 }
14742 
14743 /// SCEV predicates
14744 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14745                              SCEVPredicateKind Kind)
14746     : FastID(ID), Kind(Kind) {}
14747 
14748 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14749                                    const ICmpInst::Predicate Pred,
14750                                    const SCEV *LHS, const SCEV *RHS)
14751   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14752   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14753   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14754 }
14755 
14756 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14757   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14758 
14759   if (!Op)
14760     return false;
14761 
14762   if (Pred != ICmpInst::ICMP_EQ)
14763     return false;
14764 
14765   return Op->LHS == LHS && Op->RHS == RHS;
14766 }
14767 
14768 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14769 
14770 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14771   if (Pred == ICmpInst::ICMP_EQ)
14772     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14773   else
14774     OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14775                      << *RHS << "\n";
14776 
14777 }
14778 
14779 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14780                                      const SCEVAddRecExpr *AR,
14781                                      IncrementWrapFlags Flags)
14782     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14783 
14784 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14785 
14786 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14787   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14788 
14789   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14790 }
14791 
14792 bool SCEVWrapPredicate::isAlwaysTrue() const {
14793   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14794   IncrementWrapFlags IFlags = Flags;
14795 
14796   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14797     IFlags = clearFlags(IFlags, IncrementNSSW);
14798 
14799   return IFlags == IncrementAnyWrap;
14800 }
14801 
14802 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14803   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14804   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14805     OS << "<nusw>";
14806   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14807     OS << "<nssw>";
14808   OS << "\n";
14809 }
14810 
14811 SCEVWrapPredicate::IncrementWrapFlags
14812 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14813                                    ScalarEvolution &SE) {
14814   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14815   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14816 
14817   // We can safely transfer the NSW flag as NSSW.
14818   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14819     ImpliedFlags = IncrementNSSW;
14820 
14821   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14822     // If the increment is positive, the SCEV NUW flag will also imply the
14823     // WrapPredicate NUSW flag.
14824     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14825       if (Step->getValue()->getValue().isNonNegative())
14826         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14827   }
14828 
14829   return ImpliedFlags;
14830 }
14831 
14832 /// Union predicates don't get cached so create a dummy set ID for it.
14833 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14834   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14835   for (const auto *P : Preds)
14836     add(P);
14837 }
14838 
14839 bool SCEVUnionPredicate::isAlwaysTrue() const {
14840   return all_of(Preds,
14841                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14842 }
14843 
14844 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14845   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14846     return all_of(Set->Preds,
14847                   [this](const SCEVPredicate *I) { return this->implies(I); });
14848 
14849   return any_of(Preds,
14850                 [N](const SCEVPredicate *I) { return I->implies(N); });
14851 }
14852 
14853 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14854   for (const auto *Pred : Preds)
14855     Pred->print(OS, Depth);
14856 }
14857 
14858 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14859   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14860     for (const auto *Pred : Set->Preds)
14861       add(Pred);
14862     return;
14863   }
14864 
14865   // Only add predicate if it is not already implied by this union predicate.
14866   if (!implies(N))
14867     Preds.push_back(N);
14868 }
14869 
14870 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14871                                                      Loop &L)
14872     : SE(SE), L(L) {
14873   SmallVector<const SCEVPredicate*, 4> Empty;
14874   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14875 }
14876 
14877 void ScalarEvolution::registerUser(const SCEV *User,
14878                                    ArrayRef<const SCEV *> Ops) {
14879   for (const auto *Op : Ops)
14880     // We do not expect that forgetting cached data for SCEVConstants will ever
14881     // open any prospects for sharpening or introduce any correctness issues,
14882     // so we don't bother storing their dependencies.
14883     if (!isa<SCEVConstant>(Op))
14884       SCEVUsers[Op].insert(User);
14885 }
14886 
14887 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14888   const SCEV *Expr = SE.getSCEV(V);
14889   RewriteEntry &Entry = RewriteMap[Expr];
14890 
14891   // If we already have an entry and the version matches, return it.
14892   if (Entry.second && Generation == Entry.first)
14893     return Entry.second;
14894 
14895   // We found an entry but it's stale. Rewrite the stale entry
14896   // according to the current predicate.
