1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/ScopeExit.h" 69 #include "llvm/ADT/Sequence.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/Analysis/AssumptionCache.h" 77 #include "llvm/Analysis/ConstantFolding.h" 78 #include "llvm/Analysis/InstructionSimplify.h" 79 #include "llvm/Analysis/LoopInfo.h" 80 #include "llvm/Analysis/MemoryBuiltins.h" 81 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 82 #include "llvm/Analysis/TargetLibraryInfo.h" 83 #include "llvm/Analysis/ValueTracking.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/Argument.h" 86 #include "llvm/IR/BasicBlock.h" 87 #include "llvm/IR/CFG.h" 88 #include "llvm/IR/Constant.h" 89 #include "llvm/IR/ConstantRange.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DerivedTypes.h" 93 #include "llvm/IR/Dominators.h" 94 #include "llvm/IR/Function.h" 95 #include "llvm/IR/GlobalAlias.h" 96 #include "llvm/IR/GlobalValue.h" 97 #include "llvm/IR/InstIterator.h" 98 #include "llvm/IR/InstrTypes.h" 99 #include "llvm/IR/Instruction.h" 100 #include "llvm/IR/Instructions.h" 101 #include "llvm/IR/IntrinsicInst.h" 102 #include "llvm/IR/Intrinsics.h" 103 #include "llvm/IR/LLVMContext.h" 104 #include "llvm/IR/Operator.h" 105 #include "llvm/IR/PatternMatch.h" 106 #include "llvm/IR/Type.h" 107 #include "llvm/IR/Use.h" 108 #include "llvm/IR/User.h" 109 #include "llvm/IR/Value.h" 110 #include "llvm/IR/Verifier.h" 111 #include "llvm/InitializePasses.h" 112 #include "llvm/Pass.h" 113 #include "llvm/Support/Casting.h" 114 #include "llvm/Support/CommandLine.h" 115 #include "llvm/Support/Compiler.h" 116 #include "llvm/Support/Debug.h" 117 #include "llvm/Support/ErrorHandling.h" 118 #include "llvm/Support/KnownBits.h" 119 #include "llvm/Support/SaveAndRestore.h" 120 #include "llvm/Support/raw_ostream.h" 121 #include <algorithm> 122 #include <cassert> 123 #include <climits> 124 #include <cstdint> 125 #include <cstdlib> 126 #include <map> 127 #include <memory> 128 #include <numeric> 129 #include <optional> 130 #include <tuple> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 using namespace PatternMatch; 136 137 #define DEBUG_TYPE "scalar-evolution" 138 139 STATISTIC(NumExitCountsComputed, 140 "Number of loop exits with predictable exit counts"); 141 STATISTIC(NumExitCountsNotComputed, 142 "Number of loop exits without predictable exit counts"); 143 STATISTIC(NumBruteForceTripCountsComputed, 144 "Number of loops with trip counts computed by force"); 145 146 #ifdef EXPENSIVE_CHECKS 147 bool llvm::VerifySCEV = true; 148 #else 149 bool llvm::VerifySCEV = false; 150 #endif 151 152 static cl::opt<unsigned> 153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 166 static cl::opt<bool> VerifyIR( 167 "scev-verify-ir", cl::Hidden, 168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 169 cl::init(false)); 170 171 static cl::opt<unsigned> MulOpsInlineThreshold( 172 "scev-mulops-inline-threshold", cl::Hidden, 173 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 174 cl::init(32)); 175 176 static cl::opt<unsigned> AddOpsInlineThreshold( 177 "scev-addops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining addition operands into a SCEV"), 179 cl::init(500)); 180 181 static cl::opt<unsigned> MaxSCEVCompareDepth( 182 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 184 cl::init(32)); 185 186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 189 cl::init(2)); 190 191 static cl::opt<unsigned> MaxValueCompareDepth( 192 "scalar-evolution-max-value-compare-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive value complexity comparisons"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> 197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive arithmetics"), 199 cl::init(32)); 200 201 static cl::opt<unsigned> MaxConstantEvolvingDepth( 202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 204 205 static cl::opt<unsigned> 206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 208 cl::init(8)); 209 210 static cl::opt<unsigned> 211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 212 cl::desc("Max coefficients in AddRec during evolving"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 217 cl::desc("Size of the expression which is considered huge"), 218 cl::init(4096)); 219 220 static cl::opt<unsigned> RangeIterThreshold( 221 "scev-range-iter-threshold", cl::Hidden, 222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"), 223 cl::init(32)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 239 "Phi strongly connected components"), 240 cl::init(8)); 241 242 static cl::opt<bool> 243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 244 cl::desc("Handle <= and >= in finite loops"), 245 cl::init(true)); 246 247 static cl::opt<bool> UseContextForNoWrapFlagInference( 248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, 249 cl::desc("Infer nuw/nsw flags using context where suitable"), 250 cl::init(true)); 251 252 //===----------------------------------------------------------------------===// 253 // SCEV class definitions 254 //===----------------------------------------------------------------------===// 255 256 //===----------------------------------------------------------------------===// 257 // Implementation of the SCEV class. 258 // 259 260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 261 LLVM_DUMP_METHOD void SCEV::dump() const { 262 print(dbgs()); 263 dbgs() << '\n'; 264 } 265 #endif 266 267 void SCEV::print(raw_ostream &OS) const { 268 switch (getSCEVType()) { 269 case scConstant: 270 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 271 return; 272 case scVScale: 273 OS << "vscale"; 274 return; 275 case scPtrToInt: { 276 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 277 const SCEV *Op = PtrToInt->getOperand(); 278 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 279 << *PtrToInt->getType() << ")"; 280 return; 281 } 282 case scTruncate: { 283 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 284 const SCEV *Op = Trunc->getOperand(); 285 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 286 << *Trunc->getType() << ")"; 287 return; 288 } 289 case scZeroExtend: { 290 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 291 const SCEV *Op = ZExt->getOperand(); 292 OS << "(zext " << *Op->getType() << " " << *Op << " to " 293 << *ZExt->getType() << ")"; 294 return; 295 } 296 case scSignExtend: { 297 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 298 const SCEV *Op = SExt->getOperand(); 299 OS << "(sext " << *Op->getType() << " " << *Op << " to " 300 << *SExt->getType() << ")"; 301 return; 302 } 303 case scAddRecExpr: { 304 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 305 OS << "{" << *AR->getOperand(0); 306 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 307 OS << ",+," << *AR->getOperand(i); 308 OS << "}<"; 309 if (AR->hasNoUnsignedWrap()) 310 OS << "nuw><"; 311 if (AR->hasNoSignedWrap()) 312 OS << "nsw><"; 313 if (AR->hasNoSelfWrap() && 314 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 315 OS << "nw><"; 316 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 317 OS << ">"; 318 return; 319 } 320 case scAddExpr: 321 case scMulExpr: 322 case scUMaxExpr: 323 case scSMaxExpr: 324 case scUMinExpr: 325 case scSMinExpr: 326 case scSequentialUMinExpr: { 327 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 328 const char *OpStr = nullptr; 329 switch (NAry->getSCEVType()) { 330 case scAddExpr: OpStr = " + "; break; 331 case scMulExpr: OpStr = " * "; break; 332 case scUMaxExpr: OpStr = " umax "; break; 333 case scSMaxExpr: OpStr = " smax "; break; 334 case scUMinExpr: 335 OpStr = " umin "; 336 break; 337 case scSMinExpr: 338 OpStr = " smin "; 339 break; 340 case scSequentialUMinExpr: 341 OpStr = " umin_seq "; 342 break; 343 default: 344 llvm_unreachable("There are no other nary expression types."); 345 } 346 OS << "("; 347 ListSeparator LS(OpStr); 348 for (const SCEV *Op : NAry->operands()) 349 OS << LS << *Op; 350 OS << ")"; 351 switch (NAry->getSCEVType()) { 352 case scAddExpr: 353 case scMulExpr: 354 if (NAry->hasNoUnsignedWrap()) 355 OS << "<nuw>"; 356 if (NAry->hasNoSignedWrap()) 357 OS << "<nsw>"; 358 break; 359 default: 360 // Nothing to print for other nary expressions. 361 break; 362 } 363 return; 364 } 365 case scUDivExpr: { 366 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 367 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 368 return; 369 } 370 case scUnknown: 371 cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false); 372 return; 373 case scCouldNotCompute: 374 OS << "***COULDNOTCOMPUTE***"; 375 return; 376 } 377 llvm_unreachable("Unknown SCEV kind!"); 378 } 379 380 Type *SCEV::getType() const { 381 switch (getSCEVType()) { 382 case scConstant: 383 return cast<SCEVConstant>(this)->getType(); 384 case scVScale: 385 return cast<SCEVVScale>(this)->getType(); 386 case scPtrToInt: 387 case scTruncate: 388 case scZeroExtend: 389 case scSignExtend: 390 return cast<SCEVCastExpr>(this)->getType(); 391 case scAddRecExpr: 392 return cast<SCEVAddRecExpr>(this)->getType(); 393 case scMulExpr: 394 return cast<SCEVMulExpr>(this)->getType(); 395 case scUMaxExpr: 396 case scSMaxExpr: 397 case scUMinExpr: 398 case scSMinExpr: 399 return cast<SCEVMinMaxExpr>(this)->getType(); 400 case scSequentialUMinExpr: 401 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 402 case scAddExpr: 403 return cast<SCEVAddExpr>(this)->getType(); 404 case scUDivExpr: 405 return cast<SCEVUDivExpr>(this)->getType(); 406 case scUnknown: 407 return cast<SCEVUnknown>(this)->getType(); 408 case scCouldNotCompute: 409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 410 } 411 llvm_unreachable("Unknown SCEV kind!"); 412 } 413 414 ArrayRef<const SCEV *> SCEV::operands() const { 415 switch (getSCEVType()) { 416 case scConstant: 417 case scVScale: 418 case scUnknown: 419 return {}; 420 case scPtrToInt: 421 case scTruncate: 422 case scZeroExtend: 423 case scSignExtend: 424 return cast<SCEVCastExpr>(this)->operands(); 425 case scAddRecExpr: 426 case scAddExpr: 427 case scMulExpr: 428 case scUMaxExpr: 429 case scSMaxExpr: 430 case scUMinExpr: 431 case scSMinExpr: 432 case scSequentialUMinExpr: 433 return cast<SCEVNAryExpr>(this)->operands(); 434 case scUDivExpr: 435 return cast<SCEVUDivExpr>(this)->operands(); 436 case scCouldNotCompute: 437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 438 } 439 llvm_unreachable("Unknown SCEV kind!"); 440 } 441 442 bool SCEV::isZero() const { 443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 444 return SC->getValue()->isZero(); 445 return false; 446 } 447 448 bool SCEV::isOne() const { 449 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 450 return SC->getValue()->isOne(); 451 return false; 452 } 453 454 bool SCEV::isAllOnesValue() const { 455 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 456 return SC->getValue()->isMinusOne(); 457 return false; 458 } 459 460 bool SCEV::isNonConstantNegative() const { 461 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 462 if (!Mul) return false; 463 464 // If there is a constant factor, it will be first. 465 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 466 if (!SC) return false; 467 468 // Return true if the value is negative, this matches things like (-42 * V). 469 return SC->getAPInt().isNegative(); 470 } 471 472 SCEVCouldNotCompute::SCEVCouldNotCompute() : 473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 474 475 bool SCEVCouldNotCompute::classof(const SCEV *S) { 476 return S->getSCEVType() == scCouldNotCompute; 477 } 478 479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 480 FoldingSetNodeID ID; 481 ID.AddInteger(scConstant); 482 ID.AddPointer(V); 483 void *IP = nullptr; 484 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 485 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 486 UniqueSCEVs.InsertNode(S, IP); 487 return S; 488 } 489 490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 491 return getConstant(ConstantInt::get(getContext(), Val)); 492 } 493 494 const SCEV * 495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 496 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 497 return getConstant(ConstantInt::get(ITy, V, isSigned)); 498 } 499 500 const SCEV *ScalarEvolution::getVScale(Type *Ty) { 501 FoldingSetNodeID ID; 502 ID.AddInteger(scVScale); 503 ID.AddPointer(Ty); 504 void *IP = nullptr; 505 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 506 return S; 507 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty); 508 UniqueSCEVs.InsertNode(S, IP); 509 return S; 510 } 511 512 const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) { 513 const SCEV *Res = getConstant(Ty, EC.getKnownMinValue()); 514 if (EC.isScalable()) 515 Res = getMulExpr(Res, getVScale(Ty)); 516 return Res; 517 } 518 519 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 520 const SCEV *op, Type *ty) 521 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 522 523 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 524 Type *ITy) 525 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 526 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 527 "Must be a non-bit-width-changing pointer-to-integer cast!"); 528 } 529 530 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 531 SCEVTypes SCEVTy, const SCEV *op, 532 Type *ty) 533 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 534 535 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 536 Type *ty) 537 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 539 "Cannot truncate non-integer value!"); 540 } 541 542 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 543 const SCEV *op, Type *ty) 544 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 546 "Cannot zero extend non-integer value!"); 547 } 548 549 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 550 const SCEV *op, Type *ty) 551 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 552 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 553 "Cannot sign extend non-integer value!"); 554 } 555 556 void SCEVUnknown::deleted() { 557 // Clear this SCEVUnknown from various maps. 558 SE->forgetMemoizedResults(this); 559 560 // Remove this SCEVUnknown from the uniquing map. 561 SE->UniqueSCEVs.RemoveNode(this); 562 563 // Release the value. 564 setValPtr(nullptr); 565 } 566 567 void SCEVUnknown::allUsesReplacedWith(Value *New) { 568 // Clear this SCEVUnknown from various maps. 569 SE->forgetMemoizedResults(this); 570 571 // Remove this SCEVUnknown from the uniquing map. 572 SE->UniqueSCEVs.RemoveNode(this); 573 574 // Replace the value pointer in case someone is still using this SCEVUnknown. 575 setValPtr(New); 576 } 577 578 //===----------------------------------------------------------------------===// 579 // SCEV Utilities 580 //===----------------------------------------------------------------------===// 581 582 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 583 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 584 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 585 /// have been previously deemed to be "equally complex" by this routine. It is 586 /// intended to avoid exponential time complexity in cases like: 587 /// 588 /// %a = f(%x, %y) 589 /// %b = f(%a, %a) 590 /// %c = f(%b, %b) 591 /// 592 /// %d = f(%x, %y) 593 /// %e = f(%d, %d) 594 /// %f = f(%e, %e) 595 /// 596 /// CompareValueComplexity(%f, %c) 597 /// 598 /// Since we do not continue running this routine on expression trees once we 599 /// have seen unequal values, there is no need to track them in the cache. 600 static int 601 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 602 const LoopInfo *const LI, Value *LV, Value *RV, 603 unsigned Depth) { 604 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 605 return 0; 606 607 // Order pointer values after integer values. This helps SCEVExpander form 608 // GEPs. 609 bool LIsPointer = LV->getType()->isPointerTy(), 610 RIsPointer = RV->getType()->isPointerTy(); 611 if (LIsPointer != RIsPointer) 612 return (int)LIsPointer - (int)RIsPointer; 613 614 // Compare getValueID values. 615 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 616 if (LID != RID) 617 return (int)LID - (int)RID; 618 619 // Sort arguments by their position. 620 if (const auto *LA = dyn_cast<Argument>(LV)) { 621 const auto *RA = cast<Argument>(RV); 622 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 623 return (int)LArgNo - (int)RArgNo; 624 } 625 626 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 627 const auto *RGV = cast<GlobalValue>(RV); 628 629 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 630 auto LT = GV->getLinkage(); 631 return !(GlobalValue::isPrivateLinkage(LT) || 632 GlobalValue::isInternalLinkage(LT)); 633 }; 634 635 // Use the names to distinguish the two values, but only if the 636 // names are semantically important. 637 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 638 return LGV->getName().compare(RGV->getName()); 639 } 640 641 // For instructions, compare their loop depth, and their operand count. This 642 // is pretty loose. 643 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 644 const auto *RInst = cast<Instruction>(RV); 645 646 // Compare loop depths. 647 const BasicBlock *LParent = LInst->getParent(), 648 *RParent = RInst->getParent(); 649 if (LParent != RParent) { 650 unsigned LDepth = LI->getLoopDepth(LParent), 651 RDepth = LI->getLoopDepth(RParent); 652 if (LDepth != RDepth) 653 return (int)LDepth - (int)RDepth; 654 } 655 656 // Compare the number of operands. 657 unsigned LNumOps = LInst->getNumOperands(), 658 RNumOps = RInst->getNumOperands(); 659 if (LNumOps != RNumOps) 660 return (int)LNumOps - (int)RNumOps; 661 662 for (unsigned Idx : seq(LNumOps)) { 663 int Result = 664 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 665 RInst->getOperand(Idx), Depth + 1); 666 if (Result != 0) 667 return Result; 668 } 669 } 670 671 EqCacheValue.unionSets(LV, RV); 672 return 0; 673 } 674 675 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 676 // than RHS, respectively. A three-way result allows recursive comparisons to be 677 // more efficient. 678 // If the max analysis depth was reached, return std::nullopt, assuming we do 679 // not know if they are equivalent for sure. 680 static std::optional<int> 681 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 682 EquivalenceClasses<const Value *> &EqCacheValue, 683 const LoopInfo *const LI, const SCEV *LHS, 684 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 685 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 686 if (LHS == RHS) 687 return 0; 688 689 // Primarily, sort the SCEVs by their getSCEVType(). 690 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 691 if (LType != RType) 692 return (int)LType - (int)RType; 693 694 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 695 return 0; 696 697 if (Depth > MaxSCEVCompareDepth) 698 return std::nullopt; 699 700 // Aside from the getSCEVType() ordering, the particular ordering 701 // isn't very important except that it's beneficial to be consistent, 702 // so that (a + b) and (b + a) don't end up as different expressions. 703 switch (LType) { 704 case scUnknown: { 705 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 706 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 707 708 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 709 RU->getValue(), Depth + 1); 710 if (X == 0) 711 EqCacheSCEV.unionSets(LHS, RHS); 712 return X; 713 } 714 715 case scConstant: { 716 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 717 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 718 719 // Compare constant values. 720 const APInt &LA = LC->getAPInt(); 721 const APInt &RA = RC->getAPInt(); 722 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 723 if (LBitWidth != RBitWidth) 724 return (int)LBitWidth - (int)RBitWidth; 725 return LA.ult(RA) ? -1 : 1; 726 } 727 728 case scVScale: { 729 const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType()); 730 const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType()); 731 return LTy->getBitWidth() - RTy->getBitWidth(); 732 } 733 734 case scAddRecExpr: { 735 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 736 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 737 738 // There is always a dominance between two recs that are used by one SCEV, 739 // so we can safely sort recs by loop header dominance. We require such 740 // order in getAddExpr. 741 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 742 if (LLoop != RLoop) { 743 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 744 assert(LHead != RHead && "Two loops share the same header?"); 745 if (DT.dominates(LHead, RHead)) 746 return 1; 747 assert(DT.dominates(RHead, LHead) && 748 "No dominance between recurrences used by one SCEV?"); 749 return -1; 750 } 751 752 [[fallthrough]]; 753 } 754 755 case scTruncate: 756 case scZeroExtend: 757 case scSignExtend: 758 case scPtrToInt: 759 case scAddExpr: 760 case scMulExpr: 761 case scUDivExpr: 762 case scSMaxExpr: 763 case scUMaxExpr: 764 case scSMinExpr: 765 case scUMinExpr: 766 case scSequentialUMinExpr: { 767 ArrayRef<const SCEV *> LOps = LHS->operands(); 768 ArrayRef<const SCEV *> ROps = RHS->operands(); 769 770 // Lexicographically compare n-ary-like expressions. 771 unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); 772 if (LNumOps != RNumOps) 773 return (int)LNumOps - (int)RNumOps; 774 775 for (unsigned i = 0; i != LNumOps; ++i) { 776 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i], 777 ROps[i], DT, Depth + 1); 778 if (X != 0) 779 return X; 780 } 781 EqCacheSCEV.unionSets(LHS, RHS); 782 return 0; 783 } 784 785 case scCouldNotCompute: 786 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 787 } 788 llvm_unreachable("Unknown SCEV kind!"); 789 } 790 791 /// Given a list of SCEV objects, order them by their complexity, and group 792 /// objects of the same complexity together by value. When this routine is 793 /// finished, we know that any duplicates in the vector are consecutive and that 794 /// complexity is monotonically increasing. 795 /// 796 /// Note that we go take special precautions to ensure that we get deterministic 797 /// results from this routine. In other words, we don't want the results of 798 /// this to depend on where the addresses of various SCEV objects happened to 799 /// land in memory. 800 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 801 LoopInfo *LI, DominatorTree &DT) { 802 if (Ops.size() < 2) return; // Noop 803 804 EquivalenceClasses<const SCEV *> EqCacheSCEV; 805 EquivalenceClasses<const Value *> EqCacheValue; 806 807 // Whether LHS has provably less complexity than RHS. 808 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 809 auto Complexity = 810 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 811 return Complexity && *Complexity < 0; 812 }; 813 if (Ops.size() == 2) { 814 // This is the common case, which also happens to be trivially simple. 815 // Special case it. 816 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 817 if (IsLessComplex(RHS, LHS)) 818 std::swap(LHS, RHS); 819 return; 820 } 821 822 // Do the rough sort by complexity. 823 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 824 return IsLessComplex(LHS, RHS); 825 }); 826 827 // Now that we are sorted by complexity, group elements of the same 828 // complexity. Note that this is, at worst, N^2, but the vector is likely to 829 // be extremely short in practice. Note that we take this approach because we 830 // do not want to depend on the addresses of the objects we are grouping. 831 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 832 const SCEV *S = Ops[i]; 833 unsigned Complexity = S->getSCEVType(); 834 835 // If there are any objects of the same complexity and same value as this 836 // one, group them. 837 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 838 if (Ops[j] == S) { // Found a duplicate. 839 // Move it to immediately after i'th element. 840 std::swap(Ops[i+1], Ops[j]); 841 ++i; // no need to rescan it. 842 if (i == e-2) return; // Done! 843 } 844 } 845 } 846 } 847 848 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 849 /// least HugeExprThreshold nodes). 850 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 851 return any_of(Ops, [](const SCEV *S) { 852 return S->getExpressionSize() >= HugeExprThreshold; 853 }); 854 } 855 856 //===----------------------------------------------------------------------===// 857 // Simple SCEV method implementations 858 //===----------------------------------------------------------------------===// 859 860 /// Compute BC(It, K). The result has width W. Assume, K > 0. 861 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 862 ScalarEvolution &SE, 863 Type *ResultTy) { 864 // Handle the simplest case efficiently. 865 if (K == 1) 866 return SE.getTruncateOrZeroExtend(It, ResultTy); 867 868 // We are using the following formula for BC(It, K): 869 // 870 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 871 // 872 // Suppose, W is the bitwidth of the return value. We must be prepared for 873 // overflow. Hence, we must assure that the result of our computation is 874 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 875 // safe in modular arithmetic. 876 // 877 // However, this code doesn't use exactly that formula; the formula it uses 878 // is something like the following, where T is the number of factors of 2 in 879 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 880 // exponentiation: 881 // 882 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 883 // 884 // This formula is trivially equivalent to the previous formula. However, 885 // this formula can be implemented much more efficiently. The trick is that 886 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 887 // arithmetic. To do exact division in modular arithmetic, all we have 888 // to do is multiply by the inverse. Therefore, this step can be done at 889 // width W. 890 // 891 // The next issue is how to safely do the division by 2^T. The way this 892 // is done is by doing the multiplication step at a width of at least W + T 893 // bits. This way, the bottom W+T bits of the product are accurate. Then, 894 // when we perform the division by 2^T (which is equivalent to a right shift 895 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 896 // truncated out after the division by 2^T. 897 // 898 // In comparison to just directly using the first formula, this technique 899 // is much more efficient; using the first formula requires W * K bits, 900 // but this formula less than W + K bits. Also, the first formula requires 901 // a division step, whereas this formula only requires multiplies and shifts. 902 // 903 // It doesn't matter whether the subtraction step is done in the calculation 904 // width or the input iteration count's width; if the subtraction overflows, 905 // the result must be zero anyway. We prefer here to do it in the width of 906 // the induction variable because it helps a lot for certain cases; CodeGen 907 // isn't smart enough to ignore the overflow, which leads to much less 908 // efficient code if the width of the subtraction is wider than the native 909 // register width. 910 // 911 // (It's possible to not widen at all by pulling out factors of 2 before 912 // the multiplication; for example, K=2 can be calculated as 913 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 914 // extra arithmetic, so it's not an obvious win, and it gets 915 // much more complicated for K > 3.) 916 917 // Protection from insane SCEVs; this bound is conservative, 918 // but it probably doesn't matter. 919 if (K > 1000) 920 return SE.getCouldNotCompute(); 921 922 unsigned W = SE.getTypeSizeInBits(ResultTy); 923 924 // Calculate K! / 2^T and T; we divide out the factors of two before 925 // multiplying for calculating K! / 2^T to avoid overflow. 926 // Other overflow doesn't matter because we only care about the bottom 927 // W bits of the result. 928 APInt OddFactorial(W, 1); 929 unsigned T = 1; 930 for (unsigned i = 3; i <= K; ++i) { 931 unsigned TwoFactors = countr_zero(i); 932 T += TwoFactors; 933 OddFactorial *= (i >> TwoFactors); 934 } 935 936 // We need at least W + T bits for the multiplication step 937 unsigned CalculationBits = W + T; 938 939 // Calculate 2^T, at width T+W. 940 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 941 942 // Calculate the multiplicative inverse of K! / 2^T; 943 // this multiplication factor will perform the exact division by 944 // K! / 2^T. 945 APInt MultiplyFactor = OddFactorial.multiplicativeInverse(); 946 947 // Calculate the product, at width T+W 948 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 949 CalculationBits); 950 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 951 for (unsigned i = 1; i != K; ++i) { 952 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 953 Dividend = SE.getMulExpr(Dividend, 954 SE.getTruncateOrZeroExtend(S, CalculationTy)); 955 } 956 957 // Divide by 2^T 958 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 959 960 // Truncate the result, and divide by K! / 2^T. 961 962 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 963 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 964 } 965 966 /// Return the value of this chain of recurrences at the specified iteration 967 /// number. We can evaluate this recurrence by multiplying each element in the 968 /// chain by the binomial coefficient corresponding to it. In other words, we 969 /// can evaluate {A,+,B,+,C,+,D} as: 970 /// 971 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 972 /// 973 /// where BC(It, k) stands for binomial coefficient. 974 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 975 ScalarEvolution &SE) const { 976 return evaluateAtIteration(operands(), It, SE); 977 } 978 979 const SCEV * 980 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 981 const SCEV *It, ScalarEvolution &SE) { 982 assert(Operands.size() > 0); 983 const SCEV *Result = Operands[0]; 984 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 985 // The computation is correct in the face of overflow provided that the 986 // multiplication is performed _after_ the evaluation of the binomial 987 // coefficient. 988 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 989 if (isa<SCEVCouldNotCompute>(Coeff)) 990 return Coeff; 991 992 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 993 } 994 return Result; 995 } 996 997 //===----------------------------------------------------------------------===// 998 // SCEV Expression folder implementations 999 //===----------------------------------------------------------------------===// 1000 1001 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1002 unsigned Depth) { 1003 assert(Depth <= 1 && 1004 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1005 1006 // We could be called with an integer-typed operands during SCEV rewrites. 1007 // Since the operand is an integer already, just perform zext/trunc/self cast. 1008 if (!Op->getType()->isPointerTy()) 1009 return Op; 1010 1011 // What would be an ID for such a SCEV cast expression? 1012 FoldingSetNodeID ID; 1013 ID.AddInteger(scPtrToInt); 1014 ID.AddPointer(Op); 1015 1016 void *IP = nullptr; 1017 1018 // Is there already an expression for such a cast? 1019 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1020 return S; 1021 1022 // It isn't legal for optimizations to construct new ptrtoint expressions 1023 // for non-integral pointers. 1024 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1025 return getCouldNotCompute(); 1026 1027 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1028 1029 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1030 // is sufficiently wide to represent all possible pointer values. 1031 // We could theoretically teach SCEV to truncate wider pointers, but 1032 // that isn't implemented for now. 1033 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1034 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1035 return getCouldNotCompute(); 1036 1037 // If not, is this expression something we can't reduce any further? 1038 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1039 // Perform some basic constant folding. If the operand of the ptr2int cast 1040 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1041 // left as-is), but produce a zero constant. 1042 // NOTE: We could handle a more general case, but lack motivational cases. 1043 if (isa<ConstantPointerNull>(U->getValue())) 1044 return getZero(IntPtrTy); 1045 1046 // Create an explicit cast node. 1047 // We can reuse the existing insert position since if we get here, 1048 // we won't have made any changes which would invalidate it. 1049 SCEV *S = new (SCEVAllocator) 1050 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1051 UniqueSCEVs.InsertNode(S, IP); 1052 registerUser(S, Op); 1053 return S; 1054 } 1055 1056 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1057 "non-SCEVUnknown's."); 1058 1059 // Otherwise, we've got some expression that is more complex than just a 1060 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1061 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1062 // only, and the expressions must otherwise be integer-typed. 1063 // So sink the cast down to the SCEVUnknown's. 1064 1065 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1066 /// which computes a pointer-typed value, and rewrites the whole expression 1067 /// tree so that *all* the computations are done on integers, and the only 1068 /// pointer-typed operands in the expression are SCEVUnknown. 1069 class SCEVPtrToIntSinkingRewriter 1070 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1071 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1072 1073 public: 1074 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1075 1076 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1077 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1078 return Rewriter.visit(Scev); 1079 } 1080 1081 const SCEV *visit(const SCEV *S) { 1082 Type *STy = S->getType(); 1083 // If the expression is not pointer-typed, just keep it as-is. 1084 if (!STy->isPointerTy()) 1085 return S; 1086 // Else, recursively sink the cast down into it. 1087 return Base::visit(S); 1088 } 1089 1090 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1091 SmallVector<const SCEV *, 2> Operands; 1092 bool Changed = false; 1093 for (const auto *Op : Expr->operands()) { 1094 Operands.push_back(visit(Op)); 1095 Changed |= Op != Operands.back(); 1096 } 1097 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1098 } 1099 1100 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1101 SmallVector<const SCEV *, 2> Operands; 1102 bool Changed = false; 1103 for (const auto *Op : Expr->operands()) { 1104 Operands.push_back(visit(Op)); 1105 Changed |= Op != Operands.back(); 1106 } 1107 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1108 } 1109 1110 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1111 assert(Expr->getType()->isPointerTy() && 1112 "Should only reach pointer-typed SCEVUnknown's."); 1113 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1114 } 1115 }; 1116 1117 // And actually perform the cast sinking. 1118 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1119 assert(IntOp->getType()->isIntegerTy() && 1120 "We must have succeeded in sinking the cast, " 1121 "and ending up with an integer-typed expression!"); 1122 return IntOp; 1123 } 1124 1125 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1126 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1127 1128 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1129 if (isa<SCEVCouldNotCompute>(IntOp)) 1130 return IntOp; 1131 1132 return getTruncateOrZeroExtend(IntOp, Ty); 1133 } 1134 1135 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1136 unsigned Depth) { 1137 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1138 "This is not a truncating conversion!"); 1139 assert(isSCEVable(Ty) && 1140 "This is not a conversion to a SCEVable type!"); 1141 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1142 Ty = getEffectiveSCEVType(Ty); 1143 1144 FoldingSetNodeID ID; 1145 ID.AddInteger(scTruncate); 1146 ID.AddPointer(Op); 1147 ID.AddPointer(Ty); 1148 void *IP = nullptr; 1149 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1150 1151 // Fold if the operand is constant. 1152 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1153 return getConstant( 1154 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1155 1156 // trunc(trunc(x)) --> trunc(x) 1157 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1158 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1159 1160 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1161 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1162 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1163 1164 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1166 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1167 1168 if (Depth > MaxCastDepth) { 1169 SCEV *S = 1170 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1171 UniqueSCEVs.InsertNode(S, IP); 1172 registerUser(S, Op); 1173 return S; 1174 } 1175 1176 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1177 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1178 // if after transforming we have at most one truncate, not counting truncates 1179 // that replace other casts. 1180 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1181 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1182 SmallVector<const SCEV *, 4> Operands; 1183 unsigned numTruncs = 0; 1184 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1185 ++i) { 1186 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1187 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1188 isa<SCEVTruncateExpr>(S)) 1189 numTruncs++; 1190 Operands.push_back(S); 1191 } 1192 if (numTruncs < 2) { 1193 if (isa<SCEVAddExpr>(Op)) 1194 return getAddExpr(Operands); 1195 if (isa<SCEVMulExpr>(Op)) 1196 return getMulExpr(Operands); 1197 llvm_unreachable("Unexpected SCEV type for Op."); 1198 } 1199 // Although we checked in the beginning that ID is not in the cache, it is 1200 // possible that during recursion and different modification ID was inserted 1201 // into the cache. So if we find it, just return it. 1202 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1203 return S; 1204 } 1205 1206 // If the input value is a chrec scev, truncate the chrec's operands. 1207 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1208 SmallVector<const SCEV *, 4> Operands; 1209 for (const SCEV *Op : AddRec->operands()) 1210 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1211 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1212 } 1213 1214 // Return zero if truncating to known zeros. 1215 uint32_t MinTrailingZeros = getMinTrailingZeros(Op); 1216 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1217 return getZero(Ty); 1218 1219 // The cast wasn't folded; create an explicit cast node. We can reuse 1220 // the existing insert position since if we get here, we won't have 1221 // made any changes which would invalidate it. 1222 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1223 Op, Ty); 1224 UniqueSCEVs.InsertNode(S, IP); 1225 registerUser(S, Op); 1226 return S; 1227 } 1228 1229 // Get the limit of a recurrence such that incrementing by Step cannot cause 1230 // signed overflow as long as the value of the recurrence within the 1231 // loop does not exceed this limit before incrementing. 1232 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1233 ICmpInst::Predicate *Pred, 1234 ScalarEvolution *SE) { 1235 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1236 if (SE->isKnownPositive(Step)) { 1237 *Pred = ICmpInst::ICMP_SLT; 1238 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1239 SE->getSignedRangeMax(Step)); 1240 } 1241 if (SE->isKnownNegative(Step)) { 1242 *Pred = ICmpInst::ICMP_SGT; 1243 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1244 SE->getSignedRangeMin(Step)); 1245 } 1246 return nullptr; 1247 } 1248 1249 // Get the limit of a recurrence such that incrementing by Step cannot cause 1250 // unsigned overflow as long as the value of the recurrence within the loop does 1251 // not exceed this limit before incrementing. 1252 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1253 ICmpInst::Predicate *Pred, 1254 ScalarEvolution *SE) { 1255 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1256 *Pred = ICmpInst::ICMP_ULT; 1257 1258 return SE->getConstant(APInt::getMinValue(BitWidth) - 1259 SE->getUnsignedRangeMax(Step)); 1260 } 1261 1262 namespace { 1263 1264 struct ExtendOpTraitsBase { 1265 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1266 unsigned); 1267 }; 1268 1269 // Used to make code generic over signed and unsigned overflow. 1270 template <typename ExtendOp> struct ExtendOpTraits { 1271 // Members present: 1272 // 1273 // static const SCEV::NoWrapFlags WrapType; 1274 // 1275 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1276 // 1277 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1278 // ICmpInst::Predicate *Pred, 1279 // ScalarEvolution *SE); 1280 }; 1281 1282 template <> 1283 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1284 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1285 1286 static const GetExtendExprTy GetExtendExpr; 1287 1288 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1289 ICmpInst::Predicate *Pred, 1290 ScalarEvolution *SE) { 1291 return getSignedOverflowLimitForStep(Step, Pred, SE); 1292 } 1293 }; 1294 1295 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1296 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1297 1298 template <> 1299 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1300 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1301 1302 static const GetExtendExprTy GetExtendExpr; 1303 1304 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1308 } 1309 }; 1310 1311 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1312 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1313 1314 } // end anonymous namespace 1315 1316 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1317 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1318 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1319 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1320 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1321 // expression "Step + sext/zext(PreIncAR)" is congruent with 1322 // "sext/zext(PostIncAR)" 1323 template <typename ExtendOpTy> 1324 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1325 ScalarEvolution *SE, unsigned Depth) { 1326 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1327 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1328 1329 const Loop *L = AR->getLoop(); 1330 const SCEV *Start = AR->getStart(); 1331 const SCEV *Step = AR->getStepRecurrence(*SE); 1332 1333 // Check for a simple looking step prior to loop entry. 1334 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1335 if (!SA) 1336 return nullptr; 1337 1338 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1339 // subtraction is expensive. For this purpose, perform a quick and dirty 1340 // difference, by checking for Step in the operand list. Note, that 1341 // SA might have repeated ops, like %a + %a + ..., so only remove one. 1342 SmallVector<const SCEV *, 4> DiffOps(SA->operands()); 1343 for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It) 1344 if (*It == Step) { 1345 DiffOps.erase(It); 1346 break; 1347 } 1348 1349 if (DiffOps.size() == SA->getNumOperands()) 1350 return nullptr; 1351 1352 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1353 // `Step`: 1354 1355 // 1. NSW/NUW flags on the step increment. 1356 auto PreStartFlags = 1357 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1358 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1359 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1360 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1361 1362 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1363 // "S+X does not sign/unsign-overflow". 1364 // 1365 1366 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1367 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1368 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1369 return PreStart; 1370 1371 // 2. Direct overflow check on the step operation's expression. 1372 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1373 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1374 const SCEV *OperandExtendedStart = 1375 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1376 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1377 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1378 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1379 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1380 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1381 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1382 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1383 } 1384 return PreStart; 1385 } 1386 1387 // 3. Loop precondition. 1388 ICmpInst::Predicate Pred; 1389 const SCEV *OverflowLimit = 1390 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1391 1392 if (OverflowLimit && 1393 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1394 return PreStart; 1395 1396 return nullptr; 1397 } 1398 1399 // Get the normalized zero or sign extended expression for this AddRec's Start. 1400 template <typename ExtendOpTy> 1401 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1402 ScalarEvolution *SE, 1403 unsigned Depth) { 1404 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1405 1406 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1407 if (!PreStart) 1408 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1409 1410 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1411 Depth), 1412 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1413 } 1414 1415 // Try to prove away overflow by looking at "nearby" add recurrences. A 1416 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1417 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1418 // 1419 // Formally: 1420 // 1421 // {S,+,X} == {S-T,+,X} + T 1422 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1423 // 1424 // If ({S-T,+,X} + T) does not overflow ... (1) 1425 // 1426 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1427 // 1428 // If {S-T,+,X} does not overflow ... (2) 1429 // 1430 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1431 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1432 // 1433 // If (S-T)+T does not overflow ... (3) 1434 // 1435 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1436 // == {Ext(S),+,Ext(X)} == LHS 1437 // 1438 // Thus, if (1), (2) and (3) are true for some T, then 1439 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1440 // 1441 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1442 // does not overflow" restricted to the 0th iteration. Therefore we only need 1443 // to check for (1) and (2). 1444 // 1445 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1446 // is `Delta` (defined below). 1447 template <typename ExtendOpTy> 1448 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1449 const SCEV *Step, 1450 const Loop *L) { 1451 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1452 1453 // We restrict `Start` to a constant to prevent SCEV from spending too much 1454 // time here. It is correct (but more expensive) to continue with a 1455 // non-constant `Start` and do a general SCEV subtraction to compute 1456 // `PreStart` below. 1457 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1458 if (!StartC) 1459 return false; 1460 1461 APInt StartAI = StartC->getAPInt(); 1462 1463 for (unsigned Delta : {-2, -1, 1, 2}) { 1464 const SCEV *PreStart = getConstant(StartAI - Delta); 1465 1466 FoldingSetNodeID ID; 1467 ID.AddInteger(scAddRecExpr); 1468 ID.AddPointer(PreStart); 1469 ID.AddPointer(Step); 1470 ID.AddPointer(L); 1471 void *IP = nullptr; 1472 const auto *PreAR = 1473 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1474 1475 // Give up if we don't already have the add recurrence we need because 1476 // actually constructing an add recurrence is relatively expensive. 1477 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1478 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1479 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1480 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1481 DeltaS, &Pred, this); 1482 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1483 return true; 1484 } 1485 } 1486 1487 return false; 1488 } 1489 1490 // Finds an integer D for an expression (C + x + y + ...) such that the top 1491 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1492 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1493 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1494 // the (C + x + y + ...) expression is \p WholeAddExpr. 1495 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1496 const SCEVConstant *ConstantTerm, 1497 const SCEVAddExpr *WholeAddExpr) { 1498 const APInt &C = ConstantTerm->getAPInt(); 1499 const unsigned BitWidth = C.getBitWidth(); 1500 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1501 uint32_t TZ = BitWidth; 1502 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1503 TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I))); 1504 if (TZ) { 1505 // Set D to be as many least significant bits of C as possible while still 1506 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1507 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1508 } 1509 return APInt(BitWidth, 0); 1510 } 1511 1512 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1513 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1514 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1515 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1516 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1517 const APInt &ConstantStart, 1518 const SCEV *Step) { 1519 const unsigned BitWidth = ConstantStart.getBitWidth(); 1520 const uint32_t TZ = SE.getMinTrailingZeros(Step); 1521 if (TZ) 1522 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1523 : ConstantStart; 1524 return APInt(BitWidth, 0); 1525 } 1526 1527 static void insertFoldCacheEntry( 1528 const ScalarEvolution::FoldID &ID, const SCEV *S, 1529 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, 1530 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> 1531 &FoldCacheUser) { 1532 auto I = FoldCache.insert({ID, S}); 1533 if (!I.second) { 1534 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache 1535 // entry. 1536 auto &UserIDs = FoldCacheUser[I.first->second]; 1537 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs"); 1538 for (unsigned I = 0; I != UserIDs.size(); ++I) 1539 if (UserIDs[I] == ID) { 1540 std::swap(UserIDs[I], UserIDs.back()); 1541 break; 1542 } 1543 UserIDs.pop_back(); 1544 I.first->second = S; 1545 } 1546 auto R = FoldCacheUser.insert({S, {}}); 1547 R.first->second.push_back(ID); 1548 } 1549 1550 const SCEV * 1551 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1552 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1553 "This is not an extending conversion!"); 1554 assert(isSCEVable(Ty) && 1555 "This is not a conversion to a SCEVable type!"); 1556 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1557 Ty = getEffectiveSCEVType(Ty); 1558 1559 FoldID ID(scZeroExtend, Op, Ty); 1560 auto Iter = FoldCache.find(ID); 1561 if (Iter != FoldCache.end()) 1562 return Iter->second; 1563 1564 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); 1565 if (!isa<SCEVZeroExtendExpr>(S)) 1566 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1567 return S; 1568 } 1569 1570 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1571 unsigned Depth) { 1572 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1573 "This is not an extending conversion!"); 1574 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1575 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1576 1577 // Fold if the operand is constant. 1578 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1579 return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty))); 1580 1581 // zext(zext(x)) --> zext(x) 1582 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1583 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1584 1585 // Before doing any expensive analysis, check to see if we've already 1586 // computed a SCEV for this Op and Ty. 1587 FoldingSetNodeID ID; 1588 ID.AddInteger(scZeroExtend); 1589 ID.AddPointer(Op); 1590 ID.AddPointer(Ty); 1591 void *IP = nullptr; 1592 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1593 if (Depth > MaxCastDepth) { 1594 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1595 Op, Ty); 1596 UniqueSCEVs.InsertNode(S, IP); 1597 registerUser(S, Op); 1598 return S; 1599 } 1600 1601 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1602 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1603 // It's possible the bits taken off by the truncate were all zero bits. If 1604 // so, we should be able to simplify this further. 1605 const SCEV *X = ST->getOperand(); 1606 ConstantRange CR = getUnsignedRange(X); 1607 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1608 unsigned NewBits = getTypeSizeInBits(Ty); 1609 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1610 CR.zextOrTrunc(NewBits))) 1611 return getTruncateOrZeroExtend(X, Ty, Depth); 1612 } 1613 1614 // If the input value is a chrec scev, and we can prove that the value 1615 // did not overflow the old, smaller, value, we can zero extend all of the 1616 // operands (often constants). This allows analysis of something like 1617 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1618 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1619 if (AR->isAffine()) { 1620 const SCEV *Start = AR->getStart(); 1621 const SCEV *Step = AR->getStepRecurrence(*this); 1622 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1623 const Loop *L = AR->getLoop(); 1624 1625 // If we have special knowledge that this addrec won't overflow, 1626 // we don't need to do any further analysis. 1627 if (AR->hasNoUnsignedWrap()) { 1628 Start = 1629 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1630 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1631 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1632 } 1633 1634 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1635 // Note that this serves two purposes: It filters out loops that are 1636 // simply not analyzable, and it covers the case where this code is 1637 // being called from within backedge-taken count analysis, such that 1638 // attempting to ask for the backedge-taken count would likely result 1639 // in infinite recursion. In the later case, the analysis code will 1640 // cope with a conservative value, and it will take care to purge 1641 // that value once it has finished. 1642 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1643 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1644 // Manually compute the final value for AR, checking for overflow. 1645 1646 // Check whether the backedge-taken count can be losslessly casted to 1647 // the addrec's type. The count is always unsigned. 1648 const SCEV *CastedMaxBECount = 1649 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1650 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1651 CastedMaxBECount, MaxBECount->getType(), Depth); 1652 if (MaxBECount == RecastedMaxBECount) { 1653 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1654 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1655 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1656 SCEV::FlagAnyWrap, Depth + 1); 1657 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1658 SCEV::FlagAnyWrap, 1659 Depth + 1), 1660 WideTy, Depth + 1); 1661 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1662 const SCEV *WideMaxBECount = 1663 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1664 const SCEV *OperandExtendedAdd = 1665 getAddExpr(WideStart, 1666 getMulExpr(WideMaxBECount, 1667 getZeroExtendExpr(Step, WideTy, Depth + 1), 1668 SCEV::FlagAnyWrap, Depth + 1), 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 if (ZAdd == OperandExtendedAdd) { 1671 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1672 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1673 // Return the expression with the addrec on the outside. 1674 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1675 Depth + 1); 1676 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1677 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1678 } 1679 // Similar to above, only this time treat the step value as signed. 1680 // This covers loops that count down. 1681 OperandExtendedAdd = 1682 getAddExpr(WideStart, 1683 getMulExpr(WideMaxBECount, 1684 getSignExtendExpr(Step, WideTy, Depth + 1), 1685 SCEV::FlagAnyWrap, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 if (ZAdd == OperandExtendedAdd) { 1688 // Cache knowledge of AR NW, which is propagated to this AddRec. 1689 // Negative step causes unsigned wrap, but it still can't self-wrap. 1690 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1691 // Return the expression with the addrec on the outside. 1692 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1693 Depth + 1); 1694 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1695 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1696 } 1697 } 1698 } 1699 1700 // Normally, in the cases we can prove no-overflow via a 1701 // backedge guarding condition, we can also compute a backedge 1702 // taken count for the loop. The exceptions are assumptions and 1703 // guards present in the loop -- SCEV is not great at exploiting 1704 // these to compute max backedge taken counts, but can still use 1705 // these to prove lack of overflow. Use this fact to avoid 1706 // doing extra work that may not pay off. 1707 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1708 !AC.assumptions().empty()) { 1709 1710 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1711 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1712 if (AR->hasNoUnsignedWrap()) { 1713 // Same as nuw case above - duplicated here to avoid a compile time 1714 // issue. It's not clear that the order of checks does matter, but 1715 // it's one of two issue possible causes for a change which was 1716 // reverted. Be conservative for the moment. 1717 Start = 1718 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1719 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1720 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1721 } 1722 1723 // For a negative step, we can extend the operands iff doing so only 1724 // traverses values in the range zext([0,UINT_MAX]). 1725 if (isKnownNegative(Step)) { 1726 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1727 getSignedRangeMin(Step)); 1728 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1729 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1730 // Cache knowledge of AR NW, which is propagated to this 1731 // AddRec. Negative step causes unsigned wrap, but it 1732 // still can't self-wrap. 1733 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1734 // Return the expression with the addrec on the outside. 1735 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1736 Depth + 1); 1737 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1738 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1739 } 1740 } 1741 } 1742 1743 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1744 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1745 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1746 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1747 const APInt &C = SC->getAPInt(); 1748 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1749 if (D != 0) { 1750 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1751 const SCEV *SResidual = 1752 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1753 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1754 return getAddExpr(SZExtD, SZExtR, 1755 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1756 Depth + 1); 1757 } 1758 } 1759 1760 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1761 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1762 Start = 1763 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1764 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1765 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1766 } 1767 } 1768 1769 // zext(A % B) --> zext(A) % zext(B) 1770 { 1771 const SCEV *LHS; 1772 const SCEV *RHS; 1773 if (matchURem(Op, LHS, RHS)) 1774 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1775 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1776 } 1777 1778 // zext(A / B) --> zext(A) / zext(B). 1779 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1780 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1781 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1782 1783 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1784 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1785 if (SA->hasNoUnsignedWrap()) { 1786 // If the addition does not unsign overflow then we can, by definition, 1787 // commute the zero extension with the addition operation. 1788 SmallVector<const SCEV *, 4> Ops; 1789 for (const auto *Op : SA->operands()) 1790 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1791 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1792 } 1793 1794 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1795 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1796 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1797 // 1798 // Often address arithmetics contain expressions like 1799 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1800 // This transformation is useful while proving that such expressions are 1801 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1802 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1803 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1804 if (D != 0) { 1805 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1806 const SCEV *SResidual = 1807 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1808 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1809 return getAddExpr(SZExtD, SZExtR, 1810 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1811 Depth + 1); 1812 } 1813 } 1814 } 1815 1816 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1817 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1818 if (SM->hasNoUnsignedWrap()) { 1819 // If the multiply does not unsign overflow then we can, by definition, 1820 // commute the zero extension with the multiply operation. 1821 SmallVector<const SCEV *, 4> Ops; 1822 for (const auto *Op : SM->operands()) 1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1824 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1825 } 1826 1827 // zext(2^K * (trunc X to iN)) to iM -> 1828 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1829 // 1830 // Proof: 1831 // 1832 // zext(2^K * (trunc X to iN)) to iM 1833 // = zext((trunc X to iN) << K) to iM 1834 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1835 // (because shl removes the top K bits) 1836 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1837 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1838 // 1839 if (SM->getNumOperands() == 2) 1840 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1841 if (MulLHS->getAPInt().isPowerOf2()) 1842 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1843 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1844 MulLHS->getAPInt().logBase2(); 1845 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1846 return getMulExpr( 1847 getZeroExtendExpr(MulLHS, Ty), 1848 getZeroExtendExpr( 1849 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1850 SCEV::FlagNUW, Depth + 1); 1851 } 1852 } 1853 1854 // zext(umin(x, y)) -> umin(zext(x), zext(y)) 1855 // zext(umax(x, y)) -> umax(zext(x), zext(y)) 1856 if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) { 1857 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 1858 SmallVector<const SCEV *, 4> Operands; 1859 for (auto *Operand : MinMax->operands()) 1860 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1861 if (isa<SCEVUMinExpr>(MinMax)) 1862 return getUMinExpr(Operands); 1863 return getUMaxExpr(Operands); 1864 } 1865 1866 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) 1867 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) { 1868 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!"); 1869 SmallVector<const SCEV *, 4> Operands; 1870 for (auto *Operand : MinMax->operands()) 1871 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1872 return getUMinExpr(Operands, /*Sequential*/ true); 1873 } 1874 1875 // The cast wasn't folded; create an explicit cast node. 1876 // Recompute the insert position, as it may have been invalidated. 1877 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1878 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1879 Op, Ty); 1880 UniqueSCEVs.InsertNode(S, IP); 1881 registerUser(S, Op); 1882 return S; 1883 } 1884 1885 const SCEV * 1886 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1887 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1888 "This is not an extending conversion!"); 1889 assert(isSCEVable(Ty) && 1890 "This is not a conversion to a SCEVable type!"); 1891 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1892 Ty = getEffectiveSCEVType(Ty); 1893 1894 FoldID ID(scSignExtend, Op, Ty); 1895 auto Iter = FoldCache.find(ID); 1896 if (Iter != FoldCache.end()) 1897 return Iter->second; 1898 1899 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); 1900 if (!isa<SCEVSignExtendExpr>(S)) 1901 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1902 return S; 1903 } 1904 1905 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1906 unsigned Depth) { 1907 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1908 "This is not an extending conversion!"); 1909 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1910 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1911 Ty = getEffectiveSCEVType(Ty); 1912 1913 // Fold if the operand is constant. 1914 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1915 return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty))); 1916 1917 // sext(sext(x)) --> sext(x) 1918 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1919 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1920 1921 // sext(zext(x)) --> zext(x) 1922 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1923 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1924 1925 // Before doing any expensive analysis, check to see if we've already 1926 // computed a SCEV for this Op and Ty. 1927 FoldingSetNodeID ID; 1928 ID.AddInteger(scSignExtend); 1929 ID.AddPointer(Op); 1930 ID.AddPointer(Ty); 1931 void *IP = nullptr; 1932 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1933 // Limit recursion depth. 1934 if (Depth > MaxCastDepth) { 1935 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1936 Op, Ty); 1937 UniqueSCEVs.InsertNode(S, IP); 1938 registerUser(S, Op); 1939 return S; 1940 } 1941 1942 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1943 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1944 // It's possible the bits taken off by the truncate were all sign bits. If 1945 // so, we should be able to simplify this further. 1946 const SCEV *X = ST->getOperand(); 1947 ConstantRange CR = getSignedRange(X); 1948 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1949 unsigned NewBits = getTypeSizeInBits(Ty); 1950 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1951 CR.sextOrTrunc(NewBits))) 1952 return getTruncateOrSignExtend(X, Ty, Depth); 1953 } 1954 1955 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1956 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1957 if (SA->hasNoSignedWrap()) { 1958 // If the addition does not sign overflow then we can, by definition, 1959 // commute the sign extension with the addition operation. 1960 SmallVector<const SCEV *, 4> Ops; 1961 for (const auto *Op : SA->operands()) 1962 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1963 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1964 } 1965 1966 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1967 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1968 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1969 // 1970 // For instance, this will bring two seemingly different expressions: 1971 // 1 + sext(5 + 20 * %x + 24 * %y) and 1972 // sext(6 + 20 * %x + 24 * %y) 1973 // to the same form: 1974 // 2 + sext(4 + 20 * %x + 24 * %y) 1975 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1976 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1977 if (D != 0) { 1978 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1979 const SCEV *SResidual = 1980 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1981 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1982 return getAddExpr(SSExtD, SSExtR, 1983 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1984 Depth + 1); 1985 } 1986 } 1987 } 1988 // If the input value is a chrec scev, and we can prove that the value 1989 // did not overflow the old, smaller, value, we can sign extend all of the 1990 // operands (often constants). This allows analysis of something like 1991 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1992 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1993 if (AR->isAffine()) { 1994 const SCEV *Start = AR->getStart(); 1995 const SCEV *Step = AR->getStepRecurrence(*this); 1996 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1997 const Loop *L = AR->getLoop(); 1998 1999 // If we have special knowledge that this addrec won't overflow, 2000 // we don't need to do any further analysis. 2001 if (AR->hasNoSignedWrap()) { 2002 Start = 2003 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2004 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2005 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2006 } 2007 2008 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2009 // Note that this serves two purposes: It filters out loops that are 2010 // simply not analyzable, and it covers the case where this code is 2011 // being called from within backedge-taken count analysis, such that 2012 // attempting to ask for the backedge-taken count would likely result 2013 // in infinite recursion. In the later case, the analysis code will 2014 // cope with a conservative value, and it will take care to purge 2015 // that value once it has finished. 2016 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2017 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2018 // Manually compute the final value for AR, checking for 2019 // overflow. 2020 2021 // Check whether the backedge-taken count can be losslessly casted to 2022 // the addrec's type. The count is always unsigned. 2023 const SCEV *CastedMaxBECount = 2024 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2025 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2026 CastedMaxBECount, MaxBECount->getType(), Depth); 2027 if (MaxBECount == RecastedMaxBECount) { 2028 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2029 // Check whether Start+Step*MaxBECount has no signed overflow. 2030 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2031 SCEV::FlagAnyWrap, Depth + 1); 2032 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2033 SCEV::FlagAnyWrap, 2034 Depth + 1), 2035 WideTy, Depth + 1); 2036 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2037 const SCEV *WideMaxBECount = 2038 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2039 const SCEV *OperandExtendedAdd = 2040 getAddExpr(WideStart, 2041 getMulExpr(WideMaxBECount, 2042 getSignExtendExpr(Step, WideTy, Depth + 1), 2043 SCEV::FlagAnyWrap, Depth + 1), 2044 SCEV::FlagAnyWrap, Depth + 1); 2045 if (SAdd == OperandExtendedAdd) { 2046 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2047 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2048 // Return the expression with the addrec on the outside. 2049 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2050 Depth + 1); 2051 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2052 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2053 } 2054 // Similar to above, only this time treat the step value as unsigned. 2055 // This covers loops that count up with an unsigned step. 2056 OperandExtendedAdd = 2057 getAddExpr(WideStart, 2058 getMulExpr(WideMaxBECount, 2059 getZeroExtendExpr(Step, WideTy, Depth + 1), 2060 SCEV::FlagAnyWrap, Depth + 1), 2061 SCEV::FlagAnyWrap, Depth + 1); 2062 if (SAdd == OperandExtendedAdd) { 2063 // If AR wraps around then 2064 // 2065 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2066 // => SAdd != OperandExtendedAdd 2067 // 2068 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2069 // (SAdd == OperandExtendedAdd => AR is NW) 2070 2071 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2072 2073 // Return the expression with the addrec on the outside. 