1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 static cl::opt<bool, true> VerifySCEVOpt( 159 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 235 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 236 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 237 "Phi strongly connected components"), 238 cl::init(8)); 239 240 static cl::opt<bool> 241 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 242 cl::desc("Handle <= and >= in finite loops"), 243 cl::init(true)); 244 245 //===----------------------------------------------------------------------===// 246 // SCEV class definitions 247 //===----------------------------------------------------------------------===// 248 249 //===----------------------------------------------------------------------===// 250 // Implementation of the SCEV class. 251 // 252 253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 254 LLVM_DUMP_METHOD void SCEV::dump() const { 255 print(dbgs()); 256 dbgs() << '\n'; 257 } 258 #endif 259 260 void SCEV::print(raw_ostream &OS) const { 261 switch (getSCEVType()) { 262 case scConstant: 263 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 264 return; 265 case scPtrToInt: { 266 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 267 const SCEV *Op = PtrToInt->getOperand(); 268 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 269 << *PtrToInt->getType() << ")"; 270 return; 271 } 272 case scTruncate: { 273 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 274 const SCEV *Op = Trunc->getOperand(); 275 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 276 << *Trunc->getType() << ")"; 277 return; 278 } 279 case scZeroExtend: { 280 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 281 const SCEV *Op = ZExt->getOperand(); 282 OS << "(zext " << *Op->getType() << " " << *Op << " to " 283 << *ZExt->getType() << ")"; 284 return; 285 } 286 case scSignExtend: { 287 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 288 const SCEV *Op = SExt->getOperand(); 289 OS << "(sext " << *Op->getType() << " " << *Op << " to " 290 << *SExt->getType() << ")"; 291 return; 292 } 293 case scAddRecExpr: { 294 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 295 OS << "{" << *AR->getOperand(0); 296 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 297 OS << ",+," << *AR->getOperand(i); 298 OS << "}<"; 299 if (AR->hasNoUnsignedWrap()) 300 OS << "nuw><"; 301 if (AR->hasNoSignedWrap()) 302 OS << "nsw><"; 303 if (AR->hasNoSelfWrap() && 304 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 305 OS << "nw><"; 306 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 307 OS << ">"; 308 return; 309 } 310 case scAddExpr: 311 case scMulExpr: 312 case scUMaxExpr: 313 case scSMaxExpr: 314 case scUMinExpr: 315 case scSMinExpr: 316 case scSequentialUMinExpr: { 317 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 318 const char *OpStr = nullptr; 319 switch (NAry->getSCEVType()) { 320 case scAddExpr: OpStr = " + "; break; 321 case scMulExpr: OpStr = " * "; break; 322 case scUMaxExpr: OpStr = " umax "; break; 323 case scSMaxExpr: OpStr = " smax "; break; 324 case scUMinExpr: 325 OpStr = " umin "; 326 break; 327 case scSMinExpr: 328 OpStr = " smin "; 329 break; 330 case scSequentialUMinExpr: 331 OpStr = " umin_seq "; 332 break; 333 default: 334 llvm_unreachable("There are no other nary expression types."); 335 } 336 OS << "("; 337 ListSeparator LS(OpStr); 338 for (const SCEV *Op : NAry->operands()) 339 OS << LS << *Op; 340 OS << ")"; 341 switch (NAry->getSCEVType()) { 342 case scAddExpr: 343 case scMulExpr: 344 if (NAry->hasNoUnsignedWrap()) 345 OS << "<nuw>"; 346 if (NAry->hasNoSignedWrap()) 347 OS << "<nsw>"; 348 break; 349 default: 350 // Nothing to print for other nary expressions. 351 break; 352 } 353 return; 354 } 355 case scUDivExpr: { 356 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 357 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 358 return; 359 } 360 case scUnknown: { 361 const SCEVUnknown *U = cast<SCEVUnknown>(this); 362 Type *AllocTy; 363 if (U->isSizeOf(AllocTy)) { 364 OS << "sizeof(" << *AllocTy << ")"; 365 return; 366 } 367 if (U->isAlignOf(AllocTy)) { 368 OS << "alignof(" << *AllocTy << ")"; 369 return; 370 } 371 372 Type *CTy; 373 Constant *FieldNo; 374 if (U->isOffsetOf(CTy, FieldNo)) { 375 OS << "offsetof(" << *CTy << ", "; 376 FieldNo->printAsOperand(OS, false); 377 OS << ")"; 378 return; 379 } 380 381 // Otherwise just print it normally. 382 U->getValue()->printAsOperand(OS, false); 383 return; 384 } 385 case scCouldNotCompute: 386 OS << "***COULDNOTCOMPUTE***"; 387 return; 388 } 389 llvm_unreachable("Unknown SCEV kind!"); 390 } 391 392 Type *SCEV::getType() const { 393 switch (getSCEVType()) { 394 case scConstant: 395 return cast<SCEVConstant>(this)->getType(); 396 case scPtrToInt: 397 case scTruncate: 398 case scZeroExtend: 399 case scSignExtend: 400 return cast<SCEVCastExpr>(this)->getType(); 401 case scAddRecExpr: 402 return cast<SCEVAddRecExpr>(this)->getType(); 403 case scMulExpr: 404 return cast<SCEVMulExpr>(this)->getType(); 405 case scUMaxExpr: 406 case scSMaxExpr: 407 case scUMinExpr: 408 case scSMinExpr: 409 return cast<SCEVMinMaxExpr>(this)->getType(); 410 case scSequentialUMinExpr: 411 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 412 case scAddExpr: 413 return cast<SCEVAddExpr>(this)->getType(); 414 case scUDivExpr: 415 return cast<SCEVUDivExpr>(this)->getType(); 416 case scUnknown: 417 return cast<SCEVUnknown>(this)->getType(); 418 case scCouldNotCompute: 419 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 420 } 421 llvm_unreachable("Unknown SCEV kind!"); 422 } 423 424 bool SCEV::isZero() const { 425 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 426 return SC->getValue()->isZero(); 427 return false; 428 } 429 430 bool SCEV::isOne() const { 431 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 432 return SC->getValue()->isOne(); 433 return false; 434 } 435 436 bool SCEV::isAllOnesValue() const { 437 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 438 return SC->getValue()->isMinusOne(); 439 return false; 440 } 441 442 bool SCEV::isNonConstantNegative() const { 443 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 444 if (!Mul) return false; 445 446 // If there is a constant factor, it will be first. 447 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 448 if (!SC) return false; 449 450 // Return true if the value is negative, this matches things like (-42 * V). 451 return SC->getAPInt().isNegative(); 452 } 453 454 SCEVCouldNotCompute::SCEVCouldNotCompute() : 455 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 456 457 bool SCEVCouldNotCompute::classof(const SCEV *S) { 458 return S->getSCEVType() == scCouldNotCompute; 459 } 460 461 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 462 FoldingSetNodeID ID; 463 ID.AddInteger(scConstant); 464 ID.AddPointer(V); 465 void *IP = nullptr; 466 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 467 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 468 UniqueSCEVs.InsertNode(S, IP); 469 return S; 470 } 471 472 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 473 return getConstant(ConstantInt::get(getContext(), Val)); 474 } 475 476 const SCEV * 477 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 478 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 479 return getConstant(ConstantInt::get(ITy, V, isSigned)); 480 } 481 482 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 483 const SCEV *op, Type *ty) 484 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 485 Operands[0] = op; 486 } 487 488 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 489 Type *ITy) 490 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 491 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 492 "Must be a non-bit-width-changing pointer-to-integer cast!"); 493 } 494 495 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 496 SCEVTypes SCEVTy, const SCEV *op, 497 Type *ty) 498 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 499 500 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 501 Type *ty) 502 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 503 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 504 "Cannot truncate non-integer value!"); 505 } 506 507 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 508 const SCEV *op, Type *ty) 509 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 510 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 511 "Cannot zero extend non-integer value!"); 512 } 513 514 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 515 const SCEV *op, Type *ty) 516 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 517 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 518 "Cannot sign extend non-integer value!"); 519 } 520 521 void SCEVUnknown::deleted() { 522 // Clear this SCEVUnknown from various maps. 523 SE->forgetMemoizedResults(this); 524 525 // Remove this SCEVUnknown from the uniquing map. 526 SE->UniqueSCEVs.RemoveNode(this); 527 528 // Release the value. 529 setValPtr(nullptr); 530 } 531 532 void SCEVUnknown::allUsesReplacedWith(Value *New) { 533 // Clear this SCEVUnknown from various maps. 534 SE->forgetMemoizedResults(this); 535 536 // Remove this SCEVUnknown from the uniquing map. 537 SE->UniqueSCEVs.RemoveNode(this); 538 539 // Replace the value pointer in case someone is still using this SCEVUnknown. 540 setValPtr(New); 541 } 542 543 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue() && 549 CE->getNumOperands() == 2) 550 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 551 if (CI->isOne()) { 552 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 553 return true; 554 } 555 556 return false; 557 } 558 559 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 560 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 561 if (VCE->getOpcode() == Instruction::PtrToInt) 562 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 563 if (CE->getOpcode() == Instruction::GetElementPtr && 564 CE->getOperand(0)->isNullValue()) { 565 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 566 if (StructType *STy = dyn_cast<StructType>(Ty)) 567 if (!STy->isPacked() && 568 CE->getNumOperands() == 3 && 569 CE->getOperand(1)->isNullValue()) { 570 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 571 if (CI->isOne() && 572 STy->getNumElements() == 2 && 573 STy->getElementType(0)->isIntegerTy(1)) { 574 AllocTy = STy->getElementType(1); 575 return true; 576 } 577 } 578 } 579 580 return false; 581 } 582 583 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 584 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 585 if (VCE->getOpcode() == Instruction::PtrToInt) 586 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 587 if (CE->getOpcode() == Instruction::GetElementPtr && 588 CE->getNumOperands() == 3 && 589 CE->getOperand(0)->isNullValue() && 590 CE->getOperand(1)->isNullValue()) { 591 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 592 // Ignore vector types here so that ScalarEvolutionExpander doesn't 593 // emit getelementptrs that index into vectors. 594 if (Ty->isStructTy() || Ty->isArrayTy()) { 595 CTy = Ty; 596 FieldNo = CE->getOperand(2); 597 return true; 598 } 599 } 600 601 return false; 602 } 603 604 //===----------------------------------------------------------------------===// 605 // SCEV Utilities 606 //===----------------------------------------------------------------------===// 607 608 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 609 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 610 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 611 /// have been previously deemed to be "equally complex" by this routine. It is 612 /// intended to avoid exponential time complexity in cases like: 613 /// 614 /// %a = f(%x, %y) 615 /// %b = f(%a, %a) 616 /// %c = f(%b, %b) 617 /// 618 /// %d = f(%x, %y) 619 /// %e = f(%d, %d) 620 /// %f = f(%e, %e) 621 /// 622 /// CompareValueComplexity(%f, %c) 623 /// 624 /// Since we do not continue running this routine on expression trees once we 625 /// have seen unequal values, there is no need to track them in the cache. 626 static int 627 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 628 const LoopInfo *const LI, Value *LV, Value *RV, 629 unsigned Depth) { 630 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 631 return 0; 632 633 // Order pointer values after integer values. This helps SCEVExpander form 634 // GEPs. 635 bool LIsPointer = LV->getType()->isPointerTy(), 636 RIsPointer = RV->getType()->isPointerTy(); 637 if (LIsPointer != RIsPointer) 638 return (int)LIsPointer - (int)RIsPointer; 639 640 // Compare getValueID values. 641 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 642 if (LID != RID) 643 return (int)LID - (int)RID; 644 645 // Sort arguments by their position. 646 if (const auto *LA = dyn_cast<Argument>(LV)) { 647 const auto *RA = cast<Argument>(RV); 648 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 649 return (int)LArgNo - (int)RArgNo; 650 } 651 652 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 653 const auto *RGV = cast<GlobalValue>(RV); 654 655 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 656 auto LT = GV->getLinkage(); 657 return !(GlobalValue::isPrivateLinkage(LT) || 658 GlobalValue::isInternalLinkage(LT)); 659 }; 660 661 // Use the names to distinguish the two values, but only if the 662 // names are semantically important. 663 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 664 return LGV->getName().compare(RGV->getName()); 665 } 666 667 // For instructions, compare their loop depth, and their operand count. This 668 // is pretty loose. 669 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 670 const auto *RInst = cast<Instruction>(RV); 671 672 // Compare loop depths. 673 const BasicBlock *LParent = LInst->getParent(), 674 *RParent = RInst->getParent(); 675 if (LParent != RParent) { 676 unsigned LDepth = LI->getLoopDepth(LParent), 677 RDepth = LI->getLoopDepth(RParent); 678 if (LDepth != RDepth) 679 return (int)LDepth - (int)RDepth; 680 } 681 682 // Compare the number of operands. 683 unsigned LNumOps = LInst->getNumOperands(), 684 RNumOps = RInst->getNumOperands(); 685 if (LNumOps != RNumOps) 686 return (int)LNumOps - (int)RNumOps; 687 688 for (unsigned Idx : seq(0u, LNumOps)) { 689 int Result = 690 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 691 RInst->getOperand(Idx), Depth + 1); 692 if (Result != 0) 693 return Result; 694 } 695 } 696 697 EqCacheValue.unionSets(LV, RV); 698 return 0; 699 } 700 701 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 702 // than RHS, respectively. A three-way result allows recursive comparisons to be 703 // more efficient. 704 // If the max analysis depth was reached, return None, assuming we do not know 705 // if they are equivalent for sure. 706 static Optional<int> 707 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 708 EquivalenceClasses<const Value *> &EqCacheValue, 709 const LoopInfo *const LI, const SCEV *LHS, 710 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 711 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 712 if (LHS == RHS) 713 return 0; 714 715 // Primarily, sort the SCEVs by their getSCEVType(). 716 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 717 if (LType != RType) 718 return (int)LType - (int)RType; 719 720 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 721 return 0; 722 723 if (Depth > MaxSCEVCompareDepth) 724 return None; 725 726 // Aside from the getSCEVType() ordering, the particular ordering 727 // isn't very important except that it's beneficial to be consistent, 728 // so that (a + b) and (b + a) don't end up as different expressions. 729 switch (LType) { 730 case scUnknown: { 731 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 732 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 733 734 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 735 RU->getValue(), Depth + 1); 736 if (X == 0) 737 EqCacheSCEV.unionSets(LHS, RHS); 738 return X; 739 } 740 741 case scConstant: { 742 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 743 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 744 745 // Compare constant values. 746 const APInt &LA = LC->getAPInt(); 747 const APInt &RA = RC->getAPInt(); 748 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 749 if (LBitWidth != RBitWidth) 750 return (int)LBitWidth - (int)RBitWidth; 751 return LA.ult(RA) ? -1 : 1; 752 } 753 754 case scAddRecExpr: { 755 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 756 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 757 758 // There is always a dominance between two recs that are used by one SCEV, 759 // so we can safely sort recs by loop header dominance. We require such 760 // order in getAddExpr. 761 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 762 if (LLoop != RLoop) { 763 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 764 assert(LHead != RHead && "Two loops share the same header?"); 765 if (DT.dominates(LHead, RHead)) 766 return 1; 767 else 768 assert(DT.dominates(RHead, LHead) && 769 "No dominance between recurrences used by one SCEV?"); 770 return -1; 771 } 772 773 // Addrec complexity grows with operand count. 774 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 775 if (LNumOps != RNumOps) 776 return (int)LNumOps - (int)RNumOps; 777 778 // Lexicographically compare. 779 for (unsigned i = 0; i != LNumOps; ++i) { 780 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 781 LA->getOperand(i), RA->getOperand(i), DT, 782 Depth + 1); 783 if (X != 0) 784 return X; 785 } 786 EqCacheSCEV.unionSets(LHS, RHS); 787 return 0; 788 } 789 790 case scAddExpr: 791 case scMulExpr: 792 case scSMaxExpr: 793 case scUMaxExpr: 794 case scSMinExpr: 795 case scUMinExpr: 796 case scSequentialUMinExpr: { 797 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 798 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 799 800 // Lexicographically compare n-ary expressions. 801 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 802 if (LNumOps != RNumOps) 803 return (int)LNumOps - (int)RNumOps; 804 805 for (unsigned i = 0; i != LNumOps; ++i) { 806 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 807 LC->getOperand(i), RC->getOperand(i), DT, 808 Depth + 1); 809 if (X != 0) 810 return X; 811 } 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return 0; 814 } 815 816 case scUDivExpr: { 817 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 818 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 819 820 // Lexicographically compare udiv expressions. 821 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 822 RC->getLHS(), DT, Depth + 1); 823 if (X != 0) 824 return X; 825 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 826 RC->getRHS(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scPtrToInt: 833 case scTruncate: 834 case scZeroExtend: 835 case scSignExtend: { 836 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 837 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 838 839 // Compare cast expressions by operand. 840 auto X = 841 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 842 RC->getOperand(), DT, Depth + 1); 843 if (X == 0) 844 EqCacheSCEV.unionSets(LHS, RHS); 845 return X; 846 } 847 848 case scCouldNotCompute: 849 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 850 } 851 llvm_unreachable("Unknown SCEV kind!"); 852 } 853 854 /// Given a list of SCEV objects, order them by their complexity, and group 855 /// objects of the same complexity together by value. When this routine is 856 /// finished, we know that any duplicates in the vector are consecutive and that 857 /// complexity is monotonically increasing. 858 /// 859 /// Note that we go take special precautions to ensure that we get deterministic 860 /// results from this routine. In other words, we don't want the results of 861 /// this to depend on where the addresses of various SCEV objects happened to 862 /// land in memory. 863 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 864 LoopInfo *LI, DominatorTree &DT) { 865 if (Ops.size() < 2) return; // Noop 866 867 EquivalenceClasses<const SCEV *> EqCacheSCEV; 868 EquivalenceClasses<const Value *> EqCacheValue; 869 870 // Whether LHS has provably less complexity than RHS. 871 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 872 auto Complexity = 873 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 874 return Complexity && *Complexity < 0; 875 }; 876 if (Ops.size() == 2) { 877 // This is the common case, which also happens to be trivially simple. 878 // Special case it. 879 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 880 if (IsLessComplex(RHS, LHS)) 881 std::swap(LHS, RHS); 882 return; 883 } 884 885 // Do the rough sort by complexity. 886 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 887 return IsLessComplex(LHS, RHS); 888 }); 889 890 // Now that we are sorted by complexity, group elements of the same 891 // complexity. Note that this is, at worst, N^2, but the vector is likely to 892 // be extremely short in practice. Note that we take this approach because we 893 // do not want to depend on the addresses of the objects we are grouping. 894 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 895 const SCEV *S = Ops[i]; 896 unsigned Complexity = S->getSCEVType(); 897 898 // If there are any objects of the same complexity and same value as this 899 // one, group them. 900 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 901 if (Ops[j] == S) { // Found a duplicate. 902 // Move it to immediately after i'th element. 903 std::swap(Ops[i+1], Ops[j]); 904 ++i; // no need to rescan it. 905 if (i == e-2) return; // Done! 906 } 907 } 908 } 909 } 910 911 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 912 /// least HugeExprThreshold nodes). 913 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 914 return any_of(Ops, [](const SCEV *S) { 915 return S->getExpressionSize() >= HugeExprThreshold; 916 }); 917 } 918 919 //===----------------------------------------------------------------------===// 920 // Simple SCEV method implementations 921 //===----------------------------------------------------------------------===// 922 923 /// Compute BC(It, K). The result has width W. Assume, K > 0. 924 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 925 ScalarEvolution &SE, 926 Type *ResultTy) { 927 // Handle the simplest case efficiently. 928 if (K == 1) 929 return SE.getTruncateOrZeroExtend(It, ResultTy); 930 931 // We are using the following formula for BC(It, K): 932 // 933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 934 // 935 // Suppose, W is the bitwidth of the return value. We must be prepared for 936 // overflow. Hence, we must assure that the result of our computation is 937 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 938 // safe in modular arithmetic. 939 // 940 // However, this code doesn't use exactly that formula; the formula it uses 941 // is something like the following, where T is the number of factors of 2 in 942 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 943 // exponentiation: 944 // 945 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 946 // 947 // This formula is trivially equivalent to the previous formula. However, 948 // this formula can be implemented much more efficiently. The trick is that 949 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 950 // arithmetic. To do exact division in modular arithmetic, all we have 951 // to do is multiply by the inverse. Therefore, this step can be done at 952 // width W. 953 // 954 // The next issue is how to safely do the division by 2^T. The way this 955 // is done is by doing the multiplication step at a width of at least W + T 956 // bits. This way, the bottom W+T bits of the product are accurate. Then, 957 // when we perform the division by 2^T (which is equivalent to a right shift 958 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 959 // truncated out after the division by 2^T. 960 // 961 // In comparison to just directly using the first formula, this technique 962 // is much more efficient; using the first formula requires W * K bits, 963 // but this formula less than W + K bits. Also, the first formula requires 964 // a division step, whereas this formula only requires multiplies and shifts. 965 // 966 // It doesn't matter whether the subtraction step is done in the calculation 967 // width or the input iteration count's width; if the subtraction overflows, 968 // the result must be zero anyway. We prefer here to do it in the width of 969 // the induction variable because it helps a lot for certain cases; CodeGen 970 // isn't smart enough to ignore the overflow, which leads to much less 971 // efficient code if the width of the subtraction is wider than the native 972 // register width. 973 // 974 // (It's possible to not widen at all by pulling out factors of 2 before 975 // the multiplication; for example, K=2 can be calculated as 976 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 977 // extra arithmetic, so it's not an obvious win, and it gets 978 // much more complicated for K > 3.) 979 980 // Protection from insane SCEVs; this bound is conservative, 981 // but it probably doesn't matter. 982 if (K > 1000) 983 return SE.getCouldNotCompute(); 984 985 unsigned W = SE.getTypeSizeInBits(ResultTy); 986 987 // Calculate K! / 2^T and T; we divide out the factors of two before 988 // multiplying for calculating K! / 2^T to avoid overflow. 989 // Other overflow doesn't matter because we only care about the bottom 990 // W bits of the result. 991 APInt OddFactorial(W, 1); 992 unsigned T = 1; 993 for (unsigned i = 3; i <= K; ++i) { 994 APInt Mult(W, i); 995 unsigned TwoFactors = Mult.countTrailingZeros(); 996 T += TwoFactors; 997 Mult.lshrInPlace(TwoFactors); 998 OddFactorial *= Mult; 999 } 1000 1001 // We need at least W + T bits for the multiplication step 1002 unsigned CalculationBits = W + T; 1003 1004 // Calculate 2^T, at width T+W. 1005 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1006 1007 // Calculate the multiplicative inverse of K! / 2^T; 1008 // this multiplication factor will perform the exact division by 1009 // K! / 2^T. 1010 APInt Mod = APInt::getSignedMinValue(W+1); 1011 APInt MultiplyFactor = OddFactorial.zext(W+1); 1012 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1013 MultiplyFactor = MultiplyFactor.trunc(W); 1014 1015 // Calculate the product, at width T+W 1016 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1017 CalculationBits); 1018 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1019 for (unsigned i = 1; i != K; ++i) { 1020 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1021 Dividend = SE.getMulExpr(Dividend, 1022 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1023 } 1024 1025 // Divide by 2^T 1026 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1027 1028 // Truncate the result, and divide by K! / 2^T. 1029 1030 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1031 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1032 } 1033 1034 /// Return the value of this chain of recurrences at the specified iteration 1035 /// number. We can evaluate this recurrence by multiplying each element in the 1036 /// chain by the binomial coefficient corresponding to it. In other words, we 1037 /// can evaluate {A,+,B,+,C,+,D} as: 1038 /// 1039 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1040 /// 1041 /// where BC(It, k) stands for binomial coefficient. 1042 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1043 ScalarEvolution &SE) const { 1044 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1045 } 1046 1047 const SCEV * 1048 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1049 const SCEV *It, ScalarEvolution &SE) { 1050 assert(Operands.size() > 0); 1051 const SCEV *Result = Operands[0]; 1052 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1053 // The computation is correct in the face of overflow provided that the 1054 // multiplication is performed _after_ the evaluation of the binomial 1055 // coefficient. 1056 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1057 if (isa<SCEVCouldNotCompute>(Coeff)) 1058 return Coeff; 1059 1060 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1061 } 1062 return Result; 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // SCEV Expression folder implementations 1067 //===----------------------------------------------------------------------===// 1068 1069 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1070 unsigned Depth) { 1071 assert(Depth <= 1 && 1072 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1073 1074 // We could be called with an integer-typed operands during SCEV rewrites. 1075 // Since the operand is an integer already, just perform zext/trunc/self cast. 1076 if (!Op->getType()->isPointerTy()) 1077 return Op; 1078 1079 // What would be an ID for such a SCEV cast expression? 1080 FoldingSetNodeID ID; 1081 ID.AddInteger(scPtrToInt); 1082 ID.AddPointer(Op); 1083 1084 void *IP = nullptr; 1085 1086 // Is there already an expression for such a cast? 1087 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1088 return S; 1089 1090 // It isn't legal for optimizations to construct new ptrtoint expressions 1091 // for non-integral pointers. 1092 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1093 return getCouldNotCompute(); 1094 1095 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1096 1097 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1098 // is sufficiently wide to represent all possible pointer values. 1099 // We could theoretically teach SCEV to truncate wider pointers, but 1100 // that isn't implemented for now. 1101 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1102 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1103 return getCouldNotCompute(); 1104 1105 // If not, is this expression something we can't reduce any further? 1106 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1107 // Perform some basic constant folding. If the operand of the ptr2int cast 1108 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1109 // left as-is), but produce a zero constant. 1110 // NOTE: We could handle a more general case, but lack motivational cases. 1111 if (isa<ConstantPointerNull>(U->getValue())) 1112 return getZero(IntPtrTy); 1113 1114 // Create an explicit cast node. 1115 // We can reuse the existing insert position since if we get here, 1116 // we won't have made any changes which would invalidate it. 1117 SCEV *S = new (SCEVAllocator) 1118 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1119 UniqueSCEVs.InsertNode(S, IP); 1120 registerUser(S, Op); 1121 return S; 1122 } 1123 1124 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1125 "non-SCEVUnknown's."); 1126 1127 // Otherwise, we've got some expression that is more complex than just a 1128 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1129 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1130 // only, and the expressions must otherwise be integer-typed. 1131 // So sink the cast down to the SCEVUnknown's. 1132 1133 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1134 /// which computes a pointer-typed value, and rewrites the whole expression 1135 /// tree so that *all* the computations are done on integers, and the only 1136 /// pointer-typed operands in the expression are SCEVUnknown. 1137 class SCEVPtrToIntSinkingRewriter 1138 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1139 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1140 1141 public: 1142 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1143 1144 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1145 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1146 return Rewriter.visit(Scev); 1147 } 1148 1149 const SCEV *visit(const SCEV *S) { 1150 Type *STy = S->getType(); 1151 // If the expression is not pointer-typed, just keep it as-is. 1152 if (!STy->isPointerTy()) 1153 return S; 1154 // Else, recursively sink the cast down into it. 1155 return Base::visit(S); 1156 } 1157 1158 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1159 SmallVector<const SCEV *, 2> Operands; 1160 bool Changed = false; 1161 for (const auto *Op : Expr->operands()) { 1162 Operands.push_back(visit(Op)); 1163 Changed |= Op != Operands.back(); 1164 } 1165 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1166 } 1167 1168 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1169 SmallVector<const SCEV *, 2> Operands; 1170 bool Changed = false; 1171 for (const auto *Op : Expr->operands()) { 1172 Operands.push_back(visit(Op)); 1173 Changed |= Op != Operands.back(); 1174 } 1175 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1176 } 1177 1178 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1179 assert(Expr->getType()->isPointerTy() && 1180 "Should only reach pointer-typed SCEVUnknown's."); 1181 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1182 } 1183 }; 1184 1185 // And actually perform the cast sinking. 1186 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1187 assert(IntOp->getType()->isIntegerTy() && 1188 "We must have succeeded in sinking the cast, " 1189 "and ending up with an integer-typed expression!"); 1190 return IntOp; 1191 } 1192 1193 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1194 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1195 1196 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1197 if (isa<SCEVCouldNotCompute>(IntOp)) 1198 return IntOp; 1199 1200 return getTruncateOrZeroExtend(IntOp, Ty); 1201 } 1202 1203 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1204 unsigned Depth) { 1205 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1206 "This is not a truncating conversion!"); 1207 assert(isSCEVable(Ty) && 1208 "This is not a conversion to a SCEVable type!"); 1209 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1210 Ty = getEffectiveSCEVType(Ty); 1211 1212 FoldingSetNodeID ID; 1213 ID.AddInteger(scTruncate); 1214 ID.AddPointer(Op); 1215 ID.AddPointer(Ty); 1216 void *IP = nullptr; 1217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1218 1219 // Fold if the operand is constant. 1220 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1221 return getConstant( 1222 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1223 1224 // trunc(trunc(x)) --> trunc(x) 1225 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1226 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1227 1228 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1229 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1230 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1231 1232 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1233 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1234 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1235 1236 if (Depth > MaxCastDepth) { 1237 SCEV *S = 1238 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1239 UniqueSCEVs.InsertNode(S, IP); 1240 registerUser(S, Op); 1241 return S; 1242 } 1243 1244 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1245 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1246 // if after transforming we have at most one truncate, not counting truncates 1247 // that replace other casts. 1248 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1249 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1250 SmallVector<const SCEV *, 4> Operands; 1251 unsigned numTruncs = 0; 1252 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1253 ++i) { 1254 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1255 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1256 isa<SCEVTruncateExpr>(S)) 1257 numTruncs++; 1258 Operands.push_back(S); 1259 } 1260 if (numTruncs < 2) { 1261 if (isa<SCEVAddExpr>(Op)) 1262 return getAddExpr(Operands); 1263 else if (isa<SCEVMulExpr>(Op)) 1264 return getMulExpr(Operands); 1265 else 1266 llvm_unreachable("Unexpected SCEV type for Op."); 1267 } 1268 // Although we checked in the beginning that ID is not in the cache, it is 1269 // possible that during recursion and different modification ID was inserted 1270 // into the cache. So if we find it, just return it. 1271 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1272 return S; 1273 } 1274 1275 // If the input value is a chrec scev, truncate the chrec's operands. 1276 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1277 SmallVector<const SCEV *, 4> Operands; 1278 for (const SCEV *Op : AddRec->operands()) 1279 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1280 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1281 } 1282 1283 // Return zero if truncating to known zeros. 1284 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1285 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1286 return getZero(Ty); 1287 1288 // The cast wasn't folded; create an explicit cast node. We can reuse 1289 // the existing insert position since if we get here, we won't have 1290 // made any changes which would invalidate it. 1291 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1292 Op, Ty); 1293 UniqueSCEVs.InsertNode(S, IP); 1294 registerUser(S, Op); 1295 return S; 1296 } 1297 1298 // Get the limit of a recurrence such that incrementing by Step cannot cause 1299 // signed overflow as long as the value of the recurrence within the 1300 // loop does not exceed this limit before incrementing. 1301 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1302 ICmpInst::Predicate *Pred, 1303 ScalarEvolution *SE) { 1304 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1305 if (SE->isKnownPositive(Step)) { 1306 *Pred = ICmpInst::ICMP_SLT; 1307 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1308 SE->getSignedRangeMax(Step)); 1309 } 1310 if (SE->isKnownNegative(Step)) { 1311 *Pred = ICmpInst::ICMP_SGT; 1312 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1313 SE->getSignedRangeMin(Step)); 1314 } 1315 return nullptr; 1316 } 1317 1318 // Get the limit of a recurrence such that incrementing by Step cannot cause 1319 // unsigned overflow as long as the value of the recurrence within the loop does 1320 // not exceed this limit before incrementing. 1321 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1322 ICmpInst::Predicate *Pred, 1323 ScalarEvolution *SE) { 1324 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1325 *Pred = ICmpInst::ICMP_ULT; 1326 1327 return SE->getConstant(APInt::getMinValue(BitWidth) - 1328 SE->getUnsignedRangeMax(Step)); 1329 } 1330 1331 namespace { 1332 1333 struct ExtendOpTraitsBase { 1334 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1335 unsigned); 1336 }; 1337 1338 // Used to make code generic over signed and unsigned overflow. 1339 template <typename ExtendOp> struct ExtendOpTraits { 1340 // Members present: 1341 // 1342 // static const SCEV::NoWrapFlags WrapType; 1343 // 1344 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1345 // 1346 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1347 // ICmpInst::Predicate *Pred, 1348 // ScalarEvolution *SE); 1349 }; 1350 1351 template <> 1352 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1353 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1354 1355 static const GetExtendExprTy GetExtendExpr; 1356 1357 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1358 ICmpInst::Predicate *Pred, 1359 ScalarEvolution *SE) { 1360 return getSignedOverflowLimitForStep(Step, Pred, SE); 1361 } 1362 }; 1363 1364 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1365 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1366 1367 template <> 1368 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1369 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1370 1371 static const GetExtendExprTy GetExtendExpr; 1372 1373 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1374 ICmpInst::Predicate *Pred, 1375 ScalarEvolution *SE) { 1376 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1377 } 1378 }; 1379 1380 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1381 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1382 1383 } // end anonymous namespace 1384 1385 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1386 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1387 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1388 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1389 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1390 // expression "Step + sext/zext(PreIncAR)" is congruent with 1391 // "sext/zext(PostIncAR)" 1392 template <typename ExtendOpTy> 1393 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1394 ScalarEvolution *SE, unsigned Depth) { 1395 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1396 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1397 1398 const Loop *L = AR->getLoop(); 1399 const SCEV *Start = AR->getStart(); 1400 const SCEV *Step = AR->getStepRecurrence(*SE); 1401 1402 // Check for a simple looking step prior to loop entry. 1403 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1404 if (!SA) 1405 return nullptr; 1406 1407 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1408 // subtraction is expensive. For this purpose, perform a quick and dirty 1409 // difference, by checking for Step in the operand list. 1410 SmallVector<const SCEV *, 4> DiffOps; 1411 for (const SCEV *Op : SA->operands()) 1412 if (Op != Step) 1413 DiffOps.push_back(Op); 1414 1415 if (DiffOps.size() == SA->getNumOperands()) 1416 return nullptr; 1417 1418 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1419 // `Step`: 1420 1421 // 1. NSW/NUW flags on the step increment. 1422 auto PreStartFlags = 1423 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1424 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1425 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1426 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1427 1428 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1429 // "S+X does not sign/unsign-overflow". 1430 // 1431 1432 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1433 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1434 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1435 return PreStart; 1436 1437 // 2. Direct overflow check on the step operation's expression. 1438 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1439 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1440 const SCEV *OperandExtendedStart = 1441 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1442 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1443 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1444 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1445 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1446 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1447 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1448 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1449 } 1450 return PreStart; 1451 } 1452 1453 // 3. Loop precondition. 1454 ICmpInst::Predicate Pred; 1455 const SCEV *OverflowLimit = 1456 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1457 1458 if (OverflowLimit && 1459 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1460 return PreStart; 1461 1462 return nullptr; 1463 } 1464 1465 // Get the normalized zero or sign extended expression for this AddRec's Start. 1466 template <typename ExtendOpTy> 1467 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1468 ScalarEvolution *SE, 1469 unsigned Depth) { 1470 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1471 1472 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1473 if (!PreStart) 1474 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1475 1476 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1477 Depth), 1478 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1479 } 1480 1481 // Try to prove away overflow by looking at "nearby" add recurrences. A 1482 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1483 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1484 // 1485 // Formally: 1486 // 1487 // {S,+,X} == {S-T,+,X} + T 1488 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1489 // 1490 // If ({S-T,+,X} + T) does not overflow ... (1) 1491 // 1492 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1493 // 1494 // If {S-T,+,X} does not overflow ... (2) 1495 // 1496 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1497 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1498 // 1499 // If (S-T)+T does not overflow ... (3) 1500 // 1501 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1502 // == {Ext(S),+,Ext(X)} == LHS 1503 // 1504 // Thus, if (1), (2) and (3) are true for some T, then 1505 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1506 // 1507 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1508 // does not overflow" restricted to the 0th iteration. Therefore we only need 1509 // to check for (1) and (2). 1510 // 1511 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1512 // is `Delta` (defined below). 1513 template <typename ExtendOpTy> 1514 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1515 const SCEV *Step, 1516 const Loop *L) { 1517 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1518 1519 // We restrict `Start` to a constant to prevent SCEV from spending too much 1520 // time here. It is correct (but more expensive) to continue with a 1521 // non-constant `Start` and do a general SCEV subtraction to compute 1522 // `PreStart` below. 1523 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1524 if (!StartC) 1525 return false; 1526 1527 APInt StartAI = StartC->getAPInt(); 1528 1529 for (unsigned Delta : {-2, -1, 1, 2}) { 1530 const SCEV *PreStart = getConstant(StartAI - Delta); 1531 1532 FoldingSetNodeID ID; 1533 ID.AddInteger(scAddRecExpr); 1534 ID.AddPointer(PreStart); 1535 ID.AddPointer(Step); 1536 ID.AddPointer(L); 1537 void *IP = nullptr; 1538 const auto *PreAR = 1539 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1540 1541 // Give up if we don't already have the add recurrence we need because 1542 // actually constructing an add recurrence is relatively expensive. 1543 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1544 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1545 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1546 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1547 DeltaS, &Pred, this); 1548 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1549 return true; 1550 } 1551 } 1552 1553 return false; 1554 } 1555 1556 // Finds an integer D for an expression (C + x + y + ...) such that the top 1557 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1558 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1559 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1560 // the (C + x + y + ...) expression is \p WholeAddExpr. 1561 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1562 const SCEVConstant *ConstantTerm, 1563 const SCEVAddExpr *WholeAddExpr) { 1564 const APInt &C = ConstantTerm->getAPInt(); 1565 const unsigned BitWidth = C.getBitWidth(); 1566 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1567 uint32_t TZ = BitWidth; 1568 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1569 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1570 if (TZ) { 1571 // Set D to be as many least significant bits of C as possible while still 1572 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1573 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1574 } 1575 return APInt(BitWidth, 0); 1576 } 1577 1578 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1579 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1580 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1581 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1582 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1583 const APInt &ConstantStart, 1584 const SCEV *Step) { 1585 const unsigned BitWidth = ConstantStart.getBitWidth(); 1586 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1587 if (TZ) 1588 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1589 : ConstantStart; 1590 return APInt(BitWidth, 0); 1591 } 1592 1593 const SCEV * 1594 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1596 "This is not an extending conversion!"); 1597 assert(isSCEVable(Ty) && 1598 "This is not a conversion to a SCEVable type!"); 1599 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1600 Ty = getEffectiveSCEVType(Ty); 1601 1602 // Fold if the operand is constant. 1603 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1604 return getConstant( 1605 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1606 1607 // zext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scZeroExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 if (Depth > MaxCastDepth) { 1620 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1621 Op, Ty); 1622 UniqueSCEVs.InsertNode(S, IP); 1623 registerUser(S, Op); 1624 return S; 1625 } 1626 1627 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1628 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1629 // It's possible the bits taken off by the truncate were all zero bits. If 1630 // so, we should be able to simplify this further. 1631 const SCEV *X = ST->getOperand(); 1632 ConstantRange CR = getUnsignedRange(X); 1633 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1634 unsigned NewBits = getTypeSizeInBits(Ty); 1635 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1636 CR.zextOrTrunc(NewBits))) 1637 return getTruncateOrZeroExtend(X, Ty, Depth); 1638 } 1639 1640 // If the input value is a chrec scev, and we can prove that the value 1641 // did not overflow the old, smaller, value, we can zero extend all of the 1642 // operands (often constants). This allows analysis of something like 1643 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1644 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1645 if (AR->isAffine()) { 1646 const SCEV *Start = AR->getStart(); 1647 const SCEV *Step = AR->getStepRecurrence(*this); 1648 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1649 const Loop *L = AR->getLoop(); 1650 1651 if (!AR->hasNoUnsignedWrap()) { 1652 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1653 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1654 } 1655 1656 // If we have special knowledge that this addrec won't overflow, 1657 // we don't need to do any further analysis. 1658 if (AR->hasNoUnsignedWrap()) { 1659 Start = 1660 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1661 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1662 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1663 } 1664 1665 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1666 // Note that this serves two purposes: It filters out loops that are 1667 // simply not analyzable, and it covers the case where this code is 1668 // being called from within backedge-taken count analysis, such that 1669 // attempting to ask for the backedge-taken count would likely result 1670 // in infinite recursion. In the later case, the analysis code will 1671 // cope with a conservative value, and it will take care to purge 1672 // that value once it has finished. 1673 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1674 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1675 // Manually compute the final value for AR, checking for overflow. 1676 1677 // Check whether the backedge-taken count can be losslessly casted to 1678 // the addrec's type. The count is always unsigned. 1679 const SCEV *CastedMaxBECount = 1680 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1681 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1682 CastedMaxBECount, MaxBECount->getType(), Depth); 1683 if (MaxBECount == RecastedMaxBECount) { 1684 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1685 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1686 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1689 SCEV::FlagAnyWrap, 1690 Depth + 1), 1691 WideTy, Depth + 1); 1692 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1693 const SCEV *WideMaxBECount = 1694 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1695 const SCEV *OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getZeroExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1704 // Return the expression with the addrec on the outside. 1705 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1); 1707 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1708 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1724 Depth + 1); 1725 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1726 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1727 } 1728 } 1729 } 1730 1731 // Normally, in the cases we can prove no-overflow via a 1732 // backedge guarding condition, we can also compute a backedge 1733 // taken count for the loop. The exceptions are assumptions and 1734 // guards present in the loop -- SCEV is not great at exploiting 1735 // these to compute max backedge taken counts, but can still use 1736 // these to prove lack of overflow. Use this fact to avoid 1737 // doing extra work that may not pay off. 1738 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1739 !AC.assumptions().empty()) { 1740 1741 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1742 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1743 if (AR->hasNoUnsignedWrap()) { 1744 // Same as nuw case above - duplicated here to avoid a compile time 1745 // issue. It's not clear that the order of checks does matter, but 1746 // it's one of two issue possible causes for a change which was 1747 // reverted. Be conservative for the moment. 1748 Start = 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1750 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1751 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1752 } 1753 1754 // For a negative step, we can extend the operands iff doing so only 1755 // traverses values in the range zext([0,UINT_MAX]). 1756 if (isKnownNegative(Step)) { 1757 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1758 getSignedRangeMin(Step)); 1759 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1760 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1761 // Cache knowledge of AR NW, which is propagated to this 1762 // AddRec. Negative step causes unsigned wrap, but it 1763 // still can't self-wrap. 1764 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1765 // Return the expression with the addrec on the outside. 1766 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1767 Depth + 1); 1768 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1769 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1770 } 1771 } 1772 } 1773 1774 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1775 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1776 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1777 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1778 const APInt &C = SC->getAPInt(); 1779 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1780 if (D != 0) { 1781 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1782 const SCEV *SResidual = 1783 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1784 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1785 return getAddExpr(SZExtD, SZExtR, 1786 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1787 Depth + 1); 1788 } 1789 } 1790 1791 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1792 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1793 Start = 1794 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1795 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1796 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1797 } 1798 } 1799 1800 // zext(A % B) --> zext(A) % zext(B) 1801 { 1802 const SCEV *LHS; 1803 const SCEV *RHS; 1804 if (matchURem(Op, LHS, RHS)) 1805 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1806 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1807 } 1808 1809 // zext(A / B) --> zext(A) / zext(B). 1810 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1811 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1812 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1813 1814 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1815 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1816 if (SA->hasNoUnsignedWrap()) { 1817 // If the addition does not unsign overflow then we can, by definition, 1818 // commute the zero extension with the addition operation. 1819 SmallVector<const SCEV *, 4> Ops; 1820 for (const auto *Op : SA->operands()) 1821 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1822 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1823 } 1824 1825 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1826 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1827 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1828 // 1829 // Often address arithmetics contain expressions like 1830 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1831 // This transformation is useful while proving that such expressions are 1832 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1833 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1834 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1835 if (D != 0) { 1836 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1837 const SCEV *SResidual = 1838 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1839 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1840 return getAddExpr(SZExtD, SZExtR, 1841 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1842 Depth + 1); 1843 } 1844 } 1845 } 1846 1847 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1848 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1849 if (SM->hasNoUnsignedWrap()) { 1850 // If the multiply does not unsign overflow then we can, by definition, 1851 // commute the zero extension with the multiply operation. 1852 SmallVector<const SCEV *, 4> Ops; 1853 for (const auto *Op : SM->operands()) 1854 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1855 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1856 } 1857 1858 // zext(2^K * (trunc X to iN)) to iM -> 1859 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1860 // 1861 // Proof: 1862 // 1863 // zext(2^K * (trunc X to iN)) to iM 1864 // = zext((trunc X to iN) << K) to iM 1865 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1866 // (because shl removes the top K bits) 1867 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1868 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1869 // 1870 if (SM->getNumOperands() == 2) 1871 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1872 if (MulLHS->getAPInt().isPowerOf2()) 1873 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1874 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1875 MulLHS->getAPInt().logBase2(); 1876 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1877 return getMulExpr( 1878 getZeroExtendExpr(MulLHS, Ty), 1879 getZeroExtendExpr( 1880 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1881 SCEV::FlagNUW, Depth + 1); 1882 } 1883 } 1884 1885 // The cast wasn't folded; create an explicit cast node. 1886 // Recompute the insert position, as it may have been invalidated. 1887 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1888 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1889 Op, Ty); 1890 UniqueSCEVs.InsertNode(S, IP); 1891 registerUser(S, Op); 1892 return S; 1893 } 1894 1895 const SCEV * 1896 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1897 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1898 "This is not an extending conversion!"); 1899 assert(isSCEVable(Ty) && 1900 "This is not a conversion to a SCEVable type!"); 1901 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1902 Ty = getEffectiveSCEVType(Ty); 1903 1904 // Fold if the operand is constant. 1905 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1906 return getConstant( 1907 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1908 1909 // sext(sext(x)) --> sext(x) 1910 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1911 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1912 1913 // sext(zext(x)) --> zext(x) 1914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1915 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1916 1917 // Before doing any expensive analysis, check to see if we've already 1918 // computed a SCEV for this Op and Ty. 1919 FoldingSetNodeID ID; 1920 ID.AddInteger(scSignExtend); 1921 ID.AddPointer(Op); 1922 ID.AddPointer(Ty); 1923 void *IP = nullptr; 1924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1925 // Limit recursion depth. 1926 if (Depth > MaxCastDepth) { 1927 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1928 Op, Ty); 1929 UniqueSCEVs.InsertNode(S, IP); 1930 registerUser(S, Op); 1931 return S; 1932 } 1933 1934 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1935 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1936 // It's possible the bits taken off by the truncate were all sign bits. If 1937 // so, we should be able to simplify this further. 1938 const SCEV *X = ST->getOperand(); 1939 ConstantRange CR = getSignedRange(X); 1940 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1941 unsigned NewBits = getTypeSizeInBits(Ty); 1942 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1943 CR.sextOrTrunc(NewBits))) 1944 return getTruncateOrSignExtend(X, Ty, Depth); 1945 } 1946 1947 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1948 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1949 if (SA->hasNoSignedWrap()) { 1950 // If the addition does not sign overflow then we can, by definition, 1951 // commute the sign extension with the addition operation. 1952 SmallVector<const SCEV *, 4> Ops; 1953 for (const auto *Op : SA->operands()) 1954 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1955 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1956 } 1957 1958 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1959 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1960 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1961 // 1962 // For instance, this will bring two seemingly different expressions: 1963 // 1 + sext(5 + 20 * %x + 24 * %y) and 1964 // sext(6 + 20 * %x + 24 * %y) 1965 // to the same form: 1966 // 2 + sext(4 + 20 * %x + 24 * %y) 1967 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1968 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1969 if (D != 0) { 1970 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1971 const SCEV *SResidual = 1972 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1973 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1974 return getAddExpr(SSExtD, SSExtR, 1975 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1976 Depth + 1); 1977 } 1978 } 1979 } 1980 // If the input value is a chrec scev, and we can prove that the value 1981 // did not overflow the old, smaller, value, we can sign extend all of the 1982 // operands (often constants). This allows analysis of something like 1983 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1984 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1985 if (AR->isAffine()) { 1986 const SCEV *Start = AR->getStart(); 1987 const SCEV *Step = AR->getStepRecurrence(*this); 1988 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1989 const Loop *L = AR->getLoop(); 1990 1991 if (!AR->hasNoSignedWrap()) { 1992 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1993 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1994 } 1995 1996 // If we have special knowledge that this addrec won't overflow, 1997 // we don't need to do any further analysis. 1998 if (AR->hasNoSignedWrap()) { 1999 Start = 2000 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2001 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2002 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2003 } 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2047 Depth + 1); 2048 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2049 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2050 } 2051 // Similar to above, only this time treat the step value as unsigned. 2052 // This covers loops that count up with an unsigned step. 2053 OperandExtendedAdd = 2054 getAddExpr(WideStart, 2055 getMulExpr(WideMaxBECount, 2056 getZeroExtendExpr(Step, WideTy, Depth + 1), 2057 SCEV::FlagAnyWrap, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1); 2059 if (SAdd == OperandExtendedAdd) { 2060 // If AR wraps around then 2061 // 2062 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2063 // => SAdd != OperandExtendedAdd 2064 // 2065 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2066 // (SAdd == OperandExtendedAdd => AR is NW) 2067 2068 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2069 2070 // Return the expression with the addrec on the outside. 2071 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2072 Depth + 1); 2073 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2074 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2075 } 2076 } 2077 } 2078 2079 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2081 if (AR->hasNoSignedWrap()) { 2082 // Same as nsw case above - duplicated here to avoid a compile time 2083 // issue. It's not clear that the order of checks does matter, but 2084 // it's one of two issue possible causes for a change which was 2085 // reverted. Be conservative for the moment. 2086 Start = 2087 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2088 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2089 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2090 } 2091 2092 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2093 // if D + (C - D + Step * n) could be proven to not signed wrap 2094 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2095 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2096 const APInt &C = SC->getAPInt(); 2097 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2098 if (D != 0) { 2099 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2100 const SCEV *SResidual = 2101 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2102 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2103 return getAddExpr(SSExtD, SSExtR, 2104 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2105 Depth + 1); 2106 } 2107 } 2108 2109 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2110 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2111 Start = 2112 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2113 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2114 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2317 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2318 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 Optional<SCEV::NoWrapFlags> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 // It cannot be done any better. 