14897   if (Entry.second)
14898     Expr = Entry.second;
14899 
14900   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14901   Entry = {Generation, NewSCEV};
14902 
14903   return NewSCEV;
14904 }
14905 
14906 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14907   if (!BackedgeCount) {
14908     SmallVector<const SCEVPredicate *, 4> Preds;
14909     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14910     for (const auto *P : Preds)
14911       addPredicate(*P);
14912   }
14913   return BackedgeCount;
14914 }
14915 
14916 const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() {
14917   if (!SymbolicMaxBackedgeCount) {
14918     SmallVector<const SCEVPredicate *, 4> Preds;
14919     SymbolicMaxBackedgeCount =
14920         SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds);
14921     for (const auto *P : Preds)
14922       addPredicate(*P);
14923   }
14924   return SymbolicMaxBackedgeCount;
14925 }
14926 
14927 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14928   if (Preds->implies(&Pred))
14929     return;
14930 
14931   auto &OldPreds = Preds->getPredicates();
14932   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14933   NewPreds.push_back(&Pred);
14934   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14935   updateGeneration();
14936 }
14937 
14938 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14939   return *Preds;
14940 }
14941 
14942 void PredicatedScalarEvolution::updateGeneration() {
14943   // If the generation number wrapped recompute everything.
14944   if (++Generation == 0) {
14945     for (auto &II : RewriteMap) {
14946       const SCEV *Rewritten = II.second.second;
14947       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14948     }
14949   }
14950 }
14951 
14952 void PredicatedScalarEvolution::setNoOverflow(
14953     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14954   const SCEV *Expr = getSCEV(V);
14955   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14956 
14957   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14958 
14959   // Clear the statically implied flags.
14960   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14961   addPredicate(*SE.getWrapPredicate(AR, Flags));
14962 
14963   auto II = FlagsMap.insert({V, Flags});
14964   if (!II.second)
14965     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14966 }
14967 
14968 bool PredicatedScalarEvolution::hasNoOverflow(
14969     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14970   const SCEV *Expr = getSCEV(V);
14971   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14972 
14973   Flags = SCEVWrapPredicate::clearFlags(
14974       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14975 
14976   auto II = FlagsMap.find(V);
14977 
14978   if (II != FlagsMap.end())
14979     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14980 
14981   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14982 }
14983 
14984 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14985   const SCEV *Expr = this->getSCEV(V);
14986   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14987   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14988 
14989   if (!New)
14990     return nullptr;
14991 
14992   for (const auto *P : NewPreds)
14993     addPredicate(*P);
14994 
14995   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14996   return New;
14997 }
14998 
14999 PredicatedScalarEvolution::PredicatedScalarEvolution(
15000     const PredicatedScalarEvolution &Init)
15001   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
15002     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
15003     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
15004   for (auto I : Init.FlagsMap)
15005     FlagsMap.insert(I);
15006 }
15007 
15008 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
15009   // For each block.
15010   for (auto *BB : L.getBlocks())
15011     for (auto &I : *BB) {
15012       if (!SE.isSCEVable(I.getType()))
15013         continue;
15014 
15015       auto *Expr = SE.getSCEV(&I);
15016       auto II = RewriteMap.find(Expr);
15017 
15018       if (II == RewriteMap.end())
15019         continue;
15020 
15021       // Don't print things that are not interesting.
15022       if (II->second.second == Expr)
15023         continue;
15024 
15025       OS.indent(Depth) << "[PSE]" << I << ":\n";
15026       OS.indent(Depth + 2) << *Expr << "\n";
15027       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
15028     }
15029 }
15030 
15031 // Match the mathematical pattern A - (A / B) * B, where A and B can be
15032 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
15033 // for URem with constant power-of-2 second operands.
15034 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
15035 // 4, A / B becomes X / 8).
15036 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
15037                                 const SCEV *&RHS) {
15038   if (Expr->getType()->isPointerTy())
15039     return false;
15040 
15041   // Try to match 'zext (trunc A to iB) to iY', which is used
15042   // for URem with constant power-of-2 second operands. Make sure the size of
15043   // the operand A matches the size of the whole expressions.
15044   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
15045     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
15046       LHS = Trunc->getOperand();
15047       // Bail out if the type of the LHS is larger than the type of the
15048       // expression for now.
