1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/ScopeExit.h" 69 #include "llvm/ADT/Sequence.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringRef.h" 75 #include "llvm/Analysis/AssumptionCache.h" 76 #include "llvm/Analysis/ConstantFolding.h" 77 #include "llvm/Analysis/InstructionSimplify.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/ValueTracking.h" 82 #include "llvm/Config/llvm-config.h" 83 #include "llvm/IR/Argument.h" 84 #include "llvm/IR/BasicBlock.h" 85 #include "llvm/IR/CFG.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/ConstantRange.h" 88 #include "llvm/IR/Constants.h" 89 #include "llvm/IR/DataLayout.h" 90 #include "llvm/IR/DerivedTypes.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Function.h" 93 #include "llvm/IR/GlobalAlias.h" 94 #include "llvm/IR/GlobalValue.h" 95 #include "llvm/IR/InstIterator.h" 96 #include "llvm/IR/InstrTypes.h" 97 #include "llvm/IR/Instruction.h" 98 #include "llvm/IR/Instructions.h" 99 #include "llvm/IR/IntrinsicInst.h" 100 #include "llvm/IR/Intrinsics.h" 101 #include "llvm/IR/LLVMContext.h" 102 #include "llvm/IR/Operator.h" 103 #include "llvm/IR/PatternMatch.h" 104 #include "llvm/IR/Type.h" 105 #include "llvm/IR/Use.h" 106 #include "llvm/IR/User.h" 107 #include "llvm/IR/Value.h" 108 #include "llvm/IR/Verifier.h" 109 #include "llvm/InitializePasses.h" 110 #include "llvm/Pass.h" 111 #include "llvm/Support/Casting.h" 112 #include "llvm/Support/CommandLine.h" 113 #include "llvm/Support/Compiler.h" 114 #include "llvm/Support/Debug.h" 115 #include "llvm/Support/ErrorHandling.h" 116 #include "llvm/Support/KnownBits.h" 117 #include "llvm/Support/SaveAndRestore.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <climits> 122 #include <cstdint> 123 #include <cstdlib> 124 #include <map> 125 #include <memory> 126 #include <numeric> 127 #include <optional> 128 #include <tuple> 129 #include <utility> 130 #include <vector> 131 132 using namespace llvm; 133 using namespace PatternMatch; 134 135 #define DEBUG_TYPE "scalar-evolution" 136 137 STATISTIC(NumTripCountsComputed, 138 "Number of loops with predictable loop counts"); 139 STATISTIC(NumTripCountsNotComputed, 140 "Number of loops without predictable loop counts"); 141 STATISTIC(NumBruteForceTripCountsComputed, 142 "Number of loops with trip counts computed by force"); 143 144 #ifdef EXPENSIVE_CHECKS 145 bool llvm::VerifySCEV = true; 146 #else 147 bool llvm::VerifySCEV = false; 148 #endif 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 static cl::opt<bool, true> VerifySCEVOpt( 158 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 160 static cl::opt<bool> VerifySCEVStrict( 161 "verify-scev-strict", cl::Hidden, 162 cl::desc("Enable stricter verification with -verify-scev is passed")); 163 static cl::opt<bool> 164 VerifySCEVMap("verify-scev-maps", cl::Hidden, 165 cl::desc("Verify no dangling value in ScalarEvolution's " 166 "ExprValueMap (slow)")); 167 168 static cl::opt<bool> VerifyIR( 169 "scev-verify-ir", cl::Hidden, 170 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 171 cl::init(false)); 172 173 static cl::opt<unsigned> MulOpsInlineThreshold( 174 "scev-mulops-inline-threshold", cl::Hidden, 175 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 176 cl::init(32)); 177 178 static cl::opt<unsigned> AddOpsInlineThreshold( 179 "scev-addops-inline-threshold", cl::Hidden, 180 cl::desc("Threshold for inlining addition operands into a SCEV"), 181 cl::init(500)); 182 183 static cl::opt<unsigned> MaxSCEVCompareDepth( 184 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 185 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 186 cl::init(32)); 187 188 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 189 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 190 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 191 cl::init(2)); 192 193 static cl::opt<unsigned> MaxValueCompareDepth( 194 "scalar-evolution-max-value-compare-depth", cl::Hidden, 195 cl::desc("Maximum depth of recursive value complexity comparisons"), 196 cl::init(2)); 197 198 static cl::opt<unsigned> 199 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 200 cl::desc("Maximum depth of recursive arithmetics"), 201 cl::init(32)); 202 203 static cl::opt<unsigned> MaxConstantEvolvingDepth( 204 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 205 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 206 207 static cl::opt<unsigned> 208 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 209 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 210 cl::init(8)); 211 212 static cl::opt<unsigned> 213 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 214 cl::desc("Max coefficients in AddRec during evolving"), 215 cl::init(8)); 216 217 static cl::opt<unsigned> 218 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 219 cl::desc("Size of the expression which is considered huge"), 220 cl::init(4096)); 221 222 static cl::opt<unsigned> RangeIterThreshold( 223 "scev-range-iter-threshold", cl::Hidden, 224 cl::desc("Threshold for switching to iteratively computing SCEV ranges"), 225 cl::init(32)); 226 227 static cl::opt<bool> 228 ClassifyExpressions("scalar-evolution-classify-expressions", 229 cl::Hidden, cl::init(true), 230 cl::desc("When printing analysis, include information on every instruction")); 231 232 static cl::opt<bool> UseExpensiveRangeSharpening( 233 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 234 cl::init(false), 235 cl::desc("Use more powerful methods of sharpening expression ranges. May " 236 "be costly in terms of compile time")); 237 238 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 239 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 240 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 241 "Phi strongly connected components"), 242 cl::init(8)); 243 244 static cl::opt<bool> 245 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 246 cl::desc("Handle <= and >= in finite loops"), 247 cl::init(true)); 248 249 static cl::opt<bool> UseContextForNoWrapFlagInference( 250 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, 251 cl::desc("Infer nuw/nsw flags using context where suitable"), 252 cl::init(true)); 253 254 //===----------------------------------------------------------------------===// 255 // SCEV class definitions 256 //===----------------------------------------------------------------------===// 257 258 //===----------------------------------------------------------------------===// 259 // Implementation of the SCEV class. 260 // 261 262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 263 LLVM_DUMP_METHOD void SCEV::dump() const { 264 print(dbgs()); 265 dbgs() << '\n'; 266 } 267 #endif 268 269 void SCEV::print(raw_ostream &OS) const { 270 switch (getSCEVType()) { 271 case scConstant: 272 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 273 return; 274 case scPtrToInt: { 275 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 276 const SCEV *Op = PtrToInt->getOperand(); 277 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 278 << *PtrToInt->getType() << ")"; 279 return; 280 } 281 case scTruncate: { 282 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 283 const SCEV *Op = Trunc->getOperand(); 284 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 285 << *Trunc->getType() << ")"; 286 return; 287 } 288 case scZeroExtend: { 289 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 290 const SCEV *Op = ZExt->getOperand(); 291 OS << "(zext " << *Op->getType() << " " << *Op << " to " 292 << *ZExt->getType() << ")"; 293 return; 294 } 295 case scSignExtend: { 296 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 297 const SCEV *Op = SExt->getOperand(); 298 OS << "(sext " << *Op->getType() << " " << *Op << " to " 299 << *SExt->getType() << ")"; 300 return; 301 } 302 case scAddRecExpr: { 303 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 304 OS << "{" << *AR->getOperand(0); 305 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 306 OS << ",+," << *AR->getOperand(i); 307 OS << "}<"; 308 if (AR->hasNoUnsignedWrap()) 309 OS << "nuw><"; 310 if (AR->hasNoSignedWrap()) 311 OS << "nsw><"; 312 if (AR->hasNoSelfWrap() && 313 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 314 OS << "nw><"; 315 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 316 OS << ">"; 317 return; 318 } 319 case scAddExpr: 320 case scMulExpr: 321 case scUMaxExpr: 322 case scSMaxExpr: 323 case scUMinExpr: 324 case scSMinExpr: 325 case scSequentialUMinExpr: { 326 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 327 const char *OpStr = nullptr; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: OpStr = " + "; break; 330 case scMulExpr: OpStr = " * "; break; 331 case scUMaxExpr: OpStr = " umax "; break; 332 case scSMaxExpr: OpStr = " smax "; break; 333 case scUMinExpr: 334 OpStr = " umin "; 335 break; 336 case scSMinExpr: 337 OpStr = " smin "; 338 break; 339 case scSequentialUMinExpr: 340 OpStr = " umin_seq "; 341 break; 342 default: 343 llvm_unreachable("There are no other nary expression types."); 344 } 345 OS << "("; 346 ListSeparator LS(OpStr); 347 for (const SCEV *Op : NAry->operands()) 348 OS << LS << *Op; 349 OS << ")"; 350 switch (NAry->getSCEVType()) { 351 case scAddExpr: 352 case scMulExpr: 353 if (NAry->hasNoUnsignedWrap()) 354 OS << "<nuw>"; 355 if (NAry->hasNoSignedWrap()) 356 OS << "<nsw>"; 357 break; 358 default: 359 // Nothing to print for other nary expressions. 360 break; 361 } 362 return; 363 } 364 case scUDivExpr: { 365 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 366 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 367 return; 368 } 369 case scUnknown: { 370 const SCEVUnknown *U = cast<SCEVUnknown>(this); 371 Type *AllocTy; 372 if (U->isSizeOf(AllocTy)) { 373 OS << "sizeof(" << *AllocTy << ")"; 374 return; 375 } 376 if (U->isAlignOf(AllocTy)) { 377 OS << "alignof(" << *AllocTy << ")"; 378 return; 379 } 380 381 Type *CTy; 382 Constant *FieldNo; 383 if (U->isOffsetOf(CTy, FieldNo)) { 384 OS << "offsetof(" << *CTy << ", "; 385 FieldNo->printAsOperand(OS, false); 386 OS << ")"; 387 return; 388 } 389 390 // Otherwise just print it normally. 391 U->getValue()->printAsOperand(OS, false); 392 return; 393 } 394 case scCouldNotCompute: 395 OS << "***COULDNOTCOMPUTE***"; 396 return; 397 } 398 llvm_unreachable("Unknown SCEV kind!"); 399 } 400 401 Type *SCEV::getType() const { 402 switch (getSCEVType()) { 403 case scConstant: 404 return cast<SCEVConstant>(this)->getType(); 405 case scPtrToInt: 406 case scTruncate: 407 case scZeroExtend: 408 case scSignExtend: 409 return cast<SCEVCastExpr>(this)->getType(); 410 case scAddRecExpr: 411 return cast<SCEVAddRecExpr>(this)->getType(); 412 case scMulExpr: 413 return cast<SCEVMulExpr>(this)->getType(); 414 case scUMaxExpr: 415 case scSMaxExpr: 416 case scUMinExpr: 417 case scSMinExpr: 418 return cast<SCEVMinMaxExpr>(this)->getType(); 419 case scSequentialUMinExpr: 420 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 421 case scAddExpr: 422 return cast<SCEVAddExpr>(this)->getType(); 423 case scUDivExpr: 424 return cast<SCEVUDivExpr>(this)->getType(); 425 case scUnknown: 426 return cast<SCEVUnknown>(this)->getType(); 427 case scCouldNotCompute: 428 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 429 } 430 llvm_unreachable("Unknown SCEV kind!"); 431 } 432 433 ArrayRef<const SCEV *> SCEV::operands() const { 434 switch (getSCEVType()) { 435 case scConstant: 436 case scUnknown: 437 return {}; 438 case scPtrToInt: 439 case scTruncate: 440 case scZeroExtend: 441 case scSignExtend: 442 return cast<SCEVCastExpr>(this)->operands(); 443 case scAddRecExpr: 444 case scAddExpr: 445 case scMulExpr: 446 case scUMaxExpr: 447 case scSMaxExpr: 448 case scUMinExpr: 449 case scSMinExpr: 450 case scSequentialUMinExpr: 451 return cast<SCEVNAryExpr>(this)->operands(); 452 case scUDivExpr: 453 return cast<SCEVUDivExpr>(this)->operands(); 454 case scCouldNotCompute: 455 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 456 } 457 llvm_unreachable("Unknown SCEV kind!"); 458 } 459 460 bool SCEV::isZero() const { 461 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 462 return SC->getValue()->isZero(); 463 return false; 464 } 465 466 bool SCEV::isOne() const { 467 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 468 return SC->getValue()->isOne(); 469 return false; 470 } 471 472 bool SCEV::isAllOnesValue() const { 473 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 474 return SC->getValue()->isMinusOne(); 475 return false; 476 } 477 478 bool SCEV::isNonConstantNegative() const { 479 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 480 if (!Mul) return false; 481 482 // If there is a constant factor, it will be first. 483 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 484 if (!SC) return false; 485 486 // Return true if the value is negative, this matches things like (-42 * V). 487 return SC->getAPInt().isNegative(); 488 } 489 490 SCEVCouldNotCompute::SCEVCouldNotCompute() : 491 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 492 493 bool SCEVCouldNotCompute::classof(const SCEV *S) { 494 return S->getSCEVType() == scCouldNotCompute; 495 } 496 497 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 498 FoldingSetNodeID ID; 499 ID.AddInteger(scConstant); 500 ID.AddPointer(V); 501 void *IP = nullptr; 502 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 503 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 504 UniqueSCEVs.InsertNode(S, IP); 505 return S; 506 } 507 508 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 509 return getConstant(ConstantInt::get(getContext(), Val)); 510 } 511 512 const SCEV * 513 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 514 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 515 return getConstant(ConstantInt::get(ITy, V, isSigned)); 516 } 517 518 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 519 const SCEV *op, Type *ty) 520 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 521 522 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 523 Type *ITy) 524 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 525 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 526 "Must be a non-bit-width-changing pointer-to-integer cast!"); 527 } 528 529 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 530 SCEVTypes SCEVTy, const SCEV *op, 531 Type *ty) 532 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 533 534 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 535 Type *ty) 536 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 537 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 538 "Cannot truncate non-integer value!"); 539 } 540 541 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 542 const SCEV *op, Type *ty) 543 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 544 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 545 "Cannot zero extend non-integer value!"); 546 } 547 548 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 549 const SCEV *op, Type *ty) 550 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 551 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 552 "Cannot sign extend non-integer value!"); 553 } 554 555 void SCEVUnknown::deleted() { 556 // Clear this SCEVUnknown from various maps. 557 SE->forgetMemoizedResults(this); 558 559 // Remove this SCEVUnknown from the uniquing map. 560 SE->UniqueSCEVs.RemoveNode(this); 561 562 // Release the value. 563 setValPtr(nullptr); 564 } 565 566 void SCEVUnknown::allUsesReplacedWith(Value *New) { 567 // Clear this SCEVUnknown from various maps. 568 SE->forgetMemoizedResults(this); 569 570 // Remove this SCEVUnknown from the uniquing map. 571 SE->UniqueSCEVs.RemoveNode(this); 572 573 // Replace the value pointer in case someone is still using this SCEVUnknown. 574 setValPtr(New); 575 } 576 577 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 578 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 579 if (VCE->getOpcode() == Instruction::PtrToInt) 580 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 581 if (CE->getOpcode() == Instruction::GetElementPtr && 582 CE->getOperand(0)->isNullValue() && 583 CE->getNumOperands() == 2) 584 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 585 if (CI->isOne()) { 586 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 587 return true; 588 } 589 590 return false; 591 } 592 593 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 594 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 595 if (VCE->getOpcode() == Instruction::PtrToInt) 596 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 597 if (CE->getOpcode() == Instruction::GetElementPtr && 598 CE->getOperand(0)->isNullValue()) { 599 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 600 if (StructType *STy = dyn_cast<StructType>(Ty)) 601 if (!STy->isPacked() && 602 CE->getNumOperands() == 3 && 603 CE->getOperand(1)->isNullValue()) { 604 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 605 if (CI->isOne() && 606 STy->getNumElements() == 2 && 607 STy->getElementType(0)->isIntegerTy(1)) { 608 AllocTy = STy->getElementType(1); 609 return true; 610 } 611 } 612 } 613 614 return false; 615 } 616 617 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 618 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 619 if (VCE->getOpcode() == Instruction::PtrToInt) 620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 621 if (CE->getOpcode() == Instruction::GetElementPtr && 622 CE->getNumOperands() == 3 && 623 CE->getOperand(0)->isNullValue() && 624 CE->getOperand(1)->isNullValue()) { 625 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 626 // Ignore vector types here so that ScalarEvolutionExpander doesn't 627 // emit getelementptrs that index into vectors. 628 if (Ty->isStructTy() || Ty->isArrayTy()) { 629 CTy = Ty; 630 FieldNo = CE->getOperand(2); 631 return true; 632 } 633 } 634 635 return false; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // SCEV Utilities 640 //===----------------------------------------------------------------------===// 641 642 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 643 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 644 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 645 /// have been previously deemed to be "equally complex" by this routine. It is 646 /// intended to avoid exponential time complexity in cases like: 647 /// 648 /// %a = f(%x, %y) 649 /// %b = f(%a, %a) 650 /// %c = f(%b, %b) 651 /// 652 /// %d = f(%x, %y) 653 /// %e = f(%d, %d) 654 /// %f = f(%e, %e) 655 /// 656 /// CompareValueComplexity(%f, %c) 657 /// 658 /// Since we do not continue running this routine on expression trees once we 659 /// have seen unequal values, there is no need to track them in the cache. 660 static int 661 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 662 const LoopInfo *const LI, Value *LV, Value *RV, 663 unsigned Depth) { 664 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 665 return 0; 666 667 // Order pointer values after integer values. This helps SCEVExpander form 668 // GEPs. 669 bool LIsPointer = LV->getType()->isPointerTy(), 670 RIsPointer = RV->getType()->isPointerTy(); 671 if (LIsPointer != RIsPointer) 672 return (int)LIsPointer - (int)RIsPointer; 673 674 // Compare getValueID values. 675 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 676 if (LID != RID) 677 return (int)LID - (int)RID; 678 679 // Sort arguments by their position. 680 if (const auto *LA = dyn_cast<Argument>(LV)) { 681 const auto *RA = cast<Argument>(RV); 682 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 683 return (int)LArgNo - (int)RArgNo; 684 } 685 686 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 687 const auto *RGV = cast<GlobalValue>(RV); 688 689 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 690 auto LT = GV->getLinkage(); 691 return !(GlobalValue::isPrivateLinkage(LT) || 692 GlobalValue::isInternalLinkage(LT)); 693 }; 694 695 // Use the names to distinguish the two values, but only if the 696 // names are semantically important. 697 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 698 return LGV->getName().compare(RGV->getName()); 699 } 700 701 // For instructions, compare their loop depth, and their operand count. This 702 // is pretty loose. 703 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 704 const auto *RInst = cast<Instruction>(RV); 705 706 // Compare loop depths. 707 const BasicBlock *LParent = LInst->getParent(), 708 *RParent = RInst->getParent(); 709 if (LParent != RParent) { 710 unsigned LDepth = LI->getLoopDepth(LParent), 711 RDepth = LI->getLoopDepth(RParent); 712 if (LDepth != RDepth) 713 return (int)LDepth - (int)RDepth; 714 } 715 716 // Compare the number of operands. 717 unsigned LNumOps = LInst->getNumOperands(), 718 RNumOps = RInst->getNumOperands(); 719 if (LNumOps != RNumOps) 720 return (int)LNumOps - (int)RNumOps; 721 722 for (unsigned Idx : seq(0u, LNumOps)) { 723 int Result = 724 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 725 RInst->getOperand(Idx), Depth + 1); 726 if (Result != 0) 727 return Result; 728 } 729 } 730 731 EqCacheValue.unionSets(LV, RV); 732 return 0; 733 } 734 735 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 736 // than RHS, respectively. A three-way result allows recursive comparisons to be 737 // more efficient. 738 // If the max analysis depth was reached, return std::nullopt, assuming we do 739 // not know if they are equivalent for sure. 740 static std::optional<int> 741 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 742 EquivalenceClasses<const Value *> &EqCacheValue, 743 const LoopInfo *const LI, const SCEV *LHS, 744 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 745 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 746 if (LHS == RHS) 747 return 0; 748 749 // Primarily, sort the SCEVs by their getSCEVType(). 750 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 751 if (LType != RType) 752 return (int)LType - (int)RType; 753 754 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 755 return 0; 756 757 if (Depth > MaxSCEVCompareDepth) 758 return std::nullopt; 759 760 // Aside from the getSCEVType() ordering, the particular ordering 761 // isn't very important except that it's beneficial to be consistent, 762 // so that (a + b) and (b + a) don't end up as different expressions. 763 switch (LType) { 764 case scUnknown: { 765 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 766 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 767 768 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 769 RU->getValue(), Depth + 1); 770 if (X == 0) 771 EqCacheSCEV.unionSets(LHS, RHS); 772 return X; 773 } 774 775 case scConstant: { 776 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 777 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 778 779 // Compare constant values. 780 const APInt &LA = LC->getAPInt(); 781 const APInt &RA = RC->getAPInt(); 782 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 783 if (LBitWidth != RBitWidth) 784 return (int)LBitWidth - (int)RBitWidth; 785 return LA.ult(RA) ? -1 : 1; 786 } 787 788 case scAddRecExpr: { 789 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 790 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 791 792 // There is always a dominance between two recs that are used by one SCEV, 793 // so we can safely sort recs by loop header dominance. We require such 794 // order in getAddExpr. 795 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 796 if (LLoop != RLoop) { 797 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 798 assert(LHead != RHead && "Two loops share the same header?"); 799 if (DT.dominates(LHead, RHead)) 800 return 1; 801 else 802 assert(DT.dominates(RHead, LHead) && 803 "No dominance between recurrences used by one SCEV?"); 804 return -1; 805 } 806 807 [[fallthrough]]; 808 } 809 810 case scTruncate: 811 case scZeroExtend: 812 case scSignExtend: 813 case scPtrToInt: 814 case scAddExpr: 815 case scMulExpr: 816 case scUDivExpr: 817 case scSMaxExpr: 818 case scUMaxExpr: 819 case scSMinExpr: 820 case scUMinExpr: 821 case scSequentialUMinExpr: { 822 ArrayRef<const SCEV *> LOps = LHS->operands(); 823 ArrayRef<const SCEV *> ROps = RHS->operands(); 824 825 // Lexicographically compare n-ary-like expressions. 826 unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); 827 if (LNumOps != RNumOps) 828 return (int)LNumOps - (int)RNumOps; 829 830 for (unsigned i = 0; i != LNumOps; ++i) { 831 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i], 832 ROps[i], DT, Depth + 1); 833 if (X != 0) 834 return X; 835 } 836 EqCacheSCEV.unionSets(LHS, RHS); 837 return 0; 838 } 839 840 case scCouldNotCompute: 841 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 842 } 843 llvm_unreachable("Unknown SCEV kind!"); 844 } 845 846 /// Given a list of SCEV objects, order them by their complexity, and group 847 /// objects of the same complexity together by value. When this routine is 848 /// finished, we know that any duplicates in the vector are consecutive and that 849 /// complexity is monotonically increasing. 850 /// 851 /// Note that we go take special precautions to ensure that we get deterministic 852 /// results from this routine. In other words, we don't want the results of 853 /// this to depend on where the addresses of various SCEV objects happened to 854 /// land in memory. 855 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 856 LoopInfo *LI, DominatorTree &DT) { 857 if (Ops.size() < 2) return; // Noop 858 859 EquivalenceClasses<const SCEV *> EqCacheSCEV; 860 EquivalenceClasses<const Value *> EqCacheValue; 861 862 // Whether LHS has provably less complexity than RHS. 863 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 864 auto Complexity = 865 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 866 return Complexity && *Complexity < 0; 867 }; 868 if (Ops.size() == 2) { 869 // This is the common case, which also happens to be trivially simple. 870 // Special case it. 871 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 872 if (IsLessComplex(RHS, LHS)) 873 std::swap(LHS, RHS); 874 return; 875 } 876 877 // Do the rough sort by complexity. 878 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 879 return IsLessComplex(LHS, RHS); 880 }); 881 882 // Now that we are sorted by complexity, group elements of the same 883 // complexity. Note that this is, at worst, N^2, but the vector is likely to 884 // be extremely short in practice. Note that we take this approach because we 885 // do not want to depend on the addresses of the objects we are grouping. 886 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 887 const SCEV *S = Ops[i]; 888 unsigned Complexity = S->getSCEVType(); 889 890 // If there are any objects of the same complexity and same value as this 891 // one, group them. 892 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 893 if (Ops[j] == S) { // Found a duplicate. 894 // Move it to immediately after i'th element. 895 std::swap(Ops[i+1], Ops[j]); 896 ++i; // no need to rescan it. 897 if (i == e-2) return; // Done! 898 } 899 } 900 } 901 } 902 903 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 904 /// least HugeExprThreshold nodes). 905 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 906 return any_of(Ops, [](const SCEV *S) { 907 return S->getExpressionSize() >= HugeExprThreshold; 908 }); 909 } 910 911 //===----------------------------------------------------------------------===// 912 // Simple SCEV method implementations 913 //===----------------------------------------------------------------------===// 914 915 /// Compute BC(It, K). The result has width W. Assume, K > 0. 916 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 917 ScalarEvolution &SE, 918 Type *ResultTy) { 919 // Handle the simplest case efficiently. 920 if (K == 1) 921 return SE.getTruncateOrZeroExtend(It, ResultTy); 922 923 // We are using the following formula for BC(It, K): 924 // 925 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 926 // 927 // Suppose, W is the bitwidth of the return value. We must be prepared for 928 // overflow. Hence, we must assure that the result of our computation is 929 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 930 // safe in modular arithmetic. 931 // 932 // However, this code doesn't use exactly that formula; the formula it uses 933 // is something like the following, where T is the number of factors of 2 in 934 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 935 // exponentiation: 936 // 937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 938 // 939 // This formula is trivially equivalent to the previous formula. However, 940 // this formula can be implemented much more efficiently. The trick is that 941 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 942 // arithmetic. To do exact division in modular arithmetic, all we have 943 // to do is multiply by the inverse. Therefore, this step can be done at 944 // width W. 945 // 946 // The next issue is how to safely do the division by 2^T. The way this 947 // is done is by doing the multiplication step at a width of at least W + T 948 // bits. This way, the bottom W+T bits of the product are accurate. Then, 949 // when we perform the division by 2^T (which is equivalent to a right shift 950 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 951 // truncated out after the division by 2^T. 952 // 953 // In comparison to just directly using the first formula, this technique 954 // is much more efficient; using the first formula requires W * K bits, 955 // but this formula less than W + K bits. Also, the first formula requires 956 // a division step, whereas this formula only requires multiplies and shifts. 957 // 958 // It doesn't matter whether the subtraction step is done in the calculation 959 // width or the input iteration count's width; if the subtraction overflows, 960 // the result must be zero anyway. We prefer here to do it in the width of 961 // the induction variable because it helps a lot for certain cases; CodeGen 962 // isn't smart enough to ignore the overflow, which leads to much less 963 // efficient code if the width of the subtraction is wider than the native 964 // register width. 965 // 966 // (It's possible to not widen at all by pulling out factors of 2 before 967 // the multiplication; for example, K=2 can be calculated as 968 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 969 // extra arithmetic, so it's not an obvious win, and it gets 970 // much more complicated for K > 3.) 971 972 // Protection from insane SCEVs; this bound is conservative, 973 // but it probably doesn't matter. 974 if (K > 1000) 975 return SE.getCouldNotCompute(); 976 977 unsigned W = SE.getTypeSizeInBits(ResultTy); 978 979 // Calculate K! / 2^T and T; we divide out the factors of two before 980 // multiplying for calculating K! / 2^T to avoid overflow. 981 // Other overflow doesn't matter because we only care about the bottom 982 // W bits of the result. 983 APInt OddFactorial(W, 1); 984 unsigned T = 1; 985 for (unsigned i = 3; i <= K; ++i) { 986 APInt Mult(W, i); 987 unsigned TwoFactors = Mult.countTrailingZeros(); 988 T += TwoFactors; 989 Mult.lshrInPlace(TwoFactors); 990 OddFactorial *= Mult; 991 } 992 993 // We need at least W + T bits for the multiplication step 994 unsigned CalculationBits = W + T; 995 996 // Calculate 2^T, at width T+W. 997 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 998 999 // Calculate the multiplicative inverse of K! / 2^T; 1000 // this multiplication factor will perform the exact division by 1001 // K! / 2^T. 1002 APInt Mod = APInt::getSignedMinValue(W+1); 1003 APInt MultiplyFactor = OddFactorial.zext(W+1); 1004 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1005 MultiplyFactor = MultiplyFactor.trunc(W); 1006 1007 // Calculate the product, at width T+W 1008 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1009 CalculationBits); 1010 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1011 for (unsigned i = 1; i != K; ++i) { 1012 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1013 Dividend = SE.getMulExpr(Dividend, 1014 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1015 } 1016 1017 // Divide by 2^T 1018 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1019 1020 // Truncate the result, and divide by K! / 2^T. 1021 1022 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1023 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1024 } 1025 1026 /// Return the value of this chain of recurrences at the specified iteration 1027 /// number. We can evaluate this recurrence by multiplying each element in the 1028 /// chain by the binomial coefficient corresponding to it. In other words, we 1029 /// can evaluate {A,+,B,+,C,+,D} as: 1030 /// 1031 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1032 /// 1033 /// where BC(It, k) stands for binomial coefficient. 1034 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1035 ScalarEvolution &SE) const { 1036 return evaluateAtIteration(operands(), It, SE); 1037 } 1038 1039 const SCEV * 1040 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1041 const SCEV *It, ScalarEvolution &SE) { 1042 assert(Operands.size() > 0); 1043 const SCEV *Result = Operands[0]; 1044 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1045 // The computation is correct in the face of overflow provided that the 1046 // multiplication is performed _after_ the evaluation of the binomial 1047 // coefficient. 1048 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1049 if (isa<SCEVCouldNotCompute>(Coeff)) 1050 return Coeff; 1051 1052 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1053 } 1054 return Result; 1055 } 1056 1057 //===----------------------------------------------------------------------===// 1058 // SCEV Expression folder implementations 1059 //===----------------------------------------------------------------------===// 1060 1061 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1062 unsigned Depth) { 1063 assert(Depth <= 1 && 1064 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1065 1066 // We could be called with an integer-typed operands during SCEV rewrites. 1067 // Since the operand is an integer already, just perform zext/trunc/self cast. 1068 if (!Op->getType()->isPointerTy()) 1069 return Op; 1070 1071 // What would be an ID for such a SCEV cast expression? 1072 FoldingSetNodeID ID; 1073 ID.AddInteger(scPtrToInt); 1074 ID.AddPointer(Op); 1075 1076 void *IP = nullptr; 1077 1078 // Is there already an expression for such a cast? 1079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1080 return S; 1081 1082 // It isn't legal for optimizations to construct new ptrtoint expressions 1083 // for non-integral pointers. 1084 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1085 return getCouldNotCompute(); 1086 1087 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1088 1089 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1090 // is sufficiently wide to represent all possible pointer values. 1091 // We could theoretically teach SCEV to truncate wider pointers, but 1092 // that isn't implemented for now. 1093 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1094 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1095 return getCouldNotCompute(); 1096 1097 // If not, is this expression something we can't reduce any further? 1098 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1099 // Perform some basic constant folding. If the operand of the ptr2int cast 1100 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1101 // left as-is), but produce a zero constant. 1102 // NOTE: We could handle a more general case, but lack motivational cases. 1103 if (isa<ConstantPointerNull>(U->getValue())) 1104 return getZero(IntPtrTy); 1105 1106 // Create an explicit cast node. 1107 // We can reuse the existing insert position since if we get here, 1108 // we won't have made any changes which would invalidate it. 1109 SCEV *S = new (SCEVAllocator) 1110 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1111 UniqueSCEVs.InsertNode(S, IP); 1112 registerUser(S, Op); 1113 return S; 1114 } 1115 1116 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1117 "non-SCEVUnknown's."); 1118 1119 // Otherwise, we've got some expression that is more complex than just a 1120 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1121 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1122 // only, and the expressions must otherwise be integer-typed. 1123 // So sink the cast down to the SCEVUnknown's. 1124 1125 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1126 /// which computes a pointer-typed value, and rewrites the whole expression 1127 /// tree so that *all* the computations are done on integers, and the only 1128 /// pointer-typed operands in the expression are SCEVUnknown. 1129 class SCEVPtrToIntSinkingRewriter 1130 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1131 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1132 1133 public: 1134 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1135 1136 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1137 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1138 return Rewriter.visit(Scev); 1139 } 1140 1141 const SCEV *visit(const SCEV *S) { 1142 Type *STy = S->getType(); 1143 // If the expression is not pointer-typed, just keep it as-is. 1144 if (!STy->isPointerTy()) 1145 return S; 1146 // Else, recursively sink the cast down into it. 1147 return Base::visit(S); 1148 } 1149 1150 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1151 SmallVector<const SCEV *, 2> Operands; 1152 bool Changed = false; 1153 for (const auto *Op : Expr->operands()) { 1154 Operands.push_back(visit(Op)); 1155 Changed |= Op != Operands.back(); 1156 } 1157 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1158 } 1159 1160 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1161 SmallVector<const SCEV *, 2> Operands; 1162 bool Changed = false; 1163 for (const auto *Op : Expr->operands()) { 1164 Operands.push_back(visit(Op)); 1165 Changed |= Op != Operands.back(); 1166 } 1167 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1168 } 1169 1170 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1171 assert(Expr->getType()->isPointerTy() && 1172 "Should only reach pointer-typed SCEVUnknown's."); 1173 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1174 } 1175 }; 1176 1177 // And actually perform the cast sinking. 1178 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1179 assert(IntOp->getType()->isIntegerTy() && 1180 "We must have succeeded in sinking the cast, " 1181 "and ending up with an integer-typed expression!"); 1182 return IntOp; 1183 } 1184 1185 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1186 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1187 1188 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1189 if (isa<SCEVCouldNotCompute>(IntOp)) 1190 return IntOp; 1191 1192 return getTruncateOrZeroExtend(IntOp, Ty); 1193 } 1194 1195 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1196 unsigned Depth) { 1197 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1198 "This is not a truncating conversion!"); 1199 assert(isSCEVable(Ty) && 1200 "This is not a conversion to a SCEVable type!"); 1201 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1202 Ty = getEffectiveSCEVType(Ty); 1203 1204 FoldingSetNodeID ID; 1205 ID.AddInteger(scTruncate); 1206 ID.AddPointer(Op); 1207 ID.AddPointer(Ty); 1208 void *IP = nullptr; 1209 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1210 1211 // Fold if the operand is constant. 