2074 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2075 Depth + 1); 2076 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2077 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2078 } 2079 } 2080 } 2081 2082 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2083 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2084 if (AR->hasNoSignedWrap()) { 2085 // Same as nsw case above - duplicated here to avoid a compile time 2086 // issue. It's not clear that the order of checks does matter, but 2087 // it's one of two issue possible causes for a change which was 2088 // reverted. Be conservative for the moment. 2089 Start = 2090 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2091 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2092 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2093 } 2094 2095 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2096 // if D + (C - D + Step * n) could be proven to not signed wrap 2097 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2098 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2099 const APInt &C = SC->getAPInt(); 2100 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2101 if (D != 0) { 2102 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2103 const SCEV *SResidual = 2104 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2105 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2106 return getAddExpr(SSExtD, SSExtR, 2107 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2108 Depth + 1); 2109 } 2110 } 2111 2112 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2113 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2114 Start = 2115 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2116 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2117 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2118 } 2119 } 2120 2121 // If the input value is provably positive and we could not simplify 2122 // away the sext build a zext instead. 2123 if (isKnownNonNegative(Op)) 2124 return getZeroExtendExpr(Op, Ty, Depth + 1); 2125 2126 // sext(smin(x, y)) -> smin(sext(x), sext(y)) 2127 // sext(smax(x, y)) -> smax(sext(x), sext(y)) 2128 if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) { 2129 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 2130 SmallVector<const SCEV *, 4> Operands; 2131 for (auto *Operand : MinMax->operands()) 2132 Operands.push_back(getSignExtendExpr(Operand, Ty)); 2133 if (isa<SCEVSMinExpr>(MinMax)) 2134 return getSMinExpr(Operands); 2135 return getSMaxExpr(Operands); 2136 } 2137 2138 // The cast wasn't folded; create an explicit cast node. 2139 // Recompute the insert position, as it may have been invalidated. 2140 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2141 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2142 Op, Ty); 2143 UniqueSCEVs.InsertNode(S, IP); 2144 registerUser(S, { Op }); 2145 return S; 2146 } 2147 2148 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2149 Type *Ty) { 2150 switch (Kind) { 2151 case scTruncate: 2152 return getTruncateExpr(Op, Ty); 2153 case scZeroExtend: 2154 return getZeroExtendExpr(Op, Ty); 2155 case scSignExtend: 2156 return getSignExtendExpr(Op, Ty); 2157 case scPtrToInt: 2158 return getPtrToIntExpr(Op, Ty); 2159 default: 2160 llvm_unreachable("Not a SCEV cast expression!"); 2161 } 2162 } 2163 2164 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2165 /// unspecified bits out to the given type. 2166 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2167 Type *Ty) { 2168 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2169 "This is not an extending conversion!"); 2170 assert(isSCEVable(Ty) && 2171 "This is not a conversion to a SCEVable type!"); 2172 Ty = getEffectiveSCEVType(Ty); 2173 2174 // Sign-extend negative constants. 2175 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2176 if (SC->getAPInt().isNegative()) 2177 return getSignExtendExpr(Op, Ty); 2178 2179 // Peel off a truncate cast. 2180 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2181 const SCEV *NewOp = T->getOperand(); 2182 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2183 return getAnyExtendExpr(NewOp, Ty); 2184 return getTruncateOrNoop(NewOp, Ty); 2185 } 2186 2187 // Next try a zext cast. If the cast is folded, use it. 2188 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2189 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2190 return ZExt; 2191 2192 // Next try a sext cast. If the cast is folded, use it. 2193 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2194 if (!isa<SCEVSignExtendExpr>(SExt)) 2195 return SExt; 2196 2197 // Force the cast to be folded into the operands of an addrec. 2198 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2199 SmallVector<const SCEV *, 4> Ops; 2200 for (const SCEV *Op : AR->operands()) 2201 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2202 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2203 } 2204 2205 // If the expression is obviously signed, use the sext cast value. 2206 if (isa<SCEVSMaxExpr>(Op)) 2207 return SExt; 2208 2209 // Absent any other information, use the zext cast value. 2210 return ZExt; 2211 } 2212 2213 /// Process the given Ops list, which is a list of operands to be added under 2214 /// the given scale, update the given map. This is a helper function for 2215 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2216 /// that would form an add expression like this: 2217 /// 2218 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2219 /// 2220 /// where A and B are constants, update the map with these values: 2221 /// 2222 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2223 /// 2224 /// and add 13 + A*B*29 to AccumulatedConstant. 2225 /// This will allow getAddRecExpr to produce this: 2226 /// 2227 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2228 /// 2229 /// This form often exposes folding opportunities that are hidden in 2230 /// the original operand list. 2231 /// 2232 /// Return true iff it appears that any interesting folding opportunities 2233 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2234 /// the common case where no interesting opportunities are present, and 2235 /// is also used as a check to avoid infinite recursion. 2236 static bool 2237 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2238 SmallVectorImpl<const SCEV *> &NewOps, 2239 APInt &AccumulatedConstant, 2240 ArrayRef<const SCEV *> Ops, const APInt &Scale, 2241 ScalarEvolution &SE) { 2242 bool Interesting = false; 2243 2244 // Iterate over the add operands. They are sorted, with constants first. 2245 unsigned i = 0; 2246 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2247 ++i; 2248 // Pull a buried constant out to the outside. 2249 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2250 Interesting = true; 2251 AccumulatedConstant += Scale * C->getAPInt(); 2252 } 2253 2254 // Next comes everything else. We're especially interested in multiplies 2255 // here, but they're in the middle, so just visit the rest with one loop. 2256 for (; i != Ops.size(); ++i) { 2257 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2258 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2259 APInt NewScale = 2260 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2261 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2262 // A multiplication of a constant with another add; recurse. 2263 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2264 Interesting |= 2265 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2266 Add->operands(), NewScale, SE); 2267 } else { 2268 // A multiplication of a constant with some other value. Update 2269 // the map. 2270 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2271 const SCEV *Key = SE.getMulExpr(MulOps); 2272 auto Pair = M.insert({Key, NewScale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += NewScale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } else { 2283 // An ordinary operand. Update the map. 2284 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2285 M.insert({Ops[i], Scale}); 2286 if (Pair.second) { 2287 NewOps.push_back(Pair.first->first); 2288 } else { 2289 Pair.first->second += Scale; 2290 // The map already had an entry for this value, which may indicate 2291 // a folding opportunity. 2292 Interesting = true; 2293 } 2294 } 2295 } 2296 2297 return Interesting; 2298 } 2299 2300 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2301 const SCEV *LHS, const SCEV *RHS, 2302 const Instruction *CtxI) { 2303 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2304 SCEV::NoWrapFlags, unsigned); 2305 switch (BinOp) { 2306 default: 2307 llvm_unreachable("Unsupported binary op"); 2308 case Instruction::Add: 2309 Operation = &ScalarEvolution::getAddExpr; 2310 break; 2311 case Instruction::Sub: 2312 Operation = &ScalarEvolution::getMinusSCEV; 2313 break; 2314 case Instruction::Mul: 2315 Operation = &ScalarEvolution::getMulExpr; 2316 break; 2317 } 2318 2319 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2320 Signed ? &ScalarEvolution::getSignExtendExpr 2321 : &ScalarEvolution::getZeroExtendExpr; 2322 2323 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2324 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2325 auto *WideTy = 2326 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2327 2328 const SCEV *A = (this->*Extension)( 2329 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2330 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2331 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2332 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2333 if (A == B) 2334 return true; 2335 // Can we use context to prove the fact we need? 2336 if (!CtxI) 2337 return false; 2338 // TODO: Support mul. 2339 if (BinOp == Instruction::Mul) 2340 return false; 2341 auto *RHSC = dyn_cast<SCEVConstant>(RHS); 2342 // TODO: Lift this limitation. 2343 if (!RHSC) 2344 return false; 2345 APInt C = RHSC->getAPInt(); 2346 unsigned NumBits = C.getBitWidth(); 2347 bool IsSub = (BinOp == Instruction::Sub); 2348 bool IsNegativeConst = (Signed && C.isNegative()); 2349 // Compute the direction and magnitude by which we need to check overflow. 2350 bool OverflowDown = IsSub ^ IsNegativeConst; 2351 APInt Magnitude = C; 2352 if (IsNegativeConst) { 2353 if (C == APInt::getSignedMinValue(NumBits)) 2354 // TODO: SINT_MIN on inversion gives the same negative value, we don't 2355 // want to deal with that. 2356 return false; 2357 Magnitude = -C; 2358 } 2359 2360 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 2361 if (OverflowDown) { 2362 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. 2363 APInt Min = Signed ? APInt::getSignedMinValue(NumBits) 2364 : APInt::getMinValue(NumBits); 2365 APInt Limit = Min + Magnitude; 2366 return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI); 2367 } else { 2368 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. 2369 APInt Max = Signed ? APInt::getSignedMaxValue(NumBits) 2370 : APInt::getMaxValue(NumBits); 2371 APInt Limit = Max - Magnitude; 2372 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); 2373 } 2374 } 2375 2376 std::optional<SCEV::NoWrapFlags> 2377 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2378 const OverflowingBinaryOperator *OBO) { 2379 // It cannot be done any better. 2380 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2381 return std::nullopt; 2382 2383 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2384 2385 if (OBO->hasNoUnsignedWrap()) 2386 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2387 if (OBO->hasNoSignedWrap()) 2388 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2389 2390 bool Deduced = false; 2391 2392 if (OBO->getOpcode() != Instruction::Add && 2393 OBO->getOpcode() != Instruction::Sub && 2394 OBO->getOpcode() != Instruction::Mul) 2395 return std::nullopt; 2396 2397 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2398 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2399 2400 const Instruction *CtxI = 2401 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; 2402 if (!OBO->hasNoUnsignedWrap() && 2403 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2404 /* Signed */ false, LHS, RHS, CtxI)) { 2405 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2406 Deduced = true; 2407 } 2408 2409 if (!OBO->hasNoSignedWrap() && 2410 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2411 /* Signed */ true, LHS, RHS, CtxI)) { 2412 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2413 Deduced = true; 2414 } 2415 2416 if (Deduced) 2417 return Flags; 2418 return std::nullopt; 2419 } 2420 2421 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2422 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2423 // can't-overflow flags for the operation if possible. 2424 static SCEV::NoWrapFlags 2425 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2426 const ArrayRef<const SCEV *> Ops, 2427 SCEV::NoWrapFlags Flags) { 2428 using namespace std::placeholders; 2429 2430 using OBO = OverflowingBinaryOperator; 2431 2432 bool CanAnalyze = 2433 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2434 (void)CanAnalyze; 2435 assert(CanAnalyze && "don't call from other places!"); 2436 2437 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2438 SCEV::NoWrapFlags SignOrUnsignWrap = 2439 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2440 2441 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2442 auto IsKnownNonNegative = [&](const SCEV *S) { 2443 return SE->isKnownNonNegative(S); 2444 }; 2445 2446 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2447 Flags = 2448 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2449 2450 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2451 2452 if (SignOrUnsignWrap != SignOrUnsignMask && 2453 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2454 isa<SCEVConstant>(Ops[0])) { 2455 2456 auto Opcode = [&] { 2457 switch (Type) { 2458 case scAddExpr: 2459 return Instruction::Add; 2460 case scMulExpr: 2461 return Instruction::Mul; 2462 default: 2463 llvm_unreachable("Unexpected SCEV op."); 2464 } 2465 }(); 2466 2467 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2468 2469 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2470 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2471 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2472 Opcode, C, OBO::NoSignedWrap); 2473 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2474 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2475 } 2476 2477 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2478 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2479 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2480 Opcode, C, OBO::NoUnsignedWrap); 2481 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2482 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2483 } 2484 } 2485 2486 // <0,+,nonnegative><nw> is also nuw 2487 // TODO: Add corresponding nsw case 2488 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2489 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2490 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2491 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2492 2493 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2494 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2495 Ops.size() == 2) { 2496 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2497 if (UDiv->getOperand(1) == Ops[1]) 2498 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2499 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2500 if (UDiv->getOperand(1) == Ops[0]) 2501 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2502 } 2503 2504 return Flags; 2505 } 2506 2507 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2508 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2509 } 2510 2511 /// Get a canonical add expression, or something simpler if possible. 2512 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2513 SCEV::NoWrapFlags OrigFlags, 2514 unsigned Depth) { 2515 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2516 "only nuw or nsw allowed"); 2517 assert(!Ops.empty() && "Cannot get empty add!"); 2518 if (Ops.size() == 1) return Ops[0]; 2519 #ifndef NDEBUG 2520 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2521 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2522 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2523 "SCEVAddExpr operand types don't match!"); 2524 unsigned NumPtrs = count_if( 2525 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2526 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2527 #endif 2528 2529 // Sort by complexity, this groups all similar expression types together. 2530 GroupByComplexity(Ops, &LI, DT); 2531 2532 // If there are any constants, fold them together. 2533 unsigned Idx = 0; 2534 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2535 ++Idx; 2536 assert(Idx < Ops.size()); 2537 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2538 // We found two constants, fold them together! 2539 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2540 if (Ops.size() == 2) return Ops[0]; 2541 Ops.erase(Ops.begin()+1); // Erase the folded element 2542 LHSC = cast<SCEVConstant>(Ops[0]); 2543 } 2544 2545 // If we are left with a constant zero being added, strip it off. 2546 if (LHSC->getValue()->isZero()) { 2547 Ops.erase(Ops.begin()); 2548 --Idx; 2549 } 2550 2551 if (Ops.size() == 1) return Ops[0]; 2552 } 2553 2554 // Delay expensive flag strengthening until necessary. 2555 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2556 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2557 }; 2558 2559 // Limit recursion calls depth. 2560 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2561 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2562 2563 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2564 // Don't strengthen flags if we have no new information. 2565 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2566 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2567 Add->setNoWrapFlags(ComputeFlags(Ops)); 2568 return S; 2569 } 2570 2571 // Okay, check to see if the same value occurs in the operand list more than 2572 // once. If so, merge them together into an multiply expression. Since we 2573 // sorted the list, these values are required to be adjacent. 2574 Type *Ty = Ops[0]->getType(); 2575 bool FoundMatch = false; 2576 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2577 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2578 // Scan ahead to count how many equal operands there are. 2579 unsigned Count = 2; 2580 while (i+Count != e && Ops[i+Count] == Ops[i]) 2581 ++Count; 2582 // Merge the values into a multiply. 2583 const SCEV *Scale = getConstant(Ty, Count); 2584 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2585 if (Ops.size() == Count) 2586 return Mul; 2587 Ops[i] = Mul; 2588 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2589 --i; e -= Count - 1; 2590 FoundMatch = true; 2591 } 2592 if (FoundMatch) 2593 return getAddExpr(Ops, OrigFlags, Depth + 1); 2594 2595 // Check for truncates. If all the operands are truncated from the same 2596 // type, see if factoring out the truncate would permit the result to be 2597 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2598 // if the contents of the resulting outer trunc fold to something simple. 2599 auto FindTruncSrcType = [&]() -> Type * { 2600 // We're ultimately looking to fold an addrec of truncs and muls of only 2601 // constants and truncs, so if we find any other types of SCEV 2602 // as operands of the addrec then we bail and return nullptr here. 2603 // Otherwise, we return the type of the operand of a trunc that we find. 2604 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2605 return T->getOperand()->getType(); 2606 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2607 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2608 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2609 return T->getOperand()->getType(); 2610 } 2611 return nullptr; 2612 }; 2613 if (auto *SrcType = FindTruncSrcType()) { 2614 SmallVector<const SCEV *, 8> LargeOps; 2615 bool Ok = true; 2616 // Check all the operands to see if they can be represented in the 2617 // source type of the truncate. 2618 for (const SCEV *Op : Ops) { 2619 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2620 if (T->getOperand()->getType() != SrcType) { 2621 Ok = false; 2622 break; 2623 } 2624 LargeOps.push_back(T->getOperand()); 2625 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Op)) { 2626 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2627 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Op)) { 2628 SmallVector<const SCEV *, 8> LargeMulOps; 2629 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2630 if (const SCEVTruncateExpr *T = 2631 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2632 if (T->getOperand()->getType() != SrcType) { 2633 Ok = false; 2634 break; 2635 } 2636 LargeMulOps.push_back(T->getOperand()); 2637 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2638 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2639 } else { 2640 Ok = false; 2641 break; 2642 } 2643 } 2644 if (Ok) 2645 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2646 } else { 2647 Ok = false; 2648 break; 2649 } 2650 } 2651 if (Ok) { 2652 // Evaluate the expression in the larger type. 2653 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2654 // If it folds to something simple, use it. Otherwise, don't. 2655 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2656 return getTruncateExpr(Fold, Ty); 2657 } 2658 } 2659 2660 if (Ops.size() == 2) { 2661 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2662 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2663 // C1). 2664 const SCEV *A = Ops[0]; 2665 const SCEV *B = Ops[1]; 2666 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2667 auto *C = dyn_cast<SCEVConstant>(A); 2668 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2669 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2670 auto C2 = C->getAPInt(); 2671 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2672 2673 APInt ConstAdd = C1 + C2; 2674 auto AddFlags = AddExpr->getNoWrapFlags(); 2675 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2676 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2677 ConstAdd.ule(C1)) { 2678 PreservedFlags = 2679 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2680 } 2681 2682 // Adding a constant with the same sign and small magnitude is NSW, if the 2683 // original AddExpr was NSW. 2684 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2685 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2686 ConstAdd.abs().ule(C1.abs())) { 2687 PreservedFlags = 2688 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2689 } 2690 2691 if (PreservedFlags != SCEV::FlagAnyWrap) { 2692 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2693 NewOps[0] = getConstant(ConstAdd); 2694 return getAddExpr(NewOps, PreservedFlags); 2695 } 2696 } 2697 } 2698 2699 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2700 if (Ops.size() == 2) { 2701 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2702 if (Mul && Mul->getNumOperands() == 2 && 2703 Mul->getOperand(0)->isAllOnesValue()) { 2704 const SCEV *X; 2705 const SCEV *Y; 2706 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2707 return getMulExpr(Y, getUDivExpr(X, Y)); 2708 } 2709 } 2710 } 2711 2712 // Skip past any other cast SCEVs. 2713 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2714 ++Idx; 2715 2716 // If there are add operands they would be next. 2717 if (Idx < Ops.size()) { 2718 bool DeletedAdd = false; 2719 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2720 // common NUW flag for expression after inlining. Other flags cannot be 2721 // preserved, because they may depend on the original order of operations. 2722 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2723 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2724 if (Ops.size() > AddOpsInlineThreshold || 2725 Add->getNumOperands() > AddOpsInlineThreshold) 2726 break; 2727 // If we have an add, expand the add operands onto the end of the operands 2728 // list. 2729 Ops.erase(Ops.begin()+Idx); 2730 append_range(Ops, Add->operands()); 2731 DeletedAdd = true; 2732 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2733 } 2734 2735 // If we deleted at least one add, we added operands to the end of the list, 2736 // and they are not necessarily sorted. Recurse to resort and resimplify 2737 // any operands we just acquired. 2738 if (DeletedAdd) 2739 return getAddExpr(Ops, CommonFlags, Depth + 1); 2740 } 2741 2742 // Skip over the add expression until we get to a multiply. 2743 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2744 ++Idx; 2745 2746 // Check to see if there are any folding opportunities present with 2747 // operands multiplied by constant values. 2748 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2749 uint64_t BitWidth = getTypeSizeInBits(Ty); 2750 DenseMap<const SCEV *, APInt> M; 2751 SmallVector<const SCEV *, 8> NewOps; 2752 APInt AccumulatedConstant(BitWidth, 0); 2753 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2754 Ops, APInt(BitWidth, 1), *this)) { 2755 struct APIntCompare { 2756 bool operator()(const APInt &LHS, const APInt &RHS) const { 2757 return LHS.ult(RHS); 2758 } 2759 }; 2760 2761 // Some interesting folding opportunity is present, so its worthwhile to 2762 // re-generate the operands list. Group the operands by constant scale, 2763 // to avoid multiplying by the same constant scale multiple times. 2764 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2765 for (const SCEV *NewOp : NewOps) 2766 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2767 // Re-generate the operands list. 2768 Ops.clear(); 2769 if (AccumulatedConstant != 0) 2770 Ops.push_back(getConstant(AccumulatedConstant)); 2771 for (auto &MulOp : MulOpLists) { 2772 if (MulOp.first == 1) { 2773 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2774 } else if (MulOp.first != 0) { 2775 Ops.push_back(getMulExpr( 2776 getConstant(MulOp.first), 2777 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2778 SCEV::FlagAnyWrap, Depth + 1)); 2779 } 2780 } 2781 if (Ops.empty()) 2782 return getZero(Ty); 2783 if (Ops.size() == 1) 2784 return Ops[0]; 2785 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2786 } 2787 } 2788 2789 // If we are adding something to a multiply expression, make sure the 2790 // something is not already an operand of the multiply. If so, merge it into 2791 // the multiply. 2792 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2793 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2794 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2795 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2796 if (isa<SCEVConstant>(MulOpSCEV)) 2797 continue; 2798 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2799 if (MulOpSCEV == Ops[AddOp]) { 2800 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2801 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2802 if (Mul->getNumOperands() != 2) { 2803 // If the multiply has more than two operands, we must get the 2804 // Y*Z term. 2805 SmallVector<const SCEV *, 4> MulOps( 2806 Mul->operands().take_front(MulOp)); 2807 append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); 2808 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2809 } 2810 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2811 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2812 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2813 SCEV::FlagAnyWrap, Depth + 1); 2814 if (Ops.size() == 2) return OuterMul; 2815 if (AddOp < Idx) { 2816 Ops.erase(Ops.begin()+AddOp); 2817 Ops.erase(Ops.begin()+Idx-1); 2818 } else { 2819 Ops.erase(Ops.begin()+Idx); 2820 Ops.erase(Ops.begin()+AddOp-1); 2821 } 2822 Ops.push_back(OuterMul); 2823 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2824 } 2825 2826 // Check this multiply against other multiplies being added together. 2827 for (unsigned OtherMulIdx = Idx+1; 2828 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2829 ++OtherMulIdx) { 2830 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2831 // If MulOp occurs in OtherMul, we can fold the two multiplies 2832 // together. 2833 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2834 OMulOp != e; ++OMulOp) 2835 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2836 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2837 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2838 if (Mul->getNumOperands() != 2) { 2839 SmallVector<const SCEV *, 4> MulOps( 2840 Mul->operands().take_front(MulOp)); 2841 append_range(MulOps, Mul->operands().drop_front(MulOp+1)); 2842 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2843 } 2844 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2845 if (OtherMul->getNumOperands() != 2) { 2846 SmallVector<const SCEV *, 4> MulOps( 2847 OtherMul->operands().take_front(OMulOp)); 2848 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); 2849 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2850 } 2851 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2852 const SCEV *InnerMulSum = 2853 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2854 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2855 SCEV::FlagAnyWrap, Depth + 1); 2856 if (Ops.size() == 2) return OuterMul; 2857 Ops.erase(Ops.begin()+Idx); 2858 Ops.erase(Ops.begin()+OtherMulIdx-1); 2859 Ops.push_back(OuterMul); 2860 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2861 } 2862 } 2863 } 2864 } 2865 2866 // If there are any add recurrences in the operands list, see if any other 2867 // added values are loop invariant. If so, we can fold them into the 2868 // recurrence. 2869 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2870 ++Idx; 2871 2872 // Scan over all recurrences, trying to fold loop invariants into them. 2873 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2874 // Scan all of the other operands to this add and add them to the vector if 2875 // they are loop invariant w.r.t. the recurrence. 2876 SmallVector<const SCEV *, 8> LIOps; 2877 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2878 const Loop *AddRecLoop = AddRec->getLoop(); 2879 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2880 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2881 LIOps.push_back(Ops[i]); 2882 Ops.erase(Ops.begin()+i); 2883 --i; --e; 2884 } 2885 2886 // If we found some loop invariants, fold them into the recurrence. 2887 if (!LIOps.empty()) { 2888 // Compute nowrap flags for the addition of the loop-invariant ops and 2889 // the addrec. Temporarily push it as an operand for that purpose. These 2890 // flags are valid in the scope of the addrec only. 2891 LIOps.push_back(AddRec); 2892 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2893 LIOps.pop_back(); 2894 2895 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2896 LIOps.push_back(AddRec->getStart()); 2897 2898 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2899 2900 // It is not in general safe to propagate flags valid on an add within 2901 // the addrec scope to one outside it. We must prove that the inner 2902 // scope is guaranteed to execute if the outer one does to be able to 2903 // safely propagate. We know the program is undefined if poison is 2904 // produced on the inner scoped addrec. We also know that *for this use* 2905 // the outer scoped add can't overflow (because of the flags we just 2906 // computed for the inner scoped add) without the program being undefined. 2907 // Proving that entry to the outer scope neccesitates entry to the inner 2908 // scope, thus proves the program undefined if the flags would be violated 2909 // in the outer scope. 2910 SCEV::NoWrapFlags AddFlags = Flags; 2911 if (AddFlags != SCEV::FlagAnyWrap) { 2912 auto *DefI = getDefiningScopeBound(LIOps); 2913 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2914 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2915 AddFlags = SCEV::FlagAnyWrap; 2916 } 2917 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2918 2919 // Build the new addrec. Propagate the NUW and NSW flags if both the 2920 // outer add and the inner addrec are guaranteed to have no overflow. 2921 // Always propagate NW. 2922 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2923 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2924 2925 // If all of the other operands were loop invariant, we are done. 2926 if (Ops.size() == 1) return NewRec; 2927 2928 // Otherwise, add the folded AddRec by the non-invariant parts. 2929 for (unsigned i = 0;; ++i) 2930 if (Ops[i] == AddRec) { 2931 Ops[i] = NewRec; 2932 break; 2933 } 2934 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2935 } 2936 2937 // Okay, if there weren't any loop invariants to be folded, check to see if 2938 // there are multiple AddRec's with the same loop induction variable being 2939 // added together. If so, we can fold them. 2940 for (unsigned OtherIdx = Idx+1; 2941 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2942 ++OtherIdx) { 2943 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2944 // so that the 1st found AddRecExpr is dominated by all others. 2945 assert(DT.dominates( 2946 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2947 AddRec->getLoop()->getHeader()) && 2948 "AddRecExprs are not sorted in reverse dominance order?"); 2949 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2950 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2951 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2952 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2953 ++OtherIdx) { 2954 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2955 if (OtherAddRec->getLoop() == AddRecLoop) { 2956 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2957 i != e; ++i) { 2958 if (i >= AddRecOps.size()) { 2959 append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); 2960 break; 2961 } 2962 SmallVector<const SCEV *, 2> TwoOps = { 2963 AddRecOps[i], OtherAddRec->getOperand(i)}; 2964 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2965 } 2966 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2967 } 2968 } 2969 // Step size has changed, so we cannot guarantee no self-wraparound. 2970 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2971 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2972 } 2973 } 2974 2975 // Otherwise couldn't fold anything into this recurrence. Move onto the 2976 // next one. 2977 } 2978 2979 // Okay, it looks like we really DO need an add expr. Check to see if we 2980 // already have one, otherwise create a new one. 2981 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2982 } 2983 2984 const SCEV * 2985 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2986 SCEV::NoWrapFlags Flags) { 2987 FoldingSetNodeID ID; 2988 ID.AddInteger(scAddExpr); 2989 for (const SCEV *Op : Ops) 2990 ID.AddPointer(Op); 2991 void *IP = nullptr; 2992 SCEVAddExpr *S = 2993 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2994 if (!S) { 2995 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2996 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2997 S = new (SCEVAllocator) 2998 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2999 UniqueSCEVs.InsertNode(S, IP); 3000 registerUser(S, Ops); 3001 } 3002 S->setNoWrapFlags(Flags); 3003 return S; 3004 } 3005 3006 const SCEV * 3007 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 3008 const Loop *L, SCEV::NoWrapFlags Flags) { 3009 FoldingSetNodeID ID; 3010 ID.AddInteger(scAddRecExpr); 3011 for (const SCEV *Op : Ops) 3012 ID.AddPointer(Op); 3013 ID.AddPointer(L); 3014 void *IP = nullptr; 3015 SCEVAddRecExpr *S = 3016 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3017 if (!S) { 3018 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3019 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3020 S = new (SCEVAllocator) 3021 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 3022 UniqueSCEVs.InsertNode(S, IP); 3023 LoopUsers[L].push_back(S); 3024 registerUser(S, Ops); 3025 } 3026 setNoWrapFlags(S, Flags); 3027 return S; 3028 } 3029 3030 const SCEV * 3031 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 3032 SCEV::NoWrapFlags Flags) { 3033 FoldingSetNodeID ID; 3034 ID.AddInteger(scMulExpr); 3035 for (const SCEV *Op : Ops) 3036 ID.AddPointer(Op); 3037 void *IP = nullptr; 3038 SCEVMulExpr *S = 3039 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3040 if (!S) { 3041 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3042 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3043 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 3044 O, Ops.size()); 3045 UniqueSCEVs.InsertNode(S, IP); 3046 registerUser(S, Ops); 3047 } 3048 S->setNoWrapFlags(Flags); 3049 return S; 3050 } 3051 3052 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 3053 uint64_t k = i*j; 3054 if (j > 1 && k / j != i) Overflow = true; 3055 return k; 3056 } 3057 3058 /// Compute the result of "n choose k", the binomial coefficient. If an 3059 /// intermediate computation overflows, Overflow will be set and the return will 3060 /// be garbage. Overflow is not cleared on absence of overflow. 3061 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3062 // We use the multiplicative formula: 3063 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3064 // At each iteration, we take the n-th term of the numeral and divide by the 3065 // (k-n)th term of the denominator. This division will always produce an 3066 // integral result, and helps reduce the chance of overflow in the 3067 // intermediate computations. However, we can still overflow even when the 3068 // final result would fit. 3069 3070 if (n == 0 || n == k) return 1; 3071 if (k > n) return 0; 3072 3073 if (k > n/2) 3074 k = n-k; 3075 3076 uint64_t r = 1; 3077 for (uint64_t i = 1; i <= k; ++i) { 3078 r = umul_ov(r, n-(i-1), Overflow); 3079 r /= i; 3080 } 3081 return r; 3082 } 3083 3084 /// Determine if any of the operands in this SCEV are a constant or if 3085 /// any of the add or multiply expressions in this SCEV contain a constant. 3086 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3087 struct FindConstantInAddMulChain { 3088 bool FoundConstant = false; 3089 3090 bool follow(const SCEV *S) { 3091 FoundConstant |= isa<SCEVConstant>(S); 3092 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3093 } 3094 3095 bool isDone() const { 3096 return FoundConstant; 3097 } 3098 }; 3099 3100 FindConstantInAddMulChain F; 3101 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3102 ST.visitAll(StartExpr); 3103 return F.FoundConstant; 3104 } 3105 3106 /// Get a canonical multiply expression, or something simpler if possible. 3107 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3108 SCEV::NoWrapFlags OrigFlags, 3109 unsigned Depth) { 3110 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3111 "only nuw or nsw allowed"); 3112 assert(!Ops.empty() && "Cannot get empty mul!"); 3113 if (Ops.size() == 1) return Ops[0]; 3114 #ifndef NDEBUG 3115 Type *ETy = Ops[0]->getType(); 3116 assert(!ETy->isPointerTy()); 3117 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3118 assert(Ops[i]->getType() == ETy && 3119 "SCEVMulExpr operand types don't match!"); 3120 #endif 3121 3122 // Sort by complexity, this groups all similar expression types together. 3123 GroupByComplexity(Ops, &LI, DT); 3124 3125 // If there are any constants, fold them together. 3126 unsigned Idx = 0; 3127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3128 ++Idx; 3129 assert(Idx < Ops.size()); 3130 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3131 // We found two constants, fold them together! 3132 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3133 if (Ops.size() == 2) return Ops[0]; 3134 Ops.erase(Ops.begin()+1); // Erase the folded element 3135 LHSC = cast<SCEVConstant>(Ops[0]); 3136 } 3137 3138 // If we have a multiply of zero, it will always be zero. 3139 if (LHSC->getValue()->isZero()) 3140 return LHSC; 3141 3142 // If we are left with a constant one being multiplied, strip it off. 3143 if (LHSC->getValue()->isOne()) { 3144 Ops.erase(Ops.begin()); 3145 --Idx; 3146 } 3147 3148 if (Ops.size() == 1) 3149 return Ops[0]; 3150 } 3151 3152 // Delay expensive flag strengthening until necessary. 3153 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3154 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3155 }; 3156 3157 // Limit recursion calls depth. 3158 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3159 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3160 3161 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3162 // Don't strengthen flags if we have no new information. 3163 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3164 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3165 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3166 return S; 3167 } 3168 3169 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3170 if (Ops.size() == 2) { 3171 // C1*(C2+V) -> C1*C2 + C1*V 3172 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3173 // If any of Add's ops are Adds or Muls with a constant, apply this 3174 // transformation as well. 3175 // 3176 // TODO: There are some cases where this transformation is not 3177 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3178 // this transformation should be narrowed down. 3179 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3180 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3181 SCEV::FlagAnyWrap, Depth + 1); 3182 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3183 SCEV::FlagAnyWrap, Depth + 1); 3184 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3185 } 3186 3187 if (Ops[0]->isAllOnesValue()) { 3188 // If we have a mul by -1 of an add, try distributing the -1 among the 3189 // add operands. 3190 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3191 SmallVector<const SCEV *, 4> NewOps; 3192 bool AnyFolded = false; 3193 for (const SCEV *AddOp : Add->operands()) { 3194 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3195 Depth + 1); 3196 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3197 NewOps.push_back(Mul); 3198 } 3199 if (AnyFolded) 3200 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3201 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3202 // Negation preserves a recurrence's no self-wrap property. 3203 SmallVector<const SCEV *, 4> Operands; 3204 for (const SCEV *AddRecOp : AddRec->operands()) 3205 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3206 Depth + 1)); 3207 // Let M be the minimum representable signed value. AddRec with nsw 3208 // multiplied by -1 can have signed overflow if and only if it takes a 3209 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the 3210 // maximum signed value. In all other cases signed overflow is 3211 // impossible. 3212 auto FlagsMask = SCEV::FlagNW; 3213 if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) { 3214 auto MinInt = 3215 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType())); 3216 if (getSignedRangeMin(AddRec) != MinInt) 3217 FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW); 3218 } 3219 return getAddRecExpr(Operands, AddRec->getLoop(), 3220 AddRec->getNoWrapFlags(FlagsMask)); 3221 } 3222 } 3223 } 3224 } 3225 3226 // Skip over the add expression until we get to a multiply. 3227 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3228 ++Idx; 3229 3230 // If there are mul operands inline them all into this expression. 3231 if (Idx < Ops.size()) { 3232 bool DeletedMul = false; 3233 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3234 if (Ops.size() > MulOpsInlineThreshold) 3235 break; 3236 // If we have an mul, expand the mul operands onto the end of the 3237 // operands list. 3238 Ops.erase(Ops.begin()+Idx); 3239 append_range(Ops, Mul->operands()); 3240 DeletedMul = true; 3241 } 3242 3243 // If we deleted at least one mul, we added operands to the end of the 3244 // list, and they are not necessarily sorted. Recurse to resort and 3245 // resimplify any operands we just acquired. 3246 if (DeletedMul) 3247 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3248 } 3249 3250 // If there are any add recurrences in the operands list, see if any other 3251 // added values are loop invariant. If so, we can fold them into the 3252 // recurrence. 3253 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3254 ++Idx; 3255 3256 // Scan over all recurrences, trying to fold loop invariants into them. 3257 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3258 // Scan all of the other operands to this mul and add them to the vector 3259 // if they are loop invariant w.r.t. the recurrence. 3260 SmallVector<const SCEV *, 8> LIOps; 3261 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3262 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3263 if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) { 3264 LIOps.push_back(Ops[i]); 3265 Ops.erase(Ops.begin()+i); 3266 --i; --e; 3267 } 3268 3269 // If we found some loop invariants, fold them into the recurrence. 3270 if (!LIOps.empty()) { 3271 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3272 SmallVector<const SCEV *, 4> NewOps; 3273 NewOps.reserve(AddRec->getNumOperands()); 3274 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3275 3276 // If both the mul and addrec are nuw, we can preserve nuw. 3277 // If both the mul and addrec are nsw, we can only preserve nsw if either 3278 // a) they are also nuw, or 3279 // b) all multiplications of addrec operands with scale are nsw. 3280 SCEV::NoWrapFlags Flags = 3281 AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec})); 3282 3283 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3284 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3285 SCEV::FlagAnyWrap, Depth + 1)); 3286 3287 if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) { 3288 ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3289 Instruction::Mul, getSignedRange(Scale), 3290 OverflowingBinaryOperator::NoSignedWrap); 3291 if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i)))) 3292 Flags = clearFlags(Flags, SCEV::FlagNSW); 3293 } 3294 } 3295 3296 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags); 3297 3298 // If all of the other operands were loop invariant, we are done. 3299 if (Ops.size() == 1) return NewRec; 3300 3301 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3302 for (unsigned i = 0;; ++i) 3303 if (Ops[i] == AddRec) { 3304 Ops[i] = NewRec; 3305 break; 3306 } 3307 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3308 } 3309 3310 // Okay, if there weren't any loop invariants to be folded, check to see 3311 // if there are multiple AddRec's with the same loop induction variable 3312 // being multiplied together. If so, we can fold them. 3313 3314 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3315 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3316 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3317 // ]]],+,...up to x=2n}. 3318 // Note that the arguments to choose() are always integers with values 3319 // known at compile time, never SCEV objects. 3320 // 3321 // The implementation avoids pointless extra computations when the two 3322 // addrec's are of different length (mathematically, it's equivalent to 3323 // an infinite stream of zeros on the right). 3324 bool OpsModified = false; 3325 for (unsigned OtherIdx = Idx+1; 3326 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3327 ++OtherIdx) { 3328 const SCEVAddRecExpr *OtherAddRec = 3329 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3330 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) 3331 continue; 3332 3333 // Limit max number of arguments to avoid creation of unreasonably big 3334 // SCEVAddRecs with very complex operands. 3335 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3336 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3337 continue; 3338 3339 bool Overflow = false; 3340 Type *Ty = AddRec->getType(); 3341 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3342 SmallVector<const SCEV*, 7> AddRecOps; 3343 for (int x = 0, xe = AddRec->getNumOperands() + 3344 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3345 SmallVector <const SCEV *, 7> SumOps; 3346 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3347 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3348 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3349 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3350 z < ze && !Overflow; ++z) { 3351 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3352 uint64_t Coeff; 3353 if (LargerThan64Bits) 3354 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3355 else 3356 Coeff = Coeff1*Coeff2; 3357 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3358 const SCEV *Term1 = AddRec->getOperand(y-z); 3359 const SCEV *Term2 = OtherAddRec->getOperand(z); 3360 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3361 SCEV::FlagAnyWrap, Depth + 1)); 3362 } 3363 } 3364 if (SumOps.empty()) 3365 SumOps.push_back(getZero(Ty)); 3366 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3367 } 3368 if (!Overflow) { 3369 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 3370 SCEV::FlagAnyWrap); 3371 if (Ops.size() == 2) return NewAddRec; 3372 Ops[Idx] = NewAddRec; 3373 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3374 OpsModified = true; 3375 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3376 if (!AddRec) 3377 break; 3378 } 3379 } 3380 if (OpsModified) 3381 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3382 3383 // Otherwise couldn't fold anything into this recurrence. Move onto the 3384 // next one. 3385 } 3386 3387 // Okay, it looks like we really DO need an mul expr. Check to see if we 3388 // already have one, otherwise create a new one. 3389 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3390 } 3391 3392 /// Represents an unsigned remainder expression based on unsigned division. 3393 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3394 const SCEV *RHS) { 3395 assert(getEffectiveSCEVType(LHS->getType()) == 3396 getEffectiveSCEVType(RHS->getType()) && 3397 "SCEVURemExpr operand types don't match!"); 3398 3399 // Short-circuit easy cases 3400 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3401 // If constant is one, the result is trivial 3402 if (RHSC->getValue()->isOne()) 3403 return getZero(LHS->getType()); // X urem 1 --> 0 3404 3405 // If constant is a power of two, fold into a zext(trunc(LHS)). 3406 if (RHSC->getAPInt().isPowerOf2()) { 3407 Type *FullTy = LHS->getType(); 3408 Type *TruncTy = 3409 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3410 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3411 } 3412 } 3413 3414 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3415 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3416 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3417 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3418 } 3419 3420 /// Get a canonical unsigned division expression, or something simpler if 3421 /// possible. 3422 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3423 const SCEV *RHS) { 3424 assert(!LHS->getType()->isPointerTy() && 3425 "SCEVUDivExpr operand can't be pointer!"); 3426 assert(LHS->getType() == RHS->getType() && 3427 "SCEVUDivExpr operand types don't match!"); 3428 3429 FoldingSetNodeID ID; 3430 ID.AddInteger(scUDivExpr); 3431 ID.AddPointer(LHS); 3432 ID.AddPointer(RHS); 3433 void *IP = nullptr; 3434 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3435 return S; 3436 3437 // 0 udiv Y == 0 3438 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3439 if (LHSC->getValue()->isZero()) 3440 return LHS; 3441 3442 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3443 if (RHSC->getValue()->isOne()) 3444 return LHS; // X udiv 1 --> x 3445 // If the denominator is zero, the result of the udiv is undefined. Don't 3446 // try to analyze it, because the resolution chosen here may differ from 3447 // the resolution chosen in other parts of the compiler. 3448 if (!RHSC->getValue()->isZero()) { 3449 // Determine if the division can be folded into the operands of 3450 // its operands. 3451 // TODO: Generalize this to non-constants by using known-bits information. 3452 Type *Ty = LHS->getType(); 3453 unsigned LZ = RHSC->getAPInt().countl_zero(); 3454 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3455 // For non-power-of-two values, effectively round the value up to the 3456 // nearest power of two. 3457 if (!RHSC->getAPInt().isPowerOf2()) 3458 ++MaxShiftAmt; 3459 IntegerType *ExtTy = 3460 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3461 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3462 if (const SCEVConstant *Step = 3463 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3464 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3465 const APInt &StepInt = Step->getAPInt(); 3466 const APInt &DivInt = RHSC->getAPInt(); 3467 if (!StepInt.urem(DivInt) && 3468 getZeroExtendExpr(AR, ExtTy) == 3469 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3470 getZeroExtendExpr(Step, ExtTy), 3471 AR->getLoop(), SCEV::FlagAnyWrap)) { 3472 SmallVector<const SCEV *, 4> Operands; 3473 for (const SCEV *Op : AR->operands()) 3474 Operands.push_back(getUDivExpr(Op, RHS)); 3475 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3476 } 3477 /// Get a canonical UDivExpr for a recurrence. 3478 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3479 // We can currently only fold X%N if X is constant. 3480 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3481 if (StartC && !DivInt.urem(StepInt) && 3482 getZeroExtendExpr(AR, ExtTy) == 3483 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3484 getZeroExtendExpr(Step, ExtTy), 3485 AR->getLoop(), SCEV::FlagAnyWrap)) { 3486 const APInt &StartInt = StartC->getAPInt(); 3487 const APInt &StartRem = StartInt.urem(StepInt); 3488 if (StartRem != 0) { 3489 const SCEV *NewLHS = 3490 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3491 AR->getLoop(), SCEV::FlagNW); 3492 if (LHS != NewLHS) { 3493 LHS = NewLHS; 3494 3495 // Reset the ID to include the new LHS, and check if it is 3496 // already cached. 3497 ID.clear(); 3498 ID.AddInteger(scUDivExpr); 3499 ID.AddPointer(LHS); 3500 ID.AddPointer(RHS); 3501 IP = nullptr; 3502 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3503 return S; 3504 } 3505 } 3506 } 3507 } 3508 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3509 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3510 SmallVector<const SCEV *, 4> Operands; 3511 for (const SCEV *Op : M->operands()) 3512 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3513 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3514 // Find an operand that's safely divisible. 3515 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3516 const SCEV *Op = M->getOperand(i); 3517 const SCEV *Div = getUDivExpr(Op, RHSC); 3518 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3519 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3520 Operands[i] = Div; 3521 return getMulExpr(Operands); 3522 } 3523 } 3524 } 3525 3526 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3527 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3528 if (auto *DivisorConstant = 3529 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3530 bool Overflow = false; 3531 APInt NewRHS = 3532 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3533 if (Overflow) { 3534 return getConstant(RHSC->getType(), 0, false); 3535 } 3536 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3537 } 3538 } 3539 3540 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3541 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3542 SmallVector<const SCEV *, 4> Operands; 3543 for (const SCEV *Op : A->operands()) 3544 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3545 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3546 Operands.clear(); 3547 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3548 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3549 if (isa<SCEVUDivExpr>(Op) || 3550 getMulExpr(Op, RHS) != A->getOperand(i)) 3551 break; 3552 Operands.push_back(Op); 3553 } 3554 if (Operands.size() == A->getNumOperands()) 3555 return getAddExpr(Operands); 3556 } 3557 } 3558 3559 // Fold if both operands are constant. 3560 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3561 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3562 } 3563 } 3564 3565 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3566 // changes). Make sure we get a new one. 3567 IP = nullptr; 3568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3569 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3570 LHS, RHS); 3571 UniqueSCEVs.InsertNode(S, IP); 3572 registerUser(S, {LHS, RHS}); 3573 return S; 3574 } 3575 3576 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3577 APInt A = C1->getAPInt().abs(); 3578 APInt B = C2->getAPInt().abs(); 3579 uint32_t ABW = A.getBitWidth(); 3580 uint32_t BBW = B.getBitWidth(); 3581 3582 if (ABW > BBW) 3583 B = B.zext(ABW); 3584 else if (ABW < BBW) 3585 A = A.zext(BBW); 3586 3587 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3588 } 3589 3590 /// Get a canonical unsigned division expression, or something simpler if 3591 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3592 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3593 /// it's not exact because the udiv may be clearing bits. 3594 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3595 const SCEV *RHS) { 3596 // TODO: we could try to find factors in all sorts of things, but for now we 3597 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3598 // end of this file for inspiration. 3599 3600 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3601 if (!Mul || !Mul->hasNoUnsignedWrap()) 3602 return getUDivExpr(LHS, RHS); 3603 3604 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3605 // If the mulexpr multiplies by a constant, then that constant must be the 3606 // first element of the mulexpr. 3607 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3608 if (LHSCst == RHSCst) { 3609 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3610 return getMulExpr(Operands); 3611 } 3612 3613 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3614 // that there's a factor provided by one of the other terms. We need to 3615 // check. 3616 APInt Factor = gcd(LHSCst, RHSCst); 3617 if (!Factor.isIntN(1)) { 3618 LHSCst = 3619 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3620 RHSCst = 3621 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3622 SmallVector<const SCEV *, 2> Operands; 3623 Operands.push_back(LHSCst); 3624 append_range(Operands, Mul->operands().drop_front()); 3625 LHS = getMulExpr(Operands); 3626 RHS = RHSCst; 3627 Mul = dyn_cast<SCEVMulExpr>(LHS); 3628 if (!Mul) 3629 return getUDivExactExpr(LHS, RHS); 3630 } 3631 } 3632 } 3633 3634 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3635 if (Mul->getOperand(i) == RHS) { 3636 SmallVector<const SCEV *, 2> Operands; 3637 append_range(Operands, Mul->operands().take_front(i)); 3638 append_range(Operands, Mul->operands().drop_front(i + 1)); 3639 return getMulExpr(Operands); 3640 } 3641 } 3642 3643 return getUDivExpr(LHS, RHS); 3644 } 3645 3646 /// Get an add recurrence expression for the specified loop. Simplify the 3647 /// expression as much as possible. 3648 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3649 const Loop *L, 3650 SCEV::NoWrapFlags Flags) { 3651 SmallVector<const SCEV *, 4> Operands; 3652 Operands.push_back(Start); 3653 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3654 if (StepChrec->getLoop() == L) { 3655 append_range(Operands, StepChrec->operands()); 3656 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3657 } 3658 3659 Operands.push_back(Step); 3660 return getAddRecExpr(Operands, L, Flags); 3661 } 3662 3663 /// Get an add recurrence expression for the specified loop. Simplify the 3664 /// expression as much as possible. 3665 const SCEV * 3666 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3667 const Loop *L, SCEV::NoWrapFlags Flags) { 3668 if (Operands.size() == 1) return Operands[0]; 3669 #ifndef NDEBUG 3670 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3671 for (const SCEV *Op : llvm::drop_begin(Operands)) { 3672 assert(getEffectiveSCEVType(Op->getType()) == ETy && 3673 "SCEVAddRecExpr operand types don't match!"); 3674 assert(!Op->getType()->isPointerTy() && "Step must be integer"); 3675 } 3676 for (const SCEV *Op : Operands) 3677 assert(isAvailableAtLoopEntry(Op, L) && 3678 "SCEVAddRecExpr operand is not available at loop entry!"); 3679 #endif 3680 3681 if (Operands.back()->isZero()) { 3682 Operands.pop_back(); 3683 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3684 } 3685 3686 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3687 // use that information to infer NUW and NSW flags. However, computing a 3688 // BE count requires calling getAddRecExpr, so we may not yet have a 3689 // meaningful BE count at this point (and if we don't, we'd be stuck 3690 // with a SCEVCouldNotCompute as the cached BE count). 3691 3692 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3693 3694 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3695 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3696 const Loop *NestedLoop = NestedAR->getLoop(); 3697 if (L->contains(NestedLoop) 3698 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3699 : (!NestedLoop->contains(L) && 3700 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3701 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3702 Operands[0] = NestedAR->getStart(); 3703 // AddRecs require their operands be loop-invariant with respect to their 3704 // loops. Don't perform this transformation if it would break this 3705 // requirement. 3706 bool AllInvariant = all_of( 3707 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3708 3709 if (AllInvariant) { 3710 // Create a recurrence for the outer loop with the same step size. 3711 // 3712 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3713 // inner recurrence has the same property. 3714 SCEV::NoWrapFlags OuterFlags = 3715 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3716 3717 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3718 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3719 return isLoopInvariant(Op, NestedLoop); 3720 }); 3721 3722 if (AllInvariant) { 3723 // Ok, both add recurrences are valid after the transformation. 3724 // 3725 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3726 // the outer recurrence has the same property. 3727 SCEV::NoWrapFlags InnerFlags = 3728 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3729 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3730 } 3731 } 3732 // Reset Operands to its original state. 3733 Operands[0] = NestedAR; 3734 } 3735 } 3736 3737 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3738 // already have one, otherwise create a new one. 3739 return getOrCreateAddRecExpr(Operands, L, Flags); 3740 } 3741 3742 const SCEV * 3743 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3744 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3745 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3746 // getSCEV(Base)->getType() has the same address space as Base->getType() 3747 // because SCEV::getType() preserves the address space. 3748 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3749 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 3750 if (NW != GEPNoWrapFlags::none()) { 3751 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3752 // but to do that, we have to ensure that said flag is valid in the entire 3753 // defined scope of the SCEV. 3754 // TODO: non-instructions have global scope. We might be able to prove 3755 // some global scope cases 3756 auto *GEPI = dyn_cast<Instruction>(GEP); 3757 if (!GEPI || !isSCEVExprNeverPoison(GEPI)) 3758 NW = GEPNoWrapFlags::none(); 3759 } 3760 3761 SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap; 3762 if (NW.hasNoUnsignedSignedWrap()) 3763 OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNSW); 3764 if (NW.hasNoUnsignedWrap()) 3765 OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNUW); 3766 3767 Type *CurTy = GEP->getType(); 3768 bool FirstIter = true; 3769 SmallVector<const SCEV *, 4> Offsets; 3770 for (const SCEV *IndexExpr : IndexExprs) { 3771 // Compute the (potentially symbolic) offset in bytes for this index. 3772 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3773 // For a struct, add the member offset. 3774 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3775 unsigned FieldNo = Index->getZExtValue(); 3776 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3777 Offsets.push_back(FieldOffset); 3778 3779 // Update CurTy to the type of the field at Index. 3780 CurTy = STy->getTypeAtIndex(Index); 3781 } else { 3782 // Update CurTy to its element type. 3783 if (FirstIter) { 3784 assert(isa<PointerType>(CurTy) && 3785 "The first index of a GEP indexes a pointer"); 3786 CurTy = GEP->getSourceElementType(); 3787 FirstIter = false; 3788 } else { 3789 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3790 } 3791 // For an array, add the element offset, explicitly scaled. 3792 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3793 // Getelementptr indices are signed. 3794 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3795 3796 // Multiply the index by the element size to compute the element offset. 3797 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3798 Offsets.push_back(LocalOffset); 3799 } 3800 } 3801 3802 // Handle degenerate case of GEP without offsets. 3803 if (Offsets.empty()) 3804 return BaseExpr; 3805 3806 // Add the offsets together, assuming nsw if inbounds. 3807 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3808 // Add the base address and the offset. We cannot use the nsw flag, as the 3809 // base address is unsigned. However, if we know that the offset is 3810 // non-negative, we can use nuw. 3811 bool NUW = NW.hasNoUnsignedWrap() || 3812 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset)); 3813 SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3814 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3815 assert(BaseExpr->getType() == GEPExpr->getType() && 3816 "GEP should not change type mid-flight."); 3817 return GEPExpr; 3818 } 3819 3820 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3821 ArrayRef<const SCEV *> Ops) { 3822 FoldingSetNodeID ID; 3823 ID.AddInteger(SCEVType); 3824 for (const SCEV *Op : Ops) 3825 ID.AddPointer(Op); 3826 void *IP = nullptr; 3827 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3828 } 3829 3830 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3831 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3832 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3833 } 3834 3835 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3836 SmallVectorImpl<const SCEV *> &Ops) { 3837 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3838 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3839 if (Ops.size() == 1) return Ops[0]; 3840 #ifndef NDEBUG 3841 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3842 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3843 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3844 "Operand types don't match!"); 3845 assert(Ops[0]->getType()->isPointerTy() == 3846 Ops[i]->getType()->isPointerTy() && 3847 "min/max should be consistently pointerish"); 3848 } 3849 #endif 3850 3851 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3852 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3853 3854 // Sort by complexity, this groups all similar expression types together. 3855 GroupByComplexity(Ops, &LI, DT); 3856 3857 // Check if we have created the same expression before. 3858 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3859 return S; 3860 } 3861 3862 // If there are any constants, fold them together. 3863 unsigned Idx = 0; 3864 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3865 ++Idx; 3866 assert(Idx < Ops.size()); 3867 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3868 switch (Kind) { 3869 case scSMaxExpr: 3870 return APIntOps::smax(LHS, RHS); 3871 case scSMinExpr: 3872 return APIntOps::smin(LHS, RHS); 3873 case scUMaxExpr: 3874 return APIntOps::umax(LHS, RHS); 3875 case scUMinExpr: 3876 return APIntOps::umin(LHS, RHS); 3877 default: 3878 llvm_unreachable("Unknown SCEV min/max opcode"); 3879 } 3880 }; 3881 3882 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3883 // We found two constants, fold them together! 3884 ConstantInt *Fold = ConstantInt::get( 3885 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3886 Ops[0] = getConstant(Fold); 3887 Ops.erase(Ops.begin()+1); // Erase the folded element 3888 if (Ops.size() == 1) return Ops[0]; 3889 LHSC = cast<SCEVConstant>(Ops[0]); 3890 } 3891 3892 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3893 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3894 3895 if (IsMax ? IsMinV : IsMaxV) { 3896 // If we are left with a constant minimum(/maximum)-int, strip it off. 3897 Ops.erase(Ops.begin()); 3898 --Idx; 3899 } else if (IsMax ? IsMaxV : IsMinV) { 3900 // If we have a max(/min) with a constant maximum(/minimum)-int, 3901 // it will always be the extremum. 3902 return LHSC; 3903 } 3904 3905 if (Ops.size() == 1) return Ops[0]; 3906 } 3907 3908 // Find the first operation of the same kind 3909 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3910 ++Idx; 3911 3912 // Check to see if one of the operands is of the same kind. If so, expand its 3913 // operands onto our operand list, and recurse to simplify. 3914 if (Idx < Ops.size()) { 3915 bool DeletedAny = false; 3916 while (Ops[Idx]->getSCEVType() == Kind) { 3917 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3918 Ops.erase(Ops.begin()+Idx); 3919 append_range(Ops, SMME->operands()); 3920 DeletedAny = true; 3921 } 3922 3923 if (DeletedAny) 3924 return getMinMaxExpr(Kind, Ops); 3925 } 3926 3927 // Okay, check to see if the same value occurs in the operand list twice. If 3928 // so, delete one. Since we sorted the list, these values are required to 3929 // be adjacent. 3930 llvm::CmpInst::Predicate GEPred = 3931 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3932 llvm::CmpInst::Predicate LEPred = 3933 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3934 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3935 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3936 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3937 if (Ops[i] == Ops[i + 1] || 3938 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3939 // X op Y op Y --> X op Y 3940 // X op Y --> X, if we know X, Y are ordered appropriately 3941 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3942 --i; 3943 --e; 3944 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3945 Ops[i + 1])) { 3946 // X op Y --> Y, if we know X, Y are ordered appropriately 3947 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3948 --i; 3949 --e; 3950 } 3951 } 3952 3953 if (Ops.size() == 1) return Ops[0]; 3954 3955 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3956 3957 // Okay, it looks like we really DO need an expr. Check to see if we 3958 // already have one, otherwise create a new one. 3959 FoldingSetNodeID ID; 3960 ID.AddInteger(Kind); 3961 for (const SCEV *Op : Ops) 3962 ID.AddPointer(Op); 3963 void *IP = nullptr; 3964 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3965 if (ExistingSCEV) 3966 return ExistingSCEV; 3967 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3968 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3969 SCEV *S = new (SCEVAllocator) 3970 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3971 3972 UniqueSCEVs.InsertNode(S, IP); 3973 registerUser(S, Ops); 3974 return S; 3975 } 3976 3977 namespace { 3978 3979 class SCEVSequentialMinMaxDeduplicatingVisitor final 3980 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3981 std::optional<const SCEV *>> { 3982 using RetVal = std::optional<const SCEV *>; 3983 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3984 3985 ScalarEvolution &SE; 3986 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3987 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3988 SmallPtrSet<const SCEV *, 16> SeenOps; 3989 3990 bool canRecurseInto(SCEVTypes Kind) const { 3991 // We can only recurse into the SCEV expression of the same effective type 3992 // as the type of our root SCEV expression. 