15049       if (getTypeSizeInBits(LHS->getType()) >
15050           getTypeSizeInBits(Expr->getType()))
15051         return false;
15052       if (LHS->getType() != Expr->getType())
15053         LHS = getZeroExtendExpr(LHS, Expr->getType());
15054       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
15055                         << getTypeSizeInBits(Trunc->getType()));
15056       return true;
15057     }
15058   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
15059   if (Add == nullptr || Add->getNumOperands() != 2)
15060     return false;
15061 
15062   const SCEV *A = Add->getOperand(1);
15063   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
15064 
15065   if (Mul == nullptr)
15066     return false;
15067 
15068   const auto MatchURemWithDivisor = [&](const SCEV *B) {
15069     // (SomeExpr + (-(SomeExpr / B) * B)).
15070     if (Expr == getURemExpr(A, B)) {
15071       LHS = A;
15072       RHS = B;
15073       return true;
15074     }
15075     return false;
15076   };
15077 
15078   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
15079   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
15080     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15081            MatchURemWithDivisor(Mul->getOperand(2));
15082 
15083   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
15084   if (Mul->getNumOperands() == 2)
15085     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15086            MatchURemWithDivisor(Mul->getOperand(0)) ||
15087            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
15088            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
15089   return false;
15090 }
15091 
15092 ScalarEvolution::LoopGuards
15093 ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) {
15094   LoopGuards Guards(SE);
15095   SmallVector<const SCEV *> ExprsToRewrite;
15096   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
15097                               const SCEV *RHS,
15098                               DenseMap<const SCEV *, const SCEV *>
15099                                   &RewriteMap) {
15100     // WARNING: It is generally unsound to apply any wrap flags to the proposed
15101     // replacement SCEV which isn't directly implied by the structure of that
15102     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
15103     // legal.  See the scoping rules for flags in the header to understand why.
15104 
15105     // If LHS is a constant, apply information to the other expression.
15106     if (isa<SCEVConstant>(LHS)) {
15107       std::swap(LHS, RHS);
15108       Predicate = CmpInst::getSwappedPredicate(Predicate);
15109     }
15110 
15111     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
15112     // create this form when combining two checks of the form (X u< C2 + C1) and
15113     // (X >=u C1).
15114     auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap,
15115                                  &ExprsToRewrite]() {
15116       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
15117       if (!AddExpr || AddExpr->getNumOperands() != 2)
15118         return false;
15119 
15120       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
15121       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
15122       auto *C2 = dyn_cast<SCEVConstant>(RHS);
15123       if (!C1 || !C2 || !LHSUnknown)
15124         return false;
15125 
15126       auto ExactRegion =
15127           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
15128               .sub(C1->getAPInt());
15129 
15130       // Bail out, unless we have a non-wrapping, monotonic range.
15131       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15132         return false;
15133       auto I = RewriteMap.find(LHSUnknown);
15134       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15135       RewriteMap[LHSUnknown] = SE.getUMaxExpr(
15136           SE.getConstant(ExactRegion.getUnsignedMin()),
15137           SE.getUMinExpr(RewrittenLHS,
15138                          SE.getConstant(ExactRegion.getUnsignedMax())));
15139       ExprsToRewrite.push_back(LHSUnknown);
15140       return true;
15141     };
15142     if (MatchRangeCheckIdiom())
15143       return;
15144 
15145     // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15146     // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15147     // the non-constant operand and in \p LHS the constant operand.
15148     auto IsMinMaxSCEVWithNonNegativeConstant =
15149         [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15150             const SCEV *&RHS) {
15151           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
15152             if (MinMax->getNumOperands() != 2)
15153               return false;
15154             if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
15155               if (C->getAPInt().isNegative())
15156                 return false;
15157               SCTy = MinMax->getSCEVType();
15158               LHS = MinMax->getOperand(0);
15159               RHS = MinMax->getOperand(1);
15160               return true;
15161             }
15162           }
15163           return false;
15164         };
15165 
15166     // Checks whether Expr is a non-negative constant, and Divisor is a positive
15167     // constant, and returns their APInt in ExprVal and in DivisorVal.