1212 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1213 return getConstant( 1214 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1215 1216 // trunc(trunc(x)) --> trunc(x) 1217 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1218 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1219 1220 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1221 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1222 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1223 1224 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1225 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1226 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1227 1228 if (Depth > MaxCastDepth) { 1229 SCEV *S = 1230 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1231 UniqueSCEVs.InsertNode(S, IP); 1232 registerUser(S, Op); 1233 return S; 1234 } 1235 1236 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1237 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1238 // if after transforming we have at most one truncate, not counting truncates 1239 // that replace other casts. 1240 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1241 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1242 SmallVector<const SCEV *, 4> Operands; 1243 unsigned numTruncs = 0; 1244 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1245 ++i) { 1246 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1247 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1248 isa<SCEVTruncateExpr>(S)) 1249 numTruncs++; 1250 Operands.push_back(S); 1251 } 1252 if (numTruncs < 2) { 1253 if (isa<SCEVAddExpr>(Op)) 1254 return getAddExpr(Operands); 1255 else if (isa<SCEVMulExpr>(Op)) 1256 return getMulExpr(Operands); 1257 else 1258 llvm_unreachable("Unexpected SCEV type for Op."); 1259 } 1260 // Although we checked in the beginning that ID is not in the cache, it is 1261 // possible that during recursion and different modification ID was inserted 1262 // into the cache. So if we find it, just return it. 1263 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1264 return S; 1265 } 1266 1267 // If the input value is a chrec scev, truncate the chrec's operands. 1268 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1269 SmallVector<const SCEV *, 4> Operands; 1270 for (const SCEV *Op : AddRec->operands()) 1271 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1272 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1273 } 1274 1275 // Return zero if truncating to known zeros. 1276 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1277 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1278 return getZero(Ty); 1279 1280 // The cast wasn't folded; create an explicit cast node. We can reuse 1281 // the existing insert position since if we get here, we won't have 1282 // made any changes which would invalidate it. 1283 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1284 Op, Ty); 1285 UniqueSCEVs.InsertNode(S, IP); 1286 registerUser(S, Op); 1287 return S; 1288 } 1289 1290 // Get the limit of a recurrence such that incrementing by Step cannot cause 1291 // signed overflow as long as the value of the recurrence within the 1292 // loop does not exceed this limit before incrementing. 1293 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1297 if (SE->isKnownPositive(Step)) { 1298 *Pred = ICmpInst::ICMP_SLT; 1299 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1300 SE->getSignedRangeMax(Step)); 1301 } 1302 if (SE->isKnownNegative(Step)) { 1303 *Pred = ICmpInst::ICMP_SGT; 1304 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1305 SE->getSignedRangeMin(Step)); 1306 } 1307 return nullptr; 1308 } 1309 1310 // Get the limit of a recurrence such that incrementing by Step cannot cause 1311 // unsigned overflow as long as the value of the recurrence within the loop does 1312 // not exceed this limit before incrementing. 1313 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1314 ICmpInst::Predicate *Pred, 1315 ScalarEvolution *SE) { 1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1317 *Pred = ICmpInst::ICMP_ULT; 1318 1319 return SE->getConstant(APInt::getMinValue(BitWidth) - 1320 SE->getUnsignedRangeMax(Step)); 1321 } 1322 1323 namespace { 1324 1325 struct ExtendOpTraitsBase { 1326 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1327 unsigned); 1328 }; 1329 1330 // Used to make code generic over signed and unsigned overflow. 1331 template <typename ExtendOp> struct ExtendOpTraits { 1332 // Members present: 1333 // 1334 // static const SCEV::NoWrapFlags WrapType; 1335 // 1336 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1337 // 1338 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1339 // ICmpInst::Predicate *Pred, 1340 // ScalarEvolution *SE); 1341 }; 1342 1343 template <> 1344 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1345 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1346 1347 static const GetExtendExprTy GetExtendExpr; 1348 1349 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1350 ICmpInst::Predicate *Pred, 1351 ScalarEvolution *SE) { 1352 return getSignedOverflowLimitForStep(Step, Pred, SE); 1353 } 1354 }; 1355 1356 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1357 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1358 1359 template <> 1360 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1361 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1362 1363 static const GetExtendExprTy GetExtendExpr; 1364 1365 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1366 ICmpInst::Predicate *Pred, 1367 ScalarEvolution *SE) { 1368 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1369 } 1370 }; 1371 1372 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1373 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1374 1375 } // end anonymous namespace 1376 1377 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1378 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1379 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1380 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1381 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1382 // expression "Step + sext/zext(PreIncAR)" is congruent with 1383 // "sext/zext(PostIncAR)" 1384 template <typename ExtendOpTy> 1385 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1386 ScalarEvolution *SE, unsigned Depth) { 1387 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1388 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1389 1390 const Loop *L = AR->getLoop(); 1391 const SCEV *Start = AR->getStart(); 1392 const SCEV *Step = AR->getStepRecurrence(*SE); 1393 1394 // Check for a simple looking step prior to loop entry. 1395 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1396 if (!SA) 1397 return nullptr; 1398 1399 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1400 // subtraction is expensive. For this purpose, perform a quick and dirty 1401 // difference, by checking for Step in the operand list. 1402 SmallVector<const SCEV *, 4> DiffOps; 1403 for (const SCEV *Op : SA->operands()) 1404 if (Op != Step) 1405 DiffOps.push_back(Op); 1406 1407 if (DiffOps.size() == SA->getNumOperands()) 1408 return nullptr; 1409 1410 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1411 // `Step`: 1412 1413 // 1. NSW/NUW flags on the step increment. 1414 auto PreStartFlags = 1415 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1416 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1417 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1418 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1419 1420 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1421 // "S+X does not sign/unsign-overflow". 1422 // 1423 1424 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1425 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1426 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1427 return PreStart; 1428 1429 // 2. Direct overflow check on the step operation's expression. 1430 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1431 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1432 const SCEV *OperandExtendedStart = 1433 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1434 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1435 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1436 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1437 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1438 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1439 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1440 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1441 } 1442 return PreStart; 1443 } 1444 1445 // 3. Loop precondition. 1446 ICmpInst::Predicate Pred; 1447 const SCEV *OverflowLimit = 1448 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1449 1450 if (OverflowLimit && 1451 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1452 return PreStart; 1453 1454 return nullptr; 1455 } 1456 1457 // Get the normalized zero or sign extended expression for this AddRec's Start. 1458 template <typename ExtendOpTy> 1459 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1460 ScalarEvolution *SE, 1461 unsigned Depth) { 1462 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1463 1464 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1465 if (!PreStart) 1466 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1467 1468 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1469 Depth), 1470 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1471 } 1472 1473 // Try to prove away overflow by looking at "nearby" add recurrences. A 1474 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1475 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1476 // 1477 // Formally: 1478 // 1479 // {S,+,X} == {S-T,+,X} + T 1480 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1481 // 1482 // If ({S-T,+,X} + T) does not overflow ... (1) 1483 // 1484 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1485 // 1486 // If {S-T,+,X} does not overflow ... (2) 1487 // 1488 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1489 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1490 // 1491 // If (S-T)+T does not overflow ... (3) 1492 // 1493 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1494 // == {Ext(S),+,Ext(X)} == LHS 1495 // 1496 // Thus, if (1), (2) and (3) are true for some T, then 1497 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1498 // 1499 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1500 // does not overflow" restricted to the 0th iteration. Therefore we only need 1501 // to check for (1) and (2). 1502 // 1503 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1504 // is `Delta` (defined below). 1505 template <typename ExtendOpTy> 1506 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1507 const SCEV *Step, 1508 const Loop *L) { 1509 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1510 1511 // We restrict `Start` to a constant to prevent SCEV from spending too much 1512 // time here. It is correct (but more expensive) to continue with a 1513 // non-constant `Start` and do a general SCEV subtraction to compute 1514 // `PreStart` below. 1515 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1516 if (!StartC) 1517 return false; 1518 1519 APInt StartAI = StartC->getAPInt(); 1520 1521 for (unsigned Delta : {-2, -1, 1, 2}) { 1522 const SCEV *PreStart = getConstant(StartAI - Delta); 1523 1524 FoldingSetNodeID ID; 1525 ID.AddInteger(scAddRecExpr); 1526 ID.AddPointer(PreStart); 1527 ID.AddPointer(Step); 1528 ID.AddPointer(L); 1529 void *IP = nullptr; 1530 const auto *PreAR = 1531 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1532 1533 // Give up if we don't already have the add recurrence we need because 1534 // actually constructing an add recurrence is relatively expensive. 1535 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1536 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1537 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1538 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1539 DeltaS, &Pred, this); 1540 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1541 return true; 1542 } 1543 } 1544 1545 return false; 1546 } 1547 1548 // Finds an integer D for an expression (C + x + y + ...) such that the top 1549 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1550 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1551 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1552 // the (C + x + y + ...) expression is \p WholeAddExpr. 1553 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1554 const SCEVConstant *ConstantTerm, 1555 const SCEVAddExpr *WholeAddExpr) { 1556 const APInt &C = ConstantTerm->getAPInt(); 1557 const unsigned BitWidth = C.getBitWidth(); 1558 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1559 uint32_t TZ = BitWidth; 1560 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1561 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1562 if (TZ) { 1563 // Set D to be as many least significant bits of C as possible while still 1564 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1565 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1566 } 1567 return APInt(BitWidth, 0); 1568 } 1569 1570 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1571 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1572 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1573 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1574 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1575 const APInt &ConstantStart, 1576 const SCEV *Step) { 1577 const unsigned BitWidth = ConstantStart.getBitWidth(); 1578 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1579 if (TZ) 1580 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1581 : ConstantStart; 1582 return APInt(BitWidth, 0); 1583 } 1584 1585 static void insertFoldCacheEntry( 1586 const ScalarEvolution::FoldID &ID, const SCEV *S, 1587 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, 1588 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> 1589 &FoldCacheUser) { 1590 auto I = FoldCache.insert({ID, S}); 1591 if (!I.second) { 1592 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache 1593 // entry. 1594 auto &UserIDs = FoldCacheUser[I.first->second]; 1595 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs"); 1596 for (unsigned I = 0; I != UserIDs.size(); ++I) 1597 if (UserIDs[I] == ID) { 1598 std::swap(UserIDs[I], UserIDs.back()); 1599 break; 1600 } 1601 UserIDs.pop_back(); 1602 I.first->second = S; 1603 } 1604 auto R = FoldCacheUser.insert({S, {}}); 1605 R.first->second.push_back(ID); 1606 } 1607 1608 const SCEV * 1609 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1610 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1611 "This is not an extending conversion!"); 1612 assert(isSCEVable(Ty) && 1613 "This is not a conversion to a SCEVable type!"); 1614 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1615 Ty = getEffectiveSCEVType(Ty); 1616 1617 FoldID ID; 1618 ID.addInteger(scZeroExtend); 1619 ID.addPointer(Op); 1620 ID.addPointer(Ty); 1621 auto Iter = FoldCache.find(ID); 1622 if (Iter != FoldCache.end()) 1623 return Iter->second; 1624 1625 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); 1626 if (!isa<SCEVZeroExtendExpr>(S)) 1627 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1628 return S; 1629 } 1630 1631 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1632 unsigned Depth) { 1633 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1634 "This is not an extending conversion!"); 1635 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1636 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1637 1638 // Fold if the operand is constant. 1639 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1640 return getConstant( 1641 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1642 1643 // zext(zext(x)) --> zext(x) 1644 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1645 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1646 1647 // Before doing any expensive analysis, check to see if we've already 1648 // computed a SCEV for this Op and Ty. 1649 FoldingSetNodeID ID; 1650 ID.AddInteger(scZeroExtend); 1651 ID.AddPointer(Op); 1652 ID.AddPointer(Ty); 1653 void *IP = nullptr; 1654 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1655 if (Depth > MaxCastDepth) { 1656 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1657 Op, Ty); 1658 UniqueSCEVs.InsertNode(S, IP); 1659 registerUser(S, Op); 1660 return S; 1661 } 1662 1663 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1664 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1665 // It's possible the bits taken off by the truncate were all zero bits. If 1666 // so, we should be able to simplify this further. 1667 const SCEV *X = ST->getOperand(); 1668 ConstantRange CR = getUnsignedRange(X); 1669 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1670 unsigned NewBits = getTypeSizeInBits(Ty); 1671 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1672 CR.zextOrTrunc(NewBits))) 1673 return getTruncateOrZeroExtend(X, Ty, Depth); 1674 } 1675 1676 // If the input value is a chrec scev, and we can prove that the value 1677 // did not overflow the old, smaller, value, we can zero extend all of the 1678 // operands (often constants). This allows analysis of something like 1679 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1680 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1681 if (AR->isAffine()) { 1682 const SCEV *Start = AR->getStart(); 1683 const SCEV *Step = AR->getStepRecurrence(*this); 1684 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1685 const Loop *L = AR->getLoop(); 1686 1687 if (!AR->hasNoUnsignedWrap()) { 1688 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1689 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1690 } 1691 1692 // If we have special knowledge that this addrec won't overflow, 1693 // we don't need to do any further analysis. 1694 if (AR->hasNoUnsignedWrap()) { 1695 Start = 1696 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1697 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1698 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1699 } 1700 1701 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1702 // Note that this serves two purposes: It filters out loops that are 1703 // simply not analyzable, and it covers the case where this code is 1704 // being called from within backedge-taken count analysis, such that 1705 // attempting to ask for the backedge-taken count would likely result 1706 // in infinite recursion. In the later case, the analysis code will 1707 // cope with a conservative value, and it will take care to purge 1708 // that value once it has finished. 1709 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1710 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1711 // Manually compute the final value for AR, checking for overflow. 1712 1713 // Check whether the backedge-taken count can be losslessly casted to 1714 // the addrec's type. The count is always unsigned. 1715 const SCEV *CastedMaxBECount = 1716 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1717 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1718 CastedMaxBECount, MaxBECount->getType(), Depth); 1719 if (MaxBECount == RecastedMaxBECount) { 1720 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1721 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1722 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1723 SCEV::FlagAnyWrap, Depth + 1); 1724 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1725 SCEV::FlagAnyWrap, 1726 Depth + 1), 1727 WideTy, Depth + 1); 1728 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1729 const SCEV *WideMaxBECount = 1730 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1731 const SCEV *OperandExtendedAdd = 1732 getAddExpr(WideStart, 1733 getMulExpr(WideMaxBECount, 1734 getZeroExtendExpr(Step, WideTy, Depth + 1), 1735 SCEV::FlagAnyWrap, Depth + 1), 1736 SCEV::FlagAnyWrap, Depth + 1); 1737 if (ZAdd == OperandExtendedAdd) { 1738 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1739 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1740 // Return the expression with the addrec on the outside. 1741 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1742 Depth + 1); 1743 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1744 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1745 } 1746 // Similar to above, only this time treat the step value as signed. 1747 // This covers loops that count down. 1748 OperandExtendedAdd = 1749 getAddExpr(WideStart, 1750 getMulExpr(WideMaxBECount, 1751 getSignExtendExpr(Step, WideTy, Depth + 1), 1752 SCEV::FlagAnyWrap, Depth + 1), 1753 SCEV::FlagAnyWrap, Depth + 1); 1754 if (ZAdd == OperandExtendedAdd) { 1755 // Cache knowledge of AR NW, which is propagated to this AddRec. 1756 // Negative step causes unsigned wrap, but it still can't self-wrap. 1757 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1758 // Return the expression with the addrec on the outside. 1759 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1760 Depth + 1); 1761 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1762 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1763 } 1764 } 1765 } 1766 1767 // Normally, in the cases we can prove no-overflow via a 1768 // backedge guarding condition, we can also compute a backedge 1769 // taken count for the loop. The exceptions are assumptions and 1770 // guards present in the loop -- SCEV is not great at exploiting 1771 // these to compute max backedge taken counts, but can still use 1772 // these to prove lack of overflow. Use this fact to avoid 1773 // doing extra work that may not pay off. 1774 if (!isa<SCEVCouldNotCompute>(MaxBECount) || !AC.assumptions().empty()) { 1775 1776 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1778 if (AR->hasNoUnsignedWrap()) { 1779 // Same as nuw case above - duplicated here to avoid a compile time 1780 // issue. It's not clear that the order of checks does matter, but 1781 // it's one of two issue possible causes for a change which was 1782 // reverted. Be conservative for the moment. 1783 Start = 1784 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1785 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1786 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1787 } 1788 1789 // For a negative step, we can extend the operands iff doing so only 1790 // traverses values in the range zext([0,UINT_MAX]). 1791 if (isKnownNegative(Step)) { 1792 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1793 getSignedRangeMin(Step)); 1794 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1795 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1796 // Cache knowledge of AR NW, which is propagated to this 1797 // AddRec. Negative step causes unsigned wrap, but it 1798 // still can't self-wrap. 1799 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1800 // Return the expression with the addrec on the outside. 1801 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1802 Depth + 1); 1803 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1804 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1805 } 1806 } 1807 } 1808 1809 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1810 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1812 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1813 const APInt &C = SC->getAPInt(); 1814 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1815 if (D != 0) { 1816 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1817 const SCEV *SResidual = 1818 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1819 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1820 return getAddExpr(SZExtD, SZExtR, 1821 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1822 Depth + 1); 1823 } 1824 } 1825 1826 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1827 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1828 Start = 1829 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1830 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1831 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1832 } 1833 } 1834 1835 // zext(A % B) --> zext(A) % zext(B) 1836 { 1837 const SCEV *LHS; 1838 const SCEV *RHS; 1839 if (matchURem(Op, LHS, RHS)) 1840 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1841 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1842 } 1843 1844 // zext(A / B) --> zext(A) / zext(B). 1845 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1846 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1847 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1848 1849 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1850 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1851 if (SA->hasNoUnsignedWrap()) { 1852 // If the addition does not unsign overflow then we can, by definition, 1853 // commute the zero extension with the addition operation. 1854 SmallVector<const SCEV *, 4> Ops; 1855 for (const auto *Op : SA->operands()) 1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1857 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1858 } 1859 1860 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1861 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1862 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1863 // 1864 // Often address arithmetics contain expressions like 1865 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1866 // This transformation is useful while proving that such expressions are 1867 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1868 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1869 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1870 if (D != 0) { 1871 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1872 const SCEV *SResidual = 1873 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1874 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1875 return getAddExpr(SZExtD, SZExtR, 1876 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1877 Depth + 1); 1878 } 1879 } 1880 } 1881 1882 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1883 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1884 if (SM->hasNoUnsignedWrap()) { 1885 // If the multiply does not unsign overflow then we can, by definition, 1886 // commute the zero extension with the multiply operation. 1887 SmallVector<const SCEV *, 4> Ops; 1888 for (const auto *Op : SM->operands()) 1889 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1890 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1891 } 1892 1893 // zext(2^K * (trunc X to iN)) to iM -> 1894 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1895 // 1896 // Proof: 1897 // 1898 // zext(2^K * (trunc X to iN)) to iM 1899 // = zext((trunc X to iN) << K) to iM 1900 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1901 // (because shl removes the top K bits) 1902 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1903 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1904 // 1905 if (SM->getNumOperands() == 2) 1906 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1907 if (MulLHS->getAPInt().isPowerOf2()) 1908 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1909 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1910 MulLHS->getAPInt().logBase2(); 1911 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1912 return getMulExpr( 1913 getZeroExtendExpr(MulLHS, Ty), 1914 getZeroExtendExpr( 1915 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1916 SCEV::FlagNUW, Depth + 1); 1917 } 1918 } 1919 1920 // The cast wasn't folded; create an explicit cast node. 1921 // Recompute the insert position, as it may have been invalidated. 1922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1923 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1924 Op, Ty); 1925 UniqueSCEVs.InsertNode(S, IP); 1926 registerUser(S, Op); 1927 return S; 1928 } 1929 1930 const SCEV * 1931 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1932 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1933 "This is not an extending conversion!"); 1934 assert(isSCEVable(Ty) && 1935 "This is not a conversion to a SCEVable type!"); 1936 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1937 Ty = getEffectiveSCEVType(Ty); 1938 1939 FoldID ID; 1940 ID.addInteger(scSignExtend); 1941 ID.addPointer(Op); 1942 ID.addPointer(Ty); 1943 auto Iter = FoldCache.find(ID); 1944 if (Iter != FoldCache.end()) 1945 return Iter->second; 1946 1947 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); 1948 if (!isa<SCEVSignExtendExpr>(S)) 1949 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1950 return S; 1951 } 1952 1953 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1954 unsigned Depth) { 1955 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1956 "This is not an extending conversion!"); 1957 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1958 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1959 Ty = getEffectiveSCEVType(Ty); 1960 1961 // Fold if the operand is constant. 1962 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1963 return getConstant( 1964 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1965 1966 // sext(sext(x)) --> sext(x) 1967 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1968 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1969 1970 // sext(zext(x)) --> zext(x) 1971 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1972 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1973 1974 // Before doing any expensive analysis, check to see if we've already 1975 // computed a SCEV for this Op and Ty. 1976 FoldingSetNodeID ID; 1977 ID.AddInteger(scSignExtend); 1978 ID.AddPointer(Op); 1979 ID.AddPointer(Ty); 1980 void *IP = nullptr; 1981 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1982 // Limit recursion depth. 1983 if (Depth > MaxCastDepth) { 1984 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1985 Op, Ty); 1986 UniqueSCEVs.InsertNode(S, IP); 1987 registerUser(S, Op); 1988 return S; 1989 } 1990 1991 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1992 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1993 // It's possible the bits taken off by the truncate were all sign bits. If 1994 // so, we should be able to simplify this further. 1995 const SCEV *X = ST->getOperand(); 1996 ConstantRange CR = getSignedRange(X); 1997 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1998 unsigned NewBits = getTypeSizeInBits(Ty); 1999 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 2000 CR.sextOrTrunc(NewBits))) 2001 return getTruncateOrSignExtend(X, Ty, Depth); 2002 } 2003 2004 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 2005 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 2006 if (SA->hasNoSignedWrap()) { 2007 // If the addition does not sign overflow then we can, by definition, 2008 // commute the sign extension with the addition operation. 2009 SmallVector<const SCEV *, 4> Ops; 2010 for (const auto *Op : SA->operands()) 2011 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 2012 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 2013 } 2014 2015 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 2016 // if D + (C - D + x + y + ...) could be proven to not signed wrap 2017 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 2018 // 2019 // For instance, this will bring two seemingly different expressions: 2020 // 1 + sext(5 + 20 * %x + 24 * %y) and 2021 // sext(6 + 20 * %x + 24 * %y) 2022 // to the same form: 2023 // 2 + sext(4 + 20 * %x + 24 * %y) 2024 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 2025 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 2026 if (D != 0) { 2027 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2028 const SCEV *SResidual = 2029 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 2030 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2031 return getAddExpr(SSExtD, SSExtR, 2032 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2033 Depth + 1); 2034 } 2035 } 2036 } 2037 // If the input value is a chrec scev, and we can prove that the value 2038 // did not overflow the old, smaller, value, we can sign extend all of the 2039 // operands (often constants). This allows analysis of something like 2040 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 2041 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 2042 if (AR->isAffine()) { 2043 const SCEV *Start = AR->getStart(); 2044 const SCEV *Step = AR->getStepRecurrence(*this); 2045 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 2046 const Loop *L = AR->getLoop(); 2047 2048 if (!AR->hasNoSignedWrap()) { 2049 auto NewFlags = proveNoWrapViaConstantRanges(AR); 2050 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2051 } 2052 2053 // If we have special knowledge that this addrec won't overflow, 2054 // we don't need to do any further analysis. 2055 if (AR->hasNoSignedWrap()) { 2056 Start = 2057 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2058 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2059 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2060 } 2061 2062 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2063 // Note that this serves two purposes: It filters out loops that are 2064 // simply not analyzable, and it covers the case where this code is 2065 // being called from within backedge-taken count analysis, such that 2066 // attempting to ask for the backedge-taken count would likely result 2067 // in infinite recursion. In the later case, the analysis code will 2068 // cope with a conservative value, and it will take care to purge 2069 // that value once it has finished. 2070 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2071 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2072 // Manually compute the final value for AR, checking for 2073 // overflow. 2074 2075 // Check whether the backedge-taken count can be losslessly casted to 2076 // the addrec's type. The count is always unsigned. 2077 const SCEV *CastedMaxBECount = 2078 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2079 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2080 CastedMaxBECount, MaxBECount->getType(), Depth); 2081 if (MaxBECount == RecastedMaxBECount) { 2082 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2083 // Check whether Start+Step*MaxBECount has no signed overflow. 2084 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2085 SCEV::FlagAnyWrap, Depth + 1); 2086 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2087 SCEV::FlagAnyWrap, 2088 Depth + 1), 2089 WideTy, Depth + 1); 2090 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2091 const SCEV *WideMaxBECount = 2092 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2093 const SCEV *OperandExtendedAdd = 2094 getAddExpr(WideStart, 2095 getMulExpr(WideMaxBECount, 2096 getSignExtendExpr(Step, WideTy, Depth + 1), 2097 SCEV::FlagAnyWrap, Depth + 1), 2098 SCEV::FlagAnyWrap, Depth + 1); 2099 if (SAdd == OperandExtendedAdd) { 2100 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2101 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2102 // Return the expression with the addrec on the outside. 2103 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2104 Depth + 1); 2105 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2106 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2107 } 2108 // Similar to above, only this time treat the step value as unsigned. 2109 // This covers loops that count up with an unsigned step. 2110 OperandExtendedAdd = 2111 getAddExpr(WideStart, 2112 getMulExpr(WideMaxBECount, 2113 getZeroExtendExpr(Step, WideTy, Depth + 1), 2114 SCEV::FlagAnyWrap, Depth + 1), 2115 SCEV::FlagAnyWrap, Depth + 1); 2116 if (SAdd == OperandExtendedAdd) { 2117 // If AR wraps around then 2118 // 2119 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2120 // => SAdd != OperandExtendedAdd 2121 // 2122 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2123 // (SAdd == OperandExtendedAdd => AR is NW) 2124 2125 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2126 2127 // Return the expression with the addrec on the outside. 2128 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2129 Depth + 1); 2130 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2131 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2132 } 2133 } 2134 } 2135 2136 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2137 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2138 if (AR->hasNoSignedWrap()) { 2139 // Same as nsw case above - duplicated here to avoid a compile time 2140 // issue. It's not clear that the order of checks does matter, but 2141 // it's one of two issue possible causes for a change which was 2142 // reverted. Be conservative for the moment. 2143 Start = 2144 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2145 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2146 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2147 } 2148 2149 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2150 // if D + (C - D + Step * n) could be proven to not signed wrap 2151 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2152 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2153 const APInt &C = SC->getAPInt(); 2154 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2155 if (D != 0) { 2156 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2157 const SCEV *SResidual = 2158 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2159 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2160 return getAddExpr(SSExtD, SSExtR, 2161 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2162 Depth + 1); 2163 } 2164 } 2165 2166 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2167 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2168 Start = 2169 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2170 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2171 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2172 } 2173 } 2174 2175 // If the input value is provably positive and we could not simplify 2176 // away the sext build a zext instead. 2177 if (isKnownNonNegative(Op)) 2178 return getZeroExtendExpr(Op, Ty, Depth + 1); 2179 2180 // The cast wasn't folded; create an explicit cast node. 2181 // Recompute the insert position, as it may have been invalidated. 