3993 return RootKind == Kind || NonSequentialRootKind == Kind; 3994 }; 3995 3996 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3997 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3998 "Only for min/max expressions."); 3999 SCEVTypes Kind = S->getSCEVType(); 4000 4001 if (!canRecurseInto(Kind)) 4002 return S; 4003 4004 auto *NAry = cast<SCEVNAryExpr>(S); 4005 SmallVector<const SCEV *> NewOps; 4006 bool Changed = visit(Kind, NAry->operands(), NewOps); 4007 4008 if (!Changed) 4009 return S; 4010 if (NewOps.empty()) 4011 return std::nullopt; 4012 4013 return isa<SCEVSequentialMinMaxExpr>(S) 4014 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 4015 : SE.getMinMaxExpr(Kind, NewOps); 4016 } 4017 4018 RetVal visit(const SCEV *S) { 4019 // Has the whole operand been seen already? 4020 if (!SeenOps.insert(S).second) 4021 return std::nullopt; 4022 return Base::visit(S); 4023 } 4024 4025 public: 4026 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 4027 SCEVTypes RootKind) 4028 : SE(SE), RootKind(RootKind), 4029 NonSequentialRootKind( 4030 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 4031 RootKind)) {} 4032 4033 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 4034 SmallVectorImpl<const SCEV *> &NewOps) { 4035 bool Changed = false; 4036 SmallVector<const SCEV *> Ops; 4037 Ops.reserve(OrigOps.size()); 4038 4039 for (const SCEV *Op : OrigOps) { 4040 RetVal NewOp = visit(Op); 4041 if (NewOp != Op) 4042 Changed = true; 4043 if (NewOp) 4044 Ops.emplace_back(*NewOp); 4045 } 4046 4047 if (Changed) 4048 NewOps = std::move(Ops); 4049 return Changed; 4050 } 4051 4052 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 4053 4054 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } 4055 4056 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 4057 4058 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 4059 4060 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 4061 4062 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 4063 4064 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 4065 4066 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 4067 4068 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 4069 4070 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 4071 4072 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 4073 return visitAnyMinMaxExpr(Expr); 4074 } 4075 4076 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 4077 return visitAnyMinMaxExpr(Expr); 4078 } 4079 4080 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4081 return visitAnyMinMaxExpr(Expr); 4082 } 4083 4084 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4085 return visitAnyMinMaxExpr(Expr); 4086 } 4087 4088 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4089 return visitAnyMinMaxExpr(Expr); 4090 } 4091 4092 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4093 4094 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4095 }; 4096 4097 } // namespace 4098 4099 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { 4100 switch (Kind) { 4101 case scConstant: 4102 case scVScale: 4103 case scTruncate: 4104 case scZeroExtend: 4105 case scSignExtend: 4106 case scPtrToInt: 4107 case scAddExpr: 4108 case scMulExpr: 4109 case scUDivExpr: 4110 case scAddRecExpr: 4111 case scUMaxExpr: 4112 case scSMaxExpr: 4113 case scUMinExpr: 4114 case scSMinExpr: 4115 case scUnknown: 4116 // If any operand is poison, the whole expression is poison. 4117 return true; 4118 case scSequentialUMinExpr: 4119 // FIXME: if the *first* operand is poison, the whole expression is poison. 4120 return false; // Pessimistically, say that it does not propagate poison. 4121 case scCouldNotCompute: 4122 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4123 } 4124 llvm_unreachable("Unknown SCEV kind!"); 4125 } 4126 4127 namespace { 4128 // The only way poison may be introduced in a SCEV expression is from a 4129 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4130 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4131 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4132 // 4133 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4134 // with the notable exception of umin_seq, where only poison from the first 4135 // operand is (unconditionally) propagated. 4136 struct SCEVPoisonCollector { 4137 bool LookThroughMaybePoisonBlocking; 4138 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison; 4139 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) 4140 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} 4141 4142 bool follow(const SCEV *S) { 4143 if (!LookThroughMaybePoisonBlocking && 4144 !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) 4145 return false; 4146 4147 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4148 if (!isGuaranteedNotToBePoison(SU->getValue())) 4149 MaybePoison.insert(SU); 4150 } 4151 return true; 4152 } 4153 bool isDone() const { return false; } 4154 }; 4155 } // namespace 4156 4157 /// Return true if V is poison given that AssumedPoison is already poison. 4158 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4159 // First collect all SCEVs that might result in AssumedPoison to be poison. 4160 // We need to look through potentially poison-blocking operations here, 4161 // because we want to find all SCEVs that *might* result in poison, not only 4162 // those that are *required* to. 4163 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); 4164 visitAll(AssumedPoison, PC1); 4165 4166 // AssumedPoison is never poison. As the assumption is false, the implication 4167 // is true. Don't bother walking the other SCEV in this case. 4168 if (PC1.MaybePoison.empty()) 4169 return true; 4170 4171 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4172 // as well. We cannot look through potentially poison-blocking operations 4173 // here, as their arguments only *may* make the result poison. 4174 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); 4175 visitAll(S, PC2); 4176 4177 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4178 // it will also make S poison by being part of PC2.MaybePoison. 4179 return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) { 4180 return PC2.MaybePoison.contains(S); 4181 }); 4182 } 4183 4184 void ScalarEvolution::getPoisonGeneratingValues( 4185 SmallPtrSetImpl<const Value *> &Result, const SCEV *S) { 4186 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false); 4187 visitAll(S, PC); 4188 for (const SCEVUnknown *SU : PC.MaybePoison) 4189 Result.insert(SU->getValue()); 4190 } 4191 4192 bool ScalarEvolution::canReuseInstruction( 4193 const SCEV *S, Instruction *I, 4194 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 4195 // If the instruction cannot be poison, it's always safe to reuse. 4196 if (programUndefinedIfPoison(I)) 4197 return true; 4198 4199 // Otherwise, it is possible that I is more poisonous that S. Collect the 4200 // poison-contributors of S, and then check whether I has any additional 4201 // poison-contributors. Poison that is contributed through poison-generating 4202 // flags is handled by dropping those flags instead. 4203 SmallPtrSet<const Value *, 8> PoisonVals; 4204 getPoisonGeneratingValues(PoisonVals, S); 4205 4206 SmallVector<Value *> Worklist; 4207 SmallPtrSet<Value *, 8> Visited; 4208 Worklist.push_back(I); 4209 while (!Worklist.empty()) { 4210 Value *V = Worklist.pop_back_val(); 4211 if (!Visited.insert(V).second) 4212 continue; 4213 4214 // Avoid walking large instruction graphs. 4215 if (Visited.size() > 16) 4216 return false; 4217 4218 // Either the value can't be poison, or the S would also be poison if it 4219 // is. 4220 if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V)) 4221 continue; 4222 4223 auto *I = dyn_cast<Instruction>(V); 4224 if (!I) 4225 return false; 4226 4227 // Disjoint or instructions are interpreted as adds by SCEV. However, we 4228 // can't replace an arbitrary add with disjoint or, even if we drop the 4229 // flag. We would need to convert the or into an add. 4230 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 4231 if (PDI->isDisjoint()) 4232 return false; 4233 4234 // FIXME: Ignore vscale, even though it technically could be poison. Do this 4235 // because SCEV currently assumes it can't be poison. Remove this special 4236 // case once we proper model when vscale can be poison. 4237 if (auto *II = dyn_cast<IntrinsicInst>(I); 4238 II && II->getIntrinsicID() == Intrinsic::vscale) 4239 continue; 4240 4241 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 4242 return false; 4243 4244 // If the instruction can't create poison, we can recurse to its operands. 4245 if (I->hasPoisonGeneratingAnnotations()) 4246 DropPoisonGeneratingInsts.push_back(I); 4247 4248 for (Value *Op : I->operands()) 4249 Worklist.push_back(Op); 4250 } 4251 return true; 4252 } 4253 4254 const SCEV * 4255 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4256 SmallVectorImpl<const SCEV *> &Ops) { 4257 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4258 "Not a SCEVSequentialMinMaxExpr!"); 4259 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4260 if (Ops.size() == 1) 4261 return Ops[0]; 4262 #ifndef NDEBUG 4263 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4264 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4265 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4266 "Operand types don't match!"); 4267 assert(Ops[0]->getType()->isPointerTy() == 4268 Ops[i]->getType()->isPointerTy() && 4269 "min/max should be consistently pointerish"); 4270 } 4271 #endif 4272 4273 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4274 // so we can *NOT* do any kind of sorting of the expressions! 4275 4276 // Check if we have created the same expression before. 4277 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4278 return S; 4279 4280 // FIXME: there are *some* simplifications that we can do here. 4281 4282 // Keep only the first instance of an operand. 4283 { 4284 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4285 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4286 if (Changed) 4287 return getSequentialMinMaxExpr(Kind, Ops); 4288 } 4289 4290 // Check to see if one of the operands is of the same kind. If so, expand its 4291 // operands onto our operand list, and recurse to simplify. 4292 { 4293 unsigned Idx = 0; 4294 bool DeletedAny = false; 4295 while (Idx < Ops.size()) { 4296 if (Ops[Idx]->getSCEVType() != Kind) { 4297 ++Idx; 4298 continue; 4299 } 4300 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4301 Ops.erase(Ops.begin() + Idx); 4302 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), 4303 SMME->operands().end()); 4304 DeletedAny = true; 4305 } 4306 4307 if (DeletedAny) 4308 return getSequentialMinMaxExpr(Kind, Ops); 4309 } 4310 4311 const SCEV *SaturationPoint; 4312 ICmpInst::Predicate Pred; 4313 switch (Kind) { 4314 case scSequentialUMinExpr: 4315 SaturationPoint = getZero(Ops[0]->getType()); 4316 Pred = ICmpInst::ICMP_ULE; 4317 break; 4318 default: 4319 llvm_unreachable("Not a sequential min/max type."); 4320 } 4321 4322 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4323 // We can replace %x umin_seq %y with %x umin %y if either: 4324 // * %y being poison implies %x is also poison. 4325 // * %x cannot be the saturating value (e.g. zero for umin). 4326 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4327 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4328 SaturationPoint)) { 4329 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4330 Ops[i - 1] = getMinMaxExpr( 4331 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4332 SeqOps); 4333 Ops.erase(Ops.begin() + i); 4334 return getSequentialMinMaxExpr(Kind, Ops); 4335 } 4336 // Fold %x umin_seq %y to %x if %x ule %y. 4337 // TODO: We might be able to prove the predicate for a later operand. 4338 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4339 Ops.erase(Ops.begin() + i); 4340 return getSequentialMinMaxExpr(Kind, Ops); 4341 } 4342 } 4343 4344 // Okay, it looks like we really DO need an expr. Check to see if we 4345 // already have one, otherwise create a new one. 4346 FoldingSetNodeID ID; 4347 ID.AddInteger(Kind); 4348 for (const SCEV *Op : Ops) 4349 ID.AddPointer(Op); 4350 void *IP = nullptr; 4351 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4352 if (ExistingSCEV) 4353 return ExistingSCEV; 4354 4355 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4356 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4357 SCEV *S = new (SCEVAllocator) 4358 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4359 4360 UniqueSCEVs.InsertNode(S, IP); 4361 registerUser(S, Ops); 4362 return S; 4363 } 4364 4365 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4366 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4367 return getSMaxExpr(Ops); 4368 } 4369 4370 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4371 return getMinMaxExpr(scSMaxExpr, Ops); 4372 } 4373 4374 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4375 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4376 return getUMaxExpr(Ops); 4377 } 4378 4379 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4380 return getMinMaxExpr(scUMaxExpr, Ops); 4381 } 4382 4383 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4384 const SCEV *RHS) { 4385 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4386 return getSMinExpr(Ops); 4387 } 4388 4389 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4390 return getMinMaxExpr(scSMinExpr, Ops); 4391 } 4392 4393 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4394 bool Sequential) { 4395 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4396 return getUMinExpr(Ops, Sequential); 4397 } 4398 4399 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4400 bool Sequential) { 4401 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4402 : getMinMaxExpr(scUMinExpr, Ops); 4403 } 4404 4405 const SCEV * 4406 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { 4407 const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue()); 4408 if (Size.isScalable()) 4409 Res = getMulExpr(Res, getVScale(IntTy)); 4410 return Res; 4411 } 4412 4413 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4414 return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4415 } 4416 4417 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4418 return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4419 } 4420 4421 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4422 StructType *STy, 4423 unsigned FieldNo) { 4424 // We can bypass creating a target-independent constant expression and then 4425 // folding it back into a ConstantInt. This is just a compile-time 4426 // optimization. 4427 const StructLayout *SL = getDataLayout().getStructLayout(STy); 4428 assert(!SL->getSizeInBits().isScalable() && 4429 "Cannot get offset for structure containing scalable vector types"); 4430 return getConstant(IntTy, SL->getElementOffset(FieldNo)); 4431 } 4432 4433 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4434 // Don't attempt to do anything other than create a SCEVUnknown object 4435 // here. createSCEV only calls getUnknown after checking for all other 4436 // interesting possibilities, and any other code that calls getUnknown 4437 // is doing so in order to hide a value from SCEV canonicalization. 4438 4439 FoldingSetNodeID ID; 4440 ID.AddInteger(scUnknown); 4441 ID.AddPointer(V); 4442 void *IP = nullptr; 4443 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4444 assert(cast<SCEVUnknown>(S)->getValue() == V && 4445 "Stale SCEVUnknown in uniquing map!"); 4446 return S; 4447 } 4448 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4449 FirstUnknown); 4450 FirstUnknown = cast<SCEVUnknown>(S); 4451 UniqueSCEVs.InsertNode(S, IP); 4452 return S; 4453 } 4454 4455 //===----------------------------------------------------------------------===// 4456 // Basic SCEV Analysis and PHI Idiom Recognition Code 4457 // 4458 4459 /// Test if values of the given type are analyzable within the SCEV 4460 /// framework. This primarily includes integer types, and it can optionally 4461 /// include pointer types if the ScalarEvolution class has access to 4462 /// target-specific information. 4463 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4464 // Integers and pointers are always SCEVable. 4465 return Ty->isIntOrPtrTy(); 4466 } 4467 4468 /// Return the size in bits of the specified type, for which isSCEVable must 4469 /// return true. 4470 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4471 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4472 if (Ty->isPointerTy()) 4473 return getDataLayout().getIndexTypeSizeInBits(Ty); 4474 return getDataLayout().getTypeSizeInBits(Ty); 4475 } 4476 4477 /// Return a type with the same bitwidth as the given type and which represents 4478 /// how SCEV will treat the given type, for which isSCEVable must return 4479 /// true. For pointer types, this is the pointer index sized integer type. 4480 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4481 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4482 4483 if (Ty->isIntegerTy()) 4484 return Ty; 4485 4486 // The only other support type is pointer. 4487 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4488 return getDataLayout().getIndexType(Ty); 4489 } 4490 4491 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4492 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4493 } 4494 4495 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A, 4496 const SCEV *B) { 4497 /// For a valid use point to exist, the defining scope of one operand 4498 /// must dominate the other. 4499 bool PreciseA, PreciseB; 4500 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4501 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4502 if (!PreciseA || !PreciseB) 4503 // Can't tell. 4504 return false; 4505 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4506 DT.dominates(ScopeB, ScopeA); 4507 } 4508 4509 const SCEV *ScalarEvolution::getCouldNotCompute() { 4510 return CouldNotCompute.get(); 4511 } 4512 4513 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4514 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4515 auto *SU = dyn_cast<SCEVUnknown>(S); 4516 return SU && SU->getValue() == nullptr; 4517 }); 4518 4519 return !ContainsNulls; 4520 } 4521 4522 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4523 HasRecMapType::iterator I = HasRecMap.find(S); 4524 if (I != HasRecMap.end()) 4525 return I->second; 4526 4527 bool FoundAddRec = 4528 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4529 HasRecMap.insert({S, FoundAddRec}); 4530 return FoundAddRec; 4531 } 4532 4533 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4534 /// by the value and offset from any ValueOffsetPair in the set. 4535 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4536 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4537 if (SI == ExprValueMap.end()) 4538 return std::nullopt; 4539 return SI->second.getArrayRef(); 4540 } 4541 4542 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4543 /// cannot be used separately. eraseValueFromMap should be used to remove 4544 /// V from ValueExprMap and ExprValueMap at the same time. 4545 void ScalarEvolution::eraseValueFromMap(Value *V) { 4546 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4547 if (I != ValueExprMap.end()) { 4548 auto EVIt = ExprValueMap.find(I->second); 4549 bool Removed = EVIt->second.remove(V); 4550 (void) Removed; 4551 assert(Removed && "Value not in ExprValueMap?"); 4552 ValueExprMap.erase(I); 4553 } 4554 } 4555 4556 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4557 // A recursive query may have already computed the SCEV. It should be 4558 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4559 // inferred nowrap flags. 4560 auto It = ValueExprMap.find_as(V); 4561 if (It == ValueExprMap.end()) { 4562 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4563 ExprValueMap[S].insert(V); 4564 } 4565 } 4566 4567 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4568 /// create a new one. 4569 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4570 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4571 4572 if (const SCEV *S = getExistingSCEV(V)) 4573 return S; 4574 return createSCEVIter(V); 4575 } 4576 4577 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4578 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4579 4580 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4581 if (I != ValueExprMap.end()) { 4582 const SCEV *S = I->second; 4583 assert(checkValidity(S) && 4584 "existing SCEV has not been properly invalidated"); 4585 return S; 4586 } 4587 return nullptr; 4588 } 4589 4590 /// Return a SCEV corresponding to -V = -1*V 4591 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4592 SCEV::NoWrapFlags Flags) { 4593 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4594 return getConstant( 4595 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4596 4597 Type *Ty = V->getType(); 4598 Ty = getEffectiveSCEVType(Ty); 4599 return getMulExpr(V, getMinusOne(Ty), Flags); 4600 } 4601 4602 /// If Expr computes ~A, return A else return nullptr 4603 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4604 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4605 if (!Add || Add->getNumOperands() != 2 || 4606 !Add->getOperand(0)->isAllOnesValue()) 4607 return nullptr; 4608 4609 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4610 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4611 !AddRHS->getOperand(0)->isAllOnesValue()) 4612 return nullptr; 4613 4614 return AddRHS->getOperand(1); 4615 } 4616 4617 /// Return a SCEV corresponding to ~V = -1-V 4618 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4619 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4620 4621 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4622 return getConstant( 4623 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4624 4625 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4626 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4627 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4628 SmallVector<const SCEV *, 2> MatchedOperands; 4629 for (const SCEV *Operand : MME->operands()) { 4630 const SCEV *Matched = MatchNotExpr(Operand); 4631 if (!Matched) 4632 return (const SCEV *)nullptr; 4633 MatchedOperands.push_back(Matched); 4634 } 4635 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4636 MatchedOperands); 4637 }; 4638 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4639 return Replaced; 4640 } 4641 4642 Type *Ty = V->getType(); 4643 Ty = getEffectiveSCEVType(Ty); 4644 return getMinusSCEV(getMinusOne(Ty), V); 4645 } 4646 4647 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4648 assert(P->getType()->isPointerTy()); 4649 4650 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4651 // The base of an AddRec is the first operand. 4652 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4653 Ops[0] = removePointerBase(Ops[0]); 4654 // Don't try to transfer nowrap flags for now. We could in some cases 4655 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4656 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4657 } 4658 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4659 // The base of an Add is the pointer operand. 4660 SmallVector<const SCEV *> Ops{Add->operands()}; 4661 const SCEV **PtrOp = nullptr; 4662 for (const SCEV *&AddOp : Ops) { 4663 if (AddOp->getType()->isPointerTy()) { 4664 assert(!PtrOp && "Cannot have multiple pointer ops"); 4665 PtrOp = &AddOp; 4666 } 4667 } 4668 *PtrOp = removePointerBase(*PtrOp); 4669 // Don't try to transfer nowrap flags for now. We could in some cases 4670 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4671 return getAddExpr(Ops); 4672 } 4673 // Any other expression must be a pointer base. 4674 return getZero(P->getType()); 4675 } 4676 4677 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4678 SCEV::NoWrapFlags Flags, 4679 unsigned Depth) { 4680 // Fast path: X - X --> 0. 4681 if (LHS == RHS) 4682 return getZero(LHS->getType()); 4683 4684 // If we subtract two pointers with different pointer bases, bail. 4685 // Eventually, we're going to add an assertion to getMulExpr that we 4686 // can't multiply by a pointer. 4687 if (RHS->getType()->isPointerTy()) { 4688 if (!LHS->getType()->isPointerTy() || 4689 getPointerBase(LHS) != getPointerBase(RHS)) 4690 return getCouldNotCompute(); 4691 LHS = removePointerBase(LHS); 4692 RHS = removePointerBase(RHS); 4693 } 4694 4695 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4696 // makes it so that we cannot make much use of NUW. 4697 auto AddFlags = SCEV::FlagAnyWrap; 4698 const bool RHSIsNotMinSigned = 4699 !getSignedRangeMin(RHS).isMinSignedValue(); 4700 if (hasFlags(Flags, SCEV::FlagNSW)) { 4701 // Let M be the minimum representable signed value. Then (-1)*RHS 4702 // signed-wraps if and only if RHS is M. That can happen even for 4703 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4704 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4705 // (-1)*RHS, we need to prove that RHS != M. 4706 // 4707 // If LHS is non-negative and we know that LHS - RHS does not 4708 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4709 // either by proving that RHS > M or that LHS >= 0. 4710 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4711 AddFlags = SCEV::FlagNSW; 4712 } 4713 } 4714 4715 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4716 // RHS is NSW and LHS >= 0. 4717 // 4718 // The difficulty here is that the NSW flag may have been proven 4719 // relative to a loop that is to be found in a recurrence in LHS and 4720 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4721 // larger scope than intended. 4722 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4723 4724 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4725 } 4726 4727 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4728 unsigned Depth) { 4729 Type *SrcTy = V->getType(); 4730 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4731 "Cannot truncate or zero extend with non-integer arguments!"); 4732 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4733 return V; // No conversion 4734 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4735 return getTruncateExpr(V, Ty, Depth); 4736 return getZeroExtendExpr(V, Ty, Depth); 4737 } 4738 4739 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4740 unsigned Depth) { 4741 Type *SrcTy = V->getType(); 4742 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4743 "Cannot truncate or zero extend with non-integer arguments!"); 4744 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4745 return V; // No conversion 4746 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4747 return getTruncateExpr(V, Ty, Depth); 4748 return getSignExtendExpr(V, Ty, Depth); 4749 } 4750 4751 const SCEV * 4752 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4753 Type *SrcTy = V->getType(); 4754 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4755 "Cannot noop or zero extend with non-integer arguments!"); 4756 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4757 "getNoopOrZeroExtend cannot truncate!"); 4758 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4759 return V; // No conversion 4760 return getZeroExtendExpr(V, Ty); 4761 } 4762 4763 const SCEV * 4764 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4765 Type *SrcTy = V->getType(); 4766 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4767 "Cannot noop or sign extend with non-integer arguments!"); 4768 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4769 "getNoopOrSignExtend cannot truncate!"); 4770 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4771 return V; // No conversion 4772 return getSignExtendExpr(V, Ty); 4773 } 4774 4775 const SCEV * 4776 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4777 Type *SrcTy = V->getType(); 4778 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4779 "Cannot noop or any extend with non-integer arguments!"); 4780 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4781 "getNoopOrAnyExtend cannot truncate!"); 4782 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4783 return V; // No conversion 4784 return getAnyExtendExpr(V, Ty); 4785 } 4786 4787 const SCEV * 4788 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4789 Type *SrcTy = V->getType(); 4790 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4791 "Cannot truncate or noop with non-integer arguments!"); 4792 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4793 "getTruncateOrNoop cannot extend!"); 4794 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4795 return V; // No conversion 4796 return getTruncateExpr(V, Ty); 4797 } 4798 4799 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4800 const SCEV *RHS) { 4801 const SCEV *PromotedLHS = LHS; 4802 const SCEV *PromotedRHS = RHS; 4803 4804 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4805 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4806 else 4807 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4808 4809 return getUMaxExpr(PromotedLHS, PromotedRHS); 4810 } 4811 4812 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4813 const SCEV *RHS, 4814 bool Sequential) { 4815 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4816 return getUMinFromMismatchedTypes(Ops, Sequential); 4817 } 4818 4819 const SCEV * 4820 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4821 bool Sequential) { 4822 assert(!Ops.empty() && "At least one operand must be!"); 4823 // Trivial case. 4824 if (Ops.size() == 1) 4825 return Ops[0]; 4826 4827 // Find the max type first. 4828 Type *MaxType = nullptr; 4829 for (const auto *S : Ops) 4830 if (MaxType) 4831 MaxType = getWiderType(MaxType, S->getType()); 4832 else 4833 MaxType = S->getType(); 4834 assert(MaxType && "Failed to find maximum type!"); 4835 4836 // Extend all ops to max type. 4837 SmallVector<const SCEV *, 2> PromotedOps; 4838 for (const auto *S : Ops) 4839 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4840 4841 // Generate umin. 4842 return getUMinExpr(PromotedOps, Sequential); 4843 } 4844 4845 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4846 // A pointer operand may evaluate to a nonpointer expression, such as null. 4847 if (!V->getType()->isPointerTy()) 4848 return V; 4849 4850 while (true) { 4851 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4852 V = AddRec->getStart(); 4853 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4854 const SCEV *PtrOp = nullptr; 4855 for (const SCEV *AddOp : Add->operands()) { 4856 if (AddOp->getType()->isPointerTy()) { 4857 assert(!PtrOp && "Cannot have multiple pointer ops"); 4858 PtrOp = AddOp; 4859 } 4860 } 4861 assert(PtrOp && "Must have pointer op"); 4862 V = PtrOp; 4863 } else // Not something we can look further into. 4864 return V; 4865 } 4866 } 4867 4868 /// Push users of the given Instruction onto the given Worklist. 4869 static void PushDefUseChildren(Instruction *I, 4870 SmallVectorImpl<Instruction *> &Worklist, 4871 SmallPtrSetImpl<Instruction *> &Visited) { 4872 // Push the def-use children onto the Worklist stack. 4873 for (User *U : I->users()) { 4874 auto *UserInsn = cast<Instruction>(U); 4875 if (Visited.insert(UserInsn).second) 4876 Worklist.push_back(UserInsn); 4877 } 4878 } 4879 4880 namespace { 4881 4882 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4883 /// expression in case its Loop is L. If it is not L then 4884 /// if IgnoreOtherLoops is true then use AddRec itself 4885 /// otherwise rewrite cannot be done. 4886 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4887 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4888 public: 4889 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4890 bool IgnoreOtherLoops = true) { 4891 SCEVInitRewriter Rewriter(L, SE); 4892 const SCEV *Result = Rewriter.visit(S); 4893 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4894 return SE.getCouldNotCompute(); 4895 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4896 ? SE.getCouldNotCompute() 4897 : Result; 4898 } 4899 4900 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4901 if (!SE.isLoopInvariant(Expr, L)) 4902 SeenLoopVariantSCEVUnknown = true; 4903 return Expr; 4904 } 4905 4906 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4907 // Only re-write AddRecExprs for this loop. 4908 if (Expr->getLoop() == L) 4909 return Expr->getStart(); 4910 SeenOtherLoops = true; 4911 return Expr; 4912 } 4913 4914 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4915 4916 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4917 4918 private: 4919 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4920 : SCEVRewriteVisitor(SE), L(L) {} 4921 4922 const Loop *L; 4923 bool SeenLoopVariantSCEVUnknown = false; 4924 bool SeenOtherLoops = false; 4925 }; 4926 4927 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4928 /// increment expression in case its Loop is L. If it is not L then 4929 /// use AddRec itself. 4930 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4931 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4932 public: 4933 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4934 SCEVPostIncRewriter Rewriter(L, SE); 4935 const SCEV *Result = Rewriter.visit(S); 4936 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4937 ? SE.getCouldNotCompute() 4938 : Result; 4939 } 4940 4941 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4942 if (!SE.isLoopInvariant(Expr, L)) 4943 SeenLoopVariantSCEVUnknown = true; 4944 return Expr; 4945 } 4946 4947 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4948 // Only re-write AddRecExprs for this loop. 4949 if (Expr->getLoop() == L) 4950 return Expr->getPostIncExpr(SE); 4951 SeenOtherLoops = true; 4952 return Expr; 4953 } 4954 4955 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4956 4957 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4958 4959 private: 4960 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4961 : SCEVRewriteVisitor(SE), L(L) {} 4962 4963 const Loop *L; 4964 bool SeenLoopVariantSCEVUnknown = false; 4965 bool SeenOtherLoops = false; 4966 }; 4967 4968 /// This class evaluates the compare condition by matching it against the 4969 /// condition of loop latch. If there is a match we assume a true value 4970 /// for the condition while building SCEV nodes. 4971 class SCEVBackedgeConditionFolder 4972 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4973 public: 4974 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4975 ScalarEvolution &SE) { 4976 bool IsPosBECond = false; 4977 Value *BECond = nullptr; 4978 if (BasicBlock *Latch = L->getLoopLatch()) { 4979 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4980 if (BI && BI->isConditional()) { 4981 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4982 "Both outgoing branches should not target same header!"); 4983 BECond = BI->getCondition(); 4984 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4985 } else { 4986 return S; 4987 } 4988 } 4989 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4990 return Rewriter.visit(S); 4991 } 4992 4993 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4994 const SCEV *Result = Expr; 4995 bool InvariantF = SE.isLoopInvariant(Expr, L); 4996 4997 if (!InvariantF) { 4998 Instruction *I = cast<Instruction>(Expr->getValue()); 4999 switch (I->getOpcode()) { 5000 case Instruction::Select: { 5001 SelectInst *SI = cast<SelectInst>(I); 5002 std::optional<const SCEV *> Res = 5003 compareWithBackedgeCondition(SI->getCondition()); 5004 if (Res) { 5005 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); 5006 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 5007 } 5008 break; 5009 } 5010 default: { 5011 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); 5012 if (Res) 5013 Result = *Res; 5014 break; 5015 } 5016 } 5017 } 5018 return Result; 5019 } 5020 5021 private: 5022 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 5023 bool IsPosBECond, ScalarEvolution &SE) 5024 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 5025 IsPositiveBECond(IsPosBECond) {} 5026 5027 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 5028 5029 const Loop *L; 5030 /// Loop back condition. 5031 Value *BackedgeCond = nullptr; 5032 /// Set to true if loop back is on positive branch condition. 5033 bool IsPositiveBECond; 5034 }; 5035 5036 std::optional<const SCEV *> 5037 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 5038 5039 // If value matches the backedge condition for loop latch, 5040 // then return a constant evolution node based on loopback 5041 // branch taken. 5042 if (BackedgeCond == IC) 5043 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 5044 : SE.getZero(Type::getInt1Ty(SE.getContext())); 5045 return std::nullopt; 5046 } 5047 5048 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 5049 public: 5050 static const SCEV *rewrite(const SCEV *S, const Loop *L, 5051 ScalarEvolution &SE) { 5052 SCEVShiftRewriter Rewriter(L, SE); 5053 const SCEV *Result = Rewriter.visit(S); 5054 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 5055 } 5056 5057 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 5058 // Only allow AddRecExprs for this loop. 5059 if (!SE.isLoopInvariant(Expr, L)) 5060 Valid = false; 5061 return Expr; 5062 } 5063 5064 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 5065 if (Expr->getLoop() == L && Expr->isAffine()) 5066 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 5067 Valid = false; 5068 return Expr; 5069 } 5070 5071 bool isValid() { return Valid; } 5072 5073 private: 5074 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 5075 : SCEVRewriteVisitor(SE), L(L) {} 5076 5077 const Loop *L; 5078 bool Valid = true; 5079 }; 5080 5081 } // end anonymous namespace 5082 5083 SCEV::NoWrapFlags 5084 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 5085 if (!AR->isAffine()) 5086 return SCEV::FlagAnyWrap; 5087 5088 using OBO = OverflowingBinaryOperator; 5089 5090 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 5091 5092 if (!AR->hasNoSelfWrap()) { 5093 const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop()); 5094 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) { 5095 ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this)); 5096 const APInt &BECountAP = BECountMax->getAPInt(); 5097 unsigned NoOverflowBitWidth = 5098 BECountAP.getActiveBits() + StepCR.getMinSignedBits(); 5099 if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType())) 5100 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW); 5101 } 5102 } 5103 5104 if (!AR->hasNoSignedWrap()) { 5105 ConstantRange AddRecRange = getSignedRange(AR); 5106 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 5107 5108 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5109 Instruction::Add, IncRange, OBO::NoSignedWrap); 5110 if (NSWRegion.contains(AddRecRange)) 5111 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 5112 } 5113 5114 if (!AR->hasNoUnsignedWrap()) { 5115 ConstantRange AddRecRange = getUnsignedRange(AR); 5116 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 5117 5118 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5119 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 5120 if (NUWRegion.contains(AddRecRange)) 5121 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 5122 } 5123 5124 return Result; 5125 } 5126 5127 SCEV::NoWrapFlags 5128 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5129 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5130 5131 if (AR->hasNoSignedWrap()) 5132 return Result; 5133 5134 if (!AR->isAffine()) 5135 return Result; 5136 5137 // This function can be expensive, only try to prove NSW once per AddRec. 5138 if (!SignedWrapViaInductionTried.insert(AR).second) 5139 return Result; 5140 5141 const SCEV *Step = AR->getStepRecurrence(*this); 5142 const Loop *L = AR->getLoop(); 5143 5144 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5145 // Note that this serves two purposes: It filters out loops that are 5146 // simply not analyzable, and it covers the case where this code is 5147 // being called from within backedge-taken count analysis, such that 5148 // attempting to ask for the backedge-taken count would likely result 5149 // in infinite recursion. In the later case, the analysis code will 5150 // cope with a conservative value, and it will take care to purge 5151 // that value once it has finished. 5152 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5153 5154 // Normally, in the cases we can prove no-overflow via a 5155 // backedge guarding condition, we can also compute a backedge 5156 // taken count for the loop. The exceptions are assumptions and 5157 // guards present in the loop -- SCEV is not great at exploiting 5158 // these to compute max backedge taken counts, but can still use 5159 // these to prove lack of overflow. Use this fact to avoid 5160 // doing extra work that may not pay off. 5161 5162 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5163 AC.assumptions().empty()) 5164 return Result; 5165 5166 // If the backedge is guarded by a comparison with the pre-inc value the 5167 // addrec is safe. Also, if the entry is guarded by a comparison with the 5168 // start value and the backedge is guarded by a comparison with the post-inc 5169 // value, the addrec is safe. 5170 ICmpInst::Predicate Pred; 5171 const SCEV *OverflowLimit = 5172 getSignedOverflowLimitForStep(Step, &Pred, this); 5173 if (OverflowLimit && 5174 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5175 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5176 Result = setFlags(Result, SCEV::FlagNSW); 5177 } 5178 return Result; 5179 } 5180 SCEV::NoWrapFlags 5181 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5182 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5183 5184 if (AR->hasNoUnsignedWrap()) 5185 return Result; 5186 5187 if (!AR->isAffine()) 5188 return Result; 5189 5190 // This function can be expensive, only try to prove NUW once per AddRec. 5191 if (!UnsignedWrapViaInductionTried.insert(AR).second) 5192 return Result; 5193 5194 const SCEV *Step = AR->getStepRecurrence(*this); 5195 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5196 const Loop *L = AR->getLoop(); 5197 5198 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5199 // Note that this serves two purposes: It filters out loops that are 5200 // simply not analyzable, and it covers the case where this code is 5201 // being called from within backedge-taken count analysis, such that 5202 // attempting to ask for the backedge-taken count would likely result 5203 // in infinite recursion. In the later case, the analysis code will 5204 // cope with a conservative value, and it will take care to purge 5205 // that value once it has finished. 5206 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5207 5208 // Normally, in the cases we can prove no-overflow via a 5209 // backedge guarding condition, we can also compute a backedge 5210 // taken count for the loop. The exceptions are assumptions and 5211 // guards present in the loop -- SCEV is not great at exploiting 5212 // these to compute max backedge taken counts, but can still use 5213 // these to prove lack of overflow. Use this fact to avoid 5214 // doing extra work that may not pay off. 5215 5216 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5217 AC.assumptions().empty()) 5218 return Result; 5219 5220 // If the backedge is guarded by a comparison with the pre-inc value the 5221 // addrec is safe. Also, if the entry is guarded by a comparison with the 5222 // start value and the backedge is guarded by a comparison with the post-inc 5223 // value, the addrec is safe. 5224 if (isKnownPositive(Step)) { 5225 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5226 getUnsignedRangeMax(Step)); 5227 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5228 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5229 Result = setFlags(Result, SCEV::FlagNUW); 5230 } 5231 } 5232 5233 return Result; 5234 } 5235 5236 namespace { 5237 5238 /// Represents an abstract binary operation. This may exist as a 5239 /// normal instruction or constant expression, or may have been 5240 /// derived from an expression tree. 5241 struct BinaryOp { 5242 unsigned Opcode; 5243 Value *LHS; 5244 Value *RHS; 5245 bool IsNSW = false; 5246 bool IsNUW = false; 5247 5248 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5249 /// constant expression. 5250 Operator *Op = nullptr; 5251 5252 explicit BinaryOp(Operator *Op) 5253 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5254 Op(Op) { 5255 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5256 IsNSW = OBO->hasNoSignedWrap(); 5257 IsNUW = OBO->hasNoUnsignedWrap(); 5258 } 5259 } 5260 5261 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5262 bool IsNUW = false) 5263 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5264 }; 5265 5266 } // end anonymous namespace 5267 5268 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. 5269 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, 5270 AssumptionCache &AC, 5271 const DominatorTree &DT, 5272 const Instruction *CxtI) { 5273 auto *Op = dyn_cast<Operator>(V); 5274 if (!Op) 5275 return std::nullopt; 5276 5277 // Implementation detail: all the cleverness here should happen without 5278 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5279 // SCEV expressions when possible, and we should not break that. 5280 5281 switch (Op->getOpcode()) { 5282 case Instruction::Add: 5283 case Instruction::Sub: 5284 case Instruction::Mul: 5285 case Instruction::UDiv: 5286 case Instruction::URem: 5287 case Instruction::And: 5288 case Instruction::AShr: 5289 case Instruction::Shl: 5290 return BinaryOp(Op); 5291 5292 case Instruction::Or: { 5293 // Convert or disjoint into add nuw nsw. 5294 if (cast<PossiblyDisjointInst>(Op)->isDisjoint()) 5295 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), 5296 /*IsNSW=*/true, /*IsNUW=*/true); 5297 return BinaryOp(Op); 5298 } 5299 5300 case Instruction::Xor: 5301 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5302 // If the RHS of the xor is a signmask, then this is just an add. 5303 // Instcombine turns add of signmask into xor as a strength reduction step. 5304 if (RHSC->getValue().isSignMask()) 5305 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5306 // Binary `xor` is a bit-wise `add`. 5307 if (V->getType()->isIntegerTy(1)) 5308 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5309 return BinaryOp(Op); 5310 5311 case Instruction::LShr: 5312 // Turn logical shift right of a constant into a unsigned divide. 5313 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5314 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5315 5316 // If the shift count is not less than the bitwidth, the result of 5317 // the shift is undefined. Don't try to analyze it, because the 5318 // resolution chosen here may differ from the resolution chosen in 5319 // other parts of the compiler. 5320 if (SA->getValue().ult(BitWidth)) { 5321 Constant *X = 5322 ConstantInt::get(SA->getContext(), 5323 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5324 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5325 } 5326 } 5327 return BinaryOp(Op); 5328 5329 case Instruction::ExtractValue: { 5330 auto *EVI = cast<ExtractValueInst>(Op); 5331 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5332 break; 5333 5334 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5335 if (!WO) 5336 break; 5337 5338 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5339 bool Signed = WO->isSigned(); 5340 // TODO: Should add nuw/nsw flags for mul as well. 5341 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5342 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5343 5344 // Now that we know that all uses of the arithmetic-result component of 5345 // CI are guarded by the overflow check, we can go ahead and pretend 5346 // that the arithmetic is non-overflowing. 5347 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5348 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5349 } 5350 5351 default: 5352 break; 5353 } 5354 5355 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5356 // semantics as a Sub, return a binary sub expression. 5357 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5358 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5359 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5360 5361 return std::nullopt; 5362 } 5363 5364 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5365 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5366 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5367 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5368 /// follows one of the following patterns: 5369 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5370 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5371 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5372 /// we return the type of the truncation operation, and indicate whether the 5373 /// truncated type should be treated as signed/unsigned by setting 5374 /// \p Signed to true/false, respectively. 5375 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5376 bool &Signed, ScalarEvolution &SE) { 5377 // The case where Op == SymbolicPHI (that is, with no type conversions on 5378 // the way) is handled by the regular add recurrence creating logic and 5379 // would have already been triggered in createAddRecForPHI. Reaching it here 5380 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5381 // because one of the other operands of the SCEVAddExpr updating this PHI is 5382 // not invariant). 5383 // 5384 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5385 // this case predicates that allow us to prove that Op == SymbolicPHI will 5386 // be added. 5387 if (Op == SymbolicPHI) 5388 return nullptr; 5389 5390 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5391 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5392 if (SourceBits != NewBits) 5393 return nullptr; 5394 5395 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5396 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5397 if (!SExt && !ZExt) 5398 return nullptr; 5399 const SCEVTruncateExpr *Trunc = 5400 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5401 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5402 if (!Trunc) 5403 return nullptr; 5404 const SCEV *X = Trunc->getOperand(); 5405 if (X != SymbolicPHI) 5406 return nullptr; 5407 Signed = SExt != nullptr; 5408 return Trunc->getType(); 5409 } 5410 5411 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5412 if (!PN->getType()->isIntegerTy()) 5413 return nullptr; 5414 const Loop *L = LI.getLoopFor(PN->getParent()); 5415 if (!L || L->getHeader() != PN->getParent()) 5416 return nullptr; 5417 return L; 5418 } 5419 5420 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5421 // computation that updates the phi follows the following pattern: 5422 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5423 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5424 // If so, try to see if it can be rewritten as an AddRecExpr under some 5425 // Predicates. If successful, return them as a pair. Also cache the results 5426 // of the analysis. 5427 // 5428 // Example usage scenario: 5429 // Say the Rewriter is called for the following SCEV: 5430 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5431 // where: 5432 // %X = phi i64 (%Start, %BEValue) 5433 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5434 // and call this function with %SymbolicPHI = %X. 5435 // 5436 // The analysis will find that the value coming around the backedge has 5437 // the following SCEV: 5438 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5439 // Upon concluding that this matches the desired pattern, the function 5440 // will return the pair {NewAddRec, SmallPredsVec} where: 5441 // NewAddRec = {%Start,+,%Step} 5442 // SmallPredsVec = {P1, P2, P3} as follows: 5443 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5444 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5445 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5446 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5447 // under the predicates {P1,P2,P3}. 5448 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5449 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5450 // 5451 // TODO's: 5452 // 5453 // 1) Extend the Induction descriptor to also support inductions that involve 5454 // casts: When needed (namely, when we are called in the context of the 5455 // vectorizer induction analysis), a Set of cast instructions will be 5456 // populated by this method, and provided back to isInductionPHI. This is 5457 // needed to allow the vectorizer to properly record them to be ignored by 5458 // the cost model and to avoid vectorizing them (otherwise these casts, 5459 // which are redundant under the runtime overflow checks, will be 5460 // vectorized, which can be costly). 5461 // 5462 // 2) Support additional induction/PHISCEV patterns: We also want to support 5463 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5464 // after the induction update operation (the induction increment): 5465 // 5466 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5467 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5468 // 5469 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5470 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5471 // 5472 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5473 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5474 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5475 SmallVector<const SCEVPredicate *, 3> Predicates; 5476 5477 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5478 // return an AddRec expression under some predicate. 5479 5480 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5481 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5482 assert(L && "Expecting an integer loop header phi"); 5483 5484 // The loop may have multiple entrances or multiple exits; we can analyze 5485 // this phi as an addrec if it has a unique entry value and a unique 5486 // backedge value. 5487 Value *BEValueV = nullptr, *StartValueV = nullptr; 5488 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5489 Value *V = PN->getIncomingValue(i); 5490 if (L->contains(PN->getIncomingBlock(i))) { 5491 if (!BEValueV) { 5492 BEValueV = V; 5493 } else if (BEValueV != V) { 5494 BEValueV = nullptr; 5495 break; 5496 } 5497 } else if (!StartValueV) { 5498 StartValueV = V; 5499 } else if (StartValueV != V) { 5500 StartValueV = nullptr; 5501 break; 5502 } 5503 } 5504 if (!BEValueV || !StartValueV) 5505 return std::nullopt; 5506 5507 const SCEV *BEValue = getSCEV(BEValueV); 5508 5509 // If the value coming around the backedge is an add with the symbolic 5510 // value we just inserted, possibly with casts that we can ignore under 5511 // an appropriate runtime guard, then we found a simple induction variable! 5512 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5513 if (!Add) 5514 return std::nullopt; 5515 5516 // If there is a single occurrence of the symbolic value, possibly 5517 // casted, replace it with a recurrence. 5518 unsigned FoundIndex = Add->getNumOperands(); 5519 Type *TruncTy = nullptr; 5520 bool Signed; 5521 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5522 if ((TruncTy = 5523 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5524 if (FoundIndex == e) { 5525 FoundIndex = i; 5526 break; 5527 } 5528 5529 if (FoundIndex == Add->getNumOperands()) 5530 return std::nullopt; 5531 5532 // Create an add with everything but the specified operand. 5533 SmallVector<const SCEV *, 8> Ops; 5534 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5535 if (i != FoundIndex) 5536 Ops.push_back(Add->getOperand(i)); 5537 const SCEV *Accum = getAddExpr(Ops); 5538 5539 // The runtime checks will not be valid if the step amount is 5540 // varying inside the loop. 5541 if (!isLoopInvariant(Accum, L)) 5542 return std::nullopt; 5543 5544 // *** Part2: Create the predicates 5545 5546 // Analysis was successful: we have a phi-with-cast pattern for which we 5547 // can return an AddRec expression under the following predicates: 5548 // 5549 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5550 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5551 // P2: An Equal predicate that guarantees that 5552 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5553 // P3: An Equal predicate that guarantees that 5554 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5555 // 5556 // As we next prove, the above predicates guarantee that: 5557 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5558 // 5559 // 5560 // More formally, we want to prove that: 5561 // Expr(i+1) = Start + (i+1) * Accum 5562 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5563 // 5564 // Given that: 5565 // 1) Expr(0) = Start 5566 // 2) Expr(1) = Start + Accum 5567 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5568 // 3) Induction hypothesis (step i): 5569 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5570 // 5571 // Proof: 5572 // Expr(i+1) = 5573 // = Start + (i+1)*Accum 5574 // = (Start + i*Accum) + Accum 5575 // = Expr(i) + Accum 5576 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5577 // :: from step i 5578 // 5579 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5580 // 5581 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5582 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5583 // + Accum :: from P3 5584 // 5585 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5586 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5587 // 5588 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5589 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5590 // 5591 // By induction, the same applies to all iterations 1<=i<n: 5592 // 5593 5594 // Create a truncated addrec for which we will add a no overflow check (P1). 5595 const SCEV *StartVal = getSCEV(StartValueV); 5596 const SCEV *PHISCEV = 5597 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5598 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5599 5600 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5601 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5602 // will be constant. 5603 // 5604 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5605 // add P1. 5606 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5607 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5608 Signed ? SCEVWrapPredicate::IncrementNSSW 5609 : SCEVWrapPredicate::IncrementNUSW; 5610 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5611 Predicates.push_back(AddRecPred); 5612 } 5613 5614 // Create the Equal Predicates P2,P3: 5615 5616 // It is possible that the predicates P2 and/or P3 are computable at 5617 // compile time due to StartVal and/or Accum being constants. 5618 // If either one is, then we can check that now and escape if either P2 5619 // or P3 is false. 5620 5621 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5622 // for each of StartVal and Accum 5623 auto getExtendedExpr = [&](const SCEV *Expr, 5624 bool CreateSignExtend) -> const SCEV * { 5625 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5626 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5627 const SCEV *ExtendedExpr = 5628 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5629 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5630 return ExtendedExpr; 5631 }; 5632 5633 // Given: 5634 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5635 // = getExtendedExpr(Expr) 5636 // Determine whether the predicate P: Expr == ExtendedExpr 5637 // is known to be false at compile time 5638 auto PredIsKnownFalse = [&](const SCEV *Expr, 5639 const SCEV *ExtendedExpr) -> bool { 5640 return Expr != ExtendedExpr && 5641 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5642 }; 5643 5644 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5645 if (PredIsKnownFalse(StartVal, StartExtended)) { 5646 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5647 return std::nullopt; 5648 } 5649 5650 // The Step is always Signed (because the overflow checks are either 5651 // NSSW or NUSW) 5652 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5653 if (PredIsKnownFalse(Accum, AccumExtended)) { 5654 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5655 return std::nullopt; 5656 } 5657 5658 auto AppendPredicate = [&](const SCEV *Expr, 5659 const SCEV *ExtendedExpr) -> void { 5660 if (Expr != ExtendedExpr && 5661 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5662 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5663 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5664 Predicates.push_back(Pred); 5665 } 5666 }; 5667 5668 AppendPredicate(StartVal, StartExtended); 5669 AppendPredicate(Accum, AccumExtended); 5670 5671 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5672 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5673 // into NewAR if it will also add the runtime overflow checks specified in 5674 // Predicates. 5675 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5676 5677 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5678 std::make_pair(NewAR, Predicates); 5679 // Remember the result of the analysis for this SCEV at this locayyytion. 5680 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5681 return PredRewrite; 5682 } 5683 5684 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5685 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5686 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5687 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5688 if (!L) 5689 return std::nullopt; 5690 5691 // Check to see if we already analyzed this PHI. 5692 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5693 if (I != PredicatedSCEVRewrites.end()) { 5694 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5695 I->second; 5696 // Analysis was done before and failed to create an AddRec: 5697 if (Rewrite.first == SymbolicPHI) 5698 return std::nullopt; 5699 // Analysis was done before and succeeded to create an AddRec under 5700 // a predicate: 5701 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5702 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5703 return Rewrite; 5704 } 5705 5706 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5707 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5708 5709 // Record in the cache that the analysis failed 5710 if (!Rewrite) { 5711 SmallVector<const SCEVPredicate *, 3> Predicates; 5712 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5713 return std::nullopt; 5714 } 5715 5716 return Rewrite; 5717 } 5718 5719 // FIXME: This utility is currently required because the Rewriter currently 5720 // does not rewrite this expression: 5721 // {0, +, (sext ix (trunc iy to ix) to iy)} 5722 // into {0, +, %step}, 5723 // even when the following Equal predicate exists: 5724 // "%step == (sext ix (trunc iy to ix) to iy)". 5725 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5726 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5727 if (AR1 == AR2) 5728 return true; 5729 5730 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5731 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5732 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5733 return false; 5734 return true; 5735 }; 5736 5737 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5738 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5739 return false; 5740 return true; 5741 } 5742 5743 /// A helper function for createAddRecFromPHI to handle simple cases. 5744 /// 5745 /// This function tries to find an AddRec expression for the simplest (yet most 5746 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5747 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5748 /// technique for finding the AddRec expression. 5749 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5750 Value *BEValueV, 5751 Value *StartValueV) { 5752 const Loop *L = LI.getLoopFor(PN->getParent()); 5753 assert(L && L->getHeader() == PN->getParent()); 5754 assert(BEValueV && StartValueV); 5755 5756 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); 5757 if (!BO) 5758 return nullptr; 5759 5760 if (BO->Opcode != Instruction::Add) 5761 return nullptr; 5762 5763 const SCEV *Accum = nullptr; 5764 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5765 Accum = getSCEV(BO->RHS); 5766 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5767 Accum = getSCEV(BO->LHS); 5768 5769 if (!Accum) 5770 return nullptr; 5771 5772 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5773 if (BO->IsNUW) 5774 Flags = setFlags(Flags, SCEV::FlagNUW); 5775 if (BO->IsNSW) 5776 Flags = setFlags(Flags, SCEV::FlagNSW); 5777 5778 const SCEV *StartVal = getSCEV(StartValueV); 5779 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5780 insertValueToMap(PN, PHISCEV); 5781 5782 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5783 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5784 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5785 proveNoWrapViaConstantRanges(AR))); 5786 } 5787 5788 // We can add Flags to the post-inc expression only if we 5789 // know that it is *undefined behavior* for BEValueV to 5790 // overflow. 5791 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5792 assert(isLoopInvariant(Accum, L) && 5793 "Accum is defined outside L, but is not invariant?"); 5794 if (isAddRecNeverPoison(BEInst, L)) 5795 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5796 } 5797 5798 return PHISCEV; 5799 } 5800 5801 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5802 const Loop *L = LI.getLoopFor(PN->getParent()); 5803 if (!L || L->getHeader() != PN->getParent()) 5804 return nullptr; 5805 5806 // The loop may have multiple entrances or multiple exits; we can analyze 5807 // this phi as an addrec if it has a unique entry value and a unique 5808 // backedge value. 5809 Value *BEValueV = nullptr, *StartValueV = nullptr; 5810 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5811 Value *V = PN->getIncomingValue(i); 5812 if (L->contains(PN->getIncomingBlock(i))) { 5813 if (!BEValueV) { 5814 BEValueV = V; 5815 } else if (BEValueV != V) { 5816 BEValueV = nullptr; 5817 break; 5818 } 5819 } else if (!StartValueV) { 5820 StartValueV = V; 5821 } else if (StartValueV != V) { 5822 StartValueV = nullptr; 5823 break; 5824 } 5825 } 5826 if (!BEValueV || !StartValueV) 5827 return nullptr; 5828 5829 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5830 "PHI node already processed?"); 5831 5832 // First, try to find AddRec expression without creating a fictituos symbolic 5833 // value for PN. 5834 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5835 return S; 5836 5837 // Handle PHI node value symbolically. 5838 const SCEV *SymbolicName = getUnknown(PN); 5839 insertValueToMap(PN, SymbolicName); 5840 5841 // Using this symbolic name for the PHI, analyze the value coming around 5842 // the back-edge. 5843 const SCEV *BEValue = getSCEV(BEValueV); 5844 5845 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5846 // has a special value for the first iteration of the loop. 5847 5848 // If the value coming around the backedge is an add with the symbolic 5849 // value we just inserted, then we found a simple induction variable! 5850 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5851 // If there is a single occurrence of the symbolic value, replace it 5852 // with a recurrence. 5853 unsigned FoundIndex = Add->getNumOperands(); 5854 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5855 if (Add->getOperand(i) == SymbolicName) 5856 if (FoundIndex == e) { 5857 FoundIndex = i; 5858 break; 5859 } 5860 5861 if (FoundIndex != Add->getNumOperands()) { 5862 // Create an add with everything but the specified operand. 5863 SmallVector<const SCEV *, 8> Ops; 5864 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5865 if (i != FoundIndex) 5866 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5867 L, *this)); 5868 const SCEV *Accum = getAddExpr(Ops); 5869 5870 // This is not a valid addrec if the step amount is varying each 5871 // loop iteration, but is not itself an addrec in this loop. 5872 if (isLoopInvariant(Accum, L) || 5873 (isa<SCEVAddRecExpr>(Accum) && 5874 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5875 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5876 5877 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { 5878 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5879 if (BO->IsNUW) 5880 Flags = setFlags(Flags, SCEV::FlagNUW); 5881 if (BO->IsNSW) 5882 Flags = setFlags(Flags, SCEV::FlagNSW); 5883 } 5884 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5885 if (GEP->getOperand(0) == PN) { 5886 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 5887 // If the increment has any nowrap flags, then we know the address 5888 // space cannot be wrapped around. 5889 if (NW != GEPNoWrapFlags::none()) 5890 Flags = setFlags(Flags, SCEV::FlagNW); 5891 // If the GEP is nuw or nusw with non-negative offset, we know that 5892 // no unsigned wrap occurs. We cannot set the nsw flag as only the 5893 // offset is treated as signed, while the base is unsigned. 5894 if (NW.hasNoUnsignedWrap() || 5895 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum))) 5896 Flags = setFlags(Flags, SCEV::FlagNUW); 5897 } 5898 5899 // We cannot transfer nuw and nsw flags from subtraction 5900 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5901 // for instance. 5902 } 5903 5904 const SCEV *StartVal = getSCEV(StartValueV); 5905 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5906 5907 // Okay, for the entire analysis of this edge we assumed the PHI 5908 // to be symbolic. We now need to go back and purge all of the 5909 // entries for the scalars that use the symbolic expression. 5910 forgetMemoizedResults(SymbolicName); 5911 insertValueToMap(PN, PHISCEV); 5912 5913 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5914 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5915 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5916 proveNoWrapViaConstantRanges(AR))); 5917 } 5918 5919 // We can add Flags to the post-inc expression only if we 5920 // know that it is *undefined behavior* for BEValueV to 5921 // overflow. 5922 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5923 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5924 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5925 5926 return PHISCEV; 5927 } 5928 } 5929 } else { 5930 // Otherwise, this could be a loop like this: 5931 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5932 // In this case, j = {1,+,1} and BEValue is j. 5933 // Because the other in-value of i (0) fits the evolution of BEValue 5934 // i really is an addrec evolution. 5935 // 5936 // We can generalize this saying that i is the shifted value of BEValue 5937 // by one iteration: 5938 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5939 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5940 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5941 if (Shifted != getCouldNotCompute() && 5942 Start != getCouldNotCompute()) { 5943 const SCEV *StartVal = getSCEV(StartValueV); 5944 if (Start == StartVal) { 5945 // Okay, for the entire analysis of this edge we assumed the PHI 5946 // to be symbolic. We now need to go back and purge all of the 5947 // entries for the scalars that use the symbolic expression. 5948 forgetMemoizedResults(SymbolicName); 5949 insertValueToMap(PN, Shifted); 5950 return Shifted; 5951 } 5952 } 5953 } 5954 5955 // Remove the temporary PHI node SCEV that has been inserted while intending 5956 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5957 // as it will prevent later (possibly simpler) SCEV expressions to be added 5958 // to the ValueExprMap. 5959 eraseValueFromMap(PN); 5960 5961 return nullptr; 5962 } 5963 5964 // Try to match a control flow sequence that branches out at BI and merges back 5965 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5966 // match. 