15168     auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15169                                           APInt &ExprVal, APInt &DivisorVal) {
15170       auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
15171       auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15172       if (!ConstExpr || !ConstDivisor)
15173         return false;
15174       ExprVal = ConstExpr->getAPInt();
15175       DivisorVal = ConstDivisor->getAPInt();
15176       return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15177     };
15178 
15179     // Return a new SCEV that modifies \p Expr to the closest number divides by
15180     // \p Divisor and greater or equal than Expr.
15181     // For now, only handle constant Expr and Divisor.
15182     auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15183                                            const SCEV *Divisor) {
15184       APInt ExprVal;
15185       APInt DivisorVal;
15186       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15187         return Expr;
15188       APInt Rem = ExprVal.urem(DivisorVal);
15189       if (!Rem.isZero())
15190         // return the SCEV: Expr + Divisor - Expr % Divisor
15191         return SE.getConstant(ExprVal + DivisorVal - Rem);
15192       return Expr;
15193     };
15194 
15195     // Return a new SCEV that modifies \p Expr to the closest number divides by
15196     // \p Divisor and less or equal than Expr.
15197     // For now, only handle constant Expr and Divisor.
15198     auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15199                                                const SCEV *Divisor) {
15200       APInt ExprVal;
15201       APInt DivisorVal;
15202       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15203         return Expr;
15204       APInt Rem = ExprVal.urem(DivisorVal);
15205       // return the SCEV: Expr - Expr % Divisor
15206       return SE.getConstant(ExprVal - Rem);
15207     };
15208 
15209     // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15210     // recursively. This is done by aligning up/down the constant value to the
15211     // Divisor.
15212     std::function<const SCEV *(const SCEV *, const SCEV *)>
15213         ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15214                                            const SCEV *Divisor) {
15215           const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15216           SCEVTypes SCTy;
15217           if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15218                                                    MinMaxRHS))
15219             return MinMaxExpr;
15220           auto IsMin =
15221               isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15222           assert(SE.isKnownNonNegative(MinMaxLHS) &&
15223                  "Expected non-negative operand!");
15224           auto *DivisibleExpr =
15225               IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15226                     : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15227           SmallVector<const SCEV *> Ops = {
15228               ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15229           return SE.getMinMaxExpr(SCTy, Ops);
15230         };
15231 
15232     // If we have LHS == 0, check if LHS is computing a property of some unknown
15233     // SCEV %v which we can rewrite %v to express explicitly.
15234     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15235     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15236         RHSC->getValue()->isNullValue()) {
15237       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15238       // explicitly express that.
15239       const SCEV *URemLHS = nullptr;
15240       const SCEV *URemRHS = nullptr;
15241       if (SE.matchURem(LHS, URemLHS, URemRHS)) {
15242         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15243           auto I = RewriteMap.find(LHSUnknown);
15244           const SCEV *RewrittenLHS =
15245               I != RewriteMap.end() ? I->second : LHSUnknown;
15246           RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15247           const auto *Multiple =
15248               SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15249           RewriteMap[LHSUnknown] = Multiple;
15250           ExprsToRewrite.push_back(LHSUnknown);
15251           return;
15252         }
15253       }
15254     }
15255 
15256     // Do not apply information for constants or if RHS contains an AddRec.
15257     if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS))
15258       return;
15259 
15260     // If RHS is SCEVUnknown, make sure the information is applied to it.
15261     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15262       std::swap(LHS, RHS);
15263       Predicate = CmpInst::getSwappedPredicate(Predicate);
15264     }
15265 
15266     // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15267     // and \p FromRewritten are the same (i.e. there has been no rewrite
15268     // registered for \p From), then puts this value in the list of rewritten
15269     // expressions.
15270     auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15271                           const SCEV *To) {
15272       if (From == FromRewritten)
15273         ExprsToRewrite.push_back(From);
15274       RewriteMap[From] = To;
15275     };
15276 
15277     // Checks whether \p S has already been rewritten. In that case returns the
15278     // existing rewrite because we want to chain further rewrites onto the
15279     // already rewritten value. Otherwise returns \p S.
15280     auto GetMaybeRewritten = [&](const SCEV *S) {
15281       auto I = RewriteMap.find(S);
15282       return I != RewriteMap.end() ? I->second : S;
15283     };
15284 
15285     // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15286     // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15287     // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15288     // /u B) * B was found, and return the divisor B in \p DividesBy. For
15289     // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15290     // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15291     // DividesBy.