2182 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2183 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2184 Op, Ty); 2185 UniqueSCEVs.InsertNode(S, IP); 2186 registerUser(S, { Op }); 2187 return S; 2188 } 2189 2190 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2191 Type *Ty) { 2192 switch (Kind) { 2193 case scTruncate: 2194 return getTruncateExpr(Op, Ty); 2195 case scZeroExtend: 2196 return getZeroExtendExpr(Op, Ty); 2197 case scSignExtend: 2198 return getSignExtendExpr(Op, Ty); 2199 case scPtrToInt: 2200 return getPtrToIntExpr(Op, Ty); 2201 default: 2202 llvm_unreachable("Not a SCEV cast expression!"); 2203 } 2204 } 2205 2206 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2207 /// unspecified bits out to the given type. 2208 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2209 Type *Ty) { 2210 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2211 "This is not an extending conversion!"); 2212 assert(isSCEVable(Ty) && 2213 "This is not a conversion to a SCEVable type!"); 2214 Ty = getEffectiveSCEVType(Ty); 2215 2216 // Sign-extend negative constants. 2217 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2218 if (SC->getAPInt().isNegative()) 2219 return getSignExtendExpr(Op, Ty); 2220 2221 // Peel off a truncate cast. 2222 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2223 const SCEV *NewOp = T->getOperand(); 2224 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2225 return getAnyExtendExpr(NewOp, Ty); 2226 return getTruncateOrNoop(NewOp, Ty); 2227 } 2228 2229 // Next try a zext cast. If the cast is folded, use it. 2230 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2231 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2232 return ZExt; 2233 2234 // Next try a sext cast. If the cast is folded, use it. 2235 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2236 if (!isa<SCEVSignExtendExpr>(SExt)) 2237 return SExt; 2238 2239 // Force the cast to be folded into the operands of an addrec. 2240 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2241 SmallVector<const SCEV *, 4> Ops; 2242 for (const SCEV *Op : AR->operands()) 2243 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2244 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2245 } 2246 2247 // If the expression is obviously signed, use the sext cast value. 2248 if (isa<SCEVSMaxExpr>(Op)) 2249 return SExt; 2250 2251 // Absent any other information, use the zext cast value. 2252 return ZExt; 2253 } 2254 2255 /// Process the given Ops list, which is a list of operands to be added under 2256 /// the given scale, update the given map. This is a helper function for 2257 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2258 /// that would form an add expression like this: 2259 /// 2260 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2261 /// 2262 /// where A and B are constants, update the map with these values: 2263 /// 2264 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2265 /// 2266 /// and add 13 + A*B*29 to AccumulatedConstant. 2267 /// This will allow getAddRecExpr to produce this: 2268 /// 2269 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2270 /// 2271 /// This form often exposes folding opportunities that are hidden in 2272 /// the original operand list. 2273 /// 2274 /// Return true iff it appears that any interesting folding opportunities 2275 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2276 /// the common case where no interesting opportunities are present, and 2277 /// is also used as a check to avoid infinite recursion. 2278 static bool 2279 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2280 SmallVectorImpl<const SCEV *> &NewOps, 2281 APInt &AccumulatedConstant, 2282 ArrayRef<const SCEV *> Ops, const APInt &Scale, 2283 ScalarEvolution &SE) { 2284 bool Interesting = false; 2285 2286 // Iterate over the add operands. They are sorted, with constants first. 2287 unsigned i = 0; 2288 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2289 ++i; 2290 // Pull a buried constant out to the outside. 2291 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2292 Interesting = true; 2293 AccumulatedConstant += Scale * C->getAPInt(); 2294 } 2295 2296 // Next comes everything else. We're especially interested in multiplies 2297 // here, but they're in the middle, so just visit the rest with one loop. 2298 for (; i != Ops.size(); ++i) { 2299 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2300 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2301 APInt NewScale = 2302 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2303 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2304 // A multiplication of a constant with another add; recurse. 2305 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2306 Interesting |= 2307 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2308 Add->operands(), NewScale, SE); 2309 } else { 2310 // A multiplication of a constant with some other value. Update 2311 // the map. 2312 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2313 const SCEV *Key = SE.getMulExpr(MulOps); 2314 auto Pair = M.insert({Key, NewScale}); 2315 if (Pair.second) { 2316 NewOps.push_back(Pair.first->first); 2317 } else { 2318 Pair.first->second += NewScale; 2319 // The map already had an entry for this value, which may indicate 2320 // a folding opportunity. 2321 Interesting = true; 2322 } 2323 } 2324 } else { 2325 // An ordinary operand. Update the map. 2326 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2327 M.insert({Ops[i], Scale}); 2328 if (Pair.second) { 2329 NewOps.push_back(Pair.first->first); 2330 } else { 2331 Pair.first->second += Scale; 2332 // The map already had an entry for this value, which may indicate 2333 // a folding opportunity. 2334 Interesting = true; 2335 } 2336 } 2337 } 2338 2339 return Interesting; 2340 } 2341 2342 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2343 const SCEV *LHS, const SCEV *RHS, 2344 const Instruction *CtxI) { 2345 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2346 SCEV::NoWrapFlags, unsigned); 2347 switch (BinOp) { 2348 default: 2349 llvm_unreachable("Unsupported binary op"); 2350 case Instruction::Add: 2351 Operation = &ScalarEvolution::getAddExpr; 2352 break; 2353 case Instruction::Sub: 2354 Operation = &ScalarEvolution::getMinusSCEV; 2355 break; 2356 case Instruction::Mul: 2357 Operation = &ScalarEvolution::getMulExpr; 2358 break; 2359 } 2360 2361 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2362 Signed ? &ScalarEvolution::getSignExtendExpr 2363 : &ScalarEvolution::getZeroExtendExpr; 2364 2365 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2366 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2367 auto *WideTy = 2368 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2369 2370 const SCEV *A = (this->*Extension)( 2371 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2372 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2373 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2374 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2375 if (A == B) 2376 return true; 2377 // Can we use context to prove the fact we need? 2378 if (!CtxI) 2379 return false; 2380 // We can prove that add(x, constant) doesn't wrap if isKnownPredicateAt can 2381 // guarantee that x <= max_int - constant at the given context. 2382 // TODO: Support other operations. 2383 if (BinOp != Instruction::Add) 2384 return false; 2385 auto *RHSC = dyn_cast<SCEVConstant>(RHS); 2386 // TODO: Lift this limitation. 2387 if (!RHSC) 2388 return false; 2389 APInt C = RHSC->getAPInt(); 2390 // TODO: Also lift this limitation. 2391 if (Signed && C.isNegative()) 2392 return false; 2393 unsigned NumBits = C.getBitWidth(); 2394 APInt Max = 2395 Signed ? APInt::getSignedMaxValue(NumBits) : APInt::getMaxValue(NumBits); 2396 APInt Limit = Max - C; 2397 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 2398 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); 2399 } 2400 2401 std::optional<SCEV::NoWrapFlags> 2402 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2403 const OverflowingBinaryOperator *OBO) { 2404 // It cannot be done any better. 2405 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2406 return std::nullopt; 2407 2408 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2409 2410 if (OBO->hasNoUnsignedWrap()) 2411 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2412 if (OBO->hasNoSignedWrap()) 2413 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2414 2415 bool Deduced = false; 2416 2417 if (OBO->getOpcode() != Instruction::Add && 2418 OBO->getOpcode() != Instruction::Sub && 2419 OBO->getOpcode() != Instruction::Mul) 2420 return std::nullopt; 2421 2422 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2423 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2424 2425 const Instruction *CtxI = 2426 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; 2427 if (!OBO->hasNoUnsignedWrap() && 2428 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2429 /* Signed */ false, LHS, RHS, CtxI)) { 2430 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2431 Deduced = true; 2432 } 2433 2434 if (!OBO->hasNoSignedWrap() && 2435 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2436 /* Signed */ true, LHS, RHS, CtxI)) { 2437 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2438 Deduced = true; 2439 } 2440 2441 if (Deduced) 2442 return Flags; 2443 return std::nullopt; 2444 } 2445 2446 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2447 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2448 // can't-overflow flags for the operation if possible. 2449 static SCEV::NoWrapFlags 2450 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2451 const ArrayRef<const SCEV *> Ops, 2452 SCEV::NoWrapFlags Flags) { 2453 using namespace std::placeholders; 2454 2455 using OBO = OverflowingBinaryOperator; 2456 2457 bool CanAnalyze = 2458 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2459 (void)CanAnalyze; 2460 assert(CanAnalyze && "don't call from other places!"); 2461 2462 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2463 SCEV::NoWrapFlags SignOrUnsignWrap = 2464 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2465 2466 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2467 auto IsKnownNonNegative = [&](const SCEV *S) { 2468 return SE->isKnownNonNegative(S); 2469 }; 2470 2471 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2472 Flags = 2473 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2474 2475 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2476 2477 if (SignOrUnsignWrap != SignOrUnsignMask && 2478 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2479 isa<SCEVConstant>(Ops[0])) { 2480 2481 auto Opcode = [&] { 2482 switch (Type) { 2483 case scAddExpr: 2484 return Instruction::Add; 2485 case scMulExpr: 2486 return Instruction::Mul; 2487 default: 2488 llvm_unreachable("Unexpected SCEV op."); 2489 } 2490 }(); 2491 2492 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2493 2494 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2495 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2496 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2497 Opcode, C, OBO::NoSignedWrap); 2498 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2499 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2500 } 2501 2502 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2503 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2504 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2505 Opcode, C, OBO::NoUnsignedWrap); 2506 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2507 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2508 } 2509 } 2510 2511 // <0,+,nonnegative><nw> is also nuw 2512 // TODO: Add corresponding nsw case 2513 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2514 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2515 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2516 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2517 2518 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2519 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2520 Ops.size() == 2) { 2521 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2522 if (UDiv->getOperand(1) == Ops[1]) 2523 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2524 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2525 if (UDiv->getOperand(1) == Ops[0]) 2526 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2527 } 2528 2529 return Flags; 2530 } 2531 2532 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2533 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2534 } 2535 2536 /// Get a canonical add expression, or something simpler if possible. 2537 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2538 SCEV::NoWrapFlags OrigFlags, 2539 unsigned Depth) { 2540 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2541 "only nuw or nsw allowed"); 2542 assert(!Ops.empty() && "Cannot get empty add!"); 2543 if (Ops.size() == 1) return Ops[0]; 2544 #ifndef NDEBUG 2545 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2546 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2547 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2548 "SCEVAddExpr operand types don't match!"); 2549 unsigned NumPtrs = count_if( 2550 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2551 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2552 #endif 2553 2554 // Sort by complexity, this groups all similar expression types together. 2555 GroupByComplexity(Ops, &LI, DT); 2556 2557 // If there are any constants, fold them together. 2558 unsigned Idx = 0; 2559 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2560 ++Idx; 2561 assert(Idx < Ops.size()); 2562 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2563 // We found two constants, fold them together! 2564 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2565 if (Ops.size() == 2) return Ops[0]; 2566 Ops.erase(Ops.begin()+1); // Erase the folded element 2567 LHSC = cast<SCEVConstant>(Ops[0]); 2568 } 2569 2570 // If we are left with a constant zero being added, strip it off. 2571 if (LHSC->getValue()->isZero()) { 2572 Ops.erase(Ops.begin()); 2573 --Idx; 2574 } 2575 2576 if (Ops.size() == 1) return Ops[0]; 2577 } 2578 2579 // Delay expensive flag strengthening until necessary. 2580 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2581 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2582 }; 2583 2584 // Limit recursion calls depth. 2585 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2586 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2587 2588 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2589 // Don't strengthen flags if we have no new information. 2590 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2591 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2592 Add->setNoWrapFlags(ComputeFlags(Ops)); 2593 return S; 2594 } 2595 2596 // Okay, check to see if the same value occurs in the operand list more than 2597 // once. If so, merge them together into an multiply expression. Since we 2598 // sorted the list, these values are required to be adjacent. 2599 Type *Ty = Ops[0]->getType(); 2600 bool FoundMatch = false; 2601 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2602 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2603 // Scan ahead to count how many equal operands there are. 2604 unsigned Count = 2; 2605 while (i+Count != e && Ops[i+Count] == Ops[i]) 2606 ++Count; 2607 // Merge the values into a multiply. 2608 const SCEV *Scale = getConstant(Ty, Count); 2609 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2610 if (Ops.size() == Count) 2611 return Mul; 2612 Ops[i] = Mul; 2613 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2614 --i; e -= Count - 1; 2615 FoundMatch = true; 2616 } 2617 if (FoundMatch) 2618 return getAddExpr(Ops, OrigFlags, Depth + 1); 2619 2620 // Check for truncates. If all the operands are truncated from the same 2621 // type, see if factoring out the truncate would permit the result to be 2622 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2623 // if the contents of the resulting outer trunc fold to something simple. 2624 auto FindTruncSrcType = [&]() -> Type * { 2625 // We're ultimately looking to fold an addrec of truncs and muls of only 2626 // constants and truncs, so if we find any other types of SCEV 2627 // as operands of the addrec then we bail and return nullptr here. 2628 // Otherwise, we return the type of the operand of a trunc that we find. 2629 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2630 return T->getOperand()->getType(); 2631 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2632 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2633 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2634 return T->getOperand()->getType(); 2635 } 2636 return nullptr; 2637 }; 2638 if (auto *SrcType = FindTruncSrcType()) { 2639 SmallVector<const SCEV *, 8> LargeOps; 2640 bool Ok = true; 2641 // Check all the operands to see if they can be represented in the 2642 // source type of the truncate. 2643 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2644 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2645 if (T->getOperand()->getType() != SrcType) { 2646 Ok = false; 2647 break; 2648 } 2649 LargeOps.push_back(T->getOperand()); 2650 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2651 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2652 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2653 SmallVector<const SCEV *, 8> LargeMulOps; 2654 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2655 if (const SCEVTruncateExpr *T = 2656 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2657 if (T->getOperand()->getType() != SrcType) { 2658 Ok = false; 2659 break; 2660 } 2661 LargeMulOps.push_back(T->getOperand()); 2662 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2663 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2664 } else { 2665 Ok = false; 2666 break; 2667 } 2668 } 2669 if (Ok) 2670 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2671 } else { 2672 Ok = false; 2673 break; 2674 } 2675 } 2676 if (Ok) { 2677 // Evaluate the expression in the larger type. 2678 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2679 // If it folds to something simple, use it. Otherwise, don't. 2680 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2681 return getTruncateExpr(Fold, Ty); 2682 } 2683 } 2684 2685 if (Ops.size() == 2) { 2686 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2687 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2688 // C1). 2689 const SCEV *A = Ops[0]; 2690 const SCEV *B = Ops[1]; 2691 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2692 auto *C = dyn_cast<SCEVConstant>(A); 2693 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2694 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2695 auto C2 = C->getAPInt(); 2696 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2697 2698 APInt ConstAdd = C1 + C2; 2699 auto AddFlags = AddExpr->getNoWrapFlags(); 2700 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2701 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2702 ConstAdd.ule(C1)) { 2703 PreservedFlags = 2704 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2705 } 2706 2707 // Adding a constant with the same sign and small magnitude is NSW, if the 2708 // original AddExpr was NSW. 2709 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2710 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2711 ConstAdd.abs().ule(C1.abs())) { 2712 PreservedFlags = 2713 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2714 } 2715 2716 if (PreservedFlags != SCEV::FlagAnyWrap) { 2717 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2718 NewOps[0] = getConstant(ConstAdd); 2719 return getAddExpr(NewOps, PreservedFlags); 2720 } 2721 } 2722 } 2723 2724 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2725 if (Ops.size() == 2) { 2726 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2727 if (Mul && Mul->getNumOperands() == 2 && 2728 Mul->getOperand(0)->isAllOnesValue()) { 2729 const SCEV *X; 2730 const SCEV *Y; 2731 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2732 return getMulExpr(Y, getUDivExpr(X, Y)); 2733 } 2734 } 2735 } 2736 2737 // Skip past any other cast SCEVs. 2738 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2739 ++Idx; 2740 2741 // If there are add operands they would be next. 2742 if (Idx < Ops.size()) { 2743 bool DeletedAdd = false; 2744 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2745 // common NUW flag for expression after inlining. Other flags cannot be 2746 // preserved, because they may depend on the original order of operations. 2747 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2748 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2749 if (Ops.size() > AddOpsInlineThreshold || 2750 Add->getNumOperands() > AddOpsInlineThreshold) 2751 break; 2752 // If we have an add, expand the add operands onto the end of the operands 2753 // list. 2754 Ops.erase(Ops.begin()+Idx); 2755 append_range(Ops, Add->operands()); 2756 DeletedAdd = true; 2757 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2758 } 2759 2760 // If we deleted at least one add, we added operands to the end of the list, 2761 // and they are not necessarily sorted. Recurse to resort and resimplify 2762 // any operands we just acquired. 2763 if (DeletedAdd) 2764 return getAddExpr(Ops, CommonFlags, Depth + 1); 2765 } 2766 2767 // Skip over the add expression until we get to a multiply. 2768 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2769 ++Idx; 2770 2771 // Check to see if there are any folding opportunities present with 2772 // operands multiplied by constant values. 2773 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2774 uint64_t BitWidth = getTypeSizeInBits(Ty); 2775 DenseMap<const SCEV *, APInt> M; 2776 SmallVector<const SCEV *, 8> NewOps; 2777 APInt AccumulatedConstant(BitWidth, 0); 2778 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2779 Ops, APInt(BitWidth, 1), *this)) { 2780 struct APIntCompare { 2781 bool operator()(const APInt &LHS, const APInt &RHS) const { 2782 return LHS.ult(RHS); 2783 } 2784 }; 2785 2786 // Some interesting folding opportunity is present, so its worthwhile to 2787 // re-generate the operands list. Group the operands by constant scale, 2788 // to avoid multiplying by the same constant scale multiple times. 2789 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2790 for (const SCEV *NewOp : NewOps) 2791 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2792 // Re-generate the operands list. 2793 Ops.clear(); 2794 if (AccumulatedConstant != 0) 2795 Ops.push_back(getConstant(AccumulatedConstant)); 2796 for (auto &MulOp : MulOpLists) { 2797 if (MulOp.first == 1) { 2798 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2799 } else if (MulOp.first != 0) { 2800 Ops.push_back(getMulExpr( 2801 getConstant(MulOp.first), 2802 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2803 SCEV::FlagAnyWrap, Depth + 1)); 2804 } 2805 } 2806 if (Ops.empty()) 2807 return getZero(Ty); 2808 if (Ops.size() == 1) 2809 return Ops[0]; 2810 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2811 } 2812 } 2813 2814 // If we are adding something to a multiply expression, make sure the 2815 // something is not already an operand of the multiply. If so, merge it into 2816 // the multiply. 2817 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2818 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2819 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2820 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2821 if (isa<SCEVConstant>(MulOpSCEV)) 2822 continue; 2823 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2824 if (MulOpSCEV == Ops[AddOp]) { 2825 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2826 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2827 if (Mul->getNumOperands() != 2) { 2828 // If the multiply has more than two operands, we must get the 2829 // Y*Z term. 2830 SmallVector<const SCEV *, 4> MulOps( 2831 Mul->operands().take_front(MulOp)); 2832 append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); 2833 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2834 } 2835 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2836 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2837 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2838 SCEV::FlagAnyWrap, Depth + 1); 2839 if (Ops.size() == 2) return OuterMul; 2840 if (AddOp < Idx) { 2841 Ops.erase(Ops.begin()+AddOp); 2842 Ops.erase(Ops.begin()+Idx-1); 2843 } else { 2844 Ops.erase(Ops.begin()+Idx); 2845 Ops.erase(Ops.begin()+AddOp-1); 2846 } 2847 Ops.push_back(OuterMul); 2848 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2849 } 2850 2851 // Check this multiply against other multiplies being added together. 2852 for (unsigned OtherMulIdx = Idx+1; 2853 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2854 ++OtherMulIdx) { 2855 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2856 // If MulOp occurs in OtherMul, we can fold the two multiplies 2857 // together. 2858 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2859 OMulOp != e; ++OMulOp) 2860 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2861 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2862 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2863 if (Mul->getNumOperands() != 2) { 2864 SmallVector<const SCEV *, 4> MulOps( 2865 Mul->operands().take_front(MulOp)); 2866 append_range(MulOps, Mul->operands().drop_front(MulOp+1)); 2867 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2868 } 2869 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2870 if (OtherMul->getNumOperands() != 2) { 2871 SmallVector<const SCEV *, 4> MulOps( 2872 OtherMul->operands().take_front(OMulOp)); 2873 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); 2874 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2875 } 2876 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2877 const SCEV *InnerMulSum = 2878 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2879 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2880 SCEV::FlagAnyWrap, Depth + 1); 2881 if (Ops.size() == 2) return OuterMul; 2882 Ops.erase(Ops.begin()+Idx); 2883 Ops.erase(Ops.begin()+OtherMulIdx-1); 2884 Ops.push_back(OuterMul); 2885 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2886 } 2887 } 2888 } 2889 } 2890 2891 // If there are any add recurrences in the operands list, see if any other 2892 // added values are loop invariant. If so, we can fold them into the 2893 // recurrence. 2894 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2895 ++Idx; 2896 2897 // Scan over all recurrences, trying to fold loop invariants into them. 2898 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2899 // Scan all of the other operands to this add and add them to the vector if 2900 // they are loop invariant w.r.t. the recurrence. 2901 SmallVector<const SCEV *, 8> LIOps; 2902 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2903 const Loop *AddRecLoop = AddRec->getLoop(); 2904 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2905 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2906 LIOps.push_back(Ops[i]); 2907 Ops.erase(Ops.begin()+i); 2908 --i; --e; 2909 } 2910 2911 // If we found some loop invariants, fold them into the recurrence. 2912 if (!LIOps.empty()) { 2913 // Compute nowrap flags for the addition of the loop-invariant ops and 2914 // the addrec. Temporarily push it as an operand for that purpose. These 2915 // flags are valid in the scope of the addrec only. 2916 LIOps.push_back(AddRec); 2917 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2918 LIOps.pop_back(); 2919 2920 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2921 LIOps.push_back(AddRec->getStart()); 2922 2923 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2924 2925 // It is not in general safe to propagate flags valid on an add within 2926 // the addrec scope to one outside it. We must prove that the inner 2927 // scope is guaranteed to execute if the outer one does to be able to 2928 // safely propagate. We know the program is undefined if poison is 2929 // produced on the inner scoped addrec. We also know that *for this use* 2930 // the outer scoped add can't overflow (because of the flags we just 2931 // computed for the inner scoped add) without the program being undefined. 2932 // Proving that entry to the outer scope neccesitates entry to the inner 2933 // scope, thus proves the program undefined if the flags would be violated 2934 // in the outer scope. 2935 SCEV::NoWrapFlags AddFlags = Flags; 2936 if (AddFlags != SCEV::FlagAnyWrap) { 2937 auto *DefI = getDefiningScopeBound(LIOps); 2938 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2939 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2940 AddFlags = SCEV::FlagAnyWrap; 2941 } 2942 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2943 2944 // Build the new addrec. Propagate the NUW and NSW flags if both the 2945 // outer add and the inner addrec are guaranteed to have no overflow. 2946 // Always propagate NW. 2947 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2948 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2949 2950 // If all of the other operands were loop invariant, we are done. 2951 if (Ops.size() == 1) return NewRec; 2952 2953 // Otherwise, add the folded AddRec by the non-invariant parts. 2954 for (unsigned i = 0;; ++i) 2955 if (Ops[i] == AddRec) { 2956 Ops[i] = NewRec; 2957 break; 2958 } 2959 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2960 } 2961 2962 // Okay, if there weren't any loop invariants to be folded, check to see if 2963 // there are multiple AddRec's with the same loop induction variable being 2964 // added together. If so, we can fold them. 2965 for (unsigned OtherIdx = Idx+1; 2966 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2967 ++OtherIdx) { 2968 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2969 // so that the 1st found AddRecExpr is dominated by all others. 2970 assert(DT.dominates( 2971 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2972 AddRec->getLoop()->getHeader()) && 2973 "AddRecExprs are not sorted in reverse dominance order?"); 2974 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2975 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2976 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2977 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2978 ++OtherIdx) { 2979 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2980 if (OtherAddRec->getLoop() == AddRecLoop) { 2981 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2982 i != e; ++i) { 2983 if (i >= AddRecOps.size()) { 2984 append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); 2985 break; 2986 } 2987 SmallVector<const SCEV *, 2> TwoOps = { 2988 AddRecOps[i], OtherAddRec->getOperand(i)}; 2989 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2990 } 2991 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2992 } 2993 } 2994 // Step size has changed, so we cannot guarantee no self-wraparound. 2995 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2996 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2997 } 2998 } 2999 3000 // Otherwise couldn't fold anything into this recurrence. Move onto the 3001 // next one. 3002 } 3003 3004 // Okay, it looks like we really DO need an add expr. Check to see if we 3005 // already have one, otherwise create a new one. 3006 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 3007 } 3008 3009 const SCEV * 3010 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 3011 SCEV::NoWrapFlags Flags) { 3012 FoldingSetNodeID ID; 3013 ID.AddInteger(scAddExpr); 3014 for (const SCEV *Op : Ops) 3015 ID.AddPointer(Op); 3016 void *IP = nullptr; 3017 SCEVAddExpr *S = 3018 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3019 if (!S) { 3020 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3021 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3022 S = new (SCEVAllocator) 3023 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 3024 UniqueSCEVs.InsertNode(S, IP); 3025 registerUser(S, Ops); 3026 } 3027 S->setNoWrapFlags(Flags); 3028 return S; 3029 } 3030 3031 const SCEV * 3032 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 3033 const Loop *L, SCEV::NoWrapFlags Flags) { 3034 FoldingSetNodeID ID; 3035 ID.AddInteger(scAddRecExpr); 3036 for (const SCEV *Op : Ops) 3037 ID.AddPointer(Op); 3038 ID.AddPointer(L); 3039 void *IP = nullptr; 3040 SCEVAddRecExpr *S = 3041 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3042 if (!S) { 3043 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3044 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3045 S = new (SCEVAllocator) 3046 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 3047 UniqueSCEVs.InsertNode(S, IP); 3048 LoopUsers[L].push_back(S); 3049 registerUser(S, Ops); 3050 } 3051 setNoWrapFlags(S, Flags); 3052 return S; 3053 } 3054 3055 const SCEV * 3056 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 3057 SCEV::NoWrapFlags Flags) { 3058 FoldingSetNodeID ID; 3059 ID.AddInteger(scMulExpr); 3060 for (const SCEV *Op : Ops) 3061 ID.AddPointer(Op); 3062 void *IP = nullptr; 3063 SCEVMulExpr *S = 3064 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3065 if (!S) { 3066 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3067 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3068 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 3069 O, Ops.size()); 3070 UniqueSCEVs.InsertNode(S, IP); 3071 registerUser(S, Ops); 3072 } 3073 S->setNoWrapFlags(Flags); 3074 return S; 3075 } 3076 3077 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 3078 uint64_t k = i*j; 3079 if (j > 1 && k / j != i) Overflow = true; 3080 return k; 3081 } 3082 3083 /// Compute the result of "n choose k", the binomial coefficient. If an 3084 /// intermediate computation overflows, Overflow will be set and the return will 3085 /// be garbage. Overflow is not cleared on absence of overflow. 3086 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3087 // We use the multiplicative formula: 3088 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3089 // At each iteration, we take the n-th term of the numeral and divide by the 3090 // (k-n)th term of the denominator. This division will always produce an 3091 // integral result, and helps reduce the chance of overflow in the 3092 // intermediate computations. However, we can still overflow even when the 3093 // final result would fit. 3094 3095 if (n == 0 || n == k) return 1; 3096 if (k > n) return 0; 3097 3098 if (k > n/2) 3099 k = n-k; 3100 3101 uint64_t r = 1; 3102 for (uint64_t i = 1; i <= k; ++i) { 3103 r = umul_ov(r, n-(i-1), Overflow); 3104 r /= i; 3105 } 3106 return r; 3107 } 3108 3109 /// Determine if any of the operands in this SCEV are a constant or if 3110 /// any of the add or multiply expressions in this SCEV contain a constant. 3111 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3112 struct FindConstantInAddMulChain { 3113 bool FoundConstant = false; 3114 3115 bool follow(const SCEV *S) { 3116 FoundConstant |= isa<SCEVConstant>(S); 3117 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3118 } 3119 3120 bool isDone() const { 3121 return FoundConstant; 3122 } 3123 }; 3124 3125 FindConstantInAddMulChain F; 3126 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3127 ST.visitAll(StartExpr); 3128 return F.FoundConstant; 3129 } 3130 3131 /// Get a canonical multiply expression, or something simpler if possible. 3132 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3133 SCEV::NoWrapFlags OrigFlags, 3134 unsigned Depth) { 3135 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3136 "only nuw or nsw allowed"); 3137 assert(!Ops.empty() && "Cannot get empty mul!"); 3138 if (Ops.size() == 1) return Ops[0]; 3139 #ifndef NDEBUG 3140 Type *ETy = Ops[0]->getType(); 3141 assert(!ETy->isPointerTy()); 3142 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3143 assert(Ops[i]->getType() == ETy && 3144 "SCEVMulExpr operand types don't match!"); 3145 #endif 3146 3147 // Sort by complexity, this groups all similar expression types together. 3148 GroupByComplexity(Ops, &LI, DT); 3149 3150 // If there are any constants, fold them together. 3151 unsigned Idx = 0; 3152 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3153 ++Idx; 3154 assert(Idx < Ops.size()); 3155 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3156 // We found two constants, fold them together! 3157 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3158 if (Ops.size() == 2) return Ops[0]; 3159 Ops.erase(Ops.begin()+1); // Erase the folded element 3160 LHSC = cast<SCEVConstant>(Ops[0]); 3161 } 3162 3163 // If we have a multiply of zero, it will always be zero. 3164 if (LHSC->getValue()->isZero()) 3165 return LHSC; 3166 3167 // If we are left with a constant one being multiplied, strip it off. 3168 if (LHSC->getValue()->isOne()) { 3169 Ops.erase(Ops.begin()); 3170 --Idx; 3171 } 3172 3173 if (Ops.size() == 1) 3174 return Ops[0]; 3175 } 3176 3177 // Delay expensive flag strengthening until necessary. 3178 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3179 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3180 }; 3181 3182 // Limit recursion calls depth. 3183 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3184 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3185 3186 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3187 // Don't strengthen flags if we have no new information. 3188 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3189 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3190 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3191 return S; 3192 } 3193 3194 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3195 if (Ops.size() == 2) { 3196 // C1*(C2+V) -> C1*C2 + C1*V 3197 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3198 // If any of Add's ops are Adds or Muls with a constant, apply this 3199 // transformation as well. 3200 // 3201 // TODO: There are some cases where this transformation is not 3202 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3203 // this transformation should be narrowed down. 3204 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3205 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3206 SCEV::FlagAnyWrap, Depth + 1); 3207 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3208 SCEV::FlagAnyWrap, Depth + 1); 3209 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3210 } 3211 3212 if (Ops[0]->isAllOnesValue()) { 3213 // If we have a mul by -1 of an add, try distributing the -1 among the 3214 // add operands. 3215 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3216 SmallVector<const SCEV *, 4> NewOps; 3217 bool AnyFolded = false; 3218 for (const SCEV *AddOp : Add->operands()) { 3219 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3220 Depth + 1); 3221 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3222 NewOps.push_back(Mul); 3223 } 3224 if (AnyFolded) 3225 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3226 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3227 // Negation preserves a recurrence's no self-wrap property. 