5967 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5968 Value *&C, Value *&LHS, Value *&RHS) { 5969 C = BI->getCondition(); 5970 5971 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5972 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5973 5974 if (!LeftEdge.isSingleEdge()) 5975 return false; 5976 5977 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5978 5979 Use &LeftUse = Merge->getOperandUse(0); 5980 Use &RightUse = Merge->getOperandUse(1); 5981 5982 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5983 LHS = LeftUse; 5984 RHS = RightUse; 5985 return true; 5986 } 5987 5988 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5989 LHS = RightUse; 5990 RHS = LeftUse; 5991 return true; 5992 } 5993 5994 return false; 5995 } 5996 5997 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5998 auto IsReachable = 5999 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 6000 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 6001 // Try to match 6002 // 6003 // br %cond, label %left, label %right 6004 // left: 6005 // br label %merge 6006 // right: 6007 // br label %merge 6008 // merge: 6009 // V = phi [ %x, %left ], [ %y, %right ] 6010 // 6011 // as "select %cond, %x, %y" 6012 6013 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 6014 assert(IDom && "At least the entry block should dominate PN"); 6015 6016 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 6017 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 6018 6019 if (BI && BI->isConditional() && 6020 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 6021 properlyDominates(getSCEV(LHS), PN->getParent()) && 6022 properlyDominates(getSCEV(RHS), PN->getParent())) 6023 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 6024 } 6025 6026 return nullptr; 6027 } 6028 6029 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 6030 if (const SCEV *S = createAddRecFromPHI(PN)) 6031 return S; 6032 6033 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 6034 return getSCEV(V); 6035 6036 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 6037 return S; 6038 6039 // If it's not a loop phi, we can't handle it yet. 6040 return getUnknown(PN); 6041 } 6042 6043 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 6044 SCEVTypes RootKind) { 6045 struct FindClosure { 6046 const SCEV *OperandToFind; 6047 const SCEVTypes RootKind; // Must be a sequential min/max expression. 6048 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 6049 6050 bool Found = false; 6051 6052 bool canRecurseInto(SCEVTypes Kind) const { 6053 // We can only recurse into the SCEV expression of the same effective type 6054 // as the type of our root SCEV expression, and into zero-extensions. 6055 return RootKind == Kind || NonSequentialRootKind == Kind || 6056 scZeroExtend == Kind; 6057 }; 6058 6059 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 6060 : OperandToFind(OperandToFind), RootKind(RootKind), 6061 NonSequentialRootKind( 6062 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 6063 RootKind)) {} 6064 6065 bool follow(const SCEV *S) { 6066 Found = S == OperandToFind; 6067 6068 return !isDone() && canRecurseInto(S->getSCEVType()); 6069 } 6070 6071 bool isDone() const { return Found; } 6072 }; 6073 6074 FindClosure FC(OperandToFind, RootKind); 6075 visitAll(Root, FC); 6076 return FC.Found; 6077 } 6078 6079 std::optional<const SCEV *> 6080 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, 6081 ICmpInst *Cond, 6082 Value *TrueVal, 6083 Value *FalseVal) { 6084 // Try to match some simple smax or umax patterns. 6085 auto *ICI = Cond; 6086 6087 Value *LHS = ICI->getOperand(0); 6088 Value *RHS = ICI->getOperand(1); 6089 6090 switch (ICI->getPredicate()) { 6091 case ICmpInst::ICMP_SLT: 6092 case ICmpInst::ICMP_SLE: 6093 case ICmpInst::ICMP_ULT: 6094 case ICmpInst::ICMP_ULE: 6095 std::swap(LHS, RHS); 6096 [[fallthrough]]; 6097 case ICmpInst::ICMP_SGT: 6098 case ICmpInst::ICMP_SGE: 6099 case ICmpInst::ICMP_UGT: 6100 case ICmpInst::ICMP_UGE: 6101 // a > b ? a+x : b+x -> max(a, b)+x 6102 // a > b ? b+x : a+x -> min(a, b)+x 6103 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { 6104 bool Signed = ICI->isSigned(); 6105 const SCEV *LA = getSCEV(TrueVal); 6106 const SCEV *RA = getSCEV(FalseVal); 6107 const SCEV *LS = getSCEV(LHS); 6108 const SCEV *RS = getSCEV(RHS); 6109 if (LA->getType()->isPointerTy()) { 6110 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6111 // Need to make sure we can't produce weird expressions involving 6112 // negated pointers. 6113 if (LA == LS && RA == RS) 6114 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6115 if (LA == RS && RA == LS) 6116 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6117 } 6118 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6119 if (Op->getType()->isPointerTy()) { 6120 Op = getLosslessPtrToIntExpr(Op); 6121 if (isa<SCEVCouldNotCompute>(Op)) 6122 return Op; 6123 } 6124 if (Signed) 6125 Op = getNoopOrSignExtend(Op, Ty); 6126 else 6127 Op = getNoopOrZeroExtend(Op, Ty); 6128 return Op; 6129 }; 6130 LS = CoerceOperand(LS); 6131 RS = CoerceOperand(RS); 6132 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6133 break; 6134 const SCEV *LDiff = getMinusSCEV(LA, LS); 6135 const SCEV *RDiff = getMinusSCEV(RA, RS); 6136 if (LDiff == RDiff) 6137 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6138 LDiff); 6139 LDiff = getMinusSCEV(LA, RS); 6140 RDiff = getMinusSCEV(RA, LS); 6141 if (LDiff == RDiff) 6142 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6143 LDiff); 6144 } 6145 break; 6146 case ICmpInst::ICMP_NE: 6147 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6148 std::swap(TrueVal, FalseVal); 6149 [[fallthrough]]; 6150 case ICmpInst::ICMP_EQ: 6151 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6152 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && 6153 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6154 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); 6155 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6156 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6157 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6158 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6159 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6160 return getAddExpr(getUMaxExpr(X, C), Y); 6161 } 6162 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6163 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6164 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6165 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6166 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6167 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6168 const SCEV *X = getSCEV(LHS); 6169 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6170 X = ZExt->getOperand(); 6171 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { 6172 const SCEV *FalseValExpr = getSCEV(FalseVal); 6173 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6174 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, 6175 /*Sequential=*/true); 6176 } 6177 } 6178 break; 6179 default: 6180 break; 6181 } 6182 6183 return std::nullopt; 6184 } 6185 6186 static std::optional<const SCEV *> 6187 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6188 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6189 assert(CondExpr->getType()->isIntegerTy(1) && 6190 TrueExpr->getType() == FalseExpr->getType() && 6191 TrueExpr->getType()->isIntegerTy(1) && 6192 "Unexpected operands of a select."); 6193 6194 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6195 // --> C + (umin_seq cond, x - C) 6196 // 6197 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6198 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6199 // --> C + (umin_seq ~cond, x - C) 6200 6201 // FIXME: while we can't legally model the case where both of the hands 6202 // are fully variable, we only require that the *difference* is constant. 6203 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6204 return std::nullopt; 6205 6206 const SCEV *X, *C; 6207 if (isa<SCEVConstant>(TrueExpr)) { 6208 CondExpr = SE->getNotSCEV(CondExpr); 6209 X = FalseExpr; 6210 C = TrueExpr; 6211 } else { 6212 X = TrueExpr; 6213 C = FalseExpr; 6214 } 6215 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6216 /*Sequential=*/true)); 6217 } 6218 6219 static std::optional<const SCEV *> 6220 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, 6221 Value *FalseVal) { 6222 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6223 return std::nullopt; 6224 6225 const auto *SECond = SE->getSCEV(Cond); 6226 const auto *SETrue = SE->getSCEV(TrueVal); 6227 const auto *SEFalse = SE->getSCEV(FalseVal); 6228 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6229 } 6230 6231 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6232 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6233 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6234 assert(TrueVal->getType() == FalseVal->getType() && 6235 V->getType() == TrueVal->getType() && 6236 "Types of select hands and of the result must match."); 6237 6238 // For now, only deal with i1-typed `select`s. 6239 if (!V->getType()->isIntegerTy(1)) 6240 return getUnknown(V); 6241 6242 if (std::optional<const SCEV *> S = 6243 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6244 return *S; 6245 6246 return getUnknown(V); 6247 } 6248 6249 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6250 Value *TrueVal, 6251 Value *FalseVal) { 6252 // Handle "constant" branch or select. This can occur for instance when a 6253 // loop pass transforms an inner loop and moves on to process the outer loop. 6254 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6255 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6256 6257 if (auto *I = dyn_cast<Instruction>(V)) { 6258 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6259 if (std::optional<const SCEV *> S = 6260 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, 6261 TrueVal, FalseVal)) 6262 return *S; 6263 } 6264 } 6265 6266 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6267 } 6268 6269 /// Expand GEP instructions into add and multiply operations. This allows them 6270 /// to be analyzed by regular SCEV code. 6271 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6272 assert(GEP->getSourceElementType()->isSized() && 6273 "GEP source element type must be sized"); 6274 6275 SmallVector<const SCEV *, 4> IndexExprs; 6276 for (Value *Index : GEP->indices()) 6277 IndexExprs.push_back(getSCEV(Index)); 6278 return getGEPExpr(GEP, IndexExprs); 6279 } 6280 6281 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { 6282 uint64_t BitWidth = getTypeSizeInBits(S->getType()); 6283 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { 6284 return TrailingZeros >= BitWidth 6285 ? APInt::getZero(BitWidth) 6286 : APInt::getOneBitSet(BitWidth, TrailingZeros); 6287 }; 6288 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { 6289 // The result is GCD of all operands results. 6290 APInt Res = getConstantMultiple(N->getOperand(0)); 6291 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) 6292 Res = APIntOps::GreatestCommonDivisor( 6293 Res, getConstantMultiple(N->getOperand(I))); 6294 return Res; 6295 }; 6296 6297 switch (S->getSCEVType()) { 6298 case scConstant: 6299 return cast<SCEVConstant>(S)->getAPInt(); 6300 case scPtrToInt: 6301 return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand()); 6302 case scUDivExpr: 6303 case scVScale: 6304 return APInt(BitWidth, 1); 6305 case scTruncate: { 6306 // Only multiples that are a power of 2 will hold after truncation. 6307 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); 6308 uint32_t TZ = getMinTrailingZeros(T->getOperand()); 6309 return GetShiftedByZeros(TZ); 6310 } 6311 case scZeroExtend: { 6312 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S); 6313 return getConstantMultiple(Z->getOperand()).zext(BitWidth); 6314 } 6315 case scSignExtend: { 6316 // Only multiples that are a power of 2 will hold after sext. 6317 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); 6318 uint32_t TZ = getMinTrailingZeros(E->getOperand()); 6319 return GetShiftedByZeros(TZ); 6320 } 6321 case scMulExpr: { 6322 const SCEVMulExpr *M = cast<SCEVMulExpr>(S); 6323 if (M->hasNoUnsignedWrap()) { 6324 // The result is the product of all operand results. 6325 APInt Res = getConstantMultiple(M->getOperand(0)); 6326 for (const SCEV *Operand : M->operands().drop_front()) 6327 Res = Res * getConstantMultiple(Operand); 6328 return Res; 6329 } 6330 6331 // If there are no wrap guarentees, find the trailing zeros, which is the 6332 // sum of trailing zeros for all its operands. 6333 uint32_t TZ = 0; 6334 for (const SCEV *Operand : M->operands()) 6335 TZ += getMinTrailingZeros(Operand); 6336 return GetShiftedByZeros(TZ); 6337 } 6338 case scAddExpr: 6339 case scAddRecExpr: { 6340 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S); 6341 if (N->hasNoUnsignedWrap()) 6342 return GetGCDMultiple(N); 6343 // Find the trailing bits, which is the minimum of its operands. 6344 uint32_t TZ = getMinTrailingZeros(N->getOperand(0)); 6345 for (const SCEV *Operand : N->operands().drop_front()) 6346 TZ = std::min(TZ, getMinTrailingZeros(Operand)); 6347 return GetShiftedByZeros(TZ); 6348 } 6349 case scUMaxExpr: 6350 case scSMaxExpr: 6351 case scUMinExpr: 6352 case scSMinExpr: 6353 case scSequentialUMinExpr: 6354 return GetGCDMultiple(cast<SCEVNAryExpr>(S)); 6355 case scUnknown: { 6356 // ask ValueTracking for known bits 6357 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6358 unsigned Known = 6359 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT) 6360 .countMinTrailingZeros(); 6361 return GetShiftedByZeros(Known); 6362 } 6363 case scCouldNotCompute: 6364 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6365 } 6366 llvm_unreachable("Unknown SCEV kind!"); 6367 } 6368 6369 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { 6370 auto I = ConstantMultipleCache.find(S); 6371 if (I != ConstantMultipleCache.end()) 6372 return I->second; 6373 6374 APInt Result = getConstantMultipleImpl(S); 6375 auto InsertPair = ConstantMultipleCache.insert({S, Result}); 6376 assert(InsertPair.second && "Should insert a new key"); 6377 return InsertPair.first->second; 6378 } 6379 6380 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { 6381 APInt Multiple = getConstantMultiple(S); 6382 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; 6383 } 6384 6385 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { 6386 return std::min(getConstantMultiple(S).countTrailingZeros(), 6387 (unsigned)getTypeSizeInBits(S->getType())); 6388 } 6389 6390 /// Helper method to assign a range to V from metadata present in the IR. 6391 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6392 if (Instruction *I = dyn_cast<Instruction>(V)) { 6393 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6394 return getConstantRangeFromMetadata(*MD); 6395 if (const auto *CB = dyn_cast<CallBase>(V)) 6396 if (std::optional<ConstantRange> Range = CB->getRange()) 6397 return Range; 6398 } 6399 if (auto *A = dyn_cast<Argument>(V)) 6400 if (std::optional<ConstantRange> Range = A->getRange()) 6401 return Range; 6402 6403 return std::nullopt; 6404 } 6405 6406 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6407 SCEV::NoWrapFlags Flags) { 6408 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6409 AddRec->setNoWrapFlags(Flags); 6410 UnsignedRanges.erase(AddRec); 6411 SignedRanges.erase(AddRec); 6412 ConstantMultipleCache.erase(AddRec); 6413 } 6414 } 6415 6416 ConstantRange ScalarEvolution:: 6417 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6418 const DataLayout &DL = getDataLayout(); 6419 6420 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6421 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6422 6423 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6424 // use information about the trip count to improve our available range. Note 6425 // that the trip count independent cases are already handled by known bits. 6426 // WARNING: The definition of recurrence used here is subtly different than 6427 // the one used by AddRec (and thus most of this file). Step is allowed to 6428 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6429 // and other addrecs in the same loop (for non-affine addrecs). The code 6430 // below intentionally handles the case where step is not loop invariant. 6431 auto *P = dyn_cast<PHINode>(U->getValue()); 6432 if (!P) 6433 return FullSet; 6434 6435 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6436 // even the values that are not available in these blocks may come from them, 6437 // and this leads to false-positive recurrence test. 6438 for (auto *Pred : predecessors(P->getParent())) 6439 if (!DT.isReachableFromEntry(Pred)) 6440 return FullSet; 6441 6442 BinaryOperator *BO; 6443 Value *Start, *Step; 6444 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6445 return FullSet; 6446 6447 // If we found a recurrence in reachable code, we must be in a loop. Note 6448 // that BO might be in some subloop of L, and that's completely okay. 6449 auto *L = LI.getLoopFor(P->getParent()); 6450 assert(L && L->getHeader() == P->getParent()); 6451 if (!L->contains(BO->getParent())) 6452 // NOTE: This bailout should be an assert instead. However, asserting 6453 // the condition here exposes a case where LoopFusion is querying SCEV 6454 // with malformed loop information during the midst of the transform. 6455 // There doesn't appear to be an obvious fix, so for the moment bailout 6456 // until the caller issue can be fixed. PR49566 tracks the bug. 6457 return FullSet; 6458 6459 // TODO: Extend to other opcodes such as mul, and div 6460 switch (BO->getOpcode()) { 6461 default: 6462 return FullSet; 6463 case Instruction::AShr: 6464 case Instruction::LShr: 6465 case Instruction::Shl: 6466 break; 6467 }; 6468 6469 if (BO->getOperand(0) != P) 6470 // TODO: Handle the power function forms some day. 6471 return FullSet; 6472 6473 unsigned TC = getSmallConstantMaxTripCount(L); 6474 if (!TC || TC >= BitWidth) 6475 return FullSet; 6476 6477 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6478 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6479 assert(KnownStart.getBitWidth() == BitWidth && 6480 KnownStep.getBitWidth() == BitWidth); 6481 6482 // Compute total shift amount, being careful of overflow and bitwidths. 6483 auto MaxShiftAmt = KnownStep.getMaxValue(); 6484 APInt TCAP(BitWidth, TC-1); 6485 bool Overflow = false; 6486 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6487 if (Overflow) 6488 return FullSet; 6489 6490 switch (BO->getOpcode()) { 6491 default: 6492 llvm_unreachable("filtered out above"); 6493 case Instruction::AShr: { 6494 // For each ashr, three cases: 6495 // shift = 0 => unchanged value 6496 // saturation => 0 or -1 6497 // other => a value closer to zero (of the same sign) 6498 // Thus, the end value is closer to zero than the start. 6499 auto KnownEnd = KnownBits::ashr(KnownStart, 6500 KnownBits::makeConstant(TotalShift)); 6501 if (KnownStart.isNonNegative()) 6502 // Analogous to lshr (simply not yet canonicalized) 6503 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6504 KnownStart.getMaxValue() + 1); 6505 if (KnownStart.isNegative()) 6506 // End >=u Start && End <=s Start 6507 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6508 KnownEnd.getMaxValue() + 1); 6509 break; 6510 } 6511 case Instruction::LShr: { 6512 // For each lshr, three cases: 6513 // shift = 0 => unchanged value 6514 // saturation => 0 6515 // other => a smaller positive number 6516 // Thus, the low end of the unsigned range is the last value produced. 6517 auto KnownEnd = KnownBits::lshr(KnownStart, 6518 KnownBits::makeConstant(TotalShift)); 6519 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6520 KnownStart.getMaxValue() + 1); 6521 } 6522 case Instruction::Shl: { 6523 // Iff no bits are shifted out, value increases on every shift. 6524 auto KnownEnd = KnownBits::shl(KnownStart, 6525 KnownBits::makeConstant(TotalShift)); 6526 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6527 return ConstantRange(KnownStart.getMinValue(), 6528 KnownEnd.getMaxValue() + 1); 6529 break; 6530 } 6531 }; 6532 return FullSet; 6533 } 6534 6535 const ConstantRange & 6536 ScalarEvolution::getRangeRefIter(const SCEV *S, 6537 ScalarEvolution::RangeSignHint SignHint) { 6538 DenseMap<const SCEV *, ConstantRange> &Cache = 6539 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6540 : SignedRanges; 6541 SmallVector<const SCEV *> WorkList; 6542 SmallPtrSet<const SCEV *, 8> Seen; 6543 6544 // Add Expr to the worklist, if Expr is either an N-ary expression or a 6545 // SCEVUnknown PHI node. 6546 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { 6547 if (!Seen.insert(Expr).second) 6548 return; 6549 if (Cache.contains(Expr)) 6550 return; 6551 switch (Expr->getSCEVType()) { 6552 case scUnknown: 6553 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) 6554 break; 6555 [[fallthrough]]; 6556 case scConstant: 6557 case scVScale: 6558 case scTruncate: 6559 case scZeroExtend: 6560 case scSignExtend: 6561 case scPtrToInt: 6562 case scAddExpr: 6563 case scMulExpr: 6564 case scUDivExpr: 6565 case scAddRecExpr: 6566 case scUMaxExpr: 6567 case scSMaxExpr: 6568 case scUMinExpr: 6569 case scSMinExpr: 6570 case scSequentialUMinExpr: 6571 WorkList.push_back(Expr); 6572 break; 6573 case scCouldNotCompute: 6574 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6575 } 6576 }; 6577 AddToWorklist(S); 6578 6579 // Build worklist by queuing operands of N-ary expressions and phi nodes. 6580 for (unsigned I = 0; I != WorkList.size(); ++I) { 6581 const SCEV *P = WorkList[I]; 6582 auto *UnknownS = dyn_cast<SCEVUnknown>(P); 6583 // If it is not a `SCEVUnknown`, just recurse into operands. 6584 if (!UnknownS) { 6585 for (const SCEV *Op : P->operands()) 6586 AddToWorklist(Op); 6587 continue; 6588 } 6589 // `SCEVUnknown`'s require special treatment. 6590 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { 6591 if (!PendingPhiRangesIter.insert(P).second) 6592 continue; 6593 for (auto &Op : reverse(P->operands())) 6594 AddToWorklist(getSCEV(Op)); 6595 } 6596 } 6597 6598 if (!WorkList.empty()) { 6599 // Use getRangeRef to compute ranges for items in the worklist in reverse 6600 // order. This will force ranges for earlier operands to be computed before 6601 // their users in most cases. 6602 for (const SCEV *P : reverse(drop_begin(WorkList))) { 6603 getRangeRef(P, SignHint); 6604 6605 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) 6606 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) 6607 PendingPhiRangesIter.erase(P); 6608 } 6609 } 6610 6611 return getRangeRef(S, SignHint, 0); 6612 } 6613 6614 /// Determine the range for a particular SCEV. If SignHint is 6615 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6616 /// with a "cleaner" unsigned (resp. signed) representation. 6617 const ConstantRange &ScalarEvolution::getRangeRef( 6618 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { 6619 DenseMap<const SCEV *, ConstantRange> &Cache = 6620 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6621 : SignedRanges; 6622 ConstantRange::PreferredRangeType RangeType = 6623 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6624 : ConstantRange::Signed; 6625 6626 // See if we've computed this range already. 6627 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6628 if (I != Cache.end()) 6629 return I->second; 6630 6631 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6632 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6633 6634 // Switch to iteratively computing the range for S, if it is part of a deeply 6635 // nested expression. 6636 if (Depth > RangeIterThreshold) 6637 return getRangeRefIter(S, SignHint); 6638 6639 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6640 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6641 using OBO = OverflowingBinaryOperator; 6642 6643 // If the value has known zeros, the maximum value will have those known zeros 6644 // as well. 6645 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 6646 APInt Multiple = getNonZeroConstantMultiple(S); 6647 APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple); 6648 if (!Remainder.isZero()) 6649 ConservativeResult = 6650 ConstantRange(APInt::getMinValue(BitWidth), 6651 APInt::getMaxValue(BitWidth) - Remainder + 1); 6652 } 6653 else { 6654 uint32_t TZ = getMinTrailingZeros(S); 6655 if (TZ != 0) { 6656 ConservativeResult = ConstantRange( 6657 APInt::getSignedMinValue(BitWidth), 6658 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6659 } 6660 } 6661 6662 switch (S->getSCEVType()) { 6663 case scConstant: 6664 llvm_unreachable("Already handled above."); 6665 case scVScale: 6666 return setRange(S, SignHint, getVScaleRange(&F, BitWidth)); 6667 case scTruncate: { 6668 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); 6669 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); 6670 return setRange( 6671 Trunc, SignHint, 6672 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); 6673 } 6674 case scZeroExtend: { 6675 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); 6676 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); 6677 return setRange( 6678 ZExt, SignHint, 6679 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); 6680 } 6681 case scSignExtend: { 6682 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); 6683 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); 6684 return setRange( 6685 SExt, SignHint, 6686 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); 6687 } 6688 case scPtrToInt: { 6689 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); 6690 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); 6691 return setRange(PtrToInt, SignHint, X); 6692 } 6693 case scAddExpr: { 6694 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 6695 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); 6696 unsigned WrapType = OBO::AnyWrap; 6697 if (Add->hasNoSignedWrap()) 6698 WrapType |= OBO::NoSignedWrap; 6699 if (Add->hasNoUnsignedWrap()) 6700 WrapType |= OBO::NoUnsignedWrap; 6701 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6702 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1), 6703 WrapType, RangeType); 6704 return setRange(Add, SignHint, 6705 ConservativeResult.intersectWith(X, RangeType)); 6706 } 6707 case scMulExpr: { 6708 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); 6709 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); 6710 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6711 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1)); 6712 return setRange(Mul, SignHint, 6713 ConservativeResult.intersectWith(X, RangeType)); 6714 } 6715 case scUDivExpr: { 6716 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6717 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); 6718 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); 6719 return setRange(UDiv, SignHint, 6720 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6721 } 6722 case scAddRecExpr: { 6723 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); 6724 // If there's no unsigned wrap, the value will never be less than its 6725 // initial value. 6726 if (AddRec->hasNoUnsignedWrap()) { 6727 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6728 if (!UnsignedMinValue.isZero()) 6729 ConservativeResult = ConservativeResult.intersectWith( 6730 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6731 } 6732 6733 // If there's no signed wrap, and all the operands except initial value have 6734 // the same sign or zero, the value won't ever be: 6735 // 1: smaller than initial value if operands are non negative, 6736 // 2: bigger than initial value if operands are non positive. 6737 // For both cases, value can not cross signed min/max boundary. 6738 if (AddRec->hasNoSignedWrap()) { 6739 bool AllNonNeg = true; 6740 bool AllNonPos = true; 6741 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6742 if (!isKnownNonNegative(AddRec->getOperand(i))) 6743 AllNonNeg = false; 6744 if (!isKnownNonPositive(AddRec->getOperand(i))) 6745 AllNonPos = false; 6746 } 6747 if (AllNonNeg) 6748 ConservativeResult = ConservativeResult.intersectWith( 6749 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6750 APInt::getSignedMinValue(BitWidth)), 6751 RangeType); 6752 else if (AllNonPos) 6753 ConservativeResult = ConservativeResult.intersectWith( 6754 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 6755 getSignedRangeMax(AddRec->getStart()) + 6756 1), 6757 RangeType); 6758 } 6759 6760 // TODO: non-affine addrec 6761 if (AddRec->isAffine()) { 6762 const SCEV *MaxBEScev = 6763 getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6764 if (!isa<SCEVCouldNotCompute>(MaxBEScev)) { 6765 APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt(); 6766 6767 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if 6768 // MaxBECount's active bits are all <= AddRec's bit width. 6769 if (MaxBECount.getBitWidth() > BitWidth && 6770 MaxBECount.getActiveBits() <= BitWidth) 6771 MaxBECount = MaxBECount.trunc(BitWidth); 6772 else if (MaxBECount.getBitWidth() < BitWidth) 6773 MaxBECount = MaxBECount.zext(BitWidth); 6774 6775 if (MaxBECount.getBitWidth() == BitWidth) { 6776 auto RangeFromAffine = getRangeForAffineAR( 6777 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6778 ConservativeResult = 6779 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6780 6781 auto RangeFromFactoring = getRangeViaFactoring( 6782 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6783 ConservativeResult = 6784 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6785 } 6786 } 6787 6788 // Now try symbolic BE count and more powerful methods. 6789 if (UseExpensiveRangeSharpening) { 6790 const SCEV *SymbolicMaxBECount = 6791 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6792 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6793 getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth && 6794 AddRec->hasNoSelfWrap()) { 6795 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6796 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6797 ConservativeResult = 6798 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6799 } 6800 } 6801 } 6802 6803 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6804 } 6805 case scUMaxExpr: 6806 case scSMaxExpr: 6807 case scUMinExpr: 6808 case scSMinExpr: 6809 case scSequentialUMinExpr: { 6810 Intrinsic::ID ID; 6811 switch (S->getSCEVType()) { 6812 case scUMaxExpr: 6813 ID = Intrinsic::umax; 6814 break; 6815 case scSMaxExpr: 6816 ID = Intrinsic::smax; 6817 break; 6818 case scUMinExpr: 6819 case scSequentialUMinExpr: 6820 ID = Intrinsic::umin; 6821 break; 6822 case scSMinExpr: 6823 ID = Intrinsic::smin; 6824 break; 6825 default: 6826 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6827 } 6828 6829 const auto *NAry = cast<SCEVNAryExpr>(S); 6830 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); 6831 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6832 X = X.intrinsic( 6833 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); 6834 return setRange(S, SignHint, 6835 ConservativeResult.intersectWith(X, RangeType)); 6836 } 6837 case scUnknown: { 6838 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6839 Value *V = U->getValue(); 6840 6841 // Check if the IR explicitly contains !range metadata. 6842 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); 6843 if (MDRange) 6844 ConservativeResult = 6845 ConservativeResult.intersectWith(*MDRange, RangeType); 6846 6847 // Use facts about recurrences in the underlying IR. Note that add 6848 // recurrences are AddRecExprs and thus don't hit this path. This 6849 // primarily handles shift recurrences. 6850 auto CR = getRangeForUnknownRecurrence(U); 6851 ConservativeResult = ConservativeResult.intersectWith(CR); 6852 6853 // See if ValueTracking can give us a useful range. 6854 const DataLayout &DL = getDataLayout(); 6855 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT); 6856 if (Known.getBitWidth() != BitWidth) 6857 Known = Known.zextOrTrunc(BitWidth); 6858 6859 // ValueTracking may be able to compute a tighter result for the number of 6860 // sign bits than for the value of those sign bits. 6861 unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT); 6862 if (U->getType()->isPointerTy()) { 6863 // If the pointer size is larger than the index size type, this can cause 6864 // NS to be larger than BitWidth. So compensate for this. 6865 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6866 int ptrIdxDiff = ptrSize - BitWidth; 6867 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6868 NS -= ptrIdxDiff; 6869 } 6870 6871 if (NS > 1) { 6872 // If we know any of the sign bits, we know all of the sign bits. 6873 if (!Known.Zero.getHiBits(NS).isZero()) 6874 Known.Zero.setHighBits(NS); 6875 if (!Known.One.getHiBits(NS).isZero()) 6876 Known.One.setHighBits(NS); 6877 } 6878 6879 if (Known.getMinValue() != Known.getMaxValue() + 1) 6880 ConservativeResult = ConservativeResult.intersectWith( 6881 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6882 RangeType); 6883 if (NS > 1) 6884 ConservativeResult = ConservativeResult.intersectWith( 6885 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6886 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6887 RangeType); 6888 6889 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { 6890 // Strengthen the range if the underlying IR value is a 6891 // global/alloca/heap allocation using the size of the object. 6892 ObjectSizeOpts Opts; 6893 Opts.RoundToAlign = false; 6894 Opts.NullIsUnknownSize = true; 6895 uint64_t ObjSize; 6896 if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) || 6897 isAllocationFn(V, &TLI)) && 6898 getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) { 6899 // The highest address the object can start is ObjSize bytes before the 6900 // end (unsigned max value). If this value is not a multiple of the 6901 // alignment, the last possible start value is the next lowest multiple 6902 // of the alignment. Note: The computations below cannot overflow, 6903 // because if they would there's no possible start address for the 6904 // object. 6905 APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize); 6906 uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); 6907 uint64_t Rem = MaxVal.urem(Align); 6908 MaxVal -= APInt(BitWidth, Rem); 6909 APInt MinVal = APInt::getZero(BitWidth); 6910 if (llvm::isKnownNonZero(V, DL)) 6911 MinVal = Align; 6912 ConservativeResult = ConservativeResult.intersectWith( 6913 ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType); 6914 } 6915 } 6916 6917 // A range of Phi is a subset of union of all ranges of its input. 6918 if (PHINode *Phi = dyn_cast<PHINode>(V)) { 6919 // Make sure that we do not run over cycled Phis. 6920 if (PendingPhiRanges.insert(Phi).second) { 6921 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6922 6923 for (const auto &Op : Phi->operands()) { 6924 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); 6925 RangeFromOps = RangeFromOps.unionWith(OpRange); 6926 // No point to continue if we already have a full set. 6927 if (RangeFromOps.isFullSet()) 6928 break; 6929 } 6930 ConservativeResult = 6931 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6932 bool Erased = PendingPhiRanges.erase(Phi); 6933 assert(Erased && "Failed to erase Phi properly?"); 6934 (void)Erased; 6935 } 6936 } 6937 6938 // vscale can't be equal to zero 6939 if (const auto *II = dyn_cast<IntrinsicInst>(V)) 6940 if (II->getIntrinsicID() == Intrinsic::vscale) { 6941 ConstantRange Disallowed = APInt::getZero(BitWidth); 6942 ConservativeResult = ConservativeResult.difference(Disallowed); 6943 } 6944 6945 return setRange(U, SignHint, std::move(ConservativeResult)); 6946 } 6947 case scCouldNotCompute: 6948 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6949 } 6950 6951 return setRange(S, SignHint, std::move(ConservativeResult)); 6952 } 6953 6954 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6955 // values that the expression can take. Initially, the expression has a value 6956 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6957 // argument defines if we treat Step as signed or unsigned. 6958 static ConstantRange getRangeForAffineARHelper(APInt Step, 6959 const ConstantRange &StartRange, 6960 const APInt &MaxBECount, 6961 bool Signed) { 6962 unsigned BitWidth = Step.getBitWidth(); 6963 assert(BitWidth == StartRange.getBitWidth() && 6964 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths"); 6965 // If either Step or MaxBECount is 0, then the expression won't change, and we 6966 // just need to return the initial range. 6967 if (Step == 0 || MaxBECount == 0) 6968 return StartRange; 6969 6970 // If we don't know anything about the initial value (i.e. StartRange is 6971 // FullRange), then we don't know anything about the final range either. 6972 // Return FullRange. 6973 if (StartRange.isFullSet()) 6974 return ConstantRange::getFull(BitWidth); 6975 6976 // If Step is signed and negative, then we use its absolute value, but we also 6977 // note that we're moving in the opposite direction. 6978 bool Descending = Signed && Step.isNegative(); 6979 6980 if (Signed) 6981 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6982 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6983 // This equations hold true due to the well-defined wrap-around behavior of 6984 // APInt. 6985 Step = Step.abs(); 6986 6987 // Check if Offset is more than full span of BitWidth. If it is, the 6988 // expression is guaranteed to overflow. 6989 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6990 return ConstantRange::getFull(BitWidth); 6991 6992 // Offset is by how much the expression can change. Checks above guarantee no 6993 // overflow here. 6994 APInt Offset = Step * MaxBECount; 6995 6996 // Minimum value of the final range will match the minimal value of StartRange 6997 // if the expression is increasing and will be decreased by Offset otherwise. 6998 // Maximum value of the final range will match the maximal value of StartRange 6999 // if the expression is decreasing and will be increased by Offset otherwise. 7000 APInt StartLower = StartRange.getLower(); 7001 APInt StartUpper = StartRange.getUpper() - 1; 7002 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 7003 : (StartUpper + std::move(Offset)); 7004 7005 // It's possible that the new minimum/maximum value will fall into the initial 7006 // range (due to wrap around). This means that the expression can take any 7007 // value in this bitwidth, and we have to return full range. 7008 if (StartRange.contains(MovedBoundary)) 7009 return ConstantRange::getFull(BitWidth); 7010 7011 APInt NewLower = 7012 Descending ? std::move(MovedBoundary) : std::move(StartLower); 7013 APInt NewUpper = 7014 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 7015 NewUpper += 1; 7016 7017 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 7018 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 7019 } 7020 7021 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 7022 const SCEV *Step, 7023 const APInt &MaxBECount) { 7024 assert(getTypeSizeInBits(Start->getType()) == 7025 getTypeSizeInBits(Step->getType()) && 7026 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && 7027 "mismatched bit widths"); 7028 7029 // First, consider step signed. 7030 ConstantRange StartSRange = getSignedRange(Start); 7031 ConstantRange StepSRange = getSignedRange(Step); 7032 7033 // If Step can be both positive and negative, we need to find ranges for the 7034 // maximum absolute step values in both directions and union them. 7035 ConstantRange SR = getRangeForAffineARHelper( 7036 StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true); 7037 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 7038 StartSRange, MaxBECount, 7039 /* Signed = */ true)); 7040 7041 // Next, consider step unsigned. 7042 ConstantRange UR = getRangeForAffineARHelper( 7043 getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount, 7044 /* Signed = */ false); 7045 7046 // Finally, intersect signed and unsigned ranges. 7047 return SR.intersectWith(UR, ConstantRange::Smallest); 7048 } 7049 7050 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 7051 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 7052 ScalarEvolution::RangeSignHint SignHint) { 7053 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 7054 assert(AddRec->hasNoSelfWrap() && 7055 "This only works for non-self-wrapping AddRecs!"); 7056 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 7057 const SCEV *Step = AddRec->getStepRecurrence(*this); 7058 // Only deal with constant step to save compile time. 7059 if (!isa<SCEVConstant>(Step)) 7060 return ConstantRange::getFull(BitWidth); 7061 // Let's make sure that we can prove that we do not self-wrap during 7062 // MaxBECount iterations. We need this because MaxBECount is a maximum 7063 // iteration count estimate, and we might infer nw from some exit for which we 7064 // do not know max exit count (or any other side reasoning). 7065 // TODO: Turn into assert at some point. 7066 if (getTypeSizeInBits(MaxBECount->getType()) > 7067 getTypeSizeInBits(AddRec->getType())) 7068 return ConstantRange::getFull(BitWidth); 7069 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 7070 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 7071 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 7072 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 7073 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 7074 MaxItersWithoutWrap)) 7075 return ConstantRange::getFull(BitWidth); 7076 7077 ICmpInst::Predicate LEPred = 7078 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 7079 ICmpInst::Predicate GEPred = 7080 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 7081 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 7082 7083 // We know that there is no self-wrap. Let's take Start and End values and 7084 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 7085 // the iteration. They either lie inside the range [Min(Start, End), 7086 // Max(Start, End)] or outside it: 7087 // 7088 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 7089 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 7090 // 7091 // No self wrap flag guarantees that the intermediate values cannot be BOTH 7092 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 7093 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 7094 // Start <= End and step is positive, or Start >= End and step is negative. 7095 const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop()); 7096 ConstantRange StartRange = getRangeRef(Start, SignHint); 7097 ConstantRange EndRange = getRangeRef(End, SignHint); 7098 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 7099 // If they already cover full iteration space, we will know nothing useful 7100 // even if we prove what we want to prove. 7101 if (RangeBetween.isFullSet()) 7102 return RangeBetween; 7103 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 7104 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 7105 : RangeBetween.isWrappedSet(); 7106 if (IsWrappedSet) 7107 return ConstantRange::getFull(BitWidth); 7108 7109 if (isKnownPositive(Step) && 7110 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 7111 return RangeBetween; 7112 if (isKnownNegative(Step) && 7113 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 7114 return RangeBetween; 7115 return ConstantRange::getFull(BitWidth); 7116 } 7117 7118 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 7119 const SCEV *Step, 7120 const APInt &MaxBECount) { 7121 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 7122 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 7123 7124 unsigned BitWidth = MaxBECount.getBitWidth(); 7125 assert(getTypeSizeInBits(Start->getType()) == BitWidth && 7126 getTypeSizeInBits(Step->getType()) == BitWidth && 7127 "mismatched bit widths"); 7128 7129 struct SelectPattern { 7130 Value *Condition = nullptr; 7131 APInt TrueValue; 7132 APInt FalseValue; 7133 7134 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 7135 const SCEV *S) { 7136 std::optional<unsigned> CastOp; 7137 APInt Offset(BitWidth, 0); 7138 7139 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 7140 "Should be!"); 7141 7142 // Peel off a constant offset: 7143 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 7144 // In the future we could consider being smarter here and handle 7145 // {Start+Step,+,Step} too. 7146 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 7147 return; 7148 7149 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 7150 S = SA->getOperand(1); 7151 } 7152 7153 // Peel off a cast operation 7154 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 7155 CastOp = SCast->getSCEVType(); 7156 S = SCast->getOperand(); 7157 } 7158 7159 using namespace llvm::PatternMatch; 7160 7161 auto *SU = dyn_cast<SCEVUnknown>(S); 7162 const APInt *TrueVal, *FalseVal; 7163 if (!SU || 7164 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 7165 m_APInt(FalseVal)))) { 7166 Condition = nullptr; 7167 return; 7168 } 7169 7170 TrueValue = *TrueVal; 7171 FalseValue = *FalseVal; 7172 7173 // Re-apply the cast we peeled off earlier 7174 if (CastOp) 7175 switch (*CastOp) { 7176 default: 7177 llvm_unreachable("Unknown SCEV cast type!"); 7178 7179 case scTruncate: 7180 TrueValue = TrueValue.trunc(BitWidth); 7181 FalseValue = FalseValue.trunc(BitWidth); 7182 break; 7183 case scZeroExtend: 7184 TrueValue = TrueValue.zext(BitWidth); 7185 FalseValue = FalseValue.zext(BitWidth); 7186 break; 7187 case scSignExtend: 7188 TrueValue = TrueValue.sext(BitWidth); 7189 FalseValue = FalseValue.sext(BitWidth); 7190 break; 7191 } 7192 7193 // Re-apply the constant offset we peeled off earlier 7194 TrueValue += Offset; 7195 FalseValue += Offset; 7196 } 7197 7198 bool isRecognized() { return Condition != nullptr; } 7199 }; 7200 7201 SelectPattern StartPattern(*this, BitWidth, Start); 7202 if (!StartPattern.isRecognized()) 7203 return ConstantRange::getFull(BitWidth); 7204 7205 SelectPattern StepPattern(*this, BitWidth, Step); 7206 if (!StepPattern.isRecognized()) 7207 return ConstantRange::getFull(BitWidth); 7208 7209 if (StartPattern.Condition != StepPattern.Condition) { 7210 // We don't handle this case today; but we could, by considering four 7211 // possibilities below instead of two. I'm not sure if there are cases where 7212 // that will help over what getRange already does, though. 7213 return ConstantRange::getFull(BitWidth); 7214 } 7215 7216 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 7217 // construct arbitrary general SCEV expressions here. This function is called 7218 // from deep in the call stack, and calling getSCEV (on a sext instruction, 7219 // say) can end up caching a suboptimal value. 7220 7221 // FIXME: without the explicit `this` receiver below, MSVC errors out with 7222 // C2352 and C2512 (otherwise it isn't needed). 7223 7224 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 7225 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 7226 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 7227 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 7228 7229 ConstantRange TrueRange = 7230 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount); 7231 ConstantRange FalseRange = 7232 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount); 7233 7234 return TrueRange.unionWith(FalseRange); 7235 } 7236 7237 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 7238 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 7239 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 7240 7241 // Return early if there are no flags to propagate to the SCEV. 7242 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7243 if (BinOp->hasNoUnsignedWrap()) 7244 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 7245 if (BinOp->hasNoSignedWrap()) 7246 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 7247 if (Flags == SCEV::FlagAnyWrap) 7248 return SCEV::FlagAnyWrap; 7249 7250 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7251 } 7252 7253 const Instruction * 7254 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7255 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7256 return &*AddRec->getLoop()->getHeader()->begin(); 7257 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7258 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7259 return I; 7260 return nullptr; 7261 } 7262 7263 const Instruction * 7264 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7265 bool &Precise) { 7266 Precise = true; 7267 // Do a bounded search of the def relation of the requested SCEVs. 7268 SmallSet<const SCEV *, 16> Visited; 7269 SmallVector<const SCEV *> Worklist; 7270 auto pushOp = [&](const SCEV *S) { 7271 if (!Visited.insert(S).second) 7272 return; 7273 // Threshold of 30 here is arbitrary. 7274 if (Visited.size() > 30) { 7275 Precise = false; 7276 return; 7277 } 7278 Worklist.push_back(S); 7279 }; 7280 7281 for (const auto *S : Ops) 7282 pushOp(S); 7283 7284 const Instruction *Bound = nullptr; 7285 while (!Worklist.empty()) { 7286 auto *S = Worklist.pop_back_val(); 7287 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7288 if (!Bound || DT.dominates(Bound, DefI)) 7289 Bound = DefI; 7290 } else { 7291 for (const auto *Op : S->operands()) 7292 pushOp(Op); 7293 } 7294 } 7295 return Bound ? Bound : &*F.getEntryBlock().begin(); 7296 } 7297 7298 const Instruction * 7299 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7300 bool Discard; 7301 return getDefiningScopeBound(Ops, Discard); 7302 } 7303 7304 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7305 const Instruction *B) { 7306 if (A->getParent() == B->getParent() && 7307 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7308 B->getIterator())) 7309 return true; 7310 7311 auto *BLoop = LI.getLoopFor(B->getParent()); 7312 if (BLoop && BLoop->getHeader() == B->getParent() && 7313 BLoop->getLoopPreheader() == A->getParent() && 7314 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7315 A->getParent()->end()) && 7316 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7317 B->getIterator())) 7318 return true; 7319 return false; 7320 } 7321 7322 7323 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7324 // Only proceed if we can prove that I does not yield poison. 7325 if (!programUndefinedIfPoison(I)) 7326 return false; 7327 7328 // At this point we know that if I is executed, then it does not wrap 7329 // according to at least one of NSW or NUW. If I is not executed, then we do 7330 // not know if the calculation that I represents would wrap. Multiple 7331 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7332 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7333 // derived from other instructions that map to the same SCEV. We cannot make 7334 // that guarantee for cases where I is not executed. So we need to find a 7335 // upper bound on the defining scope for the SCEV, and prove that I is 7336 // executed every time we enter that scope. When the bounding scope is a 7337 // loop (the common case), this is equivalent to proving I executes on every 7338 // iteration of that loop. 7339 SmallVector<const SCEV *> SCEVOps; 7340 for (const Use &Op : I->operands()) { 7341 // I could be an extractvalue from a call to an overflow intrinsic. 7342 // TODO: We can do better here in some cases. 7343 if (isSCEVable(Op->getType())) 7344 SCEVOps.push_back(getSCEV(Op)); 7345 } 7346 auto *DefI = getDefiningScopeBound(SCEVOps); 7347 return isGuaranteedToTransferExecutionTo(DefI, I); 7348 } 7349 7350 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7351 // If we know that \c I can never be poison period, then that's enough. 7352 if (isSCEVExprNeverPoison(I)) 7353 return true; 7354 7355 // If the loop only has one exit, then we know that, if the loop is entered, 7356 // any instruction dominating that exit will be executed. If any such 7357 // instruction would result in UB, the addrec cannot be poison. 7358 // 7359 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but 7360 // also handles uses outside the loop header (they just need to dominate the 7361 // single exit). 7362 7363 auto *ExitingBB = L->getExitingBlock(); 7364 if (!ExitingBB || !loopHasNoAbnormalExits(L)) 7365 return false; 7366 7367 SmallPtrSet<const Value *, 16> KnownPoison; 7368 SmallVector<const Instruction *, 8> Worklist; 7369 7370 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7371 // things that are known to be poison under that assumption go on the 7372 // Worklist. 7373 KnownPoison.insert(I); 7374 Worklist.push_back(I); 7375 7376 while (!Worklist.empty()) { 7377 const Instruction *Poison = Worklist.pop_back_val(); 7378 7379 for (const Use &U : Poison->uses()) { 7380 const Instruction *PoisonUser = cast<Instruction>(U.getUser()); 7381 if (mustTriggerUB(PoisonUser, KnownPoison) && 7382 DT.dominates(PoisonUser->getParent(), ExitingBB)) 7383 return true; 7384 7385 if (propagatesPoison(U) && L->contains(PoisonUser)) 7386 if (KnownPoison.insert(PoisonUser).second) 7387 Worklist.push_back(PoisonUser); 7388 } 7389 } 7390 7391 return false; 7392 } 7393 7394 ScalarEvolution::LoopProperties 7395 ScalarEvolution::getLoopProperties(const Loop *L) { 7396 using LoopProperties = ScalarEvolution::LoopProperties; 7397 7398 auto Itr = LoopPropertiesCache.find(L); 7399 if (Itr == LoopPropertiesCache.end()) { 7400 auto HasSideEffects = [](Instruction *I) { 7401 if (auto *SI = dyn_cast<StoreInst>(I)) 7402 return !SI->isSimple(); 7403 7404 return I->mayThrow() || I->mayWriteToMemory(); 7405 }; 7406 7407 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7408 /*HasNoSideEffects*/ true}; 7409 7410 for (auto *BB : L->getBlocks()) 7411 for (auto &I : *BB) { 7412 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7413 LP.HasNoAbnormalExits = false; 7414 if (HasSideEffects(&I)) 7415 LP.HasNoSideEffects = false; 7416 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7417 break; // We're already as pessimistic as we can get. 7418 } 7419 7420 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7421 assert(InsertPair.second && "We just checked!"); 7422 Itr = InsertPair.first; 7423 } 7424 7425 return Itr->second; 7426 } 7427 7428 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7429 // A mustprogress loop without side effects must be finite. 7430 // TODO: The check used here is very conservative. It's only *specific* 7431 // side effects which are well defined in infinite loops. 7432 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7433 } 7434 7435 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7436 // Worklist item with a Value and a bool indicating whether all operands have 7437 // been visited already. 7438 using PointerTy = PointerIntPair<Value *, 1, bool>; 7439 SmallVector<PointerTy> Stack; 7440 7441 Stack.emplace_back(V, true); 7442 Stack.emplace_back(V, false); 7443 while (!Stack.empty()) { 7444 auto E = Stack.pop_back_val(); 7445 Value *CurV = E.getPointer(); 7446 7447 if (getExistingSCEV(CurV)) 7448 continue; 7449 7450 SmallVector<Value *> Ops; 7451 const SCEV *CreatedSCEV = nullptr; 7452 // If all operands have been visited already, create the SCEV. 7453 if (E.getInt()) { 7454 CreatedSCEV = createSCEV(CurV); 7455 } else { 7456 // Otherwise get the operands we need to create SCEV's for before creating 7457 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7458 // just use it. 7459 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7460 } 7461 7462 if (CreatedSCEV) { 7463 insertValueToMap(CurV, CreatedSCEV); 7464 } else { 7465 // Queue CurV for SCEV creation, followed by its's operands which need to 7466 // be constructed first. 7467 Stack.emplace_back(CurV, true); 7468 for (Value *Op : Ops) 7469 Stack.emplace_back(Op, false); 7470 } 7471 } 7472 7473 return getExistingSCEV(V); 7474 } 7475 7476 const SCEV * 7477 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7478 if (!isSCEVable(V->getType())) 7479 return getUnknown(V); 7480 7481 if (Instruction *I = dyn_cast<Instruction>(V)) { 7482 // Don't attempt to analyze instructions in blocks that aren't 7483 // reachable. Such instructions don't matter, and they aren't required 7484 // to obey basic rules for definitions dominating uses which this 7485 // analysis depends on. 7486 if (!DT.isReachableFromEntry(I->getParent())) 7487 return getUnknown(PoisonValue::get(V->getType())); 7488 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7489 return getConstant(CI); 7490 else if (isa<GlobalAlias>(V)) 7491 return getUnknown(V); 7492 else if (!isa<ConstantExpr>(V)) 7493 return getUnknown(V); 7494 7495 Operator *U = cast<Operator>(V); 7496 if (auto BO = 7497 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7498 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7499 switch (BO->Opcode) { 7500 case Instruction::Add: 7501 case Instruction::Mul: { 7502 // For additions and multiplications, traverse add/mul chains for which we 7503 // can potentially create a single SCEV, to reduce the number of 7504 // get{Add,Mul}Expr calls. 7505 do { 7506 if (BO->Op) { 7507 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7508 Ops.push_back(BO->Op); 7509 break; 7510 } 7511 } 7512 Ops.push_back(BO->RHS); 7513 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7514 dyn_cast<Instruction>(V)); 7515 if (!NewBO || 7516 (BO->Opcode == Instruction::Add && 7517 (NewBO->Opcode != Instruction::Add && 7518 NewBO->Opcode != Instruction::Sub)) || 7519 (BO->Opcode == Instruction::Mul && 7520 NewBO->Opcode != Instruction::Mul)) { 7521 Ops.push_back(BO->LHS); 7522 break; 7523 } 7524 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions 7525 // requires a SCEV for the LHS. 7526 if (BO->Op && (BO->IsNSW || BO->IsNUW)) { 7527 auto *I = dyn_cast<Instruction>(BO->Op); 7528 if (I && programUndefinedIfPoison(I)) { 7529 Ops.push_back(BO->LHS); 7530 break; 7531 } 7532 } 7533 BO = NewBO; 7534 } while (true); 7535 return nullptr; 7536 } 7537 case Instruction::Sub: 7538 case Instruction::UDiv: 7539 case Instruction::URem: 7540 break; 7541 case Instruction::AShr: 7542 case Instruction::Shl: 7543 case Instruction::Xor: 7544 if (!IsConstArg) 7545 return nullptr; 7546 break; 7547 case Instruction::And: 7548 case Instruction::Or: 7549 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1)) 7550 return nullptr; 7551 break; 7552 case Instruction::LShr: 7553 return getUnknown(V); 7554 default: 7555 llvm_unreachable("Unhandled binop"); 7556 break; 7557 } 7558 7559 Ops.push_back(BO->LHS); 7560 Ops.push_back(BO->RHS); 7561 return nullptr; 7562 } 7563 7564 switch (U->getOpcode()) { 7565 case Instruction::Trunc: 7566 case Instruction::ZExt: 7567 case Instruction::SExt: 7568 case Instruction::PtrToInt: 7569 Ops.push_back(U->getOperand(0)); 7570 return nullptr; 7571 7572 case Instruction::BitCast: 7573 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7574 Ops.push_back(U->getOperand(0)); 7575 return nullptr; 7576 } 7577 return getUnknown(V); 7578 7579 case Instruction::SDiv: 7580 case Instruction::SRem: 7581 Ops.push_back(U->getOperand(0)); 7582 Ops.push_back(U->getOperand(1)); 7583 return nullptr; 7584 7585 case Instruction::GetElementPtr: 7586 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7587 "GEP source element type must be sized"); 7588 for (Value *Index : U->operands()) 7589 Ops.push_back(Index); 7590 return nullptr; 7591 7592 case Instruction::IntToPtr: 7593 return getUnknown(V); 7594 7595 case Instruction::PHI: 7596 // Keep constructing SCEVs' for phis recursively for now. 7597 return nullptr; 7598 7599 case Instruction::Select: { 7600 // Check if U is a select that can be simplified to a SCEVUnknown. 7601 auto CanSimplifyToUnknown = [this, U]() { 7602 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7603 return false; 7604 7605 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7606 if (!ICI) 7607 return false; 7608 Value *LHS = ICI->getOperand(0); 7609 Value *RHS = ICI->getOperand(1); 7610 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7611 ICI->getPredicate() == CmpInst::ICMP_NE) { 7612 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7613 return true; 7614 } else if (getTypeSizeInBits(LHS->getType()) > 7615 getTypeSizeInBits(U->getType())) 7616 return true; 7617 return false; 7618 }; 7619 if (CanSimplifyToUnknown()) 7620 return getUnknown(U); 7621 7622 for (Value *Inc : U->operands()) 7623 Ops.push_back(Inc); 7624 return nullptr; 7625 break; 7626 } 7627 case Instruction::Call: 7628 case Instruction::Invoke: 7629 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7630 Ops.push_back(RV); 7631 return nullptr; 7632 } 7633 7634 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7635 switch (II->getIntrinsicID()) { 7636 case Intrinsic::abs: 7637 Ops.push_back(II->getArgOperand(0)); 7638 return nullptr; 7639 case Intrinsic::umax: 7640 case Intrinsic::umin: 7641 case Intrinsic::smax: 7642 case Intrinsic::smin: 7643 case Intrinsic::usub_sat: 7644 case Intrinsic::uadd_sat: 7645 Ops.push_back(II->getArgOperand(0)); 7646 Ops.push_back(II->getArgOperand(1)); 7647 return nullptr; 7648 case Intrinsic::start_loop_iterations: 7649 case Intrinsic::annotation: 7650 case Intrinsic::ptr_annotation: 7651 Ops.push_back(II->getArgOperand(0)); 7652 return nullptr; 7653 default: 7654 break; 7655 } 7656 } 7657 break; 7658 } 7659 7660 return nullptr; 7661 } 7662 7663 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7664 if (!isSCEVable(V->getType())) 7665 return getUnknown(V); 7666 7667 if (Instruction *I = dyn_cast<Instruction>(V)) { 7668 // Don't attempt to analyze instructions in blocks that aren't 7669 // reachable. Such instructions don't matter, and they aren't required 7670 // to obey basic rules for definitions dominating uses which this 7671 // analysis depends on. 7672 if (!DT.isReachableFromEntry(I->getParent())) 7673 return getUnknown(PoisonValue::get(V->getType())); 7674 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7675 return getConstant(CI); 7676 else if (isa<GlobalAlias>(V)) 7677 return getUnknown(V); 7678 else if (!isa<ConstantExpr>(V)) 7679 return getUnknown(V); 7680 7681 const SCEV *LHS; 7682 const SCEV *RHS; 7683 7684 Operator *U = cast<Operator>(V); 7685 if (auto BO = 7686 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7687 switch (BO->Opcode) { 7688 case Instruction::Add: { 7689 // The simple thing to do would be to just call getSCEV on both operands 7690 // and call getAddExpr with the result. However if we're looking at a 7691 // bunch of things all added together, this can be quite inefficient, 7692 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7693 // Instead, gather up all the operands and make a single getAddExpr call. 7694 // LLVM IR canonical form means we need only traverse the left operands. 7695 SmallVector<const SCEV *, 4> AddOps; 7696 do { 7697 if (BO->Op) { 7698 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7699 AddOps.push_back(OpSCEV); 7700 break; 7701 } 7702 7703 // If a NUW or NSW flag can be applied to the SCEV for this 7704 // addition, then compute the SCEV for this addition by itself 7705 // with a separate call to getAddExpr. We need to do that 7706 // instead of pushing the operands of the addition onto AddOps, 7707 // since the flags are only known to apply to this particular 7708 // addition - they may not apply to other additions that can be 7709 // formed with operands from AddOps. 7710 const SCEV *RHS = getSCEV(BO->RHS); 7711 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7712 if (Flags != SCEV::FlagAnyWrap) { 7713 const SCEV *LHS = getSCEV(BO->LHS); 7714 if (BO->Opcode == Instruction::Sub) 7715 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7716 else 7717 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7718 break; 7719 } 7720 } 7721 7722 if (BO->Opcode == Instruction::Sub) 7723 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7724 else 7725 AddOps.push_back(getSCEV(BO->RHS)); 7726 7727 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7728 dyn_cast<Instruction>(V)); 7729 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7730 NewBO->Opcode != Instruction::Sub)) { 7731 AddOps.push_back(getSCEV(BO->LHS)); 7732 break; 7733 } 7734 BO = NewBO; 7735 } while (true); 7736 7737 return getAddExpr(AddOps); 7738 } 7739 7740 case Instruction::Mul: { 7741 SmallVector<const SCEV *, 4> MulOps; 7742 do { 7743 if (BO->Op) { 7744 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7745 MulOps.push_back(OpSCEV); 7746 break; 7747 } 7748 7749 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7750 if (Flags != SCEV::FlagAnyWrap) { 7751 LHS = getSCEV(BO->LHS); 7752 RHS = getSCEV(BO->RHS); 7753 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7754 break; 7755 } 7756 } 7757 7758 MulOps.push_back(getSCEV(BO->RHS)); 7759 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7760 dyn_cast<Instruction>(V)); 7761 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7762 MulOps.push_back(getSCEV(BO->LHS)); 7763 break; 7764 } 7765 BO = NewBO; 7766 } while (true); 7767 7768 return getMulExpr(MulOps); 7769 } 7770 case Instruction::UDiv: 7771 LHS = getSCEV(BO->LHS); 7772 RHS = getSCEV(BO->RHS); 7773 return getUDivExpr(LHS, RHS); 7774 case Instruction::URem: 7775 LHS = getSCEV(BO->LHS); 7776 RHS = getSCEV(BO->RHS); 7777 return getURemExpr(LHS, RHS); 7778 case Instruction::Sub: { 7779 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7780 if (BO->Op) 7781 Flags = getNoWrapFlagsFromUB(BO->Op); 7782 LHS = getSCEV(BO->LHS); 7783 RHS = getSCEV(BO->RHS); 7784 return getMinusSCEV(LHS, RHS, Flags); 7785 } 7786 case Instruction::And: 7787 // For an expression like x&255 that merely masks off the high bits, 7788 // use zext(trunc(x)) as the SCEV expression. 7789 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7790 if (CI->isZero()) 7791 return getSCEV(BO->RHS); 7792 if (CI->isMinusOne()) 7793 return getSCEV(BO->LHS); 7794 const APInt &A = CI->getValue(); 7795 7796 // Instcombine's ShrinkDemandedConstant may strip bits out of 7797 // constants, obscuring what would otherwise be a low-bits mask. 7798 // Use computeKnownBits to compute what ShrinkDemandedConstant 7799 // knew about to reconstruct a low-bits mask value. 7800 unsigned LZ = A.countl_zero(); 7801 unsigned TZ = A.countr_zero(); 7802 unsigned BitWidth = A.getBitWidth(); 7803 KnownBits Known(BitWidth); 7804 computeKnownBits(BO->LHS, Known, getDataLayout(), 7805 0, &AC, nullptr, &DT); 7806 7807 APInt EffectiveMask = 7808 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7809 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7810 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7811 const SCEV *LHS = getSCEV(BO->LHS); 7812 const SCEV *ShiftedLHS = nullptr; 7813 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7814 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7815 // For an expression like (x * 8) & 8, simplify the multiply. 7816 unsigned MulZeros = OpC->getAPInt().countr_zero(); 7817 unsigned GCD = std::min(MulZeros, TZ); 7818 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7819 SmallVector<const SCEV*, 4> MulOps; 7820 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7821 append_range(MulOps, LHSMul->operands().drop_front()); 7822 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7823 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7824 } 7825 } 7826 if (!ShiftedLHS) 7827 ShiftedLHS = getUDivExpr(LHS, MulCount); 7828 return getMulExpr( 7829 getZeroExtendExpr( 7830 getTruncateExpr(ShiftedLHS, 7831 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7832 BO->LHS->getType()), 7833 MulCount); 7834 } 7835 } 7836 // Binary `and` is a bit-wise `umin`. 7837 if (BO->LHS->getType()->isIntegerTy(1)) { 7838 LHS = getSCEV(BO->LHS); 7839 RHS = getSCEV(BO->RHS); 7840 return getUMinExpr(LHS, RHS); 7841 } 7842 break; 7843 7844 case Instruction::Or: 7845 // Binary `or` is a bit-wise `umax`. 7846 if (BO->LHS->getType()->isIntegerTy(1)) { 7847 LHS = getSCEV(BO->LHS); 7848 RHS = getSCEV(BO->RHS); 7849 return getUMaxExpr(LHS, RHS); 7850 } 7851 break; 7852 7853 case Instruction::Xor: 7854 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7855 // If the RHS of xor is -1, then this is a not operation. 7856 if (CI->isMinusOne()) 7857 return getNotSCEV(getSCEV(BO->LHS)); 7858 7859 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7860 // This is a variant of the check for xor with -1, and it handles 7861 // the case where instcombine has trimmed non-demanded bits out 7862 // of an xor with -1. 7863 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7864 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7865 if (LBO->getOpcode() == Instruction::And && 7866 LCI->getValue() == CI->getValue()) 7867 if (const SCEVZeroExtendExpr *Z = 7868 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7869 Type *UTy = BO->LHS->getType(); 7870 const SCEV *Z0 = Z->getOperand(); 7871 Type *Z0Ty = Z0->getType(); 7872 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7873 7874 // If C is a low-bits mask, the zero extend is serving to 7875 // mask off the high bits. Complement the operand and 7876 // re-apply the zext. 7877 if (CI->getValue().isMask(Z0TySize)) 7878 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7879 7880 // If C is a single bit, it may be in the sign-bit position 7881 // before the zero-extend. In this case, represent the xor 7882 // using an add, which is equivalent, and re-apply the zext. 7883 APInt Trunc = CI->getValue().trunc(Z0TySize); 7884 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7885 Trunc.isSignMask()) 7886 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7887 UTy); 7888 } 7889 } 7890 break; 7891 7892 case Instruction::Shl: 7893 // Turn shift left of a constant amount into a multiply. 7894 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7895 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7896 7897 // If the shift count is not less than the bitwidth, the result of 7898 // the shift is undefined. Don't try to analyze it, because the 7899 // resolution chosen here may differ from the resolution chosen in 7900 // other parts of the compiler. 7901 if (SA->getValue().uge(BitWidth)) 7902 break; 7903 7904 // We can safely preserve the nuw flag in all cases. It's also safe to 7905 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7906 // requires special handling. It can be preserved as long as we're not 7907 // left shifting by bitwidth - 1. 7908 auto Flags = SCEV::FlagAnyWrap; 7909 if (BO->Op) { 7910 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7911 if ((MulFlags & SCEV::FlagNSW) && 7912 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7913 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7914 if (MulFlags & SCEV::FlagNUW) 7915 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7916 } 7917 7918 ConstantInt *X = ConstantInt::get( 7919 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7920 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7921 } 7922 break; 7923 7924 case Instruction::AShr: 7925 // AShr X, C, where C is a constant. 7926 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7927 if (!CI) 7928 break; 7929 7930 Type *OuterTy = BO->LHS->getType(); 7931 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7932 // If the shift count is not less than the bitwidth, the result of 7933 // the shift is undefined. Don't try to analyze it, because the 7934 // resolution chosen here may differ from the resolution chosen in 7935 // other parts of the compiler. 7936 if (CI->getValue().uge(BitWidth)) 7937 break; 7938 7939 if (CI->isZero()) 7940 return getSCEV(BO->LHS); // shift by zero --> noop 7941 7942 uint64_t AShrAmt = CI->getZExtValue(); 7943 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7944 7945 Operator *L = dyn_cast<Operator>(BO->LHS); 7946 const SCEV *AddTruncateExpr = nullptr; 7947 ConstantInt *ShlAmtCI = nullptr; 7948 const SCEV *AddConstant = nullptr; 7949 7950 if (L && L->getOpcode() == Instruction::Add) { 7951 // X = Shl A, n 7952 // Y = Add X, c 7953 // Z = AShr Y, m 7954 // n, c and m are constants. 7955 7956 Operator *LShift = dyn_cast<Operator>(L->getOperand(0)); 7957 ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7958 if (LShift && LShift->getOpcode() == Instruction::Shl) { 7959 if (AddOperandCI) { 7960 const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0)); 7961 ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1)); 7962 // since we truncate to TruncTy, the AddConstant should be of the 7963 // same type, so create a new Constant with type same as TruncTy. 7964 // Also, the Add constant should be shifted right by AShr amount. 7965 APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt); 7966 AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt)); 7967 // we model the expression as sext(add(trunc(A), c << n)), since the 7968 // sext(trunc) part is already handled below, we create a 7969 // AddExpr(TruncExp) which will be used later. 7970 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 7971 } 7972 } 7973 } else if (L && L->getOpcode() == Instruction::Shl) { 7974 // X = Shl A, n 7975 // Y = AShr X, m 7976 // Both n and m are constant. 7977 7978 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7979 ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7980 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 7981 } 7982 7983 if (AddTruncateExpr && ShlAmtCI) { 7984 // We can merge the two given cases into a single SCEV statement, 7985 // incase n = m, the mul expression will be 2^0, so it gets resolved to 7986 // a simpler case. The following code handles the two cases: 7987 // 7988 // 1) For a two-shift sext-inreg, i.e. n = m, 7989 // use sext(trunc(x)) as the SCEV expression. 