15292     std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15293         [&](const SCEV *Expr, const SCEV *&DividesBy) {
15294           if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15295             if (Mul->getNumOperands() != 2)
15296               return false;
15297             auto *MulLHS = Mul->getOperand(0);
15298             auto *MulRHS = Mul->getOperand(1);
15299             if (isa<SCEVConstant>(MulLHS))
15300               std::swap(MulLHS, MulRHS);
15301             if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15302               if (Div->getOperand(1) == MulRHS) {
15303                 DividesBy = MulRHS;
15304                 return true;
15305               }
15306           }
15307           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15308             return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15309                    HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15310           return false;
15311         };
15312 
15313     // Return true if Expr known to divide by \p DividesBy.
15314     std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15315         [&](const SCEV *Expr, const SCEV *DividesBy) {
15316           if (SE.getURemExpr(Expr, DividesBy)->isZero())
15317             return true;
15318           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15319             return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15320                    IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15321           return false;
15322         };
15323 
15324     const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15325     const SCEV *DividesBy = nullptr;
15326     if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15327       // Check that the whole expression is divided by DividesBy
15328       DividesBy =
15329           IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15330 
15331     // Collect rewrites for LHS and its transitive operands based on the
15332     // condition.
15333     // For min/max expressions, also apply the guard to its operands:
15334     //  'min(a, b) >= c'   ->   '(a >= c) and (b >= c)',
15335     //  'min(a, b) >  c'   ->   '(a >  c) and (b >  c)',
15336     //  'max(a, b) <= c'   ->   '(a <= c) and (b <= c)',
15337     //  'max(a, b) <  c'   ->   '(a <  c) and (b <  c)'.
15338 
15339     // We cannot express strict predicates in SCEV, so instead we replace them
15340     // with non-strict ones against plus or minus one of RHS depending on the
15341     // predicate.
15342     const SCEV *One = SE.getOne(RHS->getType());
15343     switch (Predicate) {
15344       case CmpInst::ICMP_ULT:
15345         if (RHS->getType()->isPointerTy())
15346           return;
15347         RHS = SE.getUMaxExpr(RHS, One);
15348         [[fallthrough]];
15349       case CmpInst::ICMP_SLT: {
15350         RHS = SE.getMinusSCEV(RHS, One);
15351         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15352         break;
15353       }
15354       case CmpInst::ICMP_UGT:
15355       case CmpInst::ICMP_SGT:
15356         RHS = SE.getAddExpr(RHS, One);
15357         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15358         break;
15359       case CmpInst::ICMP_ULE:
15360       case CmpInst::ICMP_SLE:
15361         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15362         break;
15363       case CmpInst::ICMP_UGE:
15364       case CmpInst::ICMP_SGE:
15365         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15366         break;
15367       default:
15368         break;
15369     }
15370 
15371     SmallVector<const SCEV *, 16> Worklist(1, LHS);
15372     SmallPtrSet<const SCEV *, 16> Visited;
15373 
15374     auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15375       append_range(Worklist, S->operands());
15376     };
15377 
15378     while (!Worklist.empty()) {
15379       const SCEV *From = Worklist.pop_back_val();
15380       if (isa<SCEVConstant>(From))
15381         continue;
15382       if (!Visited.insert(From).second)
15383         continue;
15384       const SCEV *FromRewritten = GetMaybeRewritten(From);
15385       const SCEV *To = nullptr;
15386 
15387       switch (Predicate) {
15388       case CmpInst::ICMP_ULT:
15389       case CmpInst::ICMP_ULE:
15390         To = SE.getUMinExpr(FromRewritten, RHS);
15391         if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15392           EnqueueOperands(UMax);
15393         break;
15394       case CmpInst::ICMP_SLT:
15395       case CmpInst::ICMP_SLE:
15396         To = SE.getSMinExpr(FromRewritten, RHS);
15397         if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15398           EnqueueOperands(SMax);
15399         break;
15400       case CmpInst::ICMP_UGT:
15401       case CmpInst::ICMP_UGE:
15402         To = SE.getUMaxExpr(FromRewritten, RHS);
15403         if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15404           EnqueueOperands(UMin);
15405         break;
15406       case CmpInst::ICMP_SGT:
15407       case CmpInst::ICMP_SGE:
15408         To = SE.getSMaxExpr(FromRewritten, RHS);
15409         if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15410           EnqueueOperands(SMin);
15411         break;
15412       case CmpInst::ICMP_EQ:
15413         if (isa<SCEVConstant>(RHS))
15414           To = RHS;
15415         break;
15416       case CmpInst::ICMP_NE:
15417         if (isa<SCEVConstant>(RHS) &&
15418             cast<SCEVConstant>(RHS)->getValue()->isNullValue()) {
15419           const SCEV *OneAlignedUp =
15420               DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15421           To = SE.getUMaxExpr(FromRewritten, OneAlignedUp);
15422         }
15423         break;
15424       default:
15425         break;
15426       }
15427 
15428       if (To)
15429         AddRewrite(From, FromRewritten, To);
15430     }
15431   };
15432 
15433   BasicBlock *Header = L->getHeader();
15434   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15435   // First, collect information from assumptions dominating the loop.