3228 SmallVector<const SCEV *, 4> Operands; 3229 for (const SCEV *AddRecOp : AddRec->operands()) 3230 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3231 Depth + 1)); 3232 3233 return getAddRecExpr(Operands, AddRec->getLoop(), 3234 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3235 } 3236 } 3237 } 3238 } 3239 3240 // Skip over the add expression until we get to a multiply. 3241 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3242 ++Idx; 3243 3244 // If there are mul operands inline them all into this expression. 3245 if (Idx < Ops.size()) { 3246 bool DeletedMul = false; 3247 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3248 if (Ops.size() > MulOpsInlineThreshold) 3249 break; 3250 // If we have an mul, expand the mul operands onto the end of the 3251 // operands list. 3252 Ops.erase(Ops.begin()+Idx); 3253 append_range(Ops, Mul->operands()); 3254 DeletedMul = true; 3255 } 3256 3257 // If we deleted at least one mul, we added operands to the end of the 3258 // list, and they are not necessarily sorted. Recurse to resort and 3259 // resimplify any operands we just acquired. 3260 if (DeletedMul) 3261 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3262 } 3263 3264 // If there are any add recurrences in the operands list, see if any other 3265 // added values are loop invariant. If so, we can fold them into the 3266 // recurrence. 3267 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3268 ++Idx; 3269 3270 // Scan over all recurrences, trying to fold loop invariants into them. 3271 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3272 // Scan all of the other operands to this mul and add them to the vector 3273 // if they are loop invariant w.r.t. the recurrence. 3274 SmallVector<const SCEV *, 8> LIOps; 3275 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3276 const Loop *AddRecLoop = AddRec->getLoop(); 3277 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3278 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3279 LIOps.push_back(Ops[i]); 3280 Ops.erase(Ops.begin()+i); 3281 --i; --e; 3282 } 3283 3284 // If we found some loop invariants, fold them into the recurrence. 3285 if (!LIOps.empty()) { 3286 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3287 SmallVector<const SCEV *, 4> NewOps; 3288 NewOps.reserve(AddRec->getNumOperands()); 3289 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3290 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3291 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3292 SCEV::FlagAnyWrap, Depth + 1)); 3293 3294 // Build the new addrec. Propagate the NUW and NSW flags if both the 3295 // outer mul and the inner addrec are guaranteed to have no overflow. 3296 // 3297 // No self-wrap cannot be guaranteed after changing the step size, but 3298 // will be inferred if either NUW or NSW is true. 3299 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3300 const SCEV *NewRec = getAddRecExpr( 3301 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3302 3303 // If all of the other operands were loop invariant, we are done. 3304 if (Ops.size() == 1) return NewRec; 3305 3306 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3307 for (unsigned i = 0;; ++i) 3308 if (Ops[i] == AddRec) { 3309 Ops[i] = NewRec; 3310 break; 3311 } 3312 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3313 } 3314 3315 // Okay, if there weren't any loop invariants to be folded, check to see 3316 // if there are multiple AddRec's with the same loop induction variable 3317 // being multiplied together. If so, we can fold them. 3318 3319 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3320 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3321 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3322 // ]]],+,...up to x=2n}. 3323 // Note that the arguments to choose() are always integers with values 3324 // known at compile time, never SCEV objects. 3325 // 3326 // The implementation avoids pointless extra computations when the two 3327 // addrec's are of different length (mathematically, it's equivalent to 3328 // an infinite stream of zeros on the right). 3329 bool OpsModified = false; 3330 for (unsigned OtherIdx = Idx+1; 3331 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3332 ++OtherIdx) { 3333 const SCEVAddRecExpr *OtherAddRec = 3334 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3335 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3336 continue; 3337 3338 // Limit max number of arguments to avoid creation of unreasonably big 3339 // SCEVAddRecs with very complex operands. 3340 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3341 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3342 continue; 3343 3344 bool Overflow = false; 3345 Type *Ty = AddRec->getType(); 3346 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3347 SmallVector<const SCEV*, 7> AddRecOps; 3348 for (int x = 0, xe = AddRec->getNumOperands() + 3349 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3350 SmallVector <const SCEV *, 7> SumOps; 3351 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3352 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3353 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3354 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3355 z < ze && !Overflow; ++z) { 3356 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3357 uint64_t Coeff; 3358 if (LargerThan64Bits) 3359 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3360 else 3361 Coeff = Coeff1*Coeff2; 3362 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3363 const SCEV *Term1 = AddRec->getOperand(y-z); 3364 const SCEV *Term2 = OtherAddRec->getOperand(z); 3365 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3366 SCEV::FlagAnyWrap, Depth + 1)); 3367 } 3368 } 3369 if (SumOps.empty()) 3370 SumOps.push_back(getZero(Ty)); 3371 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3372 } 3373 if (!Overflow) { 3374 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3375 SCEV::FlagAnyWrap); 3376 if (Ops.size() == 2) return NewAddRec; 3377 Ops[Idx] = NewAddRec; 3378 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3379 OpsModified = true; 3380 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3381 if (!AddRec) 3382 break; 3383 } 3384 } 3385 if (OpsModified) 3386 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3387 3388 // Otherwise couldn't fold anything into this recurrence. Move onto the 3389 // next one. 3390 } 3391 3392 // Okay, it looks like we really DO need an mul expr. Check to see if we 3393 // already have one, otherwise create a new one. 3394 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3395 } 3396 3397 /// Represents an unsigned remainder expression based on unsigned division. 3398 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3399 const SCEV *RHS) { 3400 assert(getEffectiveSCEVType(LHS->getType()) == 3401 getEffectiveSCEVType(RHS->getType()) && 3402 "SCEVURemExpr operand types don't match!"); 3403 3404 // Short-circuit easy cases 3405 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3406 // If constant is one, the result is trivial 3407 if (RHSC->getValue()->isOne()) 3408 return getZero(LHS->getType()); // X urem 1 --> 0 3409 3410 // If constant is a power of two, fold into a zext(trunc(LHS)). 3411 if (RHSC->getAPInt().isPowerOf2()) { 3412 Type *FullTy = LHS->getType(); 3413 Type *TruncTy = 3414 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3415 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3416 } 3417 } 3418 3419 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3420 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3421 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3422 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3423 } 3424 3425 /// Get a canonical unsigned division expression, or something simpler if 3426 /// possible. 3427 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3428 const SCEV *RHS) { 3429 assert(!LHS->getType()->isPointerTy() && 3430 "SCEVUDivExpr operand can't be pointer!"); 3431 assert(LHS->getType() == RHS->getType() && 3432 "SCEVUDivExpr operand types don't match!"); 3433 3434 FoldingSetNodeID ID; 3435 ID.AddInteger(scUDivExpr); 3436 ID.AddPointer(LHS); 3437 ID.AddPointer(RHS); 3438 void *IP = nullptr; 3439 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3440 return S; 3441 3442 // 0 udiv Y == 0 3443 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3444 if (LHSC->getValue()->isZero()) 3445 return LHS; 3446 3447 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3448 if (RHSC->getValue()->isOne()) 3449 return LHS; // X udiv 1 --> x 3450 // If the denominator is zero, the result of the udiv is undefined. Don't 3451 // try to analyze it, because the resolution chosen here may differ from 3452 // the resolution chosen in other parts of the compiler. 3453 if (!RHSC->getValue()->isZero()) { 3454 // Determine if the division can be folded into the operands of 3455 // its operands. 3456 // TODO: Generalize this to non-constants by using known-bits information. 3457 Type *Ty = LHS->getType(); 3458 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3459 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3460 // For non-power-of-two values, effectively round the value up to the 3461 // nearest power of two. 3462 if (!RHSC->getAPInt().isPowerOf2()) 3463 ++MaxShiftAmt; 3464 IntegerType *ExtTy = 3465 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3466 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3467 if (const SCEVConstant *Step = 3468 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3469 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3470 const APInt &StepInt = Step->getAPInt(); 3471 const APInt &DivInt = RHSC->getAPInt(); 3472 if (!StepInt.urem(DivInt) && 3473 getZeroExtendExpr(AR, ExtTy) == 3474 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3475 getZeroExtendExpr(Step, ExtTy), 3476 AR->getLoop(), SCEV::FlagAnyWrap)) { 3477 SmallVector<const SCEV *, 4> Operands; 3478 for (const SCEV *Op : AR->operands()) 3479 Operands.push_back(getUDivExpr(Op, RHS)); 3480 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3481 } 3482 /// Get a canonical UDivExpr for a recurrence. 3483 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3484 // We can currently only fold X%N if X is constant. 3485 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3486 if (StartC && !DivInt.urem(StepInt) && 3487 getZeroExtendExpr(AR, ExtTy) == 3488 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3489 getZeroExtendExpr(Step, ExtTy), 3490 AR->getLoop(), SCEV::FlagAnyWrap)) { 3491 const APInt &StartInt = StartC->getAPInt(); 3492 const APInt &StartRem = StartInt.urem(StepInt); 3493 if (StartRem != 0) { 3494 const SCEV *NewLHS = 3495 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3496 AR->getLoop(), SCEV::FlagNW); 3497 if (LHS != NewLHS) { 3498 LHS = NewLHS; 3499 3500 // Reset the ID to include the new LHS, and check if it is 3501 // already cached. 3502 ID.clear(); 3503 ID.AddInteger(scUDivExpr); 3504 ID.AddPointer(LHS); 3505 ID.AddPointer(RHS); 3506 IP = nullptr; 3507 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3508 return S; 3509 } 3510 } 3511 } 3512 } 3513 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3514 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3515 SmallVector<const SCEV *, 4> Operands; 3516 for (const SCEV *Op : M->operands()) 3517 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3518 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3519 // Find an operand that's safely divisible. 3520 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3521 const SCEV *Op = M->getOperand(i); 3522 const SCEV *Div = getUDivExpr(Op, RHSC); 3523 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3524 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3525 Operands[i] = Div; 3526 return getMulExpr(Operands); 3527 } 3528 } 3529 } 3530 3531 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3532 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3533 if (auto *DivisorConstant = 3534 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3535 bool Overflow = false; 3536 APInt NewRHS = 3537 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3538 if (Overflow) { 3539 return getConstant(RHSC->getType(), 0, false); 3540 } 3541 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3542 } 3543 } 3544 3545 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3546 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3547 SmallVector<const SCEV *, 4> Operands; 3548 for (const SCEV *Op : A->operands()) 3549 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3550 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3551 Operands.clear(); 3552 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3553 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3554 if (isa<SCEVUDivExpr>(Op) || 3555 getMulExpr(Op, RHS) != A->getOperand(i)) 3556 break; 3557 Operands.push_back(Op); 3558 } 3559 if (Operands.size() == A->getNumOperands()) 3560 return getAddExpr(Operands); 3561 } 3562 } 3563 3564 // Fold if both operands are constant. 3565 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3566 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3567 } 3568 } 3569 3570 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3571 // changes). Make sure we get a new one. 3572 IP = nullptr; 3573 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3574 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3575 LHS, RHS); 3576 UniqueSCEVs.InsertNode(S, IP); 3577 registerUser(S, {LHS, RHS}); 3578 return S; 3579 } 3580 3581 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3582 APInt A = C1->getAPInt().abs(); 3583 APInt B = C2->getAPInt().abs(); 3584 uint32_t ABW = A.getBitWidth(); 3585 uint32_t BBW = B.getBitWidth(); 3586 3587 if (ABW > BBW) 3588 B = B.zext(ABW); 3589 else if (ABW < BBW) 3590 A = A.zext(BBW); 3591 3592 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3593 } 3594 3595 /// Get a canonical unsigned division expression, or something simpler if 3596 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3597 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3598 /// it's not exact because the udiv may be clearing bits. 3599 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3600 const SCEV *RHS) { 3601 // TODO: we could try to find factors in all sorts of things, but for now we 3602 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3603 // end of this file for inspiration. 3604 3605 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3606 if (!Mul || !Mul->hasNoUnsignedWrap()) 3607 return getUDivExpr(LHS, RHS); 3608 3609 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3610 // If the mulexpr multiplies by a constant, then that constant must be the 3611 // first element of the mulexpr. 3612 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3613 if (LHSCst == RHSCst) { 3614 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3615 return getMulExpr(Operands); 3616 } 3617 3618 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3619 // that there's a factor provided by one of the other terms. We need to 3620 // check. 3621 APInt Factor = gcd(LHSCst, RHSCst); 3622 if (!Factor.isIntN(1)) { 3623 LHSCst = 3624 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3625 RHSCst = 3626 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3627 SmallVector<const SCEV *, 2> Operands; 3628 Operands.push_back(LHSCst); 3629 append_range(Operands, Mul->operands().drop_front()); 3630 LHS = getMulExpr(Operands); 3631 RHS = RHSCst; 3632 Mul = dyn_cast<SCEVMulExpr>(LHS); 3633 if (!Mul) 3634 return getUDivExactExpr(LHS, RHS); 3635 } 3636 } 3637 } 3638 3639 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3640 if (Mul->getOperand(i) == RHS) { 3641 SmallVector<const SCEV *, 2> Operands; 3642 append_range(Operands, Mul->operands().take_front(i)); 3643 append_range(Operands, Mul->operands().drop_front(i + 1)); 3644 return getMulExpr(Operands); 3645 } 3646 } 3647 3648 return getUDivExpr(LHS, RHS); 3649 } 3650 3651 /// Get an add recurrence expression for the specified loop. Simplify the 3652 /// expression as much as possible. 3653 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3654 const Loop *L, 3655 SCEV::NoWrapFlags Flags) { 3656 SmallVector<const SCEV *, 4> Operands; 3657 Operands.push_back(Start); 3658 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3659 if (StepChrec->getLoop() == L) { 3660 append_range(Operands, StepChrec->operands()); 3661 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3662 } 3663 3664 Operands.push_back(Step); 3665 return getAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 /// Get an add recurrence expression for the specified loop. Simplify the 3669 /// expression as much as possible. 3670 const SCEV * 3671 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3672 const Loop *L, SCEV::NoWrapFlags Flags) { 3673 if (Operands.size() == 1) return Operands[0]; 3674 #ifndef NDEBUG 3675 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3676 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3677 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3678 "SCEVAddRecExpr operand types don't match!"); 3679 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3680 } 3681 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3682 assert(isLoopInvariant(Operands[i], L) && 3683 "SCEVAddRecExpr operand is not loop-invariant!"); 3684 #endif 3685 3686 if (Operands.back()->isZero()) { 3687 Operands.pop_back(); 3688 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3689 } 3690 3691 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3692 // use that information to infer NUW and NSW flags. However, computing a 3693 // BE count requires calling getAddRecExpr, so we may not yet have a 3694 // meaningful BE count at this point (and if we don't, we'd be stuck 3695 // with a SCEVCouldNotCompute as the cached BE count). 3696 3697 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3698 3699 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3700 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3701 const Loop *NestedLoop = NestedAR->getLoop(); 3702 if (L->contains(NestedLoop) 3703 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3704 : (!NestedLoop->contains(L) && 3705 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3706 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3707 Operands[0] = NestedAR->getStart(); 3708 // AddRecs require their operands be loop-invariant with respect to their 3709 // loops. Don't perform this transformation if it would break this 3710 // requirement. 3711 bool AllInvariant = all_of( 3712 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3713 3714 if (AllInvariant) { 3715 // Create a recurrence for the outer loop with the same step size. 3716 // 3717 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3718 // inner recurrence has the same property. 3719 SCEV::NoWrapFlags OuterFlags = 3720 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3721 3722 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3723 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3724 return isLoopInvariant(Op, NestedLoop); 3725 }); 3726 3727 if (AllInvariant) { 3728 // Ok, both add recurrences are valid after the transformation. 3729 // 3730 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3731 // the outer recurrence has the same property. 3732 SCEV::NoWrapFlags InnerFlags = 3733 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3734 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3735 } 3736 } 3737 // Reset Operands to its original state. 3738 Operands[0] = NestedAR; 3739 } 3740 } 3741 3742 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3743 // already have one, otherwise create a new one. 3744 return getOrCreateAddRecExpr(Operands, L, Flags); 3745 } 3746 3747 const SCEV * 3748 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3749 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3750 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3751 // getSCEV(Base)->getType() has the same address space as Base->getType() 3752 // because SCEV::getType() preserves the address space. 3753 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3754 const bool AssumeInBoundsFlags = [&]() { 3755 if (!GEP->isInBounds()) 3756 return false; 3757 3758 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3759 // but to do that, we have to ensure that said flag is valid in the entire 3760 // defined scope of the SCEV. 3761 auto *GEPI = dyn_cast<Instruction>(GEP); 3762 // TODO: non-instructions have global scope. We might be able to prove 3763 // some global scope cases 3764 return GEPI && isSCEVExprNeverPoison(GEPI); 3765 }(); 3766 3767 SCEV::NoWrapFlags OffsetWrap = 3768 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3769 3770 Type *CurTy = GEP->getType(); 3771 bool FirstIter = true; 3772 SmallVector<const SCEV *, 4> Offsets; 3773 for (const SCEV *IndexExpr : IndexExprs) { 3774 // Compute the (potentially symbolic) offset in bytes for this index. 3775 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3776 // For a struct, add the member offset. 3777 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3778 unsigned FieldNo = Index->getZExtValue(); 3779 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3780 Offsets.push_back(FieldOffset); 3781 3782 // Update CurTy to the type of the field at Index. 3783 CurTy = STy->getTypeAtIndex(Index); 3784 } else { 3785 // Update CurTy to its element type. 3786 if (FirstIter) { 3787 assert(isa<PointerType>(CurTy) && 3788 "The first index of a GEP indexes a pointer"); 3789 CurTy = GEP->getSourceElementType(); 3790 FirstIter = false; 3791 } else { 3792 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3793 } 3794 // For an array, add the element offset, explicitly scaled. 3795 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3796 // Getelementptr indices are signed. 3797 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3798 3799 // Multiply the index by the element size to compute the element offset. 3800 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3801 Offsets.push_back(LocalOffset); 3802 } 3803 } 3804 3805 // Handle degenerate case of GEP without offsets. 3806 if (Offsets.empty()) 3807 return BaseExpr; 3808 3809 // Add the offsets together, assuming nsw if inbounds. 3810 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3811 // Add the base address and the offset. We cannot use the nsw flag, as the 3812 // base address is unsigned. However, if we know that the offset is 3813 // non-negative, we can use nuw. 3814 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3815 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3816 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3817 assert(BaseExpr->getType() == GEPExpr->getType() && 3818 "GEP should not change type mid-flight."); 3819 return GEPExpr; 3820 } 3821 3822 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3823 ArrayRef<const SCEV *> Ops) { 3824 FoldingSetNodeID ID; 3825 ID.AddInteger(SCEVType); 3826 for (const SCEV *Op : Ops) 3827 ID.AddPointer(Op); 3828 void *IP = nullptr; 3829 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3830 } 3831 3832 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3833 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3834 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3835 } 3836 3837 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3838 SmallVectorImpl<const SCEV *> &Ops) { 3839 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3840 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3841 if (Ops.size() == 1) return Ops[0]; 3842 #ifndef NDEBUG 3843 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3844 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3845 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3846 "Operand types don't match!"); 3847 assert(Ops[0]->getType()->isPointerTy() == 3848 Ops[i]->getType()->isPointerTy() && 3849 "min/max should be consistently pointerish"); 3850 } 3851 #endif 3852 3853 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3854 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3855 3856 // Sort by complexity, this groups all similar expression types together. 3857 GroupByComplexity(Ops, &LI, DT); 3858 3859 // Check if we have created the same expression before. 3860 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3861 return S; 3862 } 3863 3864 // If there are any constants, fold them together. 3865 unsigned Idx = 0; 3866 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3867 ++Idx; 3868 assert(Idx < Ops.size()); 3869 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3870 if (Kind == scSMaxExpr) 3871 return APIntOps::smax(LHS, RHS); 3872 else if (Kind == scSMinExpr) 3873 return APIntOps::smin(LHS, RHS); 3874 else if (Kind == scUMaxExpr) 3875 return APIntOps::umax(LHS, RHS); 3876 else if (Kind == scUMinExpr) 3877 return APIntOps::umin(LHS, RHS); 3878 llvm_unreachable("Unknown SCEV min/max opcode"); 3879 }; 3880 3881 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3882 // We found two constants, fold them together! 3883 ConstantInt *Fold = ConstantInt::get( 3884 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3885 Ops[0] = getConstant(Fold); 3886 Ops.erase(Ops.begin()+1); // Erase the folded element 3887 if (Ops.size() == 1) return Ops[0]; 3888 LHSC = cast<SCEVConstant>(Ops[0]); 3889 } 3890 3891 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3892 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3893 3894 if (IsMax ? IsMinV : IsMaxV) { 3895 // If we are left with a constant minimum(/maximum)-int, strip it off. 3896 Ops.erase(Ops.begin()); 3897 --Idx; 3898 } else if (IsMax ? IsMaxV : IsMinV) { 3899 // If we have a max(/min) with a constant maximum(/minimum)-int, 3900 // it will always be the extremum. 3901 return LHSC; 3902 } 3903 3904 if (Ops.size() == 1) return Ops[0]; 3905 } 3906 3907 // Find the first operation of the same kind 3908 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3909 ++Idx; 3910 3911 // Check to see if one of the operands is of the same kind. If so, expand its 3912 // operands onto our operand list, and recurse to simplify. 3913 if (Idx < Ops.size()) { 3914 bool DeletedAny = false; 3915 while (Ops[Idx]->getSCEVType() == Kind) { 3916 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3917 Ops.erase(Ops.begin()+Idx); 3918 append_range(Ops, SMME->operands()); 3919 DeletedAny = true; 3920 } 3921 3922 if (DeletedAny) 3923 return getMinMaxExpr(Kind, Ops); 3924 } 3925 3926 // Okay, check to see if the same value occurs in the operand list twice. If 3927 // so, delete one. Since we sorted the list, these values are required to 3928 // be adjacent. 3929 llvm::CmpInst::Predicate GEPred = 3930 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3931 llvm::CmpInst::Predicate LEPred = 3932 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3933 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3934 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3935 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3936 if (Ops[i] == Ops[i + 1] || 3937 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3938 // X op Y op Y --> X op Y 3939 // X op Y --> X, if we know X, Y are ordered appropriately 3940 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3941 --i; 3942 --e; 3943 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3944 Ops[i + 1])) { 3945 // X op Y --> Y, if we know X, Y are ordered appropriately 3946 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3947 --i; 3948 --e; 3949 } 3950 } 3951 3952 if (Ops.size() == 1) return Ops[0]; 3953 3954 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3955 3956 // Okay, it looks like we really DO need an expr. Check to see if we 3957 // already have one, otherwise create a new one. 3958 FoldingSetNodeID ID; 3959 ID.AddInteger(Kind); 3960 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3961 ID.AddPointer(Ops[i]); 3962 void *IP = nullptr; 3963 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3964 if (ExistingSCEV) 3965 return ExistingSCEV; 3966 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3967 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3968 SCEV *S = new (SCEVAllocator) 3969 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3970 3971 UniqueSCEVs.InsertNode(S, IP); 3972 registerUser(S, Ops); 3973 return S; 3974 } 3975 3976 namespace { 3977 3978 class SCEVSequentialMinMaxDeduplicatingVisitor final 3979 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3980 std::optional<const SCEV *>> { 3981 using RetVal = std::optional<const SCEV *>; 3982 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3983 3984 ScalarEvolution &SE; 3985 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3986 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3987 SmallPtrSet<const SCEV *, 16> SeenOps; 3988 3989 bool canRecurseInto(SCEVTypes Kind) const { 3990 // We can only recurse into the SCEV expression of the same effective type 3991 // as the type of our root SCEV expression. 3992 return RootKind == Kind || NonSequentialRootKind == Kind; 3993 }; 3994 3995 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3996 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3997 "Only for min/max expressions."); 3998 SCEVTypes Kind = S->getSCEVType(); 3999 4000 if (!canRecurseInto(Kind)) 4001 return S; 4002 4003 auto *NAry = cast<SCEVNAryExpr>(S); 4004 SmallVector<const SCEV *> NewOps; 4005 bool Changed = visit(Kind, NAry->operands(), NewOps); 4006 4007 if (!Changed) 4008 return S; 4009 if (NewOps.empty()) 4010 return std::nullopt; 4011 4012 return isa<SCEVSequentialMinMaxExpr>(S) 4013 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 4014 : SE.getMinMaxExpr(Kind, NewOps); 4015 } 4016 4017 RetVal visit(const SCEV *S) { 4018 // Has the whole operand been seen already? 4019 if (!SeenOps.insert(S).second) 4020 return std::nullopt; 4021 return Base::visit(S); 4022 } 4023 4024 public: 4025 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 4026 SCEVTypes RootKind) 4027 : SE(SE), RootKind(RootKind), 4028 NonSequentialRootKind( 4029 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 4030 RootKind)) {} 4031 4032 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 4033 SmallVectorImpl<const SCEV *> &NewOps) { 4034 bool Changed = false; 4035 SmallVector<const SCEV *> Ops; 4036 Ops.reserve(OrigOps.size()); 4037 4038 for (const SCEV *Op : OrigOps) { 4039 RetVal NewOp = visit(Op); 4040 if (NewOp != Op) 4041 Changed = true; 4042 if (NewOp) 4043 Ops.emplace_back(*NewOp); 4044 } 4045 4046 if (Changed) 4047 NewOps = std::move(Ops); 4048 return Changed; 4049 } 4050 4051 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 4052 4053 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 4054 4055 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 4056 4057 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 4058 4059 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 4060 4061 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 4062 4063 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 4064 4065 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 4066 4067 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 4068 4069 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 4070 return visitAnyMinMaxExpr(Expr); 4071 } 4072 4073 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 4074 return visitAnyMinMaxExpr(Expr); 4075 } 4076 4077 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4078 return visitAnyMinMaxExpr(Expr); 4079 } 4080 4081 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4082 return visitAnyMinMaxExpr(Expr); 4083 } 4084 4085 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4086 return visitAnyMinMaxExpr(Expr); 4087 } 4088 4089 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4090 4091 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4092 }; 4093 4094 } // namespace 4095 4096 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { 4097 switch (Kind) { 4098 case scConstant: 4099 case scTruncate: 4100 case scZeroExtend: 4101 case scSignExtend: 4102 case scPtrToInt: 4103 case scAddExpr: 4104 case scMulExpr: 4105 case scUDivExpr: 4106 case scAddRecExpr: 4107 case scUMaxExpr: 4108 case scSMaxExpr: 4109 case scUMinExpr: 4110 case scSMinExpr: 4111 case scUnknown: 4112 // If any operand is poison, the whole expression is poison. 4113 return true; 4114 case scSequentialUMinExpr: 4115 // FIXME: if the *first* operand is poison, the whole expression is poison. 4116 return false; // Pessimistically, say that it does not propagate poison. 4117 case scCouldNotCompute: 4118 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4119 } 4120 llvm_unreachable("Unknown SCEV kind!"); 4121 } 4122 4123 /// Return true if V is poison given that AssumedPoison is already poison. 4124 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4125 // The only way poison may be introduced in a SCEV expression is from a 4126 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4127 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4128 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4129 // 4130 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4131 // with the notable exception of umin_seq, where only poison from the first 4132 // operand is (unconditionally) propagated. 4133 struct SCEVPoisonCollector { 4134 bool LookThroughSeq; 4135 SmallPtrSet<const SCEV *, 4> MaybePoison; 4136 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4137 4138 bool follow(const SCEV *S) { 4139 if (!scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) { 4140 switch (S->getSCEVType()) { 4141 case scConstant: 4142 case scTruncate: 4143 case scZeroExtend: 4144 case scSignExtend: 4145 case scPtrToInt: 4146 case scAddExpr: 4147 case scMulExpr: 4148 case scUDivExpr: 4149 case scAddRecExpr: 4150 case scUMaxExpr: 4151 case scSMaxExpr: 4152 case scUMinExpr: 4153 case scSMinExpr: 4154 case scUnknown: 4155 llvm_unreachable("These all unconditionally propagate poison."); 4156 case scSequentialUMinExpr: 4157 // TODO: We can always follow the first operand, 4158 // but the SCEVTraversal API doesn't support this. 4159 if (!LookThroughSeq) 4160 return false; 4161 break; 4162 case scCouldNotCompute: 4163 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4164 } 4165 } 4166 4167 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4168 if (!isGuaranteedNotToBePoison(SU->getValue())) 4169 MaybePoison.insert(S); 4170 } 4171 return true; 4172 } 4173 bool isDone() const { return false; } 4174 }; 4175 4176 // First collect all SCEVs that might result in AssumedPoison to be poison. 4177 // We need to look through umin_seq here, because we want to find all SCEVs 4178 // that *might* result in poison, not only those that are *required* to. 4179 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4180 visitAll(AssumedPoison, PC1); 4181 4182 // AssumedPoison is never poison. As the assumption is false, the implication 4183 // is true. Don't bother walking the other SCEV in this case. 4184 if (PC1.MaybePoison.empty()) 4185 return true; 4186 4187 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4188 // as well. We cannot look through umin_seq here, as its argument only *may* 4189 // make the result poison. 4190 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4191 visitAll(S, PC2); 4192 4193 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4194 // it will also make S poison by being part of PC2.MaybePoison. 4195 return all_of(PC1.MaybePoison, 4196 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4197 } 4198 4199 const SCEV * 4200 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4201 SmallVectorImpl<const SCEV *> &Ops) { 4202 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4203 "Not a SCEVSequentialMinMaxExpr!"); 4204 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4205 if (Ops.size() == 1) 4206 return Ops[0]; 4207 #ifndef NDEBUG 4208 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4209 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4210 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4211 "Operand types don't match!"); 4212 assert(Ops[0]->getType()->isPointerTy() == 4213 Ops[i]->getType()->isPointerTy() && 4214 "min/max should be consistently pointerish"); 4215 } 4216 #endif 4217 4218 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4219 // so we can *NOT* do any kind of sorting of the expressions! 4220 4221 // Check if we have created the same expression before. 4222 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4223 return S; 4224 4225 // FIXME: there are *some* simplifications that we can do here. 4226 4227 // Keep only the first instance of an operand. 4228 { 4229 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4230 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4231 if (Changed) 4232 return getSequentialMinMaxExpr(Kind, Ops); 4233 } 4234 4235 // Check to see if one of the operands is of the same kind. If so, expand its 4236 // operands onto our operand list, and recurse to simplify. 4237 { 4238 unsigned Idx = 0; 4239 bool DeletedAny = false; 4240 while (Idx < Ops.size()) { 4241 if (Ops[Idx]->getSCEVType() != Kind) { 4242 ++Idx; 4243 continue; 4244 } 4245 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4246 Ops.erase(Ops.begin() + Idx); 4247 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), 4248 SMME->operands().end()); 4249 DeletedAny = true; 4250 } 4251 4252 if (DeletedAny) 4253 return getSequentialMinMaxExpr(Kind, Ops); 4254 } 4255 4256 const SCEV *SaturationPoint; 4257 ICmpInst::Predicate Pred; 4258 switch (Kind) { 4259 case scSequentialUMinExpr: 4260 SaturationPoint = getZero(Ops[0]->getType()); 4261 Pred = ICmpInst::ICMP_ULE; 4262 break; 4263 default: 4264 llvm_unreachable("Not a sequential min/max type."); 4265 } 4266 4267 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4268 // We can replace %x umin_seq %y with %x umin %y if either: 4269 // * %y being poison implies %x is also poison. 4270 // * %x cannot be the saturating value (e.g. zero for umin). 4271 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4272 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4273 SaturationPoint)) { 4274 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4275 Ops[i - 1] = getMinMaxExpr( 4276 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4277 SeqOps); 4278 Ops.erase(Ops.begin() + i); 4279 return getSequentialMinMaxExpr(Kind, Ops); 4280 } 4281 // Fold %x umin_seq %y to %x if %x ule %y. 4282 // TODO: We might be able to prove the predicate for a later operand. 