7990 // 7991 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7992 // expression. We already checked that ShlAmt < BitWidth, so 7993 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7994 // ShlAmt - AShrAmt < Amt. 7995 const APInt &ShlAmt = ShlAmtCI->getValue(); 7996 if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) { 7997 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7998 ShlAmtCI->getZExtValue() - AShrAmt); 7999 const SCEV *CompositeExpr = 8000 getMulExpr(AddTruncateExpr, getConstant(Mul)); 8001 if (L->getOpcode() != Instruction::Shl) 8002 CompositeExpr = getAddExpr(CompositeExpr, AddConstant); 8003 8004 return getSignExtendExpr(CompositeExpr, OuterTy); 8005 } 8006 } 8007 break; 8008 } 8009 } 8010 8011 switch (U->getOpcode()) { 8012 case Instruction::Trunc: 8013 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 8014 8015 case Instruction::ZExt: 8016 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 8017 8018 case Instruction::SExt: 8019 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, 8020 dyn_cast<Instruction>(V))) { 8021 // The NSW flag of a subtract does not always survive the conversion to 8022 // A + (-1)*B. By pushing sign extension onto its operands we are much 8023 // more likely to preserve NSW and allow later AddRec optimisations. 8024 // 8025 // NOTE: This is effectively duplicating this logic from getSignExtend: 8026 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 8027 // but by that point the NSW information has potentially been lost. 8028 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 8029 Type *Ty = U->getType(); 8030 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 8031 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 8032 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 8033 } 8034 } 8035 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 8036 8037 case Instruction::BitCast: 8038 // BitCasts are no-op casts so we just eliminate the cast. 8039 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 8040 return getSCEV(U->getOperand(0)); 8041 break; 8042 8043 case Instruction::PtrToInt: { 8044 // Pointer to integer cast is straight-forward, so do model it. 8045 const SCEV *Op = getSCEV(U->getOperand(0)); 8046 Type *DstIntTy = U->getType(); 8047 // But only if effective SCEV (integer) type is wide enough to represent 8048 // all possible pointer values. 8049 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 8050 if (isa<SCEVCouldNotCompute>(IntOp)) 8051 return getUnknown(V); 8052 return IntOp; 8053 } 8054 case Instruction::IntToPtr: 8055 // Just don't deal with inttoptr casts. 8056 return getUnknown(V); 8057 8058 case Instruction::SDiv: 8059 // If both operands are non-negative, this is just an udiv. 8060 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 8061 isKnownNonNegative(getSCEV(U->getOperand(1)))) 8062 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 8063 break; 8064 8065 case Instruction::SRem: 8066 // If both operands are non-negative, this is just an urem. 8067 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 8068 isKnownNonNegative(getSCEV(U->getOperand(1)))) 8069 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 8070 break; 8071 8072 case Instruction::GetElementPtr: 8073 return createNodeForGEP(cast<GEPOperator>(U)); 8074 8075 case Instruction::PHI: 8076 return createNodeForPHI(cast<PHINode>(U)); 8077 8078 case Instruction::Select: 8079 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 8080 U->getOperand(2)); 8081 8082 case Instruction::Call: 8083 case Instruction::Invoke: 8084 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 8085 return getSCEV(RV); 8086 8087 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 8088 switch (II->getIntrinsicID()) { 8089 case Intrinsic::abs: 8090 return getAbsExpr( 8091 getSCEV(II->getArgOperand(0)), 8092 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 8093 case Intrinsic::umax: 8094 LHS = getSCEV(II->getArgOperand(0)); 8095 RHS = getSCEV(II->getArgOperand(1)); 8096 return getUMaxExpr(LHS, RHS); 8097 case Intrinsic::umin: 8098 LHS = getSCEV(II->getArgOperand(0)); 8099 RHS = getSCEV(II->getArgOperand(1)); 8100 return getUMinExpr(LHS, RHS); 8101 case Intrinsic::smax: 8102 LHS = getSCEV(II->getArgOperand(0)); 8103 RHS = getSCEV(II->getArgOperand(1)); 8104 return getSMaxExpr(LHS, RHS); 8105 case Intrinsic::smin: 8106 LHS = getSCEV(II->getArgOperand(0)); 8107 RHS = getSCEV(II->getArgOperand(1)); 8108 return getSMinExpr(LHS, RHS); 8109 case Intrinsic::usub_sat: { 8110 const SCEV *X = getSCEV(II->getArgOperand(0)); 8111 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8112 const SCEV *ClampedY = getUMinExpr(X, Y); 8113 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 8114 } 8115 case Intrinsic::uadd_sat: { 8116 const SCEV *X = getSCEV(II->getArgOperand(0)); 8117 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8118 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 8119 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 8120 } 8121 case Intrinsic::start_loop_iterations: 8122 case Intrinsic::annotation: 8123 case Intrinsic::ptr_annotation: 8124 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 8125 // just eqivalent to the first operand for SCEV purposes. 8126 return getSCEV(II->getArgOperand(0)); 8127 case Intrinsic::vscale: 8128 return getVScale(II->getType()); 8129 default: 8130 break; 8131 } 8132 } 8133 break; 8134 } 8135 8136 return getUnknown(V); 8137 } 8138 8139 //===----------------------------------------------------------------------===// 8140 // Iteration Count Computation Code 8141 // 8142 8143 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 8144 if (isa<SCEVCouldNotCompute>(ExitCount)) 8145 return getCouldNotCompute(); 8146 8147 auto *ExitCountType = ExitCount->getType(); 8148 assert(ExitCountType->isIntegerTy()); 8149 auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(), 8150 1 + ExitCountType->getScalarSizeInBits()); 8151 return getTripCountFromExitCount(ExitCount, EvalTy, nullptr); 8152 } 8153 8154 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 8155 Type *EvalTy, 8156 const Loop *L) { 8157 if (isa<SCEVCouldNotCompute>(ExitCount)) 8158 return getCouldNotCompute(); 8159 8160 unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType()); 8161 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); 8162 8163 auto CanAddOneWithoutOverflow = [&]() { 8164 ConstantRange ExitCountRange = 8165 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED); 8166 if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize))) 8167 return true; 8168 8169 return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, 8170 getMinusOne(ExitCount->getType())); 8171 }; 8172 8173 // If we need to zero extend the backedge count, check if we can add one to 8174 // it prior to zero extending without overflow. Provided this is safe, it 8175 // allows better simplification of the +1. 8176 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) 8177 return getZeroExtendExpr( 8178 getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy); 8179 8180 // Get the total trip count from the count by adding 1. This may wrap. 8181 return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy)); 8182 } 8183 8184 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 8185 if (!ExitCount) 8186 return 0; 8187 8188 ConstantInt *ExitConst = ExitCount->getValue(); 8189 8190 // Guard against huge trip counts. 8191 if (ExitConst->getValue().getActiveBits() > 32) 8192 return 0; 8193 8194 // In case of integer overflow, this returns 0, which is correct. 8195 return ((unsigned)ExitConst->getZExtValue()) + 1; 8196 } 8197 8198 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 8199 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 8200 return getConstantTripCount(ExitCount); 8201 } 8202 8203 unsigned 8204 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 8205 const BasicBlock *ExitingBlock) { 8206 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8207 assert(L->isLoopExiting(ExitingBlock) && 8208 "Exiting block must actually branch out of the loop!"); 8209 const SCEVConstant *ExitCount = 8210 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 8211 return getConstantTripCount(ExitCount); 8212 } 8213 8214 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 8215 const auto *MaxExitCount = 8216 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 8217 return getConstantTripCount(MaxExitCount); 8218 } 8219 8220 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8221 SmallVector<BasicBlock *, 8> ExitingBlocks; 8222 L->getExitingBlocks(ExitingBlocks); 8223 8224 std::optional<unsigned> Res; 8225 for (auto *ExitingBB : ExitingBlocks) { 8226 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8227 if (!Res) 8228 Res = Multiple; 8229 Res = (unsigned)std::gcd(*Res, Multiple); 8230 } 8231 return Res.value_or(1); 8232 } 8233 8234 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8235 const SCEV *ExitCount) { 8236 if (ExitCount == getCouldNotCompute()) 8237 return 1; 8238 8239 // Get the trip count 8240 const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L)); 8241 8242 APInt Multiple = getNonZeroConstantMultiple(TCExpr); 8243 // If a trip multiple is huge (>=2^32), the trip count is still divisible by 8244 // the greatest power of 2 divisor less than 2^32. 8245 return Multiple.getActiveBits() > 32 8246 ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros()) 8247 : (unsigned)Multiple.zextOrTrunc(32).getZExtValue(); 8248 } 8249 8250 /// Returns the largest constant divisor of the trip count of this loop as a 8251 /// normal unsigned value, if possible. This means that the actual trip count is 8252 /// always a multiple of the returned value (don't forget the trip count could 8253 /// very well be zero as well!). 8254 /// 8255 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8256 /// multiple of a constant (which is also the case if the trip count is simply 8257 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8258 /// if the trip count is very large (>= 2^32). 8259 /// 8260 /// As explained in the comments for getSmallConstantTripCount, this assumes 8261 /// that control exits the loop via ExitingBlock. 8262 unsigned 8263 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8264 const BasicBlock *ExitingBlock) { 8265 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8266 assert(L->isLoopExiting(ExitingBlock) && 8267 "Exiting block must actually branch out of the loop!"); 8268 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8269 return getSmallConstantTripMultiple(L, ExitCount); 8270 } 8271 8272 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8273 const BasicBlock *ExitingBlock, 8274 ExitCountKind Kind) { 8275 switch (Kind) { 8276 case Exact: 8277 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8278 case SymbolicMaximum: 8279 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); 8280 case ConstantMaximum: 8281 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8282 }; 8283 llvm_unreachable("Invalid ExitCountKind!"); 8284 } 8285 8286 const SCEV * 8287 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8288 SmallVector<const SCEVPredicate *, 4> &Preds) { 8289 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8290 } 8291 8292 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8293 ExitCountKind Kind) { 8294 switch (Kind) { 8295 case Exact: 8296 return getBackedgeTakenInfo(L).getExact(L, this); 8297 case ConstantMaximum: 8298 return getBackedgeTakenInfo(L).getConstantMax(this); 8299 case SymbolicMaximum: 8300 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8301 }; 8302 llvm_unreachable("Invalid ExitCountKind!"); 8303 } 8304 8305 const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount( 8306 const Loop *L, SmallVector<const SCEVPredicate *, 4> &Preds) { 8307 return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, this, &Preds); 8308 } 8309 8310 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8311 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8312 } 8313 8314 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8315 static void PushLoopPHIs(const Loop *L, 8316 SmallVectorImpl<Instruction *> &Worklist, 8317 SmallPtrSetImpl<Instruction *> &Visited) { 8318 BasicBlock *Header = L->getHeader(); 8319 8320 // Push all Loop-header PHIs onto the Worklist stack. 8321 for (PHINode &PN : Header->phis()) 8322 if (Visited.insert(&PN).second) 8323 Worklist.push_back(&PN); 8324 } 8325 8326 ScalarEvolution::BackedgeTakenInfo & 8327 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8328 auto &BTI = getBackedgeTakenInfo(L); 8329 if (BTI.hasFullInfo()) 8330 return BTI; 8331 8332 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8333 8334 if (!Pair.second) 8335 return Pair.first->second; 8336 8337 BackedgeTakenInfo Result = 8338 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8339 8340 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8341 } 8342 8343 ScalarEvolution::BackedgeTakenInfo & 8344 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8345 // Initially insert an invalid entry for this loop. If the insertion 8346 // succeeds, proceed to actually compute a backedge-taken count and 8347 // update the value. The temporary CouldNotCompute value tells SCEV 8348 // code elsewhere that it shouldn't attempt to request a new 8349 // backedge-taken count, which could result in infinite recursion. 8350 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8351 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8352 if (!Pair.second) 8353 return Pair.first->second; 8354 8355 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8356 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8357 // must be cleared in this scope. 8358 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8359 8360 // Now that we know more about the trip count for this loop, forget any 8361 // existing SCEV values for PHI nodes in this loop since they are only 8362 // conservative estimates made without the benefit of trip count 8363 // information. This invalidation is not necessary for correctness, and is 8364 // only done to produce more precise results. 8365 if (Result.hasAnyInfo()) { 8366 // Invalidate any expression using an addrec in this loop. 8367 SmallVector<const SCEV *, 8> ToForget; 8368 auto LoopUsersIt = LoopUsers.find(L); 8369 if (LoopUsersIt != LoopUsers.end()) 8370 append_range(ToForget, LoopUsersIt->second); 8371 forgetMemoizedResults(ToForget); 8372 8373 // Invalidate constant-evolved loop header phis. 8374 for (PHINode &PN : L->getHeader()->phis()) 8375 ConstantEvolutionLoopExitValue.erase(&PN); 8376 } 8377 8378 // Re-lookup the insert position, since the call to 8379 // computeBackedgeTakenCount above could result in a 8380 // recusive call to getBackedgeTakenInfo (on a different 8381 // loop), which would invalidate the iterator computed 8382 // earlier. 8383 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8384 } 8385 8386 void ScalarEvolution::forgetAllLoops() { 8387 // This method is intended to forget all info about loops. It should 8388 // invalidate caches as if the following happened: 8389 // - The trip counts of all loops have changed arbitrarily 8390 // - Every llvm::Value has been updated in place to produce a different 8391 // result. 8392 BackedgeTakenCounts.clear(); 8393 PredicatedBackedgeTakenCounts.clear(); 8394 BECountUsers.clear(); 8395 LoopPropertiesCache.clear(); 8396 ConstantEvolutionLoopExitValue.clear(); 8397 ValueExprMap.clear(); 8398 ValuesAtScopes.clear(); 8399 ValuesAtScopesUsers.clear(); 8400 LoopDispositions.clear(); 8401 BlockDispositions.clear(); 8402 UnsignedRanges.clear(); 8403 SignedRanges.clear(); 8404 ExprValueMap.clear(); 8405 HasRecMap.clear(); 8406 ConstantMultipleCache.clear(); 8407 PredicatedSCEVRewrites.clear(); 8408 FoldCache.clear(); 8409 FoldCacheUser.clear(); 8410 } 8411 void ScalarEvolution::visitAndClearUsers( 8412 SmallVectorImpl<Instruction *> &Worklist, 8413 SmallPtrSetImpl<Instruction *> &Visited, 8414 SmallVectorImpl<const SCEV *> &ToForget) { 8415 while (!Worklist.empty()) { 8416 Instruction *I = Worklist.pop_back_val(); 8417 if (!isSCEVable(I->getType()) && !isa<WithOverflowInst>(I)) 8418 continue; 8419 8420 ValueExprMapType::iterator It = 8421 ValueExprMap.find_as(static_cast<Value *>(I)); 8422 if (It != ValueExprMap.end()) { 8423 eraseValueFromMap(It->first); 8424 ToForget.push_back(It->second); 8425 if (PHINode *PN = dyn_cast<PHINode>(I)) 8426 ConstantEvolutionLoopExitValue.erase(PN); 8427 } 8428 8429 PushDefUseChildren(I, Worklist, Visited); 8430 } 8431 } 8432 8433 void ScalarEvolution::forgetLoop(const Loop *L) { 8434 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8435 SmallVector<Instruction *, 32> Worklist; 8436 SmallPtrSet<Instruction *, 16> Visited; 8437 SmallVector<const SCEV *, 16> ToForget; 8438 8439 // Iterate over all the loops and sub-loops to drop SCEV information. 8440 while (!LoopWorklist.empty()) { 8441 auto *CurrL = LoopWorklist.pop_back_val(); 8442 8443 // Drop any stored trip count value. 8444 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8445 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8446 8447 // Drop information about predicated SCEV rewrites for this loop. 8448 for (auto I = PredicatedSCEVRewrites.begin(); 8449 I != PredicatedSCEVRewrites.end();) { 8450 std::pair<const SCEV *, const Loop *> Entry = I->first; 8451 if (Entry.second == CurrL) 8452 PredicatedSCEVRewrites.erase(I++); 8453 else 8454 ++I; 8455 } 8456 8457 auto LoopUsersItr = LoopUsers.find(CurrL); 8458 if (LoopUsersItr != LoopUsers.end()) { 8459 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8460 LoopUsersItr->second.end()); 8461 } 8462 8463 // Drop information about expressions based on loop-header PHIs. 8464 PushLoopPHIs(CurrL, Worklist, Visited); 8465 visitAndClearUsers(Worklist, Visited, ToForget); 8466 8467 LoopPropertiesCache.erase(CurrL); 8468 // Forget all contained loops too, to avoid dangling entries in the 8469 // ValuesAtScopes map. 8470 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8471 } 8472 forgetMemoizedResults(ToForget); 8473 } 8474 8475 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8476 forgetLoop(L->getOutermostLoop()); 8477 } 8478 8479 void ScalarEvolution::forgetValue(Value *V) { 8480 Instruction *I = dyn_cast<Instruction>(V); 8481 if (!I) return; 8482 8483 // Drop information about expressions based on loop-header PHIs. 8484 SmallVector<Instruction *, 16> Worklist; 8485 SmallPtrSet<Instruction *, 8> Visited; 8486 SmallVector<const SCEV *, 8> ToForget; 8487 Worklist.push_back(I); 8488 Visited.insert(I); 8489 visitAndClearUsers(Worklist, Visited, ToForget); 8490 8491 forgetMemoizedResults(ToForget); 8492 } 8493 8494 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) { 8495 if (!isSCEVable(V->getType())) 8496 return; 8497 8498 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's 8499 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an 8500 // extra predecessor is added, this is no longer valid. Find all Unknowns and 8501 // AddRecs defined in the loop and invalidate any SCEV's making use of them. 8502 if (const SCEV *S = getExistingSCEV(V)) { 8503 struct InvalidationRootCollector { 8504 Loop *L; 8505 SmallVector<const SCEV *, 8> Roots; 8506 8507 InvalidationRootCollector(Loop *L) : L(L) {} 8508 8509 bool follow(const SCEV *S) { 8510 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 8511 if (auto *I = dyn_cast<Instruction>(SU->getValue())) 8512 if (L->contains(I)) 8513 Roots.push_back(S); 8514 } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 8515 if (L->contains(AddRec->getLoop())) 8516 Roots.push_back(S); 8517 } 8518 return true; 8519 } 8520 bool isDone() const { return false; } 8521 }; 8522 8523 InvalidationRootCollector C(L); 8524 visitAll(S, C); 8525 forgetMemoizedResults(C.Roots); 8526 } 8527 8528 // Also perform the normal invalidation. 8529 forgetValue(V); 8530 } 8531 8532 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } 8533 8534 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { 8535 // Unless a specific value is passed to invalidation, completely clear both 8536 // caches. 8537 if (!V) { 8538 BlockDispositions.clear(); 8539 LoopDispositions.clear(); 8540 return; 8541 } 8542 8543 if (!isSCEVable(V->getType())) 8544 return; 8545 8546 const SCEV *S = getExistingSCEV(V); 8547 if (!S) 8548 return; 8549 8550 // Invalidate the block and loop dispositions cached for S. Dispositions of 8551 // S's users may change if S's disposition changes (i.e. a user may change to 8552 // loop-invariant, if S changes to loop invariant), so also invalidate 8553 // dispositions of S's users recursively. 8554 SmallVector<const SCEV *, 8> Worklist = {S}; 8555 SmallPtrSet<const SCEV *, 8> Seen = {S}; 8556 while (!Worklist.empty()) { 8557 const SCEV *Curr = Worklist.pop_back_val(); 8558 bool LoopDispoRemoved = LoopDispositions.erase(Curr); 8559 bool BlockDispoRemoved = BlockDispositions.erase(Curr); 8560 if (!LoopDispoRemoved && !BlockDispoRemoved) 8561 continue; 8562 auto Users = SCEVUsers.find(Curr); 8563 if (Users != SCEVUsers.end()) 8564 for (const auto *User : Users->second) 8565 if (Seen.insert(User).second) 8566 Worklist.push_back(User); 8567 } 8568 } 8569 8570 /// Get the exact loop backedge taken count considering all loop exits. A 8571 /// computable result can only be returned for loops with all exiting blocks 8572 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8573 /// is never skipped. This is a valid assumption as long as the loop exits via 8574 /// that test. For precise results, it is the caller's responsibility to specify 8575 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8576 const SCEV * 8577 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8578 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8579 // If any exits were not computable, the loop is not computable. 8580 if (!isComplete() || ExitNotTaken.empty()) 8581 return SE->getCouldNotCompute(); 8582 8583 const BasicBlock *Latch = L->getLoopLatch(); 8584 // All exiting blocks we have collected must dominate the only backedge. 8585 if (!Latch) 8586 return SE->getCouldNotCompute(); 8587 8588 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8589 // count is simply a minimum out of all these calculated exit counts. 8590 SmallVector<const SCEV *, 2> Ops; 8591 for (const auto &ENT : ExitNotTaken) { 8592 const SCEV *BECount = ENT.ExactNotTaken; 8593 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8594 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8595 "We should only have known counts for exiting blocks that dominate " 8596 "latch!"); 8597 8598 Ops.push_back(BECount); 8599 8600 if (Preds) 8601 for (const auto *P : ENT.Predicates) 8602 Preds->push_back(P); 8603 8604 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8605 "Predicate should be always true!"); 8606 } 8607 8608 // If an earlier exit exits on the first iteration (exit count zero), then 8609 // a later poison exit count should not propagate into the result. This are 8610 // exactly the semantics provided by umin_seq. 8611 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8612 } 8613 8614 /// Get the exact not taken count for this loop exit. 8615 const SCEV * 8616 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8617 ScalarEvolution *SE) const { 8618 for (const auto &ENT : ExitNotTaken) 8619 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8620 return ENT.ExactNotTaken; 8621 8622 return SE->getCouldNotCompute(); 8623 } 8624 8625 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8626 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8627 for (const auto &ENT : ExitNotTaken) 8628 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8629 return ENT.ConstantMaxNotTaken; 8630 8631 return SE->getCouldNotCompute(); 8632 } 8633 8634 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8635 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8636 for (const auto &ENT : ExitNotTaken) 8637 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8638 return ENT.SymbolicMaxNotTaken; 8639 8640 return SE->getCouldNotCompute(); 8641 } 8642 8643 /// getConstantMax - Get the constant max backedge taken count for the loop. 8644 const SCEV * 8645 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8646 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8647 return !ENT.hasAlwaysTruePredicate(); 8648 }; 8649 8650 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8651 return SE->getCouldNotCompute(); 8652 8653 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8654 isa<SCEVConstant>(getConstantMax())) && 8655 "No point in having a non-constant max backedge taken count!"); 8656 return getConstantMax(); 8657 } 8658 8659 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8660 const Loop *L, ScalarEvolution *SE, 8661 SmallVector<const SCEVPredicate *, 4> *Predicates) { 8662 if (!SymbolicMax) { 8663 // Form an expression for the maximum exit count possible for this loop. We 8664 // merge the max and exact information to approximate a version of 8665 // getConstantMaxBackedgeTakenCount which isn't restricted to just 8666 // constants. 8667 SmallVector<const SCEV *, 4> ExitCounts; 8668 8669 for (const auto &ENT : ExitNotTaken) { 8670 const SCEV *ExitCount = ENT.SymbolicMaxNotTaken; 8671 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 8672 assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) && 8673 "We should only have known counts for exiting blocks that " 8674 "dominate latch!"); 8675 ExitCounts.push_back(ExitCount); 8676 if (Predicates) 8677 for (const auto *P : ENT.Predicates) 8678 Predicates->push_back(P); 8679 8680 assert((Predicates || ENT.hasAlwaysTruePredicate()) && 8681 "Predicate should be always true!"); 8682 } 8683 } 8684 if (ExitCounts.empty()) 8685 SymbolicMax = SE->getCouldNotCompute(); 8686 else 8687 SymbolicMax = 8688 SE->getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); 8689 } 8690 return SymbolicMax; 8691 } 8692 8693 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8694 ScalarEvolution *SE) const { 8695 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8696 return !ENT.hasAlwaysTruePredicate(); 8697 }; 8698 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8699 } 8700 8701 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8702 : ExitLimit(E, E, E, false, std::nullopt) {} 8703 8704 ScalarEvolution::ExitLimit::ExitLimit( 8705 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8706 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8707 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8708 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), 8709 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { 8710 // If we prove the max count is zero, so is the symbolic bound. This happens 8711 // in practice due to differences in a) how context sensitive we've chosen 8712 // to be and b) how we reason about bounds implied by UB. 8713 if (ConstantMaxNotTaken->isZero()) { 8714 this->ExactNotTaken = E = ConstantMaxNotTaken; 8715 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; 8716 } 8717 8718 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8719 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8720 "Exact is not allowed to be less precise than Constant Max"); 8721 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8722 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && 8723 "Exact is not allowed to be less precise than Symbolic Max"); 8724 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || 8725 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8726 "Symbolic Max is not allowed to be less precise than Constant Max"); 8727 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8728 isa<SCEVConstant>(ConstantMaxNotTaken)) && 8729 "No point in having a non-constant max backedge taken count!"); 8730 for (const auto *PredSet : PredSetList) 8731 for (const auto *P : *PredSet) 8732 addPredicate(P); 8733 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8734 "Backedge count should be int"); 8735 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8736 !ConstantMaxNotTaken->getType()->isPointerTy()) && 8737 "Max backedge count should be int"); 8738 } 8739 8740 ScalarEvolution::ExitLimit::ExitLimit( 8741 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8742 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8743 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8744 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, 8745 { &PredSet }) {} 8746 8747 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8748 /// computable exit into a persistent ExitNotTakenInfo array. 8749 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8750 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8751 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8752 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8753 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8754 8755 ExitNotTaken.reserve(ExitCounts.size()); 8756 std::transform(ExitCounts.begin(), ExitCounts.end(), 8757 std::back_inserter(ExitNotTaken), 8758 [&](const EdgeExitInfo &EEI) { 8759 BasicBlock *ExitBB = EEI.first; 8760 const ExitLimit &EL = EEI.second; 8761 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, 8762 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, 8763 EL.Predicates); 8764 }); 8765 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8766 isa<SCEVConstant>(ConstantMax)) && 8767 "No point in having a non-constant max backedge taken count!"); 8768 } 8769 8770 /// Compute the number of times the backedge of the specified loop will execute. 8771 ScalarEvolution::BackedgeTakenInfo 8772 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8773 bool AllowPredicates) { 8774 SmallVector<BasicBlock *, 8> ExitingBlocks; 8775 L->getExitingBlocks(ExitingBlocks); 8776 8777 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8778 8779 SmallVector<EdgeExitInfo, 4> ExitCounts; 8780 bool CouldComputeBECount = true; 8781 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8782 const SCEV *MustExitMaxBECount = nullptr; 8783 const SCEV *MayExitMaxBECount = nullptr; 8784 bool MustExitMaxOrZero = false; 8785 bool IsOnlyExit = ExitingBlocks.size() == 1; 8786 8787 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8788 // and compute maxBECount. 8789 // Do a union of all the predicates here. 8790 for (BasicBlock *ExitBB : ExitingBlocks) { 8791 // We canonicalize untaken exits to br (constant), ignore them so that 8792 // proving an exit untaken doesn't negatively impact our ability to reason 8793 // about the loop as whole. 8794 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8795 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8796 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8797 if (ExitIfTrue == CI->isZero()) 8798 continue; 8799 } 8800 8801 ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates); 8802 8803 assert((AllowPredicates || EL.Predicates.empty()) && 8804 "Predicated exit limit when predicates are not allowed!"); 8805 8806 // 1. For each exit that can be computed, add an entry to ExitCounts. 8807 // CouldComputeBECount is true only if all exits can be computed. 8808 if (EL.ExactNotTaken != getCouldNotCompute()) 8809 ++NumExitCountsComputed; 8810 else 8811 // We couldn't compute an exact value for this exit, so 8812 // we won't be able to compute an exact value for the loop. 8813 CouldComputeBECount = false; 8814 // Remember exit count if either exact or symbolic is known. Because 8815 // Exact always implies symbolic, only check symbolic. 8816 if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) 8817 ExitCounts.emplace_back(ExitBB, EL); 8818 else { 8819 assert(EL.ExactNotTaken == getCouldNotCompute() && 8820 "Exact is known but symbolic isn't?"); 8821 ++NumExitCountsNotComputed; 8822 } 8823 8824 // 2. Derive the loop's MaxBECount from each exit's max number of 8825 // non-exiting iterations. Partition the loop exits into two kinds: 8826 // LoopMustExits and LoopMayExits. 8827 // 8828 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8829 // is a LoopMayExit. If any computable LoopMustExit is found, then 8830 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable 8831 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8832 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than 8833 // any 8834 // computable EL.ConstantMaxNotTaken. 8835 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && 8836 DT.dominates(ExitBB, Latch)) { 8837 if (!MustExitMaxBECount) { 8838 MustExitMaxBECount = EL.ConstantMaxNotTaken; 8839 MustExitMaxOrZero = EL.MaxOrZero; 8840 } else { 8841 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, 8842 EL.ConstantMaxNotTaken); 8843 } 8844 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8845 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) 8846 MayExitMaxBECount = EL.ConstantMaxNotTaken; 8847 else { 8848 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, 8849 EL.ConstantMaxNotTaken); 8850 } 8851 } 8852 } 8853 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8854 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8855 // The loop backedge will be taken the maximum or zero times if there's 8856 // a single exit that must be taken the maximum or zero times. 8857 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8858 8859 // Remember which SCEVs are used in exit limits for invalidation purposes. 8860 // We only care about non-constant SCEVs here, so we can ignore 8861 // EL.ConstantMaxNotTaken 8862 // and MaxBECount, which must be SCEVConstant. 8863 for (const auto &Pair : ExitCounts) { 8864 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8865 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8866 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) 8867 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( 8868 {L, AllowPredicates}); 8869 } 8870 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8871 MaxBECount, MaxOrZero); 8872 } 8873 8874 ScalarEvolution::ExitLimit 8875 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8876 bool IsOnlyExit, bool AllowPredicates) { 8877 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8878 // If our exiting block does not dominate the latch, then its connection with 8879 // loop's exit limit may be far from trivial. 8880 const BasicBlock *Latch = L->getLoopLatch(); 8881 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8882 return getCouldNotCompute(); 8883 8884 Instruction *Term = ExitingBlock->getTerminator(); 8885 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8886 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8887 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8888 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8889 "It should have one successor in loop and one exit block!"); 8890 // Proceed to the next level to examine the exit condition expression. 8891 return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue, 8892 /*ControlsOnlyExit=*/IsOnlyExit, 8893 AllowPredicates); 8894 } 8895 8896 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8897 // For switch, make sure that there is a single exit from the loop. 8898 BasicBlock *Exit = nullptr; 8899 for (auto *SBB : successors(ExitingBlock)) 8900 if (!L->contains(SBB)) { 8901 if (Exit) // Multiple exit successors. 8902 return getCouldNotCompute(); 8903 Exit = SBB; 8904 } 8905 assert(Exit && "Exiting block must have at least one exit"); 8906 return computeExitLimitFromSingleExitSwitch( 8907 L, SI, Exit, /*ControlsOnlyExit=*/IsOnlyExit); 8908 } 8909 8910 return getCouldNotCompute(); 8911 } 8912 8913 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8914 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 8915 bool AllowPredicates) { 8916 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8917 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8918 ControlsOnlyExit, AllowPredicates); 8919 } 8920 8921 std::optional<ScalarEvolution::ExitLimit> 8922 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8923 bool ExitIfTrue, bool ControlsOnlyExit, 8924 bool AllowPredicates) { 8925 (void)this->L; 8926 (void)this->ExitIfTrue; 8927 (void)this->AllowPredicates; 8928 8929 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8930 this->AllowPredicates == AllowPredicates && 8931 "Variance in assumed invariant key components!"); 8932 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit}); 8933 if (Itr == TripCountMap.end()) 8934 return std::nullopt; 8935 return Itr->second; 8936 } 8937 8938 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8939 bool ExitIfTrue, 8940 bool ControlsOnlyExit, 8941 bool AllowPredicates, 8942 const ExitLimit &EL) { 8943 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8944 this->AllowPredicates == AllowPredicates && 8945 "Variance in assumed invariant key components!"); 8946 8947 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL}); 8948 assert(InsertResult.second && "Expected successful insertion!"); 8949 (void)InsertResult; 8950 (void)ExitIfTrue; 8951 } 8952 8953 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8954 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8955 bool ControlsOnlyExit, bool AllowPredicates) { 8956 8957 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, 8958 AllowPredicates)) 8959 return *MaybeEL; 8960 8961 ExitLimit EL = computeExitLimitFromCondImpl( 8962 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); 8963 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); 8964 return EL; 8965 } 8966 8967 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8968 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8969 bool ControlsOnlyExit, bool AllowPredicates) { 8970 // Handle BinOp conditions (And, Or). 8971 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8972 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) 8973 return *LimitFromBinOp; 8974 8975 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8976 // Proceed to the next level to examine the icmp. 8977 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8978 ExitLimit EL = 8979 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit); 8980 if (EL.hasFullInfo() || !AllowPredicates) 8981 return EL; 8982 8983 // Try again, but use SCEV predicates this time. 8984 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, 8985 ControlsOnlyExit, 8986 /*AllowPredicates=*/true); 8987 } 8988 8989 // Check for a constant condition. These are normally stripped out by 8990 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8991 // preserve the CFG and is temporarily leaving constant conditions 8992 // in place. 8993 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8994 if (ExitIfTrue == !CI->getZExtValue()) 8995 // The backedge is always taken. 8996 return getCouldNotCompute(); 8997 // The backedge is never taken. 8998 return getZero(CI->getType()); 8999 } 9000 9001 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 9002 // with a constant step, we can form an equivalent icmp predicate and figure 9003 // out how many iterations will be taken before we exit. 9004 const WithOverflowInst *WO; 9005 const APInt *C; 9006 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 9007 match(WO->getRHS(), m_APInt(C))) { 9008 ConstantRange NWR = 9009 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 9010 WO->getNoWrapKind()); 9011 CmpInst::Predicate Pred; 9012 APInt NewRHSC, Offset; 9013 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 9014 if (!ExitIfTrue) 9015 Pred = ICmpInst::getInversePredicate(Pred); 9016 auto *LHS = getSCEV(WO->getLHS()); 9017 if (Offset != 0) 9018 LHS = getAddExpr(LHS, getConstant(Offset)); 9019 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 9020 ControlsOnlyExit, AllowPredicates); 9021 if (EL.hasAnyInfo()) 9022 return EL; 9023 } 9024 9025 // If it's not an integer or pointer comparison then compute it the hard way. 9026 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9027 } 9028 9029 std::optional<ScalarEvolution::ExitLimit> 9030 ScalarEvolution::computeExitLimitFromCondFromBinOp( 9031 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 9032 bool ControlsOnlyExit, bool AllowPredicates) { 9033 // Check if the controlling expression for this loop is an And or Or. 9034 Value *Op0, *Op1; 9035 bool IsAnd = false; 9036 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 9037 IsAnd = true; 9038 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 9039 IsAnd = false; 9040 else 9041 return std::nullopt; 9042 9043 // EitherMayExit is true in these two cases: 9044 // br (and Op0 Op1), loop, exit 9045 // br (or Op0 Op1), exit, loop 9046 bool EitherMayExit = IsAnd ^ ExitIfTrue; 9047 ExitLimit EL0 = computeExitLimitFromCondCached( 9048 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 9049 AllowPredicates); 9050 ExitLimit EL1 = computeExitLimitFromCondCached( 9051 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 9052 AllowPredicates); 9053 9054 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 9055 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 9056 if (isa<ConstantInt>(Op1)) 9057 return Op1 == NeutralElement ? EL0 : EL1; 9058 if (isa<ConstantInt>(Op0)) 9059 return Op0 == NeutralElement ? EL1 : EL0; 9060 9061 const SCEV *BECount = getCouldNotCompute(); 9062 const SCEV *ConstantMaxBECount = getCouldNotCompute(); 9063 const SCEV *SymbolicMaxBECount = getCouldNotCompute(); 9064 if (EitherMayExit) { 9065 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); 9066 // Both conditions must be same for the loop to continue executing. 9067 // Choose the less conservative count. 9068 if (EL0.ExactNotTaken != getCouldNotCompute() && 9069 EL1.ExactNotTaken != getCouldNotCompute()) { 9070 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 9071 UseSequentialUMin); 9072 } 9073 if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) 9074 ConstantMaxBECount = EL1.ConstantMaxNotTaken; 9075 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) 9076 ConstantMaxBECount = EL0.ConstantMaxNotTaken; 9077 else 9078 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, 9079 EL1.ConstantMaxNotTaken); 9080 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) 9081 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; 9082 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) 9083 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; 9084 else 9085 SymbolicMaxBECount = getUMinFromMismatchedTypes( 9086 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); 9087 } else { 9088 // Both conditions must be same at the same time for the loop to exit. 9089 // For now, be conservative. 9090 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 9091 BECount = EL0.ExactNotTaken; 9092 } 9093 9094 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 9095 // to be more aggressive when computing BECount than when computing 9096 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken 9097 // and 9098 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and 9099 // EL1.ConstantMaxNotTaken to not. 9100 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 9101 !isa<SCEVCouldNotCompute>(BECount)) 9102 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 9103 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) 9104 SymbolicMaxBECount = 9105 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 9106 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 9107 { &EL0.Predicates, &EL1.Predicates }); 9108 } 9109 9110 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9111 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 9112 bool AllowPredicates) { 9113 // If the condition was exit on true, convert the condition to exit on false 9114 ICmpInst::Predicate Pred; 9115 if (!ExitIfTrue) 9116 Pred = ExitCond->getPredicate(); 9117 else 9118 Pred = ExitCond->getInversePredicate(); 9119 const ICmpInst::Predicate OriginalPred = Pred; 9120 9121 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 9122 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 9123 9124 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit, 9125 AllowPredicates); 9126 if (EL.hasAnyInfo()) 9127 return EL; 9128 9129 auto *ExhaustiveCount = 9130 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9131 9132 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 9133 return ExhaustiveCount; 9134 9135 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 9136 ExitCond->getOperand(1), L, OriginalPred); 9137 } 9138 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9139 const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9140 bool ControlsOnlyExit, bool AllowPredicates) { 9141 9142 // Try to evaluate any dependencies out of the loop. 9143 LHS = getSCEVAtScope(LHS, L); 9144 RHS = getSCEVAtScope(RHS, L); 9145 9146 // At this point, we would like to compute how many iterations of the 9147 // loop the predicate will return true for these inputs. 9148 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 9149 // If there is a loop-invariant, force it into the RHS. 9150 std::swap(LHS, RHS); 9151 Pred = ICmpInst::getSwappedPredicate(Pred); 9152 } 9153 9154 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && 9155 loopIsFiniteByAssumption(L); 9156 // Simplify the operands before analyzing them. 9157 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); 9158 9159 // If we have a comparison of a chrec against a constant, try to use value 9160 // ranges to answer this query. 9161 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 9162 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 9163 if (AddRec->getLoop() == L) { 9164 // Form the constant range. 9165 ConstantRange CompRange = 9166 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 9167 9168 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 9169 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 9170 } 9171 9172 // If this loop must exit based on this condition (or execute undefined 9173 // behaviour), and we can prove the test sequence produced must repeat 9174 // the same values on self-wrap of the IV, then we can infer that IV 9175 // doesn't self wrap because if it did, we'd have an infinite (undefined) 9176 // loop. 9177 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 9178 // TODO: We can peel off any functions which are invertible *in L*. Loop 9179 // invariant terms are effectively constants for our purposes here. 9180 auto *InnerLHS = LHS; 9181 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 9182 InnerLHS = ZExt->getOperand(); 9183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 9184 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 9185 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 9186 StrideC && StrideC->getAPInt().isPowerOf2()) { 9187 auto Flags = AR->getNoWrapFlags(); 9188 Flags = setFlags(Flags, SCEV::FlagNW); 9189 SmallVector<const SCEV*> Operands{AR->operands()}; 9190 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9191 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9192 } 9193 } 9194 } 9195 9196 switch (Pred) { 9197 case ICmpInst::ICMP_NE: { // while (X != Y) 9198 // Convert to: while (X-Y != 0) 9199 if (LHS->getType()->isPointerTy()) { 9200 LHS = getLosslessPtrToIntExpr(LHS); 9201 if (isa<SCEVCouldNotCompute>(LHS)) 9202 return LHS; 9203 } 9204 if (RHS->getType()->isPointerTy()) { 9205 RHS = getLosslessPtrToIntExpr(RHS); 9206 if (isa<SCEVCouldNotCompute>(RHS)) 9207 return RHS; 9208 } 9209 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit, 9210 AllowPredicates); 9211 if (EL.hasAnyInfo()) 9212 return EL; 9213 break; 9214 } 9215 case ICmpInst::ICMP_EQ: { // while (X == Y) 9216 // Convert to: while (X-Y == 0) 9217 if (LHS->getType()->isPointerTy()) { 9218 LHS = getLosslessPtrToIntExpr(LHS); 9219 if (isa<SCEVCouldNotCompute>(LHS)) 9220 return LHS; 9221 } 9222 if (RHS->getType()->isPointerTy()) { 9223 RHS = getLosslessPtrToIntExpr(RHS); 9224 if (isa<SCEVCouldNotCompute>(RHS)) 9225 return RHS; 9226 } 9227 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 9228 if (EL.hasAnyInfo()) return EL; 9229 break; 9230 } 9231 case ICmpInst::ICMP_SLE: 9232 case ICmpInst::ICMP_ULE: 9233 // Since the loop is finite, an invariant RHS cannot include the boundary 9234 // value, otherwise it would loop forever. 9235 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9236 !isLoopInvariant(RHS, L)) { 9237 // Otherwise, perform the addition in a wider type, to avoid overflow. 9238 // If the LHS is an addrec with the appropriate nowrap flag, the 9239 // extension will be sunk into it and the exit count can be analyzed. 9240 auto *OldType = dyn_cast<IntegerType>(LHS->getType()); 9241 if (!OldType) 9242 break; 9243 // Prefer doubling the bitwidth over adding a single bit to make it more 9244 // likely that we use a legal type. 9245 auto *NewType = 9246 Type::getIntNTy(OldType->getContext(), OldType->getBitWidth() * 2); 9247 if (ICmpInst::isSigned(Pred)) { 9248 LHS = getSignExtendExpr(LHS, NewType); 9249 RHS = getSignExtendExpr(RHS, NewType); 9250 } else { 9251 LHS = getZeroExtendExpr(LHS, NewType); 9252 RHS = getZeroExtendExpr(RHS, NewType); 9253 } 9254 } 9255 RHS = getAddExpr(getOne(RHS->getType()), RHS); 9256 [[fallthrough]]; 9257 case ICmpInst::ICMP_SLT: 9258 case ICmpInst::ICMP_ULT: { // while (X < Y) 9259 bool IsSigned = ICmpInst::isSigned(Pred); 9260 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9261 AllowPredicates); 9262 if (EL.hasAnyInfo()) 9263 return EL; 9264 break; 9265 } 9266 case ICmpInst::ICMP_SGE: 9267 case ICmpInst::ICMP_UGE: 9268 // Since the loop is finite, an invariant RHS cannot include the boundary 9269 // value, otherwise it would loop forever. 9270 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9271 !isLoopInvariant(RHS, L)) 9272 break; 9273 RHS = getAddExpr(getMinusOne(RHS->getType()), RHS); 9274 [[fallthrough]]; 9275 case ICmpInst::ICMP_SGT: 9276 case ICmpInst::ICMP_UGT: { // while (X > Y) 9277 bool IsSigned = ICmpInst::isSigned(Pred); 9278 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9279 AllowPredicates); 9280 if (EL.hasAnyInfo()) 9281 return EL; 9282 break; 9283 } 9284 default: 9285 break; 9286 } 9287 9288 return getCouldNotCompute(); 9289 } 9290 9291 ScalarEvolution::ExitLimit 9292 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 9293 SwitchInst *Switch, 9294 BasicBlock *ExitingBlock, 9295 bool ControlsOnlyExit) { 9296 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 9297 9298 // Give up if the exit is the default dest of a switch. 9299 if (Switch->getDefaultDest() == ExitingBlock) 9300 return getCouldNotCompute(); 9301 9302 assert(L->contains(Switch->getDefaultDest()) && 9303 "Default case must not exit the loop!"); 9304 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 9305 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 9306 9307 // while (X != Y) --> while (X-Y != 0) 9308 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit); 9309 if (EL.hasAnyInfo()) 9310 return EL; 9311 9312 return getCouldNotCompute(); 9313 } 9314 9315 static ConstantInt * 9316 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9317 ScalarEvolution &SE) { 9318 const SCEV *InVal = SE.getConstant(C); 9319 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9320 assert(isa<SCEVConstant>(Val) && 9321 "Evaluation of SCEV at constant didn't fold correctly?"); 9322 return cast<SCEVConstant>(Val)->getValue(); 9323 } 9324 9325 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9326 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9327 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9328 if (!RHS) 9329 return getCouldNotCompute(); 9330 9331 const BasicBlock *Latch = L->getLoopLatch(); 9332 if (!Latch) 9333 return getCouldNotCompute(); 9334 9335 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9336 if (!Predecessor) 9337 return getCouldNotCompute(); 9338 9339 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9340 // Return LHS in OutLHS and shift_opt in OutOpCode. 9341 auto MatchPositiveShift = 9342 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9343 9344 using namespace PatternMatch; 9345 9346 ConstantInt *ShiftAmt; 9347 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9348 OutOpCode = Instruction::LShr; 9349 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9350 OutOpCode = Instruction::AShr; 9351 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9352 OutOpCode = Instruction::Shl; 9353 else 9354 return false; 9355 9356 return ShiftAmt->getValue().isStrictlyPositive(); 9357 }; 9358 9359 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9360 // 9361 // loop: 9362 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9363 // %iv.shifted = lshr i32 %iv, <positive constant> 9364 // 9365 // Return true on a successful match. Return the corresponding PHI node (%iv 9366 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9367 auto MatchShiftRecurrence = 9368 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9369 std::optional<Instruction::BinaryOps> PostShiftOpCode; 9370 9371 { 9372 Instruction::BinaryOps OpC; 9373 Value *V; 9374 9375 // If we encounter a shift instruction, "peel off" the shift operation, 9376 // and remember that we did so. Later when we inspect %iv's backedge 9377 // value, we will make sure that the backedge value uses the same 9378 // operation. 9379 // 9380 // Note: the peeled shift operation does not have to be the same 9381 // instruction as the one feeding into the PHI's backedge value. We only 9382 // really care about it being the same *kind* of shift instruction -- 9383 // that's all that is required for our later inferences to hold. 9384 if (MatchPositiveShift(LHS, V, OpC)) { 9385 PostShiftOpCode = OpC; 9386 LHS = V; 9387 } 9388 } 9389 9390 PNOut = dyn_cast<PHINode>(LHS); 9391 if (!PNOut || PNOut->getParent() != L->getHeader()) 9392 return false; 9393 9394 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9395 Value *OpLHS; 9396 9397 return 9398 // The backedge value for the PHI node must be a shift by a positive 9399 // amount 9400 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9401 9402 // of the PHI node itself 9403 OpLHS == PNOut && 9404 9405 // and the kind of shift should be match the kind of shift we peeled 9406 // off, if any. 9407 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9408 }; 9409 9410 PHINode *PN; 9411 Instruction::BinaryOps OpCode; 9412 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9413 return getCouldNotCompute(); 9414 9415 const DataLayout &DL = getDataLayout(); 9416 9417 // The key rationale for this optimization is that for some kinds of shift 9418 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9419 // within a finite number of iterations. If the condition guarding the 9420 // backedge (in the sense that the backedge is taken if the condition is true) 9421 // is false for the value the shift recurrence stabilizes to, then we know 9422 // that the backedge is taken only a finite number of times. 9423 9424 ConstantInt *StableValue = nullptr; 9425 switch (OpCode) { 9426 default: 9427 llvm_unreachable("Impossible case!"); 9428 9429 case Instruction::AShr: { 9430 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9431 // bitwidth(K) iterations. 9432 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9433 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9434 Predecessor->getTerminator(), &DT); 9435 auto *Ty = cast<IntegerType>(RHS->getType()); 9436 if (Known.isNonNegative()) 9437 StableValue = ConstantInt::get(Ty, 0); 9438 else if (Known.isNegative()) 9439 StableValue = ConstantInt::get(Ty, -1, true); 9440 else 9441 return getCouldNotCompute(); 9442 9443 break; 9444 } 9445 case Instruction::LShr: 9446 case Instruction::Shl: 9447 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9448 // stabilize to 0 in at most bitwidth(K) iterations. 9449 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9450 break; 9451 } 9452 9453 auto *Result = 9454 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9455 assert(Result->getType()->isIntegerTy(1) && 9456 "Otherwise cannot be an operand to a branch instruction"); 9457 9458 if (Result->isZeroValue()) { 9459 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9460 const SCEV *UpperBound = 9461 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9462 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); 9463 } 9464 9465 return getCouldNotCompute(); 9466 } 9467 9468 /// Return true if we can constant fold an instruction of the specified type, 9469 /// assuming that all operands were constants. 9470 static bool CanConstantFold(const Instruction *I) { 9471 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9472 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9473 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9474 return true; 9475 9476 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9477 if (const Function *F = CI->getCalledFunction()) 9478 return canConstantFoldCallTo(CI, F); 9479 return false; 9480 } 9481 9482 /// Determine whether this instruction can constant evolve within this loop 9483 /// assuming its operands can all constant evolve. 9484 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9485 // An instruction outside of the loop can't be derived from a loop PHI. 9486 if (!L->contains(I)) return false; 9487 9488 if (isa<PHINode>(I)) { 9489 // We don't currently keep track of the control flow needed to evaluate 9490 // PHIs, so we cannot handle PHIs inside of loops. 9491 return L->getHeader() == I->getParent(); 9492 } 9493 9494 // If we won't be able to constant fold this expression even if the operands 9495 // are constants, bail early. 9496 return CanConstantFold(I); 9497 } 9498 9499 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9500 /// recursing through each instruction operand until reaching a loop header phi. 9501 static PHINode * 9502 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9503 DenseMap<Instruction *, PHINode *> &PHIMap, 9504 unsigned Depth) { 9505 if (Depth > MaxConstantEvolvingDepth) 9506 return nullptr; 9507 9508 // Otherwise, we can evaluate this instruction if all of its operands are 9509 // constant or derived from a PHI node themselves. 9510 PHINode *PHI = nullptr; 9511 for (Value *Op : UseInst->operands()) { 9512 if (isa<Constant>(Op)) continue; 9513 9514 Instruction *OpInst = dyn_cast<Instruction>(Op); 9515 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9516 9517 PHINode *P = dyn_cast<PHINode>(OpInst); 9518 if (!P) 9519 // If this operand is already visited, reuse the prior result. 9520 // We may have P != PHI if this is the deepest point at which the 9521 // inconsistent paths meet. 9522 P = PHIMap.lookup(OpInst); 9523 if (!P) { 9524 // Recurse and memoize the results, whether a phi is found or not. 9525 // This recursive call invalidates pointers into PHIMap. 9526 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9527 PHIMap[OpInst] = P; 9528 } 9529 if (!P) 9530 return nullptr; // Not evolving from PHI 9531 if (PHI && PHI != P) 9532 return nullptr; // Evolving from multiple different PHIs. 9533 PHI = P; 9534 } 9535 // This is a expression evolving from a constant PHI! 9536 return PHI; 9537 } 9538 9539 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9540 /// in the loop that V is derived from. We allow arbitrary operations along the 9541 /// way, but the operands of an operation must either be constants or a value 9542 /// derived from a constant PHI. If this expression does not fit with these 9543 /// constraints, return null. 9544 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9545 Instruction *I = dyn_cast<Instruction>(V); 9546 if (!I || !canConstantEvolve(I, L)) return nullptr; 9547 9548 if (PHINode *PN = dyn_cast<PHINode>(I)) 9549 return PN; 9550 9551 // Record non-constant instructions contained by the loop. 9552 DenseMap<Instruction *, PHINode *> PHIMap; 9553 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9554 } 9555 9556 /// EvaluateExpression - Given an expression that passes the 9557 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9558 /// in the loop has the value PHIVal. If we can't fold this expression for some 9559 /// reason, return null. 9560 static Constant *EvaluateExpression(Value *V, const Loop *L, 9561 DenseMap<Instruction *, Constant *> &Vals, 9562 const DataLayout &DL, 9563 const TargetLibraryInfo *TLI) { 9564 // Convenient constant check, but redundant for recursive calls. 9565 if (Constant *C = dyn_cast<Constant>(V)) return C; 9566 Instruction *I = dyn_cast<Instruction>(V); 9567 if (!I) return nullptr; 9568 9569 if (Constant *C = Vals.lookup(I)) return C; 9570 9571 // An instruction inside the loop depends on a value outside the loop that we 9572 // weren't given a mapping for, or a value such as a call inside the loop. 9573 if (!canConstantEvolve(I, L)) return nullptr; 9574 9575 // An unmapped PHI can be due to a branch or another loop inside this loop, 9576 // or due to this not being the initial iteration through a loop where we 9577 // couldn't compute the evolution of this particular PHI last time. 9578 if (isa<PHINode>(I)) return nullptr; 9579 9580 std::vector<Constant*> Operands(I->getNumOperands()); 9581 9582 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9583 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9584 if (!Operand) { 9585 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9586 if (!Operands[i]) return nullptr; 9587 continue; 9588 } 9589 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9590 Vals[Operand] = C; 9591 if (!C) return nullptr; 9592 Operands[i] = C; 9593 } 9594 9595 return ConstantFoldInstOperands(I, Operands, DL, TLI, 9596 /*AllowNonDeterministic=*/false); 9597 } 9598 9599 9600 // If every incoming value to PN except the one for BB is a specific Constant, 9601 // return that, else return nullptr. 9602 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9603 Constant *IncomingVal = nullptr; 9604 9605 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9606 if (PN->getIncomingBlock(i) == BB) 9607 continue; 9608 9609 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9610 if (!CurrentVal) 9611 return nullptr; 9612 9613 if (IncomingVal != CurrentVal) { 9614 if (IncomingVal) 9615 return nullptr; 9616 IncomingVal = CurrentVal; 9617 } 9618 } 9619 9620 return IncomingVal; 9621 } 9622 9623 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9624 /// in the header of its containing loop, we know the loop executes a 9625 /// constant number of times, and the PHI node is just a recurrence 9626 /// involving constants, fold it. 9627 Constant * 9628 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9629 const APInt &BEs, 9630 const Loop *L) { 9631 auto I = ConstantEvolutionLoopExitValue.find(PN); 9632 if (I != ConstantEvolutionLoopExitValue.end()) 9633 return I->second; 9634 9635 if (BEs.ugt(MaxBruteForceIterations)) 9636 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9637 9638 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9639 9640 DenseMap<Instruction *, Constant *> CurrentIterVals; 9641 BasicBlock *Header = L->getHeader(); 9642 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9643 9644 BasicBlock *Latch = L->getLoopLatch(); 9645 if (!Latch) 9646 return nullptr; 9647 9648 for (PHINode &PHI : Header->phis()) { 9649 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9650 CurrentIterVals[&PHI] = StartCST; 9651 } 9652 if (!CurrentIterVals.count(PN)) 9653 return RetVal = nullptr; 9654 9655 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9656 9657 // Execute the loop symbolically to determine the exit value. 9658 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9659 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9660 9661 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9662 unsigned IterationNum = 0; 9663 const DataLayout &DL = getDataLayout(); 9664 for (; ; ++IterationNum) { 9665 if (IterationNum == NumIterations) 9666 return RetVal = CurrentIterVals[PN]; // Got exit value! 9667 9668 // Compute the value of the PHIs for the next iteration. 9669 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9670 DenseMap<Instruction *, Constant *> NextIterVals; 9671 Constant *NextPHI = 9672 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9673 if (!NextPHI) 9674 return nullptr; // Couldn't evaluate! 9675 NextIterVals[PN] = NextPHI; 9676 9677 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9678 9679 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9680 // cease to be able to evaluate one of them or if they stop evolving, 9681 // because that doesn't necessarily prevent us from computing PN. 9682 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9683 for (const auto &I : CurrentIterVals) { 9684 PHINode *PHI = dyn_cast<PHINode>(I.first); 9685 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9686 PHIsToCompute.emplace_back(PHI, I.second); 9687 } 9688 // We use two distinct loops because EvaluateExpression may invalidate any 9689 // iterators into CurrentIterVals. 9690 for (const auto &I : PHIsToCompute) { 9691 PHINode *PHI = I.first; 9692 Constant *&NextPHI = NextIterVals[PHI]; 9693 if (!NextPHI) { // Not already computed. 9694 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9695 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9696 } 9697 if (NextPHI != I.second) 9698 StoppedEvolving = false; 9699 } 9700 9701 // If all entries in CurrentIterVals == NextIterVals then we can stop 9702 // iterating, the loop can't continue to change. 9703 if (StoppedEvolving) 9704 return RetVal = CurrentIterVals[PN]; 9705 9706 CurrentIterVals.swap(NextIterVals); 9707 } 9708 } 9709 9710 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9711 Value *Cond, 9712 bool ExitWhen) { 9713 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9714 if (!PN) return getCouldNotCompute(); 9715 9716 // If the loop is canonicalized, the PHI will have exactly two entries. 9717 // That's the only form we support here. 9718 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9719 9720 DenseMap<Instruction *, Constant *> CurrentIterVals; 9721 BasicBlock *Header = L->getHeader(); 9722 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9723 9724 BasicBlock *Latch = L->getLoopLatch(); 9725 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9726 9727 for (PHINode &PHI : Header->phis()) { 9728 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9729 CurrentIterVals[&PHI] = StartCST; 9730 } 9731 if (!CurrentIterVals.count(PN)) 9732 return getCouldNotCompute(); 9733 9734 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9735 // the loop symbolically to determine when the condition gets a value of 9736 // "ExitWhen". 9737 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9738 const DataLayout &DL = getDataLayout(); 9739 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9740 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9741 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9742 9743 // Couldn't symbolically evaluate. 9744 if (!CondVal) return getCouldNotCompute(); 9745 9746 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9747 ++NumBruteForceTripCountsComputed; 9748 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9749 } 9750 9751 // Update all the PHI nodes for the next iteration. 9752 DenseMap<Instruction *, Constant *> NextIterVals; 9753 9754 // Create a list of which PHIs we need to compute. We want to do this before 9755 // calling EvaluateExpression on them because that may invalidate iterators 9756 // into CurrentIterVals. 9757 SmallVector<PHINode *, 8> PHIsToCompute; 9758 for (const auto &I : CurrentIterVals) { 9759 PHINode *PHI = dyn_cast<PHINode>(I.first); 9760 if (!PHI || PHI->getParent() != Header) continue; 9761 PHIsToCompute.push_back(PHI); 9762 } 9763 for (PHINode *PHI : PHIsToCompute) { 9764 Constant *&NextPHI = NextIterVals[PHI]; 9765 if (NextPHI) continue; // Already computed! 9766 9767 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9768 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9769 } 9770 CurrentIterVals.swap(NextIterVals); 9771 } 9772 9773 // Too many iterations were needed to evaluate. 9774 return getCouldNotCompute(); 9775 } 9776 9777 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9778 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9779 ValuesAtScopes[V]; 9780 // Check to see if we've folded this expression at this loop before. 9781 for (auto &LS : Values) 9782 if (LS.first == L) 9783 return LS.second ? LS.second : V; 9784 9785 Values.emplace_back(L, nullptr); 9786 9787 // Otherwise compute it. 9788 const SCEV *C = computeSCEVAtScope(V, L); 9789 for (auto &LS : reverse(ValuesAtScopes[V])) 9790 if (LS.first == L) { 9791 LS.second = C; 9792 if (!isa<SCEVConstant>(C)) 9793 ValuesAtScopesUsers[C].push_back({L, V}); 9794 break; 9795 } 9796 return C; 9797 } 9798 9799 /// This builds up a Constant using the ConstantExpr interface. That way, we 9800 /// will return Constants for objects which aren't represented by a 9801 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9802 /// Returns NULL if the SCEV isn't representable as a Constant. 9803 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9804 switch (V->getSCEVType()) { 9805 case scCouldNotCompute: 9806 case scAddRecExpr: 9807 case scVScale: 9808 return nullptr; 9809 case scConstant: 9810 return cast<SCEVConstant>(V)->getValue(); 9811 case scUnknown: 9812 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9813 case scPtrToInt: { 9814 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9815 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9816 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9817 9818 return nullptr; 9819 } 9820 case scTruncate: { 9821 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9822 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9823 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9824 return nullptr; 9825 } 9826 case scAddExpr: { 9827 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9828 Constant *C = nullptr; 9829 for (const SCEV *Op : SA->operands()) { 9830 Constant *OpC = BuildConstantFromSCEV(Op); 9831 if (!OpC) 9832 return nullptr; 9833 if (!C) { 9834 C = OpC; 9835 continue; 9836 } 9837 assert(!C->getType()->isPointerTy() && 9838 "Can only have one pointer, and it must be last"); 9839 if (OpC->getType()->isPointerTy()) { 9840 // The offsets have been converted to bytes. We can add bytes using 9841 // an i8 GEP. 9842 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9843 OpC, C); 9844 } else { 9845 C = ConstantExpr::getAdd(C, OpC); 9846 } 9847 } 9848 return C; 9849 } 9850 case scMulExpr: 9851 case scSignExtend: 9852 case scZeroExtend: 9853 case scUDivExpr: 9854 case scSMaxExpr: 9855 case scUMaxExpr: 9856 case scSMinExpr: 9857 case scUMinExpr: 9858 case scSequentialUMinExpr: 9859 return nullptr; 9860 } 9861 llvm_unreachable("Unknown SCEV kind!"); 9862 } 9863 9864 const SCEV * 9865 ScalarEvolution::getWithOperands(const SCEV *S, 9866 SmallVectorImpl<const SCEV *> &NewOps) { 9867 switch (S->getSCEVType()) { 9868 case scTruncate: 9869 case scZeroExtend: 9870 case scSignExtend: 9871 case scPtrToInt: 9872 return getCastExpr(S->getSCEVType(), NewOps[0], S->getType()); 9873 case scAddRecExpr: { 9874 auto *AddRec = cast<SCEVAddRecExpr>(S); 9875 return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags()); 9876 } 9877 case scAddExpr: 9878 return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags()); 9879 case scMulExpr: 9880 return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags()); 9881 case scUDivExpr: 9882 return getUDivExpr(NewOps[0], NewOps[1]); 9883 case scUMaxExpr: 9884 case scSMaxExpr: 9885 case scUMinExpr: 9886 case scSMinExpr: 9887 return getMinMaxExpr(S->getSCEVType(), NewOps); 9888 case scSequentialUMinExpr: 9889 return getSequentialMinMaxExpr(S->getSCEVType(), NewOps); 9890 case scConstant: 9891 case scVScale: 9892 case scUnknown: 9893 return S; 9894 case scCouldNotCompute: 9895 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9896 } 9897 llvm_unreachable("Unknown SCEV kind!"); 9898 } 9899 9900 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9901 switch (V->getSCEVType()) { 9902 case scConstant: 9903 case scVScale: 9904 return V; 9905 case scAddRecExpr: { 9906 // If this is a loop recurrence for a loop that does not contain L, then we 9907 // are dealing with the final value computed by the loop. 9908 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); 9909 // First, attempt to evaluate each operand. 9910 // Avoid performing the look-up in the common case where the specified 9911 // expression has no loop-variant portions. 