15436   for (auto &AssumeVH : SE.AC.assumptions()) {
15437     if (!AssumeVH)
15438       continue;
15439     auto *AssumeI = cast<CallInst>(AssumeVH);
15440     if (!SE.DT.dominates(AssumeI, Header))
15441       continue;
15442     Terms.emplace_back(AssumeI->getOperand(0), true);
15443   }
15444 
15445   // Second, collect information from llvm.experimental.guards dominating the loop.
15446   auto *GuardDecl = SE.F.getParent()->getFunction(
15447       Intrinsic::getName(Intrinsic::experimental_guard));
15448   if (GuardDecl)
15449     for (const auto *GU : GuardDecl->users())
15450       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15451         if (Guard->getFunction() == Header->getParent() &&
15452             SE.DT.dominates(Guard, Header))
15453           Terms.emplace_back(Guard->getArgOperand(0), true);
15454 
15455   // Third, collect conditions from dominating branches. Starting at the loop
15456   // predecessor, climb up the predecessor chain, as long as there are
15457   // predecessors that can be found that have unique successors leading to the
15458   // original header.
15459   // TODO: share this logic with isLoopEntryGuardedByCond.
15460   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15461            L->getLoopPredecessor(), Header);
15462        Pair.first;
15463        Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15464 
15465     const BranchInst *LoopEntryPredicate =
15466         dyn_cast<BranchInst>(Pair.first->getTerminator());
15467     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15468       continue;
15469 
15470     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15471                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15472   }
15473 
15474   // Now apply the information from the collected conditions to
15475   // Guards.RewriteMap. Conditions are processed in reverse order, so the
15476   // earliest conditions is processed first. This ensures the SCEVs with the
15477   // shortest dependency chains are constructed first.
15478   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15479     SmallVector<Value *, 8> Worklist;
15480     SmallPtrSet<Value *, 8> Visited;
15481     Worklist.push_back(Term);
15482     while (!Worklist.empty()) {
15483       Value *Cond = Worklist.pop_back_val();
15484       if (!Visited.insert(Cond).second)
15485         continue;
15486 
15487       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15488         auto Predicate =
15489             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15490         const auto *LHS = SE.getSCEV(Cmp->getOperand(0));
15491         const auto *RHS = SE.getSCEV(Cmp->getOperand(1));
15492         CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap);
15493         continue;
15494       }
15495 
15496       Value *L, *R;
15497       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15498                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15499         Worklist.push_back(L);
15500         Worklist.push_back(R);
15501       }
15502     }
15503   }
15504 
15505   // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
15506   // the replacement expressions are contained in the ranges of the replaced
15507   // expressions.
15508   Guards.PreserveNUW = true;
15509   Guards.PreserveNSW = true;
15510   for (const SCEV *Expr : ExprsToRewrite) {
15511     const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15512     Guards.PreserveNUW &=
15513         SE.getUnsignedRange(Expr).contains(SE.getUnsignedRange(RewriteTo));
15514     Guards.PreserveNSW &=
15515         SE.getSignedRange(Expr).contains(SE.getSignedRange(RewriteTo));
15516   }
15517 
15518   // Now that all rewrite information is collect, rewrite the collected
15519   // expressions with the information in the map. This applies information to
15520   // sub-expressions.