4283 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4284 Ops.erase(Ops.begin() + i); 4285 return getSequentialMinMaxExpr(Kind, Ops); 4286 } 4287 } 4288 4289 // Okay, it looks like we really DO need an expr. Check to see if we 4290 // already have one, otherwise create a new one. 4291 FoldingSetNodeID ID; 4292 ID.AddInteger(Kind); 4293 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4294 ID.AddPointer(Ops[i]); 4295 void *IP = nullptr; 4296 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4297 if (ExistingSCEV) 4298 return ExistingSCEV; 4299 4300 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4301 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4302 SCEV *S = new (SCEVAllocator) 4303 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4304 4305 UniqueSCEVs.InsertNode(S, IP); 4306 registerUser(S, Ops); 4307 return S; 4308 } 4309 4310 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4311 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4312 return getSMaxExpr(Ops); 4313 } 4314 4315 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4316 return getMinMaxExpr(scSMaxExpr, Ops); 4317 } 4318 4319 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4320 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4321 return getUMaxExpr(Ops); 4322 } 4323 4324 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4325 return getMinMaxExpr(scUMaxExpr, Ops); 4326 } 4327 4328 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4329 const SCEV *RHS) { 4330 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4331 return getSMinExpr(Ops); 4332 } 4333 4334 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4335 return getMinMaxExpr(scSMinExpr, Ops); 4336 } 4337 4338 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4339 bool Sequential) { 4340 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4341 return getUMinExpr(Ops, Sequential); 4342 } 4343 4344 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4345 bool Sequential) { 4346 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4347 : getMinMaxExpr(scUMinExpr, Ops); 4348 } 4349 4350 const SCEV * 4351 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4352 ScalableVectorType *ScalableTy) { 4353 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4354 Constant *One = ConstantInt::get(IntTy, 1); 4355 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4356 // Note that the expression we created is the final expression, we don't 4357 // want to simplify it any further Also, if we call a normal getSCEV(), 4358 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4359 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4360 } 4361 4362 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4363 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4364 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4365 // We can bypass creating a target-independent constant expression and then 4366 // folding it back into a ConstantInt. This is just a compile-time 4367 // optimization. 4368 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4369 } 4370 4371 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4372 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4373 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4374 // We can bypass creating a target-independent constant expression and then 4375 // folding it back into a ConstantInt. This is just a compile-time 4376 // optimization. 4377 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4378 } 4379 4380 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4381 StructType *STy, 4382 unsigned FieldNo) { 4383 // We can bypass creating a target-independent constant expression and then 4384 // folding it back into a ConstantInt. This is just a compile-time 4385 // optimization. 4386 return getConstant( 4387 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4388 } 4389 4390 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4391 // Don't attempt to do anything other than create a SCEVUnknown object 4392 // here. createSCEV only calls getUnknown after checking for all other 4393 // interesting possibilities, and any other code that calls getUnknown 4394 // is doing so in order to hide a value from SCEV canonicalization. 4395 4396 FoldingSetNodeID ID; 4397 ID.AddInteger(scUnknown); 4398 ID.AddPointer(V); 4399 void *IP = nullptr; 4400 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4401 assert(cast<SCEVUnknown>(S)->getValue() == V && 4402 "Stale SCEVUnknown in uniquing map!"); 4403 return S; 4404 } 4405 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4406 FirstUnknown); 4407 FirstUnknown = cast<SCEVUnknown>(S); 4408 UniqueSCEVs.InsertNode(S, IP); 4409 return S; 4410 } 4411 4412 //===----------------------------------------------------------------------===// 4413 // Basic SCEV Analysis and PHI Idiom Recognition Code 4414 // 4415 4416 /// Test if values of the given type are analyzable within the SCEV 4417 /// framework. This primarily includes integer types, and it can optionally 4418 /// include pointer types if the ScalarEvolution class has access to 4419 /// target-specific information. 4420 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4421 // Integers and pointers are always SCEVable. 4422 return Ty->isIntOrPtrTy(); 4423 } 4424 4425 /// Return the size in bits of the specified type, for which isSCEVable must 4426 /// return true. 4427 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4428 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4429 if (Ty->isPointerTy()) 4430 return getDataLayout().getIndexTypeSizeInBits(Ty); 4431 return getDataLayout().getTypeSizeInBits(Ty); 4432 } 4433 4434 /// Return a type with the same bitwidth as the given type and which represents 4435 /// how SCEV will treat the given type, for which isSCEVable must return 4436 /// true. For pointer types, this is the pointer index sized integer type. 4437 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4438 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4439 4440 if (Ty->isIntegerTy()) 4441 return Ty; 4442 4443 // The only other support type is pointer. 4444 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4445 return getDataLayout().getIndexType(Ty); 4446 } 4447 4448 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4449 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4450 } 4451 4452 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4453 const SCEV *B) { 4454 /// For a valid use point to exist, the defining scope of one operand 4455 /// must dominate the other. 4456 bool PreciseA, PreciseB; 4457 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4458 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4459 if (!PreciseA || !PreciseB) 4460 // Can't tell. 4461 return false; 4462 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4463 DT.dominates(ScopeB, ScopeA); 4464 } 4465 4466 4467 const SCEV *ScalarEvolution::getCouldNotCompute() { 4468 return CouldNotCompute.get(); 4469 } 4470 4471 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4472 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4473 auto *SU = dyn_cast<SCEVUnknown>(S); 4474 return SU && SU->getValue() == nullptr; 4475 }); 4476 4477 return !ContainsNulls; 4478 } 4479 4480 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4481 HasRecMapType::iterator I = HasRecMap.find(S); 4482 if (I != HasRecMap.end()) 4483 return I->second; 4484 4485 bool FoundAddRec = 4486 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4487 HasRecMap.insert({S, FoundAddRec}); 4488 return FoundAddRec; 4489 } 4490 4491 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4492 /// by the value and offset from any ValueOffsetPair in the set. 4493 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4494 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4495 if (SI == ExprValueMap.end()) 4496 return std::nullopt; 4497 #ifndef NDEBUG 4498 if (VerifySCEVMap) { 4499 // Check there is no dangling Value in the set returned. 4500 for (Value *V : SI->second) 4501 assert(ValueExprMap.count(V)); 4502 } 4503 #endif 4504 return SI->second.getArrayRef(); 4505 } 4506 4507 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4508 /// cannot be used separately. eraseValueFromMap should be used to remove 4509 /// V from ValueExprMap and ExprValueMap at the same time. 4510 void ScalarEvolution::eraseValueFromMap(Value *V) { 4511 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4512 if (I != ValueExprMap.end()) { 4513 auto EVIt = ExprValueMap.find(I->second); 4514 bool Removed = EVIt->second.remove(V); 4515 (void) Removed; 4516 assert(Removed && "Value not in ExprValueMap?"); 4517 ValueExprMap.erase(I); 4518 } 4519 } 4520 4521 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4522 // A recursive query may have already computed the SCEV. It should be 4523 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4524 // inferred nowrap flags. 4525 auto It = ValueExprMap.find_as(V); 4526 if (It == ValueExprMap.end()) { 4527 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4528 ExprValueMap[S].insert(V); 4529 } 4530 } 4531 4532 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4533 /// create a new one. 4534 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4535 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4536 4537 if (const SCEV *S = getExistingSCEV(V)) 4538 return S; 4539 return createSCEVIter(V); 4540 } 4541 4542 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4543 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4544 4545 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4546 if (I != ValueExprMap.end()) { 4547 const SCEV *S = I->second; 4548 assert(checkValidity(S) && 4549 "existing SCEV has not been properly invalidated"); 4550 return S; 4551 } 4552 return nullptr; 4553 } 4554 4555 /// Return a SCEV corresponding to -V = -1*V 4556 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4557 SCEV::NoWrapFlags Flags) { 4558 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4559 return getConstant( 4560 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4561 4562 Type *Ty = V->getType(); 4563 Ty = getEffectiveSCEVType(Ty); 4564 return getMulExpr(V, getMinusOne(Ty), Flags); 4565 } 4566 4567 /// If Expr computes ~A, return A else return nullptr 4568 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4569 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4570 if (!Add || Add->getNumOperands() != 2 || 4571 !Add->getOperand(0)->isAllOnesValue()) 4572 return nullptr; 4573 4574 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4575 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4576 !AddRHS->getOperand(0)->isAllOnesValue()) 4577 return nullptr; 4578 4579 return AddRHS->getOperand(1); 4580 } 4581 4582 /// Return a SCEV corresponding to ~V = -1-V 4583 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4584 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4585 4586 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4587 return getConstant( 4588 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4589 4590 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4591 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4592 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4593 SmallVector<const SCEV *, 2> MatchedOperands; 4594 for (const SCEV *Operand : MME->operands()) { 4595 const SCEV *Matched = MatchNotExpr(Operand); 4596 if (!Matched) 4597 return (const SCEV *)nullptr; 4598 MatchedOperands.push_back(Matched); 4599 } 4600 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4601 MatchedOperands); 4602 }; 4603 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4604 return Replaced; 4605 } 4606 4607 Type *Ty = V->getType(); 4608 Ty = getEffectiveSCEVType(Ty); 4609 return getMinusSCEV(getMinusOne(Ty), V); 4610 } 4611 4612 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4613 assert(P->getType()->isPointerTy()); 4614 4615 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4616 // The base of an AddRec is the first operand. 4617 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4618 Ops[0] = removePointerBase(Ops[0]); 4619 // Don't try to transfer nowrap flags for now. We could in some cases 4620 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4621 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4622 } 4623 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4624 // The base of an Add is the pointer operand. 4625 SmallVector<const SCEV *> Ops{Add->operands()}; 4626 const SCEV **PtrOp = nullptr; 4627 for (const SCEV *&AddOp : Ops) { 4628 if (AddOp->getType()->isPointerTy()) { 4629 assert(!PtrOp && "Cannot have multiple pointer ops"); 4630 PtrOp = &AddOp; 4631 } 4632 } 4633 *PtrOp = removePointerBase(*PtrOp); 4634 // Don't try to transfer nowrap flags for now. We could in some cases 4635 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4636 return getAddExpr(Ops); 4637 } 4638 // Any other expression must be a pointer base. 4639 return getZero(P->getType()); 4640 } 4641 4642 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4643 SCEV::NoWrapFlags Flags, 4644 unsigned Depth) { 4645 // Fast path: X - X --> 0. 4646 if (LHS == RHS) 4647 return getZero(LHS->getType()); 4648 4649 // If we subtract two pointers with different pointer bases, bail. 4650 // Eventually, we're going to add an assertion to getMulExpr that we 4651 // can't multiply by a pointer. 4652 if (RHS->getType()->isPointerTy()) { 4653 if (!LHS->getType()->isPointerTy() || 4654 getPointerBase(LHS) != getPointerBase(RHS)) 4655 return getCouldNotCompute(); 4656 LHS = removePointerBase(LHS); 4657 RHS = removePointerBase(RHS); 4658 } 4659 4660 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4661 // makes it so that we cannot make much use of NUW. 4662 auto AddFlags = SCEV::FlagAnyWrap; 4663 const bool RHSIsNotMinSigned = 4664 !getSignedRangeMin(RHS).isMinSignedValue(); 4665 if (hasFlags(Flags, SCEV::FlagNSW)) { 4666 // Let M be the minimum representable signed value. Then (-1)*RHS 4667 // signed-wraps if and only if RHS is M. That can happen even for 4668 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4669 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4670 // (-1)*RHS, we need to prove that RHS != M. 4671 // 4672 // If LHS is non-negative and we know that LHS - RHS does not 4673 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4674 // either by proving that RHS > M or that LHS >= 0. 4675 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4676 AddFlags = SCEV::FlagNSW; 4677 } 4678 } 4679 4680 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4681 // RHS is NSW and LHS >= 0. 4682 // 4683 // The difficulty here is that the NSW flag may have been proven 4684 // relative to a loop that is to be found in a recurrence in LHS and 4685 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4686 // larger scope than intended. 4687 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4688 4689 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4690 } 4691 4692 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4693 unsigned Depth) { 4694 Type *SrcTy = V->getType(); 4695 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4696 "Cannot truncate or zero extend with non-integer arguments!"); 4697 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4698 return V; // No conversion 4699 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4700 return getTruncateExpr(V, Ty, Depth); 4701 return getZeroExtendExpr(V, Ty, Depth); 4702 } 4703 4704 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4705 unsigned Depth) { 4706 Type *SrcTy = V->getType(); 4707 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4708 "Cannot truncate or zero extend with non-integer arguments!"); 4709 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4710 return V; // No conversion 4711 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4712 return getTruncateExpr(V, Ty, Depth); 4713 return getSignExtendExpr(V, Ty, Depth); 4714 } 4715 4716 const SCEV * 4717 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4718 Type *SrcTy = V->getType(); 4719 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4720 "Cannot noop or zero extend with non-integer arguments!"); 4721 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4722 "getNoopOrZeroExtend cannot truncate!"); 4723 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4724 return V; // No conversion 4725 return getZeroExtendExpr(V, Ty); 4726 } 4727 4728 const SCEV * 4729 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4730 Type *SrcTy = V->getType(); 4731 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4732 "Cannot noop or sign extend with non-integer arguments!"); 4733 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4734 "getNoopOrSignExtend cannot truncate!"); 4735 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4736 return V; // No conversion 4737 return getSignExtendExpr(V, Ty); 4738 } 4739 4740 const SCEV * 4741 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4742 Type *SrcTy = V->getType(); 4743 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4744 "Cannot noop or any extend with non-integer arguments!"); 4745 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4746 "getNoopOrAnyExtend cannot truncate!"); 4747 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4748 return V; // No conversion 4749 return getAnyExtendExpr(V, Ty); 4750 } 4751 4752 const SCEV * 4753 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4754 Type *SrcTy = V->getType(); 4755 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4756 "Cannot truncate or noop with non-integer arguments!"); 4757 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4758 "getTruncateOrNoop cannot extend!"); 4759 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4760 return V; // No conversion 4761 return getTruncateExpr(V, Ty); 4762 } 4763 4764 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4765 const SCEV *RHS) { 4766 const SCEV *PromotedLHS = LHS; 4767 const SCEV *PromotedRHS = RHS; 4768 4769 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4770 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4771 else 4772 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4773 4774 return getUMaxExpr(PromotedLHS, PromotedRHS); 4775 } 4776 4777 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4778 const SCEV *RHS, 4779 bool Sequential) { 4780 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4781 return getUMinFromMismatchedTypes(Ops, Sequential); 4782 } 4783 4784 const SCEV * 4785 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4786 bool Sequential) { 4787 assert(!Ops.empty() && "At least one operand must be!"); 4788 // Trivial case. 4789 if (Ops.size() == 1) 4790 return Ops[0]; 4791 4792 // Find the max type first. 4793 Type *MaxType = nullptr; 4794 for (const auto *S : Ops) 4795 if (MaxType) 4796 MaxType = getWiderType(MaxType, S->getType()); 4797 else 4798 MaxType = S->getType(); 4799 assert(MaxType && "Failed to find maximum type!"); 4800 4801 // Extend all ops to max type. 4802 SmallVector<const SCEV *, 2> PromotedOps; 4803 for (const auto *S : Ops) 4804 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4805 4806 // Generate umin. 4807 return getUMinExpr(PromotedOps, Sequential); 4808 } 4809 4810 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4811 // A pointer operand may evaluate to a nonpointer expression, such as null. 4812 if (!V->getType()->isPointerTy()) 4813 return V; 4814 4815 while (true) { 4816 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4817 V = AddRec->getStart(); 4818 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4819 const SCEV *PtrOp = nullptr; 4820 for (const SCEV *AddOp : Add->operands()) { 4821 if (AddOp->getType()->isPointerTy()) { 4822 assert(!PtrOp && "Cannot have multiple pointer ops"); 4823 PtrOp = AddOp; 4824 } 4825 } 4826 assert(PtrOp && "Must have pointer op"); 4827 V = PtrOp; 4828 } else // Not something we can look further into. 4829 return V; 4830 } 4831 } 4832 4833 /// Push users of the given Instruction onto the given Worklist. 4834 static void PushDefUseChildren(Instruction *I, 4835 SmallVectorImpl<Instruction *> &Worklist, 4836 SmallPtrSetImpl<Instruction *> &Visited) { 4837 // Push the def-use children onto the Worklist stack. 4838 for (User *U : I->users()) { 4839 auto *UserInsn = cast<Instruction>(U); 4840 if (Visited.insert(UserInsn).second) 4841 Worklist.push_back(UserInsn); 4842 } 4843 } 4844 4845 namespace { 4846 4847 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4848 /// expression in case its Loop is L. If it is not L then 4849 /// if IgnoreOtherLoops is true then use AddRec itself 4850 /// otherwise rewrite cannot be done. 4851 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4852 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4853 public: 4854 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4855 bool IgnoreOtherLoops = true) { 4856 SCEVInitRewriter Rewriter(L, SE); 4857 const SCEV *Result = Rewriter.visit(S); 4858 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4859 return SE.getCouldNotCompute(); 4860 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4861 ? SE.getCouldNotCompute() 4862 : Result; 4863 } 4864 4865 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4866 if (!SE.isLoopInvariant(Expr, L)) 4867 SeenLoopVariantSCEVUnknown = true; 4868 return Expr; 4869 } 4870 4871 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4872 // Only re-write AddRecExprs for this loop. 4873 if (Expr->getLoop() == L) 4874 return Expr->getStart(); 4875 SeenOtherLoops = true; 4876 return Expr; 4877 } 4878 4879 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4880 4881 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4882 4883 private: 4884 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4885 : SCEVRewriteVisitor(SE), L(L) {} 4886 4887 const Loop *L; 4888 bool SeenLoopVariantSCEVUnknown = false; 4889 bool SeenOtherLoops = false; 4890 }; 4891 4892 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4893 /// increment expression in case its Loop is L. If it is not L then 4894 /// use AddRec itself. 4895 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4896 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4897 public: 4898 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4899 SCEVPostIncRewriter Rewriter(L, SE); 4900 const SCEV *Result = Rewriter.visit(S); 4901 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4902 ? SE.getCouldNotCompute() 4903 : Result; 4904 } 4905 4906 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4907 if (!SE.isLoopInvariant(Expr, L)) 4908 SeenLoopVariantSCEVUnknown = true; 4909 return Expr; 4910 } 4911 4912 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4913 // Only re-write AddRecExprs for this loop. 4914 if (Expr->getLoop() == L) 4915 return Expr->getPostIncExpr(SE); 4916 SeenOtherLoops = true; 4917 return Expr; 4918 } 4919 4920 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4921 4922 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4923 4924 private: 4925 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4926 : SCEVRewriteVisitor(SE), L(L) {} 4927 4928 const Loop *L; 4929 bool SeenLoopVariantSCEVUnknown = false; 4930 bool SeenOtherLoops = false; 4931 }; 4932 4933 /// This class evaluates the compare condition by matching it against the 4934 /// condition of loop latch. If there is a match we assume a true value 4935 /// for the condition while building SCEV nodes. 4936 class SCEVBackedgeConditionFolder 4937 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4938 public: 4939 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4940 ScalarEvolution &SE) { 4941 bool IsPosBECond = false; 4942 Value *BECond = nullptr; 4943 if (BasicBlock *Latch = L->getLoopLatch()) { 4944 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4945 if (BI && BI->isConditional()) { 4946 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4947 "Both outgoing branches should not target same header!"); 4948 BECond = BI->getCondition(); 4949 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4950 } else { 4951 return S; 4952 } 4953 } 4954 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4955 return Rewriter.visit(S); 4956 } 4957 4958 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4959 const SCEV *Result = Expr; 4960 bool InvariantF = SE.isLoopInvariant(Expr, L); 4961 4962 if (!InvariantF) { 4963 Instruction *I = cast<Instruction>(Expr->getValue()); 4964 switch (I->getOpcode()) { 4965 case Instruction::Select: { 4966 SelectInst *SI = cast<SelectInst>(I); 4967 std::optional<const SCEV *> Res = 4968 compareWithBackedgeCondition(SI->getCondition()); 4969 if (Res) { 4970 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); 4971 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4972 } 4973 break; 4974 } 4975 default: { 4976 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4977 if (Res) 4978 Result = *Res; 4979 break; 4980 } 4981 } 4982 } 4983 return Result; 4984 } 4985 4986 private: 4987 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4988 bool IsPosBECond, ScalarEvolution &SE) 4989 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4990 IsPositiveBECond(IsPosBECond) {} 4991 4992 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4993 4994 const Loop *L; 4995 /// Loop back condition. 4996 Value *BackedgeCond = nullptr; 4997 /// Set to true if loop back is on positive branch condition. 4998 bool IsPositiveBECond; 4999 }; 5000 5001 std::optional<const SCEV *> 5002 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 5003 5004 // If value matches the backedge condition for loop latch, 5005 // then return a constant evolution node based on loopback 5006 // branch taken. 5007 if (BackedgeCond == IC) 5008 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 5009 : SE.getZero(Type::getInt1Ty(SE.getContext())); 5010 return std::nullopt; 5011 } 5012 5013 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 5014 public: 5015 static const SCEV *rewrite(const SCEV *S, const Loop *L, 5016 ScalarEvolution &SE) { 5017 SCEVShiftRewriter Rewriter(L, SE); 5018 const SCEV *Result = Rewriter.visit(S); 5019 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 5020 } 5021 5022 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 5023 // Only allow AddRecExprs for this loop. 5024 if (!SE.isLoopInvariant(Expr, L)) 5025 Valid = false; 5026 return Expr; 5027 } 5028 5029 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 5030 if (Expr->getLoop() == L && Expr->isAffine()) 5031 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 5032 Valid = false; 5033 return Expr; 5034 } 5035 5036 bool isValid() { return Valid; } 5037 5038 private: 5039 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 5040 : SCEVRewriteVisitor(SE), L(L) {} 5041 5042 const Loop *L; 5043 bool Valid = true; 5044 }; 5045 5046 } // end anonymous namespace 5047 5048 SCEV::NoWrapFlags 5049 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 5050 if (!AR->isAffine()) 5051 return SCEV::FlagAnyWrap; 5052 5053 using OBO = OverflowingBinaryOperator; 5054 5055 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 5056 5057 if (!AR->hasNoSignedWrap()) { 5058 ConstantRange AddRecRange = getSignedRange(AR); 5059 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 5060 5061 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5062 Instruction::Add, IncRange, OBO::NoSignedWrap); 5063 if (NSWRegion.contains(AddRecRange)) 5064 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 5065 } 5066 5067 if (!AR->hasNoUnsignedWrap()) { 5068 ConstantRange AddRecRange = getUnsignedRange(AR); 5069 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 5070 5071 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5072 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 5073 if (NUWRegion.contains(AddRecRange)) 5074 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 5075 } 5076 5077 return Result; 5078 } 5079 5080 SCEV::NoWrapFlags 5081 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5082 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5083 5084 if (AR->hasNoSignedWrap()) 5085 return Result; 5086 5087 if (!AR->isAffine()) 5088 return Result; 5089 5090 // This function can be expensive, only try to prove NSW once per AddRec. 5091 if (!SignedWrapViaInductionTried.insert(AR).second) 5092 return Result; 5093 5094 const SCEV *Step = AR->getStepRecurrence(*this); 5095 const Loop *L = AR->getLoop(); 5096 5097 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5098 // Note that this serves two purposes: It filters out loops that are 5099 // simply not analyzable, and it covers the case where this code is 5100 // being called from within backedge-taken count analysis, such that 5101 // attempting to ask for the backedge-taken count would likely result 5102 // in infinite recursion. In the later case, the analysis code will 5103 // cope with a conservative value, and it will take care to purge 5104 // that value once it has finished. 5105 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5106 5107 // Normally, in the cases we can prove no-overflow via a 5108 // backedge guarding condition, we can also compute a backedge 5109 // taken count for the loop. The exceptions are assumptions and 5110 // guards present in the loop -- SCEV is not great at exploiting 5111 // these to compute max backedge taken counts, but can still use 5112 // these to prove lack of overflow. Use this fact to avoid 5113 // doing extra work that may not pay off. 5114 5115 if (isa<SCEVCouldNotCompute>(MaxBECount) && AC.assumptions().empty()) 5116 return Result; 5117 5118 // If the backedge is guarded by a comparison with the pre-inc value the 5119 // addrec is safe. Also, if the entry is guarded by a comparison with the 5120 // start value and the backedge is guarded by a comparison with the post-inc 5121 // value, the addrec is safe. 5122 ICmpInst::Predicate Pred; 5123 const SCEV *OverflowLimit = 5124 getSignedOverflowLimitForStep(Step, &Pred, this); 5125 if (OverflowLimit && 5126 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5127 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5128 Result = setFlags(Result, SCEV::FlagNSW); 5129 } 5130 return Result; 5131 } 5132 SCEV::NoWrapFlags 5133 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5134 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5135 5136 if (AR->hasNoUnsignedWrap()) 5137 return Result; 5138 5139 if (!AR->isAffine()) 5140 return Result; 5141 5142 // This function can be expensive, only try to prove NUW once per AddRec. 5143 if (!UnsignedWrapViaInductionTried.insert(AR).second) 5144 return Result; 5145 5146 const SCEV *Step = AR->getStepRecurrence(*this); 5147 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5148 const Loop *L = AR->getLoop(); 5149 5150 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5151 // Note that this serves two purposes: It filters out loops that are 5152 // simply not analyzable, and it covers the case where this code is 5153 // being called from within backedge-taken count analysis, such that 5154 // attempting to ask for the backedge-taken count would likely result 5155 // in infinite recursion. In the later case, the analysis code will 5156 // cope with a conservative value, and it will take care to purge 5157 // that value once it has finished. 5158 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5159 5160 // Normally, in the cases we can prove no-overflow via a 5161 // backedge guarding condition, we can also compute a backedge 5162 // taken count for the loop. The exceptions are assumptions and 5163 // guards present in the loop -- SCEV is not great at exploiting 5164 // these to compute max backedge taken counts, but can still use 5165 // these to prove lack of overflow. Use this fact to avoid 5166 // doing extra work that may not pay off. 5167 5168 if (isa<SCEVCouldNotCompute>(MaxBECount) && AC.assumptions().empty()) 5169 return Result; 5170 5171 // If the backedge is guarded by a comparison with the pre-inc value the 5172 // addrec is safe. Also, if the entry is guarded by a comparison with the 5173 // start value and the backedge is guarded by a comparison with the post-inc 5174 // value, the addrec is safe. 5175 if (isKnownPositive(Step)) { 5176 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5177 getUnsignedRangeMax(Step)); 5178 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5179 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5180 Result = setFlags(Result, SCEV::FlagNUW); 5181 } 5182 } 5183 5184 return Result; 5185 } 5186 5187 namespace { 5188 5189 /// Represents an abstract binary operation. This may exist as a 5190 /// normal instruction or constant expression, or may have been 5191 /// derived from an expression tree. 5192 struct BinaryOp { 5193 unsigned Opcode; 5194 Value *LHS; 5195 Value *RHS; 5196 bool IsNSW = false; 5197 bool IsNUW = false; 5198 5199 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5200 /// constant expression. 5201 Operator *Op = nullptr; 5202 5203 explicit BinaryOp(Operator *Op) 5204 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5205 Op(Op) { 5206 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5207 IsNSW = OBO->hasNoSignedWrap(); 5208 IsNUW = OBO->hasNoUnsignedWrap(); 5209 } 5210 } 5211 5212 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5213 bool IsNUW = false) 5214 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5215 }; 5216 5217 } // end anonymous namespace 5218 5219 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. 5220 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, 5221 AssumptionCache &AC, 5222 const DominatorTree &DT, 5223 const Instruction *CxtI) { 5224 auto *Op = dyn_cast<Operator>(V); 5225 if (!Op) 5226 return std::nullopt; 5227 5228 // Implementation detail: all the cleverness here should happen without 5229 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5230 // SCEV expressions when possible, and we should not break that. 5231 5232 switch (Op->getOpcode()) { 5233 case Instruction::Add: 5234 case Instruction::Sub: 5235 case Instruction::Mul: 5236 case Instruction::UDiv: 5237 case Instruction::URem: 5238 case Instruction::And: 5239 case Instruction::AShr: 5240 case Instruction::Shl: 5241 return BinaryOp(Op); 5242 5243 case Instruction::Or: { 5244 // LLVM loves to convert `add` of operands with no common bits 5245 // into an `or`. But SCEV really doesn't deal with `or` that well, 5246 // so try extra hard to recognize this `or` as an `add`. 5247 if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI, 5248 &DT, /*UseInstrInfo=*/true)) 5249 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), 5250 /*IsNSW=*/true, /*IsNUW=*/true); 5251 return BinaryOp(Op); 5252 } 5253 5254 case Instruction::Xor: 5255 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5256 // If the RHS of the xor is a signmask, then this is just an add. 5257 // Instcombine turns add of signmask into xor as a strength reduction step. 5258 if (RHSC->getValue().isSignMask()) 5259 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5260 // Binary `xor` is a bit-wise `add`. 5261 if (V->getType()->isIntegerTy(1)) 5262 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5263 return BinaryOp(Op); 5264 5265 case Instruction::LShr: 5266 // Turn logical shift right of a constant into a unsigned divide. 5267 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5268 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5269 5270 // If the shift count is not less than the bitwidth, the result of 5271 // the shift is undefined. Don't try to analyze it, because the 5272 // resolution chosen here may differ from the resolution chosen in 5273 // other parts of the compiler. 5274 if (SA->getValue().ult(BitWidth)) { 5275 Constant *X = 5276 ConstantInt::get(SA->getContext(), 5277 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5278 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5279 } 5280 } 5281 return BinaryOp(Op); 5282 5283 case Instruction::ExtractValue: { 5284 auto *EVI = cast<ExtractValueInst>(Op); 5285 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5286 break; 5287 5288 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5289 if (!WO) 5290 break; 5291 5292 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5293 bool Signed = WO->isSigned(); 5294 // TODO: Should add nuw/nsw flags for mul as well. 5295 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5296 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5297 5298 // Now that we know that all uses of the arithmetic-result component of 5299 // CI are guarded by the overflow check, we can go ahead and pretend 5300 // that the arithmetic is non-overflowing. 5301 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5302 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5303 } 5304 5305 default: 5306 break; 5307 } 5308 5309 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5310 // semantics as a Sub, return a binary sub expression. 5311 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5312 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5313 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5314 5315 return std::nullopt; 5316 } 5317 5318 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5319 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5320 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5321 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5322 /// follows one of the following patterns: 5323 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5324 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5325 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5326 /// we return the type of the truncation operation, and indicate whether the 5327 /// truncated type should be treated as signed/unsigned by setting 5328 /// \p Signed to true/false, respectively. 5329 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5330 bool &Signed, ScalarEvolution &SE) { 5331 // The case where Op == SymbolicPHI (that is, with no type conversions on 5332 // the way) is handled by the regular add recurrence creating logic and 5333 // would have already been triggered in createAddRecForPHI. Reaching it here 5334 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5335 // because one of the other operands of the SCEVAddExpr updating this PHI is 5336 // not invariant). 5337 // 5338 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5339 // this case predicates that allow us to prove that Op == SymbolicPHI will 5340 // be added. 5341 if (Op == SymbolicPHI) 5342 return nullptr; 5343 5344 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5345 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5346 if (SourceBits != NewBits) 5347 return nullptr; 5348 5349 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5350 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5351 if (!SExt && !ZExt) 5352 return nullptr; 5353 const SCEVTruncateExpr *Trunc = 5354 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5355 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5356 if (!Trunc) 5357 return nullptr; 5358 const SCEV *X = Trunc->getOperand(); 5359 if (X != SymbolicPHI) 5360 return nullptr; 5361 Signed = SExt != nullptr; 5362 return Trunc->getType(); 5363 } 5364 5365 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5366 if (!PN->getType()->isIntegerTy()) 5367 return nullptr; 5368 const Loop *L = LI.getLoopFor(PN->getParent()); 5369 if (!L || L->getHeader() != PN->getParent()) 5370 return nullptr; 5371 return L; 5372 } 5373 5374 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5375 // computation that updates the phi follows the following pattern: 5376 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5377 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5378 // If so, try to see if it can be rewritten as an AddRecExpr under some 5379 // Predicates. If successful, return them as a pair. Also cache the results 5380 // of the analysis. 