9912 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9913 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9914 if (OpAtScope == AddRec->getOperand(i)) 9915 continue; 9916 9917 // Okay, at least one of these operands is loop variant but might be 9918 // foldable. Build a new instance of the folded commutative expression. 9919 SmallVector<const SCEV *, 8> NewOps; 9920 NewOps.reserve(AddRec->getNumOperands()); 9921 append_range(NewOps, AddRec->operands().take_front(i)); 9922 NewOps.push_back(OpAtScope); 9923 for (++i; i != e; ++i) 9924 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9925 9926 const SCEV *FoldedRec = getAddRecExpr( 9927 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); 9928 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9929 // The addrec may be folded to a nonrecurrence, for example, if the 9930 // induction variable is multiplied by zero after constant folding. Go 9931 // ahead and return the folded value. 9932 if (!AddRec) 9933 return FoldedRec; 9934 break; 9935 } 9936 9937 // If the scope is outside the addrec's loop, evaluate it by using the 9938 // loop exit value of the addrec. 9939 if (!AddRec->getLoop()->contains(L)) { 9940 // To evaluate this recurrence, we need to know how many times the AddRec 9941 // loop iterates. Compute this now. 9942 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9943 if (BackedgeTakenCount == getCouldNotCompute()) 9944 return AddRec; 9945 9946 // Then, evaluate the AddRec. 9947 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9948 } 9949 9950 return AddRec; 9951 } 9952 case scTruncate: 9953 case scZeroExtend: 9954 case scSignExtend: 9955 case scPtrToInt: 9956 case scAddExpr: 9957 case scMulExpr: 9958 case scUDivExpr: 9959 case scUMaxExpr: 9960 case scSMaxExpr: 9961 case scUMinExpr: 9962 case scSMinExpr: 9963 case scSequentialUMinExpr: { 9964 ArrayRef<const SCEV *> Ops = V->operands(); 9965 // Avoid performing the look-up in the common case where the specified 9966 // expression has no loop-variant portions. 9967 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 9968 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); 9969 if (OpAtScope != Ops[i]) { 9970 // Okay, at least one of these operands is loop variant but might be 9971 // foldable. Build a new instance of the folded commutative expression. 9972 SmallVector<const SCEV *, 8> NewOps; 9973 NewOps.reserve(Ops.size()); 9974 append_range(NewOps, Ops.take_front(i)); 9975 NewOps.push_back(OpAtScope); 9976 9977 for (++i; i != e; ++i) { 9978 OpAtScope = getSCEVAtScope(Ops[i], L); 9979 NewOps.push_back(OpAtScope); 9980 } 9981 9982 return getWithOperands(V, NewOps); 9983 } 9984 } 9985 // If we got here, all operands are loop invariant. 9986 return V; 9987 } 9988 case scUnknown: { 9989 // If this instruction is evolved from a constant-evolving PHI, compute the 9990 // exit value from the loop without using SCEVs. 9991 const SCEVUnknown *SU = cast<SCEVUnknown>(V); 9992 Instruction *I = dyn_cast<Instruction>(SU->getValue()); 9993 if (!I) 9994 return V; // This is some other type of SCEVUnknown, just return it. 9995 9996 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9997 const Loop *CurrLoop = this->LI[I->getParent()]; 9998 // Looking for loop exit value. 9999 if (CurrLoop && CurrLoop->getParentLoop() == L && 10000 PN->getParent() == CurrLoop->getHeader()) { 10001 // Okay, there is no closed form solution for the PHI node. Check 10002 // to see if the loop that contains it has a known backedge-taken 10003 // count. If so, we may be able to force computation of the exit 10004 // value. 10005 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 10006 // This trivial case can show up in some degenerate cases where 10007 // the incoming IR has not yet been fully simplified. 10008 if (BackedgeTakenCount->isZero()) { 10009 Value *InitValue = nullptr; 10010 bool MultipleInitValues = false; 10011 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 10012 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 10013 if (!InitValue) 10014 InitValue = PN->getIncomingValue(i); 10015 else if (InitValue != PN->getIncomingValue(i)) { 10016 MultipleInitValues = true; 10017 break; 10018 } 10019 } 10020 } 10021 if (!MultipleInitValues && InitValue) 10022 return getSCEV(InitValue); 10023 } 10024 // Do we have a loop invariant value flowing around the backedge 10025 // for a loop which must execute the backedge? 10026 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 10027 isKnownNonZero(BackedgeTakenCount) && 10028 PN->getNumIncomingValues() == 2) { 10029 10030 unsigned InLoopPred = 10031 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 10032 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 10033 if (CurrLoop->isLoopInvariant(BackedgeVal)) 10034 return getSCEV(BackedgeVal); 10035 } 10036 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 10037 // Okay, we know how many times the containing loop executes. If 10038 // this is a constant evolving PHI node, get the final value at 10039 // the specified iteration number. 10040 Constant *RV = 10041 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); 10042 if (RV) 10043 return getSCEV(RV); 10044 } 10045 } 10046 } 10047 10048 // Okay, this is an expression that we cannot symbolically evaluate 10049 // into a SCEV. Check to see if it's possible to symbolically evaluate 10050 // the arguments into constants, and if so, try to constant propagate the 10051 // result. This is particularly useful for computing loop exit values. 10052 if (!CanConstantFold(I)) 10053 return V; // This is some other type of SCEVUnknown, just return it. 10054 10055 SmallVector<Constant *, 4> Operands; 10056 Operands.reserve(I->getNumOperands()); 10057 bool MadeImprovement = false; 10058 for (Value *Op : I->operands()) { 10059 if (Constant *C = dyn_cast<Constant>(Op)) { 10060 Operands.push_back(C); 10061 continue; 10062 } 10063 10064 // If any of the operands is non-constant and if they are 10065 // non-integer and non-pointer, don't even try to analyze them 10066 // with scev techniques. 10067 if (!isSCEVable(Op->getType())) 10068 return V; 10069 10070 const SCEV *OrigV = getSCEV(Op); 10071 const SCEV *OpV = getSCEVAtScope(OrigV, L); 10072 MadeImprovement |= OrigV != OpV; 10073 10074 Constant *C = BuildConstantFromSCEV(OpV); 10075 if (!C) 10076 return V; 10077 assert(C->getType() == Op->getType() && "Type mismatch"); 10078 Operands.push_back(C); 10079 } 10080 10081 // Check to see if getSCEVAtScope actually made an improvement. 10082 if (!MadeImprovement) 10083 return V; // This is some other type of SCEVUnknown, just return it. 10084 10085 Constant *C = nullptr; 10086 const DataLayout &DL = getDataLayout(); 10087 C = ConstantFoldInstOperands(I, Operands, DL, &TLI, 10088 /*AllowNonDeterministic=*/false); 10089 if (!C) 10090 return V; 10091 return getSCEV(C); 10092 } 10093 case scCouldNotCompute: 10094 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10095 } 10096 llvm_unreachable("Unknown SCEV type!"); 10097 } 10098 10099 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 10100 return getSCEVAtScope(getSCEV(V), L); 10101 } 10102 10103 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 10104 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 10105 return stripInjectiveFunctions(ZExt->getOperand()); 10106 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 10107 return stripInjectiveFunctions(SExt->getOperand()); 10108 return S; 10109 } 10110 10111 /// Finds the minimum unsigned root of the following equation: 10112 /// 10113 /// A * X = B (mod N) 10114 /// 10115 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 10116 /// A and B isn't important. 10117 /// 10118 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 10119 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 10120 ScalarEvolution &SE) { 10121 uint32_t BW = A.getBitWidth(); 10122 assert(BW == SE.getTypeSizeInBits(B->getType())); 10123 assert(A != 0 && "A must be non-zero."); 10124 10125 // 1. D = gcd(A, N) 10126 // 10127 // The gcd of A and N may have only one prime factor: 2. The number of 10128 // trailing zeros in A is its multiplicity 10129 uint32_t Mult2 = A.countr_zero(); 10130 // D = 2^Mult2 10131 10132 // 2. Check if B is divisible by D. 10133 // 10134 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 10135 // is not less than multiplicity of this prime factor for D. 10136 if (SE.getMinTrailingZeros(B) < Mult2) 10137 return SE.getCouldNotCompute(); 10138 10139 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 10140 // modulo (N / D). 10141 // 10142 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 10143 // (N / D) in general. The inverse itself always fits into BW bits, though, 10144 // so we immediately truncate it. 10145 APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D 10146 APInt I = AD.multiplicativeInverse().zext(BW); 10147 10148 // 4. Compute the minimum unsigned root of the equation: 10149 // I * (B / D) mod (N / D) 10150 // To simplify the computation, we factor out the divide by D: 10151 // (I * B mod N) / D 10152 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 10153 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 10154 } 10155 10156 /// For a given quadratic addrec, generate coefficients of the corresponding 10157 /// quadratic equation, multiplied by a common value to ensure that they are 10158 /// integers. 10159 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 10160 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 10161 /// were multiplied by, and BitWidth is the bit width of the original addrec 10162 /// coefficients. 10163 /// This function returns std::nullopt if the addrec coefficients are not 10164 /// compile- time constants. 10165 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 10166 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 10167 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 10168 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 10169 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 10170 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 10171 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 10172 << *AddRec << '\n'); 10173 10174 // We currently can only solve this if the coefficients are constants. 10175 if (!LC || !MC || !NC) { 10176 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 10177 return std::nullopt; 10178 } 10179 10180 APInt L = LC->getAPInt(); 10181 APInt M = MC->getAPInt(); 10182 APInt N = NC->getAPInt(); 10183 assert(!N.isZero() && "This is not a quadratic addrec"); 10184 10185 unsigned BitWidth = LC->getAPInt().getBitWidth(); 10186 unsigned NewWidth = BitWidth + 1; 10187 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 10188 << BitWidth << '\n'); 10189 // The sign-extension (as opposed to a zero-extension) here matches the 10190 // extension used in SolveQuadraticEquationWrap (with the same motivation). 10191 N = N.sext(NewWidth); 10192 M = M.sext(NewWidth); 10193 L = L.sext(NewWidth); 10194 10195 // The increments are M, M+N, M+2N, ..., so the accumulated values are 10196 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 10197 // L+M, L+2M+N, L+3M+3N, ... 10198 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 10199 // 10200 // The equation Acc = 0 is then 10201 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 10202 // In a quadratic form it becomes: 10203 // N n^2 + (2M-N) n + 2L = 0. 10204 10205 APInt A = N; 10206 APInt B = 2 * M - A; 10207 APInt C = 2 * L; 10208 APInt T = APInt(NewWidth, 2); 10209 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 10210 << "x + " << C << ", coeff bw: " << NewWidth 10211 << ", multiplied by " << T << '\n'); 10212 return std::make_tuple(A, B, C, T, BitWidth); 10213 } 10214 10215 /// Helper function to compare optional APInts: 10216 /// (a) if X and Y both exist, return min(X, Y), 10217 /// (b) if neither X nor Y exist, return std::nullopt, 10218 /// (c) if exactly one of X and Y exists, return that value. 10219 static std::optional<APInt> MinOptional(std::optional<APInt> X, 10220 std::optional<APInt> Y) { 10221 if (X && Y) { 10222 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 10223 APInt XW = X->sext(W); 10224 APInt YW = Y->sext(W); 10225 return XW.slt(YW) ? *X : *Y; 10226 } 10227 if (!X && !Y) 10228 return std::nullopt; 10229 return X ? *X : *Y; 10230 } 10231 10232 /// Helper function to truncate an optional APInt to a given BitWidth. 10233 /// When solving addrec-related equations, it is preferable to return a value 10234 /// that has the same bit width as the original addrec's coefficients. If the 10235 /// solution fits in the original bit width, truncate it (except for i1). 10236 /// Returning a value of a different bit width may inhibit some optimizations. 10237 /// 10238 /// In general, a solution to a quadratic equation generated from an addrec 10239 /// may require BW+1 bits, where BW is the bit width of the addrec's 10240 /// coefficients. The reason is that the coefficients of the quadratic 10241 /// equation are BW+1 bits wide (to avoid truncation when converting from 10242 /// the addrec to the equation). 10243 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, 10244 unsigned BitWidth) { 10245 if (!X) 10246 return std::nullopt; 10247 unsigned W = X->getBitWidth(); 10248 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 10249 return X->trunc(BitWidth); 10250 return X; 10251 } 10252 10253 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 10254 /// iterations. The values L, M, N are assumed to be signed, and they 10255 /// should all have the same bit widths. 10256 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 10257 /// where BW is the bit width of the addrec's coefficients. 10258 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 10259 /// returned as such, otherwise the bit width of the returned value may 10260 /// be greater than BW. 10261 /// 10262 /// This function returns std::nullopt if 10263 /// (a) the addrec coefficients are not constant, or 10264 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 10265 /// like x^2 = 5, no integer solutions exist, in other cases an integer 10266 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 10267 static std::optional<APInt> 10268 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 10269 APInt A, B, C, M; 10270 unsigned BitWidth; 10271 auto T = GetQuadraticEquation(AddRec); 10272 if (!T) 10273 return std::nullopt; 10274 10275 std::tie(A, B, C, M, BitWidth) = *T; 10276 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 10277 std::optional<APInt> X = 10278 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); 10279 if (!X) 10280 return std::nullopt; 10281 10282 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 10283 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 10284 if (!V->isZero()) 10285 return std::nullopt; 10286 10287 return TruncIfPossible(X, BitWidth); 10288 } 10289 10290 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 10291 /// iterations. The values M, N are assumed to be signed, and they 10292 /// should all have the same bit widths. 10293 /// Find the least n such that c(n) does not belong to the given range, 10294 /// while c(n-1) does. 10295 /// 10296 /// This function returns std::nullopt if 10297 /// (a) the addrec coefficients are not constant, or 10298 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 10299 /// bounds of the range. 10300 static std::optional<APInt> 10301 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 10302 const ConstantRange &Range, ScalarEvolution &SE) { 10303 assert(AddRec->getOperand(0)->isZero() && 10304 "Starting value of addrec should be 0"); 10305 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 10306 << Range << ", addrec " << *AddRec << '\n'); 10307 // This case is handled in getNumIterationsInRange. Here we can assume that 10308 // we start in the range. 10309 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 10310 "Addrec's initial value should be in range"); 10311 10312 APInt A, B, C, M; 10313 unsigned BitWidth; 10314 auto T = GetQuadraticEquation(AddRec); 10315 if (!T) 10316 return std::nullopt; 10317 10318 // Be careful about the return value: there can be two reasons for not 10319 // returning an actual number. First, if no solutions to the equations 10320 // were found, and second, if the solutions don't leave the given range. 10321 // The first case means that the actual solution is "unknown", the second 10322 // means that it's known, but not valid. If the solution is unknown, we 10323 // cannot make any conclusions. 10324 // Return a pair: the optional solution and a flag indicating if the 10325 // solution was found. 10326 auto SolveForBoundary = 10327 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { 10328 // Solve for signed overflow and unsigned overflow, pick the lower 10329 // solution. 10330 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10331 << Bound << " (before multiplying by " << M << ")\n"); 10332 Bound *= M; // The quadratic equation multiplier. 10333 10334 std::optional<APInt> SO; 10335 if (BitWidth > 1) { 10336 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10337 "signed overflow\n"); 10338 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10339 } 10340 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10341 "unsigned overflow\n"); 10342 std::optional<APInt> UO = 10343 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); 10344 10345 auto LeavesRange = [&] (const APInt &X) { 10346 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10347 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10348 if (Range.contains(V0->getValue())) 10349 return false; 10350 // X should be at least 1, so X-1 is non-negative. 10351 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10352 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10353 if (Range.contains(V1->getValue())) 10354 return true; 10355 return false; 10356 }; 10357 10358 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there 10359 // can be a solution, but the function failed to find it. We cannot treat it 10360 // as "no solution". 10361 if (!SO || !UO) 10362 return {std::nullopt, false}; 10363 10364 // Check the smaller value first to see if it leaves the range. 10365 // At this point, both SO and UO must have values. 10366 std::optional<APInt> Min = MinOptional(SO, UO); 10367 if (LeavesRange(*Min)) 10368 return { Min, true }; 10369 std::optional<APInt> Max = Min == SO ? UO : SO; 10370 if (LeavesRange(*Max)) 10371 return { Max, true }; 10372 10373 // Solutions were found, but were eliminated, hence the "true". 10374 return {std::nullopt, true}; 10375 }; 10376 10377 std::tie(A, B, C, M, BitWidth) = *T; 10378 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10379 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10380 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10381 auto SL = SolveForBoundary(Lower); 10382 auto SU = SolveForBoundary(Upper); 10383 // If any of the solutions was unknown, no meaninigful conclusions can 10384 // be made. 10385 if (!SL.second || !SU.second) 10386 return std::nullopt; 10387 10388 // Claim: The correct solution is not some value between Min and Max. 10389 // 10390 // Justification: Assuming that Min and Max are different values, one of 10391 // them is when the first signed overflow happens, the other is when the 10392 // first unsigned overflow happens. Crossing the range boundary is only 10393 // possible via an overflow (treating 0 as a special case of it, modeling 10394 // an overflow as crossing k*2^W for some k). 10395 // 10396 // The interesting case here is when Min was eliminated as an invalid 10397 // solution, but Max was not. The argument is that if there was another 10398 // overflow between Min and Max, it would also have been eliminated if 10399 // it was considered. 10400 // 10401 // For a given boundary, it is possible to have two overflows of the same 10402 // type (signed/unsigned) without having the other type in between: this 10403 // can happen when the vertex of the parabola is between the iterations 10404 // corresponding to the overflows. This is only possible when the two 10405 // overflows cross k*2^W for the same k. In such case, if the second one 10406 // left the range (and was the first one to do so), the first overflow 10407 // would have to enter the range, which would mean that either we had left 10408 // the range before or that we started outside of it. Both of these cases 10409 // are contradictions. 10410 // 10411 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct 10412 // solution is not some value between the Max for this boundary and the 10413 // Min of the other boundary. 10414 // 10415 // Justification: Assume that we had such Max_A and Min_B corresponding 10416 // to range boundaries A and B and such that Max_A < Min_B. If there was 10417 // a solution between Max_A and Min_B, it would have to be caused by an 10418 // overflow corresponding to either A or B. It cannot correspond to B, 10419 // since Min_B is the first occurrence of such an overflow. If it 10420 // corresponded to A, it would have to be either a signed or an unsigned 10421 // overflow that is larger than both eliminated overflows for A. But 10422 // between the eliminated overflows and this overflow, the values would 10423 // cover the entire value space, thus crossing the other boundary, which 10424 // is a contradiction. 10425 10426 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10427 } 10428 10429 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, 10430 const Loop *L, 10431 bool ControlsOnlyExit, 10432 bool AllowPredicates) { 10433 10434 // This is only used for loops with a "x != y" exit test. The exit condition 10435 // is now expressed as a single expression, V = x-y. So the exit test is 10436 // effectively V != 0. We know and take advantage of the fact that this 10437 // expression only being used in a comparison by zero context. 10438 10439 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10440 // If the value is a constant 10441 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10442 // If the value is already zero, the branch will execute zero times. 10443 if (C->getValue()->isZero()) return C; 10444 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10445 } 10446 10447 const SCEVAddRecExpr *AddRec = 10448 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10449 10450 if (!AddRec && AllowPredicates) 10451 // Try to make this an AddRec using runtime tests, in the first X 10452 // iterations of this loop, where X is the SCEV expression found by the 10453 // algorithm below. 10454 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10455 10456 if (!AddRec || AddRec->getLoop() != L) 10457 return getCouldNotCompute(); 10458 10459 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10460 // the quadratic equation to solve it. 10461 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10462 // We can only use this value if the chrec ends up with an exact zero 10463 // value at this index. When solving for "X*X != 5", for example, we 10464 // should not accept a root of 2. 10465 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10466 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10467 return ExitLimit(R, R, R, false, Predicates); 10468 } 10469 return getCouldNotCompute(); 10470 } 10471 10472 // Otherwise we can only handle this if it is affine. 10473 if (!AddRec->isAffine()) 10474 return getCouldNotCompute(); 10475 10476 // If this is an affine expression, the execution count of this branch is 10477 // the minimum unsigned root of the following equation: 10478 // 10479 // Start + Step*N = 0 (mod 2^BW) 10480 // 10481 // equivalent to: 10482 // 10483 // Step*N = -Start (mod 2^BW) 10484 // 10485 // where BW is the common bit width of Start and Step. 10486 10487 // Get the initial value for the loop. 10488 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10489 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10490 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10491 10492 if (!isLoopInvariant(Step, L)) 10493 return getCouldNotCompute(); 10494 10495 LoopGuards Guards = LoopGuards::collect(L, *this); 10496 // Specialize step for this loop so we get context sensitive facts below. 10497 const SCEV *StepWLG = applyLoopGuards(Step, Guards); 10498 10499 // For positive steps (counting up until unsigned overflow): 10500 // N = -Start/Step (as unsigned) 10501 // For negative steps (counting down to zero): 10502 // N = Start/-Step 10503 // First compute the unsigned distance from zero in the direction of Step. 10504 bool CountDown = isKnownNegative(StepWLG); 10505 if (!CountDown && !isKnownNonNegative(StepWLG)) 10506 return getCouldNotCompute(); 10507 10508 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10509 // Handle unitary steps, which cannot wraparound. 10510 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10511 // N = Distance (as unsigned) 10512 if (StepC && 10513 (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne())) { 10514 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, Guards)); 10515 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10516 10517 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10518 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10519 // case, and see if we can improve the bound. 10520 // 10521 // Explicitly handling this here is necessary because getUnsignedRange 10522 // isn't context-sensitive; it doesn't know that we only care about the 10523 // range inside the loop. 10524 const SCEV *Zero = getZero(Distance->getType()); 10525 const SCEV *One = getOne(Distance->getType()); 10526 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10527 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10528 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10529 // as "unsigned_max(Distance + 1) - 1". 10530 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10531 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10532 } 10533 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, 10534 Predicates); 10535 } 10536 10537 // If the condition controls loop exit (the loop exits only if the expression 10538 // is true) and the addition is no-wrap we can use unsigned divide to 10539 // compute the backedge count. In this case, the step may not divide the 10540 // distance, but we don't care because if the condition is "missed" the loop 10541 // will have undefined behavior due to wrapping. 10542 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && 10543 loopHasNoAbnormalExits(AddRec->getLoop())) { 10544 10545 // If the stride is zero, the loop must be infinite. In C++, most loops 10546 // are finite by assumption, in which case the step being zero implies 10547 // UB must execute if the loop is entered. 10548 if (!loopIsFiniteByAssumption(L) && !isKnownNonZero(StepWLG)) 10549 return getCouldNotCompute(); 10550 10551 const SCEV *Exact = 10552 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10553 const SCEV *ConstantMax = getCouldNotCompute(); 10554 if (Exact != getCouldNotCompute()) { 10555 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, Guards)); 10556 ConstantMax = 10557 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10558 } 10559 const SCEV *SymbolicMax = 10560 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; 10561 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); 10562 } 10563 10564 // Solve the general equation. 10565 if (!StepC || StepC->getValue()->isZero()) 10566 return getCouldNotCompute(); 10567 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10568 getNegativeSCEV(Start), *this); 10569 10570 const SCEV *M = E; 10571 if (E != getCouldNotCompute()) { 10572 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, Guards)); 10573 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10574 } 10575 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; 10576 return ExitLimit(E, M, S, false, Predicates); 10577 } 10578 10579 ScalarEvolution::ExitLimit 10580 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10581 // Loops that look like: while (X == 0) are very strange indeed. We don't 10582 // handle them yet except for the trivial case. This could be expanded in the 10583 // future as needed. 10584 10585 // If the value is a constant, check to see if it is known to be non-zero 10586 // already. If so, the backedge will execute zero times. 10587 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10588 if (!C->getValue()->isZero()) 10589 return getZero(C->getType()); 10590 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10591 } 10592 10593 // We could implement others, but I really doubt anyone writes loops like 10594 // this, and if they did, they would already be constant folded. 10595 return getCouldNotCompute(); 10596 } 10597 10598 std::pair<const BasicBlock *, const BasicBlock *> 10599 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10600 const { 10601 // If the block has a unique predecessor, then there is no path from the 10602 // predecessor to the block that does not go through the direct edge 10603 // from the predecessor to the block. 10604 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10605 return {Pred, BB}; 10606 10607 // A loop's header is defined to be a block that dominates the loop. 10608 // If the header has a unique predecessor outside the loop, it must be 10609 // a block that has exactly one successor that can reach the loop. 10610 if (const Loop *L = LI.getLoopFor(BB)) 10611 return {L->getLoopPredecessor(), L->getHeader()}; 10612 10613 return {nullptr, nullptr}; 10614 } 10615 10616 /// SCEV structural equivalence is usually sufficient for testing whether two 10617 /// expressions are equal, however for the purposes of looking for a condition 10618 /// guarding a loop, it can be useful to be a little more general, since a 10619 /// front-end may have replicated the controlling expression. 10620 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10621 // Quick check to see if they are the same SCEV. 10622 if (A == B) return true; 10623 10624 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10625 // Not all instructions that are "identical" compute the same value. For 10626 // instance, two distinct alloca instructions allocating the same type are 10627 // identical and do not read memory; but compute distinct values. 10628 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10629 }; 10630 10631 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10632 // two different instructions with the same value. Check for this case. 10633 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10634 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10635 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10636 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10637 if (ComputesEqualValues(AI, BI)) 10638 return true; 10639 10640 // Otherwise assume they may have a different value. 10641 return false; 10642 } 10643 10644 static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) { 10645 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S); 10646 if (!Add || Add->getNumOperands() != 2) 10647 return false; 10648 if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 10649 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) { 10650 LHS = Add->getOperand(1); 10651 RHS = ME->getOperand(1); 10652 return true; 10653 } 10654 if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 10655 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) { 10656 LHS = Add->getOperand(0); 10657 RHS = ME->getOperand(1); 10658 return true; 10659 } 10660 return false; 10661 } 10662 10663 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10664 const SCEV *&LHS, const SCEV *&RHS, 10665 unsigned Depth) { 10666 bool Changed = false; 10667 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10668 // '0 != 0'. 10669 auto TrivialCase = [&](bool TriviallyTrue) { 10670 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10671 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10672 return true; 10673 }; 10674 // If we hit the max recursion limit bail out. 10675 if (Depth >= 3) 10676 return false; 10677 10678 // Canonicalize a constant to the right side. 10679 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10680 // Check for both operands constant. 10681 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10682 if (!ICmpInst::compare(LHSC->getAPInt(), RHSC->getAPInt(), Pred)) 10683 return TrivialCase(false); 10684 return TrivialCase(true); 10685 } 10686 // Otherwise swap the operands to put the constant on the right. 10687 std::swap(LHS, RHS); 10688 Pred = ICmpInst::getSwappedPredicate(Pred); 10689 Changed = true; 10690 } 10691 10692 // If we're comparing an addrec with a value which is loop-invariant in the 10693 // addrec's loop, put the addrec on the left. Also make a dominance check, 10694 // as both operands could be addrecs loop-invariant in each other's loop. 10695 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10696 const Loop *L = AR->getLoop(); 10697 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10698 std::swap(LHS, RHS); 10699 Pred = ICmpInst::getSwappedPredicate(Pred); 10700 Changed = true; 10701 } 10702 } 10703 10704 // If there's a constant operand, canonicalize comparisons with boundary 10705 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10706 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10707 const APInt &RA = RC->getAPInt(); 10708 10709 bool SimplifiedByConstantRange = false; 10710 10711 if (!ICmpInst::isEquality(Pred)) { 10712 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10713 if (ExactCR.isFullSet()) 10714 return TrivialCase(true); 10715 if (ExactCR.isEmptySet()) 10716 return TrivialCase(false); 10717 10718 APInt NewRHS; 10719 CmpInst::Predicate NewPred; 10720 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10721 ICmpInst::isEquality(NewPred)) { 10722 // We were able to convert an inequality to an equality. 10723 Pred = NewPred; 10724 RHS = getConstant(NewRHS); 10725 Changed = SimplifiedByConstantRange = true; 10726 } 10727 } 10728 10729 if (!SimplifiedByConstantRange) { 10730 switch (Pred) { 10731 default: 10732 break; 10733 case ICmpInst::ICMP_EQ: 10734 case ICmpInst::ICMP_NE: 10735 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10736 if (RA.isZero() && MatchBinarySub(LHS, LHS, RHS)) 10737 Changed = true; 10738 break; 10739 10740 // The "Should have been caught earlier!" messages refer to the fact 10741 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10742 // should have fired on the corresponding cases, and canonicalized the 10743 // check to trivial case. 10744 10745 case ICmpInst::ICMP_UGE: 10746 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10747 Pred = ICmpInst::ICMP_UGT; 10748 RHS = getConstant(RA - 1); 10749 Changed = true; 10750 break; 10751 case ICmpInst::ICMP_ULE: 10752 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10753 Pred = ICmpInst::ICMP_ULT; 10754 RHS = getConstant(RA + 1); 10755 Changed = true; 10756 break; 10757 case ICmpInst::ICMP_SGE: 10758 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10759 Pred = ICmpInst::ICMP_SGT; 10760 RHS = getConstant(RA - 1); 10761 Changed = true; 10762 break; 10763 case ICmpInst::ICMP_SLE: 10764 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10765 Pred = ICmpInst::ICMP_SLT; 10766 RHS = getConstant(RA + 1); 10767 Changed = true; 10768 break; 10769 } 10770 } 10771 } 10772 10773 // Check for obvious equality. 10774 if (HasSameValue(LHS, RHS)) { 10775 if (ICmpInst::isTrueWhenEqual(Pred)) 10776 return TrivialCase(true); 10777 if (ICmpInst::isFalseWhenEqual(Pred)) 10778 return TrivialCase(false); 10779 } 10780 10781 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10782 // adding or subtracting 1 from one of the operands. 10783 switch (Pred) { 10784 case ICmpInst::ICMP_SLE: 10785 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 10786 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10787 SCEV::FlagNSW); 10788 Pred = ICmpInst::ICMP_SLT; 10789 Changed = true; 10790 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10791 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10792 SCEV::FlagNSW); 10793 Pred = ICmpInst::ICMP_SLT; 10794 Changed = true; 10795 } 10796 break; 10797 case ICmpInst::ICMP_SGE: 10798 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 10799 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10800 SCEV::FlagNSW); 10801 Pred = ICmpInst::ICMP_SGT; 10802 Changed = true; 10803 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10804 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10805 SCEV::FlagNSW); 10806 Pred = ICmpInst::ICMP_SGT; 10807 Changed = true; 10808 } 10809 break; 10810 case ICmpInst::ICMP_ULE: 10811 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 10812 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10813 SCEV::FlagNUW); 10814 Pred = ICmpInst::ICMP_ULT; 10815 Changed = true; 10816 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10817 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10818 Pred = ICmpInst::ICMP_ULT; 10819 Changed = true; 10820 } 10821 break; 10822 case ICmpInst::ICMP_UGE: 10823 if (!getUnsignedRangeMin(RHS).isMinValue()) { 10824 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10825 Pred = ICmpInst::ICMP_UGT; 10826 Changed = true; 10827 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10828 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10829 SCEV::FlagNUW); 10830 Pred = ICmpInst::ICMP_UGT; 10831 Changed = true; 10832 } 10833 break; 10834 default: 10835 break; 10836 } 10837 10838 // TODO: More simplifications are possible here. 10839 10840 // Recursively simplify until we either hit a recursion limit or nothing 10841 // changes. 10842 if (Changed) 10843 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1); 10844 10845 return Changed; 10846 } 10847 10848 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10849 return getSignedRangeMax(S).isNegative(); 10850 } 10851 10852 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10853 return getSignedRangeMin(S).isStrictlyPositive(); 10854 } 10855 10856 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10857 return !getSignedRangeMin(S).isNegative(); 10858 } 10859 10860 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10861 return !getSignedRangeMax(S).isStrictlyPositive(); 10862 } 10863 10864 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10865 // Query push down for cases where the unsigned range is 10866 // less than sufficient. 10867 if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 10868 return isKnownNonZero(SExt->getOperand(0)); 10869 return getUnsignedRangeMin(S) != 0; 10870 } 10871 10872 std::pair<const SCEV *, const SCEV *> 10873 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10874 // Compute SCEV on entry of loop L. 10875 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10876 if (Start == getCouldNotCompute()) 10877 return { Start, Start }; 10878 // Compute post increment SCEV for loop L. 10879 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10880 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10881 return { Start, PostInc }; 10882 } 10883 10884 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10885 const SCEV *LHS, const SCEV *RHS) { 10886 // First collect all loops. 10887 SmallPtrSet<const Loop *, 8> LoopsUsed; 10888 getUsedLoops(LHS, LoopsUsed); 10889 getUsedLoops(RHS, LoopsUsed); 10890 10891 if (LoopsUsed.empty()) 10892 return false; 10893 10894 // Domination relationship must be a linear order on collected loops. 10895 #ifndef NDEBUG 10896 for (const auto *L1 : LoopsUsed) 10897 for (const auto *L2 : LoopsUsed) 10898 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10899 DT.dominates(L2->getHeader(), L1->getHeader())) && 10900 "Domination relationship is not a linear order"); 10901 #endif 10902 10903 const Loop *MDL = 10904 *llvm::max_element(LoopsUsed, [&](const Loop *L1, const Loop *L2) { 10905 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10906 }); 10907 10908 // Get init and post increment value for LHS. 10909 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10910 // if LHS contains unknown non-invariant SCEV then bail out. 10911 if (SplitLHS.first == getCouldNotCompute()) 10912 return false; 10913 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10914 // Get init and post increment value for RHS. 10915 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10916 // if RHS contains unknown non-invariant SCEV then bail out. 10917 if (SplitRHS.first == getCouldNotCompute()) 10918 return false; 10919 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10920 // It is possible that init SCEV contains an invariant load but it does 10921 // not dominate MDL and is not available at MDL loop entry, so we should 10922 // check it here. 10923 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10924 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10925 return false; 10926 10927 // It seems backedge guard check is faster than entry one so in some cases 10928 // it can speed up whole estimation by short circuit 10929 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10930 SplitRHS.second) && 10931 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10932 } 10933 10934 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10935 const SCEV *LHS, const SCEV *RHS) { 10936 // Canonicalize the inputs first. 10937 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10938 10939 if (isKnownViaInduction(Pred, LHS, RHS)) 10940 return true; 10941 10942 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10943 return true; 10944 10945 // Otherwise see what can be done with some simple reasoning. 10946 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10947 } 10948 10949 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10950 const SCEV *LHS, 10951 const SCEV *RHS) { 10952 if (isKnownPredicate(Pred, LHS, RHS)) 10953 return true; 10954 if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10955 return false; 10956 return std::nullopt; 10957 } 10958 10959 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10960 const SCEV *LHS, const SCEV *RHS, 10961 const Instruction *CtxI) { 10962 // TODO: Analyze guards and assumes from Context's block. 10963 return isKnownPredicate(Pred, LHS, RHS) || 10964 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10965 } 10966 10967 std::optional<bool> 10968 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 10969 const SCEV *RHS, const Instruction *CtxI) { 10970 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10971 if (KnownWithoutContext) 10972 return KnownWithoutContext; 10973 10974 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10975 return true; 10976 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10977 ICmpInst::getInversePredicate(Pred), 10978 LHS, RHS)) 10979 return false; 10980 return std::nullopt; 10981 } 10982 10983 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10984 const SCEVAddRecExpr *LHS, 10985 const SCEV *RHS) { 10986 const Loop *L = LHS->getLoop(); 10987 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10988 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10989 } 10990 10991 std::optional<ScalarEvolution::MonotonicPredicateType> 10992 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10993 ICmpInst::Predicate Pred) { 10994 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10995 10996 #ifndef NDEBUG 10997 // Verify an invariant: inverting the predicate should turn a monotonically 10998 // increasing change to a monotonically decreasing one, and vice versa. 10999 if (Result) { 11000 auto ResultSwapped = 11001 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 11002 11003 assert(*ResultSwapped != *Result && 11004 "monotonicity should flip as we flip the predicate"); 11005 } 11006 #endif 11007 11008 return Result; 11009 } 11010 11011 std::optional<ScalarEvolution::MonotonicPredicateType> 11012 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 11013 ICmpInst::Predicate Pred) { 11014 // A zero step value for LHS means the induction variable is essentially a 11015 // loop invariant value. We don't really depend on the predicate actually 11016 // flipping from false to true (for increasing predicates, and the other way 11017 // around for decreasing predicates), all we care about is that *if* the 11018 // predicate changes then it only changes from false to true. 11019 // 11020 // A zero step value in itself is not very useful, but there may be places 11021 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 11022 // as general as possible. 11023 11024 // Only handle LE/LT/GE/GT predicates. 11025 if (!ICmpInst::isRelational(Pred)) 11026 return std::nullopt; 11027 11028 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 11029 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 11030 "Should be greater or less!"); 11031 11032 // Check that AR does not wrap. 11033 if (ICmpInst::isUnsigned(Pred)) { 11034 if (!LHS->hasNoUnsignedWrap()) 11035 return std::nullopt; 11036 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11037 } 11038 assert(ICmpInst::isSigned(Pred) && 11039 "Relational predicate is either signed or unsigned!"); 11040 if (!LHS->hasNoSignedWrap()) 11041 return std::nullopt; 11042 11043 const SCEV *Step = LHS->getStepRecurrence(*this); 11044 11045 if (isKnownNonNegative(Step)) 11046 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11047 11048 if (isKnownNonPositive(Step)) 11049 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11050 11051 return std::nullopt; 11052 } 11053 11054 std::optional<ScalarEvolution::LoopInvariantPredicate> 11055 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 11056 const SCEV *LHS, const SCEV *RHS, 11057 const Loop *L, 11058 const Instruction *CtxI) { 11059 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11060 if (!isLoopInvariant(RHS, L)) { 11061 if (!isLoopInvariant(LHS, L)) 11062 return std::nullopt; 11063 11064 std::swap(LHS, RHS); 11065 Pred = ICmpInst::getSwappedPredicate(Pred); 11066 } 11067 11068 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11069 if (!ArLHS || ArLHS->getLoop() != L) 11070 return std::nullopt; 11071 11072 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 11073 if (!MonotonicType) 11074 return std::nullopt; 11075 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 11076 // true as the loop iterates, and the backedge is control dependent on 11077 // "ArLHS `Pred` RHS" == true then we can reason as follows: 11078 // 11079 // * if the predicate was false in the first iteration then the predicate 11080 // is never evaluated again, since the loop exits without taking the 11081 // backedge. 11082 // * if the predicate was true in the first iteration then it will 11083 // continue to be true for all future iterations since it is 11084 // monotonically increasing. 11085 // 11086 // For both the above possibilities, we can replace the loop varying 11087 // predicate with its value on the first iteration of the loop (which is 11088 // loop invariant). 11089 // 11090 // A similar reasoning applies for a monotonically decreasing predicate, by 11091 // replacing true with false and false with true in the above two bullets. 11092 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 11093 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 11094 11095 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 11096 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11097 RHS); 11098 11099 if (!CtxI) 11100 return std::nullopt; 11101 // Try to prove via context. 11102 // TODO: Support other cases. 11103 switch (Pred) { 11104 default: 11105 break; 11106 case ICmpInst::ICMP_ULE: 11107 case ICmpInst::ICMP_ULT: { 11108 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!"); 11109 // Given preconditions 11110 // (1) ArLHS does not cross the border of positive and negative parts of 11111 // range because of: 11112 // - Positive step; (TODO: lift this limitation) 11113 // - nuw - does not cross zero boundary; 11114 // - nsw - does not cross SINT_MAX boundary; 11115 // (2) ArLHS <s RHS 11116 // (3) RHS >=s 0 11117 // we can replace the loop variant ArLHS <u RHS condition with loop 11118 // invariant Start(ArLHS) <u RHS. 11119 // 11120 // Because of (1) there are two options: 11121 // - ArLHS is always negative. It means that ArLHS <u RHS is always false; 11122 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. 11123 // It means that ArLHS <s RHS <=> ArLHS <u RHS. 11124 // Because of (2) ArLHS <u RHS is trivially true. 11125 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. 11126 // We can strengthen this to Start(ArLHS) <u RHS. 11127 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); 11128 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && 11129 isKnownPositive(ArLHS->getStepRecurrence(*this)) && 11130 isKnownNonNegative(RHS) && 11131 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) 11132 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11133 RHS); 11134 } 11135 } 11136 11137 return std::nullopt; 11138 } 11139 11140 std::optional<ScalarEvolution::LoopInvariantPredicate> 11141 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 11142 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11143 const Instruction *CtxI, const SCEV *MaxIter) { 11144 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11145 Pred, LHS, RHS, L, CtxI, MaxIter)) 11146 return LIP; 11147 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) 11148 // Number of iterations expressed as UMIN isn't always great for expressing 11149 // the value on the last iteration. If the straightforward approach didn't 11150 // work, try the following trick: if the a predicate is invariant for X, it 11151 // is also invariant for umin(X, ...). So try to find something that works 11152 // among subexpressions of MaxIter expressed as umin. 11153 for (auto *Op : UMin->operands()) 11154 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11155 Pred, LHS, RHS, L, CtxI, Op)) 11156 return LIP; 11157 return std::nullopt; 11158 } 11159 11160 std::optional<ScalarEvolution::LoopInvariantPredicate> 11161 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( 11162 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11163 const Instruction *CtxI, const SCEV *MaxIter) { 11164 // Try to prove the following set of facts: 11165 // - The predicate is monotonic in the iteration space. 11166 // - If the check does not fail on the 1st iteration: 11167 // - No overflow will happen during first MaxIter iterations; 11168 // - It will not fail on the MaxIter'th iteration. 11169 // If the check does fail on the 1st iteration, we leave the loop and no 11170 // other checks matter. 11171 11172 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11173 if (!isLoopInvariant(RHS, L)) { 11174 if (!isLoopInvariant(LHS, L)) 11175 return std::nullopt; 11176 11177 std::swap(LHS, RHS); 11178 Pred = ICmpInst::getSwappedPredicate(Pred); 11179 } 11180 11181 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 11182 if (!AR || AR->getLoop() != L) 11183 return std::nullopt; 11184 11185 // The predicate must be relational (i.e. <, <=, >=, >). 11186 if (!ICmpInst::isRelational(Pred)) 11187 return std::nullopt; 11188 11189 // TODO: Support steps other than +/- 1. 11190 const SCEV *Step = AR->getStepRecurrence(*this); 11191 auto *One = getOne(Step->getType()); 11192 auto *MinusOne = getNegativeSCEV(One); 11193 if (Step != One && Step != MinusOne) 11194 return std::nullopt; 11195 11196 // Type mismatch here means that MaxIter is potentially larger than max 11197 // unsigned value in start type, which mean we cannot prove no wrap for the 11198 // indvar. 11199 if (AR->getType() != MaxIter->getType()) 11200 return std::nullopt; 11201 11202 // Value of IV on suggested last iteration. 11203 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 11204 // Does it still meet the requirement? 11205 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 11206 return std::nullopt; 11207 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 11208 // not exceed max unsigned value of this type), this effectively proves 11209 // that there is no wrap during the iteration. To prove that there is no 11210 // signed/unsigned wrap, we need to check that 11211 // Start <= Last for step = 1 or Start >= Last for step = -1. 11212 ICmpInst::Predicate NoOverflowPred = 11213 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11214 if (Step == MinusOne) 11215 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 11216 const SCEV *Start = AR->getStart(); 11217 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 11218 return std::nullopt; 11219 11220 // Everything is fine. 11221 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 11222 } 11223 11224 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 11225 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 11226 if (HasSameValue(LHS, RHS)) 11227 return ICmpInst::isTrueWhenEqual(Pred); 11228 11229 // This code is split out from isKnownPredicate because it is called from 11230 // within isLoopEntryGuardedByCond. 11231 11232 auto CheckRanges = [&](const ConstantRange &RangeLHS, 11233 const ConstantRange &RangeRHS) { 11234 return RangeLHS.icmp(Pred, RangeRHS); 11235 }; 11236 11237 // The check at the top of the function catches the case where the values are 11238 // known to be equal. 11239 if (Pred == CmpInst::ICMP_EQ) 11240 return false; 11241 11242 if (Pred == CmpInst::ICMP_NE) { 11243 auto SL = getSignedRange(LHS); 11244 auto SR = getSignedRange(RHS); 11245 if (CheckRanges(SL, SR)) 11246 return true; 11247 auto UL = getUnsignedRange(LHS); 11248 auto UR = getUnsignedRange(RHS); 11249 if (CheckRanges(UL, UR)) 11250 return true; 11251 auto *Diff = getMinusSCEV(LHS, RHS); 11252 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 11253 } 11254 11255 if (CmpInst::isSigned(Pred)) { 11256 auto SL = getSignedRange(LHS); 11257 auto SR = getSignedRange(RHS); 11258 return CheckRanges(SL, SR); 11259 } 11260 11261 auto UL = getUnsignedRange(LHS); 11262 auto UR = getUnsignedRange(RHS); 11263 return CheckRanges(UL, UR); 11264 } 11265 11266 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 11267 const SCEV *LHS, 11268 const SCEV *RHS) { 11269 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 11270 // C1 and C2 are constant integers. If either X or Y are not add expressions, 11271 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 11272 // OutC1 and OutC2. 11273 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 11274 APInt &OutC1, APInt &OutC2, 11275 SCEV::NoWrapFlags ExpectedFlags) { 11276 const SCEV *XNonConstOp, *XConstOp; 11277 const SCEV *YNonConstOp, *YConstOp; 11278 SCEV::NoWrapFlags XFlagsPresent; 11279 SCEV::NoWrapFlags YFlagsPresent; 11280 11281 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 11282 XConstOp = getZero(X->getType()); 11283 XNonConstOp = X; 11284 XFlagsPresent = ExpectedFlags; 11285 } 11286 if (!isa<SCEVConstant>(XConstOp) || 11287 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 11288 return false; 11289 11290 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 11291 YConstOp = getZero(Y->getType()); 11292 YNonConstOp = Y; 11293 YFlagsPresent = ExpectedFlags; 11294 } 11295 11296 if (!isa<SCEVConstant>(YConstOp) || 11297 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 11298 return false; 11299 11300 if (YNonConstOp != XNonConstOp) 11301 return false; 11302 11303 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 11304 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 11305 11306 return true; 11307 }; 11308 11309 APInt C1; 11310 APInt C2; 11311 11312 switch (Pred) { 11313 default: 11314 break; 11315 11316 case ICmpInst::ICMP_SGE: 11317 std::swap(LHS, RHS); 11318 [[fallthrough]]; 11319 case ICmpInst::ICMP_SLE: 11320 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 11321 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 11322 return true; 11323 11324 break; 11325 11326 case ICmpInst::ICMP_SGT: 11327 std::swap(LHS, RHS); 11328 [[fallthrough]]; 11329 case ICmpInst::ICMP_SLT: 11330 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 11331 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 11332 return true; 11333 11334 break; 11335 11336 case ICmpInst::ICMP_UGE: 11337 std::swap(LHS, RHS); 11338 [[fallthrough]]; 11339 case ICmpInst::ICMP_ULE: 11340 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 11341 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(C2)) 11342 return true; 11343 11344 break; 11345 11346 case ICmpInst::ICMP_UGT: 11347 std::swap(LHS, RHS); 11348 [[fallthrough]]; 11349 case ICmpInst::ICMP_ULT: 11350 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 11351 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(C2)) 11352 return true; 11353 break; 11354 } 11355 11356 return false; 11357 } 11358 11359 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 11360 const SCEV *LHS, 11361 const SCEV *RHS) { 11362 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 11363 return false; 11364 11365 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 11366 // the stack can result in exponential time complexity. 11367 SaveAndRestore Restore(ProvingSplitPredicate, true); 11368 11369 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 11370 // 11371 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 11372 // isKnownPredicate. isKnownPredicate is more powerful, but also more 11373 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 11374 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 11375 // use isKnownPredicate later if needed. 11376 return isKnownNonNegative(RHS) && 11377 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 11378 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 11379 } 11380 11381 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 11382 ICmpInst::Predicate Pred, 11383 const SCEV *LHS, const SCEV *RHS) { 11384 // No need to even try if we know the module has no guards. 11385 if (!HasGuards) 11386 return false; 11387 11388 return any_of(*BB, [&](const Instruction &I) { 11389 using namespace llvm::PatternMatch; 11390 11391 Value *Condition; 11392 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11393 m_Value(Condition))) && 11394 isImpliedCond(Pred, LHS, RHS, Condition, false); 11395 }); 11396 } 11397 11398 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11399 /// protected by a conditional between LHS and RHS. This is used to 11400 /// to eliminate casts. 11401 bool 11402 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11403 ICmpInst::Predicate Pred, 11404 const SCEV *LHS, const SCEV *RHS) { 11405 // Interpret a null as meaning no loop, where there is obviously no guard 11406 // (interprocedural conditions notwithstanding). Do not bother about 11407 // unreachable loops. 11408 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11409 return true; 11410 11411 if (VerifyIR) 11412 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11413 "This cannot be done on broken IR!"); 11414 11415 11416 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11417 return true; 11418 11419 BasicBlock *Latch = L->getLoopLatch(); 11420 if (!Latch) 11421 return false; 11422 11423 BranchInst *LoopContinuePredicate = 11424 dyn_cast<BranchInst>(Latch->getTerminator()); 11425 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11426 isImpliedCond(Pred, LHS, RHS, 11427 LoopContinuePredicate->getCondition(), 11428 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11429 return true; 11430 11431 // We don't want more than one activation of the following loops on the stack 11432 // -- that can lead to O(n!) time complexity. 11433 if (WalkingBEDominatingConds) 11434 return false; 11435 11436 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); 11437 11438 // See if we can exploit a trip count to prove the predicate. 11439 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11440 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11441 if (LatchBECount != getCouldNotCompute()) { 11442 // We know that Latch branches back to the loop header exactly 11443 // LatchBECount times. This means the backdege condition at Latch is 11444 // equivalent to "{0,+,1} u< LatchBECount". 11445 Type *Ty = LatchBECount->getType(); 11446 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11447 const SCEV *LoopCounter = 11448 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11449 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11450 LatchBECount)) 11451 return true; 11452 } 11453 11454 // Check conditions due to any @llvm.assume intrinsics. 11455 for (auto &AssumeVH : AC.assumptions()) { 11456 if (!AssumeVH) 11457 continue; 11458 auto *CI = cast<CallInst>(AssumeVH); 11459 if (!DT.dominates(CI, Latch->getTerminator())) 11460 continue; 11461 11462 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11463 return true; 11464 } 11465 11466 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11467 return true; 11468 11469 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11470 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11471 assert(DTN && "should reach the loop header before reaching the root!"); 11472 11473 BasicBlock *BB = DTN->getBlock(); 11474 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11475 return true; 11476 11477 BasicBlock *PBB = BB->getSinglePredecessor(); 11478 if (!PBB) 11479 continue; 11480 11481 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11482 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11483 continue; 11484 11485 Value *Condition = ContinuePredicate->getCondition(); 11486 11487 // If we have an edge `E` within the loop body that dominates the only 11488 // latch, the condition guarding `E` also guards the backedge. This 11489 // reasoning works only for loops with a single latch. 11490 11491 BasicBlockEdge DominatingEdge(PBB, BB); 11492 if (DominatingEdge.isSingleEdge()) { 11493 // We're constructively (and conservatively) enumerating edges within the 11494 // loop body that dominate the latch. The dominator tree better agree 11495 // with us on this: 11496 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11497 11498 if (isImpliedCond(Pred, LHS, RHS, Condition, 11499 BB != ContinuePredicate->getSuccessor(0))) 11500 return true; 11501 } 11502 } 11503 11504 return false; 11505 } 11506 11507 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11508 ICmpInst::Predicate Pred, 11509 const SCEV *LHS, 11510 const SCEV *RHS) { 11511 // Do not bother proving facts for unreachable code. 11512 if (!DT.isReachableFromEntry(BB)) 11513 return true; 11514 if (VerifyIR) 11515 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11516 "This cannot be done on broken IR!"); 11517 11518 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11519 // the facts (a >= b && a != b) separately. A typical situation is when the 11520 // non-strict comparison is known from ranges and non-equality is known from 11521 // dominating predicates. If we are proving strict comparison, we always try 11522 // to prove non-equality and non-strict comparison separately. 11523 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11524 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11525 bool ProvedNonStrictComparison = false; 11526 bool ProvedNonEquality = false; 11527 11528 auto SplitAndProve = 11529 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11530 if (!ProvedNonStrictComparison) 11531 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11532 if (!ProvedNonEquality) 11533 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11534 if (ProvedNonStrictComparison && ProvedNonEquality) 11535 return true; 11536 return false; 11537 }; 11538 11539 if (ProvingStrictComparison) { 11540 auto ProofFn = [&](ICmpInst::Predicate P) { 11541 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11542 }; 11543 if (SplitAndProve(ProofFn)) 11544 return true; 11545 } 11546 11547 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11548 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11549 const Instruction *CtxI = &BB->front(); 11550 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11551 return true; 11552 if (ProvingStrictComparison) { 11553 auto ProofFn = [&](ICmpInst::Predicate P) { 11554 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11555 }; 11556 if (SplitAndProve(ProofFn)) 11557 return true; 11558 } 11559 return false; 11560 }; 11561 11562 // Starting at the block's predecessor, climb up the predecessor chain, as long 11563 // as there are predecessors that can be found that have unique successors 11564 // leading to the original block. 11565 const Loop *ContainingLoop = LI.getLoopFor(BB); 11566 const BasicBlock *PredBB; 11567 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11568 PredBB = ContainingLoop->getLoopPredecessor(); 11569 else 11570 PredBB = BB->getSinglePredecessor(); 11571 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11572 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11573 const BranchInst *BlockEntryPredicate = 11574 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11575 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11576 continue; 11577 11578 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11579 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11580 return true; 11581 } 11582 11583 // Check conditions due to any @llvm.assume intrinsics. 11584 for (auto &AssumeVH : AC.assumptions()) { 11585 if (!AssumeVH) 11586 continue; 11587 auto *CI = cast<CallInst>(AssumeVH); 11588 if (!DT.dominates(CI, BB)) 11589 continue; 11590 11591 if (ProveViaCond(CI->getArgOperand(0), false)) 11592 return true; 11593 } 11594 11595 // Check conditions due to any @llvm.experimental.guard intrinsics. 11596 auto *GuardDecl = F.getParent()->getFunction( 11597 Intrinsic::getName(Intrinsic::experimental_guard)); 11598 if (GuardDecl) 11599 for (const auto *GU : GuardDecl->users()) 11600 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 11601 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) 11602 if (ProveViaCond(Guard->getArgOperand(0), false)) 11603 return true; 11604 return false; 11605 } 11606 11607 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11608 ICmpInst::Predicate Pred, 11609 const SCEV *LHS, 11610 const SCEV *RHS) { 11611 // Interpret a null as meaning no loop, where there is obviously no guard 11612 // (interprocedural conditions notwithstanding). 11613 if (!L) 11614 return false; 11615 11616 // Both LHS and RHS must be available at loop entry. 11617 assert(isAvailableAtLoopEntry(LHS, L) && 11618 "LHS is not available at Loop Entry"); 11619 assert(isAvailableAtLoopEntry(RHS, L) && 11620 "RHS is not available at Loop Entry"); 11621 11622 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11623 return true; 11624 11625 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11626 } 11627 11628 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11629 const SCEV *RHS, 11630 const Value *FoundCondValue, bool Inverse, 11631 const Instruction *CtxI) { 11632 // False conditions implies anything. Do not bother analyzing it further. 11633 if (FoundCondValue == 11634 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11635 return true; 11636 11637 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11638 return false; 11639 11640 auto ClearOnExit = 11641 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11642 11643 // Recursively handle And and Or conditions. 11644 const Value *Op0, *Op1; 11645 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11646 if (!Inverse) 11647 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11648 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11649 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11650 if (Inverse) 11651 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11652 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11653 } 11654 11655 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11656 if (!ICI) return false; 11657 11658 // Now that we found a conditional branch that dominates the loop or controls 11659 // the loop latch. Check to see if it is the comparison we are looking for. 11660 ICmpInst::Predicate FoundPred; 11661 if (Inverse) 11662 FoundPred = ICI->getInversePredicate(); 11663 else 11664 FoundPred = ICI->getPredicate(); 11665 11666 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11667 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11668 11669 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11670 } 11671 11672 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11673 const SCEV *RHS, 11674 ICmpInst::Predicate FoundPred, 11675 const SCEV *FoundLHS, const SCEV *FoundRHS, 11676 const Instruction *CtxI) { 11677 // Balance the types. 11678 if (getTypeSizeInBits(LHS->getType()) < 11679 getTypeSizeInBits(FoundLHS->getType())) { 11680 // For unsigned and equality predicates, try to prove that both found 11681 // operands fit into narrow unsigned range. If so, try to prove facts in 11682 // narrow types. 11683 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11684 !FoundRHS->getType()->isPointerTy()) { 11685 auto *NarrowType = LHS->getType(); 11686 auto *WideType = FoundLHS->getType(); 11687 auto BitWidth = getTypeSizeInBits(NarrowType); 11688 const SCEV *MaxValue = getZeroExtendExpr( 11689 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11690 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11691 MaxValue) && 11692 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11693 MaxValue)) { 11694 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11695 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11696 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11697 TruncFoundRHS, CtxI)) 11698 return true; 11699 } 11700 } 11701 11702 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11703 return false; 11704 if (CmpInst::isSigned(Pred)) { 11705 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11706 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11707 } else { 11708 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11709 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11710 } 11711 } else if (getTypeSizeInBits(LHS->getType()) > 11712 getTypeSizeInBits(FoundLHS->getType())) { 11713 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11714 return false; 11715 if (CmpInst::isSigned(FoundPred)) { 11716 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11717 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11718 } else { 11719 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11720 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11721 } 11722 } 11723 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11724 FoundRHS, CtxI); 11725 } 11726 11727 bool ScalarEvolution::isImpliedCondBalancedTypes( 11728 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11729 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11730 const Instruction *CtxI) { 11731 assert(getTypeSizeInBits(LHS->getType()) == 11732 getTypeSizeInBits(FoundLHS->getType()) && 11733 "Types should be balanced!"); 11734 // Canonicalize the query to match the way instcombine will have 11735 // canonicalized the comparison. 11736 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11737 if (LHS == RHS) 11738 return CmpInst::isTrueWhenEqual(Pred); 11739 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11740 if (FoundLHS == FoundRHS) 11741 return CmpInst::isFalseWhenEqual(FoundPred); 11742 11743 // Check to see if we can make the LHS or RHS match. 11744 if (LHS == FoundRHS || RHS == FoundLHS) { 11745 if (isa<SCEVConstant>(RHS)) { 11746 std::swap(FoundLHS, FoundRHS); 11747 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11748 } else { 11749 std::swap(LHS, RHS); 11750 Pred = ICmpInst::getSwappedPredicate(Pred); 11751 } 11752 } 11753 11754 // Check whether the found predicate is the same as the desired predicate. 11755 if (FoundPred == Pred) 11756 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11757 11758 // Check whether swapping the found predicate makes it the same as the 11759 // desired predicate. 11760 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11761 // We can write the implication 11762 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11763 // using one of the following ways: 11764 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11765 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11766 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11767 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11768 // Forms 1. and 2. require swapping the operands of one condition. Don't 11769 // do this if it would break canonical constant/addrec ordering. 