15521   if (ExprsToRewrite.size() > 1) {
15522     for (const SCEV *Expr : ExprsToRewrite) {
15523       const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15524       Guards.RewriteMap.erase(Expr);
15525       Guards.RewriteMap.insert({Expr, Guards.rewrite(RewriteTo)});
15526     }
15527   }
15528   return Guards;
15529 }
15530 
15531 const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const {
15532   /// A rewriter to replace SCEV expressions in Map with the corresponding entry
15533   /// in the map. It skips AddRecExpr because we cannot guarantee that the
15534   /// replacement is loop invariant in the loop of the AddRec.
15535   class SCEVLoopGuardRewriter
15536       : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
15537     const DenseMap<const SCEV *, const SCEV *> &Map;
15538 
15539     SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap;
15540 
15541   public:
15542     SCEVLoopGuardRewriter(ScalarEvolution &SE,
15543                           const ScalarEvolution::LoopGuards &Guards)
15544         : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) {
15545       if (Guards.PreserveNUW)
15546         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNUW);
15547       if (Guards.PreserveNSW)
15548         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNSW);
15549     }
15550 
15551     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
15552 
15553     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
15554       auto I = Map.find(Expr);
15555       if (I == Map.end())
15556         return Expr;
15557       return I->second;
15558     }
15559 
15560     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
15561       auto I = Map.find(Expr);
15562       if (I == Map.end()) {
15563         // If we didn't find the extact ZExt expr in the map, check if there's
15564         // an entry for a smaller ZExt we can use instead.
15565         Type *Ty = Expr->getType();
15566         const SCEV *Op = Expr->getOperand(0);
15567         unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
15568         while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
15569                Bitwidth > Op->getType()->getScalarSizeInBits()) {
15570           Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
15571           auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
15572           auto I = Map.find(NarrowExt);
15573           if (I != Map.end())
15574             return SE.getZeroExtendExpr(I->second, Ty);
15575           Bitwidth = Bitwidth / 2;
15576         }
15577 
15578         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
15579             Expr);
15580       }
15581       return I->second;
15582     }
15583 
15584     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
15585       auto I = Map.find(Expr);
15586       if (I == Map.end())
15587         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
15588             Expr);
15589       return I->second;
15590     }
15591 
15592     const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
15593       auto I = Map.find(Expr);
15594       if (I == Map.end())
15595         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
15596       return I->second;
15597     }
15598 
15599     const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
15600       auto I = Map.find(Expr);
15601       if (I == Map.end())
15602         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
15603       return I->second;
15604     }
15605 
15606     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
15607       SmallVector<const SCEV *, 2> Operands;
15608       bool Changed = false;
15609       for (const auto *Op : Expr->operands()) {
15610         Operands.push_back(
15611             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15612         Changed |= Op != Operands.back();
15613       }
15614       // We are only replacing operands with equivalent values, so transfer the
15615       // flags from the original expression.
15616       return !Changed ? Expr
15617                       : SE.getAddExpr(Operands,
15618                                       ScalarEvolution::maskFlags(
15619                                           Expr->getNoWrapFlags(), FlagMask));
15620     }
15621 
15622     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
15623       SmallVector<const SCEV *, 2> Operands;
15624       bool Changed = false;
15625       for (const auto *Op : Expr->operands()) {
15626         Operands.push_back(
15627             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15628         Changed |= Op != Operands.back();
15629       }
15630       // We are only replacing operands with equivalent values, so transfer the
15631       // flags from the original expression.
15632       return !Changed ? Expr
15633                       : SE.getMulExpr(Operands,
15634                                       ScalarEvolution::maskFlags(
15635                                           Expr->getNoWrapFlags(), FlagMask));
15636     }
15637   };
15638 
15639   if (RewriteMap.empty())
15640     return Expr;
15641 
15642   SCEVLoopGuardRewriter Rewriter(SE, *this);
15643   return Rewriter.visit(Expr);
15644 }
15645 
15646 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
15647   return applyLoopGuards(Expr, LoopGuards::collect(L, *this));
15648 }
15649 
15650 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr,
15651                                              const LoopGuards &Guards) {
15652   return Guards.rewrite(Expr);
15653 }
15654