5381 // 5382 // Example usage scenario: 5383 // Say the Rewriter is called for the following SCEV: 5384 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5385 // where: 5386 // %X = phi i64 (%Start, %BEValue) 5387 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5388 // and call this function with %SymbolicPHI = %X. 5389 // 5390 // The analysis will find that the value coming around the backedge has 5391 // the following SCEV: 5392 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5393 // Upon concluding that this matches the desired pattern, the function 5394 // will return the pair {NewAddRec, SmallPredsVec} where: 5395 // NewAddRec = {%Start,+,%Step} 5396 // SmallPredsVec = {P1, P2, P3} as follows: 5397 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5398 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5399 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5400 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5401 // under the predicates {P1,P2,P3}. 5402 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5403 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5404 // 5405 // TODO's: 5406 // 5407 // 1) Extend the Induction descriptor to also support inductions that involve 5408 // casts: When needed (namely, when we are called in the context of the 5409 // vectorizer induction analysis), a Set of cast instructions will be 5410 // populated by this method, and provided back to isInductionPHI. This is 5411 // needed to allow the vectorizer to properly record them to be ignored by 5412 // the cost model and to avoid vectorizing them (otherwise these casts, 5413 // which are redundant under the runtime overflow checks, will be 5414 // vectorized, which can be costly). 5415 // 5416 // 2) Support additional induction/PHISCEV patterns: We also want to support 5417 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5418 // after the induction update operation (the induction increment): 5419 // 5420 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5421 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5422 // 5423 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5424 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5425 // 5426 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5427 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5428 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5429 SmallVector<const SCEVPredicate *, 3> Predicates; 5430 5431 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5432 // return an AddRec expression under some predicate. 5433 5434 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5435 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5436 assert(L && "Expecting an integer loop header phi"); 5437 5438 // The loop may have multiple entrances or multiple exits; we can analyze 5439 // this phi as an addrec if it has a unique entry value and a unique 5440 // backedge value. 5441 Value *BEValueV = nullptr, *StartValueV = nullptr; 5442 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5443 Value *V = PN->getIncomingValue(i); 5444 if (L->contains(PN->getIncomingBlock(i))) { 5445 if (!BEValueV) { 5446 BEValueV = V; 5447 } else if (BEValueV != V) { 5448 BEValueV = nullptr; 5449 break; 5450 } 5451 } else if (!StartValueV) { 5452 StartValueV = V; 5453 } else if (StartValueV != V) { 5454 StartValueV = nullptr; 5455 break; 5456 } 5457 } 5458 if (!BEValueV || !StartValueV) 5459 return std::nullopt; 5460 5461 const SCEV *BEValue = getSCEV(BEValueV); 5462 5463 // If the value coming around the backedge is an add with the symbolic 5464 // value we just inserted, possibly with casts that we can ignore under 5465 // an appropriate runtime guard, then we found a simple induction variable! 5466 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5467 if (!Add) 5468 return std::nullopt; 5469 5470 // If there is a single occurrence of the symbolic value, possibly 5471 // casted, replace it with a recurrence. 5472 unsigned FoundIndex = Add->getNumOperands(); 5473 Type *TruncTy = nullptr; 5474 bool Signed; 5475 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5476 if ((TruncTy = 5477 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5478 if (FoundIndex == e) { 5479 FoundIndex = i; 5480 break; 5481 } 5482 5483 if (FoundIndex == Add->getNumOperands()) 5484 return std::nullopt; 5485 5486 // Create an add with everything but the specified operand. 5487 SmallVector<const SCEV *, 8> Ops; 5488 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5489 if (i != FoundIndex) 5490 Ops.push_back(Add->getOperand(i)); 5491 const SCEV *Accum = getAddExpr(Ops); 5492 5493 // The runtime checks will not be valid if the step amount is 5494 // varying inside the loop. 5495 if (!isLoopInvariant(Accum, L)) 5496 return std::nullopt; 5497 5498 // *** Part2: Create the predicates 5499 5500 // Analysis was successful: we have a phi-with-cast pattern for which we 5501 // can return an AddRec expression under the following predicates: 5502 // 5503 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5504 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5505 // P2: An Equal predicate that guarantees that 5506 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5507 // P3: An Equal predicate that guarantees that 5508 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5509 // 5510 // As we next prove, the above predicates guarantee that: 5511 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5512 // 5513 // 5514 // More formally, we want to prove that: 5515 // Expr(i+1) = Start + (i+1) * Accum 5516 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5517 // 5518 // Given that: 5519 // 1) Expr(0) = Start 5520 // 2) Expr(1) = Start + Accum 5521 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5522 // 3) Induction hypothesis (step i): 5523 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5524 // 5525 // Proof: 5526 // Expr(i+1) = 5527 // = Start + (i+1)*Accum 5528 // = (Start + i*Accum) + Accum 5529 // = Expr(i) + Accum 5530 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5531 // :: from step i 5532 // 5533 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5534 // 5535 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5536 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5537 // + Accum :: from P3 5538 // 5539 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5540 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5541 // 5542 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5543 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5544 // 5545 // By induction, the same applies to all iterations 1<=i<n: 5546 // 5547 5548 // Create a truncated addrec for which we will add a no overflow check (P1). 5549 const SCEV *StartVal = getSCEV(StartValueV); 5550 const SCEV *PHISCEV = 5551 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5552 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5553 5554 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5555 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5556 // will be constant. 5557 // 5558 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5559 // add P1. 5560 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5561 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5562 Signed ? SCEVWrapPredicate::IncrementNSSW 5563 : SCEVWrapPredicate::IncrementNUSW; 5564 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5565 Predicates.push_back(AddRecPred); 5566 } 5567 5568 // Create the Equal Predicates P2,P3: 5569 5570 // It is possible that the predicates P2 and/or P3 are computable at 5571 // compile time due to StartVal and/or Accum being constants. 5572 // If either one is, then we can check that now and escape if either P2 5573 // or P3 is false. 5574 5575 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5576 // for each of StartVal and Accum 5577 auto getExtendedExpr = [&](const SCEV *Expr, 5578 bool CreateSignExtend) -> const SCEV * { 5579 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5580 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5581 const SCEV *ExtendedExpr = 5582 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5583 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5584 return ExtendedExpr; 5585 }; 5586 5587 // Given: 5588 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5589 // = getExtendedExpr(Expr) 5590 // Determine whether the predicate P: Expr == ExtendedExpr 5591 // is known to be false at compile time 5592 auto PredIsKnownFalse = [&](const SCEV *Expr, 5593 const SCEV *ExtendedExpr) -> bool { 5594 return Expr != ExtendedExpr && 5595 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5596 }; 5597 5598 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5599 if (PredIsKnownFalse(StartVal, StartExtended)) { 5600 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5601 return std::nullopt; 5602 } 5603 5604 // The Step is always Signed (because the overflow checks are either 5605 // NSSW or NUSW) 5606 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5607 if (PredIsKnownFalse(Accum, AccumExtended)) { 5608 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5609 return std::nullopt; 5610 } 5611 5612 auto AppendPredicate = [&](const SCEV *Expr, 5613 const SCEV *ExtendedExpr) -> void { 5614 if (Expr != ExtendedExpr && 5615 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5616 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5617 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5618 Predicates.push_back(Pred); 5619 } 5620 }; 5621 5622 AppendPredicate(StartVal, StartExtended); 5623 AppendPredicate(Accum, AccumExtended); 5624 5625 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5626 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5627 // into NewAR if it will also add the runtime overflow checks specified in 5628 // Predicates. 5629 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5630 5631 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5632 std::make_pair(NewAR, Predicates); 5633 // Remember the result of the analysis for this SCEV at this locayyytion. 5634 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5635 return PredRewrite; 5636 } 5637 5638 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5639 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5640 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5641 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5642 if (!L) 5643 return std::nullopt; 5644 5645 // Check to see if we already analyzed this PHI. 5646 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5647 if (I != PredicatedSCEVRewrites.end()) { 5648 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5649 I->second; 5650 // Analysis was done before and failed to create an AddRec: 5651 if (Rewrite.first == SymbolicPHI) 5652 return std::nullopt; 5653 // Analysis was done before and succeeded to create an AddRec under 5654 // a predicate: 5655 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5656 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5657 return Rewrite; 5658 } 5659 5660 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5661 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5662 5663 // Record in the cache that the analysis failed 5664 if (!Rewrite) { 5665 SmallVector<const SCEVPredicate *, 3> Predicates; 5666 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5667 return std::nullopt; 5668 } 5669 5670 return Rewrite; 5671 } 5672 5673 // FIXME: This utility is currently required because the Rewriter currently 5674 // does not rewrite this expression: 5675 // {0, +, (sext ix (trunc iy to ix) to iy)} 5676 // into {0, +, %step}, 5677 // even when the following Equal predicate exists: 5678 // "%step == (sext ix (trunc iy to ix) to iy)". 5679 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5680 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5681 if (AR1 == AR2) 5682 return true; 5683 5684 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5685 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5686 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5687 return false; 5688 return true; 5689 }; 5690 5691 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5692 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5693 return false; 5694 return true; 5695 } 5696 5697 /// A helper function for createAddRecFromPHI to handle simple cases. 5698 /// 5699 /// This function tries to find an AddRec expression for the simplest (yet most 5700 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5701 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5702 /// technique for finding the AddRec expression. 5703 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5704 Value *BEValueV, 5705 Value *StartValueV) { 5706 const Loop *L = LI.getLoopFor(PN->getParent()); 5707 assert(L && L->getHeader() == PN->getParent()); 5708 assert(BEValueV && StartValueV); 5709 5710 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); 5711 if (!BO) 5712 return nullptr; 5713 5714 if (BO->Opcode != Instruction::Add) 5715 return nullptr; 5716 5717 const SCEV *Accum = nullptr; 5718 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5719 Accum = getSCEV(BO->RHS); 5720 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5721 Accum = getSCEV(BO->LHS); 5722 5723 if (!Accum) 5724 return nullptr; 5725 5726 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5727 if (BO->IsNUW) 5728 Flags = setFlags(Flags, SCEV::FlagNUW); 5729 if (BO->IsNSW) 5730 Flags = setFlags(Flags, SCEV::FlagNSW); 5731 5732 const SCEV *StartVal = getSCEV(StartValueV); 5733 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5734 insertValueToMap(PN, PHISCEV); 5735 5736 // We can add Flags to the post-inc expression only if we 5737 // know that it is *undefined behavior* for BEValueV to 5738 // overflow. 5739 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5740 assert(isLoopInvariant(Accum, L) && 5741 "Accum is defined outside L, but is not invariant?"); 5742 if (isAddRecNeverPoison(BEInst, L)) 5743 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5744 } 5745 5746 return PHISCEV; 5747 } 5748 5749 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5750 const Loop *L = LI.getLoopFor(PN->getParent()); 5751 if (!L || L->getHeader() != PN->getParent()) 5752 return nullptr; 5753 5754 // The loop may have multiple entrances or multiple exits; we can analyze 5755 // this phi as an addrec if it has a unique entry value and a unique 5756 // backedge value. 5757 Value *BEValueV = nullptr, *StartValueV = nullptr; 5758 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5759 Value *V = PN->getIncomingValue(i); 5760 if (L->contains(PN->getIncomingBlock(i))) { 5761 if (!BEValueV) { 5762 BEValueV = V; 5763 } else if (BEValueV != V) { 5764 BEValueV = nullptr; 5765 break; 5766 } 5767 } else if (!StartValueV) { 5768 StartValueV = V; 5769 } else if (StartValueV != V) { 5770 StartValueV = nullptr; 5771 break; 5772 } 5773 } 5774 if (!BEValueV || !StartValueV) 5775 return nullptr; 5776 5777 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5778 "PHI node already processed?"); 5779 5780 // First, try to find AddRec expression without creating a fictituos symbolic 5781 // value for PN. 5782 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5783 return S; 5784 5785 // Handle PHI node value symbolically. 5786 const SCEV *SymbolicName = getUnknown(PN); 5787 insertValueToMap(PN, SymbolicName); 5788 5789 // Using this symbolic name for the PHI, analyze the value coming around 5790 // the back-edge. 5791 const SCEV *BEValue = getSCEV(BEValueV); 5792 5793 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5794 // has a special value for the first iteration of the loop. 5795 5796 // If the value coming around the backedge is an add with the symbolic 5797 // value we just inserted, then we found a simple induction variable! 5798 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5799 // If there is a single occurrence of the symbolic value, replace it 5800 // with a recurrence. 5801 unsigned FoundIndex = Add->getNumOperands(); 5802 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5803 if (Add->getOperand(i) == SymbolicName) 5804 if (FoundIndex == e) { 5805 FoundIndex = i; 5806 break; 5807 } 5808 5809 if (FoundIndex != Add->getNumOperands()) { 5810 // Create an add with everything but the specified operand. 5811 SmallVector<const SCEV *, 8> Ops; 5812 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5813 if (i != FoundIndex) 5814 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5815 L, *this)); 5816 const SCEV *Accum = getAddExpr(Ops); 5817 5818 // This is not a valid addrec if the step amount is varying each 5819 // loop iteration, but is not itself an addrec in this loop. 5820 if (isLoopInvariant(Accum, L) || 5821 (isa<SCEVAddRecExpr>(Accum) && 5822 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5823 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5824 5825 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { 5826 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5827 if (BO->IsNUW) 5828 Flags = setFlags(Flags, SCEV::FlagNUW); 5829 if (BO->IsNSW) 5830 Flags = setFlags(Flags, SCEV::FlagNSW); 5831 } 5832 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5833 // If the increment is an inbounds GEP, then we know the address 5834 // space cannot be wrapped around. We cannot make any guarantee 5835 // about signed or unsigned overflow because pointers are 5836 // unsigned but we may have a negative index from the base 5837 // pointer. We can guarantee that no unsigned wrap occurs if the 5838 // indices form a positive value. 5839 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5840 Flags = setFlags(Flags, SCEV::FlagNW); 5841 5842 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5843 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5844 Flags = setFlags(Flags, SCEV::FlagNUW); 5845 } 5846 5847 // We cannot transfer nuw and nsw flags from subtraction 5848 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5849 // for instance. 5850 } 5851 5852 const SCEV *StartVal = getSCEV(StartValueV); 5853 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5854 5855 // Okay, for the entire analysis of this edge we assumed the PHI 5856 // to be symbolic. We now need to go back and purge all of the 5857 // entries for the scalars that use the symbolic expression. 5858 forgetMemoizedResults(SymbolicName); 5859 insertValueToMap(PN, PHISCEV); 5860 5861 // We can add Flags to the post-inc expression only if we 5862 // know that it is *undefined behavior* for BEValueV to 5863 // overflow. 5864 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5865 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5866 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5867 5868 return PHISCEV; 5869 } 5870 } 5871 } else { 5872 // Otherwise, this could be a loop like this: 5873 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5874 // In this case, j = {1,+,1} and BEValue is j. 5875 // Because the other in-value of i (0) fits the evolution of BEValue 5876 // i really is an addrec evolution. 5877 // 5878 // We can generalize this saying that i is the shifted value of BEValue 5879 // by one iteration: 5880 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5881 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5882 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5883 if (Shifted != getCouldNotCompute() && 5884 Start != getCouldNotCompute()) { 5885 const SCEV *StartVal = getSCEV(StartValueV); 5886 if (Start == StartVal) { 5887 // Okay, for the entire analysis of this edge we assumed the PHI 5888 // to be symbolic. We now need to go back and purge all of the 5889 // entries for the scalars that use the symbolic expression. 5890 forgetMemoizedResults(SymbolicName); 5891 insertValueToMap(PN, Shifted); 5892 return Shifted; 5893 } 5894 } 5895 } 5896 5897 // Remove the temporary PHI node SCEV that has been inserted while intending 5898 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5899 // as it will prevent later (possibly simpler) SCEV expressions to be added 5900 // to the ValueExprMap. 5901 eraseValueFromMap(PN); 5902 5903 return nullptr; 5904 } 5905 5906 // Checks if the SCEV S is available at BB. S is considered available at BB 5907 // if S can be materialized at BB without introducing a fault. 5908 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5909 BasicBlock *BB) { 5910 struct CheckAvailable { 5911 bool TraversalDone = false; 5912 bool Available = true; 5913 5914 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5915 BasicBlock *BB = nullptr; 5916 DominatorTree &DT; 5917 5918 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5919 : L(L), BB(BB), DT(DT) {} 5920 5921 bool setUnavailable() { 5922 TraversalDone = true; 5923 Available = false; 5924 return false; 5925 } 5926 5927 bool follow(const SCEV *S) { 5928 switch (S->getSCEVType()) { 5929 case scConstant: 5930 case scPtrToInt: 5931 case scTruncate: 5932 case scZeroExtend: 5933 case scSignExtend: 5934 case scAddExpr: 5935 case scMulExpr: 5936 case scUMaxExpr: 5937 case scSMaxExpr: 5938 case scUMinExpr: 5939 case scSMinExpr: 5940 case scSequentialUMinExpr: 5941 // These expressions are available if their operand(s) is/are. 5942 return true; 5943 5944 case scAddRecExpr: { 5945 // We allow add recurrences that are on the loop BB is in, or some 5946 // outer loop. This guarantees availability because the value of the 5947 // add recurrence at BB is simply the "current" value of the induction 5948 // variable. We can relax this in the future; for instance an add 5949 // recurrence on a sibling dominating loop is also available at BB. 5950 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5951 if (L && (ARLoop == L || ARLoop->contains(L))) 5952 return true; 5953 5954 return setUnavailable(); 5955 } 5956 5957 case scUnknown: { 5958 // For SCEVUnknown, we check for simple dominance. 5959 const auto *SU = cast<SCEVUnknown>(S); 5960 Value *V = SU->getValue(); 5961 5962 if (isa<Argument>(V)) 5963 return false; 5964 5965 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5966 return false; 5967 5968 return setUnavailable(); 5969 } 5970 5971 case scUDivExpr: 5972 case scCouldNotCompute: 5973 // We do not try to smart about these at all. 5974 return setUnavailable(); 5975 } 5976 llvm_unreachable("Unknown SCEV kind!"); 5977 } 5978 5979 bool isDone() { return TraversalDone; } 5980 }; 5981 5982 CheckAvailable CA(L, BB, DT); 5983 SCEVTraversal<CheckAvailable> ST(CA); 5984 5985 ST.visitAll(S); 5986 return CA.Available; 5987 } 5988 5989 // Try to match a control flow sequence that branches out at BI and merges back 5990 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5991 // match. 5992 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5993 Value *&C, Value *&LHS, Value *&RHS) { 5994 C = BI->getCondition(); 5995 5996 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5997 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5998 5999 if (!LeftEdge.isSingleEdge()) 6000 return false; 6001 6002 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 6003 6004 Use &LeftUse = Merge->getOperandUse(0); 6005 Use &RightUse = Merge->getOperandUse(1); 6006 6007 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 6008 LHS = LeftUse; 6009 RHS = RightUse; 6010 return true; 6011 } 6012 6013 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 6014 LHS = RightUse; 6015 RHS = LeftUse; 6016 return true; 6017 } 6018 6019 return false; 6020 } 6021 6022 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 6023 auto IsReachable = 6024 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 6025 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 6026 const Loop *L = LI.getLoopFor(PN->getParent()); 6027 6028 // We don't want to break LCSSA, even in a SCEV expression tree. 6029 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 6030 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 6031 return nullptr; 6032 6033 // Try to match 6034 // 6035 // br %cond, label %left, label %right 6036 // left: 6037 // br label %merge 6038 // right: 6039 // br label %merge 6040 // merge: 6041 // V = phi [ %x, %left ], [ %y, %right ] 6042 // 6043 // as "select %cond, %x, %y" 6044 6045 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 6046 assert(IDom && "At least the entry block should dominate PN"); 6047 6048 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 6049 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 6050 6051 if (BI && BI->isConditional() && 6052 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 6053 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 6054 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 6055 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 6056 } 6057 6058 return nullptr; 6059 } 6060 6061 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 6062 if (const SCEV *S = createAddRecFromPHI(PN)) 6063 return S; 6064 6065 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 6066 return S; 6067 6068 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 6069 return getSCEV(V); 6070 6071 // If it's not a loop phi, we can't handle it yet. 6072 return getUnknown(PN); 6073 } 6074 6075 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 6076 SCEVTypes RootKind) { 6077 struct FindClosure { 6078 const SCEV *OperandToFind; 6079 const SCEVTypes RootKind; // Must be a sequential min/max expression. 6080 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 6081 6082 bool Found = false; 6083 6084 bool canRecurseInto(SCEVTypes Kind) const { 6085 // We can only recurse into the SCEV expression of the same effective type 6086 // as the type of our root SCEV expression, and into zero-extensions. 6087 return RootKind == Kind || NonSequentialRootKind == Kind || 6088 scZeroExtend == Kind; 6089 }; 6090 6091 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 6092 : OperandToFind(OperandToFind), RootKind(RootKind), 6093 NonSequentialRootKind( 6094 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 6095 RootKind)) {} 6096 6097 bool follow(const SCEV *S) { 6098 Found = S == OperandToFind; 6099 6100 return !isDone() && canRecurseInto(S->getSCEVType()); 6101 } 6102 6103 bool isDone() const { return Found; } 6104 }; 6105 6106 FindClosure FC(OperandToFind, RootKind); 6107 visitAll(Root, FC); 6108 return FC.Found; 6109 } 6110 6111 std::optional<const SCEV *> 6112 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, 6113 ICmpInst *Cond, 6114 Value *TrueVal, 6115 Value *FalseVal) { 6116 // Try to match some simple smax or umax patterns. 6117 auto *ICI = Cond; 6118 6119 Value *LHS = ICI->getOperand(0); 6120 Value *RHS = ICI->getOperand(1); 6121 6122 switch (ICI->getPredicate()) { 6123 case ICmpInst::ICMP_SLT: 6124 case ICmpInst::ICMP_SLE: 6125 case ICmpInst::ICMP_ULT: 6126 case ICmpInst::ICMP_ULE: 6127 std::swap(LHS, RHS); 6128 [[fallthrough]]; 6129 case ICmpInst::ICMP_SGT: 6130 case ICmpInst::ICMP_SGE: 6131 case ICmpInst::ICMP_UGT: 6132 case ICmpInst::ICMP_UGE: 6133 // a > b ? a+x : b+x -> max(a, b)+x 6134 // a > b ? b+x : a+x -> min(a, b)+x 6135 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { 6136 bool Signed = ICI->isSigned(); 6137 const SCEV *LA = getSCEV(TrueVal); 6138 const SCEV *RA = getSCEV(FalseVal); 6139 const SCEV *LS = getSCEV(LHS); 6140 const SCEV *RS = getSCEV(RHS); 6141 if (LA->getType()->isPointerTy()) { 6142 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6143 // Need to make sure we can't produce weird expressions involving 6144 // negated pointers. 6145 if (LA == LS && RA == RS) 6146 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6147 if (LA == RS && RA == LS) 6148 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6149 } 6150 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6151 if (Op->getType()->isPointerTy()) { 6152 Op = getLosslessPtrToIntExpr(Op); 6153 if (isa<SCEVCouldNotCompute>(Op)) 6154 return Op; 6155 } 6156 if (Signed) 6157 Op = getNoopOrSignExtend(Op, Ty); 6158 else 6159 Op = getNoopOrZeroExtend(Op, Ty); 6160 return Op; 6161 }; 6162 LS = CoerceOperand(LS); 6163 RS = CoerceOperand(RS); 6164 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6165 break; 6166 const SCEV *LDiff = getMinusSCEV(LA, LS); 6167 const SCEV *RDiff = getMinusSCEV(RA, RS); 6168 if (LDiff == RDiff) 6169 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6170 LDiff); 6171 LDiff = getMinusSCEV(LA, RS); 6172 RDiff = getMinusSCEV(RA, LS); 6173 if (LDiff == RDiff) 6174 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6175 LDiff); 6176 } 6177 break; 6178 case ICmpInst::ICMP_NE: 6179 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6180 std::swap(TrueVal, FalseVal); 6181 [[fallthrough]]; 6182 case ICmpInst::ICMP_EQ: 6183 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6184 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && 6185 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6186 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); 6187 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6188 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6189 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6190 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6191 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6192 return getAddExpr(getUMaxExpr(X, C), Y); 6193 } 6194 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6195 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6196 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6197 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6198 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6199 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6200 const SCEV *X = getSCEV(LHS); 6201 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6202 X = ZExt->getOperand(); 6203 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { 6204 const SCEV *FalseValExpr = getSCEV(FalseVal); 6205 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6206 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, 6207 /*Sequential=*/true); 6208 } 6209 } 6210 break; 6211 default: 6212 break; 6213 } 6214 6215 return std::nullopt; 6216 } 6217 6218 static std::optional<const SCEV *> 6219 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6220 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6221 assert(CondExpr->getType()->isIntegerTy(1) && 6222 TrueExpr->getType() == FalseExpr->getType() && 6223 TrueExpr->getType()->isIntegerTy(1) && 6224 "Unexpected operands of a select."); 6225 6226 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6227 // --> C + (umin_seq cond, x - C) 6228 // 6229 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6230 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6231 // --> C + (umin_seq ~cond, x - C) 6232 6233 // FIXME: while we can't legally model the case where both of the hands 6234 // are fully variable, we only require that the *difference* is constant. 6235 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6236 return std::nullopt; 6237 6238 const SCEV *X, *C; 6239 if (isa<SCEVConstant>(TrueExpr)) { 6240 CondExpr = SE->getNotSCEV(CondExpr); 6241 X = FalseExpr; 6242 C = TrueExpr; 6243 } else { 6244 X = TrueExpr; 6245 C = FalseExpr; 6246 } 6247 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6248 /*Sequential=*/true)); 6249 } 6250 6251 static std::optional<const SCEV *> 6252 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, 6253 Value *FalseVal) { 6254 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6255 return std::nullopt; 6256 6257 const auto *SECond = SE->getSCEV(Cond); 6258 const auto *SETrue = SE->getSCEV(TrueVal); 6259 const auto *SEFalse = SE->getSCEV(FalseVal); 6260 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6261 } 6262 6263 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6264 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6265 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6266 assert(TrueVal->getType() == FalseVal->getType() && 6267 V->getType() == TrueVal->getType() && 6268 "Types of select hands and of the result must match."); 6269 6270 // For now, only deal with i1-typed `select`s. 6271 if (!V->getType()->isIntegerTy(1)) 6272 return getUnknown(V); 6273 6274 if (std::optional<const SCEV *> S = 6275 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6276 return *S; 6277 6278 return getUnknown(V); 6279 } 6280 6281 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6282 Value *TrueVal, 6283 Value *FalseVal) { 6284 // Handle "constant" branch or select. This can occur for instance when a 6285 // loop pass transforms an inner loop and moves on to process the outer loop. 6286 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6287 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6288 6289 if (auto *I = dyn_cast<Instruction>(V)) { 6290 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6291 if (std::optional<const SCEV *> S = 6292 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, 6293 TrueVal, FalseVal)) 6294 return *S; 6295 } 6296 } 6297 6298 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6299 } 6300 6301 /// Expand GEP instructions into add and multiply operations. This allows them 6302 /// to be analyzed by regular SCEV code. 6303 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6304 assert(GEP->getSourceElementType()->isSized() && 6305 "GEP source element type must be sized"); 6306 6307 SmallVector<const SCEV *, 4> IndexExprs; 6308 for (Value *Index : GEP->indices()) 6309 IndexExprs.push_back(getSCEV(Index)); 6310 return getGEPExpr(GEP, IndexExprs); 6311 } 6312 6313 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6314 switch (S->getSCEVType()) { 6315 case scConstant: 6316 return cast<SCEVConstant>(S)->getAPInt().countTrailingZeros(); 6317 case scTruncate: { 6318 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); 6319 return std::min(GetMinTrailingZeros(T->getOperand()), 6320 (uint32_t)getTypeSizeInBits(T->getType())); 6321 } 6322 case scZeroExtend: { 6323 const SCEVZeroExtendExpr *E = cast<SCEVZeroExtendExpr>(S); 6324 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6325 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6326 ? getTypeSizeInBits(E->getType()) 6327 : OpRes; 6328 } 6329 case scSignExtend: { 6330 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); 6331 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6332 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6333 ? getTypeSizeInBits(E->getType()) 6334 : OpRes; 6335 } 6336 case scMulExpr: { 6337 const SCEVMulExpr *M = cast<SCEVMulExpr>(S); 6338 // The result is the sum of all operands results. 6339 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6340 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6341 for (unsigned i = 1, e = M->getNumOperands(); 6342 SumOpRes != BitWidth && i != e; ++i) 6343 SumOpRes = 6344 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6345 return SumOpRes; 6346 } 6347 case scUDivExpr: 6348 return 0; 6349 case scPtrToInt: 6350 case scAddExpr: 6351 case scAddRecExpr: 6352 case scUMaxExpr: 6353 case scSMaxExpr: 6354 case scUMinExpr: 6355 case scSMinExpr: 6356 case scSequentialUMinExpr: { 6357 // The result is the min of all operands results. 6358 ArrayRef<const SCEV *> Ops = S->operands(); 6359 uint32_t MinOpRes = GetMinTrailingZeros(Ops[0]); 6360 for (unsigned I = 1, E = Ops.size(); MinOpRes && I != E; ++I) 6361 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(Ops[I])); 6362 return MinOpRes; 6363 } 6364 case scUnknown: { 6365 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6366 // For a SCEVUnknown, ask ValueTracking. 6367 KnownBits Known = 6368 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6369 return Known.countMinTrailingZeros(); 6370 } 6371 case scCouldNotCompute: 6372 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6373 } 6374 llvm_unreachable("Unknown SCEV kind!"); 6375 } 6376 6377 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6378 auto I = MinTrailingZerosCache.find(S); 6379 if (I != MinTrailingZerosCache.end()) 6380 return I->second; 6381 6382 uint32_t Result = GetMinTrailingZerosImpl(S); 6383 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6384 assert(InsertPair.second && "Should insert a new key"); 6385 return InsertPair.first->second; 6386 } 6387 6388 /// Helper method to assign a range to V from metadata present in the IR. 6389 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6390 if (Instruction *I = dyn_cast<Instruction>(V)) 6391 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6392 return getConstantRangeFromMetadata(*MD); 6393 6394 return std::nullopt; 6395 } 6396 6397 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6398 SCEV::NoWrapFlags Flags) { 6399 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6400 AddRec->setNoWrapFlags(Flags); 6401 UnsignedRanges.erase(AddRec); 6402 SignedRanges.erase(AddRec); 6403 } 6404 } 6405 6406 ConstantRange ScalarEvolution:: 6407 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6408 const DataLayout &DL = getDataLayout(); 6409 6410 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6411 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6412 6413 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6414 // use information about the trip count to improve our available range. Note 6415 // that the trip count independent cases are already handled by known bits. 6416 // WARNING: The definition of recurrence used here is subtly different than 6417 // the one used by AddRec (and thus most of this file). Step is allowed to 6418 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6419 // and other addrecs in the same loop (for non-affine addrecs). The code 6420 // below intentionally handles the case where step is not loop invariant. 6421 auto *P = dyn_cast<PHINode>(U->getValue()); 6422 if (!P) 6423 return FullSet; 6424 6425 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6426 // even the values that are not available in these blocks may come from them, 6427 // and this leads to false-positive recurrence test. 6428 for (auto *Pred : predecessors(P->getParent())) 6429 if (!DT.isReachableFromEntry(Pred)) 6430 return FullSet; 6431 6432 BinaryOperator *BO; 6433 Value *Start, *Step; 6434 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6435 return FullSet; 6436 6437 // If we found a recurrence in reachable code, we must be in a loop. Note 6438 // that BO might be in some subloop of L, and that's completely okay. 6439 auto *L = LI.getLoopFor(P->getParent()); 6440 assert(L && L->getHeader() == P->getParent()); 6441 if (!L->contains(BO->getParent())) 6442 // NOTE: This bailout should be an assert instead. However, asserting 6443 // the condition here exposes a case where LoopFusion is querying SCEV 6444 // with malformed loop information during the midst of the transform. 