11770 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11771 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11772 CtxI); 11773 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11774 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11775 11776 // There's no clear preference between forms 3. and 4., try both. Avoid 11777 // forming getNotSCEV of pointer values as the resulting subtract is 11778 // not legal. 11779 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11780 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11781 FoundLHS, FoundRHS, CtxI)) 11782 return true; 11783 11784 if (!FoundLHS->getType()->isPointerTy() && 11785 !FoundRHS->getType()->isPointerTy() && 11786 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11787 getNotSCEV(FoundRHS), CtxI)) 11788 return true; 11789 11790 return false; 11791 } 11792 11793 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11794 CmpInst::Predicate P2) { 11795 assert(P1 != P2 && "Handled earlier!"); 11796 return CmpInst::isRelational(P2) && 11797 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11798 }; 11799 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11800 // Unsigned comparison is the same as signed comparison when both the 11801 // operands are non-negative or negative. 11802 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11803 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11804 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11805 // Create local copies that we can freely swap and canonicalize our 11806 // conditions to "le/lt". 11807 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11808 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11809 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11810 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11811 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11812 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11813 std::swap(CanonicalLHS, CanonicalRHS); 11814 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11815 } 11816 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11817 "Must be!"); 11818 assert((ICmpInst::isLT(CanonicalFoundPred) || 11819 ICmpInst::isLE(CanonicalFoundPred)) && 11820 "Must be!"); 11821 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11822 // Use implication: 11823 // x <u y && y >=s 0 --> x <s y. 11824 // If we can prove the left part, the right part is also proven. 11825 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11826 CanonicalRHS, CanonicalFoundLHS, 11827 CanonicalFoundRHS); 11828 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11829 // Use implication: 11830 // x <s y && y <s 0 --> x <u y. 11831 // If we can prove the left part, the right part is also proven. 11832 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11833 CanonicalRHS, CanonicalFoundLHS, 11834 CanonicalFoundRHS); 11835 } 11836 11837 // Check if we can make progress by sharpening ranges. 11838 if (FoundPred == ICmpInst::ICMP_NE && 11839 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11840 11841 const SCEVConstant *C = nullptr; 11842 const SCEV *V = nullptr; 11843 11844 if (isa<SCEVConstant>(FoundLHS)) { 11845 C = cast<SCEVConstant>(FoundLHS); 11846 V = FoundRHS; 11847 } else { 11848 C = cast<SCEVConstant>(FoundRHS); 11849 V = FoundLHS; 11850 } 11851 11852 // The guarding predicate tells us that C != V. If the known range 11853 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11854 // range we consider has to correspond to same signedness as the 11855 // predicate we're interested in folding. 11856 11857 APInt Min = ICmpInst::isSigned(Pred) ? 11858 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11859 11860 if (Min == C->getAPInt()) { 11861 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11862 // This is true even if (Min + 1) wraps around -- in case of 11863 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11864 11865 APInt SharperMin = Min + 1; 11866 11867 switch (Pred) { 11868 case ICmpInst::ICMP_SGE: 11869 case ICmpInst::ICMP_UGE: 11870 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11871 // RHS, we're done. 11872 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11873 CtxI)) 11874 return true; 11875 [[fallthrough]]; 11876 11877 case ICmpInst::ICMP_SGT: 11878 case ICmpInst::ICMP_UGT: 11879 // We know from the range information that (V `Pred` Min || 11880 // V == Min). We know from the guarding condition that !(V 11881 // == Min). This gives us 11882 // 11883 // V `Pred` Min || V == Min && !(V == Min) 11884 // => V `Pred` Min 11885 // 11886 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11887 11888 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11889 return true; 11890 break; 11891 11892 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11893 case ICmpInst::ICMP_SLE: 11894 case ICmpInst::ICMP_ULE: 11895 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11896 LHS, V, getConstant(SharperMin), CtxI)) 11897 return true; 11898 [[fallthrough]]; 11899 11900 case ICmpInst::ICMP_SLT: 11901 case ICmpInst::ICMP_ULT: 11902 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11903 LHS, V, getConstant(Min), CtxI)) 11904 return true; 11905 break; 11906 11907 default: 11908 // No change 11909 break; 11910 } 11911 } 11912 } 11913 11914 // Check whether the actual condition is beyond sufficient. 11915 if (FoundPred == ICmpInst::ICMP_EQ) 11916 if (ICmpInst::isTrueWhenEqual(Pred)) 11917 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11918 return true; 11919 if (Pred == ICmpInst::ICMP_NE) 11920 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11921 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11922 return true; 11923 11924 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS)) 11925 return true; 11926 11927 // Otherwise assume the worst. 11928 return false; 11929 } 11930 11931 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11932 const SCEV *&L, const SCEV *&R, 11933 SCEV::NoWrapFlags &Flags) { 11934 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11935 if (!AE || AE->getNumOperands() != 2) 11936 return false; 11937 11938 L = AE->getOperand(0); 11939 R = AE->getOperand(1); 11940 Flags = AE->getNoWrapFlags(); 11941 return true; 11942 } 11943 11944 std::optional<APInt> 11945 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { 11946 // We avoid subtracting expressions here because this function is usually 11947 // fairly deep in the call stack (i.e. is called many times). 11948 11949 // X - X = 0. 11950 if (More == Less) 11951 return APInt(getTypeSizeInBits(More->getType()), 0); 11952 11953 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11954 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11955 const auto *MAR = cast<SCEVAddRecExpr>(More); 11956 11957 if (LAR->getLoop() != MAR->getLoop()) 11958 return std::nullopt; 11959 11960 // We look at affine expressions only; not for correctness but to keep 11961 // getStepRecurrence cheap. 11962 if (!LAR->isAffine() || !MAR->isAffine()) 11963 return std::nullopt; 11964 11965 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11966 return std::nullopt; 11967 11968 Less = LAR->getStart(); 11969 More = MAR->getStart(); 11970 11971 // fall through 11972 } 11973 11974 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11975 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11976 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11977 return M - L; 11978 } 11979 11980 SCEV::NoWrapFlags Flags; 11981 const SCEV *LLess = nullptr, *RLess = nullptr; 11982 const SCEV *LMore = nullptr, *RMore = nullptr; 11983 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11984 // Compare (X + C1) vs X. 11985 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11986 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11987 if (RLess == More) 11988 return -(C1->getAPInt()); 11989 11990 // Compare X vs (X + C2). 11991 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11992 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11993 if (RMore == Less) 11994 return C2->getAPInt(); 11995 11996 // Compare (X + C1) vs (X + C2). 11997 if (C1 && C2 && RLess == RMore) 11998 return C2->getAPInt() - C1->getAPInt(); 11999 12000 return std::nullopt; 12001 } 12002 12003 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 12004 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 12005 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 12006 // Try to recognize the following pattern: 12007 // 12008 // FoundRHS = ... 12009 // ... 12010 // loop: 12011 // FoundLHS = {Start,+,W} 12012 // context_bb: // Basic block from the same loop 12013 // known(Pred, FoundLHS, FoundRHS) 12014 // 12015 // If some predicate is known in the context of a loop, it is also known on 12016 // each iteration of this loop, including the first iteration. Therefore, in 12017 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 12018 // prove the original pred using this fact. 12019 if (!CtxI) 12020 return false; 12021 const BasicBlock *ContextBB = CtxI->getParent(); 12022 // Make sure AR varies in the context block. 12023 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 12024 const Loop *L = AR->getLoop(); 12025 // Make sure that context belongs to the loop and executes on 1st iteration 12026 // (if it ever executes at all). 12027 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 12028 return false; 12029 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 12030 return false; 12031 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 12032 } 12033 12034 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 12035 const Loop *L = AR->getLoop(); 12036 // Make sure that context belongs to the loop and executes on 1st iteration 12037 // (if it ever executes at all). 12038 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 12039 return false; 12040 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 12041 return false; 12042 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 12043 } 12044 12045 return false; 12046 } 12047 12048 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 12049 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 12050 const SCEV *FoundLHS, const SCEV *FoundRHS) { 12051 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 12052 return false; 12053 12054 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 12055 if (!AddRecLHS) 12056 return false; 12057 12058 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 12059 if (!AddRecFoundLHS) 12060 return false; 12061 12062 // We'd like to let SCEV reason about control dependencies, so we constrain 12063 // both the inequalities to be about add recurrences on the same loop. This 12064 // way we can use isLoopEntryGuardedByCond later. 12065 12066 const Loop *L = AddRecFoundLHS->getLoop(); 12067 if (L != AddRecLHS->getLoop()) 12068 return false; 12069 12070 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 12071 // 12072 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 12073 // ... (2) 12074 // 12075 // Informal proof for (2), assuming (1) [*]: 12076 // 12077 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 12078 // 12079 // Then 12080 // 12081 // FoundLHS s< FoundRHS s< INT_MIN - C 12082 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 12083 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 12084 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 12085 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 12086 // <=> FoundLHS + C s< FoundRHS + C 12087 // 12088 // [*]: (1) can be proved by ruling out overflow. 12089 // 12090 // [**]: This can be proved by analyzing all the four possibilities: 12091 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 12092 // (A s>= 0, B s>= 0). 12093 // 12094 // Note: 12095 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 12096 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 12097 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 12098 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 12099 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 12100 // C)". 12101 12102 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 12103 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 12104 if (!LDiff || !RDiff || *LDiff != *RDiff) 12105 return false; 12106 12107 if (LDiff->isMinValue()) 12108 return true; 12109 12110 APInt FoundRHSLimit; 12111 12112 if (Pred == CmpInst::ICMP_ULT) { 12113 FoundRHSLimit = -(*RDiff); 12114 } else { 12115 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 12116 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 12117 } 12118 12119 // Try to prove (1) or (2), as needed. 12120 return isAvailableAtLoopEntry(FoundRHS, L) && 12121 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 12122 getConstant(FoundRHSLimit)); 12123 } 12124 12125 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 12126 const SCEV *LHS, const SCEV *RHS, 12127 const SCEV *FoundLHS, 12128 const SCEV *FoundRHS, unsigned Depth) { 12129 const PHINode *LPhi = nullptr, *RPhi = nullptr; 12130 12131 auto ClearOnExit = make_scope_exit([&]() { 12132 if (LPhi) { 12133 bool Erased = PendingMerges.erase(LPhi); 12134 assert(Erased && "Failed to erase LPhi!"); 12135 (void)Erased; 12136 } 12137 if (RPhi) { 12138 bool Erased = PendingMerges.erase(RPhi); 12139 assert(Erased && "Failed to erase RPhi!"); 12140 (void)Erased; 12141 } 12142 }); 12143 12144 // Find respective Phis and check that they are not being pending. 12145 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 12146 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 12147 if (!PendingMerges.insert(Phi).second) 12148 return false; 12149 LPhi = Phi; 12150 } 12151 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 12152 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 12153 // If we detect a loop of Phi nodes being processed by this method, for 12154 // example: 12155 // 12156 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 12157 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 12158 // 12159 // we don't want to deal with a case that complex, so return conservative 12160 // answer false. 12161 if (!PendingMerges.insert(Phi).second) 12162 return false; 12163 RPhi = Phi; 12164 } 12165 12166 // If none of LHS, RHS is a Phi, nothing to do here. 12167 if (!LPhi && !RPhi) 12168 return false; 12169 12170 // If there is a SCEVUnknown Phi we are interested in, make it left. 12171 if (!LPhi) { 12172 std::swap(LHS, RHS); 12173 std::swap(FoundLHS, FoundRHS); 12174 std::swap(LPhi, RPhi); 12175 Pred = ICmpInst::getSwappedPredicate(Pred); 12176 } 12177 12178 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 12179 const BasicBlock *LBB = LPhi->getParent(); 12180 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12181 12182 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 12183 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 12184 isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) || 12185 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 12186 }; 12187 12188 if (RPhi && RPhi->getParent() == LBB) { 12189 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 12190 // If we compare two Phis from the same block, and for each entry block 12191 // the predicate is true for incoming values from this block, then the 12192 // predicate is also true for the Phis. 12193 for (const BasicBlock *IncBB : predecessors(LBB)) { 12194 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12195 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 12196 if (!ProvedEasily(L, R)) 12197 return false; 12198 } 12199 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 12200 // Case two: RHS is also a Phi from the same basic block, and it is an 12201 // AddRec. It means that there is a loop which has both AddRec and Unknown 12202 // PHIs, for it we can compare incoming values of AddRec from above the loop 12203 // and latch with their respective incoming values of LPhi. 12204 // TODO: Generalize to handle loops with many inputs in a header. 12205 if (LPhi->getNumIncomingValues() != 2) return false; 12206 12207 auto *RLoop = RAR->getLoop(); 12208 auto *Predecessor = RLoop->getLoopPredecessor(); 12209 assert(Predecessor && "Loop with AddRec with no predecessor?"); 12210 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 12211 if (!ProvedEasily(L1, RAR->getStart())) 12212 return false; 12213 auto *Latch = RLoop->getLoopLatch(); 12214 assert(Latch && "Loop with AddRec with no latch?"); 12215 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 12216 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 12217 return false; 12218 } else { 12219 // In all other cases go over inputs of LHS and compare each of them to RHS, 12220 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 12221 // At this point RHS is either a non-Phi, or it is a Phi from some block 12222 // different from LBB. 12223 for (const BasicBlock *IncBB : predecessors(LBB)) { 12224 // Check that RHS is available in this block. 12225 if (!dominates(RHS, IncBB)) 12226 return false; 12227 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12228 // Make sure L does not refer to a value from a potentially previous 12229 // iteration of a loop. 12230 if (!properlyDominates(L, LBB)) 12231 return false; 12232 if (!ProvedEasily(L, RHS)) 12233 return false; 12234 } 12235 } 12236 return true; 12237 } 12238 12239 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 12240 const SCEV *LHS, 12241 const SCEV *RHS, 12242 const SCEV *FoundLHS, 12243 const SCEV *FoundRHS) { 12244 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 12245 // sure that we are dealing with same LHS. 12246 if (RHS == FoundRHS) { 12247 std::swap(LHS, RHS); 12248 std::swap(FoundLHS, FoundRHS); 12249 Pred = ICmpInst::getSwappedPredicate(Pred); 12250 } 12251 if (LHS != FoundLHS) 12252 return false; 12253 12254 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 12255 if (!SUFoundRHS) 12256 return false; 12257 12258 Value *Shiftee, *ShiftValue; 12259 12260 using namespace PatternMatch; 12261 if (match(SUFoundRHS->getValue(), 12262 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 12263 auto *ShifteeS = getSCEV(Shiftee); 12264 // Prove one of the following: 12265 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 12266 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 12267 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12268 // ---> LHS <s RHS 12269 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12270 // ---> LHS <=s RHS 12271 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 12272 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 12273 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 12274 if (isKnownNonNegative(ShifteeS)) 12275 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 12276 } 12277 12278 return false; 12279 } 12280 12281 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 12282 const SCEV *LHS, const SCEV *RHS, 12283 const SCEV *FoundLHS, 12284 const SCEV *FoundRHS, 12285 const Instruction *CtxI) { 12286 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS)) 12287 return true; 12288 12289 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12290 return true; 12291 12292 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12293 return true; 12294 12295 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 12296 CtxI)) 12297 return true; 12298 12299 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 12300 FoundLHS, FoundRHS); 12301 } 12302 12303 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 12304 template <typename MinMaxExprType> 12305 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 12306 const SCEV *Candidate) { 12307 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 12308 if (!MinMaxExpr) 12309 return false; 12310 12311 return is_contained(MinMaxExpr->operands(), Candidate); 12312 } 12313 12314 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 12315 ICmpInst::Predicate Pred, 12316 const SCEV *LHS, const SCEV *RHS) { 12317 // If both sides are affine addrecs for the same loop, with equal 12318 // steps, and we know the recurrences don't wrap, then we only 12319 // need to check the predicate on the starting values. 12320 12321 if (!ICmpInst::isRelational(Pred)) 12322 return false; 12323 12324 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 12325 if (!LAR) 12326 return false; 12327 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12328 if (!RAR) 12329 return false; 12330 if (LAR->getLoop() != RAR->getLoop()) 12331 return false; 12332 if (!LAR->isAffine() || !RAR->isAffine()) 12333 return false; 12334 12335 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 12336 return false; 12337 12338 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 12339 SCEV::FlagNSW : SCEV::FlagNUW; 12340 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 12341 return false; 12342 12343 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 12344 } 12345 12346 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 12347 /// expression? 12348 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 12349 ICmpInst::Predicate Pred, 12350 const SCEV *LHS, const SCEV *RHS) { 12351 switch (Pred) { 12352 default: 12353 return false; 12354 12355 case ICmpInst::ICMP_SGE: 12356 std::swap(LHS, RHS); 12357 [[fallthrough]]; 12358 case ICmpInst::ICMP_SLE: 12359 return 12360 // min(A, ...) <= A 12361 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 12362 // A <= max(A, ...) 12363 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 12364 12365 case ICmpInst::ICMP_UGE: 12366 std::swap(LHS, RHS); 12367 [[fallthrough]]; 12368 case ICmpInst::ICMP_ULE: 12369 return 12370 // min(A, ...) <= A 12371 // FIXME: what about umin_seq? 12372 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 12373 // A <= max(A, ...) 12374 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 12375 } 12376 12377 llvm_unreachable("covered switch fell through?!"); 12378 } 12379 12380 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 12381 const SCEV *LHS, const SCEV *RHS, 12382 const SCEV *FoundLHS, 12383 const SCEV *FoundRHS, 12384 unsigned Depth) { 12385 assert(getTypeSizeInBits(LHS->getType()) == 12386 getTypeSizeInBits(RHS->getType()) && 12387 "LHS and RHS have different sizes?"); 12388 assert(getTypeSizeInBits(FoundLHS->getType()) == 12389 getTypeSizeInBits(FoundRHS->getType()) && 12390 "FoundLHS and FoundRHS have different sizes?"); 12391 // We want to avoid hurting the compile time with analysis of too big trees. 12392 if (Depth > MaxSCEVOperationsImplicationDepth) 12393 return false; 12394 12395 // We only want to work with GT comparison so far. 12396 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12397 Pred = CmpInst::getSwappedPredicate(Pred); 12398 std::swap(LHS, RHS); 12399 std::swap(FoundLHS, FoundRHS); 12400 } 12401 12402 // For unsigned, try to reduce it to corresponding signed comparison. 12403 if (Pred == ICmpInst::ICMP_UGT) 12404 // We can replace unsigned predicate with its signed counterpart if all 12405 // involved values are non-negative. 12406 // TODO: We could have better support for unsigned. 12407 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12408 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12409 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12410 // use this fact to prove that LHS and RHS are non-negative. 12411 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12412 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12413 FoundRHS) && 12414 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12415 FoundRHS)) 12416 Pred = ICmpInst::ICMP_SGT; 12417 } 12418 12419 if (Pred != ICmpInst::ICMP_SGT) 12420 return false; 12421 12422 auto GetOpFromSExt = [&](const SCEV *S) { 12423 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12424 return Ext->getOperand(); 12425 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12426 // the constant in some cases. 12427 return S; 12428 }; 12429 12430 // Acquire values from extensions. 12431 auto *OrigLHS = LHS; 12432 auto *OrigFoundLHS = FoundLHS; 12433 LHS = GetOpFromSExt(LHS); 12434 FoundLHS = GetOpFromSExt(FoundLHS); 12435 12436 // Is the SGT predicate can be proved trivially or using the found context. 12437 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12438 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12439 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12440 FoundRHS, Depth + 1); 12441 }; 12442 12443 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12444 // We want to avoid creation of any new non-constant SCEV. Since we are 12445 // going to compare the operands to RHS, we should be certain that we don't 12446 // need any size extensions for this. So let's decline all cases when the 12447 // sizes of types of LHS and RHS do not match. 12448 // TODO: Maybe try to get RHS from sext to catch more cases? 12449 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12450 return false; 12451 12452 // Should not overflow. 12453 if (!LHSAddExpr->hasNoSignedWrap()) 12454 return false; 12455 12456 auto *LL = LHSAddExpr->getOperand(0); 12457 auto *LR = LHSAddExpr->getOperand(1); 12458 auto *MinusOne = getMinusOne(RHS->getType()); 12459 12460 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12461 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12462 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12463 }; 12464 // Try to prove the following rule: 12465 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12466 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12467 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12468 return true; 12469 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12470 Value *LL, *LR; 12471 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12472 12473 using namespace llvm::PatternMatch; 12474 12475 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12476 // Rules for division. 12477 // We are going to perform some comparisons with Denominator and its 12478 // derivative expressions. In general case, creating a SCEV for it may 12479 // lead to a complex analysis of the entire graph, and in particular it 12480 // can request trip count recalculation for the same loop. This would 12481 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12482 // this, we only want to create SCEVs that are constants in this section. 12483 // So we bail if Denominator is not a constant. 12484 if (!isa<ConstantInt>(LR)) 12485 return false; 12486 12487 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12488 12489 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12490 // then a SCEV for the numerator already exists and matches with FoundLHS. 12491 auto *Numerator = getExistingSCEV(LL); 12492 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12493 return false; 12494 12495 // Make sure that the numerator matches with FoundLHS and the denominator 12496 // is positive. 12497 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12498 return false; 12499 12500 auto *DTy = Denominator->getType(); 12501 auto *FRHSTy = FoundRHS->getType(); 12502 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12503 // One of types is a pointer and another one is not. We cannot extend 12504 // them properly to a wider type, so let us just reject this case. 12505 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12506 // to avoid this check. 12507 return false; 12508 12509 // Given that: 12510 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12511 auto *WTy = getWiderType(DTy, FRHSTy); 12512 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12513 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12514 12515 // Try to prove the following rule: 12516 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12517 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12518 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12519 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12520 if (isKnownNonPositive(RHS) && 12521 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12522 return true; 12523 12524 // Try to prove the following rule: 12525 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12526 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12527 // If we divide it by Denominator > 2, then: 12528 // 1. If FoundLHS is negative, then the result is 0. 12529 // 2. If FoundLHS is non-negative, then the result is non-negative. 12530 // Anyways, the result is non-negative. 12531 auto *MinusOne = getMinusOne(WTy); 12532 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12533 if (isKnownNegative(RHS) && 12534 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12535 return true; 12536 } 12537 } 12538 12539 // If our expression contained SCEVUnknown Phis, and we split it down and now 12540 // need to prove something for them, try to prove the predicate for every 12541 // possible incoming values of those Phis. 12542 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12543 return true; 12544 12545 return false; 12546 } 12547 12548 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12549 const SCEV *LHS, const SCEV *RHS) { 12550 // zext x u<= sext x, sext x s<= zext x 12551 switch (Pred) { 12552 case ICmpInst::ICMP_SGE: 12553 std::swap(LHS, RHS); 12554 [[fallthrough]]; 12555 case ICmpInst::ICMP_SLE: { 12556 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12557 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12558 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12559 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12560 return true; 12561 break; 12562 } 12563 case ICmpInst::ICMP_UGE: 12564 std::swap(LHS, RHS); 12565 [[fallthrough]]; 12566 case ICmpInst::ICMP_ULE: { 12567 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12568 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12569 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12570 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12571 return true; 12572 break; 12573 } 12574 default: 12575 break; 12576 }; 12577 return false; 12578 } 12579 12580 bool 12581 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12582 const SCEV *LHS, const SCEV *RHS) { 12583 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12584 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12585 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12586 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12587 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12588 } 12589 12590 bool 12591 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12592 const SCEV *LHS, const SCEV *RHS, 12593 const SCEV *FoundLHS, 12594 const SCEV *FoundRHS) { 12595 switch (Pred) { 12596 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12597 case ICmpInst::ICMP_EQ: 12598 case ICmpInst::ICMP_NE: 12599 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12600 return true; 12601 break; 12602 case ICmpInst::ICMP_SLT: 12603 case ICmpInst::ICMP_SLE: 12604 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12605 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12606 return true; 12607 break; 12608 case ICmpInst::ICMP_SGT: 12609 case ICmpInst::ICMP_SGE: 12610 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12611 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12612 return true; 12613 break; 12614 case ICmpInst::ICMP_ULT: 12615 case ICmpInst::ICMP_ULE: 12616 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12617 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12618 return true; 12619 break; 12620 case ICmpInst::ICMP_UGT: 12621 case ICmpInst::ICMP_UGE: 12622 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12623 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12624 return true; 12625 break; 12626 } 12627 12628 // Maybe it can be proved via operations? 12629 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12630 return true; 12631 12632 return false; 12633 } 12634 12635 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12636 const SCEV *LHS, 12637 const SCEV *RHS, 12638 ICmpInst::Predicate FoundPred, 12639 const SCEV *FoundLHS, 12640 const SCEV *FoundRHS) { 12641 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12642 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12643 // reduce the compile time impact of this optimization. 12644 return false; 12645 12646 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12647 if (!Addend) 12648 return false; 12649 12650 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12651 12652 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12653 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`". 12654 ConstantRange FoundLHSRange = 12655 ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS); 12656 12657 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12658 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12659 12660 // We can also compute the range of values for `LHS` that satisfy the 12661 // consequent, "`LHS` `Pred` `RHS`": 12662 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12663 // The antecedent implies the consequent if every value of `LHS` that 12664 // satisfies the antecedent also satisfies the consequent. 12665 return LHSRange.icmp(Pred, ConstRHS); 12666 } 12667 12668 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12669 bool IsSigned) { 12670 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12671 12672 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12673 const SCEV *One = getOne(Stride->getType()); 12674 12675 if (IsSigned) { 12676 APInt MaxRHS = getSignedRangeMax(RHS); 12677 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12678 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12679 12680 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12681 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12682 } 12683 12684 APInt MaxRHS = getUnsignedRangeMax(RHS); 12685 APInt MaxValue = APInt::getMaxValue(BitWidth); 12686 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12687 12688 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12689 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12690 } 12691 12692 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12693 bool IsSigned) { 12694 12695 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12696 const SCEV *One = getOne(Stride->getType()); 12697 12698 if (IsSigned) { 12699 APInt MinRHS = getSignedRangeMin(RHS); 12700 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12701 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12702 12703 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12704 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12705 } 12706 12707 APInt MinRHS = getUnsignedRangeMin(RHS); 12708 APInt MinValue = APInt::getMinValue(BitWidth); 12709 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12710 12711 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12712 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12713 } 12714 12715 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12716 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12717 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12718 // expression fixes the case of N=0. 12719 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12720 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12721 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12722 } 12723 12724 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12725 const SCEV *Stride, 12726 const SCEV *End, 12727 unsigned BitWidth, 12728 bool IsSigned) { 12729 // The logic in this function assumes we can represent a positive stride. 12730 // If we can't, the backedge-taken count must be zero. 12731 if (IsSigned && BitWidth == 1) 12732 return getZero(Stride->getType()); 12733 12734 // This code below only been closely audited for negative strides in the 12735 // unsigned comparison case, it may be correct for signed comparison, but 12736 // that needs to be established. 12737 if (IsSigned && isKnownNegative(Stride)) 12738 return getCouldNotCompute(); 12739 12740 // Calculate the maximum backedge count based on the range of values 12741 // permitted by Start, End, and Stride. 12742 APInt MinStart = 12743 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12744 12745 APInt MinStride = 12746 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12747 12748 // We assume either the stride is positive, or the backedge-taken count 12749 // is zero. So force StrideForMaxBECount to be at least one. 12750 APInt One(BitWidth, 1); 12751 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12752 : APIntOps::umax(One, MinStride); 12753 12754 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12755 : APInt::getMaxValue(BitWidth); 12756 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12757 12758 // Although End can be a MAX expression we estimate MaxEnd considering only 12759 // the case End = RHS of the loop termination condition. This is safe because 12760 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12761 // taken count. 12762 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12763 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12764 12765 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12766 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12767 : APIntOps::umax(MaxEnd, MinStart); 12768 12769 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12770 getConstant(StrideForMaxBECount) /* Step */); 12771 } 12772 12773 ScalarEvolution::ExitLimit 12774 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12775 const Loop *L, bool IsSigned, 12776 bool ControlsOnlyExit, bool AllowPredicates) { 12777 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12778 12779 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12780 bool PredicatedIV = false; 12781 12782 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12783 // Can we prove this loop *must* be UB if overflow of IV occurs? 12784 // Reasoning goes as follows: 12785 // * Suppose the IV did self wrap. 12786 // * If Stride evenly divides the iteration space, then once wrap 12787 // occurs, the loop must revisit the same values. 12788 // * We know that RHS is invariant, and that none of those values 12789 // caused this exit to be taken previously. Thus, this exit is 12790 // dynamically dead. 12791 // * If this is the sole exit, then a dead exit implies the loop 12792 // must be infinite if there are no abnormal exits. 12793 // * If the loop were infinite, then it must either not be mustprogress 12794 // or have side effects. Otherwise, it must be UB. 12795 // * It can't (by assumption), be UB so we have contradicted our 12796 // premise and can conclude the IV did not in fact self-wrap. 12797 if (!isLoopInvariant(RHS, L)) 12798 return false; 12799 12800 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12801 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12802 return false; 12803 12804 if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L)) 12805 return false; 12806 12807 return loopIsFiniteByAssumption(L); 12808 }; 12809 12810 if (!IV) { 12811 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12812 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12813 if (AR && AR->getLoop() == L && AR->isAffine()) { 12814 auto canProveNUW = [&]() { 12815 // We can use the comparison to infer no-wrap flags only if it fully 12816 // controls the loop exit. 12817 if (!ControlsOnlyExit) 12818 return false; 12819 12820 if (!isLoopInvariant(RHS, L)) 12821 return false; 12822 12823 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12824 // We need the sequence defined by AR to strictly increase in the 12825 // unsigned integer domain for the logic below to hold. 12826 return false; 12827 12828 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12829 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12830 // If RHS <=u Limit, then there must exist a value V in the sequence 12831 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12832 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12833 // overflow occurs. This limit also implies that a signed comparison 12834 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12835 // the high bits on both sides must be zero. 12836 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12837 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12838 Limit = Limit.zext(OuterBitWidth); 12839 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12840 }; 12841 auto Flags = AR->getNoWrapFlags(); 12842 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12843 Flags = setFlags(Flags, SCEV::FlagNUW); 12844 12845 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12846 if (AR->hasNoUnsignedWrap()) { 12847 // Emulate what getZeroExtendExpr would have done during construction 12848 // if we'd been able to infer the fact just above at that time. 12849 const SCEV *Step = AR->getStepRecurrence(*this); 12850 Type *Ty = ZExt->getType(); 12851 auto *S = getAddRecExpr( 12852 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12853 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12854 IV = dyn_cast<SCEVAddRecExpr>(S); 12855 } 12856 } 12857 } 12858 } 12859 12860 12861 if (!IV && AllowPredicates) { 12862 // Try to make this an AddRec using runtime tests, in the first X 12863 // iterations of this loop, where X is the SCEV expression found by the 12864 // algorithm below. 12865 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12866 PredicatedIV = true; 12867 } 12868 12869 // Avoid weird loops 12870 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12871 return getCouldNotCompute(); 12872 12873 // A precondition of this method is that the condition being analyzed 12874 // reaches an exiting branch which dominates the latch. Given that, we can 12875 // assume that an increment which violates the nowrap specification and 12876 // produces poison must cause undefined behavior when the resulting poison 12877 // value is branched upon and thus we can conclude that the backedge is 12878 // taken no more often than would be required to produce that poison value. 12879 // Note that a well defined loop can exit on the iteration which violates 12880 // the nowrap specification if there is another exit (either explicit or 12881 // implicit/exceptional) which causes the loop to execute before the 12882 // exiting instruction we're analyzing would trigger UB. 12883 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12884 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 12885 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12886 12887 const SCEV *Stride = IV->getStepRecurrence(*this); 12888 12889 bool PositiveStride = isKnownPositive(Stride); 12890 12891 // Avoid negative or zero stride values. 12892 if (!PositiveStride) { 12893 // We can compute the correct backedge taken count for loops with unknown 12894 // strides if we can prove that the loop is not an infinite loop with side 12895 // effects. Here's the loop structure we are trying to handle - 12896 // 12897 // i = start 12898 // do { 12899 // A[i] = i; 12900 // i += s; 12901 // } while (i < end); 12902 // 12903 // The backedge taken count for such loops is evaluated as - 12904 // (max(end, start + stride) - start - 1) /u stride 12905 // 12906 // The additional preconditions that we need to check to prove correctness 12907 // of the above formula is as follows - 12908 // 12909 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12910 // NoWrap flag). 12911 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12912 // no side effects within the loop) 12913 // c) loop has a single static exit (with no abnormal exits) 12914 // 12915 // Precondition a) implies that if the stride is negative, this is a single 12916 // trip loop. The backedge taken count formula reduces to zero in this case. 12917 // 12918 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12919 // then a zero stride means the backedge can't be taken without executing 12920 // undefined behavior. 12921 // 12922 // The positive stride case is the same as isKnownPositive(Stride) returning 12923 // true (original behavior of the function). 12924 // 12925 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12926 !loopHasNoAbnormalExits(L)) 12927 return getCouldNotCompute(); 12928 12929 if (!isKnownNonZero(Stride)) { 12930 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12931 // if it might eventually be greater than start and if so, on which 12932 // iteration. We can't even produce a useful upper bound. 12933 if (!isLoopInvariant(RHS, L)) 12934 return getCouldNotCompute(); 12935 12936 // We allow a potentially zero stride, but we need to divide by stride 12937 // below. Since the loop can't be infinite and this check must control 12938 // the sole exit, we can infer the exit must be taken on the first 12939 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12940 // we know the numerator in the divides below must be zero, so we can 12941 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12942 // and produce the right result. 12943 // FIXME: Handle the case where Stride is poison? 12944 auto wouldZeroStrideBeUB = [&]() { 12945 // Proof by contradiction. Suppose the stride were zero. If we can 12946 // prove that the backedge *is* taken on the first iteration, then since 12947 // we know this condition controls the sole exit, we must have an 12948 // infinite loop. We can't have a (well defined) infinite loop per 12949 // check just above. 12950 // Note: The (Start - Stride) term is used to get the start' term from 12951 // (start' + stride,+,stride). Remember that we only care about the 12952 // result of this expression when stride == 0 at runtime. 12953 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12954 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12955 }; 12956 if (!wouldZeroStrideBeUB()) { 12957 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12958 } 12959 } 12960 } else if (!Stride->isOne() && !NoWrap) { 12961 auto isUBOnWrap = [&]() { 12962 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12963 // follows trivially from the fact that every (un)signed-wrapped, but 12964 // not self-wrapped value must be LT than the last value before 12965 // (un)signed wrap. Since we know that last value didn't exit, nor 12966 // will any smaller one. 12967 return canAssumeNoSelfWrap(IV); 12968 }; 12969 12970 // Avoid proven overflow cases: this will ensure that the backedge taken 12971 // count will not generate any unsigned overflow. Relaxed no-overflow 12972 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12973 // undefined behaviors like the case of C language. 12974 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12975 return getCouldNotCompute(); 12976 } 12977 12978 // On all paths just preceeding, we established the following invariant: 12979 // IV can be assumed not to overflow up to and including the exiting 12980 // iteration. We proved this in one of two ways: 12981 // 1) We can show overflow doesn't occur before the exiting iteration 12982 // 1a) canIVOverflowOnLT, and b) step of one 12983 // 2) We can show that if overflow occurs, the loop must execute UB 12984 // before any possible exit. 12985 // Note that we have not yet proved RHS invariant (in general). 12986 12987 const SCEV *Start = IV->getStart(); 12988 12989 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12990 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12991 // Use integer-typed versions for actual computation; we can't subtract 12992 // pointers in general. 12993 const SCEV *OrigStart = Start; 12994 const SCEV *OrigRHS = RHS; 12995 if (Start->getType()->isPointerTy()) { 12996 Start = getLosslessPtrToIntExpr(Start); 12997 if (isa<SCEVCouldNotCompute>(Start)) 12998 return Start; 12999 } 13000 if (RHS->getType()->isPointerTy()) { 13001 RHS = getLosslessPtrToIntExpr(RHS); 13002 if (isa<SCEVCouldNotCompute>(RHS)) 13003 return RHS; 13004 } 13005 13006 const SCEV *End = nullptr, *BECount = nullptr, 13007 *BECountIfBackedgeTaken = nullptr; 13008 if (!isLoopInvariant(RHS, L)) { 13009 const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS); 13010 if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L && 13011 RHSAddRec->getNoWrapFlags()) { 13012 // The structure of loop we are trying to calculate backedge count of: 13013 // 13014 // left = left_start 13015 // right = right_start 13016 // 13017 // while(left < right){ 13018 // ... do something here ... 13019 // left += s1; // stride of left is s1 (s1 > 0) 13020 // right += s2; // stride of right is s2 (s2 < 0) 13021 // } 13022 // 13023 13024 const SCEV *RHSStart = RHSAddRec->getStart(); 13025 const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this); 13026 13027 // If Stride - RHSStride is positive and does not overflow, we can write 13028 // backedge count as -> 13029 // ceil((End - Start) /u (Stride - RHSStride)) 13030 // Where, End = max(RHSStart, Start) 13031 13032 // Check if RHSStride < 0 and Stride - RHSStride will not overflow. 13033 if (isKnownNegative(RHSStride) && 13034 willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride, 13035 RHSStride)) { 13036 13037 const SCEV *Denominator = getMinusSCEV(Stride, RHSStride); 13038 if (isKnownPositive(Denominator)) { 13039 End = IsSigned ? getSMaxExpr(RHSStart, Start) 13040 : getUMaxExpr(RHSStart, Start); 13041 13042 // We can do this because End >= Start, as End = max(RHSStart, Start) 13043 const SCEV *Delta = getMinusSCEV(End, Start); 13044 13045 BECount = getUDivCeilSCEV(Delta, Denominator); 13046 BECountIfBackedgeTaken = 13047 getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator); 13048 } 13049 } 13050 } 13051 if (BECount == nullptr) { 13052 // If we cannot calculate ExactBECount, we can calculate the MaxBECount, 13053 // given the start, stride and max value for the end bound of the 13054 // loop (RHS), and the fact that IV does not overflow (which is 13055 // checked above). 13056 const SCEV *MaxBECount = computeMaxBECountForLT( 13057 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13058 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 13059 MaxBECount, false /*MaxOrZero*/, Predicates); 13060 } 13061 } else { 13062 // We use the expression (max(End,Start)-Start)/Stride to describe the 13063 // backedge count, as if the backedge is taken at least once 13064 // max(End,Start) is End and so the result is as above, and if not 13065 // max(End,Start) is Start so we get a backedge count of zero. 13066 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 13067 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 13068 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 13069 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 13070 // Can we prove (max(RHS,Start) > Start - Stride? 13071 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 13072 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 13073 // In this case, we can use a refined formula for computing backedge 13074 // taken count. The general formula remains: 13075 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 13076 // We want to use the alternate formula: 13077 // "((End - 1) - (Start - Stride)) /u Stride" 13078 // Let's do a quick case analysis to show these are equivalent under 13079 // our precondition that max(RHS,Start) > Start - Stride. 13080 // * For RHS <= Start, the backedge-taken count must be zero. 13081 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 13082 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 13083 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 13084 // of Stride. For 0 stride, we've use umin(1,Stride) above, 13085 // reducing this to the stride of 1 case. 13086 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil 13087 // Stride". 13088 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 13089 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 13090 // "((RHS - (Start - Stride) - 1) /u Stride". 13091 // Our preconditions trivially imply no overflow in that form. 13092 const SCEV *MinusOne = getMinusOne(Stride->getType()); 13093 const SCEV *Numerator = 13094 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 13095 BECount = getUDivExpr(Numerator, Stride); 13096 } 13097 13098 if (!BECount) { 13099 auto canProveRHSGreaterThanEqualStart = [&]() { 13100 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 13101 const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L); 13102 const SCEV *GuardedStart = applyLoopGuards(OrigStart, L); 13103 13104 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) || 13105 isKnownPredicate(CondGE, GuardedRHS, GuardedStart)) 13106 return true; 13107 13108 // (RHS > Start - 1) implies RHS >= Start. 13109 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 13110 // "Start - 1" doesn't overflow. 13111 // * For signed comparison, if Start - 1 does overflow, it's equal 13112 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 13113 // * For unsigned comparison, if Start - 1 does overflow, it's equal 13114 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 13115 // 13116 // FIXME: Should isLoopEntryGuardedByCond do this for us? 13117 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13118 auto *StartMinusOne = 13119 getAddExpr(OrigStart, getMinusOne(OrigStart->getType())); 13120 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 13121 }; 13122 13123 // If we know that RHS >= Start in the context of loop, then we know 13124 // that max(RHS, Start) = RHS at this point. 13125 if (canProveRHSGreaterThanEqualStart()) { 13126 End = RHS; 13127 } else { 13128 // If RHS < Start, the backedge will be taken zero times. So in 13129 // general, we can write the backedge-taken count as: 13130 // 13131 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 13132 // 13133 // We convert it to the following to make it more convenient for SCEV: 13134 // 13135 // ceil(max(RHS, Start) - Start) / Stride 13136 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 13137 13138 // See what would happen if we assume the backedge is taken. This is 13139 // used to compute MaxBECount. 13140 BECountIfBackedgeTaken = 13141 getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 13142 } 13143 13144 // At this point, we know: 13145 // 13146 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 13147 // 2. The index variable doesn't overflow. 13148 // 13149 // Therefore, we know N exists such that 13150 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 13151 // doesn't overflow. 13152 // 13153 // Using this information, try to prove whether the addition in 13154 // "(Start - End) + (Stride - 1)" has unsigned overflow. 13155 const SCEV *One = getOne(Stride->getType()); 13156 bool MayAddOverflow = [&] { 13157 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 13158 if (StrideC->getAPInt().isPowerOf2()) { 13159 // Suppose Stride is a power of two, and Start/End are unsigned 13160 // integers. Let UMAX be the largest representable unsigned 13161 // integer. 13162 // 13163 // By the preconditions of this function, we know 13164 // "(Start + Stride * N) >= End", and this doesn't overflow. 13165 // As a formula: 13166 // 13167 // End <= (Start + Stride * N) <= UMAX 13168 // 13169 // Subtracting Start from all the terms: 13170 // 13171 // End - Start <= Stride * N <= UMAX - Start 13172 // 13173 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 13174 // 13175 // End - Start <= Stride * N <= UMAX 13176 // 13177 // Stride * N is a multiple of Stride. Therefore, 13178 // 13179 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 13180 // 13181 // Since Stride is a power of two, UMAX + 1 is divisible by 13182 // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can 13183 // write: 13184 // 13185 // End - Start <= Stride * N <= UMAX - Stride - 1 13186 // 13187 // Dropping the middle term: 13188 // 13189 // End - Start <= UMAX - Stride - 1 13190 // 13191 // Adding Stride - 1 to both sides: 13192 // 13193 // (End - Start) + (Stride - 1) <= UMAX 13194 // 13195 // In other words, the addition doesn't have unsigned overflow. 13196 // 13197 // A similar proof works if we treat Start/End as signed values. 13198 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" 13199 // to use signed max instead of unsigned max. Note that we're 13200 // trying to prove a lack of unsigned overflow in either case. 13201 return false; 13202 } 13203 } 13204 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 13205 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End 13206 // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 13207 // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 13208 // 1 <s End. 13209 // 13210 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == 13211 // End. 13212 return false; 13213 } 13214 return true; 13215 }(); 13216 13217 const SCEV *Delta = getMinusSCEV(End, Start); 13218 if (!MayAddOverflow) { 13219 // floor((D + (S - 1)) / S) 13220 // We prefer this formulation if it's legal because it's fewer 13221 // operations. 13222 BECount = 13223 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 13224 } else { 13225 BECount = getUDivCeilSCEV(Delta, Stride); 13226 } 13227 } 13228 } 13229 13230 const SCEV *ConstantMaxBECount; 13231 bool MaxOrZero = false; 13232 if (isa<SCEVConstant>(BECount)) { 13233 ConstantMaxBECount = BECount; 13234 } else if (BECountIfBackedgeTaken && 13235 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 13236 // If we know exactly how many times the backedge will be taken if it's 13237 // taken at least once, then the backedge count will either be that or 13238 // zero. 13239 ConstantMaxBECount = BECountIfBackedgeTaken; 13240 MaxOrZero = true; 13241 } else { 13242 ConstantMaxBECount = computeMaxBECountForLT( 13243 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13244 } 13245 13246 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 13247 !isa<SCEVCouldNotCompute>(BECount)) 13248 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 13249 13250 const SCEV *SymbolicMaxBECount = 13251 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13252 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, 13253 Predicates); 13254 } 13255 13256 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( 13257 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, 13258 bool ControlsOnlyExit, bool AllowPredicates) { 13259 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 13260 // We handle only IV > Invariant 13261 if (!isLoopInvariant(RHS, L)) 13262 return getCouldNotCompute(); 13263 13264 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 13265 if (!IV && AllowPredicates) 13266 // Try to make this an AddRec using runtime tests, in the first X 13267 // iterations of this loop, where X is the SCEV expression found by the 13268 // algorithm below. 13269 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13270 13271 // Avoid weird loops 13272 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13273 return getCouldNotCompute(); 13274 13275 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13276 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 13277 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13278 13279 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 13280 13281 // Avoid negative or zero stride values 13282 if (!isKnownPositive(Stride)) 13283 return getCouldNotCompute(); 13284 13285 // Avoid proven overflow cases: this will ensure that the backedge taken count 13286 // will not generate any unsigned overflow. Relaxed no-overflow conditions 13287 // exploit NoWrapFlags, allowing to optimize in presence of undefined 13288 // behaviors like the case of C language. 13289 if (!Stride->isOne() && !NoWrap) 13290 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 13291 return getCouldNotCompute(); 13292 13293 const SCEV *Start = IV->getStart(); 13294 const SCEV *End = RHS; 13295 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 13296 // If we know that Start >= RHS in the context of loop, then we know that 13297 // min(RHS, Start) = RHS at this point. 13298 if (isLoopEntryGuardedByCond( 13299 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 13300 End = RHS; 13301 else 13302 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 13303 } 13304 13305 if (Start->getType()->isPointerTy()) { 13306 Start = getLosslessPtrToIntExpr(Start); 13307 if (isa<SCEVCouldNotCompute>(Start)) 13308 return Start; 13309 } 13310 if (End->getType()->isPointerTy()) { 13311 End = getLosslessPtrToIntExpr(End); 13312 if (isa<SCEVCouldNotCompute>(End)) 13313 return End; 13314 } 13315 13316 // Compute ((Start - End) + (Stride - 1)) / Stride. 13317 // FIXME: This can overflow. Holding off on fixing this for now; 13318 // howManyGreaterThans will hopefully be gone soon. 13319 const SCEV *One = getOne(Stride->getType()); 13320 const SCEV *BECount = getUDivExpr( 13321 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 13322 13323 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 13324 : getUnsignedRangeMax(Start); 13325 13326 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 13327 : getUnsignedRangeMin(Stride); 13328 13329 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 13330 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 13331 : APInt::getMinValue(BitWidth) + (MinStride - 1); 13332 13333 // Although End can be a MIN expression we estimate MinEnd considering only 13334 // the case End = RHS. This is safe because in the other case (Start - End) 13335 // is zero, leading to a zero maximum backedge taken count. 13336 APInt MinEnd = 13337 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 13338 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 13339 13340 const SCEV *ConstantMaxBECount = 13341 isa<SCEVConstant>(BECount) 13342 ? BECount 13343 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 13344 getConstant(MinStride)); 13345 13346 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) 13347 ConstantMaxBECount = BECount; 13348 const SCEV *SymbolicMaxBECount = 13349 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13350 13351 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 13352 Predicates); 13353 } 13354 13355 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 13356 ScalarEvolution &SE) const { 13357 if (Range.isFullSet()) // Infinite loop. 13358 return SE.getCouldNotCompute(); 13359 13360 // If the start is a non-zero constant, shift the range to simplify things. 13361 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 13362 if (!SC->getValue()->isZero()) { 13363 SmallVector<const SCEV *, 4> Operands(operands()); 13364 Operands[0] = SE.getZero(SC->getType()); 13365 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 13366 getNoWrapFlags(FlagNW)); 13367 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 13368 return ShiftedAddRec->getNumIterationsInRange( 13369 Range.subtract(SC->getAPInt()), SE); 13370 // This is strange and shouldn't happen. 13371 return SE.getCouldNotCompute(); 13372 } 13373 13374 // The only time we can solve this is when we have all constant indices. 13375 // Otherwise, we cannot determine the overflow conditions. 13376 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 13377 return SE.getCouldNotCompute(); 13378 13379 // Okay at this point we know that all elements of the chrec are constants and 13380 // that the start element is zero. 13381 13382 // First check to see if the range contains zero. If not, the first 13383 // iteration exits. 13384 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 13385 if (!Range.contains(APInt(BitWidth, 0))) 13386 return SE.getZero(getType()); 13387 13388 if (isAffine()) { 13389 // If this is an affine expression then we have this situation: 13390 // Solve {0,+,A} in Range === Ax in Range 13391 13392 // We know that zero is in the range. If A is positive then we know that 13393 // the upper value of the range must be the first possible exit value. 13394 // If A is negative then the lower of the range is the last possible loop 13395 // value. Also note that we already checked for a full range. 13396 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 13397 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 13398 13399 // The exit value should be (End+A)/A. 13400 APInt ExitVal = (End + A).udiv(A); 13401 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 13402 13403 // Evaluate at the exit value. If we really did fall out of the valid 13404 // range, then we computed our trip count, otherwise wrap around or other 13405 // things must have happened. 13406 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 13407 if (Range.contains(Val->getValue())) 13408 return SE.getCouldNotCompute(); // Something strange happened 13409 13410 // Ensure that the previous value is in the range. 13411 assert(Range.contains( 13412 EvaluateConstantChrecAtConstant(this, 13413 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 13414 "Linear scev computation is off in a bad way!"); 13415 return SE.getConstant(ExitValue); 13416 } 13417 13418 if (isQuadratic()) { 13419 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 13420 return SE.getConstant(*S); 13421 } 13422 13423 return SE.getCouldNotCompute(); 13424 } 13425 13426 const SCEVAddRecExpr * 13427 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 13428 assert(getNumOperands() > 1 && "AddRec with zero step?"); 13429 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 13430 // but in this case we cannot guarantee that the value returned will be an 13431 // AddRec because SCEV does not have a fixed point where it stops 13432 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 13433 // may happen if we reach arithmetic depth limit while simplifying. So we 13434 // construct the returned value explicitly. 13435 SmallVector<const SCEV *, 3> Ops; 13436 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 13437 // (this + Step) is {A+B,+,B+C,+...,+,N}. 13438 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 13439 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 13440 // We know that the last operand is not a constant zero (otherwise it would 13441 // have been popped out earlier). This guarantees us that if the result has 13442 // the same last operand, then it will also not be popped out, meaning that 13443 // the returned value will be an AddRec. 13444 const SCEV *Last = getOperand(getNumOperands() - 1); 13445 assert(!Last->isZero() && "Recurrency with zero step?"); 13446 Ops.push_back(Last); 13447 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13448 SCEV::FlagAnyWrap)); 13449 } 13450 13451 // Return true when S contains at least an undef value. 13452 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13453 return SCEVExprContains(S, [](const SCEV *S) { 13454 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13455 return isa<UndefValue>(SU->getValue()); 13456 return false; 13457 }); 13458 } 13459 13460 // Return true when S contains a value that is a nullptr. 13461 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13462 return SCEVExprContains(S, [](const SCEV *S) { 13463 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13464 return SU->getValue() == nullptr; 13465 return false; 13466 }); 13467 } 13468 13469 /// Return the size of an element read or written by Inst. 13470 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13471 Type *Ty; 13472 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13473 Ty = Store->getValueOperand()->getType(); 13474 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13475 Ty = Load->getType(); 13476 else 13477 return nullptr; 13478 13479 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13480 return getSizeOfExpr(ETy, Ty); 13481 } 13482 13483 //===----------------------------------------------------------------------===// 13484 // SCEVCallbackVH Class Implementation 13485 //===----------------------------------------------------------------------===// 13486 13487 void ScalarEvolution::SCEVCallbackVH::deleted() { 13488 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13489 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13490 SE->ConstantEvolutionLoopExitValue.erase(PN); 13491 SE->eraseValueFromMap(getValPtr()); 13492 // this now dangles! 13493 } 13494 13495 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13496 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13497 13498 // Forget all the expressions associated with users of the old value, 13499 // so that future queries will recompute the expressions using the new 13500 // value. 13501 SE->forgetValue(getValPtr()); 13502 // this now dangles! 13503 } 13504 13505 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13506 : CallbackVH(V), SE(se) {} 13507 13508 //===----------------------------------------------------------------------===// 13509 // ScalarEvolution Class Implementation 13510 //===----------------------------------------------------------------------===// 13511 13512 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13513 AssumptionCache &AC, DominatorTree &DT, 13514 LoopInfo &LI) 13515 : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI), 13516 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13517 LoopDispositions(64), BlockDispositions(64) { 13518 // To use guards for proving predicates, we need to scan every instruction in 13519 // relevant basic blocks, and not just terminators. Doing this is a waste of 13520 // time if the IR does not actually contain any calls to 13521 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13522 // 13523 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13524 // to _add_ guards to the module when there weren't any before, and wants 13525 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13526 // efficient in lieu of being smart in that rather obscure case. 13527 13528 auto *GuardDecl = F.getParent()->getFunction( 13529 Intrinsic::getName(Intrinsic::experimental_guard)); 13530 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13531 } 13532 13533 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13534 : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), 13535 DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13536 ValueExprMap(std::move(Arg.ValueExprMap)), 13537 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13538 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13539 PendingMerges(std::move(Arg.PendingMerges)), 13540 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), 13541 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13542 PredicatedBackedgeTakenCounts( 13543 std::move(Arg.PredicatedBackedgeTakenCounts)), 13544 BECountUsers(std::move(Arg.BECountUsers)), 13545 ConstantEvolutionLoopExitValue( 13546 std::move(Arg.ConstantEvolutionLoopExitValue)), 13547 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13548 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13549 LoopDispositions(std::move(Arg.LoopDispositions)), 13550 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13551 BlockDispositions(std::move(Arg.BlockDispositions)), 13552 SCEVUsers(std::move(Arg.SCEVUsers)), 13553 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13554 SignedRanges(std::move(Arg.SignedRanges)), 13555 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13556 UniquePreds(std::move(Arg.UniquePreds)), 13557 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13558 LoopUsers(std::move(Arg.LoopUsers)), 13559 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13560 FirstUnknown(Arg.FirstUnknown) { 13561 Arg.FirstUnknown = nullptr; 13562 } 13563 13564 ScalarEvolution::~ScalarEvolution() { 13565 // Iterate through all the SCEVUnknown instances and call their 13566 // destructors, so that they release their references to their values. 13567 for (SCEVUnknown *U = FirstUnknown; U;) { 13568 SCEVUnknown *Tmp = U; 13569 U = U->Next; 13570 Tmp->~SCEVUnknown(); 13571 } 13572 FirstUnknown = nullptr; 13573 13574 ExprValueMap.clear(); 13575 ValueExprMap.clear(); 13576 HasRecMap.clear(); 13577 BackedgeTakenCounts.clear(); 13578 PredicatedBackedgeTakenCounts.clear(); 13579 13580 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13581 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13582 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13583 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13584 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13585 } 13586 13587 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13588 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13589 } 13590 13591 /// When printing a top-level SCEV for trip counts, it's helpful to include 13592 /// a type for constants which are otherwise hard to disambiguate. 