2326 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2327 return None; 2328 2329 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2330 2331 if (OBO->hasNoUnsignedWrap()) 2332 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2333 if (OBO->hasNoSignedWrap()) 2334 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2335 2336 bool Deduced = false; 2337 2338 if (OBO->getOpcode() != Instruction::Add && 2339 OBO->getOpcode() != Instruction::Sub && 2340 OBO->getOpcode() != Instruction::Mul) 2341 return None; 2342 2343 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2344 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2345 2346 if (!OBO->hasNoUnsignedWrap() && 2347 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2348 /* Signed */ false, LHS, RHS)) { 2349 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2350 Deduced = true; 2351 } 2352 2353 if (!OBO->hasNoSignedWrap() && 2354 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2355 /* Signed */ true, LHS, RHS)) { 2356 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2357 Deduced = true; 2358 } 2359 2360 if (Deduced) 2361 return Flags; 2362 return None; 2363 } 2364 2365 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2366 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2367 // can't-overflow flags for the operation if possible. 2368 static SCEV::NoWrapFlags 2369 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2370 const ArrayRef<const SCEV *> Ops, 2371 SCEV::NoWrapFlags Flags) { 2372 using namespace std::placeholders; 2373 2374 using OBO = OverflowingBinaryOperator; 2375 2376 bool CanAnalyze = 2377 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2378 (void)CanAnalyze; 2379 assert(CanAnalyze && "don't call from other places!"); 2380 2381 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2382 SCEV::NoWrapFlags SignOrUnsignWrap = 2383 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2384 2385 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2386 auto IsKnownNonNegative = [&](const SCEV *S) { 2387 return SE->isKnownNonNegative(S); 2388 }; 2389 2390 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2391 Flags = 2392 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2393 2394 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2395 2396 if (SignOrUnsignWrap != SignOrUnsignMask && 2397 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2398 isa<SCEVConstant>(Ops[0])) { 2399 2400 auto Opcode = [&] { 2401 switch (Type) { 2402 case scAddExpr: 2403 return Instruction::Add; 2404 case scMulExpr: 2405 return Instruction::Mul; 2406 default: 2407 llvm_unreachable("Unexpected SCEV op."); 2408 } 2409 }(); 2410 2411 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2412 2413 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2414 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2415 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2416 Opcode, C, OBO::NoSignedWrap); 2417 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2418 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2419 } 2420 2421 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2422 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2423 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2424 Opcode, C, OBO::NoUnsignedWrap); 2425 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2427 } 2428 } 2429 2430 // <0,+,nonnegative><nw> is also nuw 2431 // TODO: Add corresponding nsw case 2432 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2433 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2434 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2435 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2436 2437 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2438 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2439 Ops.size() == 2) { 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2441 if (UDiv->getOperand(1) == Ops[1]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2444 if (UDiv->getOperand(1) == Ops[0]) 2445 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2446 } 2447 2448 return Flags; 2449 } 2450 2451 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2452 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2453 } 2454 2455 /// Get a canonical add expression, or something simpler if possible. 2456 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2457 SCEV::NoWrapFlags OrigFlags, 2458 unsigned Depth) { 2459 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2460 "only nuw or nsw allowed"); 2461 assert(!Ops.empty() && "Cannot get empty add!"); 2462 if (Ops.size() == 1) return Ops[0]; 2463 #ifndef NDEBUG 2464 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2465 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2466 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2467 "SCEVAddExpr operand types don't match!"); 2468 unsigned NumPtrs = count_if( 2469 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2470 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2471 #endif 2472 2473 // Sort by complexity, this groups all similar expression types together. 2474 GroupByComplexity(Ops, &LI, DT); 2475 2476 // If there are any constants, fold them together. 2477 unsigned Idx = 0; 2478 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2479 ++Idx; 2480 assert(Idx < Ops.size()); 2481 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2482 // We found two constants, fold them together! 2483 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2484 if (Ops.size() == 2) return Ops[0]; 2485 Ops.erase(Ops.begin()+1); // Erase the folded element 2486 LHSC = cast<SCEVConstant>(Ops[0]); 2487 } 2488 2489 // If we are left with a constant zero being added, strip it off. 2490 if (LHSC->getValue()->isZero()) { 2491 Ops.erase(Ops.begin()); 2492 --Idx; 2493 } 2494 2495 if (Ops.size() == 1) return Ops[0]; 2496 } 2497 2498 // Delay expensive flag strengthening until necessary. 2499 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2500 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2501 }; 2502 2503 // Limit recursion calls depth. 2504 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2505 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2506 2507 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2508 // Don't strengthen flags if we have no new information. 2509 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2510 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2511 Add->setNoWrapFlags(ComputeFlags(Ops)); 2512 return S; 2513 } 2514 2515 // Okay, check to see if the same value occurs in the operand list more than 2516 // once. If so, merge them together into an multiply expression. Since we 2517 // sorted the list, these values are required to be adjacent. 2518 Type *Ty = Ops[0]->getType(); 2519 bool FoundMatch = false; 2520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2522 // Scan ahead to count how many equal operands there are. 2523 unsigned Count = 2; 2524 while (i+Count != e && Ops[i+Count] == Ops[i]) 2525 ++Count; 2526 // Merge the values into a multiply. 2527 const SCEV *Scale = getConstant(Ty, Count); 2528 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2529 if (Ops.size() == Count) 2530 return Mul; 2531 Ops[i] = Mul; 2532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2533 --i; e -= Count - 1; 2534 FoundMatch = true; 2535 } 2536 if (FoundMatch) 2537 return getAddExpr(Ops, OrigFlags, Depth + 1); 2538 2539 // Check for truncates. If all the operands are truncated from the same 2540 // type, see if factoring out the truncate would permit the result to be 2541 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2542 // if the contents of the resulting outer trunc fold to something simple. 2543 auto FindTruncSrcType = [&]() -> Type * { 2544 // We're ultimately looking to fold an addrec of truncs and muls of only 2545 // constants and truncs, so if we find any other types of SCEV 2546 // as operands of the addrec then we bail and return nullptr here. 2547 // Otherwise, we return the type of the operand of a trunc that we find. 2548 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2549 return T->getOperand()->getType(); 2550 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2551 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2552 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2553 return T->getOperand()->getType(); 2554 } 2555 return nullptr; 2556 }; 2557 if (auto *SrcType = FindTruncSrcType()) { 2558 SmallVector<const SCEV *, 8> LargeOps; 2559 bool Ok = true; 2560 // Check all the operands to see if they can be represented in the 2561 // source type of the truncate. 2562 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2563 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2564 if (T->getOperand()->getType() != SrcType) { 2565 Ok = false; 2566 break; 2567 } 2568 LargeOps.push_back(T->getOperand()); 2569 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2570 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2571 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2572 SmallVector<const SCEV *, 8> LargeMulOps; 2573 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2574 if (const SCEVTruncateExpr *T = 2575 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2576 if (T->getOperand()->getType() != SrcType) { 2577 Ok = false; 2578 break; 2579 } 2580 LargeMulOps.push_back(T->getOperand()); 2581 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2582 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2583 } else { 2584 Ok = false; 2585 break; 2586 } 2587 } 2588 if (Ok) 2589 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2590 } else { 2591 Ok = false; 2592 break; 2593 } 2594 } 2595 if (Ok) { 2596 // Evaluate the expression in the larger type. 2597 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2598 // If it folds to something simple, use it. Otherwise, don't. 2599 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2600 return getTruncateExpr(Fold, Ty); 2601 } 2602 } 2603 2604 if (Ops.size() == 2) { 2605 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2606 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2607 // C1). 2608 const SCEV *A = Ops[0]; 2609 const SCEV *B = Ops[1]; 2610 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2611 auto *C = dyn_cast<SCEVConstant>(A); 2612 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2613 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2614 auto C2 = C->getAPInt(); 2615 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2616 2617 APInt ConstAdd = C1 + C2; 2618 auto AddFlags = AddExpr->getNoWrapFlags(); 2619 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2620 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2621 ConstAdd.ule(C1)) { 2622 PreservedFlags = 2623 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2624 } 2625 2626 // Adding a constant with the same sign and small magnitude is NSW, if the 2627 // original AddExpr was NSW. 2628 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2629 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2630 ConstAdd.abs().ule(C1.abs())) { 2631 PreservedFlags = 2632 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2633 } 2634 2635 if (PreservedFlags != SCEV::FlagAnyWrap) { 2636 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2637 NewOps[0] = getConstant(ConstAdd); 2638 return getAddExpr(NewOps, PreservedFlags); 2639 } 2640 } 2641 } 2642 2643 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2644 if (Ops.size() == 2) { 2645 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2646 if (Mul && Mul->getNumOperands() == 2 && 2647 Mul->getOperand(0)->isAllOnesValue()) { 2648 const SCEV *X; 2649 const SCEV *Y; 2650 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2651 return getMulExpr(Y, getUDivExpr(X, Y)); 2652 } 2653 } 2654 } 2655 2656 // Skip past any other cast SCEVs. 2657 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2658 ++Idx; 2659 2660 // If there are add operands they would be next. 2661 if (Idx < Ops.size()) { 2662 bool DeletedAdd = false; 2663 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2664 // common NUW flag for expression after inlining. Other flags cannot be 2665 // preserved, because they may depend on the original order of operations. 2666 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2667 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2668 if (Ops.size() > AddOpsInlineThreshold || 2669 Add->getNumOperands() > AddOpsInlineThreshold) 2670 break; 2671 // If we have an add, expand the add operands onto the end of the operands 2672 // list. 2673 Ops.erase(Ops.begin()+Idx); 2674 Ops.append(Add->op_begin(), Add->op_end()); 2675 DeletedAdd = true; 2676 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2677 } 2678 2679 // If we deleted at least one add, we added operands to the end of the list, 2680 // and they are not necessarily sorted. Recurse to resort and resimplify 2681 // any operands we just acquired. 2682 if (DeletedAdd) 2683 return getAddExpr(Ops, CommonFlags, Depth + 1); 2684 } 2685 2686 // Skip over the add expression until we get to a multiply. 2687 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2688 ++Idx; 2689 2690 // Check to see if there are any folding opportunities present with 2691 // operands multiplied by constant values. 2692 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2693 uint64_t BitWidth = getTypeSizeInBits(Ty); 2694 DenseMap<const SCEV *, APInt> M; 2695 SmallVector<const SCEV *, 8> NewOps; 2696 APInt AccumulatedConstant(BitWidth, 0); 2697 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2698 Ops.data(), Ops.size(), 2699 APInt(BitWidth, 1), *this)) { 2700 struct APIntCompare { 2701 bool operator()(const APInt &LHS, const APInt &RHS) const { 2702 return LHS.ult(RHS); 2703 } 2704 }; 2705 2706 // Some interesting folding opportunity is present, so its worthwhile to 2707 // re-generate the operands list. Group the operands by constant scale, 2708 // to avoid multiplying by the same constant scale multiple times. 2709 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2710 for (const SCEV *NewOp : NewOps) 2711 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2712 // Re-generate the operands list. 2713 Ops.clear(); 2714 if (AccumulatedConstant != 0) 2715 Ops.push_back(getConstant(AccumulatedConstant)); 2716 for (auto &MulOp : MulOpLists) { 2717 if (MulOp.first == 1) { 2718 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2719 } else if (MulOp.first != 0) { 2720 Ops.push_back(getMulExpr( 2721 getConstant(MulOp.first), 2722 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2723 SCEV::FlagAnyWrap, Depth + 1)); 2724 } 2725 } 2726 if (Ops.empty()) 2727 return getZero(Ty); 2728 if (Ops.size() == 1) 2729 return Ops[0]; 2730 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2731 } 2732 } 2733 2734 // If we are adding something to a multiply expression, make sure the 2735 // something is not already an operand of the multiply. If so, merge it into 2736 // the multiply. 2737 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2738 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2739 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2740 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2741 if (isa<SCEVConstant>(MulOpSCEV)) 2742 continue; 2743 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2744 if (MulOpSCEV == Ops[AddOp]) { 2745 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2746 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2747 if (Mul->getNumOperands() != 2) { 2748 // If the multiply has more than two operands, we must get the 2749 // Y*Z term. 2750 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2751 Mul->op_begin()+MulOp); 2752 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2753 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2754 } 2755 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2756 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2757 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2758 SCEV::FlagAnyWrap, Depth + 1); 2759 if (Ops.size() == 2) return OuterMul; 2760 if (AddOp < Idx) { 2761 Ops.erase(Ops.begin()+AddOp); 2762 Ops.erase(Ops.begin()+Idx-1); 2763 } else { 2764 Ops.erase(Ops.begin()+Idx); 2765 Ops.erase(Ops.begin()+AddOp-1); 2766 } 2767 Ops.push_back(OuterMul); 2768 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2769 } 2770 2771 // Check this multiply against other multiplies being added together. 2772 for (unsigned OtherMulIdx = Idx+1; 2773 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2774 ++OtherMulIdx) { 2775 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2776 // If MulOp occurs in OtherMul, we can fold the two multiplies 2777 // together. 2778 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2779 OMulOp != e; ++OMulOp) 2780 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2781 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2782 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2783 if (Mul->getNumOperands() != 2) { 2784 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2785 Mul->op_begin()+MulOp); 2786 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2787 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2788 } 2789 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2790 if (OtherMul->getNumOperands() != 2) { 2791 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2792 OtherMul->op_begin()+OMulOp); 2793 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2794 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2795 } 2796 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2797 const SCEV *InnerMulSum = 2798 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2799 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2800 SCEV::FlagAnyWrap, Depth + 1); 2801 if (Ops.size() == 2) return OuterMul; 2802 Ops.erase(Ops.begin()+Idx); 2803 Ops.erase(Ops.begin()+OtherMulIdx-1); 2804 Ops.push_back(OuterMul); 2805 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2806 } 2807 } 2808 } 2809 } 2810 2811 // If there are any add recurrences in the operands list, see if any other 2812 // added values are loop invariant. If so, we can fold them into the 2813 // recurrence. 2814 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2815 ++Idx; 2816 2817 // Scan over all recurrences, trying to fold loop invariants into them. 2818 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2819 // Scan all of the other operands to this add and add them to the vector if 2820 // they are loop invariant w.r.t. the recurrence. 2821 SmallVector<const SCEV *, 8> LIOps; 2822 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2823 const Loop *AddRecLoop = AddRec->getLoop(); 2824 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2825 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2826 LIOps.push_back(Ops[i]); 2827 Ops.erase(Ops.begin()+i); 2828 --i; --e; 2829 } 2830 2831 // If we found some loop invariants, fold them into the recurrence. 2832 if (!LIOps.empty()) { 2833 // Compute nowrap flags for the addition of the loop-invariant ops and 2834 // the addrec. Temporarily push it as an operand for that purpose. These 2835 // flags are valid in the scope of the addrec only. 2836 LIOps.push_back(AddRec); 2837 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2838 LIOps.pop_back(); 2839 2840 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2841 LIOps.push_back(AddRec->getStart()); 2842 2843 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2844 2845 // It is not in general safe to propagate flags valid on an add within 2846 // the addrec scope to one outside it. We must prove that the inner 2847 // scope is guaranteed to execute if the outer one does to be able to 2848 // safely propagate. We know the program is undefined if poison is 2849 // produced on the inner scoped addrec. We also know that *for this use* 2850 // the outer scoped add can't overflow (because of the flags we just 2851 // computed for the inner scoped add) without the program being undefined. 2852 // Proving that entry to the outer scope neccesitates entry to the inner 2853 // scope, thus proves the program undefined if the flags would be violated 2854 // in the outer scope. 2855 SCEV::NoWrapFlags AddFlags = Flags; 2856 if (AddFlags != SCEV::FlagAnyWrap) { 2857 auto *DefI = getDefiningScopeBound(LIOps); 2858 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2859 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2860 AddFlags = SCEV::FlagAnyWrap; 2861 } 2862 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2863 2864 // Build the new addrec. Propagate the NUW and NSW flags if both the 2865 // outer add and the inner addrec are guaranteed to have no overflow. 2866 // Always propagate NW. 2867 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2868 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2869 2870 // If all of the other operands were loop invariant, we are done. 2871 if (Ops.size() == 1) return NewRec; 2872 2873 // Otherwise, add the folded AddRec by the non-invariant parts. 2874 for (unsigned i = 0;; ++i) 2875 if (Ops[i] == AddRec) { 2876 Ops[i] = NewRec; 2877 break; 2878 } 2879 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2880 } 2881 2882 // Okay, if there weren't any loop invariants to be folded, check to see if 2883 // there are multiple AddRec's with the same loop induction variable being 2884 // added together. If so, we can fold them. 2885 for (unsigned OtherIdx = Idx+1; 2886 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2887 ++OtherIdx) { 2888 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2889 // so that the 1st found AddRecExpr is dominated by all others. 2890 assert(DT.dominates( 2891 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2892 AddRec->getLoop()->getHeader()) && 2893 "AddRecExprs are not sorted in reverse dominance order?"); 2894 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2895 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2896 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2897 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2898 ++OtherIdx) { 2899 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2900 if (OtherAddRec->getLoop() == AddRecLoop) { 2901 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2902 i != e; ++i) { 2903 if (i >= AddRecOps.size()) { 2904 AddRecOps.append(OtherAddRec->op_begin()+i, 2905 OtherAddRec->op_end()); 2906 break; 2907 } 2908 SmallVector<const SCEV *, 2> TwoOps = { 2909 AddRecOps[i], OtherAddRec->getOperand(i)}; 2910 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2911 } 2912 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2913 } 2914 } 2915 // Step size has changed, so we cannot guarantee no self-wraparound. 2916 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2917 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2918 } 2919 } 2920 2921 // Otherwise couldn't fold anything into this recurrence. Move onto the 2922 // next one. 2923 } 2924 2925 // Okay, it looks like we really DO need an add expr. Check to see if we 2926 // already have one, otherwise create a new one. 2927 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2928 } 2929 2930 const SCEV * 2931 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2932 SCEV::NoWrapFlags Flags) { 2933 FoldingSetNodeID ID; 2934 ID.AddInteger(scAddExpr); 2935 for (const SCEV *Op : Ops) 2936 ID.AddPointer(Op); 2937 void *IP = nullptr; 2938 SCEVAddExpr *S = 2939 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2940 if (!S) { 2941 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2942 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2943 S = new (SCEVAllocator) 2944 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2945 UniqueSCEVs.InsertNode(S, IP); 2946 registerUser(S, Ops); 2947 } 2948 S->setNoWrapFlags(Flags); 2949 return S; 2950 } 2951 2952 const SCEV * 2953 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2954 const Loop *L, SCEV::NoWrapFlags Flags) { 2955 FoldingSetNodeID ID; 2956 ID.AddInteger(scAddRecExpr); 2957 for (const SCEV *Op : Ops) 2958 ID.AddPointer(Op); 2959 ID.AddPointer(L); 2960 void *IP = nullptr; 2961 SCEVAddRecExpr *S = 2962 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2963 if (!S) { 2964 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2965 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2966 S = new (SCEVAllocator) 2967 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2968 UniqueSCEVs.InsertNode(S, IP); 2969 LoopUsers[L].push_back(S); 2970 registerUser(S, Ops); 2971 } 2972 setNoWrapFlags(S, Flags); 2973 return S; 2974 } 2975 2976 const SCEV * 2977 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2978 SCEV::NoWrapFlags Flags) { 2979 FoldingSetNodeID ID; 2980 ID.AddInteger(scMulExpr); 2981 for (const SCEV *Op : Ops) 2982 ID.AddPointer(Op); 2983 void *IP = nullptr; 2984 SCEVMulExpr *S = 2985 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2986 if (!S) { 2987 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2988 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2989 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2990 O, Ops.size()); 2991 UniqueSCEVs.InsertNode(S, IP); 2992 registerUser(S, Ops); 2993 } 2994 S->setNoWrapFlags(Flags); 2995 return S; 2996 } 2997 2998 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2999 uint64_t k = i*j; 3000 if (j > 1 && k / j != i) Overflow = true; 3001 return k; 3002 } 3003 3004 /// Compute the result of "n choose k", the binomial coefficient. If an 3005 /// intermediate computation overflows, Overflow will be set and the return will 3006 /// be garbage. Overflow is not cleared on absence of overflow. 3007 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3008 // We use the multiplicative formula: 3009 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3010 // At each iteration, we take the n-th term of the numeral and divide by the 3011 // (k-n)th term of the denominator. This division will always produce an 3012 // integral result, and helps reduce the chance of overflow in the 3013 // intermediate computations. However, we can still overflow even when the 3014 // final result would fit. 3015 3016 if (n == 0 || n == k) return 1; 3017 if (k > n) return 0; 3018 3019 if (k > n/2) 3020 k = n-k; 3021 3022 uint64_t r = 1; 3023 for (uint64_t i = 1; i <= k; ++i) { 3024 r = umul_ov(r, n-(i-1), Overflow); 3025 r /= i; 3026 } 3027 return r; 3028 } 3029 3030 /// Determine if any of the operands in this SCEV are a constant or if 3031 /// any of the add or multiply expressions in this SCEV contain a constant. 3032 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3033 struct FindConstantInAddMulChain { 3034 bool FoundConstant = false; 3035 3036 bool follow(const SCEV *S) { 3037 FoundConstant |= isa<SCEVConstant>(S); 3038 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3039 } 3040 3041 bool isDone() const { 3042 return FoundConstant; 3043 } 3044 }; 3045 3046 FindConstantInAddMulChain F; 3047 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3048 ST.visitAll(StartExpr); 3049 return F.FoundConstant; 3050 } 3051 3052 /// Get a canonical multiply expression, or something simpler if possible. 3053 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3054 SCEV::NoWrapFlags OrigFlags, 3055 unsigned Depth) { 3056 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3057 "only nuw or nsw allowed"); 3058 assert(!Ops.empty() && "Cannot get empty mul!"); 3059 if (Ops.size() == 1) return Ops[0]; 3060 #ifndef NDEBUG 3061 Type *ETy = Ops[0]->getType(); 3062 assert(!ETy->isPointerTy()); 3063 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3064 assert(Ops[i]->getType() == ETy && 3065 "SCEVMulExpr operand types don't match!"); 3066 #endif 3067 3068 // Sort by complexity, this groups all similar expression types together. 3069 GroupByComplexity(Ops, &LI, DT); 3070 3071 // If there are any constants, fold them together. 3072 unsigned Idx = 0; 3073 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3074 ++Idx; 3075 assert(Idx < Ops.size()); 3076 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3077 // We found two constants, fold them together! 3078 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3079 if (Ops.size() == 2) return Ops[0]; 3080 Ops.erase(Ops.begin()+1); // Erase the folded element 3081 LHSC = cast<SCEVConstant>(Ops[0]); 3082 } 3083 3084 // If we have a multiply of zero, it will always be zero. 3085 if (LHSC->getValue()->isZero()) 3086 return LHSC; 3087 3088 // If we are left with a constant one being multiplied, strip it off. 3089 if (LHSC->getValue()->isOne()) { 3090 Ops.erase(Ops.begin()); 3091 --Idx; 3092 } 3093 3094 if (Ops.size() == 1) 3095 return Ops[0]; 3096 } 3097 3098 // Delay expensive flag strengthening until necessary. 3099 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3100 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3101 }; 3102 3103 // Limit recursion calls depth. 3104 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3105 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3106 3107 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3108 // Don't strengthen flags if we have no new information. 3109 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3110 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3111 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3112 return S; 3113 } 3114 3115 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3116 if (Ops.size() == 2) { 3117 // C1*(C2+V) -> C1*C2 + C1*V 3118 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3119 // If any of Add's ops are Adds or Muls with a constant, apply this 3120 // transformation as well. 3121 // 3122 // TODO: There are some cases where this transformation is not 3123 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3124 // this transformation should be narrowed down. 3125 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3126 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3127 SCEV::FlagAnyWrap, Depth + 1); 3128 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3129 SCEV::FlagAnyWrap, Depth + 1); 3130 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3131 } 3132 3133 if (Ops[0]->isAllOnesValue()) { 3134 // If we have a mul by -1 of an add, try distributing the -1 among the 3135 // add operands. 3136 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3137 SmallVector<const SCEV *, 4> NewOps; 3138 bool AnyFolded = false; 3139 for (const SCEV *AddOp : Add->operands()) { 3140 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3141 Depth + 1); 3142 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3143 NewOps.push_back(Mul); 3144 } 3145 if (AnyFolded) 3146 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3147 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3148 // Negation preserves a recurrence's no self-wrap property. 3149 SmallVector<const SCEV *, 4> Operands; 3150 for (const SCEV *AddRecOp : AddRec->operands()) 3151 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3152 Depth + 1)); 3153 3154 return getAddRecExpr(Operands, AddRec->getLoop(), 3155 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3156 } 3157 } 3158 } 3159 } 3160 3161 // Skip over the add expression until we get to a multiply. 3162 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3163 ++Idx; 3164 3165 // If there are mul operands inline them all into this expression. 3166 if (Idx < Ops.size()) { 3167 bool DeletedMul = false; 3168 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3169 if (Ops.size() > MulOpsInlineThreshold) 3170 break; 3171 // If we have an mul, expand the mul operands onto the end of the 3172 // operands list. 3173 Ops.erase(Ops.begin()+Idx); 3174 Ops.append(Mul->op_begin(), Mul->op_end()); 3175 DeletedMul = true; 3176 } 3177 3178 // If we deleted at least one mul, we added operands to the end of the 3179 // list, and they are not necessarily sorted. Recurse to resort and 3180 // resimplify any operands we just acquired. 3181 if (DeletedMul) 3182 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3183 } 3184 3185 // If there are any add recurrences in the operands list, see if any other 3186 // added values are loop invariant. If so, we can fold them into the 3187 // recurrence. 3188 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3189 ++Idx; 3190 3191 // Scan over all recurrences, trying to fold loop invariants into them. 3192 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3193 // Scan all of the other operands to this mul and add them to the vector 3194 // if they are loop invariant w.r.t. the recurrence. 3195 SmallVector<const SCEV *, 8> LIOps; 3196 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3197 const Loop *AddRecLoop = AddRec->getLoop(); 3198 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3199 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3200 LIOps.push_back(Ops[i]); 3201 Ops.erase(Ops.begin()+i); 3202 --i; --e; 3203 } 3204 3205 // If we found some loop invariants, fold them into the recurrence. 3206 if (!LIOps.empty()) { 3207 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3208 SmallVector<const SCEV *, 4> NewOps; 3209 NewOps.reserve(AddRec->getNumOperands()); 3210 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3211 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3212 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3213 SCEV::FlagAnyWrap, Depth + 1)); 3214 3215 // Build the new addrec. Propagate the NUW and NSW flags if both the 3216 // outer mul and the inner addrec are guaranteed to have no overflow. 3217 // 3218 // No self-wrap cannot be guaranteed after changing the step size, but 3219 // will be inferred if either NUW or NSW is true. 3220 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3221 const SCEV *NewRec = getAddRecExpr( 3222 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3223 3224 // If all of the other operands were loop invariant, we are done. 3225 if (Ops.size() == 1) return NewRec; 3226 3227 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3228 for (unsigned i = 0;; ++i) 3229 if (Ops[i] == AddRec) { 3230 Ops[i] = NewRec; 3231 break; 3232 } 3233 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3234 } 3235 3236 // Okay, if there weren't any loop invariants to be folded, check to see 3237 // if there are multiple AddRec's with the same loop induction variable 3238 // being multiplied together. If so, we can fold them. 3239 3240 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3241 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3242 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3243 // ]]],+,...up to x=2n}. 3244 // Note that the arguments to choose() are always integers with values 3245 // known at compile time, never SCEV objects. 3246 // 3247 // The implementation avoids pointless extra computations when the two 3248 // addrec's are of different length (mathematically, it's equivalent to 3249 // an infinite stream of zeros on the right). 3250 bool OpsModified = false; 3251 for (unsigned OtherIdx = Idx+1; 3252 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3253 ++OtherIdx) { 3254 const SCEVAddRecExpr *OtherAddRec = 3255 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3256 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3257 continue; 3258 3259 // Limit max number of arguments to avoid creation of unreasonably big 3260 // SCEVAddRecs with very complex operands. 3261 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3262 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3263 continue; 3264 3265 bool Overflow = false; 3266 Type *Ty = AddRec->getType(); 3267 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3268 SmallVector<const SCEV*, 7> AddRecOps; 3269 for (int x = 0, xe = AddRec->getNumOperands() + 3270 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3271 SmallVector <const SCEV *, 7> SumOps; 3272 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3273 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3274 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3275 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3276 z < ze && !Overflow; ++z) { 3277 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3278 uint64_t Coeff; 3279 if (LargerThan64Bits) 3280 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3281 else 3282 Coeff = Coeff1*Coeff2; 3283 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3284 const SCEV *Term1 = AddRec->getOperand(y-z); 3285 const SCEV *Term2 = OtherAddRec->getOperand(z); 3286 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3287 SCEV::FlagAnyWrap, Depth + 1)); 3288 } 3289 } 3290 if (SumOps.empty()) 3291 SumOps.push_back(getZero(Ty)); 3292 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3293 } 3294 if (!Overflow) { 3295 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3296 SCEV::FlagAnyWrap); 3297 if (Ops.size() == 2) return NewAddRec; 3298 Ops[Idx] = NewAddRec; 3299 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3300 OpsModified = true; 3301 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3302 if (!AddRec) 3303 break; 3304 } 3305 } 3306 if (OpsModified) 3307 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3308 3309 // Otherwise couldn't fold anything into this recurrence. Move onto the 3310 // next one. 3311 } 3312 3313 // Okay, it looks like we really DO need an mul expr. Check to see if we 3314 // already have one, otherwise create a new one. 3315 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3316 } 3317 3318 /// Represents an unsigned remainder expression based on unsigned division. 3319 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3320 const SCEV *RHS) { 3321 assert(getEffectiveSCEVType(LHS->getType()) == 3322 getEffectiveSCEVType(RHS->getType()) && 3323 "SCEVURemExpr operand types don't match!"); 3324 3325 // Short-circuit easy cases 3326 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3327 // If constant is one, the result is trivial 3328 if (RHSC->getValue()->isOne()) 3329 return getZero(LHS->getType()); // X urem 1 --> 0 3330 3331 // If constant is a power of two, fold into a zext(trunc(LHS)). 3332 if (RHSC->getAPInt().isPowerOf2()) { 3333 Type *FullTy = LHS->getType(); 3334 Type *TruncTy = 3335 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3336 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3337 } 3338 } 3339 3340 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3341 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3342 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3343 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3344 } 3345 3346 /// Get a canonical unsigned division expression, or something simpler if 3347 /// possible. 3348 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3349 const SCEV *RHS) { 3350 assert(!LHS->getType()->isPointerTy() && 3351 "SCEVUDivExpr operand can't be pointer!"); 3352 assert(LHS->getType() == RHS->getType() && 3353 "SCEVUDivExpr operand types don't match!"); 3354 3355 FoldingSetNodeID ID; 3356 ID.AddInteger(scUDivExpr); 3357 ID.AddPointer(LHS); 3358 ID.AddPointer(RHS); 3359 void *IP = nullptr; 3360 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3361 return S; 3362 3363 // 0 udiv Y == 0 3364 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3365 if (LHSC->getValue()->isZero()) 3366 return LHS; 3367 3368 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3369 if (RHSC->getValue()->isOne()) 3370 return LHS; // X udiv 1 --> x 3371 // If the denominator is zero, the result of the udiv is undefined. Don't 3372 // try to analyze it, because the resolution chosen here may differ from 3373 // the resolution chosen in other parts of the compiler. 3374 if (!RHSC->getValue()->isZero()) { 3375 // Determine if the division can be folded into the operands of 3376 // its operands. 3377 // TODO: Generalize this to non-constants by using known-bits information. 3378 Type *Ty = LHS->getType(); 3379 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3380 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3381 // For non-power-of-two values, effectively round the value up to the 3382 // nearest power of two. 3383 if (!RHSC->getAPInt().isPowerOf2()) 3384 ++MaxShiftAmt; 3385 IntegerType *ExtTy = 3386 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3387 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3388 if (const SCEVConstant *Step = 3389 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3390 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3391 const APInt &StepInt = Step->getAPInt(); 3392 const APInt &DivInt = RHSC->getAPInt(); 3393 if (!StepInt.urem(DivInt) && 3394 getZeroExtendExpr(AR, ExtTy) == 3395 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3396 getZeroExtendExpr(Step, ExtTy), 3397 AR->getLoop(), SCEV::FlagAnyWrap)) { 3398 SmallVector<const SCEV *, 4> Operands; 3399 for (const SCEV *Op : AR->operands()) 3400 Operands.push_back(getUDivExpr(Op, RHS)); 3401 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3402 } 3403 /// Get a canonical UDivExpr for a recurrence. 3404 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3405 // We can currently only fold X%N if X is constant. 3406 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3407 if (StartC && !DivInt.urem(StepInt) && 3408 getZeroExtendExpr(AR, ExtTy) == 3409 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3410 getZeroExtendExpr(Step, ExtTy), 3411 AR->getLoop(), SCEV::FlagAnyWrap)) { 3412 const APInt &StartInt = StartC->getAPInt(); 3413 const APInt &StartRem = StartInt.urem(StepInt); 3414 if (StartRem != 0) { 3415 const SCEV *NewLHS = 3416 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3417 AR->getLoop(), SCEV::FlagNW); 3418 if (LHS != NewLHS) { 3419 LHS = NewLHS; 3420 3421 // Reset the ID to include the new LHS, and check if it is 3422 // already cached. 3423 ID.clear(); 3424 ID.AddInteger(scUDivExpr); 3425 ID.AddPointer(LHS); 3426 ID.AddPointer(RHS); 3427 IP = nullptr; 3428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3429 return S; 3430 } 3431 } 3432 } 3433 } 3434 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3435 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3436 SmallVector<const SCEV *, 4> Operands; 3437 for (const SCEV *Op : M->operands()) 3438 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3439 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3440 // Find an operand that's safely divisible. 3441 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3442 const SCEV *Op = M->getOperand(i); 3443 const SCEV *Div = getUDivExpr(Op, RHSC); 3444 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3445 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3446 Operands[i] = Div; 3447 return getMulExpr(Operands); 3448 } 3449 } 3450 } 3451 3452 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3453 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3454 if (auto *DivisorConstant = 3455 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3456 bool Overflow = false; 3457 APInt NewRHS = 3458 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3459 if (Overflow) { 3460 return getConstant(RHSC->getType(), 0, false); 3461 } 3462 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3463 } 3464 } 3465 3466 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3467 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3468 SmallVector<const SCEV *, 4> Operands; 3469 for (const SCEV *Op : A->operands()) 3470 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3471 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3472 Operands.clear(); 3473 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3474 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3475 if (isa<SCEVUDivExpr>(Op) || 3476 getMulExpr(Op, RHS) != A->getOperand(i)) 3477 break; 3478 Operands.push_back(Op); 3479 } 3480 if (Operands.size() == A->getNumOperands()) 3481 return getAddExpr(Operands); 3482 } 3483 } 3484 3485 // Fold if both operands are constant. 3486 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3487 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3488 } 3489 } 3490 3491 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3492 // changes). Make sure we get a new one. 3493 IP = nullptr; 3494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3495 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3496 LHS, RHS); 3497 UniqueSCEVs.InsertNode(S, IP); 3498 registerUser(S, {LHS, RHS}); 3499 return S; 3500 } 3501 3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3503 APInt A = C1->getAPInt().abs(); 3504 APInt B = C2->getAPInt().abs(); 3505 uint32_t ABW = A.getBitWidth(); 3506 uint32_t BBW = B.getBitWidth(); 3507 3508 if (ABW > BBW) 3509 B = B.zext(ABW); 3510 else if (ABW < BBW) 3511 A = A.zext(BBW); 3512 3513 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3514 } 3515 3516 /// Get a canonical unsigned division expression, or something simpler if 3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3518 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3519 /// it's not exact because the udiv may be clearing bits. 3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3521 const SCEV *RHS) { 3522 // TODO: we could try to find factors in all sorts of things, but for now we 3523 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3524 // end of this file for inspiration. 3525 3526 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3527 if (!Mul || !Mul->hasNoUnsignedWrap()) 3528 return getUDivExpr(LHS, RHS); 3529 3530 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3531 // If the mulexpr multiplies by a constant, then that constant must be the 3532 // first element of the mulexpr. 3533 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 if (LHSCst == RHSCst) { 3535 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3536 return getMulExpr(Operands); 3537 } 3538 3539 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3540 // that there's a factor provided by one of the other terms. We need to 3541 // check. 3542 APInt Factor = gcd(LHSCst, RHSCst); 3543 if (!Factor.isIntN(1)) { 3544 LHSCst = 3545 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3546 RHSCst = 3547 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3548 SmallVector<const SCEV *, 2> Operands; 3549 Operands.push_back(LHSCst); 3550 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3551 LHS = getMulExpr(Operands); 3552 RHS = RHSCst; 3553 Mul = dyn_cast<SCEVMulExpr>(LHS); 3554 if (!Mul) 3555 return getUDivExactExpr(LHS, RHS); 3556 } 3557 } 3558 } 3559 3560 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3561 if (Mul->getOperand(i) == RHS) { 3562 SmallVector<const SCEV *, 2> Operands; 3563 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3564 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3565 return getMulExpr(Operands); 3566 } 3567 } 3568 3569 return getUDivExpr(LHS, RHS); 3570 } 3571 3572 /// Get an add recurrence expression for the specified loop. Simplify the 3573 /// expression as much as possible. 3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3575 const Loop *L, 3576 SCEV::NoWrapFlags Flags) { 3577 SmallVector<const SCEV *, 4> Operands; 3578 Operands.push_back(Start); 3579 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3580 if (StepChrec->getLoop() == L) { 3581 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3582 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3583 } 3584 3585 Operands.push_back(Step); 3586 return getAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 /// Get an add recurrence expression for the specified loop. Simplify the 3590 /// expression as much as possible. 3591 const SCEV * 3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3593 const Loop *L, SCEV::NoWrapFlags Flags) { 3594 if (Operands.size() == 1) return Operands[0]; 3595 #ifndef NDEBUG 3596 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3597 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3598 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3599 "SCEVAddRecExpr operand types don't match!"); 3600 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3601 } 3602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3603 assert(isLoopInvariant(Operands[i], L) && 3604 "SCEVAddRecExpr operand is not loop-invariant!"); 3605 #endif 3606 3607 if (Operands.back()->isZero()) { 3608 Operands.pop_back(); 3609 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3610 } 3611 3612 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3613 // use that information to infer NUW and NSW flags. However, computing a 3614 // BE count requires calling getAddRecExpr, so we may not yet have a 3615 // meaningful BE count at this point (and if we don't, we'd be stuck 3616 // with a SCEVCouldNotCompute as the cached BE count). 3617 3618 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3619 3620 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3621 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3622 const Loop *NestedLoop = NestedAR->getLoop(); 3623 if (L->contains(NestedLoop) 3624 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3625 : (!NestedLoop->contains(L) && 3626 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3627 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3628 Operands[0] = NestedAR->getStart(); 3629 // AddRecs require their operands be loop-invariant with respect to their 3630 // loops. Don't perform this transformation if it would break this 3631 // requirement. 3632 bool AllInvariant = all_of( 3633 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3634 3635 if (AllInvariant) { 3636 // Create a recurrence for the outer loop with the same step size. 3637 // 3638 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3639 // inner recurrence has the same property. 3640 SCEV::NoWrapFlags OuterFlags = 3641 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3642 3643 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3644 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3645 return isLoopInvariant(Op, NestedLoop); 3646 }); 3647 3648 if (AllInvariant) { 3649 // Ok, both add recurrences are valid after the transformation. 3650 // 3651 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3652 // the outer recurrence has the same property. 3653 SCEV::NoWrapFlags InnerFlags = 3654 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3655 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3656 } 3657 } 3658 // Reset Operands to its original state. 3659 Operands[0] = NestedAR; 3660 } 3661 } 3662 3663 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3664 // already have one, otherwise create a new one. 3665 return getOrCreateAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3670 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3671 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3672 // getSCEV(Base)->getType() has the same address space as Base->getType() 3673 // because SCEV::getType() preserves the address space. 3674 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3675 const bool AssumeInBoundsFlags = [&]() { 3676 if (!GEP->isInBounds()) 3677 return false; 3678 3679 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3680 // but to do that, we have to ensure that said flag is valid in the entire 3681 // defined scope of the SCEV. 3682 auto *GEPI = dyn_cast<Instruction>(GEP); 3683 // TODO: non-instructions have global scope. We might be able to prove 3684 // some global scope cases 3685 return GEPI && isSCEVExprNeverPoison(GEPI); 3686 }(); 3687 3688 SCEV::NoWrapFlags OffsetWrap = 3689 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3690 3691 Type *CurTy = GEP->getType(); 3692 bool FirstIter = true; 3693 SmallVector<const SCEV *, 4> Offsets; 3694 for (const SCEV *IndexExpr : IndexExprs) { 3695 // Compute the (potentially symbolic) offset in bytes for this index. 3696 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3697 // For a struct, add the member offset. 3698 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3699 unsigned FieldNo = Index->getZExtValue(); 3700 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3701 Offsets.push_back(FieldOffset); 3702 3703 // Update CurTy to the type of the field at Index. 3704 CurTy = STy->getTypeAtIndex(Index); 3705 } else { 3706 // Update CurTy to its element type. 3707 if (FirstIter) { 3708 assert(isa<PointerType>(CurTy) && 3709 "The first index of a GEP indexes a pointer"); 3710 CurTy = GEP->getSourceElementType(); 3711 FirstIter = false; 3712 } else { 3713 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3714 } 3715 // For an array, add the element offset, explicitly scaled. 3716 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3717 // Getelementptr indices are signed. 3718 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3719 3720 // Multiply the index by the element size to compute the element offset. 3721 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3722 Offsets.push_back(LocalOffset); 3723 } 3724 } 3725 3726 // Handle degenerate case of GEP without offsets. 3727 if (Offsets.empty()) 3728 return BaseExpr; 3729 3730 // Add the offsets together, assuming nsw if inbounds. 3731 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3732 // Add the base address and the offset. We cannot use the nsw flag, as the 3733 // base address is unsigned. However, if we know that the offset is 3734 // non-negative, we can use nuw. 3735 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3736 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3737 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3738 assert(BaseExpr->getType() == GEPExpr->getType() && 3739 "GEP should not change type mid-flight."); 3740 return GEPExpr; 3741 } 3742 3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3744 ArrayRef<const SCEV *> Ops) { 3745 FoldingSetNodeID ID; 3746 ID.AddInteger(SCEVType); 3747 for (const SCEV *Op : Ops) 3748 ID.AddPointer(Op); 3749 void *IP = nullptr; 3750 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3751 } 3752 3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3754 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3755 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3756 } 3757 3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3759 SmallVectorImpl<const SCEV *> &Ops) { 3760 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3761 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3762 if (Ops.size() == 1) return Ops[0]; 3763 #ifndef NDEBUG 3764 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3765 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3766 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3767 "Operand types don't match!"); 3768 assert(Ops[0]->getType()->isPointerTy() == 3769 Ops[i]->getType()->isPointerTy() && 3770 "min/max should be consistently pointerish"); 3771 } 3772 #endif 3773 3774 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3775 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3776 3777 // Sort by complexity, this groups all similar expression types together. 3778 GroupByComplexity(Ops, &LI, DT); 3779 3780 // Check if we have created the same expression before. 3781 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3782 return S; 3783 } 3784 3785 // If there are any constants, fold them together. 3786 unsigned Idx = 0; 3787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3788 ++Idx; 3789 assert(Idx < Ops.size()); 3790 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3791 if (Kind == scSMaxExpr) 3792 return APIntOps::smax(LHS, RHS); 3793 else if (Kind == scSMinExpr) 3794 return APIntOps::smin(LHS, RHS); 3795 else if (Kind == scUMaxExpr) 3796 return APIntOps::umax(LHS, RHS); 3797 else if (Kind == scUMinExpr) 3798 return APIntOps::umin(LHS, RHS); 3799 llvm_unreachable("Unknown SCEV min/max opcode"); 3800 }; 3801 3802 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3803 // We found two constants, fold them together! 3804 ConstantInt *Fold = ConstantInt::get( 3805 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3806 Ops[0] = getConstant(Fold); 3807 Ops.erase(Ops.begin()+1); // Erase the folded element 3808 if (Ops.size() == 1) return Ops[0]; 3809 LHSC = cast<SCEVConstant>(Ops[0]); 3810 } 3811 3812 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3813 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3814 3815 if (IsMax ? IsMinV : IsMaxV) { 3816 // If we are left with a constant minimum(/maximum)-int, strip it off. 3817 Ops.erase(Ops.begin()); 3818 --Idx; 3819 } else if (IsMax ? IsMaxV : IsMinV) { 3820 // If we have a max(/min) with a constant maximum(/minimum)-int, 3821 // it will always be the extremum. 3822 return LHSC; 3823 } 3824 3825 if (Ops.size() == 1) return Ops[0]; 3826 } 3827 3828 // Find the first operation of the same kind 3829 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3830 ++Idx; 3831 3832 // Check to see if one of the operands is of the same kind. If so, expand its 3833 // operands onto our operand list, and recurse to simplify. 3834 if (Idx < Ops.size()) { 3835 bool DeletedAny = false; 3836 while (Ops[Idx]->getSCEVType() == Kind) { 3837 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3838 Ops.erase(Ops.begin()+Idx); 3839 Ops.append(SMME->op_begin(), SMME->op_end()); 3840 DeletedAny = true; 3841 } 3842 3843 if (DeletedAny) 3844 return getMinMaxExpr(Kind, Ops); 3845 } 3846 3847 // Okay, check to see if the same value occurs in the operand list twice. If 3848 // so, delete one. Since we sorted the list, these values are required to 3849 // be adjacent. 3850 llvm::CmpInst::Predicate GEPred = 3851 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3852 llvm::CmpInst::Predicate LEPred = 3853 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3854 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3855 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3856 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3857 if (Ops[i] == Ops[i + 1] || 3858 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3859 // X op Y op Y --> X op Y 3860 // X op Y --> X, if we know X, Y are ordered appropriately 3861 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3862 --i; 3863 --e; 3864 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3865 Ops[i + 1])) { 3866 // X op Y --> Y, if we know X, Y are ordered appropriately 3867 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3868 --i; 3869 --e; 3870 } 3871 } 3872 3873 if (Ops.size() == 1) return Ops[0]; 3874 3875 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3876 3877 // Okay, it looks like we really DO need an expr. Check to see if we 3878 // already have one, otherwise create a new one. 3879 FoldingSetNodeID ID; 3880 ID.AddInteger(Kind); 3881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3882 ID.AddPointer(Ops[i]); 3883 void *IP = nullptr; 3884 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3885 if (ExistingSCEV) 3886 return ExistingSCEV; 3887 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3888 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3889 SCEV *S = new (SCEVAllocator) 3890 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3891 3892 UniqueSCEVs.InsertNode(S, IP); 3893 registerUser(S, Ops); 3894 return S; 3895 } 3896 3897 namespace { 3898 3899 class SCEVSequentialMinMaxDeduplicatingVisitor final 3900 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3901 Optional<const SCEV *>> { 3902 using RetVal = Optional<const SCEV *>; 3903 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3904 3905 ScalarEvolution &SE; 3906 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3907 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3908 SmallPtrSet<const SCEV *, 16> SeenOps; 3909 3910 bool canRecurseInto(SCEVTypes Kind) const { 3911 // We can only recurse into the SCEV expression of the same effective type 3912 // as the type of our root SCEV expression. 3913 return RootKind == Kind || NonSequentialRootKind == Kind; 3914 }; 3915 3916 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3917 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3918 "Only for min/max expressions."); 3919 SCEVTypes Kind = S->getSCEVType(); 3920 3921 if (!canRecurseInto(Kind)) 3922 return S; 3923 3924 auto *NAry = cast<SCEVNAryExpr>(S); 3925 SmallVector<const SCEV *> NewOps; 3926 bool Changed = 3927 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3928 3929 if (!Changed) 3930 return S; 3931 if (NewOps.empty()) 3932 return None; 3933 3934 return isa<SCEVSequentialMinMaxExpr>(S) 3935 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3936 : SE.getMinMaxExpr(Kind, NewOps); 3937 } 3938 3939 RetVal visit(const SCEV *S) { 3940 // Has the whole operand been seen already? 3941 if (!SeenOps.insert(S).second) 3942 return None; 3943 return Base::visit(S); 3944 } 3945 3946 public: 3947 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3948 SCEVTypes RootKind) 3949 : SE(SE), RootKind(RootKind), 3950 NonSequentialRootKind( 3951 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3952 RootKind)) {} 3953 3954 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3955 SmallVectorImpl<const SCEV *> &NewOps) { 3956 bool Changed = false; 3957 SmallVector<const SCEV *> Ops; 3958 Ops.reserve(OrigOps.size()); 3959 3960 for (const SCEV *Op : OrigOps) { 3961 RetVal NewOp = visit(Op); 3962 if (NewOp != Op) 3963 Changed = true; 3964 if (NewOp) 3965 Ops.emplace_back(*NewOp); 3966 } 3967 3968 if (Changed) 3969 NewOps = std::move(Ops); 3970 return Changed; 3971 } 3972 3973 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3974 3975 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3976 3977 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3978 3979 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3980 3981 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3982 3983 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3984 3985 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3986 3987 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3988 3989 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3990 3991 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4008 return visitAnyMinMaxExpr(Expr); 4009 } 4010 4011 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4012 4013 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4014 }; 4015 4016 } // namespace 4017 4018 /// Return true if V is poison given that AssumedPoison is already poison. 4019 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4020 // The only way poison may be introduced in a SCEV expression is from a 4021 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4022 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4023 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4024 // 4025 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4026 // with the notable exception of umin_seq, where only poison from the first 4027 // operand is (unconditionally) propagated. 4028 struct SCEVPoisonCollector { 4029 bool LookThroughSeq; 4030 SmallPtrSet<const SCEV *, 4> MaybePoison; 4031 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4032 4033 bool follow(const SCEV *S) { 4034 // TODO: We can always follow the first operand, but the SCEVTraversal 4035 // API doesn't support this. 4036 if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S)) 4037 return false; 4038 4039 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4040 if (!isGuaranteedNotToBePoison(SU->getValue())) 4041 MaybePoison.insert(S); 4042 } 4043 return true; 4044 } 4045 bool isDone() const { return false; } 4046 }; 4047 4048 // First collect all SCEVs that might result in AssumedPoison to be poison. 4049 // We need to look through umin_seq here, because we want to find all SCEVs 4050 // that *might* result in poison, not only those that are *required* to. 4051 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4052 visitAll(AssumedPoison, PC1); 4053 4054 // AssumedPoison is never poison. As the assumption is false, the implication 4055 // is true. Don't bother walking the other SCEV in this case. 4056 if (PC1.MaybePoison.empty()) 4057 return true; 4058 4059 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4060 // as well. We cannot look through umin_seq here, as its argument only *may* 4061 // make the result poison. 4062 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4063 visitAll(S, PC2); 4064 4065 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4066 // it will also make S poison by being part of PC2.MaybePoison. 4067 return all_of(PC1.MaybePoison, 4068 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4069 } 4070 4071 const SCEV * 4072 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4073 SmallVectorImpl<const SCEV *> &Ops) { 4074 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4075 "Not a SCEVSequentialMinMaxExpr!"); 4076 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4077 if (Ops.size() == 1) 4078 return Ops[0]; 4079 #ifndef NDEBUG 4080 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4081 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4082 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4083 "Operand types don't match!"); 4084 assert(Ops[0]->getType()->isPointerTy() == 4085 Ops[i]->getType()->isPointerTy() && 4086 "min/max should be consistently pointerish"); 4087 } 4088 #endif 4089 4090 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4091 // so we can *NOT* do any kind of sorting of the expressions! 4092 4093 // Check if we have created the same expression before. 4094 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4095 return S; 4096 4097 // FIXME: there are *some* simplifications that we can do here. 4098 4099 // Keep only the first instance of an operand. 4100 { 4101 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4102 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4103 if (Changed) 4104 return getSequentialMinMaxExpr(Kind, Ops); 4105 } 4106 4107 // Check to see if one of the operands is of the same kind. If so, expand its 4108 // operands onto our operand list, and recurse to simplify. 