6445 // There doesn't appear to be an obvious fix, so for the moment bailout 6446 // until the caller issue can be fixed. PR49566 tracks the bug. 6447 return FullSet; 6448 6449 // TODO: Extend to other opcodes such as mul, and div 6450 switch (BO->getOpcode()) { 6451 default: 6452 return FullSet; 6453 case Instruction::AShr: 6454 case Instruction::LShr: 6455 case Instruction::Shl: 6456 break; 6457 }; 6458 6459 if (BO->getOperand(0) != P) 6460 // TODO: Handle the power function forms some day. 6461 return FullSet; 6462 6463 unsigned TC = getSmallConstantMaxTripCount(L); 6464 if (!TC || TC >= BitWidth) 6465 return FullSet; 6466 6467 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6468 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6469 assert(KnownStart.getBitWidth() == BitWidth && 6470 KnownStep.getBitWidth() == BitWidth); 6471 6472 // Compute total shift amount, being careful of overflow and bitwidths. 6473 auto MaxShiftAmt = KnownStep.getMaxValue(); 6474 APInt TCAP(BitWidth, TC-1); 6475 bool Overflow = false; 6476 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6477 if (Overflow) 6478 return FullSet; 6479 6480 switch (BO->getOpcode()) { 6481 default: 6482 llvm_unreachable("filtered out above"); 6483 case Instruction::AShr: { 6484 // For each ashr, three cases: 6485 // shift = 0 => unchanged value 6486 // saturation => 0 or -1 6487 // other => a value closer to zero (of the same sign) 6488 // Thus, the end value is closer to zero than the start. 6489 auto KnownEnd = KnownBits::ashr(KnownStart, 6490 KnownBits::makeConstant(TotalShift)); 6491 if (KnownStart.isNonNegative()) 6492 // Analogous to lshr (simply not yet canonicalized) 6493 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6494 KnownStart.getMaxValue() + 1); 6495 if (KnownStart.isNegative()) 6496 // End >=u Start && End <=s Start 6497 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6498 KnownEnd.getMaxValue() + 1); 6499 break; 6500 } 6501 case Instruction::LShr: { 6502 // For each lshr, three cases: 6503 // shift = 0 => unchanged value 6504 // saturation => 0 6505 // other => a smaller positive number 6506 // Thus, the low end of the unsigned range is the last value produced. 6507 auto KnownEnd = KnownBits::lshr(KnownStart, 6508 KnownBits::makeConstant(TotalShift)); 6509 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6510 KnownStart.getMaxValue() + 1); 6511 } 6512 case Instruction::Shl: { 6513 // Iff no bits are shifted out, value increases on every shift. 6514 auto KnownEnd = KnownBits::shl(KnownStart, 6515 KnownBits::makeConstant(TotalShift)); 6516 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6517 return ConstantRange(KnownStart.getMinValue(), 6518 KnownEnd.getMaxValue() + 1); 6519 break; 6520 } 6521 }; 6522 return FullSet; 6523 } 6524 6525 const ConstantRange & 6526 ScalarEvolution::getRangeRefIter(const SCEV *S, 6527 ScalarEvolution::RangeSignHint SignHint) { 6528 DenseMap<const SCEV *, ConstantRange> &Cache = 6529 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6530 : SignedRanges; 6531 SmallVector<const SCEV *> WorkList; 6532 SmallPtrSet<const SCEV *, 8> Seen; 6533 6534 // Add Expr to the worklist, if Expr is either an N-ary expression or a 6535 // SCEVUnknown PHI node. 6536 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { 6537 if (!Seen.insert(Expr).second) 6538 return; 6539 if (Cache.find(Expr) != Cache.end()) 6540 return; 6541 switch (Expr->getSCEVType()) { 6542 case scUnknown: 6543 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) 6544 break; 6545 [[fallthrough]]; 6546 case scConstant: 6547 case scTruncate: 6548 case scZeroExtend: 6549 case scSignExtend: 6550 case scPtrToInt: 6551 case scAddExpr: 6552 case scMulExpr: 6553 case scUDivExpr: 6554 case scAddRecExpr: 6555 case scUMaxExpr: 6556 case scSMaxExpr: 6557 case scUMinExpr: 6558 case scSMinExpr: 6559 case scSequentialUMinExpr: 6560 WorkList.push_back(Expr); 6561 break; 6562 case scCouldNotCompute: 6563 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6564 } 6565 }; 6566 AddToWorklist(S); 6567 6568 // Build worklist by queuing operands of N-ary expressions and phi nodes. 6569 for (unsigned I = 0; I != WorkList.size(); ++I) { 6570 const SCEV *P = WorkList[I]; 6571 auto *UnknownS = dyn_cast<SCEVUnknown>(P); 6572 // If it is not a `SCEVUnknown`, just recurse into operands. 6573 if (!UnknownS) { 6574 for (const SCEV *Op : P->operands()) 6575 AddToWorklist(Op); 6576 continue; 6577 } 6578 // `SCEVUnknown`'s require special treatment. 6579 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { 6580 if (!PendingPhiRangesIter.insert(P).second) 6581 continue; 6582 for (auto &Op : reverse(P->operands())) 6583 AddToWorklist(getSCEV(Op)); 6584 } 6585 } 6586 6587 if (!WorkList.empty()) { 6588 // Use getRangeRef to compute ranges for items in the worklist in reverse 6589 // order. This will force ranges for earlier operands to be computed before 6590 // their users in most cases. 6591 for (const SCEV *P : 6592 reverse(make_range(WorkList.begin() + 1, WorkList.end()))) { 6593 getRangeRef(P, SignHint); 6594 6595 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) 6596 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) 6597 PendingPhiRangesIter.erase(P); 6598 } 6599 } 6600 6601 return getRangeRef(S, SignHint, 0); 6602 } 6603 6604 /// Determine the range for a particular SCEV. If SignHint is 6605 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6606 /// with a "cleaner" unsigned (resp. signed) representation. 6607 const ConstantRange &ScalarEvolution::getRangeRef( 6608 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { 6609 DenseMap<const SCEV *, ConstantRange> &Cache = 6610 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6611 : SignedRanges; 6612 ConstantRange::PreferredRangeType RangeType = 6613 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6614 : ConstantRange::Signed; 6615 6616 // See if we've computed this range already. 6617 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6618 if (I != Cache.end()) 6619 return I->second; 6620 6621 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6622 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6623 6624 // Switch to iteratively computing the range for S, if it is part of a deeply 6625 // nested expression. 6626 if (Depth > RangeIterThreshold) 6627 return getRangeRefIter(S, SignHint); 6628 6629 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6630 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6631 using OBO = OverflowingBinaryOperator; 6632 6633 // If the value has known zeros, the maximum value will have those known zeros 6634 // as well. 6635 uint32_t TZ = GetMinTrailingZeros(S); 6636 if (TZ != 0) { 6637 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6638 ConservativeResult = 6639 ConstantRange(APInt::getMinValue(BitWidth), 6640 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6641 else 6642 ConservativeResult = ConstantRange( 6643 APInt::getSignedMinValue(BitWidth), 6644 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6645 } 6646 6647 switch (S->getSCEVType()) { 6648 case scConstant: 6649 llvm_unreachable("Already handled above."); 6650 case scTruncate: { 6651 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); 6652 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); 6653 return setRange( 6654 Trunc, SignHint, 6655 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); 6656 } 6657 case scZeroExtend: { 6658 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); 6659 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); 6660 return setRange( 6661 ZExt, SignHint, 6662 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); 6663 } 6664 case scSignExtend: { 6665 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); 6666 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); 6667 return setRange( 6668 SExt, SignHint, 6669 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); 6670 } 6671 case scPtrToInt: { 6672 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); 6673 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); 6674 return setRange(PtrToInt, SignHint, X); 6675 } 6676 case scAddExpr: { 6677 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 6678 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); 6679 unsigned WrapType = OBO::AnyWrap; 6680 if (Add->hasNoSignedWrap()) 6681 WrapType |= OBO::NoSignedWrap; 6682 if (Add->hasNoUnsignedWrap()) 6683 WrapType |= OBO::NoUnsignedWrap; 6684 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6685 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1), 6686 WrapType, RangeType); 6687 return setRange(Add, SignHint, 6688 ConservativeResult.intersectWith(X, RangeType)); 6689 } 6690 case scMulExpr: { 6691 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); 6692 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); 6693 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6694 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1)); 6695 return setRange(Mul, SignHint, 6696 ConservativeResult.intersectWith(X, RangeType)); 6697 } 6698 case scUDivExpr: { 6699 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6700 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); 6701 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); 6702 return setRange(UDiv, SignHint, 6703 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6704 } 6705 case scAddRecExpr: { 6706 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); 6707 // If there's no unsigned wrap, the value will never be less than its 6708 // initial value. 6709 if (AddRec->hasNoUnsignedWrap()) { 6710 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6711 if (!UnsignedMinValue.isZero()) 6712 ConservativeResult = ConservativeResult.intersectWith( 6713 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6714 } 6715 6716 // If there's no signed wrap, and all the operands except initial value have 6717 // the same sign or zero, the value won't ever be: 6718 // 1: smaller than initial value if operands are non negative, 6719 // 2: bigger than initial value if operands are non positive. 6720 // For both cases, value can not cross signed min/max boundary. 6721 if (AddRec->hasNoSignedWrap()) { 6722 bool AllNonNeg = true; 6723 bool AllNonPos = true; 6724 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6725 if (!isKnownNonNegative(AddRec->getOperand(i))) 6726 AllNonNeg = false; 6727 if (!isKnownNonPositive(AddRec->getOperand(i))) 6728 AllNonPos = false; 6729 } 6730 if (AllNonNeg) 6731 ConservativeResult = ConservativeResult.intersectWith( 6732 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6733 APInt::getSignedMinValue(BitWidth)), 6734 RangeType); 6735 else if (AllNonPos) 6736 ConservativeResult = ConservativeResult.intersectWith( 6737 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 6738 getSignedRangeMax(AddRec->getStart()) + 6739 1), 6740 RangeType); 6741 } 6742 6743 // TODO: non-affine addrec 6744 if (AddRec->isAffine()) { 6745 const SCEV *MaxBECount = 6746 getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6747 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6748 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6749 auto RangeFromAffine = getRangeForAffineAR( 6750 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6751 BitWidth); 6752 ConservativeResult = 6753 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6754 6755 auto RangeFromFactoring = getRangeViaFactoring( 6756 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6757 BitWidth); 6758 ConservativeResult = 6759 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6760 } 6761 6762 // Now try symbolic BE count and more powerful methods. 6763 if (UseExpensiveRangeSharpening) { 6764 const SCEV *SymbolicMaxBECount = 6765 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6766 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6767 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6768 AddRec->hasNoSelfWrap()) { 6769 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6770 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6771 ConservativeResult = 6772 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6773 } 6774 } 6775 } 6776 6777 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6778 } 6779 case scUMaxExpr: 6780 case scSMaxExpr: 6781 case scUMinExpr: 6782 case scSMinExpr: 6783 case scSequentialUMinExpr: { 6784 Intrinsic::ID ID; 6785 switch (S->getSCEVType()) { 6786 case scUMaxExpr: 6787 ID = Intrinsic::umax; 6788 break; 6789 case scSMaxExpr: 6790 ID = Intrinsic::smax; 6791 break; 6792 case scUMinExpr: 6793 case scSequentialUMinExpr: 6794 ID = Intrinsic::umin; 6795 break; 6796 case scSMinExpr: 6797 ID = Intrinsic::smin; 6798 break; 6799 default: 6800 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6801 } 6802 6803 const auto *NAry = cast<SCEVNAryExpr>(S); 6804 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); 6805 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6806 X = X.intrinsic( 6807 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); 6808 return setRange(S, SignHint, 6809 ConservativeResult.intersectWith(X, RangeType)); 6810 } 6811 case scUnknown: { 6812 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6813 6814 // Check if the IR explicitly contains !range metadata. 6815 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6816 if (MDRange) 6817 ConservativeResult = 6818 ConservativeResult.intersectWith(*MDRange, RangeType); 6819 6820 // Use facts about recurrences in the underlying IR. Note that add 6821 // recurrences are AddRecExprs and thus don't hit this path. This 6822 // primarily handles shift recurrences. 6823 auto CR = getRangeForUnknownRecurrence(U); 6824 ConservativeResult = ConservativeResult.intersectWith(CR); 6825 6826 // See if ValueTracking can give us a useful range. 6827 const DataLayout &DL = getDataLayout(); 6828 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6829 if (Known.getBitWidth() != BitWidth) 6830 Known = Known.zextOrTrunc(BitWidth); 6831 6832 // ValueTracking may be able to compute a tighter result for the number of 6833 // sign bits than for the value of those sign bits. 6834 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6835 if (U->getType()->isPointerTy()) { 6836 // If the pointer size is larger than the index size type, this can cause 6837 // NS to be larger than BitWidth. So compensate for this. 6838 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6839 int ptrIdxDiff = ptrSize - BitWidth; 6840 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6841 NS -= ptrIdxDiff; 6842 } 6843 6844 if (NS > 1) { 6845 // If we know any of the sign bits, we know all of the sign bits. 6846 if (!Known.Zero.getHiBits(NS).isZero()) 6847 Known.Zero.setHighBits(NS); 6848 if (!Known.One.getHiBits(NS).isZero()) 6849 Known.One.setHighBits(NS); 6850 } 6851 6852 if (Known.getMinValue() != Known.getMaxValue() + 1) 6853 ConservativeResult = ConservativeResult.intersectWith( 6854 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6855 RangeType); 6856 if (NS > 1) 6857 ConservativeResult = ConservativeResult.intersectWith( 6858 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6859 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6860 RangeType); 6861 6862 // A range of Phi is a subset of union of all ranges of its input. 6863 if (PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6864 // Make sure that we do not run over cycled Phis. 6865 if (PendingPhiRanges.insert(Phi).second) { 6866 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6867 6868 for (const auto &Op : Phi->operands()) { 6869 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); 6870 RangeFromOps = RangeFromOps.unionWith(OpRange); 6871 // No point to continue if we already have a full set. 6872 if (RangeFromOps.isFullSet()) 6873 break; 6874 } 6875 ConservativeResult = 6876 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6877 bool Erased = PendingPhiRanges.erase(Phi); 6878 assert(Erased && "Failed to erase Phi properly?"); 6879 (void)Erased; 6880 } 6881 } 6882 6883 // vscale can't be equal to zero 6884 if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue())) 6885 if (II->getIntrinsicID() == Intrinsic::vscale) { 6886 ConstantRange Disallowed = APInt::getZero(BitWidth); 6887 ConservativeResult = ConservativeResult.difference(Disallowed); 6888 } 6889 6890 return setRange(U, SignHint, std::move(ConservativeResult)); 6891 } 6892 case scCouldNotCompute: 6893 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6894 } 6895 6896 return setRange(S, SignHint, std::move(ConservativeResult)); 6897 } 6898 6899 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6900 // values that the expression can take. Initially, the expression has a value 6901 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6902 // argument defines if we treat Step as signed or unsigned. 6903 static ConstantRange getRangeForAffineARHelper(APInt Step, 6904 const ConstantRange &StartRange, 6905 const APInt &MaxBECount, 6906 unsigned BitWidth, bool Signed) { 6907 // If either Step or MaxBECount is 0, then the expression won't change, and we 6908 // just need to return the initial range. 6909 if (Step == 0 || MaxBECount == 0) 6910 return StartRange; 6911 6912 // If we don't know anything about the initial value (i.e. StartRange is 6913 // FullRange), then we don't know anything about the final range either. 6914 // Return FullRange. 6915 if (StartRange.isFullSet()) 6916 return ConstantRange::getFull(BitWidth); 6917 6918 // If Step is signed and negative, then we use its absolute value, but we also 6919 // note that we're moving in the opposite direction. 6920 bool Descending = Signed && Step.isNegative(); 6921 6922 if (Signed) 6923 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6924 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6925 // This equations hold true due to the well-defined wrap-around behavior of 6926 // APInt. 6927 Step = Step.abs(); 6928 6929 // Check if Offset is more than full span of BitWidth. If it is, the 6930 // expression is guaranteed to overflow. 6931 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6932 return ConstantRange::getFull(BitWidth); 6933 6934 // Offset is by how much the expression can change. Checks above guarantee no 6935 // overflow here. 6936 APInt Offset = Step * MaxBECount; 6937 6938 // Minimum value of the final range will match the minimal value of StartRange 6939 // if the expression is increasing and will be decreased by Offset otherwise. 6940 // Maximum value of the final range will match the maximal value of StartRange 6941 // if the expression is decreasing and will be increased by Offset otherwise. 6942 APInt StartLower = StartRange.getLower(); 6943 APInt StartUpper = StartRange.getUpper() - 1; 6944 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6945 : (StartUpper + std::move(Offset)); 6946 6947 // It's possible that the new minimum/maximum value will fall into the initial 6948 // range (due to wrap around). This means that the expression can take any 6949 // value in this bitwidth, and we have to return full range. 6950 if (StartRange.contains(MovedBoundary)) 6951 return ConstantRange::getFull(BitWidth); 6952 6953 APInt NewLower = 6954 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6955 APInt NewUpper = 6956 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6957 NewUpper += 1; 6958 6959 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6960 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6961 } 6962 6963 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6964 const SCEV *Step, 6965 const SCEV *MaxBECount, 6966 unsigned BitWidth) { 6967 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6968 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6969 "Precondition!"); 6970 6971 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6972 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6973 6974 // First, consider step signed. 6975 ConstantRange StartSRange = getSignedRange(Start); 6976 ConstantRange StepSRange = getSignedRange(Step); 6977 6978 // If Step can be both positive and negative, we need to find ranges for the 6979 // maximum absolute step values in both directions and union them. 6980 ConstantRange SR = 6981 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6982 MaxBECountValue, BitWidth, /* Signed = */ true); 6983 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6984 StartSRange, MaxBECountValue, 6985 BitWidth, /* Signed = */ true)); 6986 6987 // Next, consider step unsigned. 6988 ConstantRange UR = getRangeForAffineARHelper( 6989 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6990 MaxBECountValue, BitWidth, /* Signed = */ false); 6991 6992 // Finally, intersect signed and unsigned ranges. 6993 return SR.intersectWith(UR, ConstantRange::Smallest); 6994 } 6995 6996 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6997 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6998 ScalarEvolution::RangeSignHint SignHint) { 6999 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 7000 assert(AddRec->hasNoSelfWrap() && 7001 "This only works for non-self-wrapping AddRecs!"); 7002 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 7003 const SCEV *Step = AddRec->getStepRecurrence(*this); 7004 // Only deal with constant step to save compile time. 7005 if (!isa<SCEVConstant>(Step)) 7006 return ConstantRange::getFull(BitWidth); 7007 // Let's make sure that we can prove that we do not self-wrap during 7008 // MaxBECount iterations. We need this because MaxBECount is a maximum 7009 // iteration count estimate, and we might infer nw from some exit for which we 7010 // do not know max exit count (or any other side reasoning). 7011 // TODO: Turn into assert at some point. 7012 if (getTypeSizeInBits(MaxBECount->getType()) > 7013 getTypeSizeInBits(AddRec->getType())) 7014 return ConstantRange::getFull(BitWidth); 7015 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 7016 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 7017 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 7018 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 7019 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 7020 MaxItersWithoutWrap)) 7021 return ConstantRange::getFull(BitWidth); 7022 7023 ICmpInst::Predicate LEPred = 7024 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 7025 ICmpInst::Predicate GEPred = 7026 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 7027 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 7028 7029 // We know that there is no self-wrap. Let's take Start and End values and 7030 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 7031 // the iteration. They either lie inside the range [Min(Start, End), 7032 // Max(Start, End)] or outside it: 7033 // 7034 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 7035 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 7036 // 7037 // No self wrap flag guarantees that the intermediate values cannot be BOTH 7038 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 7039 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 7040 // Start <= End and step is positive, or Start >= End and step is negative. 7041 const SCEV *Start = AddRec->getStart(); 7042 ConstantRange StartRange = getRangeRef(Start, SignHint); 7043 ConstantRange EndRange = getRangeRef(End, SignHint); 7044 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 7045 // If they already cover full iteration space, we will know nothing useful 7046 // even if we prove what we want to prove. 7047 if (RangeBetween.isFullSet()) 7048 return RangeBetween; 7049 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 7050 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 7051 : RangeBetween.isWrappedSet(); 7052 if (IsWrappedSet) 7053 return ConstantRange::getFull(BitWidth); 7054 7055 if (isKnownPositive(Step) && 7056 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 7057 return RangeBetween; 7058 else if (isKnownNegative(Step) && 7059 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 7060 return RangeBetween; 7061 return ConstantRange::getFull(BitWidth); 7062 } 7063 7064 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 7065 const SCEV *Step, 7066 const SCEV *MaxBECount, 7067 unsigned BitWidth) { 7068 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 7069 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 7070 7071 struct SelectPattern { 7072 Value *Condition = nullptr; 7073 APInt TrueValue; 7074 APInt FalseValue; 7075 7076 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 7077 const SCEV *S) { 7078 std::optional<unsigned> CastOp; 7079 APInt Offset(BitWidth, 0); 7080 7081 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 7082 "Should be!"); 7083 7084 // Peel off a constant offset: 7085 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 7086 // In the future we could consider being smarter here and handle 7087 // {Start+Step,+,Step} too. 7088 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 7089 return; 7090 7091 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 7092 S = SA->getOperand(1); 7093 } 7094 7095 // Peel off a cast operation 7096 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 7097 CastOp = SCast->getSCEVType(); 7098 S = SCast->getOperand(); 7099 } 7100 7101 using namespace llvm::PatternMatch; 7102 7103 auto *SU = dyn_cast<SCEVUnknown>(S); 7104 const APInt *TrueVal, *FalseVal; 7105 if (!SU || 7106 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 7107 m_APInt(FalseVal)))) { 7108 Condition = nullptr; 7109 return; 7110 } 7111 7112 TrueValue = *TrueVal; 7113 FalseValue = *FalseVal; 7114 7115 // Re-apply the cast we peeled off earlier 7116 if (CastOp) 7117 switch (*CastOp) { 7118 default: 7119 llvm_unreachable("Unknown SCEV cast type!"); 7120 7121 case scTruncate: 7122 TrueValue = TrueValue.trunc(BitWidth); 7123 FalseValue = FalseValue.trunc(BitWidth); 7124 break; 7125 case scZeroExtend: 7126 TrueValue = TrueValue.zext(BitWidth); 7127 FalseValue = FalseValue.zext(BitWidth); 7128 break; 7129 case scSignExtend: 7130 TrueValue = TrueValue.sext(BitWidth); 7131 FalseValue = FalseValue.sext(BitWidth); 7132 break; 7133 } 7134 7135 // Re-apply the constant offset we peeled off earlier 7136 TrueValue += Offset; 7137 FalseValue += Offset; 7138 } 7139 7140 bool isRecognized() { return Condition != nullptr; } 7141 }; 7142 7143 SelectPattern StartPattern(*this, BitWidth, Start); 7144 if (!StartPattern.isRecognized()) 7145 return ConstantRange::getFull(BitWidth); 7146 7147 SelectPattern StepPattern(*this, BitWidth, Step); 7148 if (!StepPattern.isRecognized()) 7149 return ConstantRange::getFull(BitWidth); 7150 7151 if (StartPattern.Condition != StepPattern.Condition) { 7152 // We don't handle this case today; but we could, by considering four 7153 // possibilities below instead of two. I'm not sure if there are cases where 7154 // that will help over what getRange already does, though. 7155 return ConstantRange::getFull(BitWidth); 7156 } 7157 7158 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 7159 // construct arbitrary general SCEV expressions here. This function is called 7160 // from deep in the call stack, and calling getSCEV (on a sext instruction, 7161 // say) can end up caching a suboptimal value. 7162 7163 // FIXME: without the explicit `this` receiver below, MSVC errors out with 7164 // C2352 and C2512 (otherwise it isn't needed). 7165 7166 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 7167 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 7168 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 7169 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 7170 7171 ConstantRange TrueRange = 7172 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 7173 ConstantRange FalseRange = 7174 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 7175 7176 return TrueRange.unionWith(FalseRange); 7177 } 7178 7179 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 7180 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 7181 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 7182 7183 // Return early if there are no flags to propagate to the SCEV. 7184 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7185 if (BinOp->hasNoUnsignedWrap()) 7186 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 7187 if (BinOp->hasNoSignedWrap()) 7188 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 7189 if (Flags == SCEV::FlagAnyWrap) 7190 return SCEV::FlagAnyWrap; 7191 7192 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7193 } 7194 7195 const Instruction * 7196 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7197 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7198 return &*AddRec->getLoop()->getHeader()->begin(); 7199 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7200 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7201 return I; 7202 return nullptr; 7203 } 7204 7205 const Instruction * 7206 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7207 bool &Precise) { 7208 Precise = true; 7209 // Do a bounded search of the def relation of the requested SCEVs. 7210 SmallSet<const SCEV *, 16> Visited; 7211 SmallVector<const SCEV *> Worklist; 7212 auto pushOp = [&](const SCEV *S) { 7213 if (!Visited.insert(S).second) 7214 return; 7215 // Threshold of 30 here is arbitrary. 7216 if (Visited.size() > 30) { 7217 Precise = false; 7218 return; 7219 } 7220 Worklist.push_back(S); 7221 }; 7222 7223 for (const auto *S : Ops) 7224 pushOp(S); 7225 7226 const Instruction *Bound = nullptr; 7227 while (!Worklist.empty()) { 7228 auto *S = Worklist.pop_back_val(); 7229 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7230 if (!Bound || DT.dominates(Bound, DefI)) 7231 Bound = DefI; 7232 } else { 7233 for (const auto *Op : S->operands()) 7234 pushOp(Op); 7235 } 7236 } 7237 return Bound ? Bound : &*F.getEntryBlock().begin(); 7238 } 7239 7240 const Instruction * 7241 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7242 bool Discard; 7243 return getDefiningScopeBound(Ops, Discard); 7244 } 7245 7246 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7247 const Instruction *B) { 7248 if (A->getParent() == B->getParent() && 7249 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7250 B->getIterator())) 7251 return true; 7252 7253 auto *BLoop = LI.getLoopFor(B->getParent()); 7254 if (BLoop && BLoop->getHeader() == B->getParent() && 7255 BLoop->getLoopPreheader() == A->getParent() && 7256 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7257 A->getParent()->end()) && 7258 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7259 B->getIterator())) 7260 return true; 7261 return false; 7262 } 7263 7264 7265 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7266 // Only proceed if we can prove that I does not yield poison. 7267 if (!programUndefinedIfPoison(I)) 7268 return false; 7269 7270 // At this point we know that if I is executed, then it does not wrap 7271 // according to at least one of NSW or NUW. If I is not executed, then we do 7272 // not know if the calculation that I represents would wrap. Multiple 7273 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7274 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7275 // derived from other instructions that map to the same SCEV. We cannot make 7276 // that guarantee for cases where I is not executed. So we need to find a 7277 // upper bound on the defining scope for the SCEV, and prove that I is 7278 // executed every time we enter that scope. When the bounding scope is a 7279 // loop (the common case), this is equivalent to proving I executes on every 7280 // iteration of that loop. 7281 SmallVector<const SCEV *> SCEVOps; 7282 for (const Use &Op : I->operands()) { 7283 // I could be an extractvalue from a call to an overflow intrinsic. 7284 // TODO: We can do better here in some cases. 7285 if (isSCEVable(Op->getType())) 7286 SCEVOps.push_back(getSCEV(Op)); 7287 } 7288 auto *DefI = getDefiningScopeBound(SCEVOps); 7289 return isGuaranteedToTransferExecutionTo(DefI, I); 7290 } 7291 7292 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7293 // If we know that \c I can never be poison period, then that's enough. 7294 if (isSCEVExprNeverPoison(I)) 7295 return true; 7296 7297 // For an add recurrence specifically, we assume that infinite loops without 7298 // side effects are undefined behavior, and then reason as follows: 7299 // 7300 // If the add recurrence is poison in any iteration, it is poison on all 7301 // future iterations (since incrementing poison yields poison). If the result 7302 // of the add recurrence is fed into the loop latch condition and the loop 7303 // does not contain any throws or exiting blocks other than the latch, we now 7304 // have the ability to "choose" whether the backedge is taken or not (by 7305 // choosing a sufficiently evil value for the poison feeding into the branch) 7306 // for every iteration including and after the one in which \p I first became 7307 // poison. There are two possibilities (let's call the iteration in which \p 7308 // I first became poison as K): 7309 // 7310 // 1. In the set of iterations including and after K, the loop body executes 7311 // no side effects. In this case executing the backege an infinte number 7312 // of times will yield undefined behavior. 7313 // 7314 // 2. In the set of iterations including and after K, the loop body executes 7315 // at least one side effect. In this case, that specific instance of side 7316 // effect is control dependent on poison, which also yields undefined 7317 // behavior. 7318 7319 auto *ExitingBB = L->getExitingBlock(); 7320 auto *LatchBB = L->getLoopLatch(); 7321 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7322 return false; 7323 7324 SmallPtrSet<const Instruction *, 16> Pushed; 7325 SmallVector<const Instruction *, 8> PoisonStack; 7326 7327 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7328 // things that are known to be poison under that assumption go on the 7329 // PoisonStack. 7330 Pushed.insert(I); 7331 PoisonStack.push_back(I); 7332 7333 bool LatchControlDependentOnPoison = false; 7334 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7335 const Instruction *Poison = PoisonStack.pop_back_val(); 7336 7337 for (const Use &U : Poison->uses()) { 7338 const User *PoisonUser = U.getUser(); 7339 if (propagatesPoison(U)) { 7340 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7341 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7342 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7343 assert(BI->isConditional() && "Only possibility!"); 7344 if (BI->getParent() == LatchBB) { 7345 LatchControlDependentOnPoison = true; 7346 break; 7347 } 7348 } 7349 } 7350 } 7351 7352 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7353 } 7354 7355 ScalarEvolution::LoopProperties 7356 ScalarEvolution::getLoopProperties(const Loop *L) { 7357 using LoopProperties = ScalarEvolution::LoopProperties; 7358 7359 auto Itr = LoopPropertiesCache.find(L); 7360 if (Itr == LoopPropertiesCache.end()) { 7361 auto HasSideEffects = [](Instruction *I) { 7362 if (auto *SI = dyn_cast<StoreInst>(I)) 7363 return !SI->isSimple(); 7364 7365 return I->mayThrow() || I->mayWriteToMemory(); 7366 }; 7367 7368 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7369 /*HasNoSideEffects*/ true}; 7370 7371 for (auto *BB : L->getBlocks()) 7372 for (auto &I : *BB) { 7373 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7374 LP.HasNoAbnormalExits = false; 7375 if (HasSideEffects(&I)) 7376 LP.HasNoSideEffects = false; 7377 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7378 break; // We're already as pessimistic as we can get. 7379 } 7380 7381 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7382 assert(InsertPair.second && "We just checked!"); 7383 Itr = InsertPair.first; 7384 } 7385 7386 return Itr->second; 7387 } 7388 7389 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7390 // A mustprogress loop without side effects must be finite. 7391 // TODO: The check used here is very conservative. It's only *specific* 7392 // side effects which are well defined in infinite loops. 7393 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7394 } 7395 7396 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7397 // Worklist item with a Value and a bool indicating whether all operands have 7398 // been visited already. 7399 using PointerTy = PointerIntPair<Value *, 1, bool>; 7400 SmallVector<PointerTy> Stack; 7401 7402 Stack.emplace_back(V, true); 7403 Stack.emplace_back(V, false); 7404 while (!Stack.empty()) { 7405 auto E = Stack.pop_back_val(); 7406 Value *CurV = E.getPointer(); 7407 7408 if (getExistingSCEV(CurV)) 7409 continue; 7410 7411 SmallVector<Value *> Ops; 7412 const SCEV *CreatedSCEV = nullptr; 7413 // If all operands have been visited already, create the SCEV. 7414 if (E.getInt()) { 7415 CreatedSCEV = createSCEV(CurV); 7416 } else { 7417 // Otherwise get the operands we need to create SCEV's for before creating 7418 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7419 // just use it. 7420 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7421 } 7422 7423 if (CreatedSCEV) { 7424 insertValueToMap(CurV, CreatedSCEV); 7425 } else { 7426 // Queue CurV for SCEV creation, followed by its's operands which need to 7427 // be constructed first. 7428 Stack.emplace_back(CurV, true); 7429 for (Value *Op : Ops) 7430 Stack.emplace_back(Op, false); 7431 } 7432 } 7433 7434 return getExistingSCEV(V); 7435 } 7436 7437 const SCEV * 7438 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7439 if (!isSCEVable(V->getType())) 7440 return getUnknown(V); 7441 7442 if (Instruction *I = dyn_cast<Instruction>(V)) { 7443 // Don't attempt to analyze instructions in blocks that aren't 7444 // reachable. Such instructions don't matter, and they aren't required 7445 // to obey basic rules for definitions dominating uses which this 7446 // analysis depends on. 7447 if (!DT.isReachableFromEntry(I->getParent())) 7448 return getUnknown(PoisonValue::get(V->getType())); 7449 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7450 return getConstant(CI); 7451 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 7452 if (!GA->isInterposable()) { 7453 Ops.push_back(GA->getAliasee()); 7454 return nullptr; 7455 } 7456 return getUnknown(V); 7457 } else if (!isa<ConstantExpr>(V)) 7458 return getUnknown(V); 7459 7460 Operator *U = cast<Operator>(V); 7461 if (auto BO = 7462 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7463 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7464 switch (BO->Opcode) { 7465 case Instruction::Add: 7466 case Instruction::Mul: { 7467 // For additions and multiplications, traverse add/mul chains for which we 7468 // can potentially create a single SCEV, to reduce the number of 7469 // get{Add,Mul}Expr calls. 