13593 static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) { 13594 if (isa<SCEVConstant>(S)) 13595 OS << *S->getType() << " "; 13596 OS << *S; 13597 } 13598 13599 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13600 const Loop *L) { 13601 // Print all inner loops first 13602 for (Loop *I : *L) 13603 PrintLoopInfo(OS, SE, I); 13604 13605 OS << "Loop "; 13606 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13607 OS << ": "; 13608 13609 SmallVector<BasicBlock *, 8> ExitingBlocks; 13610 L->getExitingBlocks(ExitingBlocks); 13611 if (ExitingBlocks.size() != 1) 13612 OS << "<multiple exits> "; 13613 13614 auto *BTC = SE->getBackedgeTakenCount(L); 13615 if (!isa<SCEVCouldNotCompute>(BTC)) { 13616 OS << "backedge-taken count is "; 13617 PrintSCEVWithTypeHint(OS, BTC); 13618 } else 13619 OS << "Unpredictable backedge-taken count."; 13620 OS << "\n"; 13621 13622 if (ExitingBlocks.size() > 1) 13623 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13624 OS << " exit count for " << ExitingBlock->getName() << ": "; 13625 PrintSCEVWithTypeHint(OS, SE->getExitCount(L, ExitingBlock)); 13626 OS << "\n"; 13627 } 13628 13629 OS << "Loop "; 13630 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13631 OS << ": "; 13632 13633 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); 13634 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { 13635 OS << "constant max backedge-taken count is "; 13636 PrintSCEVWithTypeHint(OS, ConstantBTC); 13637 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13638 OS << ", actual taken count either this or zero."; 13639 } else { 13640 OS << "Unpredictable constant max backedge-taken count. "; 13641 } 13642 13643 OS << "\n" 13644 "Loop "; 13645 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13646 OS << ": "; 13647 13648 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); 13649 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { 13650 OS << "symbolic max backedge-taken count is "; 13651 PrintSCEVWithTypeHint(OS, SymbolicBTC); 13652 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13653 OS << ", actual taken count either this or zero."; 13654 } else { 13655 OS << "Unpredictable symbolic max backedge-taken count. "; 13656 } 13657 OS << "\n"; 13658 13659 if (ExitingBlocks.size() > 1) 13660 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13661 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": "; 13662 auto *ExitBTC = SE->getExitCount(L, ExitingBlock, 13663 ScalarEvolution::SymbolicMaximum); 13664 PrintSCEVWithTypeHint(OS, ExitBTC); 13665 OS << "\n"; 13666 } 13667 13668 SmallVector<const SCEVPredicate *, 4> Preds; 13669 auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13670 if (PBT != BTC || !Preds.empty()) { 13671 OS << "Loop "; 13672 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13673 OS << ": "; 13674 if (!isa<SCEVCouldNotCompute>(PBT)) { 13675 OS << "Predicated backedge-taken count is "; 13676 PrintSCEVWithTypeHint(OS, PBT); 13677 } else 13678 OS << "Unpredictable predicated backedge-taken count."; 13679 OS << "\n"; 13680 OS << " Predicates:\n"; 13681 for (const auto *P : Preds) 13682 P->print(OS, 4); 13683 } 13684 13685 Preds.clear(); 13686 auto *PredSymbolicMax = 13687 SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds); 13688 if (SymbolicBTC != PredSymbolicMax) { 13689 OS << "Loop "; 13690 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13691 OS << ": "; 13692 if (!isa<SCEVCouldNotCompute>(PredSymbolicMax)) { 13693 OS << "Predicated symbolic max backedge-taken count is "; 13694 PrintSCEVWithTypeHint(OS, PredSymbolicMax); 13695 } else 13696 OS << "Unpredictable predicated symbolic max backedge-taken count."; 13697 OS << "\n"; 13698 OS << " Predicates:\n"; 13699 for (const auto *P : Preds) 13700 P->print(OS, 4); 13701 } 13702 13703 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13704 OS << "Loop "; 13705 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13706 OS << ": "; 13707 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13708 } 13709 } 13710 13711 namespace llvm { 13712 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { 13713 switch (LD) { 13714 case ScalarEvolution::LoopVariant: 13715 OS << "Variant"; 13716 break; 13717 case ScalarEvolution::LoopInvariant: 13718 OS << "Invariant"; 13719 break; 13720 case ScalarEvolution::LoopComputable: 13721 OS << "Computable"; 13722 break; 13723 } 13724 return OS; 13725 } 13726 13727 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { 13728 switch (BD) { 13729 case ScalarEvolution::DoesNotDominateBlock: 13730 OS << "DoesNotDominate"; 13731 break; 13732 case ScalarEvolution::DominatesBlock: 13733 OS << "Dominates"; 13734 break; 13735 case ScalarEvolution::ProperlyDominatesBlock: 13736 OS << "ProperlyDominates"; 13737 break; 13738 } 13739 return OS; 13740 } 13741 } // namespace llvm 13742 13743 void ScalarEvolution::print(raw_ostream &OS) const { 13744 // ScalarEvolution's implementation of the print method is to print 13745 // out SCEV values of all instructions that are interesting. Doing 13746 // this potentially causes it to create new SCEV objects though, 13747 // which technically conflicts with the const qualifier. This isn't 13748 // observable from outside the class though, so casting away the 13749 // const isn't dangerous. 13750 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13751 13752 if (ClassifyExpressions) { 13753 OS << "Classifying expressions for: "; 13754 F.printAsOperand(OS, /*PrintType=*/false); 13755 OS << "\n"; 13756 for (Instruction &I : instructions(F)) 13757 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13758 OS << I << '\n'; 13759 OS << " --> "; 13760 const SCEV *SV = SE.getSCEV(&I); 13761 SV->print(OS); 13762 if (!isa<SCEVCouldNotCompute>(SV)) { 13763 OS << " U: "; 13764 SE.getUnsignedRange(SV).print(OS); 13765 OS << " S: "; 13766 SE.getSignedRange(SV).print(OS); 13767 } 13768 13769 const Loop *L = LI.getLoopFor(I.getParent()); 13770 13771 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13772 if (AtUse != SV) { 13773 OS << " --> "; 13774 AtUse->print(OS); 13775 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13776 OS << " U: "; 13777 SE.getUnsignedRange(AtUse).print(OS); 13778 OS << " S: "; 13779 SE.getSignedRange(AtUse).print(OS); 13780 } 13781 } 13782 13783 if (L) { 13784 OS << "\t\t" "Exits: "; 13785 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13786 if (!SE.isLoopInvariant(ExitValue, L)) { 13787 OS << "<<Unknown>>"; 13788 } else { 13789 OS << *ExitValue; 13790 } 13791 13792 bool First = true; 13793 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13794 if (First) { 13795 OS << "\t\t" "LoopDispositions: { "; 13796 First = false; 13797 } else { 13798 OS << ", "; 13799 } 13800 13801 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13802 OS << ": " << SE.getLoopDisposition(SV, Iter); 13803 } 13804 13805 for (const auto *InnerL : depth_first(L)) { 13806 if (InnerL == L) 13807 continue; 13808 if (First) { 13809 OS << "\t\t" "LoopDispositions: { "; 13810 First = false; 13811 } else { 13812 OS << ", "; 13813 } 13814 13815 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13816 OS << ": " << SE.getLoopDisposition(SV, InnerL); 13817 } 13818 13819 OS << " }"; 13820 } 13821 13822 OS << "\n"; 13823 } 13824 } 13825 13826 OS << "Determining loop execution counts for: "; 13827 F.printAsOperand(OS, /*PrintType=*/false); 13828 OS << "\n"; 13829 for (Loop *I : LI) 13830 PrintLoopInfo(OS, &SE, I); 13831 } 13832 13833 ScalarEvolution::LoopDisposition 13834 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13835 auto &Values = LoopDispositions[S]; 13836 for (auto &V : Values) { 13837 if (V.getPointer() == L) 13838 return V.getInt(); 13839 } 13840 Values.emplace_back(L, LoopVariant); 13841 LoopDisposition D = computeLoopDisposition(S, L); 13842 auto &Values2 = LoopDispositions[S]; 13843 for (auto &V : llvm::reverse(Values2)) { 13844 if (V.getPointer() == L) { 13845 V.setInt(D); 13846 break; 13847 } 13848 } 13849 return D; 13850 } 13851 13852 ScalarEvolution::LoopDisposition 13853 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13854 switch (S->getSCEVType()) { 13855 case scConstant: 13856 case scVScale: 13857 return LoopInvariant; 13858 case scAddRecExpr: { 13859 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13860 13861 // If L is the addrec's loop, it's computable. 13862 if (AR->getLoop() == L) 13863 return LoopComputable; 13864 13865 // Add recurrences are never invariant in the function-body (null loop). 13866 if (!L) 13867 return LoopVariant; 13868 13869 // Everything that is not defined at loop entry is variant. 13870 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13871 return LoopVariant; 13872 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13873 " dominate the contained loop's header?"); 13874 13875 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13876 if (AR->getLoop()->contains(L)) 13877 return LoopInvariant; 13878 13879 // This recurrence is variant w.r.t. L if any of its operands 13880 // are variant. 13881 for (const auto *Op : AR->operands()) 13882 if (!isLoopInvariant(Op, L)) 13883 return LoopVariant; 13884 13885 // Otherwise it's loop-invariant. 13886 return LoopInvariant; 13887 } 13888 case scTruncate: 13889 case scZeroExtend: 13890 case scSignExtend: 13891 case scPtrToInt: 13892 case scAddExpr: 13893 case scMulExpr: 13894 case scUDivExpr: 13895 case scUMaxExpr: 13896 case scSMaxExpr: 13897 case scUMinExpr: 13898 case scSMinExpr: 13899 case scSequentialUMinExpr: { 13900 bool HasVarying = false; 13901 for (const auto *Op : S->operands()) { 13902 LoopDisposition D = getLoopDisposition(Op, L); 13903 if (D == LoopVariant) 13904 return LoopVariant; 13905 if (D == LoopComputable) 13906 HasVarying = true; 13907 } 13908 return HasVarying ? LoopComputable : LoopInvariant; 13909 } 13910 case scUnknown: 13911 // All non-instruction values are loop invariant. All instructions are loop 13912 // invariant if they are not contained in the specified loop. 13913 // Instructions are never considered invariant in the function body 13914 // (null loop) because they are defined within the "loop". 13915 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13916 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13917 return LoopInvariant; 13918 case scCouldNotCompute: 13919 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13920 } 13921 llvm_unreachable("Unknown SCEV kind!"); 13922 } 13923 13924 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13925 return getLoopDisposition(S, L) == LoopInvariant; 13926 } 13927 13928 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13929 return getLoopDisposition(S, L) == LoopComputable; 13930 } 13931 13932 ScalarEvolution::BlockDisposition 13933 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13934 auto &Values = BlockDispositions[S]; 13935 for (auto &V : Values) { 13936 if (V.getPointer() == BB) 13937 return V.getInt(); 13938 } 13939 Values.emplace_back(BB, DoesNotDominateBlock); 13940 BlockDisposition D = computeBlockDisposition(S, BB); 13941 auto &Values2 = BlockDispositions[S]; 13942 for (auto &V : llvm::reverse(Values2)) { 13943 if (V.getPointer() == BB) { 13944 V.setInt(D); 13945 break; 13946 } 13947 } 13948 return D; 13949 } 13950 13951 ScalarEvolution::BlockDisposition 13952 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13953 switch (S->getSCEVType()) { 13954 case scConstant: 13955 case scVScale: 13956 return ProperlyDominatesBlock; 13957 case scAddRecExpr: { 13958 // This uses a "dominates" query instead of "properly dominates" query 13959 // to test for proper dominance too, because the instruction which 13960 // produces the addrec's value is a PHI, and a PHI effectively properly 13961 // dominates its entire containing block. 13962 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13963 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13964 return DoesNotDominateBlock; 13965 13966 // Fall through into SCEVNAryExpr handling. 13967 [[fallthrough]]; 13968 } 13969 case scTruncate: 13970 case scZeroExtend: 13971 case scSignExtend: 13972 case scPtrToInt: 13973 case scAddExpr: 13974 case scMulExpr: 13975 case scUDivExpr: 13976 case scUMaxExpr: 13977 case scSMaxExpr: 13978 case scUMinExpr: 13979 case scSMinExpr: 13980 case scSequentialUMinExpr: { 13981 bool Proper = true; 13982 for (const SCEV *NAryOp : S->operands()) { 13983 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13984 if (D == DoesNotDominateBlock) 13985 return DoesNotDominateBlock; 13986 if (D == DominatesBlock) 13987 Proper = false; 13988 } 13989 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13990 } 13991 case scUnknown: 13992 if (Instruction *I = 13993 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13994 if (I->getParent() == BB) 13995 return DominatesBlock; 13996 if (DT.properlyDominates(I->getParent(), BB)) 13997 return ProperlyDominatesBlock; 13998 return DoesNotDominateBlock; 13999 } 14000 return ProperlyDominatesBlock; 14001 case scCouldNotCompute: 14002 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 14003 } 14004 llvm_unreachable("Unknown SCEV kind!"); 14005 } 14006 14007 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 14008 return getBlockDisposition(S, BB) >= DominatesBlock; 14009 } 14010 14011 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 14012 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 14013 } 14014 14015 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 14016 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 14017 } 14018 14019 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 14020 bool Predicated) { 14021 auto &BECounts = 14022 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14023 auto It = BECounts.find(L); 14024 if (It != BECounts.end()) { 14025 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 14026 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14027 if (!isa<SCEVConstant>(S)) { 14028 auto UserIt = BECountUsers.find(S); 14029 assert(UserIt != BECountUsers.end()); 14030 UserIt->second.erase({L, Predicated}); 14031 } 14032 } 14033 } 14034 BECounts.erase(It); 14035 } 14036 } 14037 14038 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 14039 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 14040 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 14041 14042 while (!Worklist.empty()) { 14043 const SCEV *Curr = Worklist.pop_back_val(); 14044 auto Users = SCEVUsers.find(Curr); 14045 if (Users != SCEVUsers.end()) 14046 for (const auto *User : Users->second) 14047 if (ToForget.insert(User).second) 14048 Worklist.push_back(User); 14049 } 14050 14051 for (const auto *S : ToForget) 14052 forgetMemoizedResultsImpl(S); 14053 14054 for (auto I = PredicatedSCEVRewrites.begin(); 14055 I != PredicatedSCEVRewrites.end();) { 14056 std::pair<const SCEV *, const Loop *> Entry = I->first; 14057 if (ToForget.count(Entry.first)) 14058 PredicatedSCEVRewrites.erase(I++); 14059 else 14060 ++I; 14061 } 14062 } 14063 14064 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 14065 LoopDispositions.erase(S); 14066 BlockDispositions.erase(S); 14067 UnsignedRanges.erase(S); 14068 SignedRanges.erase(S); 14069 HasRecMap.erase(S); 14070 ConstantMultipleCache.erase(S); 14071 14072 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { 14073 UnsignedWrapViaInductionTried.erase(AR); 14074 SignedWrapViaInductionTried.erase(AR); 14075 } 14076 14077 auto ExprIt = ExprValueMap.find(S); 14078 if (ExprIt != ExprValueMap.end()) { 14079 for (Value *V : ExprIt->second) { 14080 auto ValueIt = ValueExprMap.find_as(V); 14081 if (ValueIt != ValueExprMap.end()) 14082 ValueExprMap.erase(ValueIt); 14083 } 14084 ExprValueMap.erase(ExprIt); 14085 } 14086 14087 auto ScopeIt = ValuesAtScopes.find(S); 14088 if (ScopeIt != ValuesAtScopes.end()) { 14089 for (const auto &Pair : ScopeIt->second) 14090 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 14091 llvm::erase(ValuesAtScopesUsers[Pair.second], 14092 std::make_pair(Pair.first, S)); 14093 ValuesAtScopes.erase(ScopeIt); 14094 } 14095 14096 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 14097 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 14098 for (const auto &Pair : ScopeUserIt->second) 14099 llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 14100 ValuesAtScopesUsers.erase(ScopeUserIt); 14101 } 14102 14103 auto BEUsersIt = BECountUsers.find(S); 14104 if (BEUsersIt != BECountUsers.end()) { 14105 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 14106 auto Copy = BEUsersIt->second; 14107 for (const auto &Pair : Copy) 14108 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 14109 BECountUsers.erase(BEUsersIt); 14110 } 14111 14112 auto FoldUser = FoldCacheUser.find(S); 14113 if (FoldUser != FoldCacheUser.end()) 14114 for (auto &KV : FoldUser->second) 14115 FoldCache.erase(KV); 14116 FoldCacheUser.erase(S); 14117 } 14118 14119 void 14120 ScalarEvolution::getUsedLoops(const SCEV *S, 14121 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 14122 struct FindUsedLoops { 14123 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 14124 : LoopsUsed(LoopsUsed) {} 14125 SmallPtrSetImpl<const Loop *> &LoopsUsed; 14126 bool follow(const SCEV *S) { 14127 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 14128 LoopsUsed.insert(AR->getLoop()); 14129 return true; 14130 } 14131 14132 bool isDone() const { return false; } 14133 }; 14134 14135 FindUsedLoops F(LoopsUsed); 14136 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 14137 } 14138 14139 void ScalarEvolution::getReachableBlocks( 14140 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 14141 SmallVector<BasicBlock *> Worklist; 14142 Worklist.push_back(&F.getEntryBlock()); 14143 while (!Worklist.empty()) { 14144 BasicBlock *BB = Worklist.pop_back_val(); 14145 if (!Reachable.insert(BB).second) 14146 continue; 14147 14148 Value *Cond; 14149 BasicBlock *TrueBB, *FalseBB; 14150 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 14151 m_BasicBlock(FalseBB)))) { 14152 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 14153 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 14154 continue; 14155 } 14156 14157 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14158 const SCEV *L = getSCEV(Cmp->getOperand(0)); 14159 const SCEV *R = getSCEV(Cmp->getOperand(1)); 14160 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 14161 Worklist.push_back(TrueBB); 14162 continue; 14163 } 14164 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 14165 R)) { 14166 Worklist.push_back(FalseBB); 14167 continue; 14168 } 14169 } 14170 } 14171 14172 append_range(Worklist, successors(BB)); 14173 } 14174 } 14175 14176 void ScalarEvolution::verify() const { 14177 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 14178 ScalarEvolution SE2(F, TLI, AC, DT, LI); 14179 14180 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 14181 14182 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 14183 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 14184 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 14185 14186 const SCEV *visitConstant(const SCEVConstant *Constant) { 14187 return SE.getConstant(Constant->getAPInt()); 14188 } 14189 14190 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14191 return SE.getUnknown(Expr->getValue()); 14192 } 14193 14194 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 14195 return SE.getCouldNotCompute(); 14196 } 14197 }; 14198 14199 SCEVMapper SCM(SE2); 14200 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 14201 SE2.getReachableBlocks(ReachableBlocks, F); 14202 14203 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 14204 if (containsUndefs(Old) || containsUndefs(New)) { 14205 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 14206 // not propagate undef aggressively). This means we can (and do) fail 14207 // verification in cases where a transform makes a value go from "undef" 14208 // to "undef+1" (say). The transform is fine, since in both cases the 14209 // result is "undef", but SCEV thinks the value increased by 1. 14210 return nullptr; 14211 } 14212 14213 // Unless VerifySCEVStrict is set, we only compare constant deltas. 14214 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 14215 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 14216 return nullptr; 14217 14218 return Delta; 14219 }; 14220 14221 while (!LoopStack.empty()) { 14222 auto *L = LoopStack.pop_back_val(); 14223 llvm::append_range(LoopStack, *L); 14224 14225 // Only verify BECounts in reachable loops. For an unreachable loop, 14226 // any BECount is legal. 14227 if (!ReachableBlocks.contains(L->getHeader())) 14228 continue; 14229 14230 // Only verify cached BECounts. Computing new BECounts may change the 14231 // results of subsequent SCEV uses. 14232 auto It = BackedgeTakenCounts.find(L); 14233 if (It == BackedgeTakenCounts.end()) 14234 continue; 14235 14236 auto *CurBECount = 14237 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 14238 auto *NewBECount = SE2.getBackedgeTakenCount(L); 14239 14240 if (CurBECount == SE2.getCouldNotCompute() || 14241 NewBECount == SE2.getCouldNotCompute()) { 14242 // NB! This situation is legal, but is very suspicious -- whatever pass 14243 // change the loop to make a trip count go from could not compute to 14244 // computable or vice-versa *should have* invalidated SCEV. However, we 14245 // choose not to assert here (for now) since we don't want false 14246 // positives. 14247 continue; 14248 } 14249 14250 if (SE.getTypeSizeInBits(CurBECount->getType()) > 14251 SE.getTypeSizeInBits(NewBECount->getType())) 14252 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 14253 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 14254 SE.getTypeSizeInBits(NewBECount->getType())) 14255 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 14256 14257 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 14258 if (Delta && !Delta->isZero()) { 14259 dbgs() << "Trip Count for " << *L << " Changed!\n"; 14260 dbgs() << "Old: " << *CurBECount << "\n"; 14261 dbgs() << "New: " << *NewBECount << "\n"; 14262 dbgs() << "Delta: " << *Delta << "\n"; 14263 std::abort(); 14264 } 14265 } 14266 14267 // Collect all valid loops currently in LoopInfo. 14268 SmallPtrSet<Loop *, 32> ValidLoops; 14269 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 14270 while (!Worklist.empty()) { 14271 Loop *L = Worklist.pop_back_val(); 14272 if (ValidLoops.insert(L).second) 14273 Worklist.append(L->begin(), L->end()); 14274 } 14275 for (const auto &KV : ValueExprMap) { 14276 #ifndef NDEBUG 14277 // Check for SCEV expressions referencing invalid/deleted loops. 14278 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 14279 assert(ValidLoops.contains(AR->getLoop()) && 14280 "AddRec references invalid loop"); 14281 } 14282 #endif 14283 14284 // Check that the value is also part of the reverse map. 14285 auto It = ExprValueMap.find(KV.second); 14286 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 14287 dbgs() << "Value " << *KV.first 14288 << " is in ValueExprMap but not in ExprValueMap\n"; 14289 std::abort(); 14290 } 14291 14292 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 14293 if (!ReachableBlocks.contains(I->getParent())) 14294 continue; 14295 const SCEV *OldSCEV = SCM.visit(KV.second); 14296 const SCEV *NewSCEV = SE2.getSCEV(I); 14297 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 14298 if (Delta && !Delta->isZero()) { 14299 dbgs() << "SCEV for value " << *I << " changed!\n" 14300 << "Old: " << *OldSCEV << "\n" 14301 << "New: " << *NewSCEV << "\n" 14302 << "Delta: " << *Delta << "\n"; 14303 std::abort(); 14304 } 14305 } 14306 } 14307 14308 for (const auto &KV : ExprValueMap) { 14309 for (Value *V : KV.second) { 14310 auto It = ValueExprMap.find_as(V); 14311 if (It == ValueExprMap.end()) { 14312 dbgs() << "Value " << *V 14313 << " is in ExprValueMap but not in ValueExprMap\n"; 14314 std::abort(); 14315 } 14316 if (It->second != KV.first) { 14317 dbgs() << "Value " << *V << " mapped to " << *It->second 14318 << " rather than " << *KV.first << "\n"; 14319 std::abort(); 14320 } 14321 } 14322 } 14323 14324 // Verify integrity of SCEV users. 14325 for (const auto &S : UniqueSCEVs) { 14326 for (const auto *Op : S.operands()) { 14327 // We do not store dependencies of constants. 14328 if (isa<SCEVConstant>(Op)) 14329 continue; 14330 auto It = SCEVUsers.find(Op); 14331 if (It != SCEVUsers.end() && It->second.count(&S)) 14332 continue; 14333 dbgs() << "Use of operand " << *Op << " by user " << S 14334 << " is not being tracked!\n"; 14335 std::abort(); 14336 } 14337 } 14338 14339 // Verify integrity of ValuesAtScopes users. 14340 for (const auto &ValueAndVec : ValuesAtScopes) { 14341 const SCEV *Value = ValueAndVec.first; 14342 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 14343 const Loop *L = LoopAndValueAtScope.first; 14344 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 14345 if (!isa<SCEVConstant>(ValueAtScope)) { 14346 auto It = ValuesAtScopesUsers.find(ValueAtScope); 14347 if (It != ValuesAtScopesUsers.end() && 14348 is_contained(It->second, std::make_pair(L, Value))) 14349 continue; 14350 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14351 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 14352 std::abort(); 14353 } 14354 } 14355 } 14356 14357 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 14358 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 14359 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 14360 const Loop *L = LoopAndValue.first; 14361 const SCEV *Value = LoopAndValue.second; 14362 assert(!isa<SCEVConstant>(Value)); 14363 auto It = ValuesAtScopes.find(Value); 14364 if (It != ValuesAtScopes.end() && 14365 is_contained(It->second, std::make_pair(L, ValueAtScope))) 14366 continue; 14367 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14368 << *ValueAtScope << " missing in ValuesAtScopes\n"; 14369 std::abort(); 14370 } 14371 } 14372 14373 // Verify integrity of BECountUsers. 14374 auto VerifyBECountUsers = [&](bool Predicated) { 14375 auto &BECounts = 14376 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14377 for (const auto &LoopAndBEInfo : BECounts) { 14378 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 14379 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14380 if (!isa<SCEVConstant>(S)) { 14381 auto UserIt = BECountUsers.find(S); 14382 if (UserIt != BECountUsers.end() && 14383 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 14384 continue; 14385 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first 14386 << " missing from BECountUsers\n"; 14387 std::abort(); 14388 } 14389 } 14390 } 14391 } 14392 }; 14393 VerifyBECountUsers(/* Predicated */ false); 14394 VerifyBECountUsers(/* Predicated */ true); 14395 14396 // Verify intergity of loop disposition cache. 14397 for (auto &[S, Values] : LoopDispositions) { 14398 for (auto [Loop, CachedDisposition] : Values) { 14399 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); 14400 if (CachedDisposition != RecomputedDisposition) { 14401 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop 14402 << " is incorrect: cached " << CachedDisposition << ", actual " 14403 << RecomputedDisposition << "\n"; 14404 std::abort(); 14405 } 14406 } 14407 } 14408 14409 // Verify integrity of the block disposition cache. 14410 for (auto &[S, Values] : BlockDispositions) { 14411 for (auto [BB, CachedDisposition] : Values) { 14412 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); 14413 if (CachedDisposition != RecomputedDisposition) { 14414 dbgs() << "Cached disposition of " << *S << " for block %" 14415 << BB->getName() << " is incorrect: cached " << CachedDisposition 14416 << ", actual " << RecomputedDisposition << "\n"; 14417 std::abort(); 14418 } 14419 } 14420 } 14421 14422 // Verify FoldCache/FoldCacheUser caches. 14423 for (auto [FoldID, Expr] : FoldCache) { 14424 auto I = FoldCacheUser.find(Expr); 14425 if (I == FoldCacheUser.end()) { 14426 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr 14427 << "!\n"; 14428 std::abort(); 14429 } 14430 if (!is_contained(I->second, FoldID)) { 14431 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; 14432 std::abort(); 14433 } 14434 } 14435 for (auto [Expr, IDs] : FoldCacheUser) { 14436 for (auto &FoldID : IDs) { 14437 auto I = FoldCache.find(FoldID); 14438 if (I == FoldCache.end()) { 14439 dbgs() << "Missing entry in FoldCache for expression " << *Expr 14440 << "!\n"; 14441 std::abort(); 14442 } 14443 if (I->second != Expr) { 14444 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " 14445 << *I->second << " != " << *Expr << "!\n"; 14446 std::abort(); 14447 } 14448 } 14449 } 14450 14451 // Verify that ConstantMultipleCache computations are correct. We check that 14452 // cached multiples and recomputed multiples are multiples of each other to 14453 // verify correctness. It is possible that a recomputed multiple is different 14454 // from the cached multiple due to strengthened no wrap flags or changes in 14455 // KnownBits computations. 14456 for (auto [S, Multiple] : ConstantMultipleCache) { 14457 APInt RecomputedMultiple = SE2.getConstantMultiple(S); 14458 if ((Multiple != 0 && RecomputedMultiple != 0 && 14459 Multiple.urem(RecomputedMultiple) != 0 && 14460 RecomputedMultiple.urem(Multiple) != 0)) { 14461 dbgs() << "Incorrect cached computation in ConstantMultipleCache for " 14462 << *S << " : Computed " << RecomputedMultiple 14463 << " but cache contains " << Multiple << "!\n"; 14464 std::abort(); 14465 } 14466 } 14467 } 14468 14469 bool ScalarEvolution::invalidate( 14470 Function &F, const PreservedAnalyses &PA, 14471 FunctionAnalysisManager::Invalidator &Inv) { 14472 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 14473 // of its dependencies is invalidated. 14474 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 14475 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 14476 Inv.invalidate<AssumptionAnalysis>(F, PA) || 14477 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 14478 Inv.invalidate<LoopAnalysis>(F, PA); 14479 } 14480 14481 AnalysisKey ScalarEvolutionAnalysis::Key; 14482 14483 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 14484 FunctionAnalysisManager &AM) { 14485 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 14486 auto &AC = AM.getResult<AssumptionAnalysis>(F); 14487 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 14488 auto &LI = AM.getResult<LoopAnalysis>(F); 14489 return ScalarEvolution(F, TLI, AC, DT, LI); 14490 } 14491 14492 PreservedAnalyses 14493 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 14494 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 14495 return PreservedAnalyses::all(); 14496 } 14497 14498 PreservedAnalyses 14499 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 14500 // For compatibility with opt's -analyze feature under legacy pass manager 14501 // which was not ported to NPM. This keeps tests using 14502 // update_analyze_test_checks.py working. 14503 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 14504 << F.getName() << "':\n"; 14505 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 14506 return PreservedAnalyses::all(); 14507 } 14508 14509 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 14510 "Scalar Evolution Analysis", false, true) 14511 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14512 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 14513 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 14514 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 14515 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 14516 "Scalar Evolution Analysis", false, true) 14517 14518 char ScalarEvolutionWrapperPass::ID = 0; 14519 14520 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 14521 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 14522 } 14523 14524 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 14525 SE.reset(new ScalarEvolution( 14526 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 14527 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 14528 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 14529 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 14530 return false; 14531 } 14532 14533 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 14534 14535 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 14536 SE->print(OS); 14537 } 14538 14539 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 14540 if (!VerifySCEV) 14541 return; 14542 14543 SE->verify(); 14544 } 14545 14546 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 14547 AU.setPreservesAll(); 14548 AU.addRequiredTransitive<AssumptionCacheTracker>(); 14549 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 14550 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 14551 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 14552 } 14553 14554 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 14555 const SCEV *RHS) { 14556 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 14557 } 14558 14559 const SCEVPredicate * 14560 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 14561 const SCEV *LHS, const SCEV *RHS) { 14562 FoldingSetNodeID ID; 14563 assert(LHS->getType() == RHS->getType() && 14564 "Type mismatch between LHS and RHS"); 14565 // Unique this node based on the arguments 14566 ID.AddInteger(SCEVPredicate::P_Compare); 14567 ID.AddInteger(Pred); 14568 ID.AddPointer(LHS); 14569 ID.AddPointer(RHS); 14570 void *IP = nullptr; 14571 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14572 return S; 14573 SCEVComparePredicate *Eq = new (SCEVAllocator) 14574 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14575 UniquePreds.InsertNode(Eq, IP); 14576 return Eq; 14577 } 14578 14579 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14580 const SCEVAddRecExpr *AR, 14581 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14582 FoldingSetNodeID ID; 14583 // Unique this node based on the arguments 14584 ID.AddInteger(SCEVPredicate::P_Wrap); 14585 ID.AddPointer(AR); 14586 ID.AddInteger(AddedFlags); 14587 void *IP = nullptr; 14588 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14589 return S; 14590 auto *OF = new (SCEVAllocator) 14591 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14592 UniquePreds.InsertNode(OF, IP); 14593 return OF; 14594 } 14595 14596 namespace { 14597 14598 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14599 public: 14600 14601 /// Rewrites \p S in the context of a loop L and the SCEV predication 14602 /// infrastructure. 14603 /// 14604 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14605 /// equivalences present in \p Pred. 14606 /// 14607 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14608 /// \p NewPreds such that the result will be an AddRecExpr. 14609 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14610 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14611 const SCEVPredicate *Pred) { 14612 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14613 return Rewriter.visit(S); 14614 } 14615 14616 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14617 if (Pred) { 14618 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14619 for (const auto *Pred : U->getPredicates()) 14620 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14621 if (IPred->getLHS() == Expr && 14622 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14623 return IPred->getRHS(); 14624 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14625 if (IPred->getLHS() == Expr && 14626 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14627 return IPred->getRHS(); 14628 } 14629 } 14630 return convertToAddRecWithPreds(Expr); 14631 } 14632 14633 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14634 const SCEV *Operand = visit(Expr->getOperand()); 14635 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14636 if (AR && AR->getLoop() == L && AR->isAffine()) { 14637 // This couldn't be folded because the operand didn't have the nuw 14638 // flag. Add the nusw flag as an assumption that we could make. 14639 const SCEV *Step = AR->getStepRecurrence(SE); 14640 Type *Ty = Expr->getType(); 14641 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14642 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14643 SE.getSignExtendExpr(Step, Ty), L, 14644 AR->getNoWrapFlags()); 14645 } 14646 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14647 } 14648 14649 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14650 const SCEV *Operand = visit(Expr->getOperand()); 14651 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14652 if (AR && AR->getLoop() == L && AR->isAffine()) { 14653 // This couldn't be folded because the operand didn't have the nsw 14654 // flag. Add the nssw flag as an assumption that we could make. 14655 const SCEV *Step = AR->getStepRecurrence(SE); 14656 Type *Ty = Expr->getType(); 14657 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14658 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14659 SE.getSignExtendExpr(Step, Ty), L, 14660 AR->getNoWrapFlags()); 14661 } 14662 return SE.getSignExtendExpr(Operand, Expr->getType()); 14663 } 14664 14665 private: 14666 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14667 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14668 const SCEVPredicate *Pred) 14669 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14670 14671 bool addOverflowAssumption(const SCEVPredicate *P) { 14672 if (!NewPreds) { 14673 // Check if we've already made this assumption. 14674 return Pred && Pred->implies(P); 14675 } 14676 NewPreds->insert(P); 14677 return true; 14678 } 14679 14680 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14681 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14682 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14683 return addOverflowAssumption(A); 14684 } 14685 14686 // If \p Expr represents a PHINode, we try to see if it can be represented 14687 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14688 // to add this predicate as a runtime overflow check, we return the AddRec. 14689 // If \p Expr does not meet these conditions (is not a PHI node, or we 14690 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14691 // return \p Expr. 14692 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14693 if (!isa<PHINode>(Expr->getValue())) 14694 return Expr; 14695 std::optional< 14696 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14697 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14698 if (!PredicatedRewrite) 14699 return Expr; 14700 for (const auto *P : PredicatedRewrite->second){ 14701 // Wrap predicates from outer loops are not supported. 14702 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14703 if (L != WP->getExpr()->getLoop()) 14704 return Expr; 14705 } 14706 if (!addOverflowAssumption(P)) 14707 return Expr; 14708 } 14709 return PredicatedRewrite->first; 14710 } 14711 14712 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14713 const SCEVPredicate *Pred; 14714 const Loop *L; 14715 }; 14716 14717 } // end anonymous namespace 14718 14719 const SCEV * 14720 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14721 const SCEVPredicate &Preds) { 14722 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14723 } 14724 14725 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14726 const SCEV *S, const Loop *L, 14727 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14728 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14729 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14730 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14731 14732 if (!AddRec) 14733 return nullptr; 14734 14735 // Since the transformation was successful, we can now transfer the SCEV 14736 // predicates. 14737 for (const auto *P : TransformPreds) 14738 Preds.insert(P); 14739 14740 return AddRec; 14741 } 14742 14743 /// SCEV predicates 14744 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14745 SCEVPredicateKind Kind) 14746 : FastID(ID), Kind(Kind) {} 14747 14748 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14749 const ICmpInst::Predicate Pred, 14750 const SCEV *LHS, const SCEV *RHS) 14751 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14752 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14753 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14754 } 14755 14756 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14757 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14758 14759 if (!Op) 14760 return false; 14761 14762 if (Pred != ICmpInst::ICMP_EQ) 14763 return false; 14764 14765 return Op->LHS == LHS && Op->RHS == RHS; 14766 } 14767 14768 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14769 14770 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14771 if (Pred == ICmpInst::ICMP_EQ) 14772 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14773 else 14774 OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " 14775 << *RHS << "\n"; 14776 14777 } 14778 14779 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14780 const SCEVAddRecExpr *AR, 14781 IncrementWrapFlags Flags) 14782 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14783 14784 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14785 14786 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14787 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14788 14789 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14790 } 14791 14792 bool SCEVWrapPredicate::isAlwaysTrue() const { 14793 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14794 IncrementWrapFlags IFlags = Flags; 14795 14796 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14797 IFlags = clearFlags(IFlags, IncrementNSSW); 14798 14799 return IFlags == IncrementAnyWrap; 14800 } 14801 14802 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14803 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14804 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14805 OS << "<nusw>"; 14806 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14807 OS << "<nssw>"; 14808 OS << "\n"; 14809 } 14810 14811 SCEVWrapPredicate::IncrementWrapFlags 14812 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14813 ScalarEvolution &SE) { 14814 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14815 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14816 14817 // We can safely transfer the NSW flag as NSSW. 14818 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14819 ImpliedFlags = IncrementNSSW; 14820 14821 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14822 // If the increment is positive, the SCEV NUW flag will also imply the 14823 // WrapPredicate NUSW flag. 14824 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14825 if (Step->getValue()->getValue().isNonNegative()) 14826 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14827 } 14828 14829 return ImpliedFlags; 14830 } 14831 14832 /// Union predicates don't get cached so create a dummy set ID for it. 14833 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14834 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14835 for (const auto *P : Preds) 14836 add(P); 14837 } 14838 14839 bool SCEVUnionPredicate::isAlwaysTrue() const { 14840 return all_of(Preds, 14841 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14842 } 14843 14844 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14845 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14846 return all_of(Set->Preds, 14847 [this](const SCEVPredicate *I) { return this->implies(I); }); 14848 14849 return any_of(Preds, 14850 [N](const SCEVPredicate *I) { return I->implies(N); }); 14851 } 14852 14853 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14854 for (const auto *Pred : Preds) 14855 Pred->print(OS, Depth); 14856 } 14857 14858 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14859 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14860 for (const auto *Pred : Set->Preds) 14861 add(Pred); 14862 return; 14863 } 14864 14865 // Only add predicate if it is not already implied by this union predicate. 14866 if (!implies(N)) 14867 Preds.push_back(N); 14868 } 14869 14870 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14871 Loop &L) 14872 : SE(SE), L(L) { 14873 SmallVector<const SCEVPredicate*, 4> Empty; 14874 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14875 } 14876 14877 void ScalarEvolution::registerUser(const SCEV *User, 14878 ArrayRef<const SCEV *> Ops) { 14879 for (const auto *Op : Ops) 14880 // We do not expect that forgetting cached data for SCEVConstants will ever 14881 // open any prospects for sharpening or introduce any correctness issues, 14882 // so we don't bother storing their dependencies. 14883 if (!isa<SCEVConstant>(Op)) 14884 SCEVUsers[Op].insert(User); 14885 } 14886 14887 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14888 const SCEV *Expr = SE.getSCEV(V); 14889 RewriteEntry &Entry = RewriteMap[Expr]; 14890 14891 // If we already have an entry and the version matches, return it. 14892 if (Entry.second && Generation == Entry.first) 14893 return Entry.second; 14894 14895 // We found an entry but it's stale. Rewrite the stale entry 14896 // according to the current predicate. 14897 if (Entry.second) 14898 Expr = Entry.second; 14899 14900 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14901 Entry = {Generation, NewSCEV}; 14902 14903 return NewSCEV; 14904 } 14905 14906 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14907 if (!BackedgeCount) { 14908 SmallVector<const SCEVPredicate *, 4> Preds; 14909 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14910 for (const auto *P : Preds) 14911 addPredicate(*P); 14912 } 14913 return BackedgeCount; 14914 } 14915 14916 const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() { 14917 if (!SymbolicMaxBackedgeCount) { 14918 SmallVector<const SCEVPredicate *, 4> Preds; 14919 SymbolicMaxBackedgeCount = 14920 SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds); 14921 for (const auto *P : Preds) 14922 addPredicate(*P); 14923 } 14924 return SymbolicMaxBackedgeCount; 14925 } 14926 14927 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14928 if (Preds->implies(&Pred)) 14929 return; 14930 14931 auto &OldPreds = Preds->getPredicates(); 14932 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14933 NewPreds.push_back(&Pred); 14934 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14935 updateGeneration(); 14936 } 14937 14938 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14939 return *Preds; 14940 } 14941 14942 void PredicatedScalarEvolution::updateGeneration() { 14943 // If the generation number wrapped recompute everything. 14944 if (++Generation == 0) { 14945 for (auto &II : RewriteMap) { 14946 const SCEV *Rewritten = II.second.second; 14947 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14948 } 14949 } 14950 } 14951 14952 void PredicatedScalarEvolution::setNoOverflow( 14953 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14954 const SCEV *Expr = getSCEV(V); 14955 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14956 14957 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14958 14959 // Clear the statically implied flags. 14960 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14961 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14962 14963 auto II = FlagsMap.insert({V, Flags}); 14964 if (!II.second) 14965 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14966 } 14967 14968 bool PredicatedScalarEvolution::hasNoOverflow( 14969 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14970 const SCEV *Expr = getSCEV(V); 14971 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14972 14973 Flags = SCEVWrapPredicate::clearFlags( 14974 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14975 14976 auto II = FlagsMap.find(V); 14977 14978 if (II != FlagsMap.end()) 14979 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14980 14981 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14982 } 14983 14984 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14985 const SCEV *Expr = this->getSCEV(V); 14986 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14987 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14988 14989 if (!New) 14990 return nullptr; 14991 14992 for (const auto *P : NewPreds) 14993 addPredicate(*P); 14994 14995 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14996 return New; 14997 } 14998 14999 PredicatedScalarEvolution::PredicatedScalarEvolution( 15000 const PredicatedScalarEvolution &Init) 15001 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 15002 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 15003 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 15004 for (auto I : Init.FlagsMap) 15005 FlagsMap.insert(I); 15006 } 15007 15008 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 15009 // For each block. 15010 for (auto *BB : L.getBlocks()) 15011 for (auto &I : *BB) { 15012 if (!SE.isSCEVable(I.getType())) 15013 continue; 15014 15015 auto *Expr = SE.getSCEV(&I); 15016 auto II = RewriteMap.find(Expr); 15017 15018 if (II == RewriteMap.end()) 15019 continue; 15020 15021 // Don't print things that are not interesting. 15022 if (II->second.second == Expr) 15023 continue; 15024 15025 OS.indent(Depth) << "[PSE]" << I << ":\n"; 15026 OS.indent(Depth + 2) << *Expr << "\n"; 15027 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 15028 } 15029 } 15030 15031 // Match the mathematical pattern A - (A / B) * B, where A and B can be 15032 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 15033 // for URem with constant power-of-2 second operands. 15034 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 15035 // 4, A / B becomes X / 8). 15036 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 15037 const SCEV *&RHS) { 15038 if (Expr->getType()->isPointerTy()) 15039 return false; 15040 15041 // Try to match 'zext (trunc A to iB) to iY', which is used 15042 // for URem with constant power-of-2 second operands. Make sure the size of 15043 // the operand A matches the size of the whole expressions. 15044 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 15045 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 15046 LHS = Trunc->getOperand(); 15047 // Bail out if the type of the LHS is larger than the type of the 15048 // expression for now. 15049 if (getTypeSizeInBits(LHS->getType()) > 15050 getTypeSizeInBits(Expr->getType())) 15051 return false; 15052 if (LHS->getType() != Expr->getType()) 15053 LHS = getZeroExtendExpr(LHS, Expr->getType()); 15054 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 15055 << getTypeSizeInBits(Trunc->getType())); 15056 return true; 15057 } 15058 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 15059 if (Add == nullptr || Add->getNumOperands() != 2) 15060 return false; 15061 15062 const SCEV *A = Add->getOperand(1); 15063 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 15064 15065 if (Mul == nullptr) 15066 return false; 15067 15068 const auto MatchURemWithDivisor = [&](const SCEV *B) { 15069 // (SomeExpr + (-(SomeExpr / B) * B)). 15070 if (Expr == getURemExpr(A, B)) { 15071 LHS = A; 15072 RHS = B; 15073 return true; 15074 } 15075 return false; 15076 }; 15077 15078 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 15079 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 15080 return MatchURemWithDivisor(Mul->getOperand(1)) || 15081 MatchURemWithDivisor(Mul->getOperand(2)); 15082 15083 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 15084 if (Mul->getNumOperands() == 2) 15085 return MatchURemWithDivisor(Mul->getOperand(1)) || 15086 MatchURemWithDivisor(Mul->getOperand(0)) || 15087 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 15088 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 15089 return false; 15090 } 15091 15092 ScalarEvolution::LoopGuards 15093 ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) { 15094 LoopGuards Guards(SE); 15095 SmallVector<const SCEV *> ExprsToRewrite; 15096 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 15097 const SCEV *RHS, 15098 DenseMap<const SCEV *, const SCEV *> 15099 &RewriteMap) { 15100 // WARNING: It is generally unsound to apply any wrap flags to the proposed 15101 // replacement SCEV which isn't directly implied by the structure of that 15102 // SCEV. In particular, using contextual facts to imply flags is *NOT* 15103 // legal. See the scoping rules for flags in the header to understand why. 15104 15105 // If LHS is a constant, apply information to the other expression. 15106 if (isa<SCEVConstant>(LHS)) { 15107 std::swap(LHS, RHS); 15108 Predicate = CmpInst::getSwappedPredicate(Predicate); 15109 } 15110 15111 // Check for a condition of the form (-C1 + X < C2). InstCombine will 15112 // create this form when combining two checks of the form (X u< C2 + C1) and 15113 // (X >=u C1). 15114 auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap, 15115 &ExprsToRewrite]() { 15116 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 15117 if (!AddExpr || AddExpr->getNumOperands() != 2) 15118 return false; 15119 15120 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 15121 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 15122 auto *C2 = dyn_cast<SCEVConstant>(RHS); 15123 if (!C1 || !C2 || !LHSUnknown) 15124 return false; 15125 15126 auto ExactRegion = 15127 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 15128 .sub(C1->getAPInt()); 15129 15130 // Bail out, unless we have a non-wrapping, monotonic range. 15131 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 15132 return false; 15133 auto I = RewriteMap.find(LHSUnknown); 15134 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 15135 RewriteMap[LHSUnknown] = SE.getUMaxExpr( 15136 SE.getConstant(ExactRegion.getUnsignedMin()), 15137 SE.getUMinExpr(RewrittenLHS, 15138 SE.getConstant(ExactRegion.getUnsignedMax()))); 15139 ExprsToRewrite.push_back(LHSUnknown); 15140 return true; 15141 }; 15142 if (MatchRangeCheckIdiom()) 15143 return; 15144 15145 // Return true if \p Expr is a MinMax SCEV expression with a non-negative 15146 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS 15147 // the non-constant operand and in \p LHS the constant operand. 15148 auto IsMinMaxSCEVWithNonNegativeConstant = 15149 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, 15150 const SCEV *&RHS) { 15151 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) { 15152 if (MinMax->getNumOperands() != 2) 15153 return false; 15154 if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) { 15155 if (C->getAPInt().isNegative()) 15156 return false; 15157 SCTy = MinMax->getSCEVType(); 15158 LHS = MinMax->getOperand(0); 15159 RHS = MinMax->getOperand(1); 15160 return true; 15161 } 15162 } 15163 return false; 15164 }; 15165 15166 // Checks whether Expr is a non-negative constant, and Divisor is a positive 15167 // constant, and returns their APInt in ExprVal and in DivisorVal. 15168 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, 15169 APInt &ExprVal, APInt &DivisorVal) { 15170 auto *ConstExpr = dyn_cast<SCEVConstant>(Expr); 15171 auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor); 15172 if (!ConstExpr || !ConstDivisor) 15173 return false; 15174 ExprVal = ConstExpr->getAPInt(); 15175 DivisorVal = ConstDivisor->getAPInt(); 15176 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); 15177 }; 15178 15179 // Return a new SCEV that modifies \p Expr to the closest number divides by 15180 // \p Divisor and greater or equal than Expr. 15181 // For now, only handle constant Expr and Divisor. 15182 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, 15183 const SCEV *Divisor) { 15184 APInt ExprVal; 15185 APInt DivisorVal; 15186 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15187 return Expr; 15188 APInt Rem = ExprVal.urem(DivisorVal); 15189 if (!Rem.isZero()) 15190 // return the SCEV: Expr + Divisor - Expr % Divisor 15191 return SE.getConstant(ExprVal + DivisorVal - Rem); 15192 return Expr; 15193 }; 15194 15195 // Return a new SCEV that modifies \p Expr to the closest number divides by 15196 // \p Divisor and less or equal than Expr. 15197 // For now, only handle constant Expr and Divisor. 15198 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, 15199 const SCEV *Divisor) { 15200 APInt ExprVal; 15201 APInt DivisorVal; 15202 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15203 return Expr; 15204 APInt Rem = ExprVal.urem(DivisorVal); 15205 // return the SCEV: Expr - Expr % Divisor 15206 return SE.getConstant(ExprVal - Rem); 15207 }; 15208 15209 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, 15210 // recursively. This is done by aligning up/down the constant value to the 15211 // Divisor. 15212 std::function<const SCEV *(const SCEV *, const SCEV *)> 15213 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, 15214 const SCEV *Divisor) { 15215 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; 15216 SCEVTypes SCTy; 15217 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, 15218 MinMaxRHS)) 15219 return MinMaxExpr; 15220 auto IsMin = 15221 isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr); 15222 assert(SE.isKnownNonNegative(MinMaxLHS) && 15223 "Expected non-negative operand!"); 15224 auto *DivisibleExpr = 15225 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) 15226 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); 15227 SmallVector<const SCEV *> Ops = { 15228 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; 15229 return SE.getMinMaxExpr(SCTy, Ops); 15230 }; 15231 15232 // If we have LHS == 0, check if LHS is computing a property of some unknown 15233 // SCEV %v which we can rewrite %v to express explicitly. 15234 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 15235 if (Predicate == CmpInst::ICMP_EQ && RHSC && 15236 RHSC->getValue()->isNullValue()) { 15237 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 15238 // explicitly express that. 15239 const SCEV *URemLHS = nullptr; 15240 const SCEV *URemRHS = nullptr; 15241 if (SE.matchURem(LHS, URemLHS, URemRHS)) { 15242 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 15243 auto I = RewriteMap.find(LHSUnknown); 15244 const SCEV *RewrittenLHS = 15245 I != RewriteMap.end() ? I->second : LHSUnknown; 15246 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); 15247 const auto *Multiple = 15248 SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS); 15249 RewriteMap[LHSUnknown] = Multiple; 15250 ExprsToRewrite.push_back(LHSUnknown); 15251 return; 15252 } 15253 } 15254 } 15255 15256 // Do not apply information for constants or if RHS contains an AddRec. 15257 if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS)) 15258 return; 15259 15260 // If RHS is SCEVUnknown, make sure the information is applied to it. 15261 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 15262 std::swap(LHS, RHS); 15263 Predicate = CmpInst::getSwappedPredicate(Predicate); 15264 } 15265 15266 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From 15267 // and \p FromRewritten are the same (i.e. there has been no rewrite 15268 // registered for \p From), then puts this value in the list of rewritten 15269 // expressions. 15270 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, 15271 const SCEV *To) { 15272 if (From == FromRewritten) 15273 ExprsToRewrite.push_back(From); 15274 RewriteMap[From] = To; 15275 }; 15276 15277 // Checks whether \p S has already been rewritten. In that case returns the 15278 // existing rewrite because we want to chain further rewrites onto the 15279 // already rewritten value. Otherwise returns \p S. 15280 auto GetMaybeRewritten = [&](const SCEV *S) { 15281 auto I = RewriteMap.find(S); 15282 return I != RewriteMap.end() ? I->second : S; 15283 }; 15284 15285 // Check for the SCEV expression (A /u B) * B while B is a constant, inside 15286 // \p Expr. The check is done recuresively on \p Expr, which is assumed to 15287 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A 15288 // /u B) * B was found, and return the divisor B in \p DividesBy. For 15289 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since 15290 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p 15291 // DividesBy. 15292 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = 15293 [&](const SCEV *Expr, const SCEV *&DividesBy) { 15294 if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) { 15295 if (Mul->getNumOperands() != 2) 15296 return false; 15297 auto *MulLHS = Mul->getOperand(0); 15298 auto *MulRHS = Mul->getOperand(1); 15299 if (isa<SCEVConstant>(MulLHS)) 15300 std::swap(MulLHS, MulRHS); 15301 if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS)) 15302 if (Div->getOperand(1) == MulRHS) { 15303 DividesBy = MulRHS; 15304 return true; 15305 } 15306 } 15307 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15308 return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) || 15309 HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy); 15310 return false; 15311 }; 15312 15313 // Return true if Expr known to divide by \p DividesBy. 15314 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = 15315 [&](const SCEV *Expr, const SCEV *DividesBy) { 15316 if (SE.getURemExpr(Expr, DividesBy)->isZero()) 15317 return true; 15318 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15319 return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) && 15320 IsKnownToDivideBy(MinMax->getOperand(1), DividesBy); 15321 return false; 15322 }; 15323 15324 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); 15325 const SCEV *DividesBy = nullptr; 15326 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) 15327 // Check that the whole expression is divided by DividesBy 15328 DividesBy = 15329 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; 15330 15331 // Collect rewrites for LHS and its transitive operands based on the 15332 // condition. 15333 // For min/max expressions, also apply the guard to its operands: 15334 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', 15335 // 'min(a, b) > c' -> '(a > c) and (b > c)', 15336 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', 15337 // 'max(a, b) < c' -> '(a < c) and (b < c)'. 15338 15339 // We cannot express strict predicates in SCEV, so instead we replace them 15340 // with non-strict ones against plus or minus one of RHS depending on the 15341 // predicate. 15342 const SCEV *One = SE.getOne(RHS->getType()); 15343 switch (Predicate) { 15344 case CmpInst::ICMP_ULT: 15345 if (RHS->getType()->isPointerTy()) 15346 return; 15347 RHS = SE.getUMaxExpr(RHS, One); 15348 [[fallthrough]]; 15349 case CmpInst::ICMP_SLT: { 15350 RHS = SE.getMinusSCEV(RHS, One); 15351 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15352 break; 15353 } 15354 case CmpInst::ICMP_UGT: 15355 case CmpInst::ICMP_SGT: 15356 RHS = SE.getAddExpr(RHS, One); 15357 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15358 break; 15359 case CmpInst::ICMP_ULE: 15360 case CmpInst::ICMP_SLE: 15361 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15362 break; 15363 case CmpInst::ICMP_UGE: 15364 case CmpInst::ICMP_SGE: 15365 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15366 break; 15367 default: 15368 break; 15369 } 15370 15371 SmallVector<const SCEV *, 16> Worklist(1, LHS); 15372 SmallPtrSet<const SCEV *, 16> Visited; 15373 15374 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { 15375 append_range(Worklist, S->operands()); 15376 }; 15377 15378 while (!Worklist.empty()) { 15379 const SCEV *From = Worklist.pop_back_val(); 15380 if (isa<SCEVConstant>(From)) 15381 continue; 15382 if (!Visited.insert(From).second) 15383 continue; 15384 const SCEV *FromRewritten = GetMaybeRewritten(From); 15385 const SCEV *To = nullptr; 15386 15387 switch (Predicate) { 15388 case CmpInst::ICMP_ULT: 15389 case CmpInst::ICMP_ULE: 15390 To = SE.getUMinExpr(FromRewritten, RHS); 15391 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten)) 15392 EnqueueOperands(UMax); 15393 break; 15394 case CmpInst::ICMP_SLT: 15395 case CmpInst::ICMP_SLE: 15396 To = SE.getSMinExpr(FromRewritten, RHS); 15397 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten)) 15398 EnqueueOperands(SMax); 15399 break; 15400 case CmpInst::ICMP_UGT: 15401 case CmpInst::ICMP_UGE: 15402 To = SE.getUMaxExpr(FromRewritten, RHS); 15403 if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten)) 15404 EnqueueOperands(UMin); 15405 break; 15406 case CmpInst::ICMP_SGT: 15407 case CmpInst::ICMP_SGE: 15408 To = SE.getSMaxExpr(FromRewritten, RHS); 15409 if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten)) 15410 EnqueueOperands(SMin); 15411 break; 15412 case CmpInst::ICMP_EQ: 15413 if (isa<SCEVConstant>(RHS)) 15414 To = RHS; 15415 break; 15416 case CmpInst::ICMP_NE: 15417 if (isa<SCEVConstant>(RHS) && 15418 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) { 15419 const SCEV *OneAlignedUp = 15420 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; 15421 To = SE.getUMaxExpr(FromRewritten, OneAlignedUp); 15422 } 15423 break; 15424 default: 15425 break; 15426 } 15427 15428 if (To) 15429 AddRewrite(From, FromRewritten, To); 15430 } 15431 }; 15432 15433 BasicBlock *Header = L->getHeader(); 15434 SmallVector<PointerIntPair<Value *, 1, bool>> Terms; 15435 // First, collect information from assumptions dominating the loop. 15436 for (auto &AssumeVH : SE.AC.assumptions()) { 15437 if (!AssumeVH) 15438 continue; 15439 auto *AssumeI = cast<CallInst>(AssumeVH); 15440 if (!SE.DT.dominates(AssumeI, Header)) 15441 continue; 15442 Terms.emplace_back(AssumeI->getOperand(0), true); 15443 } 15444 15445 // Second, collect information from llvm.experimental.guards dominating the loop. 15446 auto *GuardDecl = SE.F.getParent()->getFunction( 15447 Intrinsic::getName(Intrinsic::experimental_guard)); 15448 if (GuardDecl) 15449 for (const auto *GU : GuardDecl->users()) 15450 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 15451 if (Guard->getFunction() == Header->getParent() && 15452 SE.DT.dominates(Guard, Header)) 15453 Terms.emplace_back(Guard->getArgOperand(0), true); 15454 15455 // Third, collect conditions from dominating branches. Starting at the loop 15456 // predecessor, climb up the predecessor chain, as long as there are 15457 // predecessors that can be found that have unique successors leading to the 15458 // original header. 15459 // TODO: share this logic with isLoopEntryGuardedByCond. 15460 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 15461 L->getLoopPredecessor(), Header); 15462 Pair.first; 15463 Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 15464 15465 const BranchInst *LoopEntryPredicate = 15466 dyn_cast<BranchInst>(Pair.first->getTerminator()); 15467 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 15468 continue; 15469 15470 Terms.emplace_back(LoopEntryPredicate->getCondition(), 15471 LoopEntryPredicate->getSuccessor(0) == Pair.second); 15472 } 15473 15474 // Now apply the information from the collected conditions to 15475 // Guards.RewriteMap. Conditions are processed in reverse order, so the 15476 // earliest conditions is processed first. This ensures the SCEVs with the 15477 // shortest dependency chains are constructed first. 15478 for (auto [Term, EnterIfTrue] : reverse(Terms)) { 15479 SmallVector<Value *, 8> Worklist; 15480 SmallPtrSet<Value *, 8> Visited; 15481 Worklist.push_back(Term); 15482 while (!Worklist.empty()) { 15483 Value *Cond = Worklist.pop_back_val(); 15484 if (!Visited.insert(Cond).second) 15485 continue; 15486 15487 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 15488 auto Predicate = 15489 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 15490 const auto *LHS = SE.getSCEV(Cmp->getOperand(0)); 15491 const auto *RHS = SE.getSCEV(Cmp->getOperand(1)); 15492 CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap); 15493 continue; 15494 } 15495 15496 Value *L, *R; 15497 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 15498 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 15499 Worklist.push_back(L); 15500 Worklist.push_back(R); 15501 } 15502 } 15503 } 15504 15505 // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of 15506 // the replacement expressions are contained in the ranges of the replaced 15507 // expressions. 15508 Guards.PreserveNUW = true; 15509 Guards.PreserveNSW = true; 15510 for (const SCEV *Expr : ExprsToRewrite) { 15511 const SCEV *RewriteTo = Guards.RewriteMap[Expr]; 15512 Guards.PreserveNUW &= 15513 SE.getUnsignedRange(Expr).contains(SE.getUnsignedRange(RewriteTo)); 15514 Guards.PreserveNSW &= 15515 SE.getSignedRange(Expr).contains(SE.getSignedRange(RewriteTo)); 15516 } 15517 15518 // Now that all rewrite information is collect, rewrite the collected 15519 // expressions with the information in the map. This applies information to 15520 // sub-expressions. 15521 if (ExprsToRewrite.size() > 1) { 15522 for (const SCEV *Expr : ExprsToRewrite) { 15523 const SCEV *RewriteTo = Guards.RewriteMap[Expr]; 15524 Guards.RewriteMap.erase(Expr); 15525 Guards.RewriteMap.insert({Expr, Guards.rewrite(RewriteTo)}); 15526 } 15527 } 15528 return Guards; 15529 } 15530 15531 const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const { 15532 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 15533 /// in the map. It skips AddRecExpr because we cannot guarantee that the 15534 /// replacement is loop invariant in the loop of the AddRec. 15535 class SCEVLoopGuardRewriter 15536 : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 15537 const DenseMap<const SCEV *, const SCEV *> ⤅ 15538 15539 SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap; 15540 15541 public: 15542 SCEVLoopGuardRewriter(ScalarEvolution &SE, 15543 const ScalarEvolution::LoopGuards &Guards) 15544 : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) { 15545 if (Guards.PreserveNUW) 15546 FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNUW); 15547 if (Guards.PreserveNSW) 15548 FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNSW); 15549 } 15550 15551 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 15552 15553 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 15554 auto I = Map.find(Expr); 15555 if (I == Map.end()) 15556 return Expr; 15557 return I->second; 15558 } 15559 15560 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 15561 auto I = Map.find(Expr); 15562 if (I == Map.end()) { 15563 // If we didn't find the extact ZExt expr in the map, check if there's 15564 // an entry for a smaller ZExt we can use instead. 15565 Type *Ty = Expr->getType(); 15566 const SCEV *Op = Expr->getOperand(0); 15567 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; 15568 while (Bitwidth % 8 == 0 && Bitwidth >= 8 && 15569 Bitwidth > Op->getType()->getScalarSizeInBits()) { 15570 Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth); 15571 auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy); 15572 auto I = Map.find(NarrowExt); 15573 if (I != Map.end()) 15574 return SE.getZeroExtendExpr(I->second, Ty); 15575 Bitwidth = Bitwidth / 2; 15576 } 15577 15578 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 15579 Expr); 15580 } 15581 return I->second; 15582 } 15583 15584 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 15585 auto I = Map.find(Expr); 15586 if (I == Map.end()) 15587 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( 15588 Expr); 15589 return I->second; 15590 } 15591 15592 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { 15593 auto I = Map.find(Expr); 15594 if (I == Map.end()) 15595 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); 15596 return I->second; 15597 } 15598 15599 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { 15600 auto I = Map.find(Expr); 15601 if (I == Map.end()) 15602 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); 15603 return I->second; 15604 } 15605 15606 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 15607 SmallVector<const SCEV *, 2> Operands; 15608 bool Changed = false; 15609 for (const auto *Op : Expr->operands()) { 15610 Operands.push_back( 15611 SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op)); 15612 Changed |= Op != Operands.back(); 15613 } 15614 // We are only replacing operands with equivalent values, so transfer the 15615 // flags from the original expression. 15616 return !Changed ? Expr 15617 : SE.getAddExpr(Operands, 15618 ScalarEvolution::maskFlags( 15619 Expr->getNoWrapFlags(), FlagMask)); 15620 } 15621 15622 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 15623 SmallVector<const SCEV *, 2> Operands; 15624 bool Changed = false; 15625 for (const auto *Op : Expr->operands()) { 15626 Operands.push_back( 15627 SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op)); 15628 Changed |= Op != Operands.back(); 15629 } 15630 // We are only replacing operands with equivalent values, so transfer the 15631 // flags from the original expression. 15632 return !Changed ? Expr 15633 : SE.getMulExpr(Operands, 15634 ScalarEvolution::maskFlags( 15635 Expr->getNoWrapFlags(), FlagMask)); 15636 } 15637 }; 15638 15639 if (RewriteMap.empty()) 15640 return Expr; 15641 15642 SCEVLoopGuardRewriter Rewriter(SE, *this); 15643 return Rewriter.visit(Expr); 15644 } 15645 15646 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 15647 return applyLoopGuards(Expr, LoopGuards::collect(L, *this)); 15648 } 15649 15650 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, 15651 const LoopGuards &Guards) { 15652 return Guards.rewrite(Expr); 15653 } 15654