4109 { 4110 unsigned Idx = 0; 4111 bool DeletedAny = false; 4112 while (Idx < Ops.size()) { 4113 if (Ops[Idx]->getSCEVType() != Kind) { 4114 ++Idx; 4115 continue; 4116 } 4117 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4118 Ops.erase(Ops.begin() + Idx); 4119 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4120 DeletedAny = true; 4121 } 4122 4123 if (DeletedAny) 4124 return getSequentialMinMaxExpr(Kind, Ops); 4125 } 4126 4127 const SCEV *SaturationPoint; 4128 ICmpInst::Predicate Pred; 4129 switch (Kind) { 4130 case scSequentialUMinExpr: 4131 SaturationPoint = getZero(Ops[0]->getType()); 4132 Pred = ICmpInst::ICMP_ULE; 4133 break; 4134 default: 4135 llvm_unreachable("Not a sequential min/max type."); 4136 } 4137 4138 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4139 // We can replace %x umin_seq %y with %x umin %y if either: 4140 // * %y being poison implies %x is also poison. 4141 // * %x cannot be the saturating value (e.g. zero for umin). 4142 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4143 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4144 SaturationPoint)) { 4145 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4146 Ops[i - 1] = getMinMaxExpr( 4147 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4148 SeqOps); 4149 Ops.erase(Ops.begin() + i); 4150 return getSequentialMinMaxExpr(Kind, Ops); 4151 } 4152 // Fold %x umin_seq %y to %x if %x ule %y. 4153 // TODO: We might be able to prove the predicate for a later operand. 4154 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4155 Ops.erase(Ops.begin() + i); 4156 return getSequentialMinMaxExpr(Kind, Ops); 4157 } 4158 } 4159 4160 // Okay, it looks like we really DO need an expr. Check to see if we 4161 // already have one, otherwise create a new one. 4162 FoldingSetNodeID ID; 4163 ID.AddInteger(Kind); 4164 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4165 ID.AddPointer(Ops[i]); 4166 void *IP = nullptr; 4167 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4168 if (ExistingSCEV) 4169 return ExistingSCEV; 4170 4171 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4172 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4173 SCEV *S = new (SCEVAllocator) 4174 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4175 4176 UniqueSCEVs.InsertNode(S, IP); 4177 registerUser(S, Ops); 4178 return S; 4179 } 4180 4181 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4182 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4183 return getSMaxExpr(Ops); 4184 } 4185 4186 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4187 return getMinMaxExpr(scSMaxExpr, Ops); 4188 } 4189 4190 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4191 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4192 return getUMaxExpr(Ops); 4193 } 4194 4195 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4196 return getMinMaxExpr(scUMaxExpr, Ops); 4197 } 4198 4199 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4200 const SCEV *RHS) { 4201 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4202 return getSMinExpr(Ops); 4203 } 4204 4205 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4206 return getMinMaxExpr(scSMinExpr, Ops); 4207 } 4208 4209 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4210 bool Sequential) { 4211 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4212 return getUMinExpr(Ops, Sequential); 4213 } 4214 4215 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4216 bool Sequential) { 4217 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4218 : getMinMaxExpr(scUMinExpr, Ops); 4219 } 4220 4221 const SCEV * 4222 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4223 ScalableVectorType *ScalableTy) { 4224 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4225 Constant *One = ConstantInt::get(IntTy, 1); 4226 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4227 // Note that the expression we created is the final expression, we don't 4228 // want to simplify it any further Also, if we call a normal getSCEV(), 4229 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4230 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4231 } 4232 4233 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4234 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4235 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4236 // We can bypass creating a target-independent constant expression and then 4237 // folding it back into a ConstantInt. This is just a compile-time 4238 // optimization. 4239 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4240 } 4241 4242 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4243 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4244 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4245 // We can bypass creating a target-independent constant expression and then 4246 // folding it back into a ConstantInt. This is just a compile-time 4247 // optimization. 4248 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4249 } 4250 4251 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4252 StructType *STy, 4253 unsigned FieldNo) { 4254 // We can bypass creating a target-independent constant expression and then 4255 // folding it back into a ConstantInt. This is just a compile-time 4256 // optimization. 4257 return getConstant( 4258 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4259 } 4260 4261 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4262 // Don't attempt to do anything other than create a SCEVUnknown object 4263 // here. createSCEV only calls getUnknown after checking for all other 4264 // interesting possibilities, and any other code that calls getUnknown 4265 // is doing so in order to hide a value from SCEV canonicalization. 4266 4267 FoldingSetNodeID ID; 4268 ID.AddInteger(scUnknown); 4269 ID.AddPointer(V); 4270 void *IP = nullptr; 4271 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4272 assert(cast<SCEVUnknown>(S)->getValue() == V && 4273 "Stale SCEVUnknown in uniquing map!"); 4274 return S; 4275 } 4276 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4277 FirstUnknown); 4278 FirstUnknown = cast<SCEVUnknown>(S); 4279 UniqueSCEVs.InsertNode(S, IP); 4280 return S; 4281 } 4282 4283 //===----------------------------------------------------------------------===// 4284 // Basic SCEV Analysis and PHI Idiom Recognition Code 4285 // 4286 4287 /// Test if values of the given type are analyzable within the SCEV 4288 /// framework. This primarily includes integer types, and it can optionally 4289 /// include pointer types if the ScalarEvolution class has access to 4290 /// target-specific information. 4291 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4292 // Integers and pointers are always SCEVable. 4293 return Ty->isIntOrPtrTy(); 4294 } 4295 4296 /// Return the size in bits of the specified type, for which isSCEVable must 4297 /// return true. 4298 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4299 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4300 if (Ty->isPointerTy()) 4301 return getDataLayout().getIndexTypeSizeInBits(Ty); 4302 return getDataLayout().getTypeSizeInBits(Ty); 4303 } 4304 4305 /// Return a type with the same bitwidth as the given type and which represents 4306 /// how SCEV will treat the given type, for which isSCEVable must return 4307 /// true. For pointer types, this is the pointer index sized integer type. 4308 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4309 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4310 4311 if (Ty->isIntegerTy()) 4312 return Ty; 4313 4314 // The only other support type is pointer. 4315 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4316 return getDataLayout().getIndexType(Ty); 4317 } 4318 4319 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4320 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4321 } 4322 4323 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4324 const SCEV *B) { 4325 /// For a valid use point to exist, the defining scope of one operand 4326 /// must dominate the other. 4327 bool PreciseA, PreciseB; 4328 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4329 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4330 if (!PreciseA || !PreciseB) 4331 // Can't tell. 4332 return false; 4333 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4334 DT.dominates(ScopeB, ScopeA); 4335 } 4336 4337 4338 const SCEV *ScalarEvolution::getCouldNotCompute() { 4339 return CouldNotCompute.get(); 4340 } 4341 4342 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4343 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4344 auto *SU = dyn_cast<SCEVUnknown>(S); 4345 return SU && SU->getValue() == nullptr; 4346 }); 4347 4348 return !ContainsNulls; 4349 } 4350 4351 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4352 HasRecMapType::iterator I = HasRecMap.find(S); 4353 if (I != HasRecMap.end()) 4354 return I->second; 4355 4356 bool FoundAddRec = 4357 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4358 HasRecMap.insert({S, FoundAddRec}); 4359 return FoundAddRec; 4360 } 4361 4362 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4363 /// by the value and offset from any ValueOffsetPair in the set. 4364 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4365 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4366 if (SI == ExprValueMap.end()) 4367 return None; 4368 #ifndef NDEBUG 4369 if (VerifySCEVMap) { 4370 // Check there is no dangling Value in the set returned. 4371 for (Value *V : SI->second) 4372 assert(ValueExprMap.count(V)); 4373 } 4374 #endif 4375 return SI->second.getArrayRef(); 4376 } 4377 4378 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4379 /// cannot be used separately. eraseValueFromMap should be used to remove 4380 /// V from ValueExprMap and ExprValueMap at the same time. 4381 void ScalarEvolution::eraseValueFromMap(Value *V) { 4382 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4383 if (I != ValueExprMap.end()) { 4384 auto EVIt = ExprValueMap.find(I->second); 4385 bool Removed = EVIt->second.remove(V); 4386 (void) Removed; 4387 assert(Removed && "Value not in ExprValueMap?"); 4388 ValueExprMap.erase(I); 4389 } 4390 } 4391 4392 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4393 // A recursive query may have already computed the SCEV. It should be 4394 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4395 // inferred nowrap flags. 4396 auto It = ValueExprMap.find_as(V); 4397 if (It == ValueExprMap.end()) { 4398 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4399 ExprValueMap[S].insert(V); 4400 } 4401 } 4402 4403 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4404 /// create a new one. 4405 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4406 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4407 4408 if (const SCEV *S = getExistingSCEV(V)) 4409 return S; 4410 return createSCEVIter(V); 4411 } 4412 4413 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4414 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4415 4416 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4417 if (I != ValueExprMap.end()) { 4418 const SCEV *S = I->second; 4419 assert(checkValidity(S) && 4420 "existing SCEV has not been properly invalidated"); 4421 return S; 4422 } 4423 return nullptr; 4424 } 4425 4426 /// Return a SCEV corresponding to -V = -1*V 4427 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4428 SCEV::NoWrapFlags Flags) { 4429 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4430 return getConstant( 4431 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4432 4433 Type *Ty = V->getType(); 4434 Ty = getEffectiveSCEVType(Ty); 4435 return getMulExpr(V, getMinusOne(Ty), Flags); 4436 } 4437 4438 /// If Expr computes ~A, return A else return nullptr 4439 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4440 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4441 if (!Add || Add->getNumOperands() != 2 || 4442 !Add->getOperand(0)->isAllOnesValue()) 4443 return nullptr; 4444 4445 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4446 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4447 !AddRHS->getOperand(0)->isAllOnesValue()) 4448 return nullptr; 4449 4450 return AddRHS->getOperand(1); 4451 } 4452 4453 /// Return a SCEV corresponding to ~V = -1-V 4454 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4455 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4456 4457 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4458 return getConstant( 4459 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4460 4461 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4462 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4463 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4464 SmallVector<const SCEV *, 2> MatchedOperands; 4465 for (const SCEV *Operand : MME->operands()) { 4466 const SCEV *Matched = MatchNotExpr(Operand); 4467 if (!Matched) 4468 return (const SCEV *)nullptr; 4469 MatchedOperands.push_back(Matched); 4470 } 4471 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4472 MatchedOperands); 4473 }; 4474 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4475 return Replaced; 4476 } 4477 4478 Type *Ty = V->getType(); 4479 Ty = getEffectiveSCEVType(Ty); 4480 return getMinusSCEV(getMinusOne(Ty), V); 4481 } 4482 4483 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4484 assert(P->getType()->isPointerTy()); 4485 4486 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4487 // The base of an AddRec is the first operand. 4488 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4489 Ops[0] = removePointerBase(Ops[0]); 4490 // Don't try to transfer nowrap flags for now. We could in some cases 4491 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4492 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4493 } 4494 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4495 // The base of an Add is the pointer operand. 4496 SmallVector<const SCEV *> Ops{Add->operands()}; 4497 const SCEV **PtrOp = nullptr; 4498 for (const SCEV *&AddOp : Ops) { 4499 if (AddOp->getType()->isPointerTy()) { 4500 assert(!PtrOp && "Cannot have multiple pointer ops"); 4501 PtrOp = &AddOp; 4502 } 4503 } 4504 *PtrOp = removePointerBase(*PtrOp); 4505 // Don't try to transfer nowrap flags for now. We could in some cases 4506 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4507 return getAddExpr(Ops); 4508 } 4509 // Any other expression must be a pointer base. 4510 return getZero(P->getType()); 4511 } 4512 4513 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4514 SCEV::NoWrapFlags Flags, 4515 unsigned Depth) { 4516 // Fast path: X - X --> 0. 4517 if (LHS == RHS) 4518 return getZero(LHS->getType()); 4519 4520 // If we subtract two pointers with different pointer bases, bail. 4521 // Eventually, we're going to add an assertion to getMulExpr that we 4522 // can't multiply by a pointer. 4523 if (RHS->getType()->isPointerTy()) { 4524 if (!LHS->getType()->isPointerTy() || 4525 getPointerBase(LHS) != getPointerBase(RHS)) 4526 return getCouldNotCompute(); 4527 LHS = removePointerBase(LHS); 4528 RHS = removePointerBase(RHS); 4529 } 4530 4531 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4532 // makes it so that we cannot make much use of NUW. 4533 auto AddFlags = SCEV::FlagAnyWrap; 4534 const bool RHSIsNotMinSigned = 4535 !getSignedRangeMin(RHS).isMinSignedValue(); 4536 if (hasFlags(Flags, SCEV::FlagNSW)) { 4537 // Let M be the minimum representable signed value. Then (-1)*RHS 4538 // signed-wraps if and only if RHS is M. That can happen even for 4539 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4540 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4541 // (-1)*RHS, we need to prove that RHS != M. 4542 // 4543 // If LHS is non-negative and we know that LHS - RHS does not 4544 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4545 // either by proving that RHS > M or that LHS >= 0. 4546 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4547 AddFlags = SCEV::FlagNSW; 4548 } 4549 } 4550 4551 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4552 // RHS is NSW and LHS >= 0. 4553 // 4554 // The difficulty here is that the NSW flag may have been proven 4555 // relative to a loop that is to be found in a recurrence in LHS and 4556 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4557 // larger scope than intended. 4558 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4559 4560 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4561 } 4562 4563 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4564 unsigned Depth) { 4565 Type *SrcTy = V->getType(); 4566 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4567 "Cannot truncate or zero extend with non-integer arguments!"); 4568 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4569 return V; // No conversion 4570 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4571 return getTruncateExpr(V, Ty, Depth); 4572 return getZeroExtendExpr(V, Ty, Depth); 4573 } 4574 4575 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4576 unsigned Depth) { 4577 Type *SrcTy = V->getType(); 4578 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4579 "Cannot truncate or zero extend with non-integer arguments!"); 4580 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4581 return V; // No conversion 4582 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4583 return getTruncateExpr(V, Ty, Depth); 4584 return getSignExtendExpr(V, Ty, Depth); 4585 } 4586 4587 const SCEV * 4588 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4589 Type *SrcTy = V->getType(); 4590 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4591 "Cannot noop or zero extend with non-integer arguments!"); 4592 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4593 "getNoopOrZeroExtend cannot truncate!"); 4594 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4595 return V; // No conversion 4596 return getZeroExtendExpr(V, Ty); 4597 } 4598 4599 const SCEV * 4600 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4601 Type *SrcTy = V->getType(); 4602 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4603 "Cannot noop or sign extend with non-integer arguments!"); 4604 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4605 "getNoopOrSignExtend cannot truncate!"); 4606 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4607 return V; // No conversion 4608 return getSignExtendExpr(V, Ty); 4609 } 4610 4611 const SCEV * 4612 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4613 Type *SrcTy = V->getType(); 4614 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4615 "Cannot noop or any extend with non-integer arguments!"); 4616 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4617 "getNoopOrAnyExtend cannot truncate!"); 4618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4619 return V; // No conversion 4620 return getAnyExtendExpr(V, Ty); 4621 } 4622 4623 const SCEV * 4624 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4625 Type *SrcTy = V->getType(); 4626 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4627 "Cannot truncate or noop with non-integer arguments!"); 4628 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4629 "getTruncateOrNoop cannot extend!"); 4630 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4631 return V; // No conversion 4632 return getTruncateExpr(V, Ty); 4633 } 4634 4635 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4636 const SCEV *RHS) { 4637 const SCEV *PromotedLHS = LHS; 4638 const SCEV *PromotedRHS = RHS; 4639 4640 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4641 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4642 else 4643 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4644 4645 return getUMaxExpr(PromotedLHS, PromotedRHS); 4646 } 4647 4648 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4649 const SCEV *RHS, 4650 bool Sequential) { 4651 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4652 return getUMinFromMismatchedTypes(Ops, Sequential); 4653 } 4654 4655 const SCEV * 4656 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4657 bool Sequential) { 4658 assert(!Ops.empty() && "At least one operand must be!"); 4659 // Trivial case. 4660 if (Ops.size() == 1) 4661 return Ops[0]; 4662 4663 // Find the max type first. 4664 Type *MaxType = nullptr; 4665 for (const auto *S : Ops) 4666 if (MaxType) 4667 MaxType = getWiderType(MaxType, S->getType()); 4668 else 4669 MaxType = S->getType(); 4670 assert(MaxType && "Failed to find maximum type!"); 4671 4672 // Extend all ops to max type. 4673 SmallVector<const SCEV *, 2> PromotedOps; 4674 for (const auto *S : Ops) 4675 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4676 4677 // Generate umin. 4678 return getUMinExpr(PromotedOps, Sequential); 4679 } 4680 4681 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4682 // A pointer operand may evaluate to a nonpointer expression, such as null. 4683 if (!V->getType()->isPointerTy()) 4684 return V; 4685 4686 while (true) { 4687 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4688 V = AddRec->getStart(); 4689 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4690 const SCEV *PtrOp = nullptr; 4691 for (const SCEV *AddOp : Add->operands()) { 4692 if (AddOp->getType()->isPointerTy()) { 4693 assert(!PtrOp && "Cannot have multiple pointer ops"); 4694 PtrOp = AddOp; 4695 } 4696 } 4697 assert(PtrOp && "Must have pointer op"); 4698 V = PtrOp; 4699 } else // Not something we can look further into. 4700 return V; 4701 } 4702 } 4703 4704 /// Push users of the given Instruction onto the given Worklist. 4705 static void PushDefUseChildren(Instruction *I, 4706 SmallVectorImpl<Instruction *> &Worklist, 4707 SmallPtrSetImpl<Instruction *> &Visited) { 4708 // Push the def-use children onto the Worklist stack. 4709 for (User *U : I->users()) { 4710 auto *UserInsn = cast<Instruction>(U); 4711 if (Visited.insert(UserInsn).second) 4712 Worklist.push_back(UserInsn); 4713 } 4714 } 4715 4716 namespace { 4717 4718 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4719 /// expression in case its Loop is L. If it is not L then 4720 /// if IgnoreOtherLoops is true then use AddRec itself 4721 /// otherwise rewrite cannot be done. 4722 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4723 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4724 public: 4725 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4726 bool IgnoreOtherLoops = true) { 4727 SCEVInitRewriter Rewriter(L, SE); 4728 const SCEV *Result = Rewriter.visit(S); 4729 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4730 return SE.getCouldNotCompute(); 4731 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4732 ? SE.getCouldNotCompute() 4733 : Result; 4734 } 4735 4736 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4737 if (!SE.isLoopInvariant(Expr, L)) 4738 SeenLoopVariantSCEVUnknown = true; 4739 return Expr; 4740 } 4741 4742 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4743 // Only re-write AddRecExprs for this loop. 4744 if (Expr->getLoop() == L) 4745 return Expr->getStart(); 4746 SeenOtherLoops = true; 4747 return Expr; 4748 } 4749 4750 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4751 4752 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4753 4754 private: 4755 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4756 : SCEVRewriteVisitor(SE), L(L) {} 4757 4758 const Loop *L; 4759 bool SeenLoopVariantSCEVUnknown = false; 4760 bool SeenOtherLoops = false; 4761 }; 4762 4763 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4764 /// increment expression in case its Loop is L. If it is not L then 4765 /// use AddRec itself. 4766 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4767 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4768 public: 4769 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4770 SCEVPostIncRewriter Rewriter(L, SE); 4771 const SCEV *Result = Rewriter.visit(S); 4772 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4773 ? SE.getCouldNotCompute() 4774 : Result; 4775 } 4776 4777 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4778 if (!SE.isLoopInvariant(Expr, L)) 4779 SeenLoopVariantSCEVUnknown = true; 4780 return Expr; 4781 } 4782 4783 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4784 // Only re-write AddRecExprs for this loop. 4785 if (Expr->getLoop() == L) 4786 return Expr->getPostIncExpr(SE); 4787 SeenOtherLoops = true; 4788 return Expr; 4789 } 4790 4791 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4792 4793 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4794 4795 private: 4796 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4797 : SCEVRewriteVisitor(SE), L(L) {} 4798 4799 const Loop *L; 4800 bool SeenLoopVariantSCEVUnknown = false; 4801 bool SeenOtherLoops = false; 4802 }; 4803 4804 /// This class evaluates the compare condition by matching it against the 4805 /// condition of loop latch. If there is a match we assume a true value 4806 /// for the condition while building SCEV nodes. 4807 class SCEVBackedgeConditionFolder 4808 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4809 public: 4810 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4811 ScalarEvolution &SE) { 4812 bool IsPosBECond = false; 4813 Value *BECond = nullptr; 4814 if (BasicBlock *Latch = L->getLoopLatch()) { 4815 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4816 if (BI && BI->isConditional()) { 4817 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4818 "Both outgoing branches should not target same header!"); 4819 BECond = BI->getCondition(); 4820 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4821 } else { 4822 return S; 4823 } 4824 } 4825 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4826 return Rewriter.visit(S); 4827 } 4828 4829 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4830 const SCEV *Result = Expr; 4831 bool InvariantF = SE.isLoopInvariant(Expr, L); 4832 4833 if (!InvariantF) { 4834 Instruction *I = cast<Instruction>(Expr->getValue()); 4835 switch (I->getOpcode()) { 4836 case Instruction::Select: { 4837 SelectInst *SI = cast<SelectInst>(I); 4838 Optional<const SCEV *> Res = 4839 compareWithBackedgeCondition(SI->getCondition()); 4840 if (Res) { 4841 bool IsOne = cast<SCEVConstant>(Res.value())->getValue()->isOne(); 4842 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4843 } 4844 break; 4845 } 4846 default: { 4847 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4848 if (Res) 4849 Result = Res.value(); 4850 break; 4851 } 4852 } 4853 } 4854 return Result; 4855 } 4856 4857 private: 4858 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4859 bool IsPosBECond, ScalarEvolution &SE) 4860 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4861 IsPositiveBECond(IsPosBECond) {} 4862 4863 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4864 4865 const Loop *L; 4866 /// Loop back condition. 4867 Value *BackedgeCond = nullptr; 4868 /// Set to true if loop back is on positive branch condition. 4869 bool IsPositiveBECond; 4870 }; 4871 4872 Optional<const SCEV *> 4873 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4874 4875 // If value matches the backedge condition for loop latch, 4876 // then return a constant evolution node based on loopback 4877 // branch taken. 4878 if (BackedgeCond == IC) 4879 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4880 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4881 return None; 4882 } 4883 4884 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4885 public: 4886 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4887 ScalarEvolution &SE) { 4888 SCEVShiftRewriter Rewriter(L, SE); 4889 const SCEV *Result = Rewriter.visit(S); 4890 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4891 } 4892 4893 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4894 // Only allow AddRecExprs for this loop. 4895 if (!SE.isLoopInvariant(Expr, L)) 4896 Valid = false; 4897 return Expr; 4898 } 4899 4900 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4901 if (Expr->getLoop() == L && Expr->isAffine()) 4902 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4903 Valid = false; 4904 return Expr; 4905 } 4906 4907 bool isValid() { return Valid; } 4908 4909 private: 4910 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4911 : SCEVRewriteVisitor(SE), L(L) {} 4912 4913 const Loop *L; 4914 bool Valid = true; 4915 }; 4916 4917 } // end anonymous namespace 4918 4919 SCEV::NoWrapFlags 4920 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4921 if (!AR->isAffine()) 4922 return SCEV::FlagAnyWrap; 4923 4924 using OBO = OverflowingBinaryOperator; 4925 4926 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4927 4928 if (!AR->hasNoSignedWrap()) { 4929 ConstantRange AddRecRange = getSignedRange(AR); 4930 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4931 4932 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4933 Instruction::Add, IncRange, OBO::NoSignedWrap); 4934 if (NSWRegion.contains(AddRecRange)) 4935 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4936 } 4937 4938 if (!AR->hasNoUnsignedWrap()) { 4939 ConstantRange AddRecRange = getUnsignedRange(AR); 4940 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4941 4942 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4943 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4944 if (NUWRegion.contains(AddRecRange)) 4945 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4946 } 4947 4948 return Result; 4949 } 4950 4951 SCEV::NoWrapFlags 4952 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4953 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4954 4955 if (AR->hasNoSignedWrap()) 4956 return Result; 4957 4958 if (!AR->isAffine()) 4959 return Result; 4960 4961 const SCEV *Step = AR->getStepRecurrence(*this); 4962 const Loop *L = AR->getLoop(); 4963 4964 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4965 // Note that this serves two purposes: It filters out loops that are 4966 // simply not analyzable, and it covers the case where this code is 4967 // being called from within backedge-taken count analysis, such that 4968 // attempting to ask for the backedge-taken count would likely result 4969 // in infinite recursion. In the later case, the analysis code will 4970 // cope with a conservative value, and it will take care to purge 4971 // that value once it has finished. 4972 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4973 4974 // Normally, in the cases we can prove no-overflow via a 4975 // backedge guarding condition, we can also compute a backedge 4976 // taken count for the loop. The exceptions are assumptions and 4977 // guards present in the loop -- SCEV is not great at exploiting 4978 // these to compute max backedge taken counts, but can still use 4979 // these to prove lack of overflow. Use this fact to avoid 4980 // doing extra work that may not pay off. 4981 4982 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4983 AC.assumptions().empty()) 4984 return Result; 4985 4986 // If the backedge is guarded by a comparison with the pre-inc value the 4987 // addrec is safe. Also, if the entry is guarded by a comparison with the 4988 // start value and the backedge is guarded by a comparison with the post-inc 4989 // value, the addrec is safe. 4990 ICmpInst::Predicate Pred; 4991 const SCEV *OverflowLimit = 4992 getSignedOverflowLimitForStep(Step, &Pred, this); 4993 if (OverflowLimit && 4994 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4995 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4996 Result = setFlags(Result, SCEV::FlagNSW); 4997 } 4998 return Result; 4999 } 5000 SCEV::NoWrapFlags 5001 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5002 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5003 5004 if (AR->hasNoUnsignedWrap()) 5005 return Result; 5006 5007 if (!AR->isAffine()) 5008 return Result; 5009 5010 const SCEV *Step = AR->getStepRecurrence(*this); 5011 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5012 const Loop *L = AR->getLoop(); 5013 5014 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5015 // Note that this serves two purposes: It filters out loops that are 5016 // simply not analyzable, and it covers the case where this code is 5017 // being called from within backedge-taken count analysis, such that 5018 // attempting to ask for the backedge-taken count would likely result 5019 // in infinite recursion. In the later case, the analysis code will 5020 // cope with a conservative value, and it will take care to purge 5021 // that value once it has finished. 5022 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5023 5024 // Normally, in the cases we can prove no-overflow via a 5025 // backedge guarding condition, we can also compute a backedge 5026 // taken count for the loop. The exceptions are assumptions and 5027 // guards present in the loop -- SCEV is not great at exploiting 5028 // these to compute max backedge taken counts, but can still use 5029 // these to prove lack of overflow. Use this fact to avoid 5030 // doing extra work that may not pay off. 5031 5032 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5033 AC.assumptions().empty()) 5034 return Result; 5035 5036 // If the backedge is guarded by a comparison with the pre-inc value the 5037 // addrec is safe. Also, if the entry is guarded by a comparison with the 5038 // start value and the backedge is guarded by a comparison with the post-inc 5039 // value, the addrec is safe. 5040 if (isKnownPositive(Step)) { 5041 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5042 getUnsignedRangeMax(Step)); 5043 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5044 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5045 Result = setFlags(Result, SCEV::FlagNUW); 5046 } 5047 } 5048 5049 return Result; 5050 } 5051 5052 namespace { 5053 5054 /// Represents an abstract binary operation. This may exist as a 5055 /// normal instruction or constant expression, or may have been 5056 /// derived from an expression tree. 5057 struct BinaryOp { 5058 unsigned Opcode; 5059 Value *LHS; 5060 Value *RHS; 5061 bool IsNSW = false; 5062 bool IsNUW = false; 5063 5064 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5065 /// constant expression. 5066 Operator *Op = nullptr; 5067 5068 explicit BinaryOp(Operator *Op) 5069 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5070 Op(Op) { 5071 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5072 IsNSW = OBO->hasNoSignedWrap(); 5073 IsNUW = OBO->hasNoUnsignedWrap(); 5074 } 5075 } 5076 5077 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5078 bool IsNUW = false) 5079 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5080 }; 5081 5082 } // end anonymous namespace 5083 5084 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5085 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5086 auto *Op = dyn_cast<Operator>(V); 5087 if (!Op) 5088 return None; 5089 5090 // Implementation detail: all the cleverness here should happen without 5091 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5092 // SCEV expressions when possible, and we should not break that. 5093 5094 switch (Op->getOpcode()) { 5095 case Instruction::Add: 5096 case Instruction::Sub: 5097 case Instruction::Mul: 5098 case Instruction::UDiv: 5099 case Instruction::URem: 5100 case Instruction::And: 5101 case Instruction::Or: 5102 case Instruction::AShr: 5103 case Instruction::Shl: 5104 return BinaryOp(Op); 5105 5106 case Instruction::Xor: 5107 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5108 // If the RHS of the xor is a signmask, then this is just an add. 5109 // Instcombine turns add of signmask into xor as a strength reduction step. 5110 if (RHSC->getValue().isSignMask()) 5111 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5112 // Binary `xor` is a bit-wise `add`. 5113 if (V->getType()->isIntegerTy(1)) 5114 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5115 return BinaryOp(Op); 5116 5117 case Instruction::LShr: 5118 // Turn logical shift right of a constant into a unsigned divide. 5119 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5120 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5121 5122 // If the shift count is not less than the bitwidth, the result of 5123 // the shift is undefined. Don't try to analyze it, because the 5124 // resolution chosen here may differ from the resolution chosen in 5125 // other parts of the compiler. 5126 if (SA->getValue().ult(BitWidth)) { 5127 Constant *X = 5128 ConstantInt::get(SA->getContext(), 5129 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5130 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5131 } 5132 } 5133 return BinaryOp(Op); 5134 5135 case Instruction::ExtractValue: { 5136 auto *EVI = cast<ExtractValueInst>(Op); 5137 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5138 break; 5139 5140 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5141 if (!WO) 5142 break; 5143 5144 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5145 bool Signed = WO->isSigned(); 5146 // TODO: Should add nuw/nsw flags for mul as well. 5147 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5148 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5149 5150 // Now that we know that all uses of the arithmetic-result component of 5151 // CI are guarded by the overflow check, we can go ahead and pretend 5152 // that the arithmetic is non-overflowing. 5153 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5154 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5155 } 5156 5157 default: 5158 break; 5159 } 5160 5161 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5162 // semantics as a Sub, return a binary sub expression. 5163 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5164 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5165 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5166 5167 return None; 5168 } 5169 5170 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5171 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5172 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5173 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5174 /// follows one of the following patterns: 5175 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5176 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5177 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5178 /// we return the type of the truncation operation, and indicate whether the 5179 /// truncated type should be treated as signed/unsigned by setting 5180 /// \p Signed to true/false, respectively. 5181 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5182 bool &Signed, ScalarEvolution &SE) { 5183 // The case where Op == SymbolicPHI (that is, with no type conversions on 5184 // the way) is handled by the regular add recurrence creating logic and 5185 // would have already been triggered in createAddRecForPHI. Reaching it here 5186 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5187 // because one of the other operands of the SCEVAddExpr updating this PHI is 5188 // not invariant). 5189 // 5190 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5191 // this case predicates that allow us to prove that Op == SymbolicPHI will 5192 // be added. 5193 if (Op == SymbolicPHI) 5194 return nullptr; 5195 5196 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5197 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5198 if (SourceBits != NewBits) 5199 return nullptr; 5200 5201 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5202 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5203 if (!SExt && !ZExt) 5204 return nullptr; 5205 const SCEVTruncateExpr *Trunc = 5206 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5207 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5208 if (!Trunc) 5209 return nullptr; 5210 const SCEV *X = Trunc->getOperand(); 5211 if (X != SymbolicPHI) 5212 return nullptr; 5213 Signed = SExt != nullptr; 5214 return Trunc->getType(); 5215 } 5216 5217 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5218 if (!PN->getType()->isIntegerTy()) 5219 return nullptr; 5220 const Loop *L = LI.getLoopFor(PN->getParent()); 5221 if (!L || L->getHeader() != PN->getParent()) 5222 return nullptr; 5223 return L; 5224 } 5225 5226 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5227 // computation that updates the phi follows the following pattern: 5228 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5229 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5230 // If so, try to see if it can be rewritten as an AddRecExpr under some 5231 // Predicates. If successful, return them as a pair. Also cache the results 5232 // of the analysis. 5233 // 5234 // Example usage scenario: 5235 // Say the Rewriter is called for the following SCEV: 5236 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5237 // where: 5238 // %X = phi i64 (%Start, %BEValue) 5239 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5240 // and call this function with %SymbolicPHI = %X. 5241 // 5242 // The analysis will find that the value coming around the backedge has 5243 // the following SCEV: 5244 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5245 // Upon concluding that this matches the desired pattern, the function 5246 // will return the pair {NewAddRec, SmallPredsVec} where: 5247 // NewAddRec = {%Start,+,%Step} 5248 // SmallPredsVec = {P1, P2, P3} as follows: 5249 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5250 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5251 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5252 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5253 // under the predicates {P1,P2,P3}. 5254 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5255 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5256 // 5257 // TODO's: 5258 // 5259 // 1) Extend the Induction descriptor to also support inductions that involve 5260 // casts: When needed (namely, when we are called in the context of the 5261 // vectorizer induction analysis), a Set of cast instructions will be 5262 // populated by this method, and provided back to isInductionPHI. This is 5263 // needed to allow the vectorizer to properly record them to be ignored by 5264 // the cost model and to avoid vectorizing them (otherwise these casts, 5265 // which are redundant under the runtime overflow checks, will be 5266 // vectorized, which can be costly). 5267 // 5268 // 2) Support additional induction/PHISCEV patterns: We also want to support 5269 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5270 // after the induction update operation (the induction increment): 5271 // 5272 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5273 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5274 // 5275 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5276 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5277 // 5278 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5279 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5280 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5281 SmallVector<const SCEVPredicate *, 3> Predicates; 5282 5283 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5284 // return an AddRec expression under some predicate. 5285 5286 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5287 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5288 assert(L && "Expecting an integer loop header phi"); 5289 5290 // The loop may have multiple entrances or multiple exits; we can analyze 5291 // this phi as an addrec if it has a unique entry value and a unique 5292 // backedge value. 5293 Value *BEValueV = nullptr, *StartValueV = nullptr; 5294 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5295 Value *V = PN->getIncomingValue(i); 5296 if (L->contains(PN->getIncomingBlock(i))) { 5297 if (!BEValueV) { 5298 BEValueV = V; 5299 } else if (BEValueV != V) { 5300 BEValueV = nullptr; 5301 break; 5302 } 5303 } else if (!StartValueV) { 5304 StartValueV = V; 5305 } else if (StartValueV != V) { 5306 StartValueV = nullptr; 5307 break; 5308 } 5309 } 5310 if (!BEValueV || !StartValueV) 5311 return None; 5312 5313 const SCEV *BEValue = getSCEV(BEValueV); 5314 5315 // If the value coming around the backedge is an add with the symbolic 5316 // value we just inserted, possibly with casts that we can ignore under 5317 // an appropriate runtime guard, then we found a simple induction variable! 5318 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5319 if (!Add) 5320 return None; 5321 5322 // If there is a single occurrence of the symbolic value, possibly 5323 // casted, replace it with a recurrence. 5324 unsigned FoundIndex = Add->getNumOperands(); 5325 Type *TruncTy = nullptr; 5326 bool Signed; 5327 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5328 if ((TruncTy = 5329 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5330 if (FoundIndex == e) { 5331 FoundIndex = i; 5332 break; 5333 } 5334 5335 if (FoundIndex == Add->getNumOperands()) 5336 return None; 5337 5338 // Create an add with everything but the specified operand. 5339 SmallVector<const SCEV *, 8> Ops; 5340 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5341 if (i != FoundIndex) 5342 Ops.push_back(Add->getOperand(i)); 5343 const SCEV *Accum = getAddExpr(Ops); 5344 5345 // The runtime checks will not be valid if the step amount is 5346 // varying inside the loop. 5347 if (!isLoopInvariant(Accum, L)) 5348 return None; 5349 5350 // *** Part2: Create the predicates 5351 5352 // Analysis was successful: we have a phi-with-cast pattern for which we 5353 // can return an AddRec expression under the following predicates: 5354 // 5355 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5356 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5357 // P2: An Equal predicate that guarantees that 5358 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5359 // P3: An Equal predicate that guarantees that 5360 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5361 // 5362 // As we next prove, the above predicates guarantee that: 5363 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5364 // 5365 // 5366 // More formally, we want to prove that: 5367 // Expr(i+1) = Start + (i+1) * Accum 5368 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5369 // 5370 // Given that: 5371 // 1) Expr(0) = Start 5372 // 2) Expr(1) = Start + Accum 5373 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5374 // 3) Induction hypothesis (step i): 5375 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5376 // 5377 // Proof: 5378 // Expr(i+1) = 5379 // = Start + (i+1)*Accum 5380 // = (Start + i*Accum) + Accum 5381 // = Expr(i) + Accum 5382 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5383 // :: from step i 5384 // 5385 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5386 // 5387 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5388 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5389 // + Accum :: from P3 5390 // 5391 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5392 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5393 // 5394 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5395 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5396 // 5397 // By induction, the same applies to all iterations 1<=i<n: 5398 // 5399 5400 // Create a truncated addrec for which we will add a no overflow check (P1). 5401 const SCEV *StartVal = getSCEV(StartValueV); 5402 const SCEV *PHISCEV = 5403 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5404 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5405 5406 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5407 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5408 // will be constant. 5409 // 5410 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5411 // add P1. 5412 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5413 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5414 Signed ? SCEVWrapPredicate::IncrementNSSW 5415 : SCEVWrapPredicate::IncrementNUSW; 5416 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5417 Predicates.push_back(AddRecPred); 5418 } 5419 5420 // Create the Equal Predicates P2,P3: 5421 5422 // It is possible that the predicates P2 and/or P3 are computable at 5423 // compile time due to StartVal and/or Accum being constants. 5424 // If either one is, then we can check that now and escape if either P2 5425 // or P3 is false. 5426 5427 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5428 // for each of StartVal and Accum 5429 auto getExtendedExpr = [&](const SCEV *Expr, 5430 bool CreateSignExtend) -> const SCEV * { 5431 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5432 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5433 const SCEV *ExtendedExpr = 5434 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5435 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5436 return ExtendedExpr; 5437 }; 5438 5439 // Given: 5440 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5441 // = getExtendedExpr(Expr) 5442 // Determine whether the predicate P: Expr == ExtendedExpr 5443 // is known to be false at compile time 5444 auto PredIsKnownFalse = [&](const SCEV *Expr, 5445 const SCEV *ExtendedExpr) -> bool { 5446 return Expr != ExtendedExpr && 5447 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5448 }; 5449 5450 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5451 if (PredIsKnownFalse(StartVal, StartExtended)) { 5452 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5453 return None; 5454 } 5455 5456 // The Step is always Signed (because the overflow checks are either 5457 // NSSW or NUSW) 5458 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5459 if (PredIsKnownFalse(Accum, AccumExtended)) { 5460 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5461 return None; 5462 } 5463 5464 auto AppendPredicate = [&](const SCEV *Expr, 5465 const SCEV *ExtendedExpr) -> void { 5466 if (Expr != ExtendedExpr && 5467 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5468 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5469 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5470 Predicates.push_back(Pred); 5471 } 5472 }; 5473 5474 AppendPredicate(StartVal, StartExtended); 5475 AppendPredicate(Accum, AccumExtended); 5476 5477 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5478 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5479 // into NewAR if it will also add the runtime overflow checks specified in 5480 // Predicates. 5481 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5482 5483 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5484 std::make_pair(NewAR, Predicates); 5485 // Remember the result of the analysis for this SCEV at this locayyytion. 5486 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5487 return PredRewrite; 5488 } 5489 5490 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5491 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5492 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5493 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5494 if (!L) 5495 return None; 5496 5497 // Check to see if we already analyzed this PHI. 5498 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5499 if (I != PredicatedSCEVRewrites.end()) { 5500 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5501 I->second; 5502 // Analysis was done before and failed to create an AddRec: 5503 if (Rewrite.first == SymbolicPHI) 5504 return None; 5505 // Analysis was done before and succeeded to create an AddRec under 5506 // a predicate: 5507 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5508 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5509 return Rewrite; 5510 } 5511 5512 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5513 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5514 5515 // Record in the cache that the analysis failed 5516 if (!Rewrite) { 5517 SmallVector<const SCEVPredicate *, 3> Predicates; 5518 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5519 return None; 5520 } 5521 5522 return Rewrite; 5523 } 5524 5525 // FIXME: This utility is currently required because the Rewriter currently 5526 // does not rewrite this expression: 5527 // {0, +, (sext ix (trunc iy to ix) to iy)} 5528 // into {0, +, %step}, 5529 // even when the following Equal predicate exists: 5530 // "%step == (sext ix (trunc iy to ix) to iy)". 5531 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5532 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5533 if (AR1 == AR2) 5534 return true; 5535 5536 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5537 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5538 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5539 return false; 5540 return true; 5541 }; 5542 5543 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5544 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5545 return false; 5546 return true; 5547 } 5548 5549 /// A helper function for createAddRecFromPHI to handle simple cases. 5550 /// 5551 /// This function tries to find an AddRec expression for the simplest (yet most 5552 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5553 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5554 /// technique for finding the AddRec expression. 5555 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5556 Value *BEValueV, 5557 Value *StartValueV) { 5558 const Loop *L = LI.getLoopFor(PN->getParent()); 5559 assert(L && L->getHeader() == PN->getParent()); 5560 assert(BEValueV && StartValueV); 5561 5562 auto BO = MatchBinaryOp(BEValueV, DT); 5563 if (!BO) 5564 return nullptr; 5565 5566 if (BO->Opcode != Instruction::Add) 5567 return nullptr; 5568 5569 const SCEV *Accum = nullptr; 5570 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5571 Accum = getSCEV(BO->RHS); 5572 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5573 Accum = getSCEV(BO->LHS); 5574 5575 if (!Accum) 5576 return nullptr; 5577 5578 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5579 if (BO->IsNUW) 5580 Flags = setFlags(Flags, SCEV::FlagNUW); 5581 if (BO->IsNSW) 5582 Flags = setFlags(Flags, SCEV::FlagNSW); 5583 5584 const SCEV *StartVal = getSCEV(StartValueV); 5585 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5586 insertValueToMap(PN, PHISCEV); 5587 5588 // We can add Flags to the post-inc expression only if we 5589 // know that it is *undefined behavior* for BEValueV to 5590 // overflow. 5591 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5592 assert(isLoopInvariant(Accum, L) && 5593 "Accum is defined outside L, but is not invariant?"); 5594 if (isAddRecNeverPoison(BEInst, L)) 5595 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5596 } 5597 5598 return PHISCEV; 5599 } 5600 5601 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5602 const Loop *L = LI.getLoopFor(PN->getParent()); 5603 if (!L || L->getHeader() != PN->getParent()) 5604 return nullptr; 5605 5606 // The loop may have multiple entrances or multiple exits; we can analyze 5607 // this phi as an addrec if it has a unique entry value and a unique 5608 // backedge value. 5609 Value *BEValueV = nullptr, *StartValueV = nullptr; 5610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5611 Value *V = PN->getIncomingValue(i); 5612 if (L->contains(PN->getIncomingBlock(i))) { 5613 if (!BEValueV) { 5614 BEValueV = V; 5615 } else if (BEValueV != V) { 5616 BEValueV = nullptr; 5617 break; 5618 } 5619 } else if (!StartValueV) { 5620 StartValueV = V; 5621 } else if (StartValueV != V) { 5622 StartValueV = nullptr; 5623 break; 5624 } 5625 } 5626 if (!BEValueV || !StartValueV) 5627 return nullptr; 5628 5629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5630 "PHI node already processed?"); 5631 5632 // First, try to find AddRec expression without creating a fictituos symbolic 5633 // value for PN. 5634 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5635 return S; 5636 5637 // Handle PHI node value symbolically. 5638 const SCEV *SymbolicName = getUnknown(PN); 5639 insertValueToMap(PN, SymbolicName); 5640 5641 // Using this symbolic name for the PHI, analyze the value coming around 5642 // the back-edge. 5643 const SCEV *BEValue = getSCEV(BEValueV); 5644 5645 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5646 // has a special value for the first iteration of the loop. 5647 5648 // If the value coming around the backedge is an add with the symbolic 5649 // value we just inserted, then we found a simple induction variable! 5650 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5651 // If there is a single occurrence of the symbolic value, replace it 5652 // with a recurrence. 5653 unsigned FoundIndex = Add->getNumOperands(); 5654 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5655 if (Add->getOperand(i) == SymbolicName) 5656 if (FoundIndex == e) { 5657 FoundIndex = i; 5658 break; 5659 } 5660 5661 if (FoundIndex != Add->getNumOperands()) { 5662 // Create an add with everything but the specified operand. 5663 SmallVector<const SCEV *, 8> Ops; 5664 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5665 if (i != FoundIndex) 5666 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5667 L, *this)); 5668 const SCEV *Accum = getAddExpr(Ops); 5669 5670 // This is not a valid addrec if the step amount is varying each 5671 // loop iteration, but is not itself an addrec in this loop. 5672 if (isLoopInvariant(Accum, L) || 5673 (isa<SCEVAddRecExpr>(Accum) && 5674 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5675 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5676 5677 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5678 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5679 if (BO->IsNUW) 5680 Flags = setFlags(Flags, SCEV::FlagNUW); 5681 if (BO->IsNSW) 5682 Flags = setFlags(Flags, SCEV::FlagNSW); 5683 } 5684 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5685 // If the increment is an inbounds GEP, then we know the address 5686 // space cannot be wrapped around. We cannot make any guarantee 5687 // about signed or unsigned overflow because pointers are 5688 // unsigned but we may have a negative index from the base 5689 // pointer. We can guarantee that no unsigned wrap occurs if the 5690 // indices form a positive value. 5691 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5692 Flags = setFlags(Flags, SCEV::FlagNW); 5693 5694 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5695 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5696 Flags = setFlags(Flags, SCEV::FlagNUW); 5697 } 5698 5699 // We cannot transfer nuw and nsw flags from subtraction 5700 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5701 // for instance. 5702 } 5703 5704 const SCEV *StartVal = getSCEV(StartValueV); 5705 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5706 5707 // Okay, for the entire analysis of this edge we assumed the PHI 5708 // to be symbolic. We now need to go back and purge all of the 5709 // entries for the scalars that use the symbolic expression. 5710 forgetMemoizedResults(SymbolicName); 5711 insertValueToMap(PN, PHISCEV); 5712 5713 // We can add Flags to the post-inc expression only if we 5714 // know that it is *undefined behavior* for BEValueV to 5715 // overflow. 5716 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5717 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5718 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5719 5720 return PHISCEV; 5721 } 5722 } 5723 } else { 5724 // Otherwise, this could be a loop like this: 5725 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5726 // In this case, j = {1,+,1} and BEValue is j. 5727 // Because the other in-value of i (0) fits the evolution of BEValue 5728 // i really is an addrec evolution. 5729 // 5730 // We can generalize this saying that i is the shifted value of BEValue 5731 // by one iteration: 5732 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5733 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5734 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5735 if (Shifted != getCouldNotCompute() && 5736 Start != getCouldNotCompute()) { 5737 const SCEV *StartVal = getSCEV(StartValueV); 5738 if (Start == StartVal) { 5739 // Okay, for the entire analysis of this edge we assumed the PHI 5740 // to be symbolic. We now need to go back and purge all of the 5741 // entries for the scalars that use the symbolic expression. 5742 forgetMemoizedResults(SymbolicName); 5743 insertValueToMap(PN, Shifted); 5744 return Shifted; 5745 } 5746 } 5747 } 5748 5749 // Remove the temporary PHI node SCEV that has been inserted while intending 5750 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5751 // as it will prevent later (possibly simpler) SCEV expressions to be added 5752 // to the ValueExprMap. 5753 eraseValueFromMap(PN); 5754 5755 return nullptr; 5756 } 5757 5758 // Checks if the SCEV S is available at BB. S is considered available at BB 5759 // if S can be materialized at BB without introducing a fault. 5760 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5761 BasicBlock *BB) { 5762 struct CheckAvailable { 5763 bool TraversalDone = false; 5764 bool Available = true; 5765 5766 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5767 BasicBlock *BB = nullptr; 5768 DominatorTree &DT; 5769 5770 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5771 : L(L), BB(BB), DT(DT) {} 5772 5773 bool setUnavailable() { 5774 TraversalDone = true; 5775 Available = false; 5776 return false; 5777 } 5778 5779 bool follow(const SCEV *S) { 5780 switch (S->getSCEVType()) { 5781 case scConstant: 5782 case scPtrToInt: 5783 case scTruncate: 5784 case scZeroExtend: 5785 case scSignExtend: 5786 case scAddExpr: 5787 case scMulExpr: 5788 case scUMaxExpr: 5789 case scSMaxExpr: 5790 case scUMinExpr: 5791 case scSMinExpr: 5792 case scSequentialUMinExpr: 5793 // These expressions are available if their operand(s) is/are. 5794 return true; 5795 5796 case scAddRecExpr: { 5797 // We allow add recurrences that are on the loop BB is in, or some 5798 // outer loop. This guarantees availability because the value of the 5799 // add recurrence at BB is simply the "current" value of the induction 5800 // variable. We can relax this in the future; for instance an add 5801 // recurrence on a sibling dominating loop is also available at BB. 5802 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5803 if (L && (ARLoop == L || ARLoop->contains(L))) 5804 return true; 5805 5806 return setUnavailable(); 5807 } 5808 5809 case scUnknown: { 5810 // For SCEVUnknown, we check for simple dominance. 5811 const auto *SU = cast<SCEVUnknown>(S); 5812 Value *V = SU->getValue(); 5813 5814 if (isa<Argument>(V)) 5815 return false; 5816 5817 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5818 return false; 5819 5820 return setUnavailable(); 5821 } 5822 5823 case scUDivExpr: 5824 case scCouldNotCompute: 5825 // We do not try to smart about these at all. 5826 return setUnavailable(); 5827 } 5828 llvm_unreachable("Unknown SCEV kind!"); 5829 } 5830 5831 bool isDone() { return TraversalDone; } 5832 }; 5833 5834 CheckAvailable CA(L, BB, DT); 5835 SCEVTraversal<CheckAvailable> ST(CA); 5836 5837 ST.visitAll(S); 5838 return CA.Available; 5839 } 5840 5841 // Try to match a control flow sequence that branches out at BI and merges back 5842 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5843 // match. 5844 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5845 Value *&C, Value *&LHS, Value *&RHS) { 5846 C = BI->getCondition(); 5847 5848 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5849 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5850 5851 if (!LeftEdge.isSingleEdge()) 5852 return false; 5853 5854 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5855 5856 Use &LeftUse = Merge->getOperandUse(0); 5857 Use &RightUse = Merge->getOperandUse(1); 5858 5859 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5860 LHS = LeftUse; 5861 RHS = RightUse; 5862 return true; 5863 } 5864 5865 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5866 LHS = RightUse; 5867 RHS = LeftUse; 5868 return true; 5869 } 5870 5871 return false; 5872 } 5873 5874 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5875 auto IsReachable = 5876 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5877 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5878 const Loop *L = LI.getLoopFor(PN->getParent()); 5879 5880 // We don't want to break LCSSA, even in a SCEV expression tree. 5881 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5882 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5883 return nullptr; 5884 5885 // Try to match 5886 // 5887 // br %cond, label %left, label %right 5888 // left: 5889 // br label %merge 5890 // right: 5891 // br label %merge 5892 // merge: 5893 // V = phi [ %x, %left ], [ %y, %right ] 5894 // 5895 // as "select %cond, %x, %y" 5896 5897 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5898 assert(IDom && "At least the entry block should dominate PN"); 5899 5900 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5901 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5902 5903 if (BI && BI->isConditional() && 5904 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5905 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5906 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5907 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5908 } 5909 5910 return nullptr; 5911 } 5912 5913 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5914 if (const SCEV *S = createAddRecFromPHI(PN)) 5915 return S; 5916 5917 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5918 return S; 5919 5920 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5921 return getSCEV(V); 5922 5923 // If it's not a loop phi, we can't handle it yet. 5924 return getUnknown(PN); 5925 } 5926 5927 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5928 SCEVTypes RootKind) { 5929 struct FindClosure { 5930 const SCEV *OperandToFind; 5931 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5932 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5933 5934 bool Found = false; 5935 5936 bool canRecurseInto(SCEVTypes Kind) const { 5937 // We can only recurse into the SCEV expression of the same effective type 5938 // as the type of our root SCEV expression, and into zero-extensions. 5939 return RootKind == Kind || NonSequentialRootKind == Kind || 5940 scZeroExtend == Kind; 5941 }; 5942 5943 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5944 : OperandToFind(OperandToFind), RootKind(RootKind), 5945 NonSequentialRootKind( 5946 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5947 RootKind)) {} 5948 5949 bool follow(const SCEV *S) { 5950 Found = S == OperandToFind; 5951 5952 return !isDone() && canRecurseInto(S->getSCEVType()); 5953 } 5954 5955 bool isDone() const { return Found; } 5956 }; 5957 5958 FindClosure FC(OperandToFind, RootKind); 5959 visitAll(Root, FC); 5960 return FC.Found; 5961 } 5962 5963 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5964 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5965 // Try to match some simple smax or umax patterns. 5966 auto *ICI = Cond; 5967 5968 Value *LHS = ICI->getOperand(0); 5969 Value *RHS = ICI->getOperand(1); 5970 5971 switch (ICI->getPredicate()) { 5972 case ICmpInst::ICMP_SLT: 5973 case ICmpInst::ICMP_SLE: 5974 case ICmpInst::ICMP_ULT: 5975 case ICmpInst::ICMP_ULE: 5976 std::swap(LHS, RHS); 5977 LLVM_FALLTHROUGH; 5978 case ICmpInst::ICMP_SGT: 5979 case ICmpInst::ICMP_SGE: 5980 case ICmpInst::ICMP_UGT: 5981 case ICmpInst::ICMP_UGE: 5982 // a > b ? a+x : b+x -> max(a, b)+x 5983 // a > b ? b+x : a+x -> min(a, b)+x 5984 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5985 bool Signed = ICI->isSigned(); 5986 const SCEV *LA = getSCEV(TrueVal); 5987 const SCEV *RA = getSCEV(FalseVal); 5988 const SCEV *LS = getSCEV(LHS); 5989 const SCEV *RS = getSCEV(RHS); 5990 if (LA->getType()->isPointerTy()) { 5991 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5992 // Need to make sure we can't produce weird expressions involving 5993 // negated pointers. 5994 if (LA == LS && RA == RS) 5995 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5996 if (LA == RS && RA == LS) 5997 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5998 } 5999 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6000 if (Op->getType()->isPointerTy()) { 6001 Op = getLosslessPtrToIntExpr(Op); 6002 if (isa<SCEVCouldNotCompute>(Op)) 6003 return Op; 6004 } 6005 if (Signed) 6006 Op = getNoopOrSignExtend(Op, I->getType()); 6007 else 6008 Op = getNoopOrZeroExtend(Op, I->getType()); 6009 return Op; 6010 }; 6011 LS = CoerceOperand(LS); 6012 RS = CoerceOperand(RS); 6013 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6014 break; 6015 const SCEV *LDiff = getMinusSCEV(LA, LS); 6016 const SCEV *RDiff = getMinusSCEV(RA, RS); 6017 if (LDiff == RDiff) 6018 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6019 LDiff); 6020 LDiff = getMinusSCEV(LA, RS); 6021 RDiff = getMinusSCEV(RA, LS); 6022 if (LDiff == RDiff) 6023 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6024 LDiff); 6025 } 6026 break; 6027 case ICmpInst::ICMP_NE: 6028 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6029 std::swap(TrueVal, FalseVal); 6030 LLVM_FALLTHROUGH; 6031 case ICmpInst::ICMP_EQ: 6032 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6033 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6034 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6035 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6036 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6037 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6038 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6039 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6040 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6041 return getAddExpr(getUMaxExpr(X, C), Y); 6042 } 6043 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6044 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6045 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6046 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6047 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6048 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6049 const SCEV *X = getSCEV(LHS); 6050 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6051 X = ZExt->getOperand(); 6052 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6053 const SCEV *FalseValExpr = getSCEV(FalseVal); 6054 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6055 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6056 /*Sequential=*/true); 6057 } 6058 } 6059 break; 6060 default: 6061 break; 6062 } 6063 6064 return getUnknown(I); 6065 } 6066 6067 static Optional<const SCEV *> 6068 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6069 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6070 assert(CondExpr->getType()->isIntegerTy(1) && 6071 TrueExpr->getType() == FalseExpr->getType() && 6072 TrueExpr->getType()->isIntegerTy(1) && 6073 "Unexpected operands of a select."); 6074 6075 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6076 // --> C + (umin_seq cond, x - C) 6077 // 6078 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6079 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6080 // --> C + (umin_seq ~cond, x - C) 6081 6082 // FIXME: while we can't legally model the case where both of the hands 6083 // are fully variable, we only require that the *difference* is constant. 6084 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6085 return None; 6086 6087 const SCEV *X, *C; 6088 if (isa<SCEVConstant>(TrueExpr)) { 6089 CondExpr = SE->getNotSCEV(CondExpr); 6090 X = FalseExpr; 6091 C = TrueExpr; 6092 } else { 6093 X = TrueExpr; 6094 C = FalseExpr; 6095 } 6096 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6097 /*Sequential=*/true)); 6098 } 6099 6100 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE, 6101 Value *Cond, 6102 Value *TrueVal, 6103 Value *FalseVal) { 6104 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6105 return None; 6106 6107 const auto *SECond = SE->getSCEV(Cond); 6108 const auto *SETrue = SE->getSCEV(TrueVal); 6109 const auto *SEFalse = SE->getSCEV(FalseVal); 6110 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6111 } 6112 6113 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6114 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6115 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6116 assert(TrueVal->getType() == FalseVal->getType() && 6117 V->getType() == TrueVal->getType() && 6118 "Types of select hands and of the result must match."); 6119 6120 // For now, only deal with i1-typed `select`s. 6121 if (!V->getType()->isIntegerTy(1)) 6122 return getUnknown(V); 6123 6124 if (Optional<const SCEV *> S = 6125 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6126 return *S; 6127 6128 return getUnknown(V); 6129 } 6130 6131 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6132 Value *TrueVal, 6133 Value *FalseVal) { 6134 // Handle "constant" branch or select. This can occur for instance when a 6135 // loop pass transforms an inner loop and moves on to process the outer loop. 6136 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6137 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6138 6139 if (auto *I = dyn_cast<Instruction>(V)) { 6140 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6141 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6142 I, ICI, TrueVal, FalseVal); 6143 if (!isa<SCEVUnknown>(S)) 6144 return S; 6145 } 6146 } 6147 6148 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6149 } 6150 6151 /// Expand GEP instructions into add and multiply operations. This allows them 6152 /// to be analyzed by regular SCEV code. 6153 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6154 assert(GEP->getSourceElementType()->isSized() && 6155 "GEP source element type must be sized"); 6156 6157 SmallVector<const SCEV *, 4> IndexExprs; 6158 for (Value *Index : GEP->indices()) 6159 IndexExprs.push_back(getSCEV(Index)); 6160 return getGEPExpr(GEP, IndexExprs); 6161 } 6162 6163 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6164 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6165 return C->getAPInt().countTrailingZeros(); 6166 6167 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6168 return GetMinTrailingZeros(I->getOperand()); 6169 6170 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6171 return std::min(GetMinTrailingZeros(T->getOperand()), 6172 (uint32_t)getTypeSizeInBits(T->getType())); 6173 6174 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6175 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6176 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6177 ? getTypeSizeInBits(E->getType()) 6178 : OpRes; 6179 } 6180 6181 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6182 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6183 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6184 ? getTypeSizeInBits(E->getType()) 6185 : OpRes; 6186 } 6187 6188 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6189 // The result is the min of all operands results. 6190 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6191 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6192 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6193 return MinOpRes; 6194 } 6195 6196 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6197 // The result is the sum of all operands results. 6198 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6199 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6200 for (unsigned i = 1, e = M->getNumOperands(); 6201 SumOpRes != BitWidth && i != e; ++i) 6202 SumOpRes = 6203 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6204 return SumOpRes; 6205 } 6206 6207 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6208 // The result is the min of all operands results. 6209 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6210 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6211 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6212 return MinOpRes; 6213 } 6214 6215 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6216 // The result is the min of all operands results. 6217 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6218 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6219 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6220 return MinOpRes; 6221 } 6222 6223 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6224 // The result is the min of all operands results. 6225 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6226 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6227 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6228 return MinOpRes; 6229 } 6230 6231 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6232 // For a SCEVUnknown, ask ValueTracking. 6233 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6234 return Known.countMinTrailingZeros(); 6235 } 6236 6237 // SCEVUDivExpr 6238 return 0; 6239 } 6240 6241 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6242 auto I = MinTrailingZerosCache.find(S); 6243 if (I != MinTrailingZerosCache.end()) 6244 return I->second; 6245 6246 uint32_t Result = GetMinTrailingZerosImpl(S); 6247 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6248 assert(InsertPair.second && "Should insert a new key"); 6249 return InsertPair.first->second; 6250 } 6251 6252 /// Helper method to assign a range to V from metadata present in the IR. 6253 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6254 if (Instruction *I = dyn_cast<Instruction>(V)) 6255 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6256 return getConstantRangeFromMetadata(*MD); 6257 6258 return None; 6259 } 6260 6261 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6262 SCEV::NoWrapFlags Flags) { 6263 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6264 AddRec->setNoWrapFlags(Flags); 6265 UnsignedRanges.erase(AddRec); 6266 SignedRanges.erase(AddRec); 6267 } 6268 } 6269 6270 ConstantRange ScalarEvolution:: 6271 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6272 const DataLayout &DL = getDataLayout(); 6273 6274 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6275 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6276 6277 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6278 // use information about the trip count to improve our available range. Note 6279 // that the trip count independent cases are already handled by known bits. 6280 // WARNING: The definition of recurrence used here is subtly different than 6281 // the one used by AddRec (and thus most of this file). Step is allowed to 6282 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6283 // and other addrecs in the same loop (for non-affine addrecs). The code 6284 // below intentionally handles the case where step is not loop invariant. 6285 auto *P = dyn_cast<PHINode>(U->getValue()); 6286 if (!P) 6287 return FullSet; 6288 6289 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6290 // even the values that are not available in these blocks may come from them, 6291 // and this leads to false-positive recurrence test. 6292 for (auto *Pred : predecessors(P->getParent())) 6293 if (!DT.isReachableFromEntry(Pred)) 6294 return FullSet; 6295 6296 BinaryOperator *BO; 6297 Value *Start, *Step; 6298 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6299 return FullSet; 6300 6301 // If we found a recurrence in reachable code, we must be in a loop. Note 6302 // that BO might be in some subloop of L, and that's completely okay. 6303 auto *L = LI.getLoopFor(P->getParent()); 6304 assert(L && L->getHeader() == P->getParent()); 6305 if (!L->contains(BO->getParent())) 6306 // NOTE: This bailout should be an assert instead. However, asserting 6307 // the condition here exposes a case where LoopFusion is querying SCEV 6308 // with malformed loop information during the midst of the transform. 6309 // There doesn't appear to be an obvious fix, so for the moment bailout 6310 // until the caller issue can be fixed. PR49566 tracks the bug. 6311 return FullSet; 6312 6313 // TODO: Extend to other opcodes such as mul, and div 6314 switch (BO->getOpcode()) { 6315 default: 6316 return FullSet; 6317 case Instruction::AShr: 6318 case Instruction::LShr: 6319 case Instruction::Shl: 6320 break; 6321 }; 6322 6323 if (BO->getOperand(0) != P) 6324 // TODO: Handle the power function forms some day. 6325 return FullSet; 6326 6327 unsigned TC = getSmallConstantMaxTripCount(L); 6328 if (!TC || TC >= BitWidth) 6329 return FullSet; 6330 6331 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6332 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6333 assert(KnownStart.getBitWidth() == BitWidth && 6334 KnownStep.getBitWidth() == BitWidth); 6335 6336 // Compute total shift amount, being careful of overflow and bitwidths. 6337 auto MaxShiftAmt = KnownStep.getMaxValue(); 6338 APInt TCAP(BitWidth, TC-1); 6339 bool Overflow = false; 6340 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6341 if (Overflow) 6342 return FullSet; 6343 6344 switch (BO->getOpcode()) { 6345 default: 6346 llvm_unreachable("filtered out above"); 6347 case Instruction::AShr: { 6348 // For each ashr, three cases: 6349 // shift = 0 => unchanged value 6350 // saturation => 0 or -1 6351 // other => a value closer to zero (of the same sign) 6352 // Thus, the end value is closer to zero than the start. 6353 auto KnownEnd = KnownBits::ashr(KnownStart, 6354 KnownBits::makeConstant(TotalShift)); 6355 if (KnownStart.isNonNegative()) 6356 // Analogous to lshr (simply not yet canonicalized) 6357 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6358 KnownStart.getMaxValue() + 1); 6359 if (KnownStart.isNegative()) 6360 // End >=u Start && End <=s Start 6361 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6362 KnownEnd.getMaxValue() + 1); 6363 break; 6364 } 6365 case Instruction::LShr: { 6366 // For each lshr, three cases: 6367 // shift = 0 => unchanged value 6368 // saturation => 0 6369 // other => a smaller positive number 6370 // Thus, the low end of the unsigned range is the last value produced. 6371 auto KnownEnd = KnownBits::lshr(KnownStart, 6372 KnownBits::makeConstant(TotalShift)); 6373 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6374 KnownStart.getMaxValue() + 1); 6375 } 6376 case Instruction::Shl: { 6377 // Iff no bits are shifted out, value increases on every shift. 6378 auto KnownEnd = KnownBits::shl(KnownStart, 6379 KnownBits::makeConstant(TotalShift)); 6380 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6381 return ConstantRange(KnownStart.getMinValue(), 6382 KnownEnd.getMaxValue() + 1); 6383 break; 6384 } 6385 }; 6386 return FullSet; 6387 } 6388 6389 /// Determine the range for a particular SCEV. If SignHint is 6390 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6391 /// with a "cleaner" unsigned (resp. signed) representation. 6392 const ConstantRange & 6393 ScalarEvolution::getRangeRef(const SCEV *S, 6394 ScalarEvolution::RangeSignHint SignHint) { 6395 DenseMap<const SCEV *, ConstantRange> &Cache = 6396 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6397 : SignedRanges; 6398 ConstantRange::PreferredRangeType RangeType = 6399 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6400 ? ConstantRange::Unsigned : ConstantRange::Signed; 6401 6402 // See if we've computed this range already. 6403 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6404 if (I != Cache.end()) 6405 return I->second; 6406 6407 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6408 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6409 6410 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6411 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6412 using OBO = OverflowingBinaryOperator; 6413 6414 // If the value has known zeros, the maximum value will have those known zeros 6415 // as well. 6416 uint32_t TZ = GetMinTrailingZeros(S); 6417 if (TZ != 0) { 6418 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6419 ConservativeResult = 6420 ConstantRange(APInt::getMinValue(BitWidth), 6421 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6422 else 6423 ConservativeResult = ConstantRange( 6424 APInt::getSignedMinValue(BitWidth), 6425 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6426 } 6427 6428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6429 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6430 unsigned WrapType = OBO::AnyWrap; 6431 if (Add->hasNoSignedWrap()) 6432 WrapType |= OBO::NoSignedWrap; 6433 if (Add->hasNoUnsignedWrap()) 6434 WrapType |= OBO::NoUnsignedWrap; 6435 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6436 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6437 WrapType, RangeType); 6438 return setRange(Add, SignHint, 6439 ConservativeResult.intersectWith(X, RangeType)); 6440 } 6441 6442 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6443 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6444 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6445 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6446 return setRange(Mul, SignHint, 6447 ConservativeResult.intersectWith(X, RangeType)); 6448 } 6449 6450 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6451 Intrinsic::ID ID; 6452 switch (S->getSCEVType()) { 6453 case scUMaxExpr: 6454 ID = Intrinsic::umax; 6455 break; 6456 case scSMaxExpr: 6457 ID = Intrinsic::smax; 6458 break; 6459 case scUMinExpr: 6460 case scSequentialUMinExpr: 6461 ID = Intrinsic::umin; 6462 break; 6463 case scSMinExpr: 6464 ID = Intrinsic::smin; 6465 break; 6466 default: 6467 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6468 } 6469 6470 const auto *NAry = cast<SCEVNAryExpr>(S); 6471 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6472 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6473 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6474 return setRange(S, SignHint, 6475 ConservativeResult.intersectWith(X, RangeType)); 6476 } 6477 6478 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6479 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6480 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6481 return setRange(UDiv, SignHint, 6482 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6483 } 6484 6485 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6486 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6487 return setRange(ZExt, SignHint, 6488 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6489 RangeType)); 6490 } 6491 6492 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6493 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6494 return setRange(SExt, SignHint, 6495 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6496 RangeType)); 6497 } 6498 6499 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6500 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6501 return setRange(PtrToInt, SignHint, X); 6502 } 6503 6504 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6505 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6506 return setRange(Trunc, SignHint, 6507 ConservativeResult.intersectWith(X.truncate(BitWidth), 6508 RangeType)); 6509 } 6510 6511 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6512 // If there's no unsigned wrap, the value will never be less than its 6513 // initial value. 6514 if (AddRec->hasNoUnsignedWrap()) { 6515 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6516 if (!UnsignedMinValue.isZero()) 6517 ConservativeResult = ConservativeResult.intersectWith( 6518 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6519 } 6520 6521 // If there's no signed wrap, and all the operands except initial value have 6522 // the same sign or zero, the value won't ever be: 6523 // 1: smaller than initial value if operands are non negative, 6524 // 2: bigger than initial value if operands are non positive. 6525 // For both cases, value can not cross signed min/max boundary. 6526 if (AddRec->hasNoSignedWrap()) { 6527 bool AllNonNeg = true; 6528 bool AllNonPos = true; 6529 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6530 if (!isKnownNonNegative(AddRec->getOperand(i))) 6531 AllNonNeg = false; 6532 if (!isKnownNonPositive(AddRec->getOperand(i))) 6533 AllNonPos = false; 6534 } 6535 if (AllNonNeg) 6536 ConservativeResult = ConservativeResult.intersectWith( 6537 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6538 APInt::getSignedMinValue(BitWidth)), 6539 RangeType); 6540 else if (AllNonPos) 6541 ConservativeResult = ConservativeResult.intersectWith( 6542 ConstantRange::getNonEmpty( 6543 APInt::getSignedMinValue(BitWidth), 6544 getSignedRangeMax(AddRec->getStart()) + 1), 6545 RangeType); 6546 } 6547 6548 // TODO: non-affine addrec 6549 if (AddRec->isAffine()) { 6550 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6551 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6552 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6553 auto RangeFromAffine = getRangeForAffineAR( 6554 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6555 BitWidth); 6556 ConservativeResult = 6557 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6558 6559 auto RangeFromFactoring = getRangeViaFactoring( 6560 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6561 BitWidth); 6562 ConservativeResult = 6563 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6564 } 6565 6566 // Now try symbolic BE count and more powerful methods. 6567 if (UseExpensiveRangeSharpening) { 6568 const SCEV *SymbolicMaxBECount = 6569 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6570 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6571 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6572 AddRec->hasNoSelfWrap()) { 6573 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6574 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6575 ConservativeResult = 6576 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6577 } 6578 } 6579 } 6580 6581 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6582 } 6583 6584 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6585 6586 // Check if the IR explicitly contains !range metadata. 6587 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6588 if (MDRange) 6589 ConservativeResult = 6590 ConservativeResult.intersectWith(MDRange.value(), RangeType); 6591 6592 // Use facts about recurrences in the underlying IR. Note that add 6593 // recurrences are AddRecExprs and thus don't hit this path. This 6594 // primarily handles shift recurrences. 6595 auto CR = getRangeForUnknownRecurrence(U); 6596 ConservativeResult = ConservativeResult.intersectWith(CR); 6597 6598 // See if ValueTracking can give us a useful range. 6599 const DataLayout &DL = getDataLayout(); 6600 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6601 if (Known.getBitWidth() != BitWidth) 6602 Known = Known.zextOrTrunc(BitWidth); 6603 6604 // ValueTracking may be able to compute a tighter result for the number of 6605 // sign bits than for the value of those sign bits. 6606 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6607 if (U->getType()->isPointerTy()) { 6608 // If the pointer size is larger than the index size type, this can cause 6609 // NS to be larger than BitWidth. So compensate for this. 6610 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6611 int ptrIdxDiff = ptrSize - BitWidth; 6612 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6613 NS -= ptrIdxDiff; 6614 } 6615 6616 if (NS > 1) { 6617 // If we know any of the sign bits, we know all of the sign bits. 6618 if (!Known.Zero.getHiBits(NS).isZero()) 6619 Known.Zero.setHighBits(NS); 6620 if (!Known.One.getHiBits(NS).isZero()) 6621 Known.One.setHighBits(NS); 6622 } 6623 6624 if (Known.getMinValue() != Known.getMaxValue() + 1) 6625 ConservativeResult = ConservativeResult.intersectWith( 6626 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6627 RangeType); 6628 if (NS > 1) 6629 ConservativeResult = ConservativeResult.intersectWith( 6630 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6631 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6632 RangeType); 6633 6634 // A range of Phi is a subset of union of all ranges of its input. 6635 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6636 // Make sure that we do not run over cycled Phis. 6637 if (PendingPhiRanges.insert(Phi).second) { 6638 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6639 for (const auto &Op : Phi->operands()) { 6640 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6641 RangeFromOps = RangeFromOps.unionWith(OpRange); 6642 // No point to continue if we already have a full set. 6643 if (RangeFromOps.isFullSet()) 6644 break; 6645 } 6646 ConservativeResult = 6647 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6648 bool Erased = PendingPhiRanges.erase(Phi); 6649 assert(Erased && "Failed to erase Phi properly?"); 6650 (void) Erased; 6651 } 6652 } 6653 6654 // vscale can't be equal to zero 6655 if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue())) 6656 if (II->getIntrinsicID() == Intrinsic::vscale) { 6657 ConstantRange Disallowed = APInt::getZero(BitWidth); 6658 ConservativeResult = ConservativeResult.difference(Disallowed); 6659 } 6660 6661 return setRange(U, SignHint, std::move(ConservativeResult)); 6662 } 6663 6664 return setRange(S, SignHint, std::move(ConservativeResult)); 6665 } 6666 6667 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6668 // values that the expression can take. Initially, the expression has a value 6669 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6670 // argument defines if we treat Step as signed or unsigned. 6671 static ConstantRange getRangeForAffineARHelper(APInt Step, 6672 const ConstantRange &StartRange, 6673 const APInt &MaxBECount, 6674 unsigned BitWidth, bool Signed) { 6675 // If either Step or MaxBECount is 0, then the expression won't change, and we 6676 // just need to return the initial range. 6677 if (Step == 0 || MaxBECount == 0) 6678 return StartRange; 6679 6680 // If we don't know anything about the initial value (i.e. StartRange is 6681 // FullRange), then we don't know anything about the final range either. 6682 // Return FullRange. 6683 if (StartRange.isFullSet()) 6684 return ConstantRange::getFull(BitWidth); 6685 6686 // If Step is signed and negative, then we use its absolute value, but we also 6687 // note that we're moving in the opposite direction. 6688 bool Descending = Signed && Step.isNegative(); 6689 6690 if (Signed) 6691 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6692 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6693 // This equations hold true due to the well-defined wrap-around behavior of 6694 // APInt. 6695 Step = Step.abs(); 6696 6697 // Check if Offset is more than full span of BitWidth. If it is, the 6698 // expression is guaranteed to overflow. 6699 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6700 return ConstantRange::getFull(BitWidth); 6701 6702 // Offset is by how much the expression can change. Checks above guarantee no 6703 // overflow here. 6704 APInt Offset = Step * MaxBECount; 6705 6706 // Minimum value of the final range will match the minimal value of StartRange 6707 // if the expression is increasing and will be decreased by Offset otherwise. 6708 // Maximum value of the final range will match the maximal value of StartRange 6709 // if the expression is decreasing and will be increased by Offset otherwise. 6710 APInt StartLower = StartRange.getLower(); 6711 APInt StartUpper = StartRange.getUpper() - 1; 6712 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6713 : (StartUpper + std::move(Offset)); 6714 6715 // It's possible that the new minimum/maximum value will fall into the initial 6716 // range (due to wrap around). This means that the expression can take any 6717 // value in this bitwidth, and we have to return full range. 6718 if (StartRange.contains(MovedBoundary)) 6719 return ConstantRange::getFull(BitWidth); 6720 6721 APInt NewLower = 6722 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6723 APInt NewUpper = 6724 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6725 NewUpper += 1; 6726 6727 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6728 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6729 } 6730 6731 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6732 const SCEV *Step, 6733 const SCEV *MaxBECount, 6734 unsigned BitWidth) { 6735 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6736 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6737 "Precondition!"); 6738 6739 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6740 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6741 6742 // First, consider step signed. 6743 ConstantRange StartSRange = getSignedRange(Start); 6744 ConstantRange StepSRange = getSignedRange(Step); 6745 6746 // If Step can be both positive and negative, we need to find ranges for the 6747 // maximum absolute step values in both directions and union them. 6748 ConstantRange SR = 6749 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6750 MaxBECountValue, BitWidth, /* Signed = */ true); 6751 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6752 StartSRange, MaxBECountValue, 6753 BitWidth, /* Signed = */ true)); 6754 6755 // Next, consider step unsigned. 6756 ConstantRange UR = getRangeForAffineARHelper( 6757 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6758 MaxBECountValue, BitWidth, /* Signed = */ false); 6759 6760 // Finally, intersect signed and unsigned ranges. 6761 return SR.intersectWith(UR, ConstantRange::Smallest); 6762 } 6763 6764 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6765 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6766 ScalarEvolution::RangeSignHint SignHint) { 6767 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6768 assert(AddRec->hasNoSelfWrap() && 6769 "This only works for non-self-wrapping AddRecs!"); 6770 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6771 const SCEV *Step = AddRec->getStepRecurrence(*this); 6772 // Only deal with constant step to save compile time. 6773 if (!isa<SCEVConstant>(Step)) 6774 return ConstantRange::getFull(BitWidth); 6775 // Let's make sure that we can prove that we do not self-wrap during 6776 // MaxBECount iterations. We need this because MaxBECount is a maximum 6777 // iteration count estimate, and we might infer nw from some exit for which we 6778 // do not know max exit count (or any other side reasoning). 6779 // TODO: Turn into assert at some point. 6780 if (getTypeSizeInBits(MaxBECount->getType()) > 6781 getTypeSizeInBits(AddRec->getType())) 6782 return ConstantRange::getFull(BitWidth); 6783 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6784 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6785 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6786 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6787 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6788 MaxItersWithoutWrap)) 6789 return ConstantRange::getFull(BitWidth); 6790 6791 ICmpInst::Predicate LEPred = 6792 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6793 ICmpInst::Predicate GEPred = 6794 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6795 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6796 6797 // We know that there is no self-wrap. Let's take Start and End values and 6798 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6799 // the iteration. They either lie inside the range [Min(Start, End), 6800 // Max(Start, End)] or outside it: 6801 // 6802 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6803 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6804 // 6805 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6806 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6807 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6808 // Start <= End and step is positive, or Start >= End and step is negative. 6809 const SCEV *Start = AddRec->getStart(); 6810 ConstantRange StartRange = getRangeRef(Start, SignHint); 6811 ConstantRange EndRange = getRangeRef(End, SignHint); 6812 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6813 // If they already cover full iteration space, we will know nothing useful 6814 // even if we prove what we want to prove. 6815 if (RangeBetween.isFullSet()) 6816 return RangeBetween; 6817 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6818 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6819 : RangeBetween.isWrappedSet(); 6820 if (IsWrappedSet) 6821 return ConstantRange::getFull(BitWidth); 6822 6823 if (isKnownPositive(Step) && 6824 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6825 return RangeBetween; 6826 else if (isKnownNegative(Step) && 6827 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6828 return RangeBetween; 6829 return ConstantRange::getFull(BitWidth); 6830 } 6831 6832 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6833 const SCEV *Step, 6834 const SCEV *MaxBECount, 6835 unsigned BitWidth) { 6836 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6837 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6838 6839 struct SelectPattern { 6840 Value *Condition = nullptr; 6841 APInt TrueValue; 6842 APInt FalseValue; 6843 6844 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6845 const SCEV *S) { 6846 Optional<unsigned> CastOp; 6847 APInt Offset(BitWidth, 0); 6848 6849 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6850 "Should be!"); 6851 6852 // Peel off a constant offset: 6853 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6854 // In the future we could consider being smarter here and handle 6855 // {Start+Step,+,Step} too. 6856 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6857 return; 6858 6859 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6860 S = SA->getOperand(1); 6861 } 6862 6863 // Peel off a cast operation 6864 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6865 CastOp = SCast->getSCEVType(); 6866 S = SCast->getOperand(); 6867 } 6868 6869 using namespace llvm::PatternMatch; 6870 6871 auto *SU = dyn_cast<SCEVUnknown>(S); 6872 const APInt *TrueVal, *FalseVal; 6873 if (!SU || 6874 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6875 m_APInt(FalseVal)))) { 6876 Condition = nullptr; 6877 return; 6878 } 6879 6880 TrueValue = *TrueVal; 6881 FalseValue = *FalseVal; 6882 6883 // Re-apply the cast we peeled off earlier 6884 if (CastOp) 6885 switch (*CastOp) { 6886 default: 6887 llvm_unreachable("Unknown SCEV cast type!"); 6888 6889 case scTruncate: 6890 TrueValue = TrueValue.trunc(BitWidth); 6891 FalseValue = FalseValue.trunc(BitWidth); 6892 break; 6893 case scZeroExtend: 6894 TrueValue = TrueValue.zext(BitWidth); 6895 FalseValue = FalseValue.zext(BitWidth); 6896 break; 6897 case scSignExtend: 6898 TrueValue = TrueValue.sext(BitWidth); 6899 FalseValue = FalseValue.sext(BitWidth); 6900 break; 6901 } 6902 6903 // Re-apply the constant offset we peeled off earlier 6904 TrueValue += Offset; 6905 FalseValue += Offset; 6906 } 6907 6908 bool isRecognized() { return Condition != nullptr; } 6909 }; 6910 6911 SelectPattern StartPattern(*this, BitWidth, Start); 6912 if (!StartPattern.isRecognized()) 6913 return ConstantRange::getFull(BitWidth); 6914 6915 SelectPattern StepPattern(*this, BitWidth, Step); 6916 if (!StepPattern.isRecognized()) 6917 return ConstantRange::getFull(BitWidth); 6918 6919 if (StartPattern.Condition != StepPattern.Condition) { 6920 // We don't handle this case today; but we could, by considering four 6921 // possibilities below instead of two. I'm not sure if there are cases where 6922 // that will help over what getRange already does, though. 6923 return ConstantRange::getFull(BitWidth); 6924 } 6925 6926 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6927 // construct arbitrary general SCEV expressions here. This function is called 6928 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6929 // say) can end up caching a suboptimal value. 6930 6931 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6932 // C2352 and C2512 (otherwise it isn't needed). 6933 6934 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6935 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6936 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6937 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6938 6939 ConstantRange TrueRange = 6940 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6941 ConstantRange FalseRange = 6942 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6943 6944 return TrueRange.unionWith(FalseRange); 6945 } 6946 6947 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6948 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6949 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6950 6951 // Return early if there are no flags to propagate to the SCEV. 6952 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6953 if (BinOp->hasNoUnsignedWrap()) 6954 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6955 if (BinOp->hasNoSignedWrap()) 6956 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6957 if (Flags == SCEV::FlagAnyWrap) 6958 return SCEV::FlagAnyWrap; 6959 6960 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6961 } 6962 6963 const Instruction * 6964 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6965 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6966 return &*AddRec->getLoop()->getHeader()->begin(); 6967 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6968 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6969 return I; 6970 return nullptr; 6971 } 6972 6973 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6974 /// \p Ops remains unmodified. 6975 static void collectUniqueOps(const SCEV *S, 6976 SmallVectorImpl<const SCEV *> &Ops) { 6977 SmallPtrSet<const SCEV *, 4> Unique; 6978 auto InsertUnique = [&](const SCEV *S) { 6979 if (Unique.insert(S).second) 6980 Ops.push_back(S); 6981 }; 6982 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6983 for (const auto *Op : S2->operands()) 6984 InsertUnique(Op); 6985 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6986 for (const auto *Op : S2->operands()) 6987 InsertUnique(Op); 6988 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6989 for (const auto *Op : S2->operands()) 6990 InsertUnique(Op); 6991 } 6992 6993 const Instruction * 6994 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6995 bool &Precise) { 6996 Precise = true; 6997 // Do a bounded search of the def relation of the requested SCEVs. 6998 SmallSet<const SCEV *, 16> Visited; 6999 SmallVector<const SCEV *> Worklist; 7000 auto pushOp = [&](const SCEV *S) { 7001 if (!Visited.insert(S).second) 7002 return; 7003 // Threshold of 30 here is arbitrary. 7004 if (Visited.size() > 30) { 7005 Precise = false; 7006 return; 7007 } 7008 Worklist.push_back(S); 7009 }; 7010 7011 for (const auto *S : Ops) 7012 pushOp(S); 7013 7014 const Instruction *Bound = nullptr; 7015 while (!Worklist.empty()) { 7016 auto *S = Worklist.pop_back_val(); 7017 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7018 if (!Bound || DT.dominates(Bound, DefI)) 7019 Bound = DefI; 7020 } else { 7021 SmallVector<const SCEV *, 4> Ops; 7022 collectUniqueOps(S, Ops); 7023 for (const auto *Op : Ops) 7024 pushOp(Op); 7025 } 7026 } 7027 return Bound ? Bound : &*F.getEntryBlock().begin(); 7028 } 7029 7030 const Instruction * 7031 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7032 bool Discard; 7033 return getDefiningScopeBound(Ops, Discard); 7034 } 7035 7036 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7037 const Instruction *B) { 7038 if (A->getParent() == B->getParent() && 7039 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7040 B->getIterator())) 7041 return true; 7042 7043 auto *BLoop = LI.getLoopFor(B->getParent()); 7044 if (BLoop && BLoop->getHeader() == B->getParent() && 7045 BLoop->getLoopPreheader() == A->getParent() && 7046 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7047 A->getParent()->end()) && 7048 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7049 B->getIterator())) 7050 return true; 7051 return false; 7052 } 7053 7054 7055 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7056 // Only proceed if we can prove that I does not yield poison. 7057 if (!programUndefinedIfPoison(I)) 7058 return false; 7059 7060 // At this point we know that if I is executed, then it does not wrap 7061 // according to at least one of NSW or NUW. If I is not executed, then we do 7062 // not know if the calculation that I represents would wrap. Multiple 7063 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7064 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7065 // derived from other instructions that map to the same SCEV. We cannot make 7066 // that guarantee for cases where I is not executed. So we need to find a 7067 // upper bound on the defining scope for the SCEV, and prove that I is 7068 // executed every time we enter that scope. When the bounding scope is a 7069 // loop (the common case), this is equivalent to proving I executes on every 7070 // iteration of that loop. 7071 SmallVector<const SCEV *> SCEVOps; 7072 for (const Use &Op : I->operands()) { 7073 // I could be an extractvalue from a call to an overflow intrinsic. 7074 // TODO: We can do better here in some cases. 7075 if (isSCEVable(Op->getType())) 7076 SCEVOps.push_back(getSCEV(Op)); 7077 } 7078 auto *DefI = getDefiningScopeBound(SCEVOps); 7079 return isGuaranteedToTransferExecutionTo(DefI, I); 7080 } 7081 7082 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7083 // If we know that \c I can never be poison period, then that's enough. 7084 if (isSCEVExprNeverPoison(I)) 7085 return true; 7086 7087 // For an add recurrence specifically, we assume that infinite loops without 7088 // side effects are undefined behavior, and then reason as follows: 7089 // 7090 // If the add recurrence is poison in any iteration, it is poison on all 7091 // future iterations (since incrementing poison yields poison). If the result 7092 // of the add recurrence is fed into the loop latch condition and the loop 7093 // does not contain any throws or exiting blocks other than the latch, we now 7094 // have the ability to "choose" whether the backedge is taken or not (by 7095 // choosing a sufficiently evil value for the poison feeding into the branch) 7096 // for every iteration including and after the one in which \p I first became 7097 // poison. There are two possibilities (let's call the iteration in which \p 7098 // I first became poison as K): 7099 // 7100 // 1. In the set of iterations including and after K, the loop body executes 7101 // no side effects. In this case executing the backege an infinte number 7102 // of times will yield undefined behavior. 7103 // 7104 // 2. In the set of iterations including and after K, the loop body executes 7105 // at least one side effect. In this case, that specific instance of side 7106 // effect is control dependent on poison, which also yields undefined 7107 // behavior. 7108 7109 auto *ExitingBB = L->getExitingBlock(); 7110 auto *LatchBB = L->getLoopLatch(); 7111 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7112 return false; 7113 7114 SmallPtrSet<const Instruction *, 16> Pushed; 7115 SmallVector<const Instruction *, 8> PoisonStack; 7116 7117 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7118 // things that are known to be poison under that assumption go on the 7119 // PoisonStack. 7120 Pushed.insert(I); 7121 PoisonStack.push_back(I); 7122 7123 bool LatchControlDependentOnPoison = false; 7124 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7125 const Instruction *Poison = PoisonStack.pop_back_val(); 7126 7127 for (const auto *PoisonUser : Poison->users()) { 7128 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7129 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7130 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7131 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7132 assert(BI->isConditional() && "Only possibility!"); 7133 if (BI->getParent() == LatchBB) { 7134 LatchControlDependentOnPoison = true; 7135 break; 7136 } 7137 } 7138 } 7139 } 7140 7141 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7142 } 7143 7144 ScalarEvolution::LoopProperties 7145 ScalarEvolution::getLoopProperties(const Loop *L) { 7146 using LoopProperties = ScalarEvolution::LoopProperties; 7147 7148 auto Itr = LoopPropertiesCache.find(L); 7149 if (Itr == LoopPropertiesCache.end()) { 7150 auto HasSideEffects = [](Instruction *I) { 7151 if (auto *SI = dyn_cast<StoreInst>(I)) 7152 return !SI->isSimple(); 7153 7154 return I->mayThrow() || I->mayWriteToMemory(); 7155 }; 7156 7157 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7158 /*HasNoSideEffects*/ true}; 7159 7160 for (auto *BB : L->getBlocks()) 7161 for (auto &I : *BB) { 7162 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7163 LP.HasNoAbnormalExits = false; 7164 if (HasSideEffects(&I)) 7165 LP.HasNoSideEffects = false; 7166 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7167 break; // We're already as pessimistic as we can get. 7168 } 7169 7170 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7171 assert(InsertPair.second && "We just checked!"); 7172 Itr = InsertPair.first; 7173 } 7174 7175 return Itr->second; 7176 } 7177 7178 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7179 // A mustprogress loop without side effects must be finite. 7180 // TODO: The check used here is very conservative. It's only *specific* 7181 // side effects which are well defined in infinite loops. 7182 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7183 } 7184 7185 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7186 // Worklist item with a Value and a bool indicating whether all operands have 7187 // been visited already. 7188 using PointerTy = PointerIntPair<Value *, 1, bool>; 7189 SmallVector<PointerTy> Stack; 7190 7191 Stack.emplace_back(V, true); 7192 Stack.emplace_back(V, false); 7193 while (!Stack.empty()) { 7194 auto E = Stack.pop_back_val(); 7195 Value *CurV = E.getPointer(); 7196 7197 if (getExistingSCEV(CurV)) 7198 continue; 7199 7200 SmallVector<Value *> Ops; 7201 const SCEV *CreatedSCEV = nullptr; 7202 // If all operands have been visited already, create the SCEV. 7203 if (E.getInt()) { 7204 CreatedSCEV = createSCEV(CurV); 7205 } else { 7206 // Otherwise get the operands we need to create SCEV's for before creating 7207 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7208 // just use it. 7209 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7210 } 7211 7212 if (CreatedSCEV) { 7213 insertValueToMap(CurV, CreatedSCEV); 7214 } else { 7215 // Queue CurV for SCEV creation, followed by its's operands which need to 7216 // be constructed first. 7217 Stack.emplace_back(CurV, true); 7218 for (Value *Op : Ops) 7219 Stack.emplace_back(Op, false); 7220 } 7221 } 7222 7223 return getExistingSCEV(V); 7224 } 7225 7226 const SCEV * 7227 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7228 if (!isSCEVable(V->getType())) 7229 return getUnknown(V); 7230 7231 if (Instruction *I = dyn_cast<Instruction>(V)) { 7232 // Don't attempt to analyze instructions in blocks that aren't 7233 // reachable. Such instructions don't matter, and they aren't required 7234 // to obey basic rules for definitions dominating uses which this 7235 // analysis depends on. 7236 if (!DT.isReachableFromEntry(I->getParent())) 7237 return getUnknown(PoisonValue::get(V->getType())); 7238 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7239 return getConstant(CI); 7240 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 7241 if (!GA->isInterposable()) { 7242 Ops.push_back(GA->getAliasee()); 7243 return nullptr; 7244 } 7245 return getUnknown(V); 7246 } else if (!isa<ConstantExpr>(V)) 7247 return getUnknown(V); 7248 7249 Operator *U = cast<Operator>(V); 7250 if (auto BO = MatchBinaryOp(U, DT)) { 7251 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7252 switch (BO->Opcode) { 7253 case Instruction::Add: { 7254 // For additions and multiplications, traverse add/mul chains for which we 7255 // can potentially create a single SCEV, to reduce the number of 7256 // get{Add,Mul}Expr calls. 7257 do { 7258 if (BO->Op) { 7259 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7260 Ops.push_back(BO->Op); 7261 break; 7262 } 7263 } 7264 Ops.push_back(BO->RHS); 7265 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7266 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7267 NewBO->Opcode != Instruction::Sub)) { 7268 Ops.push_back(BO->LHS); 7269 break; 7270 } 7271 BO = NewBO; 7272 } while (true); 7273 return nullptr; 7274 } 7275 7276 case Instruction::Mul: { 7277 do { 7278 if (BO->Op) { 7279 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7280 Ops.push_back(BO->Op); 7281 break; 7282 } 7283 } 7284 Ops.push_back(BO->RHS); 7285 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7286 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7287 Ops.push_back(BO->LHS); 7288 break; 7289 } 7290 BO = NewBO; 7291 } while (true); 7292 return nullptr; 7293 } 7294 case Instruction::Sub: 7295 case Instruction::UDiv: 7296 case Instruction::URem: 7297 break; 7298 case Instruction::AShr: 7299 case Instruction::Shl: 7300 case Instruction::Xor: 7301 if (!IsConstArg) 7302 return nullptr; 7303 break; 7304 case Instruction::And: 7305 case Instruction::Or: 7306 if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1)) 7307 return nullptr; 7308 break; 7309 case Instruction::LShr: 7310 return getUnknown(V); 7311 default: 7312 llvm_unreachable("Unhandled binop"); 7313 break; 7314 } 7315 7316 Ops.push_back(BO->LHS); 7317 Ops.push_back(BO->RHS); 7318 return nullptr; 7319 } 7320 7321 switch (U->getOpcode()) { 7322 case Instruction::Trunc: 7323 case Instruction::ZExt: 7324 case Instruction::SExt: 7325 case Instruction::PtrToInt: 7326 Ops.push_back(U->getOperand(0)); 7327 return nullptr; 7328 7329 case Instruction::BitCast: 7330 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7331 Ops.push_back(U->getOperand(0)); 7332 return nullptr; 7333 } 7334 return getUnknown(V); 7335 7336 case Instruction::SDiv: 7337 case Instruction::SRem: 7338 Ops.push_back(U->getOperand(0)); 7339 Ops.push_back(U->getOperand(1)); 7340 return nullptr; 7341 7342 case Instruction::GetElementPtr: 7343 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7344 "GEP source element type must be sized"); 7345 for (Value *Index : U->operands()) 7346 Ops.push_back(Index); 7347 return nullptr; 7348 7349 case Instruction::IntToPtr: 7350 return getUnknown(V); 7351 7352 case Instruction::PHI: 7353 // Keep constructing SCEVs' for phis recursively for now. 7354 return nullptr; 7355 7356 case Instruction::Select: { 7357 // Check if U is a select that can be simplified to a SCEVUnknown. 7358 auto CanSimplifyToUnknown = [this, U]() { 7359 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7360 return false; 7361 7362 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7363 if (!ICI) 7364 return false; 7365 Value *LHS = ICI->getOperand(0); 7366 Value *RHS = ICI->getOperand(1); 7367 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7368 ICI->getPredicate() == CmpInst::ICMP_NE) { 7369 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7370 return true; 7371 } else if (getTypeSizeInBits(LHS->getType()) > 7372 getTypeSizeInBits(U->getType())) 7373 return true; 7374 return false; 7375 }; 7376 if (CanSimplifyToUnknown()) 7377 return getUnknown(U); 7378 7379 for (Value *Inc : U->operands()) 7380 Ops.push_back(Inc); 7381 return nullptr; 7382 break; 7383 } 7384 case Instruction::Call: 7385 case Instruction::Invoke: 7386 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7387 Ops.push_back(RV); 7388 return nullptr; 7389 } 7390 7391 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7392 switch (II->getIntrinsicID()) { 7393 case Intrinsic::abs: 7394 Ops.push_back(II->getArgOperand(0)); 7395 return nullptr; 7396 case Intrinsic::umax: 7397 case Intrinsic::umin: 7398 case Intrinsic::smax: 7399 case Intrinsic::smin: 7400 case Intrinsic::usub_sat: 7401 case Intrinsic::uadd_sat: 7402 Ops.push_back(II->getArgOperand(0)); 7403 Ops.push_back(II->getArgOperand(1)); 7404 return nullptr; 7405 case Intrinsic::start_loop_iterations: 7406 case Intrinsic::annotation: 7407 case Intrinsic::ptr_annotation: 7408 Ops.push_back(II->getArgOperand(0)); 7409 return nullptr; 7410 default: 7411 break; 7412 } 7413 } 7414 break; 7415 } 7416 7417 return nullptr; 7418 } 7419 7420 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7421 if (!isSCEVable(V->getType())) 7422 return getUnknown(V); 7423 7424 if (Instruction *I = dyn_cast<Instruction>(V)) { 7425 // Don't attempt to analyze instructions in blocks that aren't 7426 // reachable. Such instructions don't matter, and they aren't required 7427 // to obey basic rules for definitions dominating uses which this 7428 // analysis depends on. 7429 if (!DT.isReachableFromEntry(I->getParent())) 7430 return getUnknown(PoisonValue::get(V->getType())); 7431 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7432 return getConstant(CI); 7433 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7434 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7435 else if (!isa<ConstantExpr>(V)) 7436 return getUnknown(V); 7437 7438 const SCEV *LHS; 7439 const SCEV *RHS; 7440 7441 Operator *U = cast<Operator>(V); 7442 if (auto BO = MatchBinaryOp(U, DT)) { 7443 switch (BO->Opcode) { 7444 case Instruction::Add: { 7445 // The simple thing to do would be to just call getSCEV on both operands 7446 // and call getAddExpr with the result. However if we're looking at a 7447 // bunch of things all added together, this can be quite inefficient, 7448 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7449 // Instead, gather up all the operands and make a single getAddExpr call. 7450 // LLVM IR canonical form means we need only traverse the left operands. 7451 SmallVector<const SCEV *, 4> AddOps; 7452 do { 7453 if (BO->Op) { 7454 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7455 AddOps.push_back(OpSCEV); 7456 break; 7457 } 7458 7459 // If a NUW or NSW flag can be applied to the SCEV for this 7460 // addition, then compute the SCEV for this addition by itself 7461 // with a separate call to getAddExpr. We need to do that 7462 // instead of pushing the operands of the addition onto AddOps, 7463 // since the flags are only known to apply to this particular 7464 // addition - they may not apply to other additions that can be 7465 // formed with operands from AddOps. 7466 const SCEV *RHS = getSCEV(BO->RHS); 7467 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7468 if (Flags != SCEV::FlagAnyWrap) { 7469 const SCEV *LHS = getSCEV(BO->LHS); 7470 if (BO->Opcode == Instruction::Sub) 7471 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7472 else 7473 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7474 break; 7475 } 7476 } 7477 7478 if (BO->Opcode == Instruction::Sub) 7479 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7480 else 7481 AddOps.push_back(getSCEV(BO->RHS)); 7482 7483 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7484 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7485 NewBO->Opcode != Instruction::Sub)) { 7486 AddOps.push_back(getSCEV(BO->LHS)); 7487 break; 7488 } 7489 BO = NewBO; 7490 } while (true); 7491 7492 return getAddExpr(AddOps); 7493 } 7494 7495 case Instruction::Mul: { 7496 SmallVector<const SCEV *, 4> MulOps; 7497 do { 7498 if (BO->Op) { 7499 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7500 MulOps.push_back(OpSCEV); 7501 break; 7502 } 7503 7504 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7505 if (Flags != SCEV::FlagAnyWrap) { 7506 LHS = getSCEV(BO->LHS); 7507 RHS = getSCEV(BO->RHS); 7508 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7509 break; 7510 } 7511 } 7512 7513 MulOps.push_back(getSCEV(BO->RHS)); 7514 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7515 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7516 MulOps.push_back(getSCEV(BO->LHS)); 7517 break; 7518 } 7519 BO = NewBO; 7520 } while (true); 7521 7522 return getMulExpr(MulOps); 7523 } 7524 case Instruction::UDiv: 7525 LHS = getSCEV(BO->LHS); 7526 RHS = getSCEV(BO->RHS); 7527 return getUDivExpr(LHS, RHS); 7528 case Instruction::URem: 7529 LHS = getSCEV(BO->LHS); 7530 RHS = getSCEV(BO->RHS); 7531 return getURemExpr(LHS, RHS); 7532 case Instruction::Sub: { 7533 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7534 if (BO->Op) 7535 Flags = getNoWrapFlagsFromUB(BO->Op); 7536 LHS = getSCEV(BO->LHS); 7537 RHS = getSCEV(BO->RHS); 7538 return getMinusSCEV(LHS, RHS, Flags); 7539 } 7540 case Instruction::And: 7541 // For an expression like x&255 that merely masks off the high bits, 7542 // use zext(trunc(x)) as the SCEV expression. 7543 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7544 if (CI->isZero()) 7545 return getSCEV(BO->RHS); 7546 if (CI->isMinusOne()) 7547 return getSCEV(BO->LHS); 7548 const APInt &A = CI->getValue(); 7549 7550 // Instcombine's ShrinkDemandedConstant may strip bits out of 7551 // constants, obscuring what would otherwise be a low-bits mask. 7552 // Use computeKnownBits to compute what ShrinkDemandedConstant 7553 // knew about to reconstruct a low-bits mask value. 7554 unsigned LZ = A.countLeadingZeros(); 7555 unsigned TZ = A.countTrailingZeros(); 7556 unsigned BitWidth = A.getBitWidth(); 7557 KnownBits Known(BitWidth); 7558 computeKnownBits(BO->LHS, Known, getDataLayout(), 7559 0, &AC, nullptr, &DT); 7560 7561 APInt EffectiveMask = 7562 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7563 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7564 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7565 const SCEV *LHS = getSCEV(BO->LHS); 7566 const SCEV *ShiftedLHS = nullptr; 7567 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7568 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7569 // For an expression like (x * 8) & 8, simplify the multiply. 7570 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7571 unsigned GCD = std::min(MulZeros, TZ); 7572 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7573 SmallVector<const SCEV*, 4> MulOps; 7574 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7575 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7576 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7577 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7578 } 7579 } 7580 if (!ShiftedLHS) 7581 ShiftedLHS = getUDivExpr(LHS, MulCount); 7582 return getMulExpr( 7583 getZeroExtendExpr( 7584 getTruncateExpr(ShiftedLHS, 7585 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7586 BO->LHS->getType()), 7587 MulCount); 7588 } 7589 } 7590 // Binary `and` is a bit-wise `umin`. 7591 if (BO->LHS->getType()->isIntegerTy(1)) { 7592 LHS = getSCEV(BO->LHS); 7593 RHS = getSCEV(BO->RHS); 7594 return getUMinExpr(LHS, RHS); 7595 } 7596 break; 7597 7598 case Instruction::Or: 7599 // If the RHS of the Or is a constant, we may have something like: 7600 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7601 // optimizations will transparently handle this case. 7602 // 7603 // In order for this transformation to be safe, the LHS must be of the 7604 // form X*(2^n) and the Or constant must be less than 2^n. 7605 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7606 const SCEV *LHS = getSCEV(BO->LHS); 7607 const APInt &CIVal = CI->getValue(); 7608 if (GetMinTrailingZeros(LHS) >= 7609 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7610 // Build a plain add SCEV. 7611 return getAddExpr(LHS, getSCEV(CI), 7612 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7613 } 7614 } 7615 // Binary `or` is a bit-wise `umax`. 7616 if (BO->LHS->getType()->isIntegerTy(1)) { 7617 LHS = getSCEV(BO->LHS); 7618 RHS = getSCEV(BO->RHS); 7619 return getUMaxExpr(LHS, RHS); 7620 } 7621 break; 7622 7623 case Instruction::Xor: 7624 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7625 // If the RHS of xor is -1, then this is a not operation. 7626 if (CI->isMinusOne()) 7627 return getNotSCEV(getSCEV(BO->LHS)); 7628 7629 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7630 // This is a variant of the check for xor with -1, and it handles 7631 // the case where instcombine has trimmed non-demanded bits out 7632 // of an xor with -1. 7633 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7634 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7635 if (LBO->getOpcode() == Instruction::And && 7636 LCI->getValue() == CI->getValue()) 7637 if (const SCEVZeroExtendExpr *Z = 7638 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7639 Type *UTy = BO->LHS->getType(); 7640 const SCEV *Z0 = Z->getOperand(); 7641 Type *Z0Ty = Z0->getType(); 7642 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7643 7644 // If C is a low-bits mask, the zero extend is serving to 7645 // mask off the high bits. Complement the operand and 7646 // re-apply the zext. 7647 if (CI->getValue().isMask(Z0TySize)) 7648 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7649 7650 // If C is a single bit, it may be in the sign-bit position 7651 // before the zero-extend. In this case, represent the xor 7652 // using an add, which is equivalent, and re-apply the zext. 7653 APInt Trunc = CI->getValue().trunc(Z0TySize); 7654 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7655 Trunc.isSignMask()) 7656 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7657 UTy); 7658 } 7659 } 7660 break; 7661 7662 case Instruction::Shl: 7663 // Turn shift left of a constant amount into a multiply. 7664 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7665 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7666 7667 // If the shift count is not less than the bitwidth, the result of 7668 // the shift is undefined. Don't try to analyze it, because the 7669 // resolution chosen here may differ from the resolution chosen in 7670 // other parts of the compiler. 7671 if (SA->getValue().uge(BitWidth)) 7672 break; 7673 7674 // We can safely preserve the nuw flag in all cases. It's also safe to 7675 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7676 // requires special handling. It can be preserved as long as we're not 7677 // left shifting by bitwidth - 1. 7678 auto Flags = SCEV::FlagAnyWrap; 7679 if (BO->Op) { 7680 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7681 if ((MulFlags & SCEV::FlagNSW) && 7682 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7683 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7684 if (MulFlags & SCEV::FlagNUW) 7685 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7686 } 7687 7688 ConstantInt *X = ConstantInt::get( 7689 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7690 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7691 } 7692 break; 7693 7694 case Instruction::AShr: { 7695 // AShr X, C, where C is a constant. 7696 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7697 if (!CI) 7698 break; 7699 7700 Type *OuterTy = BO->LHS->getType(); 7701 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7702 // If the shift count is not less than the bitwidth, the result of 7703 // the shift is undefined. Don't try to analyze it, because the 7704 // resolution chosen here may differ from the resolution chosen in 7705 // other parts of the compiler. 7706 if (CI->getValue().uge(BitWidth)) 7707 break; 7708 7709 if (CI->isZero()) 7710 return getSCEV(BO->LHS); // shift by zero --> noop 7711 7712 uint64_t AShrAmt = CI->getZExtValue(); 7713 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7714 7715 Operator *L = dyn_cast<Operator>(BO->LHS); 7716 if (L && L->getOpcode() == Instruction::Shl) { 7717 // X = Shl A, n 7718 // Y = AShr X, m 7719 // Both n and m are constant. 7720 7721 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7722 if (L->getOperand(1) == BO->RHS) 7723 // For a two-shift sext-inreg, i.e. n = m, 7724 // use sext(trunc(x)) as the SCEV expression. 7725 return getSignExtendExpr( 7726 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7727 7728 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7729 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7730 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7731 if (ShlAmt > AShrAmt) { 7732 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7733 // expression. We already checked that ShlAmt < BitWidth, so 7734 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7735 // ShlAmt - AShrAmt < Amt. 7736 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7737 ShlAmt - AShrAmt); 7738 return getSignExtendExpr( 7739 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7740 getConstant(Mul)), OuterTy); 7741 } 7742 } 7743 } 7744 break; 7745 } 7746 } 7747 } 7748 7749 switch (U->getOpcode()) { 7750 case Instruction::Trunc: 7751 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7752 7753 case Instruction::ZExt: 7754 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7755 7756 case Instruction::SExt: 7757 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7758 // The NSW flag of a subtract does not always survive the conversion to 7759 // A + (-1)*B. By pushing sign extension onto its operands we are much 7760 // more likely to preserve NSW and allow later AddRec optimisations. 7761 // 7762 // NOTE: This is effectively duplicating this logic from getSignExtend: 7763 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7764 // but by that point the NSW information has potentially been lost. 7765 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7766 Type *Ty = U->getType(); 7767 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7768 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7769 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7770 } 7771 } 7772 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7773 7774 case Instruction::BitCast: 7775 // BitCasts are no-op casts so we just eliminate the cast. 7776 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7777 return getSCEV(U->getOperand(0)); 7778 break; 7779 7780 case Instruction::PtrToInt: { 7781 // Pointer to integer cast is straight-forward, so do model it. 7782 const SCEV *Op = getSCEV(U->getOperand(0)); 7783 Type *DstIntTy = U->getType(); 7784 // But only if effective SCEV (integer) type is wide enough to represent 7785 // all possible pointer values. 7786 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7787 if (isa<SCEVCouldNotCompute>(IntOp)) 7788 return getUnknown(V); 7789 return IntOp; 7790 } 7791 case Instruction::IntToPtr: 7792 // Just don't deal with inttoptr casts. 7793 return getUnknown(V); 7794 7795 case Instruction::SDiv: 7796 // If both operands are non-negative, this is just an udiv. 7797 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7798 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7799 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7800 break; 7801 7802 case Instruction::SRem: 7803 // If both operands are non-negative, this is just an urem. 7804 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7805 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7806 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7807 break; 7808 7809 case Instruction::GetElementPtr: 7810 return createNodeForGEP(cast<GEPOperator>(U)); 7811 7812 case Instruction::PHI: 7813 return createNodeForPHI(cast<PHINode>(U)); 7814 7815 case Instruction::Select: 7816 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7817 U->getOperand(2)); 7818 7819 case Instruction::Call: 7820 case Instruction::Invoke: 7821 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7822 return getSCEV(RV); 7823 7824 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7825 switch (II->getIntrinsicID()) { 7826 case Intrinsic::abs: 7827 return getAbsExpr( 7828 getSCEV(II->getArgOperand(0)), 7829 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7830 case Intrinsic::umax: 7831 LHS = getSCEV(II->getArgOperand(0)); 7832 RHS = getSCEV(II->getArgOperand(1)); 7833 return getUMaxExpr(LHS, RHS); 7834 case Intrinsic::umin: 7835 LHS = getSCEV(II->getArgOperand(0)); 7836 RHS = getSCEV(II->getArgOperand(1)); 7837 return getUMinExpr(LHS, RHS); 7838 case Intrinsic::smax: 7839 LHS = getSCEV(II->getArgOperand(0)); 7840 RHS = getSCEV(II->getArgOperand(1)); 7841 return getSMaxExpr(LHS, RHS); 7842 case Intrinsic::smin: 7843 LHS = getSCEV(II->getArgOperand(0)); 7844 RHS = getSCEV(II->getArgOperand(1)); 7845 return getSMinExpr(LHS, RHS); 7846 case Intrinsic::usub_sat: { 7847 const SCEV *X = getSCEV(II->getArgOperand(0)); 7848 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7849 const SCEV *ClampedY = getUMinExpr(X, Y); 7850 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7851 } 7852 case Intrinsic::uadd_sat: { 7853 const SCEV *X = getSCEV(II->getArgOperand(0)); 7854 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7855 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7856 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7857 } 7858 case Intrinsic::start_loop_iterations: 7859 case Intrinsic::annotation: 7860 case Intrinsic::ptr_annotation: 7861 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 7862 // just eqivalent to the first operand for SCEV purposes. 7863 return getSCEV(II->getArgOperand(0)); 7864 default: 7865 break; 7866 } 7867 } 7868 break; 7869 } 7870 7871 return getUnknown(V); 7872 } 7873 7874 //===----------------------------------------------------------------------===// 7875 // Iteration Count Computation Code 7876 // 7877 7878 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7879 bool Extend) { 7880 if (isa<SCEVCouldNotCompute>(ExitCount)) 7881 return getCouldNotCompute(); 7882 7883 auto *ExitCountType = ExitCount->getType(); 7884 assert(ExitCountType->isIntegerTy()); 7885 7886 if (!Extend) 7887 return getAddExpr(ExitCount, getOne(ExitCountType)); 7888 7889 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7890 1 + ExitCountType->getScalarSizeInBits()); 7891 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7892 getOne(WiderType)); 7893 } 7894 7895 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7896 if (!ExitCount) 7897 return 0; 7898 7899 ConstantInt *ExitConst = ExitCount->getValue(); 7900 7901 // Guard against huge trip counts. 7902 if (ExitConst->getValue().getActiveBits() > 32) 7903 return 0; 7904 7905 // In case of integer overflow, this returns 0, which is correct. 7906 return ((unsigned)ExitConst->getZExtValue()) + 1; 7907 } 7908 7909 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7910 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7911 return getConstantTripCount(ExitCount); 7912 } 7913 7914 unsigned 7915 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7916 const BasicBlock *ExitingBlock) { 7917 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7918 assert(L->isLoopExiting(ExitingBlock) && 7919 "Exiting block must actually branch out of the loop!"); 7920 const SCEVConstant *ExitCount = 7921 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7922 return getConstantTripCount(ExitCount); 7923 } 7924 7925 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7926 const auto *MaxExitCount = 7927 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7928 return getConstantTripCount(MaxExitCount); 7929 } 7930 7931 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7932 // We can't infer from Array in Irregular Loop. 7933 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7934 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7935 return getCouldNotCompute(); 7936 7937 // FIXME: To make the scene more typical, we only analysis loops that have 7938 // one exiting block and that block must be the latch. To make it easier to 7939 // capture loops that have memory access and memory access will be executed 7940 // in each iteration. 7941 const BasicBlock *LoopLatch = L->getLoopLatch(); 7942 assert(LoopLatch && "See defination of simplify form loop."); 7943 if (L->getExitingBlock() != LoopLatch) 7944 return getCouldNotCompute(); 7945 7946 const DataLayout &DL = getDataLayout(); 7947 SmallVector<const SCEV *> InferCountColl; 7948 for (auto *BB : L->getBlocks()) { 7949 // Go here, we can know that Loop is a single exiting and simplified form 7950 // loop. Make sure that infer from Memory Operation in those BBs must be 7951 // executed in loop. First step, we can make sure that max execution time 7952 // of MemAccessBB in loop represents latch max excution time. 7953 // If MemAccessBB does not dom Latch, skip. 7954 // Entry 7955 // │ 7956 // ┌─────▼─────┐ 7957 // │Loop Header◄─────┐ 7958 // └──┬──────┬─┘ │ 7959 // │ │ │ 7960 // ┌────────▼──┐ ┌─▼─────┐ │ 7961 // │MemAccessBB│ │OtherBB│ │ 7962 // └────────┬──┘ └─┬─────┘ │ 7963 // │ │ │ 7964 // ┌─▼──────▼─┐ │ 7965 // │Loop Latch├─────┘ 7966 // └────┬─────┘ 7967 // ▼ 7968 // Exit 7969 if (!DT.dominates(BB, LoopLatch)) 7970 continue; 7971 7972 for (Instruction &Inst : *BB) { 7973 // Find Memory Operation Instruction. 7974 auto *GEP = getLoadStorePointerOperand(&Inst); 7975 if (!GEP) 7976 continue; 7977 7978 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7979 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7980 if (!ElemSize) 7981 continue; 7982 7983 // Use a existing polynomial recurrence on the trip count. 7984 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7985 if (!AddRec) 7986 continue; 7987 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7988 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7989 if (!ArrBase || !Step) 7990 continue; 7991 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7992 7993 // Only handle { %array + step }, 7994 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7995 if (AddRec->getStart() != ArrBase) 7996 continue; 7997 7998 // Memory operation pattern which have gaps. 7999 // Or repeat memory opreation. 8000 // And index of GEP wraps arround. 8001 if (Step->getAPInt().getActiveBits() > 32 || 8002 Step->getAPInt().getZExtValue() != 8003 ElemSize->getAPInt().getZExtValue() || 8004 Step->isZero() || Step->getAPInt().isNegative()) 8005 continue; 8006 8007 // Only infer from stack array which has certain size. 8008 // Make sure alloca instruction is not excuted in loop. 8009 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 8010 if (!AllocateInst || L->contains(AllocateInst->getParent())) 8011 continue; 8012 8013 // Make sure only handle normal array. 8014 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 8015 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 8016 if (!Ty || !ArrSize || !ArrSize->isOne()) 8017 continue; 8018 8019 // FIXME: Since gep indices are silently zext to the indexing type, 8020 // we will have a narrow gep index which wraps around rather than 8021 // increasing strictly, we shoule ensure that step is increasing 8022 // strictly by the loop iteration. 8023 // Now we can infer a max execution time by MemLength/StepLength. 8024 const SCEV *MemSize = 8025 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 8026 auto *MaxExeCount = 8027 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 8028 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 8029 continue; 8030 8031 // If the loop reaches the maximum number of executions, we can not 8032 // access bytes starting outside the statically allocated size without 8033 // being immediate UB. But it is allowed to enter loop header one more 8034 // time. 8035 auto *InferCount = dyn_cast<SCEVConstant>( 8036 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 8037 // Discard the maximum number of execution times under 32bits. 8038 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 8039 continue; 8040 8041 InferCountColl.push_back(InferCount); 8042 } 8043 } 8044 8045 if (InferCountColl.size() == 0) 8046 return getCouldNotCompute(); 8047 8048 return getUMinFromMismatchedTypes(InferCountColl); 8049 } 8050 8051 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8052 SmallVector<BasicBlock *, 8> ExitingBlocks; 8053 L->getExitingBlocks(ExitingBlocks); 8054 8055 Optional<unsigned> Res = None; 8056 for (auto *ExitingBB : ExitingBlocks) { 8057 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8058 if (!Res) 8059 Res = Multiple; 8060 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 8061 } 8062 return Res.value_or(1); 8063 } 8064 8065 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8066 const SCEV *ExitCount) { 8067 if (ExitCount == getCouldNotCompute()) 8068 return 1; 8069 8070 // Get the trip count 8071 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 8072 8073 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 8074 if (!TC) 8075 // Attempt to factor more general cases. Returns the greatest power of 8076 // two divisor. If overflow happens, the trip count expression is still 8077 // divisible by the greatest power of 2 divisor returned. 8078 return 1U << std::min((uint32_t)31, 8079 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 8080 8081 ConstantInt *Result = TC->getValue(); 8082 8083 // Guard against huge trip counts (this requires checking 8084 // for zero to handle the case where the trip count == -1 and the 8085 // addition wraps). 8086 if (!Result || Result->getValue().getActiveBits() > 32 || 8087 Result->getValue().getActiveBits() == 0) 8088 return 1; 8089 8090 return (unsigned)Result->getZExtValue(); 8091 } 8092 8093 /// Returns the largest constant divisor of the trip count of this loop as a 8094 /// normal unsigned value, if possible. This means that the actual trip count is 8095 /// always a multiple of the returned value (don't forget the trip count could 8096 /// very well be zero as well!). 8097 /// 8098 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8099 /// multiple of a constant (which is also the case if the trip count is simply 8100 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8101 /// if the trip count is very large (>= 2^32). 8102 /// 8103 /// As explained in the comments for getSmallConstantTripCount, this assumes 8104 /// that control exits the loop via ExitingBlock. 8105 unsigned 8106 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8107 const BasicBlock *ExitingBlock) { 8108 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8109 assert(L->isLoopExiting(ExitingBlock) && 8110 "Exiting block must actually branch out of the loop!"); 8111 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8112 return getSmallConstantTripMultiple(L, ExitCount); 8113 } 8114 8115 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8116 const BasicBlock *ExitingBlock, 8117 ExitCountKind Kind) { 8118 switch (Kind) { 8119 case Exact: 8120 case SymbolicMaximum: 8121 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8122 case ConstantMaximum: 8123 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8124 }; 8125 llvm_unreachable("Invalid ExitCountKind!"); 8126 } 8127 8128 const SCEV * 8129 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8130 SmallVector<const SCEVPredicate *, 4> &Preds) { 8131 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8132 } 8133 8134 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8135 ExitCountKind Kind) { 8136 switch (Kind) { 8137 case Exact: 8138 return getBackedgeTakenInfo(L).getExact(L, this); 8139 case ConstantMaximum: 8140 return getBackedgeTakenInfo(L).getConstantMax(this); 8141 case SymbolicMaximum: 8142 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8143 }; 8144 llvm_unreachable("Invalid ExitCountKind!"); 8145 } 8146 8147 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8148 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8149 } 8150 8151 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8152 static void PushLoopPHIs(const Loop *L, 8153 SmallVectorImpl<Instruction *> &Worklist, 8154 SmallPtrSetImpl<Instruction *> &Visited) { 8155 BasicBlock *Header = L->getHeader(); 8156 8157 // Push all Loop-header PHIs onto the Worklist stack. 8158 for (PHINode &PN : Header->phis()) 8159 if (Visited.insert(&PN).second) 8160 Worklist.push_back(&PN); 8161 } 8162 8163 const ScalarEvolution::BackedgeTakenInfo & 8164 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8165 auto &BTI = getBackedgeTakenInfo(L); 8166 if (BTI.hasFullInfo()) 8167 return BTI; 8168 8169 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8170 8171 if (!Pair.second) 8172 return Pair.first->second; 8173 8174 BackedgeTakenInfo Result = 8175 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8176 8177 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8178 } 8179 8180 ScalarEvolution::BackedgeTakenInfo & 8181 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8182 // Initially insert an invalid entry for this loop. If the insertion 8183 // succeeds, proceed to actually compute a backedge-taken count and 8184 // update the value. The temporary CouldNotCompute value tells SCEV 8185 // code elsewhere that it shouldn't attempt to request a new 8186 // backedge-taken count, which could result in infinite recursion. 8187 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8188 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8189 if (!Pair.second) 8190 return Pair.first->second; 8191 8192 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8193 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8194 // must be cleared in this scope. 8195 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8196 8197 // In product build, there are no usage of statistic. 8198 (void)NumTripCountsComputed; 8199 (void)NumTripCountsNotComputed; 8200 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 8201 const SCEV *BEExact = Result.getExact(L, this); 8202 if (BEExact != getCouldNotCompute()) { 8203 assert(isLoopInvariant(BEExact, L) && 8204 isLoopInvariant(Result.getConstantMax(this), L) && 8205 "Computed backedge-taken count isn't loop invariant for loop!"); 8206 ++NumTripCountsComputed; 8207 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 8208 isa<PHINode>(L->getHeader()->begin())) { 8209 // Only count loops that have phi nodes as not being computable. 8210 ++NumTripCountsNotComputed; 8211 } 8212 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 8213 8214 // Now that we know more about the trip count for this loop, forget any 8215 // existing SCEV values for PHI nodes in this loop since they are only 8216 // conservative estimates made without the benefit of trip count 8217 // information. This invalidation is not necessary for correctness, and is 8218 // only done to produce more precise results. 8219 if (Result.hasAnyInfo()) { 8220 // Invalidate any expression using an addrec in this loop. 8221 SmallVector<const SCEV *, 8> ToForget; 8222 auto LoopUsersIt = LoopUsers.find(L); 8223 if (LoopUsersIt != LoopUsers.end()) 8224 append_range(ToForget, LoopUsersIt->second); 8225 forgetMemoizedResults(ToForget); 8226 8227 // Invalidate constant-evolved loop header phis. 8228 for (PHINode &PN : L->getHeader()->phis()) 8229 ConstantEvolutionLoopExitValue.erase(&PN); 8230 } 8231 8232 // Re-lookup the insert position, since the call to 8233 // computeBackedgeTakenCount above could result in a 8234 // recusive call to getBackedgeTakenInfo (on a different 8235 // loop), which would invalidate the iterator computed 8236 // earlier. 8237 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8238 } 8239 8240 void ScalarEvolution::forgetAllLoops() { 8241 // This method is intended to forget all info about loops. It should 8242 // invalidate caches as if the following happened: 8243 // - The trip counts of all loops have changed arbitrarily 8244 // - Every llvm::Value has been updated in place to produce a different 8245 // result. 8246 BackedgeTakenCounts.clear(); 8247 PredicatedBackedgeTakenCounts.clear(); 8248 BECountUsers.clear(); 8249 LoopPropertiesCache.clear(); 8250 ConstantEvolutionLoopExitValue.clear(); 8251 ValueExprMap.clear(); 8252 ValuesAtScopes.clear(); 8253 ValuesAtScopesUsers.clear(); 8254 LoopDispositions.clear(); 8255 BlockDispositions.clear(); 8256 UnsignedRanges.clear(); 8257 SignedRanges.clear(); 8258 ExprValueMap.clear(); 8259 HasRecMap.clear(); 8260 MinTrailingZerosCache.clear(); 8261 PredicatedSCEVRewrites.clear(); 8262 } 8263 8264 void ScalarEvolution::forgetLoop(const Loop *L) { 8265 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8266 SmallVector<Instruction *, 32> Worklist; 8267 SmallPtrSet<Instruction *, 16> Visited; 8268 SmallVector<const SCEV *, 16> ToForget; 8269 8270 // Iterate over all the loops and sub-loops to drop SCEV information. 8271 while (!LoopWorklist.empty()) { 8272 auto *CurrL = LoopWorklist.pop_back_val(); 8273 8274 // Drop any stored trip count value. 8275 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8276 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8277 8278 // Drop information about predicated SCEV rewrites for this loop. 8279 for (auto I = PredicatedSCEVRewrites.begin(); 8280 I != PredicatedSCEVRewrites.end();) { 8281 std::pair<const SCEV *, const Loop *> Entry = I->first; 8282 if (Entry.second == CurrL) 8283 PredicatedSCEVRewrites.erase(I++); 8284 else 8285 ++I; 8286 } 8287 8288 auto LoopUsersItr = LoopUsers.find(CurrL); 8289 if (LoopUsersItr != LoopUsers.end()) { 8290 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8291 LoopUsersItr->second.end()); 8292 } 8293 8294 // Drop information about expressions based on loop-header PHIs. 8295 PushLoopPHIs(CurrL, Worklist, Visited); 8296 8297 while (!Worklist.empty()) { 8298 Instruction *I = Worklist.pop_back_val(); 8299 8300 ValueExprMapType::iterator It = 8301 ValueExprMap.find_as(static_cast<Value *>(I)); 8302 if (It != ValueExprMap.end()) { 8303 eraseValueFromMap(It->first); 8304 ToForget.push_back(It->second); 8305 if (PHINode *PN = dyn_cast<PHINode>(I)) 8306 ConstantEvolutionLoopExitValue.erase(PN); 8307 } 8308 8309 PushDefUseChildren(I, Worklist, Visited); 8310 } 8311 8312 LoopPropertiesCache.erase(CurrL); 8313 // Forget all contained loops too, to avoid dangling entries in the 8314 // ValuesAtScopes map. 8315 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8316 } 8317 forgetMemoizedResults(ToForget); 8318 } 8319 8320 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8321 forgetLoop(L->getOutermostLoop()); 8322 } 8323 8324 void ScalarEvolution::forgetValue(Value *V) { 8325 Instruction *I = dyn_cast<Instruction>(V); 8326 if (!I) return; 8327 8328 // Drop information about expressions based on loop-header PHIs. 8329 SmallVector<Instruction *, 16> Worklist; 8330 SmallPtrSet<Instruction *, 8> Visited; 8331 SmallVector<const SCEV *, 8> ToForget; 8332 Worklist.push_back(I); 8333 Visited.insert(I); 8334 8335 while (!Worklist.empty()) { 8336 I = Worklist.pop_back_val(); 8337 ValueExprMapType::iterator It = 8338 ValueExprMap.find_as(static_cast<Value *>(I)); 8339 if (It != ValueExprMap.end()) { 8340 eraseValueFromMap(It->first); 8341 ToForget.push_back(It->second); 8342 if (PHINode *PN = dyn_cast<PHINode>(I)) 8343 ConstantEvolutionLoopExitValue.erase(PN); 8344 } 8345 8346 PushDefUseChildren(I, Worklist, Visited); 8347 } 8348 forgetMemoizedResults(ToForget); 8349 } 8350 8351 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8352 LoopDispositions.clear(); 8353 } 8354 8355 /// Get the exact loop backedge taken count considering all loop exits. A 8356 /// computable result can only be returned for loops with all exiting blocks 8357 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8358 /// is never skipped. This is a valid assumption as long as the loop exits via 8359 /// that test. For precise results, it is the caller's responsibility to specify 8360 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8361 const SCEV * 8362 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8363 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8364 // If any exits were not computable, the loop is not computable. 8365 if (!isComplete() || ExitNotTaken.empty()) 8366 return SE->getCouldNotCompute(); 8367 8368 const BasicBlock *Latch = L->getLoopLatch(); 8369 // All exiting blocks we have collected must dominate the only backedge. 8370 if (!Latch) 8371 return SE->getCouldNotCompute(); 8372 8373 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8374 // count is simply a minimum out of all these calculated exit counts. 8375 SmallVector<const SCEV *, 2> Ops; 8376 for (const auto &ENT : ExitNotTaken) { 8377 const SCEV *BECount = ENT.ExactNotTaken; 8378 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8379 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8380 "We should only have known counts for exiting blocks that dominate " 8381 "latch!"); 8382 8383 Ops.push_back(BECount); 8384 8385 if (Preds) 8386 for (const auto *P : ENT.Predicates) 8387 Preds->push_back(P); 8388 8389 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8390 "Predicate should be always true!"); 8391 } 8392 8393 // If an earlier exit exits on the first iteration (exit count zero), then 8394 // a later poison exit count should not propagate into the result. This are 8395 // exactly the semantics provided by umin_seq. 8396 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8397 } 8398 8399 /// Get the exact not taken count for this loop exit. 8400 const SCEV * 8401 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8402 ScalarEvolution *SE) const { 8403 for (const auto &ENT : ExitNotTaken) 8404 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8405 return ENT.ExactNotTaken; 8406 8407 return SE->getCouldNotCompute(); 8408 } 8409 8410 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8411 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8412 for (const auto &ENT : ExitNotTaken) 8413 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8414 return ENT.MaxNotTaken; 8415 8416 return SE->getCouldNotCompute(); 8417 } 8418 8419 /// getConstantMax - Get the constant max backedge taken count for the loop. 8420 const SCEV * 8421 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8422 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8423 return !ENT.hasAlwaysTruePredicate(); 8424 }; 8425 8426 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8427 return SE->getCouldNotCompute(); 8428 8429 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8430 isa<SCEVConstant>(getConstantMax())) && 8431 "No point in having a non-constant max backedge taken count!"); 8432 return getConstantMax(); 8433 } 8434 8435 const SCEV * 8436 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8437 ScalarEvolution *SE) { 8438 if (!SymbolicMax) 8439 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8440 return SymbolicMax; 8441 } 8442 8443 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8444 ScalarEvolution *SE) const { 8445 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8446 return !ENT.hasAlwaysTruePredicate(); 8447 }; 8448 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8449 } 8450 8451 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8452 : ExitLimit(E, E, false, None) { 8453 } 8454 8455 ScalarEvolution::ExitLimit::ExitLimit( 8456 const SCEV *E, const SCEV *M, bool MaxOrZero, 8457 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8458 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8459 // If we prove the max count is zero, so is the symbolic bound. This happens 8460 // in practice due to differences in a) how context sensitive we've chosen 8461 // to be and b) how we reason about bounds impied by UB. 8462 if (MaxNotTaken->isZero()) 8463 ExactNotTaken = MaxNotTaken; 8464 8465 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8466 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8467 "Exact is not allowed to be less precise than Max"); 8468 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8469 isa<SCEVConstant>(MaxNotTaken)) && 8470 "No point in having a non-constant max backedge taken count!"); 8471 for (const auto *PredSet : PredSetList) 8472 for (const auto *P : *PredSet) 8473 addPredicate(P); 8474 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8475 "Backedge count should be int"); 8476 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8477 "Max backedge count should be int"); 8478 } 8479 8480 ScalarEvolution::ExitLimit::ExitLimit( 8481 const SCEV *E, const SCEV *M, bool MaxOrZero, 8482 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8483 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8484 } 8485 8486 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8487 bool MaxOrZero) 8488 : ExitLimit(E, M, MaxOrZero, None) { 8489 } 8490 8491 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8492 /// computable exit into a persistent ExitNotTakenInfo array. 8493 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8494 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8495 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8496 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8497 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8498 8499 ExitNotTaken.reserve(ExitCounts.size()); 8500 std::transform( 8501 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8502 [&](const EdgeExitInfo &EEI) { 8503 BasicBlock *ExitBB = EEI.first; 8504 const ExitLimit &EL = EEI.second; 8505 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8506 EL.Predicates); 8507 }); 8508 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8509 isa<SCEVConstant>(ConstantMax)) && 8510 "No point in having a non-constant max backedge taken count!"); 8511 } 8512 8513 /// Compute the number of times the backedge of the specified loop will execute. 8514 ScalarEvolution::BackedgeTakenInfo 8515 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8516 bool AllowPredicates) { 8517 SmallVector<BasicBlock *, 8> ExitingBlocks; 8518 L->getExitingBlocks(ExitingBlocks); 8519 8520 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8521 8522 SmallVector<EdgeExitInfo, 4> ExitCounts; 8523 bool CouldComputeBECount = true; 8524 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8525 const SCEV *MustExitMaxBECount = nullptr; 8526 const SCEV *MayExitMaxBECount = nullptr; 8527 bool MustExitMaxOrZero = false; 8528 8529 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8530 // and compute maxBECount. 8531 // Do a union of all the predicates here. 8532 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8533 BasicBlock *ExitBB = ExitingBlocks[i]; 8534 8535 // We canonicalize untaken exits to br (constant), ignore them so that 8536 // proving an exit untaken doesn't negatively impact our ability to reason 8537 // about the loop as whole. 8538 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8539 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8540 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8541 if (ExitIfTrue == CI->isZero()) 8542 continue; 8543 } 8544 8545 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8546 8547 assert((AllowPredicates || EL.Predicates.empty()) && 8548 "Predicated exit limit when predicates are not allowed!"); 8549 8550 // 1. For each exit that can be computed, add an entry to ExitCounts. 8551 // CouldComputeBECount is true only if all exits can be computed. 8552 if (EL.ExactNotTaken == getCouldNotCompute()) 8553 // We couldn't compute an exact value for this exit, so 8554 // we won't be able to compute an exact value for the loop. 8555 CouldComputeBECount = false; 8556 else 8557 ExitCounts.emplace_back(ExitBB, EL); 8558 8559 // 2. Derive the loop's MaxBECount from each exit's max number of 8560 // non-exiting iterations. Partition the loop exits into two kinds: 8561 // LoopMustExits and LoopMayExits. 8562 // 8563 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8564 // is a LoopMayExit. If any computable LoopMustExit is found, then 8565 // MaxBECount is the minimum EL.MaxNotTaken of computable 8566 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8567 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8568 // computable EL.MaxNotTaken. 8569 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8570 DT.dominates(ExitBB, Latch)) { 8571 if (!MustExitMaxBECount) { 8572 MustExitMaxBECount = EL.MaxNotTaken; 8573 MustExitMaxOrZero = EL.MaxOrZero; 8574 } else { 8575 MustExitMaxBECount = 8576 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8577 } 8578 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8579 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8580 MayExitMaxBECount = EL.MaxNotTaken; 8581 else { 8582 MayExitMaxBECount = 8583 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8584 } 8585 } 8586 } 8587 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8588 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8589 // The loop backedge will be taken the maximum or zero times if there's 8590 // a single exit that must be taken the maximum or zero times. 8591 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8592 8593 // Remember which SCEVs are used in exit limits for invalidation purposes. 8594 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8595 // and MaxBECount, which must be SCEVConstant. 8596 for (const auto &Pair : ExitCounts) 8597 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8598 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8599 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8600 MaxBECount, MaxOrZero); 8601 } 8602 8603 ScalarEvolution::ExitLimit 8604 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8605 bool AllowPredicates) { 8606 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8607 // If our exiting block does not dominate the latch, then its connection with 8608 // loop's exit limit may be far from trivial. 8609 const BasicBlock *Latch = L->getLoopLatch(); 8610 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8611 return getCouldNotCompute(); 8612 8613 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8614 Instruction *Term = ExitingBlock->getTerminator(); 8615 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8616 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8617 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8618 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8619 "It should have one successor in loop and one exit block!"); 8620 // Proceed to the next level to examine the exit condition expression. 8621 return computeExitLimitFromCond( 8622 L, BI->getCondition(), ExitIfTrue, 8623 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8624 } 8625 8626 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8627 // For switch, make sure that there is a single exit from the loop. 8628 BasicBlock *Exit = nullptr; 8629 for (auto *SBB : successors(ExitingBlock)) 8630 if (!L->contains(SBB)) { 8631 if (Exit) // Multiple exit successors. 8632 return getCouldNotCompute(); 8633 Exit = SBB; 8634 } 8635 assert(Exit && "Exiting block must have at least one exit"); 8636 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8637 /*ControlsExit=*/IsOnlyExit); 8638 } 8639 8640 return getCouldNotCompute(); 8641 } 8642 8643 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8644 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8645 bool ControlsExit, bool AllowPredicates) { 8646 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8647 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8648 ControlsExit, AllowPredicates); 8649 } 8650 8651 Optional<ScalarEvolution::ExitLimit> 8652 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8653 bool ExitIfTrue, bool ControlsExit, 8654 bool AllowPredicates) { 8655 (void)this->L; 8656 (void)this->ExitIfTrue; 8657 (void)this->AllowPredicates; 8658 8659 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8660 this->AllowPredicates == AllowPredicates && 8661 "Variance in assumed invariant key components!"); 8662 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8663 if (Itr == TripCountMap.end()) 8664 return None; 8665 return Itr->second; 8666 } 8667 8668 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8669 bool ExitIfTrue, 8670 bool ControlsExit, 8671 bool AllowPredicates, 8672 const ExitLimit &EL) { 8673 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8674 this->AllowPredicates == AllowPredicates && 8675 "Variance in assumed invariant key components!"); 8676 8677 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8678 assert(InsertResult.second && "Expected successful insertion!"); 8679 (void)InsertResult; 8680 (void)ExitIfTrue; 8681 } 8682 8683 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8684 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8685 bool ControlsExit, bool AllowPredicates) { 8686 8687 if (auto MaybeEL = 8688 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8689 return *MaybeEL; 8690 8691 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8692 ControlsExit, AllowPredicates); 8693 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8694 return EL; 8695 } 8696 8697 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8698 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8699 bool ControlsExit, bool AllowPredicates) { 8700 // Handle BinOp conditions (And, Or). 8701 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8702 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8703 return *LimitFromBinOp; 8704 8705 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8706 // Proceed to the next level to examine the icmp. 8707 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8708 ExitLimit EL = 8709 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8710 if (EL.hasFullInfo() || !AllowPredicates) 8711 return EL; 8712 8713 // Try again, but use SCEV predicates this time. 8714 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8715 /*AllowPredicates=*/true); 8716 } 8717 8718 // Check for a constant condition. These are normally stripped out by 8719 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8720 // preserve the CFG and is temporarily leaving constant conditions 8721 // in place. 8722 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8723 if (ExitIfTrue == !CI->getZExtValue()) 8724 // The backedge is always taken. 8725 return getCouldNotCompute(); 8726 else 8727 // The backedge is never taken. 8728 return getZero(CI->getType()); 8729 } 8730 8731 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8732 // with a constant step, we can form an equivalent icmp predicate and figure 8733 // out how many iterations will be taken before we exit. 8734 const WithOverflowInst *WO; 8735 const APInt *C; 8736 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8737 match(WO->getRHS(), m_APInt(C))) { 8738 ConstantRange NWR = 8739 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8740 WO->getNoWrapKind()); 8741 CmpInst::Predicate Pred; 8742 APInt NewRHSC, Offset; 8743 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8744 if (!ExitIfTrue) 8745 Pred = ICmpInst::getInversePredicate(Pred); 8746 auto *LHS = getSCEV(WO->getLHS()); 8747 if (Offset != 0) 8748 LHS = getAddExpr(LHS, getConstant(Offset)); 8749 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8750 ControlsExit, AllowPredicates); 8751 if (EL.hasAnyInfo()) return EL; 8752 } 8753 8754 // If it's not an integer or pointer comparison then compute it the hard way. 8755 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8756 } 8757 8758 Optional<ScalarEvolution::ExitLimit> 8759 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8760 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8761 bool ControlsExit, bool AllowPredicates) { 8762 // Check if the controlling expression for this loop is an And or Or. 8763 Value *Op0, *Op1; 8764 bool IsAnd = false; 8765 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8766 IsAnd = true; 8767 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8768 IsAnd = false; 8769 else 8770 return None; 8771 8772 // EitherMayExit is true in these two cases: 8773 // br (and Op0 Op1), loop, exit 8774 // br (or Op0 Op1), exit, loop 8775 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8776 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8777 ControlsExit && !EitherMayExit, 8778 AllowPredicates); 8779 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8780 ControlsExit && !EitherMayExit, 8781 AllowPredicates); 8782 8783 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8784 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8785 if (isa<ConstantInt>(Op1)) 8786 return Op1 == NeutralElement ? EL0 : EL1; 8787 if (isa<ConstantInt>(Op0)) 8788 return Op0 == NeutralElement ? EL1 : EL0; 8789 8790 const SCEV *BECount = getCouldNotCompute(); 8791 const SCEV *MaxBECount = getCouldNotCompute(); 8792 if (EitherMayExit) { 8793 // Both conditions must be same for the loop to continue executing. 8794 // Choose the less conservative count. 8795 if (EL0.ExactNotTaken != getCouldNotCompute() && 8796 EL1.ExactNotTaken != getCouldNotCompute()) { 8797 BECount = getUMinFromMismatchedTypes( 8798 EL0.ExactNotTaken, EL1.ExactNotTaken, 8799 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8800 } 8801 if (EL0.MaxNotTaken == getCouldNotCompute()) 8802 MaxBECount = EL1.MaxNotTaken; 8803 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8804 MaxBECount = EL0.MaxNotTaken; 8805 else 8806 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8807 } else { 8808 // Both conditions must be same at the same time for the loop to exit. 8809 // For now, be conservative. 8810 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8811 BECount = EL0.ExactNotTaken; 8812 } 8813 8814 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8815 // to be more aggressive when computing BECount than when computing 8816 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8817 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8818 // to not. 8819 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8820 !isa<SCEVCouldNotCompute>(BECount)) 8821 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8822 8823 return ExitLimit(BECount, MaxBECount, false, 8824 { &EL0.Predicates, &EL1.Predicates }); 8825 } 8826 8827 ScalarEvolution::ExitLimit 8828 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8829 ICmpInst *ExitCond, 8830 bool ExitIfTrue, 8831 bool ControlsExit, 8832 bool AllowPredicates) { 8833 // If the condition was exit on true, convert the condition to exit on false 8834 ICmpInst::Predicate Pred; 8835 if (!ExitIfTrue) 8836 Pred = ExitCond->getPredicate(); 8837 else 8838 Pred = ExitCond->getInversePredicate(); 8839 const ICmpInst::Predicate OriginalPred = Pred; 8840 8841 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8842 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8843 8844 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8845 AllowPredicates); 8846 if (EL.hasAnyInfo()) return EL; 8847 8848 auto *ExhaustiveCount = 8849 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8850 8851 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8852 return ExhaustiveCount; 8853 8854 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8855 ExitCond->getOperand(1), L, OriginalPred); 8856 } 8857 ScalarEvolution::ExitLimit 8858 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8859 ICmpInst::Predicate Pred, 8860 const SCEV *LHS, const SCEV *RHS, 8861 bool ControlsExit, 8862 bool AllowPredicates) { 8863 8864 // Try to evaluate any dependencies out of the loop. 8865 LHS = getSCEVAtScope(LHS, L); 8866 RHS = getSCEVAtScope(RHS, L); 8867 8868 // At this point, we would like to compute how many iterations of the 8869 // loop the predicate will return true for these inputs. 8870 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8871 // If there is a loop-invariant, force it into the RHS. 8872 std::swap(LHS, RHS); 8873 Pred = ICmpInst::getSwappedPredicate(Pred); 8874 } 8875 8876 bool ControllingFiniteLoop = 8877 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8878 // Simplify the operands before analyzing them. 8879 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8880 (EnableFiniteLoopControl ? ControllingFiniteLoop 8881 : false)); 8882 8883 // If we have a comparison of a chrec against a constant, try to use value 8884 // ranges to answer this query. 8885 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8886 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8887 if (AddRec->getLoop() == L) { 8888 // Form the constant range. 8889 ConstantRange CompRange = 8890 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8891 8892 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8893 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8894 } 8895 8896 // If this loop must exit based on this condition (or execute undefined 8897 // behaviour), and we can prove the test sequence produced must repeat 8898 // the same values on self-wrap of the IV, then we can infer that IV 8899 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8900 // loop. 8901 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8902 // TODO: We can peel off any functions which are invertible *in L*. Loop 8903 // invariant terms are effectively constants for our purposes here. 8904 auto *InnerLHS = LHS; 8905 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8906 InnerLHS = ZExt->getOperand(); 8907 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8908 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8909 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8910 StrideC && StrideC->getAPInt().isPowerOf2()) { 8911 auto Flags = AR->getNoWrapFlags(); 8912 Flags = setFlags(Flags, SCEV::FlagNW); 8913 SmallVector<const SCEV*> Operands{AR->operands()}; 8914 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8915 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8916 } 8917 } 8918 } 8919 8920 switch (Pred) { 8921 case ICmpInst::ICMP_NE: { // while (X != Y) 8922 // Convert to: while (X-Y != 0) 8923 if (LHS->getType()->isPointerTy()) { 8924 LHS = getLosslessPtrToIntExpr(LHS); 8925 if (isa<SCEVCouldNotCompute>(LHS)) 8926 return LHS; 8927 } 8928 if (RHS->getType()->isPointerTy()) { 8929 RHS = getLosslessPtrToIntExpr(RHS); 8930 if (isa<SCEVCouldNotCompute>(RHS)) 8931 return RHS; 8932 } 8933 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8934 AllowPredicates); 8935 if (EL.hasAnyInfo()) return EL; 8936 break; 8937 } 8938 case ICmpInst::ICMP_EQ: { // while (X == Y) 8939 // Convert to: while (X-Y == 0) 8940 if (LHS->getType()->isPointerTy()) { 8941 LHS = getLosslessPtrToIntExpr(LHS); 8942 if (isa<SCEVCouldNotCompute>(LHS)) 8943 return LHS; 8944 } 8945 if (RHS->getType()->isPointerTy()) { 8946 RHS = getLosslessPtrToIntExpr(RHS); 8947 if (isa<SCEVCouldNotCompute>(RHS)) 8948 return RHS; 8949 } 8950 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8951 if (EL.hasAnyInfo()) return EL; 8952 break; 8953 } 8954 case ICmpInst::ICMP_SLT: 8955 case ICmpInst::ICMP_ULT: { // while (X < Y) 8956 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8957 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8958 AllowPredicates); 8959 if (EL.hasAnyInfo()) return EL; 8960 break; 8961 } 8962 case ICmpInst::ICMP_SGT: 8963 case ICmpInst::ICMP_UGT: { // while (X > Y) 8964 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8965 ExitLimit EL = 8966 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8967 AllowPredicates); 8968 if (EL.hasAnyInfo()) return EL; 8969 break; 8970 } 8971 default: 8972 break; 8973 } 8974 8975 return getCouldNotCompute(); 8976 } 8977 8978 ScalarEvolution::ExitLimit 8979 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8980 SwitchInst *Switch, 8981 BasicBlock *ExitingBlock, 8982 bool ControlsExit) { 8983 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8984 8985 // Give up if the exit is the default dest of a switch. 8986 if (Switch->getDefaultDest() == ExitingBlock) 8987 return getCouldNotCompute(); 8988 8989 assert(L->contains(Switch->getDefaultDest()) && 8990 "Default case must not exit the loop!"); 8991 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8992 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8993 8994 // while (X != Y) --> while (X-Y != 0) 8995 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8996 if (EL.hasAnyInfo()) 8997 return EL; 8998 8999 return getCouldNotCompute(); 9000 } 9001 9002 static ConstantInt * 9003 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9004 ScalarEvolution &SE) { 9005 const SCEV *InVal = SE.getConstant(C); 9006 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9007 assert(isa<SCEVConstant>(Val) && 9008 "Evaluation of SCEV at constant didn't fold correctly?"); 9009 return cast<SCEVConstant>(Val)->getValue(); 9010 } 9011 9012 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9013 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9014 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9015 if (!RHS) 9016 return getCouldNotCompute(); 9017 9018 const BasicBlock *Latch = L->getLoopLatch(); 9019 if (!Latch) 9020 return getCouldNotCompute(); 9021 9022 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9023 if (!Predecessor) 9024 return getCouldNotCompute(); 9025 9026 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9027 // Return LHS in OutLHS and shift_opt in OutOpCode. 9028 auto MatchPositiveShift = 9029 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9030 9031 using namespace PatternMatch; 9032 9033 ConstantInt *ShiftAmt; 9034 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9035 OutOpCode = Instruction::LShr; 9036 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9037 OutOpCode = Instruction::AShr; 9038 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9039 OutOpCode = Instruction::Shl; 9040 else 9041 return false; 9042 9043 return ShiftAmt->getValue().isStrictlyPositive(); 9044 }; 9045 9046 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9047 // 9048 // loop: 9049 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9050 // %iv.shifted = lshr i32 %iv, <positive constant> 9051 // 9052 // Return true on a successful match. Return the corresponding PHI node (%iv 9053 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9054 auto MatchShiftRecurrence = 9055 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9056 Optional<Instruction::BinaryOps> PostShiftOpCode; 9057 9058 { 9059 Instruction::BinaryOps OpC; 9060 Value *V; 9061 9062 // If we encounter a shift instruction, "peel off" the shift operation, 9063 // and remember that we did so. Later when we inspect %iv's backedge 9064 // value, we will make sure that the backedge value uses the same 9065 // operation. 9066 // 9067 // Note: the peeled shift operation does not have to be the same 9068 // instruction as the one feeding into the PHI's backedge value. We only 9069 // really care about it being the same *kind* of shift instruction -- 9070 // that's all that is required for our later inferences to hold. 9071 if (MatchPositiveShift(LHS, V, OpC)) { 9072 PostShiftOpCode = OpC; 9073 LHS = V; 9074 } 9075 } 9076 9077 PNOut = dyn_cast<PHINode>(LHS); 9078 if (!PNOut || PNOut->getParent() != L->getHeader()) 9079 return false; 9080 9081 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9082 Value *OpLHS; 9083 9084 return 9085 // The backedge value for the PHI node must be a shift by a positive 9086 // amount 9087 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9088 9089 // of the PHI node itself 9090 OpLHS == PNOut && 9091 9092 // and the kind of shift should be match the kind of shift we peeled 9093 // off, if any. 9094 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9095 }; 9096 9097 PHINode *PN; 9098 Instruction::BinaryOps OpCode; 9099 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9100 return getCouldNotCompute(); 9101 9102 const DataLayout &DL = getDataLayout(); 9103 9104 // The key rationale for this optimization is that for some kinds of shift 9105 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9106 // within a finite number of iterations. If the condition guarding the 9107 // backedge (in the sense that the backedge is taken if the condition is true) 9108 // is false for the value the shift recurrence stabilizes to, then we know 9109 // that the backedge is taken only a finite number of times. 9110 9111 ConstantInt *StableValue = nullptr; 9112 switch (OpCode) { 9113 default: 9114 llvm_unreachable("Impossible case!"); 9115 9116 case Instruction::AShr: { 9117 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9118 // bitwidth(K) iterations. 9119 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9120 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9121 Predecessor->getTerminator(), &DT); 9122 auto *Ty = cast<IntegerType>(RHS->getType()); 9123 if (Known.isNonNegative()) 9124 StableValue = ConstantInt::get(Ty, 0); 9125 else if (Known.isNegative()) 9126 StableValue = ConstantInt::get(Ty, -1, true); 9127 else 9128 return getCouldNotCompute(); 9129 9130 break; 9131 } 9132 case Instruction::LShr: 9133 case Instruction::Shl: 9134 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9135 // stabilize to 0 in at most bitwidth(K) iterations. 9136 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9137 break; 9138 } 9139 9140 auto *Result = 9141 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9142 assert(Result->getType()->isIntegerTy(1) && 9143 "Otherwise cannot be an operand to a branch instruction"); 9144 9145 if (Result->isZeroValue()) { 9146 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9147 const SCEV *UpperBound = 9148 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9149 return ExitLimit(getCouldNotCompute(), UpperBound, false); 9150 } 9151 9152 return getCouldNotCompute(); 9153 } 9154 9155 /// Return true if we can constant fold an instruction of the specified type, 9156 /// assuming that all operands were constants. 9157 static bool CanConstantFold(const Instruction *I) { 9158 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9159 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9160 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9161 return true; 9162 9163 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9164 if (const Function *F = CI->getCalledFunction()) 9165 return canConstantFoldCallTo(CI, F); 9166 return false; 9167 } 9168 9169 /// Determine whether this instruction can constant evolve within this loop 9170 /// assuming its operands can all constant evolve. 9171 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9172 // An instruction outside of the loop can't be derived from a loop PHI. 9173 if (!L->contains(I)) return false; 9174 9175 if (isa<PHINode>(I)) { 9176 // We don't currently keep track of the control flow needed to evaluate 9177 // PHIs, so we cannot handle PHIs inside of loops. 9178 return L->getHeader() == I->getParent(); 9179 } 9180 9181 // If we won't be able to constant fold this expression even if the operands 9182 // are constants, bail early. 9183 return CanConstantFold(I); 9184 } 9185 9186 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9187 /// recursing through each instruction operand until reaching a loop header phi. 9188 static PHINode * 9189 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9190 DenseMap<Instruction *, PHINode *> &PHIMap, 9191 unsigned Depth) { 9192 if (Depth > MaxConstantEvolvingDepth) 9193 return nullptr; 9194 9195 // Otherwise, we can evaluate this instruction if all of its operands are 9196 // constant or derived from a PHI node themselves. 9197 PHINode *PHI = nullptr; 9198 for (Value *Op : UseInst->operands()) { 9199 if (isa<Constant>(Op)) continue; 9200 9201 Instruction *OpInst = dyn_cast<Instruction>(Op); 9202 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9203 9204 PHINode *P = dyn_cast<PHINode>(OpInst); 9205 if (!P) 9206 // If this operand is already visited, reuse the prior result. 9207 // We may have P != PHI if this is the deepest point at which the 9208 // inconsistent paths meet. 9209 P = PHIMap.lookup(OpInst); 9210 if (!P) { 9211 // Recurse and memoize the results, whether a phi is found or not. 9212 // This recursive call invalidates pointers into PHIMap. 9213 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9214 PHIMap[OpInst] = P; 9215 } 9216 if (!P) 9217 return nullptr; // Not evolving from PHI 9218 if (PHI && PHI != P) 9219 return nullptr; // Evolving from multiple different PHIs. 9220 PHI = P; 9221 } 9222 // This is a expression evolving from a constant PHI! 9223 return PHI; 9224 } 9225 9226 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9227 /// in the loop that V is derived from. We allow arbitrary operations along the 9228 /// way, but the operands of an operation must either be constants or a value 9229 /// derived from a constant PHI. If this expression does not fit with these 9230 /// constraints, return null. 9231 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9232 Instruction *I = dyn_cast<Instruction>(V); 9233 if (!I || !canConstantEvolve(I, L)) return nullptr; 9234 9235 if (PHINode *PN = dyn_cast<PHINode>(I)) 9236 return PN; 9237 9238 // Record non-constant instructions contained by the loop. 9239 DenseMap<Instruction *, PHINode *> PHIMap; 9240 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9241 } 9242 9243 /// EvaluateExpression - Given an expression that passes the 9244 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9245 /// in the loop has the value PHIVal. If we can't fold this expression for some 9246 /// reason, return null. 9247 static Constant *EvaluateExpression(Value *V, const Loop *L, 9248 DenseMap<Instruction *, Constant *> &Vals, 9249 const DataLayout &DL, 9250 const TargetLibraryInfo *TLI) { 9251 // Convenient constant check, but redundant for recursive calls. 9252 if (Constant *C = dyn_cast<Constant>(V)) return C; 9253 Instruction *I = dyn_cast<Instruction>(V); 9254 if (!I) return nullptr; 9255 9256 if (Constant *C = Vals.lookup(I)) return C; 9257 9258 // An instruction inside the loop depends on a value outside the loop that we 9259 // weren't given a mapping for, or a value such as a call inside the loop. 9260 if (!canConstantEvolve(I, L)) return nullptr; 9261 9262 // An unmapped PHI can be due to a branch or another loop inside this loop, 9263 // or due to this not being the initial iteration through a loop where we 9264 // couldn't compute the evolution of this particular PHI last time. 9265 if (isa<PHINode>(I)) return nullptr; 9266 9267 std::vector<Constant*> Operands(I->getNumOperands()); 9268 9269 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9270 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9271 if (!Operand) { 9272 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9273 if (!Operands[i]) return nullptr; 9274 continue; 9275 } 9276 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9277 Vals[Operand] = C; 9278 if (!C) return nullptr; 9279 Operands[i] = C; 9280 } 9281 9282 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9283 } 9284 9285 9286 // If every incoming value to PN except the one for BB is a specific Constant, 9287 // return that, else return nullptr. 9288 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9289 Constant *IncomingVal = nullptr; 9290 9291 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9292 if (PN->getIncomingBlock(i) == BB) 9293 continue; 9294 9295 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9296 if (!CurrentVal) 9297 return nullptr; 9298 9299 if (IncomingVal != CurrentVal) { 9300 if (IncomingVal) 9301 return nullptr; 9302 IncomingVal = CurrentVal; 9303 } 9304 } 9305 9306 return IncomingVal; 9307 } 9308 9309 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9310 /// in the header of its containing loop, we know the loop executes a 9311 /// constant number of times, and the PHI node is just a recurrence 9312 /// involving constants, fold it. 9313 Constant * 9314 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9315 const APInt &BEs, 9316 const Loop *L) { 9317 auto I = ConstantEvolutionLoopExitValue.find(PN); 9318 if (I != ConstantEvolutionLoopExitValue.end()) 9319 return I->second; 9320 9321 if (BEs.ugt(MaxBruteForceIterations)) 9322 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9323 9324 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9325 9326 DenseMap<Instruction *, Constant *> CurrentIterVals; 9327 BasicBlock *Header = L->getHeader(); 9328 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9329 9330 BasicBlock *Latch = L->getLoopLatch(); 9331 if (!Latch) 9332 return nullptr; 9333 9334 for (PHINode &PHI : Header->phis()) { 9335 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9336 CurrentIterVals[&PHI] = StartCST; 9337 } 9338 if (!CurrentIterVals.count(PN)) 9339 return RetVal = nullptr; 9340 9341 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9342 9343 // Execute the loop symbolically to determine the exit value. 9344 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9345 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9346 9347 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9348 unsigned IterationNum = 0; 9349 const DataLayout &DL = getDataLayout(); 9350 for (; ; ++IterationNum) { 9351 if (IterationNum == NumIterations) 9352 return RetVal = CurrentIterVals[PN]; // Got exit value! 9353 9354 // Compute the value of the PHIs for the next iteration. 9355 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9356 DenseMap<Instruction *, Constant *> NextIterVals; 9357 Constant *NextPHI = 9358 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9359 if (!NextPHI) 9360 return nullptr; // Couldn't evaluate! 9361 NextIterVals[PN] = NextPHI; 9362 9363 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9364 9365 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9366 // cease to be able to evaluate one of them or if they stop evolving, 9367 // because that doesn't necessarily prevent us from computing PN. 9368 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9369 for (const auto &I : CurrentIterVals) { 9370 PHINode *PHI = dyn_cast<PHINode>(I.first); 9371 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9372 PHIsToCompute.emplace_back(PHI, I.second); 9373 } 9374 // We use two distinct loops because EvaluateExpression may invalidate any 9375 // iterators into CurrentIterVals. 9376 for (const auto &I : PHIsToCompute) { 9377 PHINode *PHI = I.first; 9378 Constant *&NextPHI = NextIterVals[PHI]; 9379 if (!NextPHI) { // Not already computed. 9380 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9381 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9382 } 9383 if (NextPHI != I.second) 9384 StoppedEvolving = false; 9385 } 9386 9387 // If all entries in CurrentIterVals == NextIterVals then we can stop 9388 // iterating, the loop can't continue to change. 9389 if (StoppedEvolving) 9390 return RetVal = CurrentIterVals[PN]; 9391 9392 CurrentIterVals.swap(NextIterVals); 9393 } 9394 } 9395 9396 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9397 Value *Cond, 9398 bool ExitWhen) { 9399 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9400 if (!PN) return getCouldNotCompute(); 9401 9402 // If the loop is canonicalized, the PHI will have exactly two entries. 9403 // That's the only form we support here. 9404 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9405 9406 DenseMap<Instruction *, Constant *> CurrentIterVals; 9407 BasicBlock *Header = L->getHeader(); 9408 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9409 9410 BasicBlock *Latch = L->getLoopLatch(); 9411 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9412 9413 for (PHINode &PHI : Header->phis()) { 9414 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9415 CurrentIterVals[&PHI] = StartCST; 9416 } 9417 if (!CurrentIterVals.count(PN)) 9418 return getCouldNotCompute(); 9419 9420 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9421 // the loop symbolically to determine when the condition gets a value of 9422 // "ExitWhen". 9423 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9424 const DataLayout &DL = getDataLayout(); 9425 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9426 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9427 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9428 9429 // Couldn't symbolically evaluate. 9430 if (!CondVal) return getCouldNotCompute(); 9431 9432 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9433 ++NumBruteForceTripCountsComputed; 9434 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9435 } 9436 9437 // Update all the PHI nodes for the next iteration. 9438 DenseMap<Instruction *, Constant *> NextIterVals; 9439 9440 // Create a list of which PHIs we need to compute. We want to do this before 9441 // calling EvaluateExpression on them because that may invalidate iterators 9442 // into CurrentIterVals. 9443 SmallVector<PHINode *, 8> PHIsToCompute; 9444 for (const auto &I : CurrentIterVals) { 9445 PHINode *PHI = dyn_cast<PHINode>(I.first); 9446 if (!PHI || PHI->getParent() != Header) continue; 9447 PHIsToCompute.push_back(PHI); 9448 } 9449 for (PHINode *PHI : PHIsToCompute) { 9450 Constant *&NextPHI = NextIterVals[PHI]; 9451 if (NextPHI) continue; // Already computed! 9452 9453 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9454 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9455 } 9456 CurrentIterVals.swap(NextIterVals); 9457 } 9458 9459 // Too many iterations were needed to evaluate. 9460 return getCouldNotCompute(); 9461 } 9462 9463 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9464 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9465 ValuesAtScopes[V]; 9466 // Check to see if we've folded this expression at this loop before. 9467 for (auto &LS : Values) 9468 if (LS.first == L) 9469 return LS.second ? LS.second : V; 9470 9471 Values.emplace_back(L, nullptr); 9472 9473 // Otherwise compute it. 9474 const SCEV *C = computeSCEVAtScope(V, L); 9475 for (auto &LS : reverse(ValuesAtScopes[V])) 9476 if (LS.first == L) { 9477 LS.second = C; 9478 if (!isa<SCEVConstant>(C)) 9479 ValuesAtScopesUsers[C].push_back({L, V}); 9480 break; 9481 } 9482 return C; 9483 } 9484 9485 /// This builds up a Constant using the ConstantExpr interface. That way, we 9486 /// will return Constants for objects which aren't represented by a 9487 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9488 /// Returns NULL if the SCEV isn't representable as a Constant. 9489 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9490 switch (V->getSCEVType()) { 9491 case scCouldNotCompute: 9492 case scAddRecExpr: 9493 return nullptr; 9494 case scConstant: 9495 return cast<SCEVConstant>(V)->getValue(); 9496 case scUnknown: 9497 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9498 case scSignExtend: { 9499 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9500 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9501 return ConstantExpr::getSExt(CastOp, SS->getType()); 9502 return nullptr; 9503 } 9504 case scZeroExtend: { 9505 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9506 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9507 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9508 return nullptr; 9509 } 9510 case scPtrToInt: { 9511 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9512 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9513 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9514 9515 return nullptr; 9516 } 9517 case scTruncate: { 9518 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9519 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9520 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9521 return nullptr; 9522 } 9523 case scAddExpr: { 9524 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9525 Constant *C = nullptr; 9526 for (const SCEV *Op : SA->operands()) { 9527 Constant *OpC = BuildConstantFromSCEV(Op); 9528 if (!OpC) 9529 return nullptr; 9530 if (!C) { 9531 C = OpC; 9532 continue; 9533 } 9534 assert(!C->getType()->isPointerTy() && 9535 "Can only have one pointer, and it must be last"); 9536 if (auto *PT = dyn_cast<PointerType>(OpC->getType())) { 9537 // The offsets have been converted to bytes. We can add bytes to an 9538 // i8* by GEP with the byte count in the first index. 9539 Type *DestPtrTy = 9540 Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace()); 9541 OpC = ConstantExpr::getBitCast(OpC, DestPtrTy); 9542 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9543 OpC, C); 9544 } else { 9545 C = ConstantExpr::getAdd(C, OpC); 9546 } 9547 } 9548 return C; 9549 } 9550 case scMulExpr: { 9551 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9552 Constant *C = nullptr; 9553 for (const SCEV *Op : SM->operands()) { 9554 assert(!Op->getType()->isPointerTy() && "Can't multiply pointers"); 9555 Constant *OpC = BuildConstantFromSCEV(Op); 9556 if (!OpC) 9557 return nullptr; 9558 C = C ? ConstantExpr::getMul(C, OpC) : OpC; 9559 } 9560 return C; 9561 } 9562 case scUDivExpr: 9563 case scSMaxExpr: 9564 case scUMaxExpr: 9565 case scSMinExpr: 9566 case scUMinExpr: 9567 case scSequentialUMinExpr: 9568 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9569 } 9570 llvm_unreachable("Unknown SCEV kind!"); 9571 } 9572 9573 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9574 if (isa<SCEVConstant>(V)) return V; 9575 9576 // If this instruction is evolved from a constant-evolving PHI, compute the 9577 // exit value from the loop without using SCEVs. 9578 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9579 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9580 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9581 const Loop *CurrLoop = this->LI[I->getParent()]; 9582 // Looking for loop exit value. 9583 if (CurrLoop && CurrLoop->getParentLoop() == L && 9584 PN->getParent() == CurrLoop->getHeader()) { 9585 // Okay, there is no closed form solution for the PHI node. Check 9586 // to see if the loop that contains it has a known backedge-taken 9587 // count. If so, we may be able to force computation of the exit 9588 // value. 9589 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9590 // This trivial case can show up in some degenerate cases where 9591 // the incoming IR has not yet been fully simplified. 9592 if (BackedgeTakenCount->isZero()) { 9593 Value *InitValue = nullptr; 9594 bool MultipleInitValues = false; 9595 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9596 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9597 if (!InitValue) 9598 InitValue = PN->getIncomingValue(i); 9599 else if (InitValue != PN->getIncomingValue(i)) { 9600 MultipleInitValues = true; 9601 break; 9602 } 9603 } 9604 } 9605 if (!MultipleInitValues && InitValue) 9606 return getSCEV(InitValue); 9607 } 9608 // Do we have a loop invariant value flowing around the backedge 9609 // for a loop which must execute the backedge? 9610 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9611 isKnownPositive(BackedgeTakenCount) && 9612 PN->getNumIncomingValues() == 2) { 9613 9614 unsigned InLoopPred = 9615 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9616 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9617 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9618 return getSCEV(BackedgeVal); 9619 } 9620 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9621 // Okay, we know how many times the containing loop executes. If 9622 // this is a constant evolving PHI node, get the final value at 9623 // the specified iteration number. 9624 Constant *RV = getConstantEvolutionLoopExitValue( 9625 PN, BTCC->getAPInt(), CurrLoop); 9626 if (RV) return getSCEV(RV); 9627 } 9628 } 9629 9630 // If there is a single-input Phi, evaluate it at our scope. If we can 9631 // prove that this replacement does not break LCSSA form, use new value. 9632 if (PN->getNumOperands() == 1) { 9633 const SCEV *Input = getSCEV(PN->getOperand(0)); 9634 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9635 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9636 // for the simplest case just support constants. 9637 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9638 } 9639 } 9640 9641 // Okay, this is an expression that we cannot symbolically evaluate 9642 // into a SCEV. Check to see if it's possible to symbolically evaluate 9643 // the arguments into constants, and if so, try to constant propagate the 9644 // result. This is particularly useful for computing loop exit values. 9645 if (CanConstantFold(I)) { 9646 SmallVector<Constant *, 4> Operands; 9647 bool MadeImprovement = false; 9648 for (Value *Op : I->operands()) { 9649 if (Constant *C = dyn_cast<Constant>(Op)) { 9650 Operands.push_back(C); 9651 continue; 9652 } 9653 9654 // If any of the operands is non-constant and if they are 9655 // non-integer and non-pointer, don't even try to analyze them 9656 // with scev techniques. 9657 if (!isSCEVable(Op->getType())) 9658 return V; 9659 9660 const SCEV *OrigV = getSCEV(Op); 9661 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9662 MadeImprovement |= OrigV != OpV; 9663 9664 Constant *C = BuildConstantFromSCEV(OpV); 9665 if (!C) return V; 9666 if (C->getType() != Op->getType()) 9667 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9668 Op->getType(), 9669 false), 9670 C, Op->getType()); 9671 Operands.push_back(C); 9672 } 9673 9674 // Check to see if getSCEVAtScope actually made an improvement. 9675 if (MadeImprovement) { 9676 Constant *C = nullptr; 9677 const DataLayout &DL = getDataLayout(); 9678 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9679 if (!C) return V; 9680 return getSCEV(C); 9681 } 9682 } 9683 } 9684 9685 // This is some other type of SCEVUnknown, just return it. 9686 return V; 9687 } 9688 9689 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9690 const auto *Comm = cast<SCEVNAryExpr>(V); 9691 // Avoid performing the look-up in the common case where the specified 9692 // expression has no loop-variant portions. 9693 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9694 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9695 if (OpAtScope != Comm->getOperand(i)) { 9696 // Okay, at least one of these operands is loop variant but might be 9697 // foldable. Build a new instance of the folded commutative expression. 9698 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9699 Comm->op_begin()+i); 9700 NewOps.push_back(OpAtScope); 9701 9702 for (++i; i != e; ++i) { 9703 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9704 NewOps.push_back(OpAtScope); 9705 } 9706 if (isa<SCEVAddExpr>(Comm)) 9707 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9708 if (isa<SCEVMulExpr>(Comm)) 9709 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9710 if (isa<SCEVMinMaxExpr>(Comm)) 9711 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9712 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9713 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9714 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9715 } 9716 } 9717 // If we got here, all operands are loop invariant. 9718 return Comm; 9719 } 9720 9721 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9722 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9723 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9724 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9725 return Div; // must be loop invariant 9726 return getUDivExpr(LHS, RHS); 9727 } 9728 9729 // If this is a loop recurrence for a loop that does not contain L, then we 9730 // are dealing with the final value computed by the loop. 9731 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9732 // First, attempt to evaluate each operand. 9733 // Avoid performing the look-up in the common case where the specified 9734 // expression has no loop-variant portions. 9735 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9736 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9737 if (OpAtScope == AddRec->getOperand(i)) 9738 continue; 9739 9740 // Okay, at least one of these operands is loop variant but might be 9741 // foldable. Build a new instance of the folded commutative expression. 9742 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9743 AddRec->op_begin()+i); 9744 NewOps.push_back(OpAtScope); 9745 for (++i; i != e; ++i) 9746 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9747 9748 const SCEV *FoldedRec = 9749 getAddRecExpr(NewOps, AddRec->getLoop(), 9750 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9751 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9752 // The addrec may be folded to a nonrecurrence, for example, if the 9753 // induction variable is multiplied by zero after constant folding. Go 9754 // ahead and return the folded value. 9755 if (!AddRec) 9756 return FoldedRec; 9757 break; 9758 } 9759 9760 // If the scope is outside the addrec's loop, evaluate it by using the 9761 // loop exit value of the addrec. 9762 if (!AddRec->getLoop()->contains(L)) { 9763 // To evaluate this recurrence, we need to know how many times the AddRec 9764 // loop iterates. Compute this now. 9765 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9766 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9767 9768 // Then, evaluate the AddRec. 9769 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9770 } 9771 9772 return AddRec; 9773 } 9774 9775 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9776 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9777 if (Op == Cast->getOperand()) 9778 return Cast; // must be loop invariant 9779 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9780 } 9781 9782 llvm_unreachable("Unknown SCEV type!"); 9783 } 9784 9785 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9786 return getSCEVAtScope(getSCEV(V), L); 9787 } 9788 9789 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9790 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9791 return stripInjectiveFunctions(ZExt->getOperand()); 9792 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9793 return stripInjectiveFunctions(SExt->getOperand()); 9794 return S; 9795 } 9796 9797 /// Finds the minimum unsigned root of the following equation: 9798 /// 9799 /// A * X = B (mod N) 9800 /// 9801 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9802 /// A and B isn't important. 9803 /// 9804 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9805 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9806 ScalarEvolution &SE) { 9807 uint32_t BW = A.getBitWidth(); 9808 assert(BW == SE.getTypeSizeInBits(B->getType())); 9809 assert(A != 0 && "A must be non-zero."); 9810 9811 // 1. D = gcd(A, N) 9812 // 9813 // The gcd of A and N may have only one prime factor: 2. The number of 9814 // trailing zeros in A is its multiplicity 9815 uint32_t Mult2 = A.countTrailingZeros(); 9816 // D = 2^Mult2 9817 9818 // 2. Check if B is divisible by D. 9819 // 9820 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9821 // is not less than multiplicity of this prime factor for D. 9822 if (SE.GetMinTrailingZeros(B) < Mult2) 9823 return SE.getCouldNotCompute(); 9824 9825 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9826 // modulo (N / D). 9827 // 9828 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9829 // (N / D) in general. The inverse itself always fits into BW bits, though, 9830 // so we immediately truncate it. 9831 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9832 APInt Mod(BW + 1, 0); 9833 Mod.setBit(BW - Mult2); // Mod = N / D 9834 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9835 9836 // 4. Compute the minimum unsigned root of the equation: 9837 // I * (B / D) mod (N / D) 9838 // To simplify the computation, we factor out the divide by D: 9839 // (I * B mod N) / D 9840 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9841 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9842 } 9843 9844 /// For a given quadratic addrec, generate coefficients of the corresponding 9845 /// quadratic equation, multiplied by a common value to ensure that they are 9846 /// integers. 9847 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9848 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9849 /// were multiplied by, and BitWidth is the bit width of the original addrec 9850 /// coefficients. 9851 /// This function returns None if the addrec coefficients are not compile- 9852 /// time constants. 9853 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9854 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9855 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9856 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9857 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9858 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9859 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9860 << *AddRec << '\n'); 9861 9862 // We currently can only solve this if the coefficients are constants. 9863 if (!LC || !MC || !NC) { 9864 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9865 return None; 9866 } 9867 9868 APInt L = LC->getAPInt(); 9869 APInt M = MC->getAPInt(); 9870 APInt N = NC->getAPInt(); 9871 assert(!N.isZero() && "This is not a quadratic addrec"); 9872 9873 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9874 unsigned NewWidth = BitWidth + 1; 9875 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9876 << BitWidth << '\n'); 9877 // The sign-extension (as opposed to a zero-extension) here matches the 9878 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9879 N = N.sext(NewWidth); 9880 M = M.sext(NewWidth); 9881 L = L.sext(NewWidth); 9882 9883 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9884 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9885 // L+M, L+2M+N, L+3M+3N, ... 9886 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9887 // 9888 // The equation Acc = 0 is then 9889 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9890 // In a quadratic form it becomes: 9891 // N n^2 + (2M-N) n + 2L = 0. 9892 9893 APInt A = N; 9894 APInt B = 2 * M - A; 9895 APInt C = 2 * L; 9896 APInt T = APInt(NewWidth, 2); 9897 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9898 << "x + " << C << ", coeff bw: " << NewWidth 9899 << ", multiplied by " << T << '\n'); 9900 return std::make_tuple(A, B, C, T, BitWidth); 9901 } 9902 9903 /// Helper function to compare optional APInts: 9904 /// (a) if X and Y both exist, return min(X, Y), 9905 /// (b) if neither X nor Y exist, return None, 9906 /// (c) if exactly one of X and Y exists, return that value. 9907 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9908 if (X && Y) { 9909 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9910 APInt XW = X->sext(W); 9911 APInt YW = Y->sext(W); 9912 return XW.slt(YW) ? *X : *Y; 9913 } 9914 if (!X && !Y) 9915 return None; 9916 return X ? *X : *Y; 9917 } 9918 9919 /// Helper function to truncate an optional APInt to a given BitWidth. 9920 /// When solving addrec-related equations, it is preferable to return a value 9921 /// that has the same bit width as the original addrec's coefficients. If the 9922 /// solution fits in the original bit width, truncate it (except for i1). 9923 /// Returning a value of a different bit width may inhibit some optimizations. 9924 /// 9925 /// In general, a solution to a quadratic equation generated from an addrec 9926 /// may require BW+1 bits, where BW is the bit width of the addrec's 9927 /// coefficients. The reason is that the coefficients of the quadratic 9928 /// equation are BW+1 bits wide (to avoid truncation when converting from 9929 /// the addrec to the equation). 9930 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9931 if (!X) 9932 return None; 9933 unsigned W = X->getBitWidth(); 9934 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9935 return X->trunc(BitWidth); 9936 return X; 9937 } 9938 9939 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9940 /// iterations. The values L, M, N are assumed to be signed, and they 9941 /// should all have the same bit widths. 9942 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9943 /// where BW is the bit width of the addrec's coefficients. 9944 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9945 /// returned as such, otherwise the bit width of the returned value may 9946 /// be greater than BW. 9947 /// 9948 /// This function returns None if 9949 /// (a) the addrec coefficients are not constant, or 9950 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9951 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9952 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9953 static Optional<APInt> 9954 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9955 APInt A, B, C, M; 9956 unsigned BitWidth; 9957 auto T = GetQuadraticEquation(AddRec); 9958 if (!T) 9959 return None; 9960 9961 std::tie(A, B, C, M, BitWidth) = *T; 9962 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9963 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9964 if (!X) 9965 return None; 9966 9967 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9968 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9969 if (!V->isZero()) 9970 return None; 9971 9972 return TruncIfPossible(X, BitWidth); 9973 } 9974 9975 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9976 /// iterations. The values M, N are assumed to be signed, and they 9977 /// should all have the same bit widths. 9978 /// Find the least n such that c(n) does not belong to the given range, 9979 /// while c(n-1) does. 9980 /// 9981 /// This function returns None if 9982 /// (a) the addrec coefficients are not constant, or 9983 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9984 /// bounds of the range. 9985 static Optional<APInt> 9986 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9987 const ConstantRange &Range, ScalarEvolution &SE) { 9988 assert(AddRec->getOperand(0)->isZero() && 9989 "Starting value of addrec should be 0"); 9990 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9991 << Range << ", addrec " << *AddRec << '\n'); 9992 // This case is handled in getNumIterationsInRange. Here we can assume that 9993 // we start in the range. 9994 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9995 "Addrec's initial value should be in range"); 9996 9997 APInt A, B, C, M; 9998 unsigned BitWidth; 9999 auto T = GetQuadraticEquation(AddRec); 10000 if (!T) 10001 return None; 10002 10003 // Be careful about the return value: there can be two reasons for not 10004 // returning an actual number. First, if no solutions to the equations 10005 // were found, and second, if the solutions don't leave the given range. 10006 // The first case means that the actual solution is "unknown", the second 10007 // means that it's known, but not valid. If the solution is unknown, we 10008 // cannot make any conclusions. 10009 // Return a pair: the optional solution and a flag indicating if the 10010 // solution was found. 10011 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 10012 // Solve for signed overflow and unsigned overflow, pick the lower 10013 // solution. 10014 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10015 << Bound << " (before multiplying by " << M << ")\n"); 10016 Bound *= M; // The quadratic equation multiplier. 10017 10018 Optional<APInt> SO = None; 10019 if (BitWidth > 1) { 10020 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10021 "signed overflow\n"); 10022 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10023 } 10024 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10025 "unsigned overflow\n"); 10026 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 10027 BitWidth+1); 10028 10029 auto LeavesRange = [&] (const APInt &X) { 10030 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10031 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10032 if (Range.contains(V0->getValue())) 10033 return false; 10034 // X should be at least 1, so X-1 is non-negative. 10035 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10036 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10037 if (Range.contains(V1->getValue())) 10038 return true; 10039 return false; 10040 }; 10041 10042 // If SolveQuadraticEquationWrap returns None, it means that there can 10043 // be a solution, but the function failed to find it. We cannot treat it 10044 // as "no solution". 10045 if (!SO || !UO) 10046 return { None, false }; 10047 10048 // Check the smaller value first to see if it leaves the range. 10049 // At this point, both SO and UO must have values. 10050 Optional<APInt> Min = MinOptional(SO, UO); 10051 if (LeavesRange(*Min)) 10052 return { Min, true }; 10053 Optional<APInt> Max = Min == SO ? UO : SO; 10054 if (LeavesRange(*Max)) 10055 return { Max, true }; 10056 10057 // Solutions were found, but were eliminated, hence the "true". 10058 return { None, true }; 10059 }; 10060 10061 std::tie(A, B, C, M, BitWidth) = *T; 10062 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10063 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10064 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10065 auto SL = SolveForBoundary(Lower); 10066 auto SU = SolveForBoundary(Upper); 10067 // If any of the solutions was unknown, no meaninigful conclusions can 10068 // be made. 10069 if (!SL.second || !SU.second) 10070 return None; 10071 10072 // Claim: The correct solution is not some value between Min and Max. 10073 // 10074 // Justification: Assuming that Min and Max are different values, one of 10075 // them is when the first signed overflow happens, the other is when the 10076 // first unsigned overflow happens. Crossing the range boundary is only 10077 // possible via an overflow (treating 0 as a special case of it, modeling 10078 // an overflow as crossing k*2^W for some k). 10079 // 10080 // The interesting case here is when Min was eliminated as an invalid 10081 // solution, but Max was not. The argument is that if there was another 10082 // overflow between Min and Max, it would also have been eliminated if 10083 // it was considered. 10084 // 10085 // For a given boundary, it is possible to have two overflows of the same 10086 // type (signed/unsigned) without having the other type in between: this 10087 // can happen when the vertex of the parabola is between the iterations 10088 // corresponding to the overflows. This is only possible when the two 10089 // overflows cross k*2^W for the same k. In such case, if the second one 10090 // left the range (and was the first one to do so), the first overflow 10091 // would have to enter the range, which would mean that either we had left 10092 // the range before or that we started outside of it. Both of these cases 10093 // are contradictions. 10094 // 10095 // Claim: In the case where SolveForBoundary returns None, the correct 10096 // solution is not some value between the Max for this boundary and the 10097 // Min of the other boundary. 10098 // 10099 // Justification: Assume that we had such Max_A and Min_B corresponding 10100 // to range boundaries A and B and such that Max_A < Min_B. If there was 10101 // a solution between Max_A and Min_B, it would have to be caused by an 10102 // overflow corresponding to either A or B. It cannot correspond to B, 10103 // since Min_B is the first occurrence of such an overflow. If it 10104 // corresponded to A, it would have to be either a signed or an unsigned 10105 // overflow that is larger than both eliminated overflows for A. But 10106 // between the eliminated overflows and this overflow, the values would 10107 // cover the entire value space, thus crossing the other boundary, which 10108 // is a contradiction. 10109 10110 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10111 } 10112 10113 ScalarEvolution::ExitLimit 10114 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 10115 bool AllowPredicates) { 10116 10117 // This is only used for loops with a "x != y" exit test. The exit condition 10118 // is now expressed as a single expression, V = x-y. So the exit test is 10119 // effectively V != 0. We know and take advantage of the fact that this 10120 // expression only being used in a comparison by zero context. 10121 10122 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10123 // If the value is a constant 10124 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10125 // If the value is already zero, the branch will execute zero times. 10126 if (C->getValue()->isZero()) return C; 10127 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10128 } 10129 10130 const SCEVAddRecExpr *AddRec = 10131 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10132 10133 if (!AddRec && AllowPredicates) 10134 // Try to make this an AddRec using runtime tests, in the first X 10135 // iterations of this loop, where X is the SCEV expression found by the 10136 // algorithm below. 10137 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10138 10139 if (!AddRec || AddRec->getLoop() != L) 10140 return getCouldNotCompute(); 10141 10142 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10143 // the quadratic equation to solve it. 10144 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10145 // We can only use this value if the chrec ends up with an exact zero 10146 // value at this index. When solving for "X*X != 5", for example, we 10147 // should not accept a root of 2. 10148 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10149 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10150 return ExitLimit(R, R, false, Predicates); 10151 } 10152 return getCouldNotCompute(); 10153 } 10154 10155 // Otherwise we can only handle this if it is affine. 10156 if (!AddRec->isAffine()) 10157 return getCouldNotCompute(); 10158 10159 // If this is an affine expression, the execution count of this branch is 10160 // the minimum unsigned root of the following equation: 10161 // 10162 // Start + Step*N = 0 (mod 2^BW) 10163 // 10164 // equivalent to: 10165 // 10166 // Step*N = -Start (mod 2^BW) 10167 // 10168 // where BW is the common bit width of Start and Step. 10169 10170 // Get the initial value for the loop. 10171 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10172 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10173 10174 // For now we handle only constant steps. 10175 // 10176 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10177 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10178 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10179 // We have not yet seen any such cases. 10180 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10181 if (!StepC || StepC->getValue()->isZero()) 10182 return getCouldNotCompute(); 10183 10184 // For positive steps (counting up until unsigned overflow): 10185 // N = -Start/Step (as unsigned) 10186 // For negative steps (counting down to zero): 10187 // N = Start/-Step 10188 // First compute the unsigned distance from zero in the direction of Step. 10189 bool CountDown = StepC->getAPInt().isNegative(); 10190 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10191 10192 // Handle unitary steps, which cannot wraparound. 10193 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10194 // N = Distance (as unsigned) 10195 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10196 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10197 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10198 10199 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10200 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10201 // case, and see if we can improve the bound. 10202 // 10203 // Explicitly handling this here is necessary because getUnsignedRange 10204 // isn't context-sensitive; it doesn't know that we only care about the 10205 // range inside the loop. 10206 const SCEV *Zero = getZero(Distance->getType()); 10207 const SCEV *One = getOne(Distance->getType()); 10208 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10209 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10210 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10211 // as "unsigned_max(Distance + 1) - 1". 10212 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10213 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10214 } 10215 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 10216 } 10217 10218 // If the condition controls loop exit (the loop exits only if the expression 10219 // is true) and the addition is no-wrap we can use unsigned divide to 10220 // compute the backedge count. In this case, the step may not divide the 10221 // distance, but we don't care because if the condition is "missed" the loop 10222 // will have undefined behavior due to wrapping. 10223 if (ControlsExit && AddRec->hasNoSelfWrap() && 10224 loopHasNoAbnormalExits(AddRec->getLoop())) { 10225 const SCEV *Exact = 10226 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10227 const SCEV *Max = getCouldNotCompute(); 10228 if (Exact != getCouldNotCompute()) { 10229 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10230 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10231 } 10232 return ExitLimit(Exact, Max, false, Predicates); 10233 } 10234 10235 // Solve the general equation. 10236 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10237 getNegativeSCEV(Start), *this); 10238 10239 const SCEV *M = E; 10240 if (E != getCouldNotCompute()) { 10241 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10242 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10243 } 10244 return ExitLimit(E, M, false, Predicates); 10245 } 10246 10247 ScalarEvolution::ExitLimit 10248 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10249 // Loops that look like: while (X == 0) are very strange indeed. We don't 10250 // handle them yet except for the trivial case. This could be expanded in the 10251 // future as needed. 10252 10253 // If the value is a constant, check to see if it is known to be non-zero 10254 // already. If so, the backedge will execute zero times. 10255 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10256 if (!C->getValue()->isZero()) 10257 return getZero(C->getType()); 10258 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10259 } 10260 10261 // We could implement others, but I really doubt anyone writes loops like 10262 // this, and if they did, they would already be constant folded. 10263 return getCouldNotCompute(); 10264 } 10265 10266 std::pair<const BasicBlock *, const BasicBlock *> 10267 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10268 const { 10269 // If the block has a unique predecessor, then there is no path from the 10270 // predecessor to the block that does not go through the direct edge 10271 // from the predecessor to the block. 10272 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10273 return {Pred, BB}; 10274 10275 // A loop's header is defined to be a block that dominates the loop. 10276 // If the header has a unique predecessor outside the loop, it must be 10277 // a block that has exactly one successor that can reach the loop. 10278 if (const Loop *L = LI.getLoopFor(BB)) 10279 return {L->getLoopPredecessor(), L->getHeader()}; 10280 10281 return {nullptr, nullptr}; 10282 } 10283 10284 /// SCEV structural equivalence is usually sufficient for testing whether two 10285 /// expressions are equal, however for the purposes of looking for a condition 10286 /// guarding a loop, it can be useful to be a little more general, since a 10287 /// front-end may have replicated the controlling expression. 10288 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10289 // Quick check to see if they are the same SCEV. 10290 if (A == B) return true; 10291 10292 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10293 // Not all instructions that are "identical" compute the same value. For 10294 // instance, two distinct alloca instructions allocating the same type are 10295 // identical and do not read memory; but compute distinct values. 10296 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10297 }; 10298 10299 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10300 // two different instructions with the same value. Check for this case. 10301 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10302 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10303 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10304 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10305 if (ComputesEqualValues(AI, BI)) 10306 return true; 10307 10308 // Otherwise assume they may have a different value. 10309 return false; 10310 } 10311 10312 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10313 const SCEV *&LHS, const SCEV *&RHS, 10314 unsigned Depth, 10315 bool ControllingFiniteLoop) { 10316 bool Changed = false; 10317 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10318 // '0 != 0'. 10319 auto TrivialCase = [&](bool TriviallyTrue) { 10320 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10321 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10322 return true; 10323 }; 10324 // If we hit the max recursion limit bail out. 10325 if (Depth >= 3) 10326 return false; 10327 10328 // Canonicalize a constant to the right side. 10329 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10330 // Check for both operands constant. 10331 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10332 if (ConstantExpr::getICmp(Pred, 10333 LHSC->getValue(), 10334 RHSC->getValue())->isNullValue()) 10335 return TrivialCase(false); 10336 else 10337 return TrivialCase(true); 10338 } 10339 // Otherwise swap the operands to put the constant on the right. 10340 std::swap(LHS, RHS); 10341 Pred = ICmpInst::getSwappedPredicate(Pred); 10342 Changed = true; 10343 } 10344 10345 // If we're comparing an addrec with a value which is loop-invariant in the 10346 // addrec's loop, put the addrec on the left. Also make a dominance check, 10347 // as both operands could be addrecs loop-invariant in each other's loop. 10348 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10349 const Loop *L = AR->getLoop(); 10350 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10351 std::swap(LHS, RHS); 10352 Pred = ICmpInst::getSwappedPredicate(Pred); 10353 Changed = true; 10354 } 10355 } 10356 10357 // If there's a constant operand, canonicalize comparisons with boundary 10358 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10359 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10360 const APInt &RA = RC->getAPInt(); 10361 10362 bool SimplifiedByConstantRange = false; 10363 10364 if (!ICmpInst::isEquality(Pred)) { 10365 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10366 if (ExactCR.isFullSet()) 10367 return TrivialCase(true); 10368 else if (ExactCR.isEmptySet()) 10369 return TrivialCase(false); 10370 10371 APInt NewRHS; 10372 CmpInst::Predicate NewPred; 10373 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10374 ICmpInst::isEquality(NewPred)) { 10375 // We were able to convert an inequality to an equality. 10376 Pred = NewPred; 10377 RHS = getConstant(NewRHS); 10378 Changed = SimplifiedByConstantRange = true; 10379 } 10380 } 10381 10382 if (!SimplifiedByConstantRange) { 10383 switch (Pred) { 10384 default: 10385 break; 10386 case ICmpInst::ICMP_EQ: 10387 case ICmpInst::ICMP_NE: 10388 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10389 if (!RA) 10390 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10391 if (const SCEVMulExpr *ME = 10392 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10393 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10394 ME->getOperand(0)->isAllOnesValue()) { 10395 RHS = AE->getOperand(1); 10396 LHS = ME->getOperand(1); 10397 Changed = true; 10398 } 10399 break; 10400 10401 10402 // The "Should have been caught earlier!" messages refer to the fact 10403 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10404 // should have fired on the corresponding cases, and canonicalized the 10405 // check to trivial case. 10406 10407 case ICmpInst::ICMP_UGE: 10408 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10409 Pred = ICmpInst::ICMP_UGT; 10410 RHS = getConstant(RA - 1); 10411 Changed = true; 10412 break; 10413 case ICmpInst::ICMP_ULE: 10414 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10415 Pred = ICmpInst::ICMP_ULT; 10416 RHS = getConstant(RA + 1); 10417 Changed = true; 10418 break; 10419 case ICmpInst::ICMP_SGE: 10420 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10421 Pred = ICmpInst::ICMP_SGT; 10422 RHS = getConstant(RA - 1); 10423 Changed = true; 10424 break; 10425 case ICmpInst::ICMP_SLE: 10426 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10427 Pred = ICmpInst::ICMP_SLT; 10428 RHS = getConstant(RA + 1); 10429 Changed = true; 10430 break; 10431 } 10432 } 10433 } 10434 10435 // Check for obvious equality. 10436 if (HasSameValue(LHS, RHS)) { 10437 if (ICmpInst::isTrueWhenEqual(Pred)) 10438 return TrivialCase(true); 10439 if (ICmpInst::isFalseWhenEqual(Pred)) 10440 return TrivialCase(false); 10441 } 10442 10443 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10444 // adding or subtracting 1 from one of the operands. This can be done for 10445 // one of two reasons: 10446 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10447 // 2) The loop is finite, with this comparison controlling the exit. Since the 10448 // loop is finite, the bound cannot include the corresponding boundary 10449 // (otherwise it would loop forever). 10450 switch (Pred) { 10451 case ICmpInst::ICMP_SLE: 10452 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10453 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10454 SCEV::FlagNSW); 10455 Pred = ICmpInst::ICMP_SLT; 10456 Changed = true; 10457 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10458 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10459 SCEV::FlagNSW); 10460 Pred = ICmpInst::ICMP_SLT; 10461 Changed = true; 10462 } 10463 break; 10464 case ICmpInst::ICMP_SGE: 10465 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10466 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10467 SCEV::FlagNSW); 10468 Pred = ICmpInst::ICMP_SGT; 10469 Changed = true; 10470 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10471 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10472 SCEV::FlagNSW); 10473 Pred = ICmpInst::ICMP_SGT; 10474 Changed = true; 10475 } 10476 break; 10477 case ICmpInst::ICMP_ULE: 10478 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10479 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10480 SCEV::FlagNUW); 10481 Pred = ICmpInst::ICMP_ULT; 10482 Changed = true; 10483 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10484 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10485 Pred = ICmpInst::ICMP_ULT; 10486 Changed = true; 10487 } 10488 break; 10489 case ICmpInst::ICMP_UGE: 10490 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10491 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10492 Pred = ICmpInst::ICMP_UGT; 10493 Changed = true; 10494 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10495 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10496 SCEV::FlagNUW); 10497 Pred = ICmpInst::ICMP_UGT; 10498 Changed = true; 10499 } 10500 break; 10501 default: 10502 break; 10503 } 10504 10505 // TODO: More simplifications are possible here. 10506 10507 // Recursively simplify until we either hit a recursion limit or nothing 10508 // changes. 10509 if (Changed) 10510 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10511 ControllingFiniteLoop); 10512 10513 return Changed; 10514 } 10515 10516 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10517 return getSignedRangeMax(S).isNegative(); 10518 } 10519 10520 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10521 return getSignedRangeMin(S).isStrictlyPositive(); 10522 } 10523 10524 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10525 return !getSignedRangeMin(S).isNegative(); 10526 } 10527 10528 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10529 return !getSignedRangeMax(S).isStrictlyPositive(); 10530 } 10531 10532 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10533 return getUnsignedRangeMin(S) != 0; 10534 } 10535 10536 std::pair<const SCEV *, const SCEV *> 10537 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10538 // Compute SCEV on entry of loop L. 10539 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10540 if (Start == getCouldNotCompute()) 10541 return { Start, Start }; 10542 // Compute post increment SCEV for loop L. 10543 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10544 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10545 return { Start, PostInc }; 10546 } 10547 10548 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10549 const SCEV *LHS, const SCEV *RHS) { 10550 // First collect all loops. 10551 SmallPtrSet<const Loop *, 8> LoopsUsed; 10552 getUsedLoops(LHS, LoopsUsed); 10553 getUsedLoops(RHS, LoopsUsed); 10554 10555 if (LoopsUsed.empty()) 10556 return false; 10557 10558 // Domination relationship must be a linear order on collected loops. 10559 #ifndef NDEBUG 10560 for (const auto *L1 : LoopsUsed) 10561 for (const auto *L2 : LoopsUsed) 10562 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10563 DT.dominates(L2->getHeader(), L1->getHeader())) && 10564 "Domination relationship is not a linear order"); 10565 #endif 10566 10567 const Loop *MDL = 10568 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10569 [&](const Loop *L1, const Loop *L2) { 10570 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10571 }); 10572 10573 // Get init and post increment value for LHS. 10574 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10575 // if LHS contains unknown non-invariant SCEV then bail out. 10576 if (SplitLHS.first == getCouldNotCompute()) 10577 return false; 10578 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10579 // Get init and post increment value for RHS. 10580 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10581 // if RHS contains unknown non-invariant SCEV then bail out. 10582 if (SplitRHS.first == getCouldNotCompute()) 10583 return false; 10584 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10585 // It is possible that init SCEV contains an invariant load but it does 10586 // not dominate MDL and is not available at MDL loop entry, so we should 10587 // check it here. 10588 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10589 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10590 return false; 10591 10592 // It seems backedge guard check is faster than entry one so in some cases 10593 // it can speed up whole estimation by short circuit 10594 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10595 SplitRHS.second) && 10596 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10597 } 10598 10599 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10600 const SCEV *LHS, const SCEV *RHS) { 10601 // Canonicalize the inputs first. 10602 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10603 10604 if (isKnownViaInduction(Pred, LHS, RHS)) 10605 return true; 10606 10607 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10608 return true; 10609 10610 // Otherwise see what can be done with some simple reasoning. 10611 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10612 } 10613 10614 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10615 const SCEV *LHS, 10616 const SCEV *RHS) { 10617 if (isKnownPredicate(Pred, LHS, RHS)) 10618 return true; 10619 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10620 return false; 10621 return None; 10622 } 10623 10624 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10625 const SCEV *LHS, const SCEV *RHS, 10626 const Instruction *CtxI) { 10627 // TODO: Analyze guards and assumes from Context's block. 10628 return isKnownPredicate(Pred, LHS, RHS) || 10629 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10630 } 10631 10632 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10633 const SCEV *LHS, 10634 const SCEV *RHS, 10635 const Instruction *CtxI) { 10636 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10637 if (KnownWithoutContext) 10638 return KnownWithoutContext; 10639 10640 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10641 return true; 10642 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10643 ICmpInst::getInversePredicate(Pred), 10644 LHS, RHS)) 10645 return false; 10646 return None; 10647 } 10648 10649 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10650 const SCEVAddRecExpr *LHS, 10651 const SCEV *RHS) { 10652 const Loop *L = LHS->getLoop(); 10653 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10654 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10655 } 10656 10657 Optional<ScalarEvolution::MonotonicPredicateType> 10658 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10659 ICmpInst::Predicate Pred) { 10660 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10661 10662 #ifndef NDEBUG 10663 // Verify an invariant: inverting the predicate should turn a monotonically 10664 // increasing change to a monotonically decreasing one, and vice versa. 10665 if (Result) { 10666 auto ResultSwapped = 10667 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10668 10669 assert(ResultSwapped && "should be able to analyze both!"); 10670 assert(ResultSwapped.value() != Result.value() && 10671 "monotonicity should flip as we flip the predicate"); 10672 } 10673 #endif 10674 10675 return Result; 10676 } 10677 10678 Optional<ScalarEvolution::MonotonicPredicateType> 10679 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10680 ICmpInst::Predicate Pred) { 10681 // A zero step value for LHS means the induction variable is essentially a 10682 // loop invariant value. We don't really depend on the predicate actually 10683 // flipping from false to true (for increasing predicates, and the other way 10684 // around for decreasing predicates), all we care about is that *if* the 10685 // predicate changes then it only changes from false to true. 10686 // 10687 // A zero step value in itself is not very useful, but there may be places 10688 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10689 // as general as possible. 10690 10691 // Only handle LE/LT/GE/GT predicates. 10692 if (!ICmpInst::isRelational(Pred)) 10693 return None; 10694 10695 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10696 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10697 "Should be greater or less!"); 10698 10699 // Check that AR does not wrap. 10700 if (ICmpInst::isUnsigned(Pred)) { 10701 if (!LHS->hasNoUnsignedWrap()) 10702 return None; 10703 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10704 } else { 10705 assert(ICmpInst::isSigned(Pred) && 10706 "Relational predicate is either signed or unsigned!"); 10707 if (!LHS->hasNoSignedWrap()) 10708 return None; 10709 10710 const SCEV *Step = LHS->getStepRecurrence(*this); 10711 10712 if (isKnownNonNegative(Step)) 10713 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10714 10715 if (isKnownNonPositive(Step)) 10716 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10717 10718 return None; 10719 } 10720 } 10721 10722 Optional<ScalarEvolution::LoopInvariantPredicate> 10723 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10724 const SCEV *LHS, const SCEV *RHS, 10725 const Loop *L) { 10726 10727 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10728 if (!isLoopInvariant(RHS, L)) { 10729 if (!isLoopInvariant(LHS, L)) 10730 return None; 10731 10732 std::swap(LHS, RHS); 10733 Pred = ICmpInst::getSwappedPredicate(Pred); 10734 } 10735 10736 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10737 if (!ArLHS || ArLHS->getLoop() != L) 10738 return None; 10739 10740 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10741 if (!MonotonicType) 10742 return None; 10743 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10744 // true as the loop iterates, and the backedge is control dependent on 10745 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10746 // 10747 // * if the predicate was false in the first iteration then the predicate 10748 // is never evaluated again, since the loop exits without taking the 10749 // backedge. 10750 // * if the predicate was true in the first iteration then it will 10751 // continue to be true for all future iterations since it is 10752 // monotonically increasing. 10753 // 10754 // For both the above possibilities, we can replace the loop varying 10755 // predicate with its value on the first iteration of the loop (which is 10756 // loop invariant). 10757 // 10758 // A similar reasoning applies for a monotonically decreasing predicate, by 10759 // replacing true with false and false with true in the above two bullets. 10760 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10761 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10762 10763 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10764 return None; 10765 10766 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10767 } 10768 10769 Optional<ScalarEvolution::LoopInvariantPredicate> 10770 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10771 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10772 const Instruction *CtxI, const SCEV *MaxIter) { 10773 // Try to prove the following set of facts: 10774 // - The predicate is monotonic in the iteration space. 10775 // - If the check does not fail on the 1st iteration: 10776 // - No overflow will happen during first MaxIter iterations; 10777 // - It will not fail on the MaxIter'th iteration. 10778 // If the check does fail on the 1st iteration, we leave the loop and no 10779 // other checks matter. 10780 10781 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10782 if (!isLoopInvariant(RHS, L)) { 10783 if (!isLoopInvariant(LHS, L)) 10784 return None; 10785 10786 std::swap(LHS, RHS); 10787 Pred = ICmpInst::getSwappedPredicate(Pred); 10788 } 10789 10790 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10791 if (!AR || AR->getLoop() != L) 10792 return None; 10793 10794 // The predicate must be relational (i.e. <, <=, >=, >). 10795 if (!ICmpInst::isRelational(Pred)) 10796 return None; 10797 10798 // TODO: Support steps other than +/- 1. 10799 const SCEV *Step = AR->getStepRecurrence(*this); 10800 auto *One = getOne(Step->getType()); 10801 auto *MinusOne = getNegativeSCEV(One); 10802 if (Step != One && Step != MinusOne) 10803 return None; 10804 10805 // Type mismatch here means that MaxIter is potentially larger than max 10806 // unsigned value in start type, which mean we cannot prove no wrap for the 10807 // indvar. 10808 if (AR->getType() != MaxIter->getType()) 10809 return None; 10810 10811 // Value of IV on suggested last iteration. 10812 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10813 // Does it still meet the requirement? 10814 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10815 return None; 10816 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10817 // not exceed max unsigned value of this type), this effectively proves 10818 // that there is no wrap during the iteration. To prove that there is no 10819 // signed/unsigned wrap, we need to check that 10820 // Start <= Last for step = 1 or Start >= Last for step = -1. 10821 ICmpInst::Predicate NoOverflowPred = 10822 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10823 if (Step == MinusOne) 10824 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10825 const SCEV *Start = AR->getStart(); 10826 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10827 return None; 10828 10829 // Everything is fine. 10830 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10831 } 10832 10833 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10834 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10835 if (HasSameValue(LHS, RHS)) 10836 return ICmpInst::isTrueWhenEqual(Pred); 10837 10838 // This code is split out from isKnownPredicate because it is called from 10839 // within isLoopEntryGuardedByCond. 10840 10841 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10842 const ConstantRange &RangeRHS) { 10843 return RangeLHS.icmp(Pred, RangeRHS); 10844 }; 10845 10846 // The check at the top of the function catches the case where the values are 10847 // known to be equal. 10848 if (Pred == CmpInst::ICMP_EQ) 10849 return false; 10850 10851 if (Pred == CmpInst::ICMP_NE) { 10852 auto SL = getSignedRange(LHS); 10853 auto SR = getSignedRange(RHS); 10854 if (CheckRanges(SL, SR)) 10855 return true; 10856 auto UL = getUnsignedRange(LHS); 10857 auto UR = getUnsignedRange(RHS); 10858 if (CheckRanges(UL, UR)) 10859 return true; 10860 auto *Diff = getMinusSCEV(LHS, RHS); 10861 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10862 } 10863 10864 if (CmpInst::isSigned(Pred)) { 10865 auto SL = getSignedRange(LHS); 10866 auto SR = getSignedRange(RHS); 10867 return CheckRanges(SL, SR); 10868 } 10869 10870 auto UL = getUnsignedRange(LHS); 10871 auto UR = getUnsignedRange(RHS); 10872 return CheckRanges(UL, UR); 10873 } 10874 10875 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10876 const SCEV *LHS, 10877 const SCEV *RHS) { 10878 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10879 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10880 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10881 // OutC1 and OutC2. 10882 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10883 APInt &OutC1, APInt &OutC2, 10884 SCEV::NoWrapFlags ExpectedFlags) { 10885 const SCEV *XNonConstOp, *XConstOp; 10886 const SCEV *YNonConstOp, *YConstOp; 10887 SCEV::NoWrapFlags XFlagsPresent; 10888 SCEV::NoWrapFlags YFlagsPresent; 10889 10890 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10891 XConstOp = getZero(X->getType()); 10892 XNonConstOp = X; 10893 XFlagsPresent = ExpectedFlags; 10894 } 10895 if (!isa<SCEVConstant>(XConstOp) || 10896 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10897 return false; 10898 10899 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10900 YConstOp = getZero(Y->getType()); 10901 YNonConstOp = Y; 10902 YFlagsPresent = ExpectedFlags; 10903 } 10904 10905 if (!isa<SCEVConstant>(YConstOp) || 10906 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10907 return false; 10908 10909 if (YNonConstOp != XNonConstOp) 10910 return false; 10911 10912 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10913 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10914 10915 return true; 10916 }; 10917 10918 APInt C1; 10919 APInt C2; 10920 10921 switch (Pred) { 10922 default: 10923 break; 10924 10925 case ICmpInst::ICMP_SGE: 10926 std::swap(LHS, RHS); 10927 LLVM_FALLTHROUGH; 10928 case ICmpInst::ICMP_SLE: 10929 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10930 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10931 return true; 10932 10933 break; 10934 10935 case ICmpInst::ICMP_SGT: 10936 std::swap(LHS, RHS); 10937 LLVM_FALLTHROUGH; 10938 case ICmpInst::ICMP_SLT: 10939 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10940 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10941 return true; 10942 10943 break; 10944 10945 case ICmpInst::ICMP_UGE: 10946 std::swap(LHS, RHS); 10947 LLVM_FALLTHROUGH; 10948 case ICmpInst::ICMP_ULE: 10949 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10950 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10951 return true; 10952 10953 break; 10954 10955 case ICmpInst::ICMP_UGT: 10956 std::swap(LHS, RHS); 10957 LLVM_FALLTHROUGH; 10958 case ICmpInst::ICMP_ULT: 10959 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10960 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10961 return true; 10962 break; 10963 } 10964 10965 return false; 10966 } 10967 10968 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10969 const SCEV *LHS, 10970 const SCEV *RHS) { 10971 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10972 return false; 10973 10974 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10975 // the stack can result in exponential time complexity. 10976 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10977 10978 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10979 // 10980 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10981 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10982 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10983 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10984 // use isKnownPredicate later if needed. 10985 return isKnownNonNegative(RHS) && 10986 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10987 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10988 } 10989 10990 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10991 ICmpInst::Predicate Pred, 10992 const SCEV *LHS, const SCEV *RHS) { 10993 // No need to even try if we know the module has no guards. 10994 if (!HasGuards) 10995 return false; 10996 10997 return any_of(*BB, [&](const Instruction &I) { 10998 using namespace llvm::PatternMatch; 10999 11000 Value *Condition; 11001 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11002 m_Value(Condition))) && 11003 isImpliedCond(Pred, LHS, RHS, Condition, false); 11004 }); 11005 } 11006 11007 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11008 /// protected by a conditional between LHS and RHS. This is used to 11009 /// to eliminate casts. 11010 bool 11011 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11012 ICmpInst::Predicate Pred, 11013 const SCEV *LHS, const SCEV *RHS) { 11014 // Interpret a null as meaning no loop, where there is obviously no guard 11015 // (interprocedural conditions notwithstanding). Do not bother about 11016 // unreachable loops. 11017 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11018 return true; 11019 11020 if (VerifyIR) 11021 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11022 "This cannot be done on broken IR!"); 11023 11024 11025 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11026 return true; 11027 11028 BasicBlock *Latch = L->getLoopLatch(); 11029 if (!Latch) 11030 return false; 11031 11032 BranchInst *LoopContinuePredicate = 11033 dyn_cast<BranchInst>(Latch->getTerminator()); 11034 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11035 isImpliedCond(Pred, LHS, RHS, 11036 LoopContinuePredicate->getCondition(), 11037 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11038 return true; 11039 11040 // We don't want more than one activation of the following loops on the stack 11041 // -- that can lead to O(n!) time complexity. 11042 if (WalkingBEDominatingConds) 11043 return false; 11044 11045 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 11046 11047 // See if we can exploit a trip count to prove the predicate. 11048 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11049 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11050 if (LatchBECount != getCouldNotCompute()) { 11051 // We know that Latch branches back to the loop header exactly 11052 // LatchBECount times. This means the backdege condition at Latch is 11053 // equivalent to "{0,+,1} u< LatchBECount". 11054 Type *Ty = LatchBECount->getType(); 11055 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11056 const SCEV *LoopCounter = 11057 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11058 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11059 LatchBECount)) 11060 return true; 11061 } 11062 11063 // Check conditions due to any @llvm.assume intrinsics. 11064 for (auto &AssumeVH : AC.assumptions()) { 11065 if (!AssumeVH) 11066 continue; 11067 auto *CI = cast<CallInst>(AssumeVH); 11068 if (!DT.dominates(CI, Latch->getTerminator())) 11069 continue; 11070 11071 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11072 return true; 11073 } 11074 11075 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11076 return true; 11077 11078 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11079 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11080 assert(DTN && "should reach the loop header before reaching the root!"); 11081 11082 BasicBlock *BB = DTN->getBlock(); 11083 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11084 return true; 11085 11086 BasicBlock *PBB = BB->getSinglePredecessor(); 11087 if (!PBB) 11088 continue; 11089 11090 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11091 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11092 continue; 11093 11094 Value *Condition = ContinuePredicate->getCondition(); 11095 11096 // If we have an edge `E` within the loop body that dominates the only 11097 // latch, the condition guarding `E` also guards the backedge. This 11098 // reasoning works only for loops with a single latch. 11099 11100 BasicBlockEdge DominatingEdge(PBB, BB); 11101 if (DominatingEdge.isSingleEdge()) { 11102 // We're constructively (and conservatively) enumerating edges within the 11103 // loop body that dominate the latch. The dominator tree better agree 11104 // with us on this: 11105 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11106 11107 if (isImpliedCond(Pred, LHS, RHS, Condition, 11108 BB != ContinuePredicate->getSuccessor(0))) 11109 return true; 11110 } 11111 } 11112 11113 return false; 11114 } 11115 11116 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11117 ICmpInst::Predicate Pred, 11118 const SCEV *LHS, 11119 const SCEV *RHS) { 11120 // Do not bother proving facts for unreachable code. 11121 if (!DT.isReachableFromEntry(BB)) 11122 return true; 11123 if (VerifyIR) 11124 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11125 "This cannot be done on broken IR!"); 11126 11127 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11128 // the facts (a >= b && a != b) separately. A typical situation is when the 11129 // non-strict comparison is known from ranges and non-equality is known from 11130 // dominating predicates. If we are proving strict comparison, we always try 11131 // to prove non-equality and non-strict comparison separately. 11132 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11133 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11134 bool ProvedNonStrictComparison = false; 11135 bool ProvedNonEquality = false; 11136 11137 auto SplitAndProve = 11138 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11139 if (!ProvedNonStrictComparison) 11140 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11141 if (!ProvedNonEquality) 11142 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11143 if (ProvedNonStrictComparison && ProvedNonEquality) 11144 return true; 11145 return false; 11146 }; 11147 11148 if (ProvingStrictComparison) { 11149 auto ProofFn = [&](ICmpInst::Predicate P) { 11150 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11151 }; 11152 if (SplitAndProve(ProofFn)) 11153 return true; 11154 } 11155 11156 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11157 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11158 const Instruction *CtxI = &BB->front(); 11159 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11160 return true; 11161 if (ProvingStrictComparison) { 11162 auto ProofFn = [&](ICmpInst::Predicate P) { 11163 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11164 }; 11165 if (SplitAndProve(ProofFn)) 11166 return true; 11167 } 11168 return false; 11169 }; 11170 11171 // Starting at the block's predecessor, climb up the predecessor chain, as long 11172 // as there are predecessors that can be found that have unique successors 11173 // leading to the original block. 11174 const Loop *ContainingLoop = LI.getLoopFor(BB); 11175 const BasicBlock *PredBB; 11176 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11177 PredBB = ContainingLoop->getLoopPredecessor(); 11178 else 11179 PredBB = BB->getSinglePredecessor(); 11180 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11181 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11182 const BranchInst *BlockEntryPredicate = 11183 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11184 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11185 continue; 11186 11187 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11188 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11189 return true; 11190 } 11191 11192 // Check conditions due to any @llvm.assume intrinsics. 11193 for (auto &AssumeVH : AC.assumptions()) { 11194 if (!AssumeVH) 11195 continue; 11196 auto *CI = cast<CallInst>(AssumeVH); 11197 if (!DT.dominates(CI, BB)) 11198 continue; 11199 11200 if (ProveViaCond(CI->getArgOperand(0), false)) 11201 return true; 11202 } 11203 11204 // Check conditions due to any @llvm.experimental.guard intrinsics. 11205 auto *GuardDecl = F.getParent()->getFunction( 11206 Intrinsic::getName(Intrinsic::experimental_guard)); 11207 if (GuardDecl) 11208 for (const auto *GU : GuardDecl->users()) 11209 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 11210 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) 11211 if (ProveViaCond(Guard->getArgOperand(0), false)) 11212 return true; 11213 return false; 11214 } 11215 11216 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11217 ICmpInst::Predicate Pred, 11218 const SCEV *LHS, 11219 const SCEV *RHS) { 11220 // Interpret a null as meaning no loop, where there is obviously no guard 11221 // (interprocedural conditions notwithstanding). 11222 if (!L) 11223 return false; 11224 11225 // Both LHS and RHS must be available at loop entry. 11226 assert(isAvailableAtLoopEntry(LHS, L) && 11227 "LHS is not available at Loop Entry"); 11228 assert(isAvailableAtLoopEntry(RHS, L) && 11229 "RHS is not available at Loop Entry"); 11230 11231 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11232 return true; 11233 11234 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11235 } 11236 11237 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11238 const SCEV *RHS, 11239 const Value *FoundCondValue, bool Inverse, 11240 const Instruction *CtxI) { 11241 // False conditions implies anything. Do not bother analyzing it further. 11242 if (FoundCondValue == 11243 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11244 return true; 11245 11246 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11247 return false; 11248 11249 auto ClearOnExit = 11250 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11251 11252 // Recursively handle And and Or conditions. 11253 const Value *Op0, *Op1; 11254 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11255 if (!Inverse) 11256 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11257 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11258 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11259 if (Inverse) 11260 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11261 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11262 } 11263 11264 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11265 if (!ICI) return false; 11266 11267 // Now that we found a conditional branch that dominates the loop or controls 11268 // the loop latch. Check to see if it is the comparison we are looking for. 11269 ICmpInst::Predicate FoundPred; 11270 if (Inverse) 11271 FoundPred = ICI->getInversePredicate(); 11272 else 11273 FoundPred = ICI->getPredicate(); 11274 11275 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11276 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11277 11278 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11279 } 11280 11281 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11282 const SCEV *RHS, 11283 ICmpInst::Predicate FoundPred, 11284 const SCEV *FoundLHS, const SCEV *FoundRHS, 11285 const Instruction *CtxI) { 11286 // Balance the types. 11287 if (getTypeSizeInBits(LHS->getType()) < 11288 getTypeSizeInBits(FoundLHS->getType())) { 11289 // For unsigned and equality predicates, try to prove that both found 11290 // operands fit into narrow unsigned range. If so, try to prove facts in 11291 // narrow types. 11292 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11293 !FoundRHS->getType()->isPointerTy()) { 11294 auto *NarrowType = LHS->getType(); 11295 auto *WideType = FoundLHS->getType(); 11296 auto BitWidth = getTypeSizeInBits(NarrowType); 11297 const SCEV *MaxValue = getZeroExtendExpr( 11298 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11299 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11300 MaxValue) && 11301 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11302 MaxValue)) { 11303 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11304 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11305 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11306 TruncFoundRHS, CtxI)) 11307 return true; 11308 } 11309 } 11310 11311 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11312 return false; 11313 if (CmpInst::isSigned(Pred)) { 11314 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11315 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11316 } else { 11317 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11318 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11319 } 11320 } else if (getTypeSizeInBits(LHS->getType()) > 11321 getTypeSizeInBits(FoundLHS->getType())) { 11322 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11323 return false; 11324 if (CmpInst::isSigned(FoundPred)) { 11325 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11326 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11327 } else { 11328 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11329 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11330 } 11331 } 11332 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11333 FoundRHS, CtxI); 11334 } 11335 11336 bool ScalarEvolution::isImpliedCondBalancedTypes( 11337 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11338 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11339 const Instruction *CtxI) { 11340 assert(getTypeSizeInBits(LHS->getType()) == 11341 getTypeSizeInBits(FoundLHS->getType()) && 11342 "Types should be balanced!"); 11343 // Canonicalize the query to match the way instcombine will have 11344 // canonicalized the comparison. 11345 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11346 if (LHS == RHS) 11347 return CmpInst::isTrueWhenEqual(Pred); 11348 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11349 if (FoundLHS == FoundRHS) 11350 return CmpInst::isFalseWhenEqual(FoundPred); 11351 11352 // Check to see if we can make the LHS or RHS match. 11353 if (LHS == FoundRHS || RHS == FoundLHS) { 11354 if (isa<SCEVConstant>(RHS)) { 11355 std::swap(FoundLHS, FoundRHS); 11356 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11357 } else { 11358 std::swap(LHS, RHS); 11359 Pred = ICmpInst::getSwappedPredicate(Pred); 11360 } 11361 } 11362 11363 // Check whether the found predicate is the same as the desired predicate. 11364 if (FoundPred == Pred) 11365 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11366 11367 // Check whether swapping the found predicate makes it the same as the 11368 // desired predicate. 11369 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11370 // We can write the implication 11371 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11372 // using one of the following ways: 11373 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11374 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11375 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11376 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11377 // Forms 1. and 2. require swapping the operands of one condition. Don't 11378 // do this if it would break canonical constant/addrec ordering. 11379 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11380 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11381 CtxI); 11382 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11383 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11384 11385 // There's no clear preference between forms 3. and 4., try both. Avoid 11386 // forming getNotSCEV of pointer values as the resulting subtract is 11387 // not legal. 11388 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11389 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11390 FoundLHS, FoundRHS, CtxI)) 11391 return true; 11392 11393 if (!FoundLHS->getType()->isPointerTy() && 11394 !FoundRHS->getType()->isPointerTy() && 11395 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11396 getNotSCEV(FoundRHS), CtxI)) 11397 return true; 11398 11399 return false; 11400 } 11401 11402 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11403 CmpInst::Predicate P2) { 11404 assert(P1 != P2 && "Handled earlier!"); 11405 return CmpInst::isRelational(P2) && 11406 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11407 }; 11408 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11409 // Unsigned comparison is the same as signed comparison when both the 11410 // operands are non-negative or negative. 11411 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11412 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11413 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11414 // Create local copies that we can freely swap and canonicalize our 11415 // conditions to "le/lt". 11416 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11417 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11418 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11419 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11420 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11421 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11422 std::swap(CanonicalLHS, CanonicalRHS); 11423 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11424 } 11425 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11426 "Must be!"); 11427 assert((ICmpInst::isLT(CanonicalFoundPred) || 11428 ICmpInst::isLE(CanonicalFoundPred)) && 11429 "Must be!"); 11430 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11431 // Use implication: 11432 // x <u y && y >=s 0 --> x <s y. 11433 // If we can prove the left part, the right part is also proven. 11434 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11435 CanonicalRHS, CanonicalFoundLHS, 11436 CanonicalFoundRHS); 11437 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11438 // Use implication: 11439 // x <s y && y <s 0 --> x <u y. 11440 // If we can prove the left part, the right part is also proven. 11441 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11442 CanonicalRHS, CanonicalFoundLHS, 11443 CanonicalFoundRHS); 11444 } 11445 11446 // Check if we can make progress by sharpening ranges. 11447 if (FoundPred == ICmpInst::ICMP_NE && 11448 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11449 11450 const SCEVConstant *C = nullptr; 11451 const SCEV *V = nullptr; 11452 11453 if (isa<SCEVConstant>(FoundLHS)) { 11454 C = cast<SCEVConstant>(FoundLHS); 11455 V = FoundRHS; 11456 } else { 11457 C = cast<SCEVConstant>(FoundRHS); 11458 V = FoundLHS; 11459 } 11460 11461 // The guarding predicate tells us that C != V. If the known range 11462 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11463 // range we consider has to correspond to same signedness as the 11464 // predicate we're interested in folding. 11465 11466 APInt Min = ICmpInst::isSigned(Pred) ? 11467 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11468 11469 if (Min == C->getAPInt()) { 11470 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11471 // This is true even if (Min + 1) wraps around -- in case of 11472 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11473 11474 APInt SharperMin = Min + 1; 11475 11476 switch (Pred) { 11477 case ICmpInst::ICMP_SGE: 11478 case ICmpInst::ICMP_UGE: 11479 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11480 // RHS, we're done. 11481 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11482 CtxI)) 11483 return true; 11484 LLVM_FALLTHROUGH; 11485 11486 case ICmpInst::ICMP_SGT: 11487 case ICmpInst::ICMP_UGT: 11488 // We know from the range information that (V `Pred` Min || 11489 // V == Min). We know from the guarding condition that !(V 11490 // == Min). This gives us 11491 // 11492 // V `Pred` Min || V == Min && !(V == Min) 11493 // => V `Pred` Min 11494 // 11495 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11496 11497 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11498 return true; 11499 break; 11500 11501 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11502 case ICmpInst::ICMP_SLE: 11503 case ICmpInst::ICMP_ULE: 11504 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11505 LHS, V, getConstant(SharperMin), CtxI)) 11506 return true; 11507 LLVM_FALLTHROUGH; 11508 11509 case ICmpInst::ICMP_SLT: 11510 case ICmpInst::ICMP_ULT: 11511 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11512 LHS, V, getConstant(Min), CtxI)) 11513 return true; 11514 break; 11515 11516 default: 11517 // No change 11518 break; 11519 } 11520 } 11521 } 11522 11523 // Check whether the actual condition is beyond sufficient. 11524 if (FoundPred == ICmpInst::ICMP_EQ) 11525 if (ICmpInst::isTrueWhenEqual(Pred)) 11526 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11527 return true; 11528 if (Pred == ICmpInst::ICMP_NE) 11529 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11530 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11531 return true; 11532 11533 // Otherwise assume the worst. 11534 return false; 11535 } 11536 11537 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11538 const SCEV *&L, const SCEV *&R, 11539 SCEV::NoWrapFlags &Flags) { 11540 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11541 if (!AE || AE->getNumOperands() != 2) 11542 return false; 11543 11544 L = AE->getOperand(0); 11545 R = AE->getOperand(1); 11546 Flags = AE->getNoWrapFlags(); 11547 return true; 11548 } 11549 11550 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11551 const SCEV *Less) { 11552 // We avoid subtracting expressions here because this function is usually 11553 // fairly deep in the call stack (i.e. is called many times). 11554 11555 // X - X = 0. 11556 if (More == Less) 11557 return APInt(getTypeSizeInBits(More->getType()), 0); 11558 11559 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11560 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11561 const auto *MAR = cast<SCEVAddRecExpr>(More); 11562 11563 if (LAR->getLoop() != MAR->getLoop()) 11564 return None; 11565 11566 // We look at affine expressions only; not for correctness but to keep 11567 // getStepRecurrence cheap. 11568 if (!LAR->isAffine() || !MAR->isAffine()) 11569 return None; 11570 11571 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11572 return None; 11573 11574 Less = LAR->getStart(); 11575 More = MAR->getStart(); 11576 11577 // fall through 11578 } 11579 11580 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11581 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11582 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11583 return M - L; 11584 } 11585 11586 SCEV::NoWrapFlags Flags; 11587 const SCEV *LLess = nullptr, *RLess = nullptr; 11588 const SCEV *LMore = nullptr, *RMore = nullptr; 11589 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11590 // Compare (X + C1) vs X. 11591 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11592 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11593 if (RLess == More) 11594 return -(C1->getAPInt()); 11595 11596 // Compare X vs (X + C2). 11597 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11598 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11599 if (RMore == Less) 11600 return C2->getAPInt(); 11601 11602 // Compare (X + C1) vs (X + C2). 11603 if (C1 && C2 && RLess == RMore) 11604 return C2->getAPInt() - C1->getAPInt(); 11605 11606 return None; 11607 } 11608 11609 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11610 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11611 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11612 // Try to recognize the following pattern: 11613 // 11614 // FoundRHS = ... 11615 // ... 11616 // loop: 11617 // FoundLHS = {Start,+,W} 11618 // context_bb: // Basic block from the same loop 11619 // known(Pred, FoundLHS, FoundRHS) 11620 // 11621 // If some predicate is known in the context of a loop, it is also known on 11622 // each iteration of this loop, including the first iteration. Therefore, in 11623 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11624 // prove the original pred using this fact. 11625 if (!CtxI) 11626 return false; 11627 const BasicBlock *ContextBB = CtxI->getParent(); 11628 // Make sure AR varies in the context block. 11629 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11630 const Loop *L = AR->getLoop(); 11631 // Make sure that context belongs to the loop and executes on 1st iteration 11632 // (if it ever executes at all). 11633 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11634 return false; 11635 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11636 return false; 11637 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11638 } 11639 11640 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11641 const Loop *L = AR->getLoop(); 11642 // Make sure that context belongs to the loop and executes on 1st iteration 11643 // (if it ever executes at all). 11644 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11645 return false; 11646 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11647 return false; 11648 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11649 } 11650 11651 return false; 11652 } 11653 11654 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11655 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11656 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11657 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11658 return false; 11659 11660 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11661 if (!AddRecLHS) 11662 return false; 11663 11664 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11665 if (!AddRecFoundLHS) 11666 return false; 11667 11668 // We'd like to let SCEV reason about control dependencies, so we constrain 11669 // both the inequalities to be about add recurrences on the same loop. This 11670 // way we can use isLoopEntryGuardedByCond later. 11671 11672 const Loop *L = AddRecFoundLHS->getLoop(); 11673 if (L != AddRecLHS->getLoop()) 11674 return false; 11675 11676 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11677 // 11678 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11679 // ... (2) 11680 // 11681 // Informal proof for (2), assuming (1) [*]: 11682 // 11683 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11684 // 11685 // Then 11686 // 11687 // FoundLHS s< FoundRHS s< INT_MIN - C 11688 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11689 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11690 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11691 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11692 // <=> FoundLHS + C s< FoundRHS + C 11693 // 11694 // [*]: (1) can be proved by ruling out overflow. 11695 // 11696 // [**]: This can be proved by analyzing all the four possibilities: 11697 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11698 // (A s>= 0, B s>= 0). 11699 // 11700 // Note: 11701 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11702 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11703 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11704 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11705 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11706 // C)". 11707 11708 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11709 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11710 if (!LDiff || !RDiff || *LDiff != *RDiff) 11711 return false; 11712 11713 if (LDiff->isMinValue()) 11714 return true; 11715 11716 APInt FoundRHSLimit; 11717 11718 if (Pred == CmpInst::ICMP_ULT) { 11719 FoundRHSLimit = -(*RDiff); 11720 } else { 11721 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11722 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11723 } 11724 11725 // Try to prove (1) or (2), as needed. 11726 return isAvailableAtLoopEntry(FoundRHS, L) && 11727 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11728 getConstant(FoundRHSLimit)); 11729 } 11730 11731 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11732 const SCEV *LHS, const SCEV *RHS, 11733 const SCEV *FoundLHS, 11734 const SCEV *FoundRHS, unsigned Depth) { 11735 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11736 11737 auto ClearOnExit = make_scope_exit([&]() { 11738 if (LPhi) { 11739 bool Erased = PendingMerges.erase(LPhi); 11740 assert(Erased && "Failed to erase LPhi!"); 11741 (void)Erased; 11742 } 11743 if (RPhi) { 11744 bool Erased = PendingMerges.erase(RPhi); 11745 assert(Erased && "Failed to erase RPhi!"); 11746 (void)Erased; 11747 } 11748 }); 11749 11750 // Find respective Phis and check that they are not being pending. 11751 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11752 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11753 if (!PendingMerges.insert(Phi).second) 11754 return false; 11755 LPhi = Phi; 11756 } 11757 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11758 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11759 // If we detect a loop of Phi nodes being processed by this method, for 11760 // example: 11761 // 11762 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11763 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11764 // 11765 // we don't want to deal with a case that complex, so return conservative 11766 // answer false. 11767 if (!PendingMerges.insert(Phi).second) 11768 return false; 11769 RPhi = Phi; 11770 } 11771 11772 // If none of LHS, RHS is a Phi, nothing to do here. 11773 if (!LPhi && !RPhi) 11774 return false; 11775 11776 // If there is a SCEVUnknown Phi we are interested in, make it left. 11777 if (!LPhi) { 11778 std::swap(LHS, RHS); 11779 std::swap(FoundLHS, FoundRHS); 11780 std::swap(LPhi, RPhi); 11781 Pred = ICmpInst::getSwappedPredicate(Pred); 11782 } 11783 11784 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11785 const BasicBlock *LBB = LPhi->getParent(); 11786 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11787 11788 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11789 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11790 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11791 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11792 }; 11793 11794 if (RPhi && RPhi->getParent() == LBB) { 11795 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11796 // If we compare two Phis from the same block, and for each entry block 11797 // the predicate is true for incoming values from this block, then the 11798 // predicate is also true for the Phis. 11799 for (const BasicBlock *IncBB : predecessors(LBB)) { 11800 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11801 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11802 if (!ProvedEasily(L, R)) 11803 return false; 11804 } 11805 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11806 // Case two: RHS is also a Phi from the same basic block, and it is an 11807 // AddRec. It means that there is a loop which has both AddRec and Unknown 11808 // PHIs, for it we can compare incoming values of AddRec from above the loop 11809 // and latch with their respective incoming values of LPhi. 11810 // TODO: Generalize to handle loops with many inputs in a header. 11811 if (LPhi->getNumIncomingValues() != 2) return false; 11812 11813 auto *RLoop = RAR->getLoop(); 11814 auto *Predecessor = RLoop->getLoopPredecessor(); 11815 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11816 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11817 if (!ProvedEasily(L1, RAR->getStart())) 11818 return false; 11819 auto *Latch = RLoop->getLoopLatch(); 11820 assert(Latch && "Loop with AddRec with no latch?"); 11821 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11822 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11823 return false; 11824 } else { 11825 // In all other cases go over inputs of LHS and compare each of them to RHS, 11826 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11827 // At this point RHS is either a non-Phi, or it is a Phi from some block 11828 // different from LBB. 11829 for (const BasicBlock *IncBB : predecessors(LBB)) { 11830 // Check that RHS is available in this block. 11831 if (!dominates(RHS, IncBB)) 11832 return false; 11833 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11834 // Make sure L does not refer to a value from a potentially previous 11835 // iteration of a loop. 11836 if (!properlyDominates(L, LBB)) 11837 return false; 11838 if (!ProvedEasily(L, RHS)) 11839 return false; 11840 } 11841 } 11842 return true; 11843 } 11844 11845 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11846 const SCEV *LHS, 11847 const SCEV *RHS, 11848 const SCEV *FoundLHS, 11849 const SCEV *FoundRHS) { 11850 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11851 // sure that we are dealing with same LHS. 11852 if (RHS == FoundRHS) { 11853 std::swap(LHS, RHS); 11854 std::swap(FoundLHS, FoundRHS); 11855 Pred = ICmpInst::getSwappedPredicate(Pred); 11856 } 11857 if (LHS != FoundLHS) 11858 return false; 11859 11860 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11861 if (!SUFoundRHS) 11862 return false; 11863 11864 Value *Shiftee, *ShiftValue; 11865 11866 using namespace PatternMatch; 11867 if (match(SUFoundRHS->getValue(), 11868 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11869 auto *ShifteeS = getSCEV(Shiftee); 11870 // Prove one of the following: 11871 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11872 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11873 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11874 // ---> LHS <s RHS 11875 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11876 // ---> LHS <=s RHS 11877 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11878 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11879 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11880 if (isKnownNonNegative(ShifteeS)) 11881 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11882 } 11883 11884 return false; 11885 } 11886 11887 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11888 const SCEV *LHS, const SCEV *RHS, 11889 const SCEV *FoundLHS, 11890 const SCEV *FoundRHS, 11891 const Instruction *CtxI) { 11892 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11893 return true; 11894 11895 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11896 return true; 11897 11898 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11899 return true; 11900 11901 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11902 CtxI)) 11903 return true; 11904 11905 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11906 FoundLHS, FoundRHS); 11907 } 11908 11909 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11910 template <typename MinMaxExprType> 11911 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11912 const SCEV *Candidate) { 11913 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11914 if (!MinMaxExpr) 11915 return false; 11916 11917 return is_contained(MinMaxExpr->operands(), Candidate); 11918 } 11919 11920 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11921 ICmpInst::Predicate Pred, 11922 const SCEV *LHS, const SCEV *RHS) { 11923 // If both sides are affine addrecs for the same loop, with equal 11924 // steps, and we know the recurrences don't wrap, then we only 11925 // need to check the predicate on the starting values. 11926 11927 if (!ICmpInst::isRelational(Pred)) 11928 return false; 11929 11930 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11931 if (!LAR) 11932 return false; 11933 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11934 if (!RAR) 11935 return false; 11936 if (LAR->getLoop() != RAR->getLoop()) 11937 return false; 11938 if (!LAR->isAffine() || !RAR->isAffine()) 11939 return false; 11940 11941 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11942 return false; 11943 11944 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11945 SCEV::FlagNSW : SCEV::FlagNUW; 11946 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11947 return false; 11948 11949 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11950 } 11951 11952 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11953 /// expression? 11954 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11955 ICmpInst::Predicate Pred, 11956 const SCEV *LHS, const SCEV *RHS) { 11957 switch (Pred) { 11958 default: 11959 return false; 11960 11961 case ICmpInst::ICMP_SGE: 11962 std::swap(LHS, RHS); 11963 LLVM_FALLTHROUGH; 11964 case ICmpInst::ICMP_SLE: 11965 return 11966 // min(A, ...) <= A 11967 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11968 // A <= max(A, ...) 11969 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11970 11971 case ICmpInst::ICMP_UGE: 11972 std::swap(LHS, RHS); 11973 LLVM_FALLTHROUGH; 11974 case ICmpInst::ICMP_ULE: 11975 return 11976 // min(A, ...) <= A 11977 // FIXME: what about umin_seq? 11978 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11979 // A <= max(A, ...) 11980 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11981 } 11982 11983 llvm_unreachable("covered switch fell through?!"); 11984 } 11985 11986 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11987 const SCEV *LHS, const SCEV *RHS, 11988 const SCEV *FoundLHS, 11989 const SCEV *FoundRHS, 11990 unsigned Depth) { 11991 assert(getTypeSizeInBits(LHS->getType()) == 11992 getTypeSizeInBits(RHS->getType()) && 11993 "LHS and RHS have different sizes?"); 11994 assert(getTypeSizeInBits(FoundLHS->getType()) == 11995 getTypeSizeInBits(FoundRHS->getType()) && 11996 "FoundLHS and FoundRHS have different sizes?"); 11997 // We want to avoid hurting the compile time with analysis of too big trees. 11998 if (Depth > MaxSCEVOperationsImplicationDepth) 11999 return false; 12000 12001 // We only want to work with GT comparison so far. 12002 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12003 Pred = CmpInst::getSwappedPredicate(Pred); 12004 std::swap(LHS, RHS); 12005 std::swap(FoundLHS, FoundRHS); 12006 } 12007 12008 // For unsigned, try to reduce it to corresponding signed comparison. 12009 if (Pred == ICmpInst::ICMP_UGT) 12010 // We can replace unsigned predicate with its signed counterpart if all 12011 // involved values are non-negative. 12012 // TODO: We could have better support for unsigned. 12013 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12014 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12015 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12016 // use this fact to prove that LHS and RHS are non-negative. 12017 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12018 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12019 FoundRHS) && 12020 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12021 FoundRHS)) 12022 Pred = ICmpInst::ICMP_SGT; 12023 } 12024 12025 if (Pred != ICmpInst::ICMP_SGT) 12026 return false; 12027 12028 auto GetOpFromSExt = [&](const SCEV *S) { 12029 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12030 return Ext->getOperand(); 12031 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12032 // the constant in some cases. 12033 return S; 12034 }; 12035 12036 // Acquire values from extensions. 12037 auto *OrigLHS = LHS; 12038 auto *OrigFoundLHS = FoundLHS; 12039 LHS = GetOpFromSExt(LHS); 12040 FoundLHS = GetOpFromSExt(FoundLHS); 12041 12042 // Is the SGT predicate can be proved trivially or using the found context. 12043 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12044 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12045 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12046 FoundRHS, Depth + 1); 12047 }; 12048 12049 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12050 // We want to avoid creation of any new non-constant SCEV. Since we are 12051 // going to compare the operands to RHS, we should be certain that we don't 12052 // need any size extensions for this. So let's decline all cases when the 12053 // sizes of types of LHS and RHS do not match. 12054 // TODO: Maybe try to get RHS from sext to catch more cases? 12055 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12056 return false; 12057 12058 // Should not overflow. 12059 if (!LHSAddExpr->hasNoSignedWrap()) 12060 return false; 12061 12062 auto *LL = LHSAddExpr->getOperand(0); 12063 auto *LR = LHSAddExpr->getOperand(1); 12064 auto *MinusOne = getMinusOne(RHS->getType()); 12065 12066 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12067 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12068 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12069 }; 12070 // Try to prove the following rule: 12071 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12072 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12073 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12074 return true; 12075 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12076 Value *LL, *LR; 12077 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12078 12079 using namespace llvm::PatternMatch; 12080 12081 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12082 // Rules for division. 12083 // We are going to perform some comparisons with Denominator and its 12084 // derivative expressions. In general case, creating a SCEV for it may 12085 // lead to a complex analysis of the entire graph, and in particular it 12086 // can request trip count recalculation for the same loop. This would 12087 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12088 // this, we only want to create SCEVs that are constants in this section. 12089 // So we bail if Denominator is not a constant. 12090 if (!isa<ConstantInt>(LR)) 12091 return false; 12092 12093 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12094 12095 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12096 // then a SCEV for the numerator already exists and matches with FoundLHS. 12097 auto *Numerator = getExistingSCEV(LL); 12098 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12099 return false; 12100 12101 // Make sure that the numerator matches with FoundLHS and the denominator 12102 // is positive. 12103 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12104 return false; 12105 12106 auto *DTy = Denominator->getType(); 12107 auto *FRHSTy = FoundRHS->getType(); 12108 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12109 // One of types is a pointer and another one is not. We cannot extend 12110 // them properly to a wider type, so let us just reject this case. 12111 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12112 // to avoid this check. 12113 return false; 12114 12115 // Given that: 12116 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12117 auto *WTy = getWiderType(DTy, FRHSTy); 12118 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12119 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12120 12121 // Try to prove the following rule: 12122 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12123 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12124 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12125 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12126 if (isKnownNonPositive(RHS) && 12127 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12128 return true; 12129 12130 // Try to prove the following rule: 12131 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12132 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12133 // If we divide it by Denominator > 2, then: 12134 // 1. If FoundLHS is negative, then the result is 0. 12135 // 2. If FoundLHS is non-negative, then the result is non-negative. 12136 // Anyways, the result is non-negative. 12137 auto *MinusOne = getMinusOne(WTy); 12138 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12139 if (isKnownNegative(RHS) && 12140 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12141 return true; 12142 } 12143 } 12144 12145 // If our expression contained SCEVUnknown Phis, and we split it down and now 12146 // need to prove something for them, try to prove the predicate for every 12147 // possible incoming values of those Phis. 12148 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12149 return true; 12150 12151 return false; 12152 } 12153 12154 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12155 const SCEV *LHS, const SCEV *RHS) { 12156 // zext x u<= sext x, sext x s<= zext x 12157 switch (Pred) { 12158 case ICmpInst::ICMP_SGE: 12159 std::swap(LHS, RHS); 12160 LLVM_FALLTHROUGH; 12161 case ICmpInst::ICMP_SLE: { 12162 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12163 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12164 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12165 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12166 return true; 12167 break; 12168 } 12169 case ICmpInst::ICMP_UGE: 12170 std::swap(LHS, RHS); 12171 LLVM_FALLTHROUGH; 12172 case ICmpInst::ICMP_ULE: { 12173 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12174 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12175 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12176 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12177 return true; 12178 break; 12179 } 12180 default: 12181 break; 12182 }; 12183 return false; 12184 } 12185 12186 bool 12187 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12188 const SCEV *LHS, const SCEV *RHS) { 12189 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12190 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12191 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12192 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12193 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12194 } 12195 12196 bool 12197 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12198 const SCEV *LHS, const SCEV *RHS, 12199 const SCEV *FoundLHS, 12200 const SCEV *FoundRHS) { 12201 switch (Pred) { 12202 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12203 case ICmpInst::ICMP_EQ: 12204 case ICmpInst::ICMP_NE: 12205 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12206 return true; 12207 break; 12208 case ICmpInst::ICMP_SLT: 12209 case ICmpInst::ICMP_SLE: 12210 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12211 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12212 return true; 12213 break; 12214 case ICmpInst::ICMP_SGT: 12215 case ICmpInst::ICMP_SGE: 12216 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12217 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12218 return true; 12219 break; 12220 case ICmpInst::ICMP_ULT: 12221 case ICmpInst::ICMP_ULE: 12222 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12223 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12224 return true; 12225 break; 12226 case ICmpInst::ICMP_UGT: 12227 case ICmpInst::ICMP_UGE: 12228 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12229 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12230 return true; 12231 break; 12232 } 12233 12234 // Maybe it can be proved via operations? 12235 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12236 return true; 12237 12238 return false; 12239 } 12240 12241 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12242 const SCEV *LHS, 12243 const SCEV *RHS, 12244 const SCEV *FoundLHS, 12245 const SCEV *FoundRHS) { 12246 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12247 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12248 // reduce the compile time impact of this optimization. 12249 return false; 12250 12251 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12252 if (!Addend) 12253 return false; 12254 12255 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12256 12257 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12258 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12259 ConstantRange FoundLHSRange = 12260 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12261 12262 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12263 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12264 12265 // We can also compute the range of values for `LHS` that satisfy the 12266 // consequent, "`LHS` `Pred` `RHS`": 12267 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12268 // The antecedent implies the consequent if every value of `LHS` that 12269 // satisfies the antecedent also satisfies the consequent. 12270 return LHSRange.icmp(Pred, ConstRHS); 12271 } 12272 12273 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12274 bool IsSigned) { 12275 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12276 12277 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12278 const SCEV *One = getOne(Stride->getType()); 12279 12280 if (IsSigned) { 12281 APInt MaxRHS = getSignedRangeMax(RHS); 12282 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12283 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12284 12285 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12286 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12287 } 12288 12289 APInt MaxRHS = getUnsignedRangeMax(RHS); 12290 APInt MaxValue = APInt::getMaxValue(BitWidth); 12291 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12292 12293 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12294 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12295 } 12296 12297 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12298 bool IsSigned) { 12299 12300 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12301 const SCEV *One = getOne(Stride->getType()); 12302 12303 if (IsSigned) { 12304 APInt MinRHS = getSignedRangeMin(RHS); 12305 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12306 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12307 12308 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12309 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12310 } 12311 12312 APInt MinRHS = getUnsignedRangeMin(RHS); 12313 APInt MinValue = APInt::getMinValue(BitWidth); 12314 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12315 12316 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12317 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12318 } 12319 12320 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12321 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12322 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12323 // expression fixes the case of N=0. 12324 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12325 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12326 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12327 } 12328 12329 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12330 const SCEV *Stride, 12331 const SCEV *End, 12332 unsigned BitWidth, 12333 bool IsSigned) { 12334 // The logic in this function assumes we can represent a positive stride. 12335 // If we can't, the backedge-taken count must be zero. 12336 if (IsSigned && BitWidth == 1) 12337 return getZero(Stride->getType()); 12338 12339 // This code has only been closely audited for negative strides in the 12340 // unsigned comparison case, it may be correct for signed comparison, but 12341 // that needs to be established. 12342 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12343 "Stride is expected strictly positive for signed case!"); 12344 12345 // Calculate the maximum backedge count based on the range of values 12346 // permitted by Start, End, and Stride. 12347 APInt MinStart = 12348 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12349 12350 APInt MinStride = 12351 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12352 12353 // We assume either the stride is positive, or the backedge-taken count 12354 // is zero. So force StrideForMaxBECount to be at least one. 12355 APInt One(BitWidth, 1); 12356 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12357 : APIntOps::umax(One, MinStride); 12358 12359 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12360 : APInt::getMaxValue(BitWidth); 12361 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12362 12363 // Although End can be a MAX expression we estimate MaxEnd considering only 12364 // the case End = RHS of the loop termination condition. This is safe because 12365 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12366 // taken count. 12367 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12368 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12369 12370 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12371 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12372 : APIntOps::umax(MaxEnd, MinStart); 12373 12374 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12375 getConstant(StrideForMaxBECount) /* Step */); 12376 } 12377 12378 ScalarEvolution::ExitLimit 12379 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12380 const Loop *L, bool IsSigned, 12381 bool ControlsExit, bool AllowPredicates) { 12382 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12383 12384 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12385 bool PredicatedIV = false; 12386 12387 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12388 // Can we prove this loop *must* be UB if overflow of IV occurs? 12389 // Reasoning goes as follows: 12390 // * Suppose the IV did self wrap. 12391 // * If Stride evenly divides the iteration space, then once wrap 12392 // occurs, the loop must revisit the same values. 12393 // * We know that RHS is invariant, and that none of those values 12394 // caused this exit to be taken previously. Thus, this exit is 12395 // dynamically dead. 12396 // * If this is the sole exit, then a dead exit implies the loop 12397 // must be infinite if there are no abnormal exits. 12398 // * If the loop were infinite, then it must either not be mustprogress 12399 // or have side effects. Otherwise, it must be UB. 12400 // * It can't (by assumption), be UB so we have contradicted our 12401 // premise and can conclude the IV did not in fact self-wrap. 12402 if (!isLoopInvariant(RHS, L)) 12403 return false; 12404 12405 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12406 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12407 return false; 12408 12409 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12410 return false; 12411 12412 return loopIsFiniteByAssumption(L); 12413 }; 12414 12415 if (!IV) { 12416 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12417 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12418 if (AR && AR->getLoop() == L && AR->isAffine()) { 12419 auto canProveNUW = [&]() { 12420 if (!isLoopInvariant(RHS, L)) 12421 return false; 12422 12423 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12424 // We need the sequence defined by AR to strictly increase in the 12425 // unsigned integer domain for the logic below to hold. 12426 return false; 12427 12428 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12429 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12430 // If RHS <=u Limit, then there must exist a value V in the sequence 12431 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12432 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12433 // overflow occurs. This limit also implies that a signed comparison 12434 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12435 // the high bits on both sides must be zero. 12436 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12437 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12438 Limit = Limit.zext(OuterBitWidth); 12439 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12440 }; 12441 auto Flags = AR->getNoWrapFlags(); 12442 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12443 Flags = setFlags(Flags, SCEV::FlagNUW); 12444 12445 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12446 if (AR->hasNoUnsignedWrap()) { 12447 // Emulate what getZeroExtendExpr would have done during construction 12448 // if we'd been able to infer the fact just above at that time. 12449 const SCEV *Step = AR->getStepRecurrence(*this); 12450 Type *Ty = ZExt->getType(); 12451 auto *S = getAddRecExpr( 12452 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12453 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12454 IV = dyn_cast<SCEVAddRecExpr>(S); 12455 } 12456 } 12457 } 12458 } 12459 12460 12461 if (!IV && AllowPredicates) { 12462 // Try to make this an AddRec using runtime tests, in the first X 12463 // iterations of this loop, where X is the SCEV expression found by the 12464 // algorithm below. 12465 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12466 PredicatedIV = true; 12467 } 12468 12469 // Avoid weird loops 12470 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12471 return getCouldNotCompute(); 12472 12473 // A precondition of this method is that the condition being analyzed 12474 // reaches an exiting branch which dominates the latch. Given that, we can 12475 // assume that an increment which violates the nowrap specification and 12476 // produces poison must cause undefined behavior when the resulting poison 12477 // value is branched upon and thus we can conclude that the backedge is 12478 // taken no more often than would be required to produce that poison value. 12479 // Note that a well defined loop can exit on the iteration which violates 12480 // the nowrap specification if there is another exit (either explicit or 12481 // implicit/exceptional) which causes the loop to execute before the 12482 // exiting instruction we're analyzing would trigger UB. 12483 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12484 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12485 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12486 12487 const SCEV *Stride = IV->getStepRecurrence(*this); 12488 12489 bool PositiveStride = isKnownPositive(Stride); 12490 12491 // Avoid negative or zero stride values. 12492 if (!PositiveStride) { 12493 // We can compute the correct backedge taken count for loops with unknown 12494 // strides if we can prove that the loop is not an infinite loop with side 12495 // effects. Here's the loop structure we are trying to handle - 12496 // 12497 // i = start 12498 // do { 12499 // A[i] = i; 12500 // i += s; 12501 // } while (i < end); 12502 // 12503 // The backedge taken count for such loops is evaluated as - 12504 // (max(end, start + stride) - start - 1) /u stride 12505 // 12506 // The additional preconditions that we need to check to prove correctness 12507 // of the above formula is as follows - 12508 // 12509 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12510 // NoWrap flag). 12511 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12512 // no side effects within the loop) 12513 // c) loop has a single static exit (with no abnormal exits) 12514 // 12515 // Precondition a) implies that if the stride is negative, this is a single 12516 // trip loop. The backedge taken count formula reduces to zero in this case. 12517 // 12518 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12519 // then a zero stride means the backedge can't be taken without executing 12520 // undefined behavior. 12521 // 12522 // The positive stride case is the same as isKnownPositive(Stride) returning 12523 // true (original behavior of the function). 12524 // 12525 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12526 !loopHasNoAbnormalExits(L)) 12527 return getCouldNotCompute(); 12528 12529 // This bailout is protecting the logic in computeMaxBECountForLT which 12530 // has not yet been sufficiently auditted or tested with negative strides. 12531 // We used to filter out all known-non-positive cases here, we're in the 12532 // process of being less restrictive bit by bit. 12533 if (IsSigned && isKnownNonPositive(Stride)) 12534 return getCouldNotCompute(); 12535 12536 if (!isKnownNonZero(Stride)) { 12537 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12538 // if it might eventually be greater than start and if so, on which 12539 // iteration. We can't even produce a useful upper bound. 12540 if (!isLoopInvariant(RHS, L)) 12541 return getCouldNotCompute(); 12542 12543 // We allow a potentially zero stride, but we need to divide by stride 12544 // below. Since the loop can't be infinite and this check must control 12545 // the sole exit, we can infer the exit must be taken on the first 12546 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12547 // we know the numerator in the divides below must be zero, so we can 12548 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12549 // and produce the right result. 12550 // FIXME: Handle the case where Stride is poison? 12551 auto wouldZeroStrideBeUB = [&]() { 12552 // Proof by contradiction. Suppose the stride were zero. If we can 12553 // prove that the backedge *is* taken on the first iteration, then since 12554 // we know this condition controls the sole exit, we must have an 12555 // infinite loop. We can't have a (well defined) infinite loop per 12556 // check just above. 12557 // Note: The (Start - Stride) term is used to get the start' term from 12558 // (start' + stride,+,stride). Remember that we only care about the 12559 // result of this expression when stride == 0 at runtime. 12560 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12561 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12562 }; 12563 if (!wouldZeroStrideBeUB()) { 12564 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12565 } 12566 } 12567 } else if (!Stride->isOne() && !NoWrap) { 12568 auto isUBOnWrap = [&]() { 12569 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12570 // follows trivially from the fact that every (un)signed-wrapped, but 12571 // not self-wrapped value must be LT than the last value before 12572 // (un)signed wrap. Since we know that last value didn't exit, nor 12573 // will any smaller one. 12574 return canAssumeNoSelfWrap(IV); 12575 }; 12576 12577 // Avoid proven overflow cases: this will ensure that the backedge taken 12578 // count will not generate any unsigned overflow. Relaxed no-overflow 12579 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12580 // undefined behaviors like the case of C language. 12581 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12582 return getCouldNotCompute(); 12583 } 12584 12585 // On all paths just preceeding, we established the following invariant: 12586 // IV can be assumed not to overflow up to and including the exiting 12587 // iteration. We proved this in one of two ways: 12588 // 1) We can show overflow doesn't occur before the exiting iteration 12589 // 1a) canIVOverflowOnLT, and b) step of one 12590 // 2) We can show that if overflow occurs, the loop must execute UB 12591 // before any possible exit. 12592 // Note that we have not yet proved RHS invariant (in general). 12593 12594 const SCEV *Start = IV->getStart(); 12595 12596 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12597 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12598 // Use integer-typed versions for actual computation; we can't subtract 12599 // pointers in general. 12600 const SCEV *OrigStart = Start; 12601 const SCEV *OrigRHS = RHS; 12602 if (Start->getType()->isPointerTy()) { 12603 Start = getLosslessPtrToIntExpr(Start); 12604 if (isa<SCEVCouldNotCompute>(Start)) 12605 return Start; 12606 } 12607 if (RHS->getType()->isPointerTy()) { 12608 RHS = getLosslessPtrToIntExpr(RHS); 12609 if (isa<SCEVCouldNotCompute>(RHS)) 12610 return RHS; 12611 } 12612 12613 // When the RHS is not invariant, we do not know the end bound of the loop and 12614 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12615 // calculate the MaxBECount, given the start, stride and max value for the end 12616 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12617 // checked above). 12618 if (!isLoopInvariant(RHS, L)) { 12619 const SCEV *MaxBECount = computeMaxBECountForLT( 12620 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12621 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12622 false /*MaxOrZero*/, Predicates); 12623 } 12624 12625 // We use the expression (max(End,Start)-Start)/Stride to describe the 12626 // backedge count, as if the backedge is taken at least once max(End,Start) 12627 // is End and so the result is as above, and if not max(End,Start) is Start 12628 // so we get a backedge count of zero. 12629 const SCEV *BECount = nullptr; 12630 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12631 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12632 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12633 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12634 // Can we prove (max(RHS,Start) > Start - Stride? 12635 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12636 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12637 // In this case, we can use a refined formula for computing backedge taken 12638 // count. The general formula remains: 12639 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12640 // We want to use the alternate formula: 12641 // "((End - 1) - (Start - Stride)) /u Stride" 12642 // Let's do a quick case analysis to show these are equivalent under 12643 // our precondition that max(RHS,Start) > Start - Stride. 12644 // * For RHS <= Start, the backedge-taken count must be zero. 12645 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12646 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12647 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12648 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12649 // this to the stride of 1 case. 12650 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12651 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12652 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12653 // "((RHS - (Start - Stride) - 1) /u Stride". 12654 // Our preconditions trivially imply no overflow in that form. 12655 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12656 const SCEV *Numerator = 12657 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12658 BECount = getUDivExpr(Numerator, Stride); 12659 } 12660 12661 const SCEV *BECountIfBackedgeTaken = nullptr; 12662 if (!BECount) { 12663 auto canProveRHSGreaterThanEqualStart = [&]() { 12664 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12665 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12666 return true; 12667 12668 // (RHS > Start - 1) implies RHS >= Start. 12669 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12670 // "Start - 1" doesn't overflow. 12671 // * For signed comparison, if Start - 1 does overflow, it's equal 12672 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12673 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12674 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12675 // 12676 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12677 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12678 auto *StartMinusOne = getAddExpr(OrigStart, 12679 getMinusOne(OrigStart->getType())); 12680 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12681 }; 12682 12683 // If we know that RHS >= Start in the context of loop, then we know that 12684 // max(RHS, Start) = RHS at this point. 12685 const SCEV *End; 12686 if (canProveRHSGreaterThanEqualStart()) { 12687 End = RHS; 12688 } else { 12689 // If RHS < Start, the backedge will be taken zero times. So in 12690 // general, we can write the backedge-taken count as: 12691 // 12692 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12693 // 12694 // We convert it to the following to make it more convenient for SCEV: 12695 // 12696 // ceil(max(RHS, Start) - Start) / Stride 12697 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12698 12699 // See what would happen if we assume the backedge is taken. This is 12700 // used to compute MaxBECount. 12701 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12702 } 12703 12704 // At this point, we know: 12705 // 12706 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12707 // 2. The index variable doesn't overflow. 12708 // 12709 // Therefore, we know N exists such that 12710 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12711 // doesn't overflow. 12712 // 12713 // Using this information, try to prove whether the addition in 12714 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12715 const SCEV *One = getOne(Stride->getType()); 12716 bool MayAddOverflow = [&] { 12717 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12718 if (StrideC->getAPInt().isPowerOf2()) { 12719 // Suppose Stride is a power of two, and Start/End are unsigned 12720 // integers. Let UMAX be the largest representable unsigned 12721 // integer. 12722 // 12723 // By the preconditions of this function, we know 12724 // "(Start + Stride * N) >= End", and this doesn't overflow. 12725 // As a formula: 12726 // 12727 // End <= (Start + Stride * N) <= UMAX 12728 // 12729 // Subtracting Start from all the terms: 12730 // 12731 // End - Start <= Stride * N <= UMAX - Start 12732 // 12733 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12734 // 12735 // End - Start <= Stride * N <= UMAX 12736 // 12737 // Stride * N is a multiple of Stride. Therefore, 12738 // 12739 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12740 // 12741 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12742 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12743 // 12744 // End - Start <= Stride * N <= UMAX - Stride - 1 12745 // 12746 // Dropping the middle term: 12747 // 12748 // End - Start <= UMAX - Stride - 1 12749 // 12750 // Adding Stride - 1 to both sides: 12751 // 12752 // (End - Start) + (Stride - 1) <= UMAX 12753 // 12754 // In other words, the addition doesn't have unsigned overflow. 12755 // 12756 // A similar proof works if we treat Start/End as signed values. 12757 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12758 // use signed max instead of unsigned max. Note that we're trying 12759 // to prove a lack of unsigned overflow in either case. 12760 return false; 12761 } 12762 } 12763 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12764 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12765 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12766 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12767 // 12768 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12769 return false; 12770 } 12771 return true; 12772 }(); 12773 12774 const SCEV *Delta = getMinusSCEV(End, Start); 12775 if (!MayAddOverflow) { 12776 // floor((D + (S - 1)) / S) 12777 // We prefer this formulation if it's legal because it's fewer operations. 12778 BECount = 12779 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12780 } else { 12781 BECount = getUDivCeilSCEV(Delta, Stride); 12782 } 12783 } 12784 12785 const SCEV *MaxBECount; 12786 bool MaxOrZero = false; 12787 if (isa<SCEVConstant>(BECount)) { 12788 MaxBECount = BECount; 12789 } else if (BECountIfBackedgeTaken && 12790 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12791 // If we know exactly how many times the backedge will be taken if it's 12792 // taken at least once, then the backedge count will either be that or 12793 // zero. 12794 MaxBECount = BECountIfBackedgeTaken; 12795 MaxOrZero = true; 12796 } else { 12797 MaxBECount = computeMaxBECountForLT( 12798 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12799 } 12800 12801 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12802 !isa<SCEVCouldNotCompute>(BECount)) 12803 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12804 12805 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12806 } 12807 12808 ScalarEvolution::ExitLimit 12809 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12810 const Loop *L, bool IsSigned, 12811 bool ControlsExit, bool AllowPredicates) { 12812 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12813 // We handle only IV > Invariant 12814 if (!isLoopInvariant(RHS, L)) 12815 return getCouldNotCompute(); 12816 12817 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12818 if (!IV && AllowPredicates) 12819 // Try to make this an AddRec using runtime tests, in the first X 12820 // iterations of this loop, where X is the SCEV expression found by the 12821 // algorithm below. 12822 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12823 12824 // Avoid weird loops 12825 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12826 return getCouldNotCompute(); 12827 12828 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12829 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12830 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12831 12832 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12833 12834 // Avoid negative or zero stride values 12835 if (!isKnownPositive(Stride)) 12836 return getCouldNotCompute(); 12837 12838 // Avoid proven overflow cases: this will ensure that the backedge taken count 12839 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12840 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12841 // behaviors like the case of C language. 12842 if (!Stride->isOne() && !NoWrap) 12843 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12844 return getCouldNotCompute(); 12845 12846 const SCEV *Start = IV->getStart(); 12847 const SCEV *End = RHS; 12848 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12849 // If we know that Start >= RHS in the context of loop, then we know that 12850 // min(RHS, Start) = RHS at this point. 12851 if (isLoopEntryGuardedByCond( 12852 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12853 End = RHS; 12854 else 12855 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12856 } 12857 12858 if (Start->getType()->isPointerTy()) { 12859 Start = getLosslessPtrToIntExpr(Start); 12860 if (isa<SCEVCouldNotCompute>(Start)) 12861 return Start; 12862 } 12863 if (End->getType()->isPointerTy()) { 12864 End = getLosslessPtrToIntExpr(End); 12865 if (isa<SCEVCouldNotCompute>(End)) 12866 return End; 12867 } 12868 12869 // Compute ((Start - End) + (Stride - 1)) / Stride. 12870 // FIXME: This can overflow. Holding off on fixing this for now; 12871 // howManyGreaterThans will hopefully be gone soon. 12872 const SCEV *One = getOne(Stride->getType()); 12873 const SCEV *BECount = getUDivExpr( 12874 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12875 12876 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12877 : getUnsignedRangeMax(Start); 12878 12879 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12880 : getUnsignedRangeMin(Stride); 12881 12882 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12883 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12884 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12885 12886 // Although End can be a MIN expression we estimate MinEnd considering only 12887 // the case End = RHS. This is safe because in the other case (Start - End) 12888 // is zero, leading to a zero maximum backedge taken count. 12889 APInt MinEnd = 12890 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12891 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12892 12893 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12894 ? BECount 12895 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12896 getConstant(MinStride)); 12897 12898 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12899 MaxBECount = BECount; 12900 12901 return ExitLimit(BECount, MaxBECount, false, Predicates); 12902 } 12903 12904 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12905 ScalarEvolution &SE) const { 12906 if (Range.isFullSet()) // Infinite loop. 12907 return SE.getCouldNotCompute(); 12908 12909 // If the start is a non-zero constant, shift the range to simplify things. 12910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12911 if (!SC->getValue()->isZero()) { 12912 SmallVector<const SCEV *, 4> Operands(operands()); 12913 Operands[0] = SE.getZero(SC->getType()); 12914 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12915 getNoWrapFlags(FlagNW)); 12916 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12917 return ShiftedAddRec->getNumIterationsInRange( 12918 Range.subtract(SC->getAPInt()), SE); 12919 // This is strange and shouldn't happen. 12920 return SE.getCouldNotCompute(); 12921 } 12922 12923 // The only time we can solve this is when we have all constant indices. 12924 // Otherwise, we cannot determine the overflow conditions. 12925 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12926 return SE.getCouldNotCompute(); 12927 12928 // Okay at this point we know that all elements of the chrec are constants and 12929 // that the start element is zero. 12930 12931 // First check to see if the range contains zero. If not, the first 12932 // iteration exits. 12933 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12934 if (!Range.contains(APInt(BitWidth, 0))) 12935 return SE.getZero(getType()); 12936 12937 if (isAffine()) { 12938 // If this is an affine expression then we have this situation: 12939 // Solve {0,+,A} in Range === Ax in Range 12940 12941 // We know that zero is in the range. If A is positive then we know that 12942 // the upper value of the range must be the first possible exit value. 12943 // If A is negative then the lower of the range is the last possible loop 12944 // value. Also note that we already checked for a full range. 12945 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12946 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12947 12948 // The exit value should be (End+A)/A. 12949 APInt ExitVal = (End + A).udiv(A); 12950 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12951 12952 // Evaluate at the exit value. If we really did fall out of the valid 12953 // range, then we computed our trip count, otherwise wrap around or other 12954 // things must have happened. 12955 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12956 if (Range.contains(Val->getValue())) 12957 return SE.getCouldNotCompute(); // Something strange happened 12958 12959 // Ensure that the previous value is in the range. 12960 assert(Range.contains( 12961 EvaluateConstantChrecAtConstant(this, 12962 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12963 "Linear scev computation is off in a bad way!"); 12964 return SE.getConstant(ExitValue); 12965 } 12966 12967 if (isQuadratic()) { 12968 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12969 return SE.getConstant(*S); 12970 } 12971 12972 return SE.getCouldNotCompute(); 12973 } 12974 12975 const SCEVAddRecExpr * 12976 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12977 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12978 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12979 // but in this case we cannot guarantee that the value returned will be an 12980 // AddRec because SCEV does not have a fixed point where it stops 12981 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12982 // may happen if we reach arithmetic depth limit while simplifying. So we 12983 // construct the returned value explicitly. 12984 SmallVector<const SCEV *, 3> Ops; 12985 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12986 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12987 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12988 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12989 // We know that the last operand is not a constant zero (otherwise it would 12990 // have been popped out earlier). This guarantees us that if the result has 12991 // the same last operand, then it will also not be popped out, meaning that 12992 // the returned value will be an AddRec. 12993 const SCEV *Last = getOperand(getNumOperands() - 1); 12994 assert(!Last->isZero() && "Recurrency with zero step?"); 12995 Ops.push_back(Last); 12996 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12997 SCEV::FlagAnyWrap)); 12998 } 12999 13000 // Return true when S contains at least an undef value. 13001 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13002 return SCEVExprContains(S, [](const SCEV *S) { 13003 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13004 return isa<UndefValue>(SU->getValue()); 13005 return false; 13006 }); 13007 } 13008 13009 // Return true when S contains a value that is a nullptr. 13010 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13011 return SCEVExprContains(S, [](const SCEV *S) { 13012 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13013 return SU->getValue() == nullptr; 13014 return false; 13015 }); 13016 } 13017 13018 /// Return the size of an element read or written by Inst. 13019 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13020 Type *Ty; 13021 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13022 Ty = Store->getValueOperand()->getType(); 13023 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13024 Ty = Load->getType(); 13025 else 13026 return nullptr; 13027 13028 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13029 return getSizeOfExpr(ETy, Ty); 13030 } 13031 13032 //===----------------------------------------------------------------------===// 13033 // SCEVCallbackVH Class Implementation 13034 //===----------------------------------------------------------------------===// 13035 13036 void ScalarEvolution::SCEVCallbackVH::deleted() { 13037 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13038 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13039 SE->ConstantEvolutionLoopExitValue.erase(PN); 13040 SE->eraseValueFromMap(getValPtr()); 13041 // this now dangles! 13042 } 13043 13044 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13045 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13046 13047 // Forget all the expressions associated with users of the old value, 13048 // so that future queries will recompute the expressions using the new 13049 // value. 13050 Value *Old = getValPtr(); 13051 SmallVector<User *, 16> Worklist(Old->users()); 13052 SmallPtrSet<User *, 8> Visited; 13053 while (!Worklist.empty()) { 13054 User *U = Worklist.pop_back_val(); 13055 // Deleting the Old value will cause this to dangle. Postpone 13056 // that until everything else is done. 13057 if (U == Old) 13058 continue; 13059 if (!Visited.insert(U).second) 13060 continue; 13061 if (PHINode *PN = dyn_cast<PHINode>(U)) 13062 SE->ConstantEvolutionLoopExitValue.erase(PN); 13063 SE->eraseValueFromMap(U); 13064 llvm::append_range(Worklist, U->users()); 13065 } 13066 // Delete the Old value. 13067 if (PHINode *PN = dyn_cast<PHINode>(Old)) 13068 SE->ConstantEvolutionLoopExitValue.erase(PN); 13069 SE->eraseValueFromMap(Old); 13070 // this now dangles! 13071 } 13072 13073 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13074 : CallbackVH(V), SE(se) {} 13075 13076 //===----------------------------------------------------------------------===// 13077 // ScalarEvolution Class Implementation 13078 //===----------------------------------------------------------------------===// 13079 13080 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13081 AssumptionCache &AC, DominatorTree &DT, 13082 LoopInfo &LI) 13083 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 13084 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13085 LoopDispositions(64), BlockDispositions(64) { 13086 // To use guards for proving predicates, we need to scan every instruction in 13087 // relevant basic blocks, and not just terminators. Doing this is a waste of 13088 // time if the IR does not actually contain any calls to 13089 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13090 // 13091 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13092 // to _add_ guards to the module when there weren't any before, and wants 13093 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13094 // efficient in lieu of being smart in that rather obscure case. 13095 13096 auto *GuardDecl = F.getParent()->getFunction( 13097 Intrinsic::getName(Intrinsic::experimental_guard)); 13098 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13099 } 13100 13101 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13102 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 13103 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13104 ValueExprMap(std::move(Arg.ValueExprMap)), 13105 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13106 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13107 PendingMerges(std::move(Arg.PendingMerges)), 13108 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 13109 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13110 PredicatedBackedgeTakenCounts( 13111 std::move(Arg.PredicatedBackedgeTakenCounts)), 13112 BECountUsers(std::move(Arg.BECountUsers)), 13113 ConstantEvolutionLoopExitValue( 13114 std::move(Arg.ConstantEvolutionLoopExitValue)), 13115 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13116 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13117 LoopDispositions(std::move(Arg.LoopDispositions)), 13118 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13119 BlockDispositions(std::move(Arg.BlockDispositions)), 13120 SCEVUsers(std::move(Arg.SCEVUsers)), 13121 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13122 SignedRanges(std::move(Arg.SignedRanges)), 13123 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13124 UniquePreds(std::move(Arg.UniquePreds)), 13125 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13126 LoopUsers(std::move(Arg.LoopUsers)), 13127 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13128 FirstUnknown(Arg.FirstUnknown) { 13129 Arg.FirstUnknown = nullptr; 13130 } 13131 13132 ScalarEvolution::~ScalarEvolution() { 13133 // Iterate through all the SCEVUnknown instances and call their 13134 // destructors, so that they release their references to their values. 13135 for (SCEVUnknown *U = FirstUnknown; U;) { 13136 SCEVUnknown *Tmp = U; 13137 U = U->Next; 13138 Tmp->~SCEVUnknown(); 13139 } 13140 FirstUnknown = nullptr; 13141 13142 ExprValueMap.clear(); 13143 ValueExprMap.clear(); 13144 HasRecMap.clear(); 13145 BackedgeTakenCounts.clear(); 13146 PredicatedBackedgeTakenCounts.clear(); 13147 13148 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13149 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13150 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13151 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13152 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13153 } 13154 13155 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13156 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13157 } 13158 13159 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13160 const Loop *L) { 13161 // Print all inner loops first 13162 for (Loop *I : *L) 13163 PrintLoopInfo(OS, SE, I); 13164 13165 OS << "Loop "; 13166 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13167 OS << ": "; 13168 13169 SmallVector<BasicBlock *, 8> ExitingBlocks; 13170 L->getExitingBlocks(ExitingBlocks); 13171 if (ExitingBlocks.size() != 1) 13172 OS << "<multiple exits> "; 13173 13174 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 13175 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 13176 else 13177 OS << "Unpredictable backedge-taken count.\n"; 13178 13179 if (ExitingBlocks.size() > 1) 13180 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13181 OS << " exit count for " << ExitingBlock->getName() << ": " 13182 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13183 } 13184 13185 OS << "Loop "; 13186 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13187 OS << ": "; 13188 13189 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 13190 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 13191 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13192 OS << ", actual taken count either this or zero."; 13193 } else { 13194 OS << "Unpredictable max backedge-taken count. "; 13195 } 13196 13197 OS << "\n" 13198 "Loop "; 13199 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13200 OS << ": "; 13201 13202 SmallVector<const SCEVPredicate *, 4> Preds; 13203 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13204 if (!isa<SCEVCouldNotCompute>(PBT)) { 13205 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13206 OS << " Predicates:\n"; 13207 for (const auto *P : Preds) 13208 P->print(OS, 4); 13209 } else { 13210 OS << "Unpredictable predicated backedge-taken count. "; 13211 } 13212 OS << "\n"; 13213 13214 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13215 OS << "Loop "; 13216 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13217 OS << ": "; 13218 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13219 } 13220 } 13221 13222 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13223 switch (LD) { 13224 case ScalarEvolution::LoopVariant: 13225 return "Variant"; 13226 case ScalarEvolution::LoopInvariant: 13227 return "Invariant"; 13228 case ScalarEvolution::LoopComputable: 13229 return "Computable"; 13230 } 13231 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13232 } 13233 13234 void ScalarEvolution::print(raw_ostream &OS) const { 13235 // ScalarEvolution's implementation of the print method is to print 13236 // out SCEV values of all instructions that are interesting. Doing 13237 // this potentially causes it to create new SCEV objects though, 13238 // which technically conflicts with the const qualifier. This isn't 13239 // observable from outside the class though, so casting away the 13240 // const isn't dangerous. 13241 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13242 13243 if (ClassifyExpressions) { 13244 OS << "Classifying expressions for: "; 13245 F.printAsOperand(OS, /*PrintType=*/false); 13246 OS << "\n"; 13247 for (Instruction &I : instructions(F)) 13248 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13249 OS << I << '\n'; 13250 OS << " --> "; 13251 const SCEV *SV = SE.getSCEV(&I); 13252 SV->print(OS); 13253 if (!isa<SCEVCouldNotCompute>(SV)) { 13254 OS << " U: "; 13255 SE.getUnsignedRange(SV).print(OS); 13256 OS << " S: "; 13257 SE.getSignedRange(SV).print(OS); 13258 } 13259 13260 const Loop *L = LI.getLoopFor(I.getParent()); 13261 13262 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13263 if (AtUse != SV) { 13264 OS << " --> "; 13265 AtUse->print(OS); 13266 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13267 OS << " U: "; 13268 SE.getUnsignedRange(AtUse).print(OS); 13269 OS << " S: "; 13270 SE.getSignedRange(AtUse).print(OS); 13271 } 13272 } 13273 13274 if (L) { 13275 OS << "\t\t" "Exits: "; 13276 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13277 if (!SE.isLoopInvariant(ExitValue, L)) { 13278 OS << "<<Unknown>>"; 13279 } else { 13280 OS << *ExitValue; 13281 } 13282 13283 bool First = true; 13284 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13285 if (First) { 13286 OS << "\t\t" "LoopDispositions: { "; 13287 First = false; 13288 } else { 13289 OS << ", "; 13290 } 13291 13292 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13293 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13294 } 13295 13296 for (const auto *InnerL : depth_first(L)) { 13297 if (InnerL == L) 13298 continue; 13299 if (First) { 13300 OS << "\t\t" "LoopDispositions: { "; 13301 First = false; 13302 } else { 13303 OS << ", "; 13304 } 13305 13306 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13307 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13308 } 13309 13310 OS << " }"; 13311 } 13312 13313 OS << "\n"; 13314 } 13315 } 13316 13317 OS << "Determining loop execution counts for: "; 13318 F.printAsOperand(OS, /*PrintType=*/false); 13319 OS << "\n"; 13320 for (Loop *I : LI) 13321 PrintLoopInfo(OS, &SE, I); 13322 } 13323 13324 ScalarEvolution::LoopDisposition 13325 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13326 auto &Values = LoopDispositions[S]; 13327 for (auto &V : Values) { 13328 if (V.getPointer() == L) 13329 return V.getInt(); 13330 } 13331 Values.emplace_back(L, LoopVariant); 13332 LoopDisposition D = computeLoopDisposition(S, L); 13333 auto &Values2 = LoopDispositions[S]; 13334 for (auto &V : llvm::reverse(Values2)) { 13335 if (V.getPointer() == L) { 13336 V.setInt(D); 13337 break; 13338 } 13339 } 13340 return D; 13341 } 13342 13343 ScalarEvolution::LoopDisposition 13344 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13345 switch (S->getSCEVType()) { 13346 case scConstant: 13347 return LoopInvariant; 13348 case scPtrToInt: 13349 case scTruncate: 13350 case scZeroExtend: 13351 case scSignExtend: 13352 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13353 case scAddRecExpr: { 13354 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13355 13356 // If L is the addrec's loop, it's computable. 13357 if (AR->getLoop() == L) 13358 return LoopComputable; 13359 13360 // Add recurrences are never invariant in the function-body (null loop). 13361 if (!L) 13362 return LoopVariant; 13363 13364 // Everything that is not defined at loop entry is variant. 13365 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13366 return LoopVariant; 13367 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13368 " dominate the contained loop's header?"); 13369 13370 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13371 if (AR->getLoop()->contains(L)) 13372 return LoopInvariant; 13373 13374 // This recurrence is variant w.r.t. L if any of its operands 13375 // are variant. 13376 for (const auto *Op : AR->operands()) 13377 if (!isLoopInvariant(Op, L)) 13378 return LoopVariant; 13379 13380 // Otherwise it's loop-invariant. 13381 return LoopInvariant; 13382 } 13383 case scAddExpr: 13384 case scMulExpr: 13385 case scUMaxExpr: 13386 case scSMaxExpr: 13387 case scUMinExpr: 13388 case scSMinExpr: 13389 case scSequentialUMinExpr: { 13390 bool HasVarying = false; 13391 for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13392 LoopDisposition D = getLoopDisposition(Op, L); 13393 if (D == LoopVariant) 13394 return LoopVariant; 13395 if (D == LoopComputable) 13396 HasVarying = true; 13397 } 13398 return HasVarying ? LoopComputable : LoopInvariant; 13399 } 13400 case scUDivExpr: { 13401 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13402 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13403 if (LD == LoopVariant) 13404 return LoopVariant; 13405 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13406 if (RD == LoopVariant) 13407 return LoopVariant; 13408 return (LD == LoopInvariant && RD == LoopInvariant) ? 13409 LoopInvariant : LoopComputable; 13410 } 13411 case scUnknown: 13412 // All non-instruction values are loop invariant. All instructions are loop 13413 // invariant if they are not contained in the specified loop. 13414 // Instructions are never considered invariant in the function body 13415 // (null loop) because they are defined within the "loop". 13416 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13417 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13418 return LoopInvariant; 13419 case scCouldNotCompute: 13420 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13421 } 13422 llvm_unreachable("Unknown SCEV kind!"); 13423 } 13424 13425 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13426 return getLoopDisposition(S, L) == LoopInvariant; 13427 } 13428 13429 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13430 return getLoopDisposition(S, L) == LoopComputable; 13431 } 13432 13433 ScalarEvolution::BlockDisposition 13434 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13435 auto &Values = BlockDispositions[S]; 13436 for (auto &V : Values) { 13437 if (V.getPointer() == BB) 13438 return V.getInt(); 13439 } 13440 Values.emplace_back(BB, DoesNotDominateBlock); 13441 BlockDisposition D = computeBlockDisposition(S, BB); 13442 auto &Values2 = BlockDispositions[S]; 13443 for (auto &V : llvm::reverse(Values2)) { 13444 if (V.getPointer() == BB) { 13445 V.setInt(D); 13446 break; 13447 } 13448 } 13449 return D; 13450 } 13451 13452 ScalarEvolution::BlockDisposition 13453 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13454 switch (S->getSCEVType()) { 13455 case scConstant: 13456 return ProperlyDominatesBlock; 13457 case scPtrToInt: 13458 case scTruncate: 13459 case scZeroExtend: 13460 case scSignExtend: 13461 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13462 case scAddRecExpr: { 13463 // This uses a "dominates" query instead of "properly dominates" query 13464 // to test for proper dominance too, because the instruction which 13465 // produces the addrec's value is a PHI, and a PHI effectively properly 13466 // dominates its entire containing block. 13467 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13468 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13469 return DoesNotDominateBlock; 13470 13471 // Fall through into SCEVNAryExpr handling. 13472 LLVM_FALLTHROUGH; 13473 } 13474 case scAddExpr: 13475 case scMulExpr: 13476 case scUMaxExpr: 13477 case scSMaxExpr: 13478 case scUMinExpr: 13479 case scSMinExpr: 13480 case scSequentialUMinExpr: { 13481 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13482 bool Proper = true; 13483 for (const SCEV *NAryOp : NAry->operands()) { 13484 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13485 if (D == DoesNotDominateBlock) 13486 return DoesNotDominateBlock; 13487 if (D == DominatesBlock) 13488 Proper = false; 13489 } 13490 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13491 } 13492 case scUDivExpr: { 13493 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13494 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13495 BlockDisposition LD = getBlockDisposition(LHS, BB); 13496 if (LD == DoesNotDominateBlock) 13497 return DoesNotDominateBlock; 13498 BlockDisposition RD = getBlockDisposition(RHS, BB); 13499 if (RD == DoesNotDominateBlock) 13500 return DoesNotDominateBlock; 13501 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13502 ProperlyDominatesBlock : DominatesBlock; 13503 } 13504 case scUnknown: 13505 if (Instruction *I = 13506 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13507 if (I->getParent() == BB) 13508 return DominatesBlock; 13509 if (DT.properlyDominates(I->getParent(), BB)) 13510 return ProperlyDominatesBlock; 13511 return DoesNotDominateBlock; 13512 } 13513 return ProperlyDominatesBlock; 13514 case scCouldNotCompute: 13515 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13516 } 13517 llvm_unreachable("Unknown SCEV kind!"); 13518 } 13519 13520 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13521 return getBlockDisposition(S, BB) >= DominatesBlock; 13522 } 13523 13524 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13525 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13526 } 13527 13528 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13529 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13530 } 13531 13532 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13533 bool Predicated) { 13534 auto &BECounts = 13535 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13536 auto It = BECounts.find(L); 13537 if (It != BECounts.end()) { 13538 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13539 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13540 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13541 assert(UserIt != BECountUsers.end()); 13542 UserIt->second.erase({L, Predicated}); 13543 } 13544 } 13545 BECounts.erase(It); 13546 } 13547 } 13548 13549 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13550 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13551 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13552 13553 while (!Worklist.empty()) { 13554 const SCEV *Curr = Worklist.pop_back_val(); 13555 auto Users = SCEVUsers.find(Curr); 13556 if (Users != SCEVUsers.end()) 13557 for (const auto *User : Users->second) 13558 if (ToForget.insert(User).second) 13559 Worklist.push_back(User); 13560 } 13561 13562 for (const auto *S : ToForget) 13563 forgetMemoizedResultsImpl(S); 13564 13565 for (auto I = PredicatedSCEVRewrites.begin(); 13566 I != PredicatedSCEVRewrites.end();) { 13567 std::pair<const SCEV *, const Loop *> Entry = I->first; 13568 if (ToForget.count(Entry.first)) 13569 PredicatedSCEVRewrites.erase(I++); 13570 else 13571 ++I; 13572 } 13573 } 13574 13575 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13576 LoopDispositions.erase(S); 13577 BlockDispositions.erase(S); 13578 UnsignedRanges.erase(S); 13579 SignedRanges.erase(S); 13580 HasRecMap.erase(S); 13581 MinTrailingZerosCache.erase(S); 13582 13583 auto ExprIt = ExprValueMap.find(S); 13584 if (ExprIt != ExprValueMap.end()) { 13585 for (Value *V : ExprIt->second) { 13586 auto ValueIt = ValueExprMap.find_as(V); 13587 if (ValueIt != ValueExprMap.end()) 13588 ValueExprMap.erase(ValueIt); 13589 } 13590 ExprValueMap.erase(ExprIt); 13591 } 13592 13593 auto ScopeIt = ValuesAtScopes.find(S); 13594 if (ScopeIt != ValuesAtScopes.end()) { 13595 for (const auto &Pair : ScopeIt->second) 13596 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13597 erase_value(ValuesAtScopesUsers[Pair.second], 13598 std::make_pair(Pair.first, S)); 13599 ValuesAtScopes.erase(ScopeIt); 13600 } 13601 13602 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13603 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13604 for (const auto &Pair : ScopeUserIt->second) 13605 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13606 ValuesAtScopesUsers.erase(ScopeUserIt); 13607 } 13608 13609 auto BEUsersIt = BECountUsers.find(S); 13610 if (BEUsersIt != BECountUsers.end()) { 13611 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13612 auto Copy = BEUsersIt->second; 13613 for (const auto &Pair : Copy) 13614 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13615 BECountUsers.erase(BEUsersIt); 13616 } 13617 } 13618 13619 void 13620 ScalarEvolution::getUsedLoops(const SCEV *S, 13621 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13622 struct FindUsedLoops { 13623 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13624 : LoopsUsed(LoopsUsed) {} 13625 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13626 bool follow(const SCEV *S) { 13627 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13628 LoopsUsed.insert(AR->getLoop()); 13629 return true; 13630 } 13631 13632 bool isDone() const { return false; } 13633 }; 13634 13635 FindUsedLoops F(LoopsUsed); 13636 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13637 } 13638 13639 void ScalarEvolution::getReachableBlocks( 13640 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13641 SmallVector<BasicBlock *> Worklist; 13642 Worklist.push_back(&F.getEntryBlock()); 13643 while (!Worklist.empty()) { 13644 BasicBlock *BB = Worklist.pop_back_val(); 13645 if (!Reachable.insert(BB).second) 13646 continue; 13647 13648 Value *Cond; 13649 BasicBlock *TrueBB, *FalseBB; 13650 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13651 m_BasicBlock(FalseBB)))) { 13652 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13653 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13654 continue; 13655 } 13656 13657 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13658 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13659 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13660 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13661 Worklist.push_back(TrueBB); 13662 continue; 13663 } 13664 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13665 R)) { 13666 Worklist.push_back(FalseBB); 13667 continue; 13668 } 13669 } 13670 } 13671 13672 append_range(Worklist, successors(BB)); 13673 } 13674 } 13675 13676 void ScalarEvolution::verify() const { 13677 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13678 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13679 13680 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13681 13682 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13683 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13684 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13685 13686 const SCEV *visitConstant(const SCEVConstant *Constant) { 13687 return SE.getConstant(Constant->getAPInt()); 13688 } 13689 13690 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13691 return SE.getUnknown(Expr->getValue()); 13692 } 13693 13694 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13695 return SE.getCouldNotCompute(); 13696 } 13697 }; 13698 13699 SCEVMapper SCM(SE2); 13700 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13701 SE2.getReachableBlocks(ReachableBlocks, F); 13702 13703 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13704 if (containsUndefs(Old) || containsUndefs(New)) { 13705 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13706 // not propagate undef aggressively). This means we can (and do) fail 13707 // verification in cases where a transform makes a value go from "undef" 13708 // to "undef+1" (say). The transform is fine, since in both cases the 13709 // result is "undef", but SCEV thinks the value increased by 1. 13710 return nullptr; 13711 } 13712 13713 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13714 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13715 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13716 return nullptr; 13717 13718 return Delta; 13719 }; 13720 13721 while (!LoopStack.empty()) { 13722 auto *L = LoopStack.pop_back_val(); 13723 llvm::append_range(LoopStack, *L); 13724 13725 // Only verify BECounts in reachable loops. For an unreachable loop, 13726 // any BECount is legal. 13727 if (!ReachableBlocks.contains(L->getHeader())) 13728 continue; 13729 13730 // Only verify cached BECounts. Computing new BECounts may change the 13731 // results of subsequent SCEV uses. 13732 auto It = BackedgeTakenCounts.find(L); 13733 if (It == BackedgeTakenCounts.end()) 13734 continue; 13735 13736 auto *CurBECount = 13737 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13738 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13739 13740 if (CurBECount == SE2.getCouldNotCompute() || 13741 NewBECount == SE2.getCouldNotCompute()) { 13742 // NB! This situation is legal, but is very suspicious -- whatever pass 13743 // change the loop to make a trip count go from could not compute to 13744 // computable or vice-versa *should have* invalidated SCEV. However, we 13745 // choose not to assert here (for now) since we don't want false 13746 // positives. 13747 continue; 13748 } 13749 13750 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13751 SE.getTypeSizeInBits(NewBECount->getType())) 13752 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13753 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13754 SE.getTypeSizeInBits(NewBECount->getType())) 13755 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13756 13757 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13758 if (Delta && !Delta->isZero()) { 13759 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13760 dbgs() << "Old: " << *CurBECount << "\n"; 13761 dbgs() << "New: " << *NewBECount << "\n"; 13762 dbgs() << "Delta: " << *Delta << "\n"; 13763 std::abort(); 13764 } 13765 } 13766 13767 // Collect all valid loops currently in LoopInfo. 13768 SmallPtrSet<Loop *, 32> ValidLoops; 13769 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13770 while (!Worklist.empty()) { 13771 Loop *L = Worklist.pop_back_val(); 13772 if (ValidLoops.insert(L).second) 13773 Worklist.append(L->begin(), L->end()); 13774 } 13775 for (const auto &KV : ValueExprMap) { 13776 #ifndef NDEBUG 13777 // Check for SCEV expressions referencing invalid/deleted loops. 13778 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13779 assert(ValidLoops.contains(AR->getLoop()) && 13780 "AddRec references invalid loop"); 13781 } 13782 #endif 13783 13784 // Check that the value is also part of the reverse map. 13785 auto It = ExprValueMap.find(KV.second); 13786 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13787 dbgs() << "Value " << *KV.first 13788 << " is in ValueExprMap but not in ExprValueMap\n"; 13789 std::abort(); 13790 } 13791 13792 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13793 if (!ReachableBlocks.contains(I->getParent())) 13794 continue; 13795 const SCEV *OldSCEV = SCM.visit(KV.second); 13796 const SCEV *NewSCEV = SE2.getSCEV(I); 13797 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13798 if (Delta && !Delta->isZero()) { 13799 dbgs() << "SCEV for value " << *I << " changed!\n" 13800 << "Old: " << *OldSCEV << "\n" 13801 << "New: " << *NewSCEV << "\n" 13802 << "Delta: " << *Delta << "\n"; 13803 std::abort(); 13804 } 13805 } 13806 } 13807 13808 for (const auto &KV : ExprValueMap) { 13809 for (Value *V : KV.second) { 13810 auto It = ValueExprMap.find_as(V); 13811 if (It == ValueExprMap.end()) { 13812 dbgs() << "Value " << *V 13813 << " is in ExprValueMap but not in ValueExprMap\n"; 13814 std::abort(); 13815 } 13816 if (It->second != KV.first) { 13817 dbgs() << "Value " << *V << " mapped to " << *It->second 13818 << " rather than " << *KV.first << "\n"; 13819 std::abort(); 13820 } 13821 } 13822 } 13823 13824 // Verify integrity of SCEV users. 13825 for (const auto &S : UniqueSCEVs) { 13826 SmallVector<const SCEV *, 4> Ops; 13827 collectUniqueOps(&S, Ops); 13828 for (const auto *Op : Ops) { 13829 // We do not store dependencies of constants. 13830 if (isa<SCEVConstant>(Op)) 13831 continue; 13832 auto It = SCEVUsers.find(Op); 13833 if (It != SCEVUsers.end() && It->second.count(&S)) 13834 continue; 13835 dbgs() << "Use of operand " << *Op << " by user " << S 13836 << " is not being tracked!\n"; 13837 std::abort(); 13838 } 13839 } 13840 13841 // Verify integrity of ValuesAtScopes users. 13842 for (const auto &ValueAndVec : ValuesAtScopes) { 13843 const SCEV *Value = ValueAndVec.first; 13844 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13845 const Loop *L = LoopAndValueAtScope.first; 13846 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13847 if (!isa<SCEVConstant>(ValueAtScope)) { 13848 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13849 if (It != ValuesAtScopesUsers.end() && 13850 is_contained(It->second, std::make_pair(L, Value))) 13851 continue; 13852 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13853 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13854 std::abort(); 13855 } 13856 } 13857 } 13858 13859 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13860 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13861 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13862 const Loop *L = LoopAndValue.first; 13863 const SCEV *Value = LoopAndValue.second; 13864 assert(!isa<SCEVConstant>(Value)); 13865 auto It = ValuesAtScopes.find(Value); 13866 if (It != ValuesAtScopes.end() && 13867 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13868 continue; 13869 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13870 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13871 std::abort(); 13872 } 13873 } 13874 13875 // Verify integrity of BECountUsers. 13876 auto VerifyBECountUsers = [&](bool Predicated) { 13877 auto &BECounts = 13878 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13879 for (const auto &LoopAndBEInfo : BECounts) { 13880 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13881 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13882 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13883 if (UserIt != BECountUsers.end() && 13884 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13885 continue; 13886 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13887 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13888 std::abort(); 13889 } 13890 } 13891 } 13892 }; 13893 VerifyBECountUsers(/* Predicated */ false); 13894 VerifyBECountUsers(/* Predicated */ true); 13895 } 13896 13897 bool ScalarEvolution::invalidate( 13898 Function &F, const PreservedAnalyses &PA, 13899 FunctionAnalysisManager::Invalidator &Inv) { 13900 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13901 // of its dependencies is invalidated. 13902 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13903 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13904 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13905 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13906 Inv.invalidate<LoopAnalysis>(F, PA); 13907 } 13908 13909 AnalysisKey ScalarEvolutionAnalysis::Key; 13910 13911 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13912 FunctionAnalysisManager &AM) { 13913 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13914 AM.getResult<AssumptionAnalysis>(F), 13915 AM.getResult<DominatorTreeAnalysis>(F), 13916 AM.getResult<LoopAnalysis>(F)); 13917 } 13918 13919 PreservedAnalyses 13920 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13921 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13922 return PreservedAnalyses::all(); 13923 } 13924 13925 PreservedAnalyses 13926 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13927 // For compatibility with opt's -analyze feature under legacy pass manager 13928 // which was not ported to NPM. This keeps tests using 13929 // update_analyze_test_checks.py working. 13930 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13931 << F.getName() << "':\n"; 13932 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13933 return PreservedAnalyses::all(); 13934 } 13935 13936 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13937 "Scalar Evolution Analysis", false, true) 13938 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13939 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13940 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13941 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13942 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13943 "Scalar Evolution Analysis", false, true) 13944 13945 char ScalarEvolutionWrapperPass::ID = 0; 13946 13947 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13948 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13949 } 13950 13951 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13952 SE.reset(new ScalarEvolution( 13953 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13954 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13955 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13956 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13957 return false; 13958 } 13959 13960 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13961 13962 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13963 SE->print(OS); 13964 } 13965 13966 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13967 if (!VerifySCEV) 13968 return; 13969 13970 SE->verify(); 13971 } 13972 13973 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13974 AU.setPreservesAll(); 13975 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13976 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13977 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13978 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13979 } 13980 13981 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13982 const SCEV *RHS) { 13983 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13984 } 13985 13986 const SCEVPredicate * 13987 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13988 const SCEV *LHS, const SCEV *RHS) { 13989 FoldingSetNodeID ID; 13990 assert(LHS->getType() == RHS->getType() && 13991 "Type mismatch between LHS and RHS"); 13992 // Unique this node based on the arguments 13993 ID.AddInteger(SCEVPredicate::P_Compare); 13994 ID.AddInteger(Pred); 13995 ID.AddPointer(LHS); 13996 ID.AddPointer(RHS); 13997 void *IP = nullptr; 13998 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13999 return S; 14000 SCEVComparePredicate *Eq = new (SCEVAllocator) 14001 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14002 UniquePreds.InsertNode(Eq, IP); 14003 return Eq; 14004 } 14005 14006 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14007 const SCEVAddRecExpr *AR, 14008 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14009 FoldingSetNodeID ID; 14010 // Unique this node based on the arguments 14011 ID.AddInteger(SCEVPredicate::P_Wrap); 14012 ID.AddPointer(AR); 14013 ID.AddInteger(AddedFlags); 14014 void *IP = nullptr; 14015 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14016 return S; 14017 auto *OF = new (SCEVAllocator) 14018 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14019 UniquePreds.InsertNode(OF, IP); 14020 return OF; 14021 } 14022 14023 namespace { 14024 14025 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14026 public: 14027 14028 /// Rewrites \p S in the context of a loop L and the SCEV predication 14029 /// infrastructure. 14030 /// 14031 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14032 /// equivalences present in \p Pred. 14033 /// 14034 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14035 /// \p NewPreds such that the result will be an AddRecExpr. 14036 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14037 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14038 const SCEVPredicate *Pred) { 14039 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14040 return Rewriter.visit(S); 14041 } 14042 14043 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14044 if (Pred) { 14045 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14046 for (const auto *Pred : U->getPredicates()) 14047 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14048 if (IPred->getLHS() == Expr && 14049 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14050 return IPred->getRHS(); 14051 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14052 if (IPred->getLHS() == Expr && 14053 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14054 return IPred->getRHS(); 14055 } 14056 } 14057 return convertToAddRecWithPreds(Expr); 14058 } 14059 14060 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14061 const SCEV *Operand = visit(Expr->getOperand()); 14062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14063 if (AR && AR->getLoop() == L && AR->isAffine()) { 14064 // This couldn't be folded because the operand didn't have the nuw 14065 // flag. Add the nusw flag as an assumption that we could make. 14066 const SCEV *Step = AR->getStepRecurrence(SE); 14067 Type *Ty = Expr->getType(); 14068 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14069 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14070 SE.getSignExtendExpr(Step, Ty), L, 14071 AR->getNoWrapFlags()); 14072 } 14073 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14074 } 14075 14076 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14077 const SCEV *Operand = visit(Expr->getOperand()); 14078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14079 if (AR && AR->getLoop() == L && AR->isAffine()) { 14080 // This couldn't be folded because the operand didn't have the nsw 14081 // flag. Add the nssw flag as an assumption that we could make. 14082 const SCEV *Step = AR->getStepRecurrence(SE); 14083 Type *Ty = Expr->getType(); 14084 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14085 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14086 SE.getSignExtendExpr(Step, Ty), L, 14087 AR->getNoWrapFlags()); 14088 } 14089 return SE.getSignExtendExpr(Operand, Expr->getType()); 14090 } 14091 14092 private: 14093 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14094 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14095 const SCEVPredicate *Pred) 14096 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14097 14098 bool addOverflowAssumption(const SCEVPredicate *P) { 14099 if (!NewPreds) { 14100 // Check if we've already made this assumption. 14101 return Pred && Pred->implies(P); 14102 } 14103 NewPreds->insert(P); 14104 return true; 14105 } 14106 14107 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14108 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14109 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14110 return addOverflowAssumption(A); 14111 } 14112 14113 // If \p Expr represents a PHINode, we try to see if it can be represented 14114 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14115 // to add this predicate as a runtime overflow check, we return the AddRec. 14116 // If \p Expr does not meet these conditions (is not a PHI node, or we 14117 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14118 // return \p Expr. 14119 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14120 if (!isa<PHINode>(Expr->getValue())) 14121 return Expr; 14122 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14123 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14124 if (!PredicatedRewrite) 14125 return Expr; 14126 for (const auto *P : PredicatedRewrite->second){ 14127 // Wrap predicates from outer loops are not supported. 14128 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14129 if (L != WP->getExpr()->getLoop()) 14130 return Expr; 14131 } 14132 if (!addOverflowAssumption(P)) 14133 return Expr; 14134 } 14135 return PredicatedRewrite->first; 14136 } 14137 14138 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14139 const SCEVPredicate *Pred; 14140 const Loop *L; 14141 }; 14142 14143 } // end anonymous namespace 14144 14145 const SCEV * 14146 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14147 const SCEVPredicate &Preds) { 14148 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14149 } 14150 14151 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14152 const SCEV *S, const Loop *L, 14153 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14154 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14155 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14156 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14157 14158 if (!AddRec) 14159 return nullptr; 14160 14161 // Since the transformation was successful, we can now transfer the SCEV 14162 // predicates. 14163 for (const auto *P : TransformPreds) 14164 Preds.insert(P); 14165 14166 return AddRec; 14167 } 14168 14169 /// SCEV predicates 14170 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14171 SCEVPredicateKind Kind) 14172 : FastID(ID), Kind(Kind) {} 14173 14174 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14175 const ICmpInst::Predicate Pred, 14176 const SCEV *LHS, const SCEV *RHS) 14177 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14178 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14179 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14180 } 14181 14182 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14183 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14184 14185 if (!Op) 14186 return false; 14187 14188 if (Pred != ICmpInst::ICMP_EQ) 14189 return false; 14190 14191 return Op->LHS == LHS && Op->RHS == RHS; 14192 } 14193 14194 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14195 14196 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14197 if (Pred == ICmpInst::ICMP_EQ) 14198 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14199 else 14200 OS.indent(Depth) << "Compare predicate: " << *LHS 14201 << " " << CmpInst::getPredicateName(Pred) << ") " 14202 << *RHS << "\n"; 14203 14204 } 14205 14206 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14207 const SCEVAddRecExpr *AR, 14208 IncrementWrapFlags Flags) 14209 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14210 14211 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14212 14213 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14214 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14215 14216 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14217 } 14218 14219 bool SCEVWrapPredicate::isAlwaysTrue() const { 14220 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14221 IncrementWrapFlags IFlags = Flags; 14222 14223 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14224 IFlags = clearFlags(IFlags, IncrementNSSW); 14225 14226 return IFlags == IncrementAnyWrap; 14227 } 14228 14229 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14230 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14231 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14232 OS << "<nusw>"; 14233 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14234 OS << "<nssw>"; 14235 OS << "\n"; 14236 } 14237 14238 SCEVWrapPredicate::IncrementWrapFlags 14239 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14240 ScalarEvolution &SE) { 14241 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14242 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14243 14244 // We can safely transfer the NSW flag as NSSW. 14245 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14246 ImpliedFlags = IncrementNSSW; 14247 14248 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14249 // If the increment is positive, the SCEV NUW flag will also imply the 14250 // WrapPredicate NUSW flag. 14251 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14252 if (Step->getValue()->getValue().isNonNegative()) 14253 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14254 } 14255 14256 return ImpliedFlags; 14257 } 14258 14259 /// Union predicates don't get cached so create a dummy set ID for it. 14260 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14261 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14262 for (const auto *P : Preds) 14263 add(P); 14264 } 14265 14266 bool SCEVUnionPredicate::isAlwaysTrue() const { 14267 return all_of(Preds, 14268 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14269 } 14270 14271 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14272 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14273 return all_of(Set->Preds, 14274 [this](const SCEVPredicate *I) { return this->implies(I); }); 14275 14276 return any_of(Preds, 14277 [N](const SCEVPredicate *I) { return I->implies(N); }); 14278 } 14279 14280 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14281 for (const auto *Pred : Preds) 14282 Pred->print(OS, Depth); 14283 } 14284 14285 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14286 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14287 for (const auto *Pred : Set->Preds) 14288 add(Pred); 14289 return; 14290 } 14291 14292 Preds.push_back(N); 14293 } 14294 14295 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14296 Loop &L) 14297 : SE(SE), L(L) { 14298 SmallVector<const SCEVPredicate*, 4> Empty; 14299 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14300 } 14301 14302 void ScalarEvolution::registerUser(const SCEV *User, 14303 ArrayRef<const SCEV *> Ops) { 14304 for (const auto *Op : Ops) 14305 // We do not expect that forgetting cached data for SCEVConstants will ever 14306 // open any prospects for sharpening or introduce any correctness issues, 14307 // so we don't bother storing their dependencies. 14308 if (!isa<SCEVConstant>(Op)) 14309 SCEVUsers[Op].insert(User); 14310 } 14311 14312 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14313 const SCEV *Expr = SE.getSCEV(V); 14314 RewriteEntry &Entry = RewriteMap[Expr]; 14315 14316 // If we already have an entry and the version matches, return it. 14317 if (Entry.second && Generation == Entry.first) 14318 return Entry.second; 14319 14320 // We found an entry but it's stale. Rewrite the stale entry 14321 // according to the current predicate. 14322 if (Entry.second) 14323 Expr = Entry.second; 14324 14325 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14326 Entry = {Generation, NewSCEV}; 14327 14328 return NewSCEV; 14329 } 14330 14331 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14332 if (!BackedgeCount) { 14333 SmallVector<const SCEVPredicate *, 4> Preds; 14334 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14335 for (const auto *P : Preds) 14336 addPredicate(*P); 14337 } 14338 return BackedgeCount; 14339 } 14340 14341 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14342 if (Preds->implies(&Pred)) 14343 return; 14344 14345 auto &OldPreds = Preds->getPredicates(); 14346 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14347 NewPreds.push_back(&Pred); 14348 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14349 updateGeneration(); 14350 } 14351 14352 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14353 return *Preds; 14354 } 14355 14356 void PredicatedScalarEvolution::updateGeneration() { 14357 // If the generation number wrapped recompute everything. 14358 if (++Generation == 0) { 14359 for (auto &II : RewriteMap) { 14360 const SCEV *Rewritten = II.second.second; 14361 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14362 } 14363 } 14364 } 14365 14366 void PredicatedScalarEvolution::setNoOverflow( 14367 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14368 const SCEV *Expr = getSCEV(V); 14369 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14370 14371 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14372 14373 // Clear the statically implied flags. 14374 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14375 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14376 14377 auto II = FlagsMap.insert({V, Flags}); 14378 if (!II.second) 14379 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14380 } 14381 14382 bool PredicatedScalarEvolution::hasNoOverflow( 14383 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14384 const SCEV *Expr = getSCEV(V); 14385 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14386 14387 Flags = SCEVWrapPredicate::clearFlags( 14388 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14389 14390 auto II = FlagsMap.find(V); 14391 14392 if (II != FlagsMap.end()) 14393 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14394 14395 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14396 } 14397 14398 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14399 const SCEV *Expr = this->getSCEV(V); 14400 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14401 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14402 14403 if (!New) 14404 return nullptr; 14405 14406 for (const auto *P : NewPreds) 14407 addPredicate(*P); 14408 14409 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14410 return New; 14411 } 14412 14413 PredicatedScalarEvolution::PredicatedScalarEvolution( 14414 const PredicatedScalarEvolution &Init) 14415 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14416 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14417 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14418 for (auto I : Init.FlagsMap) 14419 FlagsMap.insert(I); 14420 } 14421 14422 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14423 // For each block. 14424 for (auto *BB : L.getBlocks()) 14425 for (auto &I : *BB) { 14426 if (!SE.isSCEVable(I.getType())) 14427 continue; 14428 14429 auto *Expr = SE.getSCEV(&I); 14430 auto II = RewriteMap.find(Expr); 14431 14432 if (II == RewriteMap.end()) 14433 continue; 14434 14435 // Don't print things that are not interesting. 14436 if (II->second.second == Expr) 14437 continue; 14438 14439 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14440 OS.indent(Depth + 2) << *Expr << "\n"; 14441 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14442 } 14443 } 14444 14445 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14446 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14447 // for URem with constant power-of-2 second operands. 14448 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14449 // 4, A / B becomes X / 8). 14450 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14451 const SCEV *&RHS) { 14452 // Try to match 'zext (trunc A to iB) to iY', which is used 14453 // for URem with constant power-of-2 second operands. Make sure the size of 14454 // the operand A matches the size of the whole expressions. 14455 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14456 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14457 LHS = Trunc->getOperand(); 14458 // Bail out if the type of the LHS is larger than the type of the 14459 // expression for now. 14460 if (getTypeSizeInBits(LHS->getType()) > 14461 getTypeSizeInBits(Expr->getType())) 14462 return false; 14463 if (LHS->getType() != Expr->getType()) 14464 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14465 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14466 << getTypeSizeInBits(Trunc->getType())); 14467 return true; 14468 } 14469 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14470 if (Add == nullptr || Add->getNumOperands() != 2) 14471 return false; 14472 14473 const SCEV *A = Add->getOperand(1); 14474 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14475 14476 if (Mul == nullptr) 14477 return false; 14478 14479 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14480 // (SomeExpr + (-(SomeExpr / B) * B)). 14481 if (Expr == getURemExpr(A, B)) { 14482 LHS = A; 14483 RHS = B; 14484 return true; 14485 } 14486 return false; 14487 }; 14488 14489 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14490 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14491 return MatchURemWithDivisor(Mul->getOperand(1)) || 14492 MatchURemWithDivisor(Mul->getOperand(2)); 14493 14494 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14495 if (Mul->getNumOperands() == 2) 14496 return MatchURemWithDivisor(Mul->getOperand(1)) || 14497 MatchURemWithDivisor(Mul->getOperand(0)) || 14498 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14499 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14500 return false; 14501 } 14502 14503 const SCEV * 14504 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14505 SmallVector<BasicBlock*, 16> ExitingBlocks; 14506 L->getExitingBlocks(ExitingBlocks); 14507 14508 // Form an expression for the maximum exit count possible for this loop. We 14509 // merge the max and exact information to approximate a version of 14510 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14511 SmallVector<const SCEV*, 4> ExitCounts; 14512 for (BasicBlock *ExitingBB : ExitingBlocks) { 14513 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14514 if (isa<SCEVCouldNotCompute>(ExitCount)) 14515 ExitCount = getExitCount(L, ExitingBB, 14516 ScalarEvolution::ConstantMaximum); 14517 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14518 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14519 "We should only have known counts for exiting blocks that " 14520 "dominate latch!"); 14521 ExitCounts.push_back(ExitCount); 14522 } 14523 } 14524 if (ExitCounts.empty()) 14525 return getCouldNotCompute(); 14526 return getUMinFromMismatchedTypes(ExitCounts); 14527 } 14528 14529 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14530 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14531 /// replacement is loop invariant in the loop of the AddRec. 14532 /// 14533 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14534 /// supported. 14535 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14536 const DenseMap<const SCEV *, const SCEV *> ⤅ 14537 14538 public: 14539 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14540 DenseMap<const SCEV *, const SCEV *> &M) 14541 : SCEVRewriteVisitor(SE), Map(M) {} 14542 14543 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14544 14545 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14546 auto I = Map.find(Expr); 14547 if (I == Map.end()) 14548 return Expr; 14549 return I->second; 14550 } 14551 14552 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14553 auto I = Map.find(Expr); 14554 if (I == Map.end()) 14555 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14556 Expr); 14557 return I->second; 14558 } 14559 }; 14560 14561 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14562 SmallVector<const SCEV *> ExprsToRewrite; 14563 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14564 const SCEV *RHS, 14565 DenseMap<const SCEV *, const SCEV *> 14566 &RewriteMap) { 14567 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14568 // replacement SCEV which isn't directly implied by the structure of that 14569 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14570 // legal. See the scoping rules for flags in the header to understand why. 14571 14572 // If LHS is a constant, apply information to the other expression. 14573 if (isa<SCEVConstant>(LHS)) { 14574 std::swap(LHS, RHS); 14575 Predicate = CmpInst::getSwappedPredicate(Predicate); 14576 } 14577 14578 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14579 // create this form when combining two checks of the form (X u< C2 + C1) and 14580 // (X >=u C1). 14581 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14582 &ExprsToRewrite]() { 14583 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14584 if (!AddExpr || AddExpr->getNumOperands() != 2) 14585 return false; 14586 14587 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14588 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14589 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14590 if (!C1 || !C2 || !LHSUnknown) 14591 return false; 14592 14593 auto ExactRegion = 14594 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14595 .sub(C1->getAPInt()); 14596 14597 // Bail out, unless we have a non-wrapping, monotonic range. 14598 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14599 return false; 14600 auto I = RewriteMap.find(LHSUnknown); 14601 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14602 RewriteMap[LHSUnknown] = getUMaxExpr( 14603 getConstant(ExactRegion.getUnsignedMin()), 14604 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14605 ExprsToRewrite.push_back(LHSUnknown); 14606 return true; 14607 }; 14608 if (MatchRangeCheckIdiom()) 14609 return; 14610 14611 // If we have LHS == 0, check if LHS is computing a property of some unknown 14612 // SCEV %v which we can rewrite %v to express explicitly. 14613 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14614 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14615 RHSC->getValue()->isNullValue()) { 14616 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14617 // explicitly express that. 14618 const SCEV *URemLHS = nullptr; 14619 const SCEV *URemRHS = nullptr; 14620 if (matchURem(LHS, URemLHS, URemRHS)) { 14621 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14622 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14623 RewriteMap[LHSUnknown] = Multiple; 14624 ExprsToRewrite.push_back(LHSUnknown); 14625 return; 14626 } 14627 } 14628 } 14629 14630 // Do not apply information for constants or if RHS contains an AddRec. 14631 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14632 return; 14633 14634 // If RHS is SCEVUnknown, make sure the information is applied to it. 14635 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14636 std::swap(LHS, RHS); 14637 Predicate = CmpInst::getSwappedPredicate(Predicate); 14638 } 14639 14640 // Limit to expressions that can be rewritten. 14641 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14642 return; 14643 14644 // Check whether LHS has already been rewritten. In that case we want to 14645 // chain further rewrites onto the already rewritten value. 14646 auto I = RewriteMap.find(LHS); 14647 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14648 14649 const SCEV *RewrittenRHS = nullptr; 14650 switch (Predicate) { 14651 case CmpInst::ICMP_ULT: 14652 RewrittenRHS = 14653 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14654 break; 14655 case CmpInst::ICMP_SLT: 14656 RewrittenRHS = 14657 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14658 break; 14659 case CmpInst::ICMP_ULE: 14660 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14661 break; 14662 case CmpInst::ICMP_SLE: 14663 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14664 break; 14665 case CmpInst::ICMP_UGT: 14666 RewrittenRHS = 14667 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14668 break; 14669 case CmpInst::ICMP_SGT: 14670 RewrittenRHS = 14671 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14672 break; 14673 case CmpInst::ICMP_UGE: 14674 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14675 break; 14676 case CmpInst::ICMP_SGE: 14677 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14678 break; 14679 case CmpInst::ICMP_EQ: 14680 if (isa<SCEVConstant>(RHS)) 14681 RewrittenRHS = RHS; 14682 break; 14683 case CmpInst::ICMP_NE: 14684 if (isa<SCEVConstant>(RHS) && 14685 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14686 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14687 break; 14688 default: 14689 break; 14690 } 14691 14692 if (RewrittenRHS) { 14693 RewriteMap[LHS] = RewrittenRHS; 14694 if (LHS == RewrittenLHS) 14695 ExprsToRewrite.push_back(LHS); 14696 } 14697 }; 14698 14699 SmallVector<std::pair<Value *, bool>> Terms; 14700 // First, collect information from assumptions dominating the loop. 14701 for (auto &AssumeVH : AC.assumptions()) { 14702 if (!AssumeVH) 14703 continue; 14704 auto *AssumeI = cast<CallInst>(AssumeVH); 14705 if (!DT.dominates(AssumeI, L->getHeader())) 14706 continue; 14707 Terms.emplace_back(AssumeI->getOperand(0), true); 14708 } 14709 14710 // Second, collect conditions from dominating branches. Starting at the loop 14711 // predecessor, climb up the predecessor chain, as long as there are 14712 // predecessors that can be found that have unique successors leading to the 14713 // original header. 14714 // TODO: share this logic with isLoopEntryGuardedByCond. 14715 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14716 L->getLoopPredecessor(), L->getHeader()); 14717 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14718 14719 const BranchInst *LoopEntryPredicate = 14720 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14721 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14722 continue; 14723 14724 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14725 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14726 } 14727 14728 // Now apply the information from the collected conditions to RewriteMap. 14729 // Conditions are processed in reverse order, so the earliest conditions is 14730 // processed first. This ensures the SCEVs with the shortest dependency chains 14731 // are constructed first. 14732 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14733 for (auto &E : reverse(Terms)) { 14734 bool EnterIfTrue = E.second; 14735 SmallVector<Value *, 8> Worklist; 14736 SmallPtrSet<Value *, 8> Visited; 14737 Worklist.push_back(E.first); 14738 while (!Worklist.empty()) { 14739 Value *Cond = Worklist.pop_back_val(); 14740 if (!Visited.insert(Cond).second) 14741 continue; 14742 14743 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14744 auto Predicate = 14745 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14746 const auto *LHS = getSCEV(Cmp->getOperand(0)); 14747 const auto *RHS = getSCEV(Cmp->getOperand(1)); 14748 CollectCondition(Predicate, LHS, RHS, RewriteMap); 14749 continue; 14750 } 14751 14752 Value *L, *R; 14753 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14754 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14755 Worklist.push_back(L); 14756 Worklist.push_back(R); 14757 } 14758 } 14759 } 14760 14761 if (RewriteMap.empty()) 14762 return Expr; 14763 14764 // Now that all rewrite information is collect, rewrite the collected 14765 // expressions with the information in the map. This applies information to 14766 // sub-expressions. 14767 if (ExprsToRewrite.size() > 1) { 14768 for (const SCEV *Expr : ExprsToRewrite) { 14769 const SCEV *RewriteTo = RewriteMap[Expr]; 14770 RewriteMap.erase(Expr); 14771 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14772 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14773 } 14774 } 14775 14776 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14777 return Rewriter.visit(Expr); 14778 } 14779