7470 do { 7471 if (BO->Op) { 7472 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7473 Ops.push_back(BO->Op); 7474 break; 7475 } 7476 } 7477 Ops.push_back(BO->RHS); 7478 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7479 dyn_cast<Instruction>(V)); 7480 if (!NewBO || 7481 (U->getOpcode() == Instruction::Add && 7482 (NewBO->Opcode != Instruction::Add && 7483 NewBO->Opcode != Instruction::Sub)) || 7484 (U->getOpcode() == Instruction::Mul && 7485 NewBO->Opcode != Instruction::Mul)) { 7486 Ops.push_back(BO->LHS); 7487 break; 7488 } 7489 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions 7490 // requires a SCEV for the LHS. 7491 if (NewBO->Op && (NewBO->IsNSW || NewBO->IsNUW)) { 7492 auto *I = dyn_cast<Instruction>(NewBO->Op); 7493 if (I && programUndefinedIfPoison(I)) { 7494 Ops.push_back(BO->LHS); 7495 break; 7496 } 7497 } 7498 BO = NewBO; 7499 } while (true); 7500 return nullptr; 7501 } 7502 case Instruction::Sub: 7503 case Instruction::UDiv: 7504 case Instruction::URem: 7505 break; 7506 case Instruction::AShr: 7507 case Instruction::Shl: 7508 case Instruction::Xor: 7509 if (!IsConstArg) 7510 return nullptr; 7511 break; 7512 case Instruction::And: 7513 case Instruction::Or: 7514 if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1)) 7515 return nullptr; 7516 break; 7517 case Instruction::LShr: 7518 return getUnknown(V); 7519 default: 7520 llvm_unreachable("Unhandled binop"); 7521 break; 7522 } 7523 7524 Ops.push_back(BO->LHS); 7525 Ops.push_back(BO->RHS); 7526 return nullptr; 7527 } 7528 7529 switch (U->getOpcode()) { 7530 case Instruction::Trunc: 7531 case Instruction::ZExt: 7532 case Instruction::SExt: 7533 case Instruction::PtrToInt: 7534 Ops.push_back(U->getOperand(0)); 7535 return nullptr; 7536 7537 case Instruction::BitCast: 7538 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7539 Ops.push_back(U->getOperand(0)); 7540 return nullptr; 7541 } 7542 return getUnknown(V); 7543 7544 case Instruction::SDiv: 7545 case Instruction::SRem: 7546 Ops.push_back(U->getOperand(0)); 7547 Ops.push_back(U->getOperand(1)); 7548 return nullptr; 7549 7550 case Instruction::GetElementPtr: 7551 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7552 "GEP source element type must be sized"); 7553 for (Value *Index : U->operands()) 7554 Ops.push_back(Index); 7555 return nullptr; 7556 7557 case Instruction::IntToPtr: 7558 return getUnknown(V); 7559 7560 case Instruction::PHI: 7561 // Keep constructing SCEVs' for phis recursively for now. 7562 return nullptr; 7563 7564 case Instruction::Select: { 7565 // Check if U is a select that can be simplified to a SCEVUnknown. 7566 auto CanSimplifyToUnknown = [this, U]() { 7567 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7568 return false; 7569 7570 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7571 if (!ICI) 7572 return false; 7573 Value *LHS = ICI->getOperand(0); 7574 Value *RHS = ICI->getOperand(1); 7575 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7576 ICI->getPredicate() == CmpInst::ICMP_NE) { 7577 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7578 return true; 7579 } else if (getTypeSizeInBits(LHS->getType()) > 7580 getTypeSizeInBits(U->getType())) 7581 return true; 7582 return false; 7583 }; 7584 if (CanSimplifyToUnknown()) 7585 return getUnknown(U); 7586 7587 for (Value *Inc : U->operands()) 7588 Ops.push_back(Inc); 7589 return nullptr; 7590 break; 7591 } 7592 case Instruction::Call: 7593 case Instruction::Invoke: 7594 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7595 Ops.push_back(RV); 7596 return nullptr; 7597 } 7598 7599 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7600 switch (II->getIntrinsicID()) { 7601 case Intrinsic::abs: 7602 Ops.push_back(II->getArgOperand(0)); 7603 return nullptr; 7604 case Intrinsic::umax: 7605 case Intrinsic::umin: 7606 case Intrinsic::smax: 7607 case Intrinsic::smin: 7608 case Intrinsic::usub_sat: 7609 case Intrinsic::uadd_sat: 7610 Ops.push_back(II->getArgOperand(0)); 7611 Ops.push_back(II->getArgOperand(1)); 7612 return nullptr; 7613 case Intrinsic::start_loop_iterations: 7614 case Intrinsic::annotation: 7615 case Intrinsic::ptr_annotation: 7616 Ops.push_back(II->getArgOperand(0)); 7617 return nullptr; 7618 default: 7619 break; 7620 } 7621 } 7622 break; 7623 } 7624 7625 return nullptr; 7626 } 7627 7628 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7629 if (!isSCEVable(V->getType())) 7630 return getUnknown(V); 7631 7632 if (Instruction *I = dyn_cast<Instruction>(V)) { 7633 // Don't attempt to analyze instructions in blocks that aren't 7634 // reachable. Such instructions don't matter, and they aren't required 7635 // to obey basic rules for definitions dominating uses which this 7636 // analysis depends on. 7637 if (!DT.isReachableFromEntry(I->getParent())) 7638 return getUnknown(PoisonValue::get(V->getType())); 7639 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7640 return getConstant(CI); 7641 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7642 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7643 else if (!isa<ConstantExpr>(V)) 7644 return getUnknown(V); 7645 7646 const SCEV *LHS; 7647 const SCEV *RHS; 7648 7649 Operator *U = cast<Operator>(V); 7650 if (auto BO = 7651 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7652 switch (BO->Opcode) { 7653 case Instruction::Add: { 7654 // The simple thing to do would be to just call getSCEV on both operands 7655 // and call getAddExpr with the result. However if we're looking at a 7656 // bunch of things all added together, this can be quite inefficient, 7657 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7658 // Instead, gather up all the operands and make a single getAddExpr call. 7659 // LLVM IR canonical form means we need only traverse the left operands. 7660 SmallVector<const SCEV *, 4> AddOps; 7661 do { 7662 if (BO->Op) { 7663 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7664 AddOps.push_back(OpSCEV); 7665 break; 7666 } 7667 7668 // If a NUW or NSW flag can be applied to the SCEV for this 7669 // addition, then compute the SCEV for this addition by itself 7670 // with a separate call to getAddExpr. We need to do that 7671 // instead of pushing the operands of the addition onto AddOps, 7672 // since the flags are only known to apply to this particular 7673 // addition - they may not apply to other additions that can be 7674 // formed with operands from AddOps. 7675 const SCEV *RHS = getSCEV(BO->RHS); 7676 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7677 if (Flags != SCEV::FlagAnyWrap) { 7678 const SCEV *LHS = getSCEV(BO->LHS); 7679 if (BO->Opcode == Instruction::Sub) 7680 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7681 else 7682 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7683 break; 7684 } 7685 } 7686 7687 if (BO->Opcode == Instruction::Sub) 7688 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7689 else 7690 AddOps.push_back(getSCEV(BO->RHS)); 7691 7692 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7693 dyn_cast<Instruction>(V)); 7694 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7695 NewBO->Opcode != Instruction::Sub)) { 7696 AddOps.push_back(getSCEV(BO->LHS)); 7697 break; 7698 } 7699 BO = NewBO; 7700 } while (true); 7701 7702 return getAddExpr(AddOps); 7703 } 7704 7705 case Instruction::Mul: { 7706 SmallVector<const SCEV *, 4> MulOps; 7707 do { 7708 if (BO->Op) { 7709 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7710 MulOps.push_back(OpSCEV); 7711 break; 7712 } 7713 7714 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7715 if (Flags != SCEV::FlagAnyWrap) { 7716 LHS = getSCEV(BO->LHS); 7717 RHS = getSCEV(BO->RHS); 7718 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7719 break; 7720 } 7721 } 7722 7723 MulOps.push_back(getSCEV(BO->RHS)); 7724 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7725 dyn_cast<Instruction>(V)); 7726 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7727 MulOps.push_back(getSCEV(BO->LHS)); 7728 break; 7729 } 7730 BO = NewBO; 7731 } while (true); 7732 7733 return getMulExpr(MulOps); 7734 } 7735 case Instruction::UDiv: 7736 LHS = getSCEV(BO->LHS); 7737 RHS = getSCEV(BO->RHS); 7738 return getUDivExpr(LHS, RHS); 7739 case Instruction::URem: 7740 LHS = getSCEV(BO->LHS); 7741 RHS = getSCEV(BO->RHS); 7742 return getURemExpr(LHS, RHS); 7743 case Instruction::Sub: { 7744 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7745 if (BO->Op) 7746 Flags = getNoWrapFlagsFromUB(BO->Op); 7747 LHS = getSCEV(BO->LHS); 7748 RHS = getSCEV(BO->RHS); 7749 return getMinusSCEV(LHS, RHS, Flags); 7750 } 7751 case Instruction::And: 7752 // For an expression like x&255 that merely masks off the high bits, 7753 // use zext(trunc(x)) as the SCEV expression. 7754 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7755 if (CI->isZero()) 7756 return getSCEV(BO->RHS); 7757 if (CI->isMinusOne()) 7758 return getSCEV(BO->LHS); 7759 const APInt &A = CI->getValue(); 7760 7761 // Instcombine's ShrinkDemandedConstant may strip bits out of 7762 // constants, obscuring what would otherwise be a low-bits mask. 7763 // Use computeKnownBits to compute what ShrinkDemandedConstant 7764 // knew about to reconstruct a low-bits mask value. 7765 unsigned LZ = A.countLeadingZeros(); 7766 unsigned TZ = A.countTrailingZeros(); 7767 unsigned BitWidth = A.getBitWidth(); 7768 KnownBits Known(BitWidth); 7769 computeKnownBits(BO->LHS, Known, getDataLayout(), 7770 0, &AC, nullptr, &DT); 7771 7772 APInt EffectiveMask = 7773 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7774 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7775 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7776 const SCEV *LHS = getSCEV(BO->LHS); 7777 const SCEV *ShiftedLHS = nullptr; 7778 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7779 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7780 // For an expression like (x * 8) & 8, simplify the multiply. 7781 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7782 unsigned GCD = std::min(MulZeros, TZ); 7783 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7784 SmallVector<const SCEV*, 4> MulOps; 7785 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7786 append_range(MulOps, LHSMul->operands().drop_front()); 7787 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7788 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7789 } 7790 } 7791 if (!ShiftedLHS) 7792 ShiftedLHS = getUDivExpr(LHS, MulCount); 7793 return getMulExpr( 7794 getZeroExtendExpr( 7795 getTruncateExpr(ShiftedLHS, 7796 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7797 BO->LHS->getType()), 7798 MulCount); 7799 } 7800 } 7801 // Binary `and` is a bit-wise `umin`. 7802 if (BO->LHS->getType()->isIntegerTy(1)) { 7803 LHS = getSCEV(BO->LHS); 7804 RHS = getSCEV(BO->RHS); 7805 return getUMinExpr(LHS, RHS); 7806 } 7807 break; 7808 7809 case Instruction::Or: 7810 // Binary `or` is a bit-wise `umax`. 7811 if (BO->LHS->getType()->isIntegerTy(1)) { 7812 LHS = getSCEV(BO->LHS); 7813 RHS = getSCEV(BO->RHS); 7814 return getUMaxExpr(LHS, RHS); 7815 } 7816 break; 7817 7818 case Instruction::Xor: 7819 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7820 // If the RHS of xor is -1, then this is a not operation. 7821 if (CI->isMinusOne()) 7822 return getNotSCEV(getSCEV(BO->LHS)); 7823 7824 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7825 // This is a variant of the check for xor with -1, and it handles 7826 // the case where instcombine has trimmed non-demanded bits out 7827 // of an xor with -1. 7828 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7829 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7830 if (LBO->getOpcode() == Instruction::And && 7831 LCI->getValue() == CI->getValue()) 7832 if (const SCEVZeroExtendExpr *Z = 7833 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7834 Type *UTy = BO->LHS->getType(); 7835 const SCEV *Z0 = Z->getOperand(); 7836 Type *Z0Ty = Z0->getType(); 7837 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7838 7839 // If C is a low-bits mask, the zero extend is serving to 7840 // mask off the high bits. Complement the operand and 7841 // re-apply the zext. 7842 if (CI->getValue().isMask(Z0TySize)) 7843 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7844 7845 // If C is a single bit, it may be in the sign-bit position 7846 // before the zero-extend. In this case, represent the xor 7847 // using an add, which is equivalent, and re-apply the zext. 7848 APInt Trunc = CI->getValue().trunc(Z0TySize); 7849 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7850 Trunc.isSignMask()) 7851 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7852 UTy); 7853 } 7854 } 7855 break; 7856 7857 case Instruction::Shl: 7858 // Turn shift left of a constant amount into a multiply. 7859 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7860 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7861 7862 // If the shift count is not less than the bitwidth, the result of 7863 // the shift is undefined. Don't try to analyze it, because the 7864 // resolution chosen here may differ from the resolution chosen in 7865 // other parts of the compiler. 7866 if (SA->getValue().uge(BitWidth)) 7867 break; 7868 7869 // We can safely preserve the nuw flag in all cases. It's also safe to 7870 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7871 // requires special handling. It can be preserved as long as we're not 7872 // left shifting by bitwidth - 1. 7873 auto Flags = SCEV::FlagAnyWrap; 7874 if (BO->Op) { 7875 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7876 if ((MulFlags & SCEV::FlagNSW) && 7877 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7878 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7879 if (MulFlags & SCEV::FlagNUW) 7880 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7881 } 7882 7883 ConstantInt *X = ConstantInt::get( 7884 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7885 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7886 } 7887 break; 7888 7889 case Instruction::AShr: { 7890 // AShr X, C, where C is a constant. 7891 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7892 if (!CI) 7893 break; 7894 7895 Type *OuterTy = BO->LHS->getType(); 7896 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7897 // If the shift count is not less than the bitwidth, the result of 7898 // the shift is undefined. Don't try to analyze it, because the 7899 // resolution chosen here may differ from the resolution chosen in 7900 // other parts of the compiler. 7901 if (CI->getValue().uge(BitWidth)) 7902 break; 7903 7904 if (CI->isZero()) 7905 return getSCEV(BO->LHS); // shift by zero --> noop 7906 7907 uint64_t AShrAmt = CI->getZExtValue(); 7908 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7909 7910 Operator *L = dyn_cast<Operator>(BO->LHS); 7911 if (L && L->getOpcode() == Instruction::Shl) { 7912 // X = Shl A, n 7913 // Y = AShr X, m 7914 // Both n and m are constant. 7915 7916 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7917 if (L->getOperand(1) == BO->RHS) 7918 // For a two-shift sext-inreg, i.e. n = m, 7919 // use sext(trunc(x)) as the SCEV expression. 7920 return getSignExtendExpr( 7921 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7922 7923 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7924 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7925 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7926 if (ShlAmt > AShrAmt) { 7927 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7928 // expression. We already checked that ShlAmt < BitWidth, so 7929 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7930 // ShlAmt - AShrAmt < Amt. 7931 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7932 ShlAmt - AShrAmt); 7933 return getSignExtendExpr( 7934 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7935 getConstant(Mul)), OuterTy); 7936 } 7937 } 7938 } 7939 break; 7940 } 7941 } 7942 } 7943 7944 switch (U->getOpcode()) { 7945 case Instruction::Trunc: 7946 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7947 7948 case Instruction::ZExt: 7949 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7950 7951 case Instruction::SExt: 7952 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, 7953 dyn_cast<Instruction>(V))) { 7954 // The NSW flag of a subtract does not always survive the conversion to 7955 // A + (-1)*B. By pushing sign extension onto its operands we are much 7956 // more likely to preserve NSW and allow later AddRec optimisations. 7957 // 7958 // NOTE: This is effectively duplicating this logic from getSignExtend: 7959 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7960 // but by that point the NSW information has potentially been lost. 7961 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7962 Type *Ty = U->getType(); 7963 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7964 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7965 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7966 } 7967 } 7968 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7969 7970 case Instruction::BitCast: 7971 // BitCasts are no-op casts so we just eliminate the cast. 7972 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7973 return getSCEV(U->getOperand(0)); 7974 break; 7975 7976 case Instruction::PtrToInt: { 7977 // Pointer to integer cast is straight-forward, so do model it. 7978 const SCEV *Op = getSCEV(U->getOperand(0)); 7979 Type *DstIntTy = U->getType(); 7980 // But only if effective SCEV (integer) type is wide enough to represent 7981 // all possible pointer values. 7982 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7983 if (isa<SCEVCouldNotCompute>(IntOp)) 7984 return getUnknown(V); 7985 return IntOp; 7986 } 7987 case Instruction::IntToPtr: 7988 // Just don't deal with inttoptr casts. 7989 return getUnknown(V); 7990 7991 case Instruction::SDiv: 7992 // If both operands are non-negative, this is just an udiv. 7993 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7994 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7995 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7996 break; 7997 7998 case Instruction::SRem: 7999 // If both operands are non-negative, this is just an urem. 8000 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 8001 isKnownNonNegative(getSCEV(U->getOperand(1)))) 8002 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 8003 break; 8004 8005 case Instruction::GetElementPtr: 8006 return createNodeForGEP(cast<GEPOperator>(U)); 8007 8008 case Instruction::PHI: 8009 return createNodeForPHI(cast<PHINode>(U)); 8010 8011 case Instruction::Select: 8012 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 8013 U->getOperand(2)); 8014 8015 case Instruction::Call: 8016 case Instruction::Invoke: 8017 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 8018 return getSCEV(RV); 8019 8020 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 8021 switch (II->getIntrinsicID()) { 8022 case Intrinsic::abs: 8023 return getAbsExpr( 8024 getSCEV(II->getArgOperand(0)), 8025 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 8026 case Intrinsic::umax: 8027 LHS = getSCEV(II->getArgOperand(0)); 8028 RHS = getSCEV(II->getArgOperand(1)); 8029 return getUMaxExpr(LHS, RHS); 8030 case Intrinsic::umin: 8031 LHS = getSCEV(II->getArgOperand(0)); 8032 RHS = getSCEV(II->getArgOperand(1)); 8033 return getUMinExpr(LHS, RHS); 8034 case Intrinsic::smax: 8035 LHS = getSCEV(II->getArgOperand(0)); 8036 RHS = getSCEV(II->getArgOperand(1)); 8037 return getSMaxExpr(LHS, RHS); 8038 case Intrinsic::smin: 8039 LHS = getSCEV(II->getArgOperand(0)); 8040 RHS = getSCEV(II->getArgOperand(1)); 8041 return getSMinExpr(LHS, RHS); 8042 case Intrinsic::usub_sat: { 8043 const SCEV *X = getSCEV(II->getArgOperand(0)); 8044 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8045 const SCEV *ClampedY = getUMinExpr(X, Y); 8046 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 8047 } 8048 case Intrinsic::uadd_sat: { 8049 const SCEV *X = getSCEV(II->getArgOperand(0)); 8050 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8051 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 8052 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 8053 } 8054 case Intrinsic::start_loop_iterations: 8055 case Intrinsic::annotation: 8056 case Intrinsic::ptr_annotation: 8057 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 8058 // just eqivalent to the first operand for SCEV purposes. 8059 return getSCEV(II->getArgOperand(0)); 8060 default: 8061 break; 8062 } 8063 } 8064 break; 8065 } 8066 8067 return getUnknown(V); 8068 } 8069 8070 //===----------------------------------------------------------------------===// 8071 // Iteration Count Computation Code 8072 // 8073 8074 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 8075 bool Extend) { 8076 if (isa<SCEVCouldNotCompute>(ExitCount)) 8077 return getCouldNotCompute(); 8078 8079 auto *ExitCountType = ExitCount->getType(); 8080 assert(ExitCountType->isIntegerTy()); 8081 8082 if (!Extend) 8083 return getAddExpr(ExitCount, getOne(ExitCountType)); 8084 8085 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 8086 1 + ExitCountType->getScalarSizeInBits()); 8087 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 8088 getOne(WiderType)); 8089 } 8090 8091 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 8092 if (!ExitCount) 8093 return 0; 8094 8095 ConstantInt *ExitConst = ExitCount->getValue(); 8096 8097 // Guard against huge trip counts. 8098 if (ExitConst->getValue().getActiveBits() > 32) 8099 return 0; 8100 8101 // In case of integer overflow, this returns 0, which is correct. 8102 return ((unsigned)ExitConst->getZExtValue()) + 1; 8103 } 8104 8105 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 8106 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 8107 return getConstantTripCount(ExitCount); 8108 } 8109 8110 unsigned 8111 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 8112 const BasicBlock *ExitingBlock) { 8113 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8114 assert(L->isLoopExiting(ExitingBlock) && 8115 "Exiting block must actually branch out of the loop!"); 8116 const SCEVConstant *ExitCount = 8117 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 8118 return getConstantTripCount(ExitCount); 8119 } 8120 8121 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 8122 const auto *MaxExitCount = 8123 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 8124 return getConstantTripCount(MaxExitCount); 8125 } 8126 8127 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 8128 // We can't infer from Array in Irregular Loop. 8129 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 8130 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 8131 return getCouldNotCompute(); 8132 8133 // FIXME: To make the scene more typical, we only analysis loops that have 8134 // one exiting block and that block must be the latch. To make it easier to 8135 // capture loops that have memory access and memory access will be executed 8136 // in each iteration. 8137 const BasicBlock *LoopLatch = L->getLoopLatch(); 8138 assert(LoopLatch && "See defination of simplify form loop."); 8139 if (L->getExitingBlock() != LoopLatch) 8140 return getCouldNotCompute(); 8141 8142 const DataLayout &DL = getDataLayout(); 8143 SmallVector<const SCEV *> InferCountColl; 8144 for (auto *BB : L->getBlocks()) { 8145 // Go here, we can know that Loop is a single exiting and simplified form 8146 // loop. Make sure that infer from Memory Operation in those BBs must be 8147 // executed in loop. First step, we can make sure that max execution time 8148 // of MemAccessBB in loop represents latch max excution time. 8149 // If MemAccessBB does not dom Latch, skip. 8150 // Entry 8151 // │ 8152 // ┌─────▼─────┐ 8153 // │Loop Header◄─────┐ 8154 // └──┬──────┬─┘ │ 8155 // │ │ │ 8156 // ┌────────▼──┐ ┌─▼─────┐ │ 8157 // │MemAccessBB│ │OtherBB│ │ 8158 // └────────┬──┘ └─┬─────┘ │ 8159 // │ │ │ 8160 // ┌─▼──────▼─┐ │ 8161 // │Loop Latch├─────┘ 8162 // └────┬─────┘ 8163 // ▼ 8164 // Exit 8165 if (!DT.dominates(BB, LoopLatch)) 8166 continue; 8167 8168 for (Instruction &Inst : *BB) { 8169 // Find Memory Operation Instruction. 8170 auto *GEP = getLoadStorePointerOperand(&Inst); 8171 if (!GEP) 8172 continue; 8173 8174 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 8175 // Do not infer from scalar type, eg."ElemSize = sizeof()". 8176 if (!ElemSize) 8177 continue; 8178 8179 // Use a existing polynomial recurrence on the trip count. 8180 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 8181 if (!AddRec) 8182 continue; 8183 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 8184 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 8185 if (!ArrBase || !Step) 8186 continue; 8187 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 8188 8189 // Only handle { %array + step }, 8190 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 8191 if (AddRec->getStart() != ArrBase) 8192 continue; 8193 8194 // Memory operation pattern which have gaps. 8195 // Or repeat memory opreation. 8196 // And index of GEP wraps arround. 8197 if (Step->getAPInt().getActiveBits() > 32 || 8198 Step->getAPInt().getZExtValue() != 8199 ElemSize->getAPInt().getZExtValue() || 8200 Step->isZero() || Step->getAPInt().isNegative()) 8201 continue; 8202 8203 // Only infer from stack array which has certain size. 8204 // Make sure alloca instruction is not excuted in loop. 8205 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 8206 if (!AllocateInst || L->contains(AllocateInst->getParent())) 8207 continue; 8208 8209 // Make sure only handle normal array. 8210 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 8211 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 8212 if (!Ty || !ArrSize || !ArrSize->isOne()) 8213 continue; 8214 8215 // FIXME: Since gep indices are silently zext to the indexing type, 8216 // we will have a narrow gep index which wraps around rather than 8217 // increasing strictly, we shoule ensure that step is increasing 8218 // strictly by the loop iteration. 8219 // Now we can infer a max execution time by MemLength/StepLength. 8220 const SCEV *MemSize = 8221 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 8222 auto *MaxExeCount = 8223 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 8224 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 8225 continue; 8226 8227 // If the loop reaches the maximum number of executions, we can not 8228 // access bytes starting outside the statically allocated size without 8229 // being immediate UB. But it is allowed to enter loop header one more 8230 // time. 8231 auto *InferCount = dyn_cast<SCEVConstant>( 8232 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 8233 // Discard the maximum number of execution times under 32bits. 8234 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 8235 continue; 8236 8237 InferCountColl.push_back(InferCount); 8238 } 8239 } 8240 8241 if (InferCountColl.size() == 0) 8242 return getCouldNotCompute(); 8243 8244 return getUMinFromMismatchedTypes(InferCountColl); 8245 } 8246 8247 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8248 SmallVector<BasicBlock *, 8> ExitingBlocks; 8249 L->getExitingBlocks(ExitingBlocks); 8250 8251 std::optional<unsigned> Res; 8252 for (auto *ExitingBB : ExitingBlocks) { 8253 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8254 if (!Res) 8255 Res = Multiple; 8256 Res = (unsigned)std::gcd(*Res, Multiple); 8257 } 8258 return Res.value_or(1); 8259 } 8260 8261 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8262 const SCEV *ExitCount) { 8263 if (ExitCount == getCouldNotCompute()) 8264 return 1; 8265 8266 // Get the trip count 8267 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 8268 8269 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 8270 if (!TC) 8271 // Attempt to factor more general cases. Returns the greatest power of 8272 // two divisor. If overflow happens, the trip count expression is still 8273 // divisible by the greatest power of 2 divisor returned. 8274 return 1U << std::min((uint32_t)31, 8275 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 8276 8277 ConstantInt *Result = TC->getValue(); 8278 8279 // Guard against huge trip counts (this requires checking 8280 // for zero to handle the case where the trip count == -1 and the 8281 // addition wraps). 8282 if (!Result || Result->getValue().getActiveBits() > 32 || 8283 Result->getValue().getActiveBits() == 0) 8284 return 1; 8285 8286 return (unsigned)Result->getZExtValue(); 8287 } 8288 8289 /// Returns the largest constant divisor of the trip count of this loop as a 8290 /// normal unsigned value, if possible. This means that the actual trip count is 8291 /// always a multiple of the returned value (don't forget the trip count could 8292 /// very well be zero as well!). 8293 /// 8294 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8295 /// multiple of a constant (which is also the case if the trip count is simply 8296 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8297 /// if the trip count is very large (>= 2^32). 8298 /// 8299 /// As explained in the comments for getSmallConstantTripCount, this assumes 8300 /// that control exits the loop via ExitingBlock. 8301 unsigned 8302 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8303 const BasicBlock *ExitingBlock) { 8304 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8305 assert(L->isLoopExiting(ExitingBlock) && 8306 "Exiting block must actually branch out of the loop!"); 8307 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8308 return getSmallConstantTripMultiple(L, ExitCount); 8309 } 8310 8311 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8312 const BasicBlock *ExitingBlock, 8313 ExitCountKind Kind) { 8314 switch (Kind) { 8315 case Exact: 8316 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8317 case SymbolicMaximum: 8318 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); 8319 case ConstantMaximum: 8320 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8321 }; 8322 llvm_unreachable("Invalid ExitCountKind!"); 8323 } 8324 8325 const SCEV * 8326 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8327 SmallVector<const SCEVPredicate *, 4> &Preds) { 8328 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8329 } 8330 8331 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8332 ExitCountKind Kind) { 8333 switch (Kind) { 8334 case Exact: 8335 return getBackedgeTakenInfo(L).getExact(L, this); 8336 case ConstantMaximum: 8337 return getBackedgeTakenInfo(L).getConstantMax(this); 8338 case SymbolicMaximum: 8339 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8340 }; 8341 llvm_unreachable("Invalid ExitCountKind!"); 8342 } 8343 8344 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8345 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8346 } 8347 8348 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8349 static void PushLoopPHIs(const Loop *L, 8350 SmallVectorImpl<Instruction *> &Worklist, 8351 SmallPtrSetImpl<Instruction *> &Visited) { 8352 BasicBlock *Header = L->getHeader(); 8353 8354 // Push all Loop-header PHIs onto the Worklist stack. 8355 for (PHINode &PN : Header->phis()) 8356 if (Visited.insert(&PN).second) 8357 Worklist.push_back(&PN); 8358 } 8359 8360 const ScalarEvolution::BackedgeTakenInfo & 8361 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8362 auto &BTI = getBackedgeTakenInfo(L); 8363 if (BTI.hasFullInfo()) 8364 return BTI; 8365 8366 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8367 8368 if (!Pair.second) 8369 return Pair.first->second; 8370 8371 BackedgeTakenInfo Result = 8372 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8373 8374 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8375 } 8376 8377 ScalarEvolution::BackedgeTakenInfo & 8378 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8379 // Initially insert an invalid entry for this loop. If the insertion 8380 // succeeds, proceed to actually compute a backedge-taken count and 8381 // update the value. The temporary CouldNotCompute value tells SCEV 8382 // code elsewhere that it shouldn't attempt to request a new 8383 // backedge-taken count, which could result in infinite recursion. 8384 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8385 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8386 if (!Pair.second) 8387 return Pair.first->second; 8388 8389 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8390 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8391 // must be cleared in this scope. 8392 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8393 8394 // In product build, there are no usage of statistic. 8395 (void)NumTripCountsComputed; 8396 (void)NumTripCountsNotComputed; 8397 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 8398 const SCEV *BEExact = Result.getExact(L, this); 8399 if (BEExact != getCouldNotCompute()) { 8400 assert(isLoopInvariant(BEExact, L) && 8401 isLoopInvariant(Result.getConstantMax(this), L) && 8402 "Computed backedge-taken count isn't loop invariant for loop!"); 8403 ++NumTripCountsComputed; 8404 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 8405 isa<PHINode>(L->getHeader()->begin())) { 8406 // Only count loops that have phi nodes as not being computable. 8407 ++NumTripCountsNotComputed; 8408 } 8409 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 8410 8411 // Now that we know more about the trip count for this loop, forget any 8412 // existing SCEV values for PHI nodes in this loop since they are only 8413 // conservative estimates made without the benefit of trip count 8414 // information. This invalidation is not necessary for correctness, and is 8415 // only done to produce more precise results. 8416 if (Result.hasAnyInfo()) { 8417 // Invalidate any expression using an addrec in this loop. 8418 SmallVector<const SCEV *, 8> ToForget; 8419 auto LoopUsersIt = LoopUsers.find(L); 8420 if (LoopUsersIt != LoopUsers.end()) 8421 append_range(ToForget, LoopUsersIt->second); 8422 forgetMemoizedResults(ToForget); 8423 8424 // Invalidate constant-evolved loop header phis. 8425 for (PHINode &PN : L->getHeader()->phis()) 8426 ConstantEvolutionLoopExitValue.erase(&PN); 8427 } 8428 8429 // Re-lookup the insert position, since the call to 8430 // computeBackedgeTakenCount above could result in a 8431 // recusive call to getBackedgeTakenInfo (on a different 8432 // loop), which would invalidate the iterator computed 8433 // earlier. 8434 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8435 } 8436 8437 void ScalarEvolution::forgetAllLoops() { 8438 // This method is intended to forget all info about loops. It should 8439 // invalidate caches as if the following happened: 8440 // - The trip counts of all loops have changed arbitrarily 8441 // - Every llvm::Value has been updated in place to produce a different 8442 // result. 8443 BackedgeTakenCounts.clear(); 8444 PredicatedBackedgeTakenCounts.clear(); 8445 BECountUsers.clear(); 8446 LoopPropertiesCache.clear(); 8447 ConstantEvolutionLoopExitValue.clear(); 8448 ValueExprMap.clear(); 8449 ValuesAtScopes.clear(); 8450 ValuesAtScopesUsers.clear(); 8451 LoopDispositions.clear(); 8452 BlockDispositions.clear(); 8453 UnsignedRanges.clear(); 8454 SignedRanges.clear(); 8455 ExprValueMap.clear(); 8456 HasRecMap.clear(); 8457 MinTrailingZerosCache.clear(); 8458 PredicatedSCEVRewrites.clear(); 8459 FoldCache.clear(); 8460 FoldCacheUser.clear(); 8461 } 8462 8463 void ScalarEvolution::forgetLoop(const Loop *L) { 8464 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8465 SmallVector<Instruction *, 32> Worklist; 8466 SmallPtrSet<Instruction *, 16> Visited; 8467 SmallVector<const SCEV *, 16> ToForget; 8468 8469 // Iterate over all the loops and sub-loops to drop SCEV information. 8470 while (!LoopWorklist.empty()) { 8471 auto *CurrL = LoopWorklist.pop_back_val(); 8472 8473 // Drop any stored trip count value. 8474 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8475 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8476 8477 // Drop information about predicated SCEV rewrites for this loop. 8478 for (auto I = PredicatedSCEVRewrites.begin(); 8479 I != PredicatedSCEVRewrites.end();) { 8480 std::pair<const SCEV *, const Loop *> Entry = I->first; 8481 if (Entry.second == CurrL) 8482 PredicatedSCEVRewrites.erase(I++); 8483 else 8484 ++I; 8485 } 8486 8487 auto LoopUsersItr = LoopUsers.find(CurrL); 8488 if (LoopUsersItr != LoopUsers.end()) { 8489 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8490 LoopUsersItr->second.end()); 8491 } 8492 8493 // Drop information about expressions based on loop-header PHIs. 8494 PushLoopPHIs(CurrL, Worklist, Visited); 8495 8496 while (!Worklist.empty()) { 8497 Instruction *I = Worklist.pop_back_val(); 8498 8499 ValueExprMapType::iterator It = 8500 ValueExprMap.find_as(static_cast<Value *>(I)); 8501 if (It != ValueExprMap.end()) { 8502 eraseValueFromMap(It->first); 8503 ToForget.push_back(It->second); 8504 if (PHINode *PN = dyn_cast<PHINode>(I)) 8505 ConstantEvolutionLoopExitValue.erase(PN); 8506 } 8507 8508 PushDefUseChildren(I, Worklist, Visited); 8509 } 8510 8511 LoopPropertiesCache.erase(CurrL); 8512 // Forget all contained loops too, to avoid dangling entries in the 8513 // ValuesAtScopes map. 8514 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8515 } 8516 forgetMemoizedResults(ToForget); 8517 } 8518 8519 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8520 forgetLoop(L->getOutermostLoop()); 8521 } 8522 8523 void ScalarEvolution::forgetValue(Value *V) { 8524 Instruction *I = dyn_cast<Instruction>(V); 8525 if (!I) return; 8526 8527 // Drop information about expressions based on loop-header PHIs. 8528 SmallVector<Instruction *, 16> Worklist; 8529 SmallPtrSet<Instruction *, 8> Visited; 8530 SmallVector<const SCEV *, 8> ToForget; 8531 Worklist.push_back(I); 8532 Visited.insert(I); 8533 8534 while (!Worklist.empty()) { 8535 I = Worklist.pop_back_val(); 8536 ValueExprMapType::iterator It = 8537 ValueExprMap.find_as(static_cast<Value *>(I)); 8538 if (It != ValueExprMap.end()) { 8539 eraseValueFromMap(It->first); 8540 ToForget.push_back(It->second); 8541 if (PHINode *PN = dyn_cast<PHINode>(I)) 8542 ConstantEvolutionLoopExitValue.erase(PN); 8543 } 8544 8545 PushDefUseChildren(I, Worklist, Visited); 8546 } 8547 forgetMemoizedResults(ToForget); 8548 } 8549 8550 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } 8551 8552 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { 8553 // Unless a specific value is passed to invalidation, completely clear both 8554 // caches. 8555 if (!V) { 8556 BlockDispositions.clear(); 8557 LoopDispositions.clear(); 8558 return; 8559 } 8560 8561 if (!isSCEVable(V->getType())) 8562 return; 8563 8564 const SCEV *S = getExistingSCEV(V); 8565 if (!S) 8566 return; 8567 8568 // Invalidate the block and loop dispositions cached for S. Dispositions of 8569 // S's users may change if S's disposition changes (i.e. a user may change to 8570 // loop-invariant, if S changes to loop invariant), so also invalidate 8571 // dispositions of S's users recursively. 8572 SmallVector<const SCEV *, 8> Worklist = {S}; 8573 SmallPtrSet<const SCEV *, 8> Seen = {S}; 8574 while (!Worklist.empty()) { 8575 const SCEV *Curr = Worklist.pop_back_val(); 8576 bool LoopDispoRemoved = LoopDispositions.erase(Curr); 8577 bool BlockDispoRemoved = BlockDispositions.erase(Curr); 8578 if (!LoopDispoRemoved && !BlockDispoRemoved) 8579 continue; 8580 auto Users = SCEVUsers.find(Curr); 8581 if (Users != SCEVUsers.end()) 8582 for (const auto *User : Users->second) 8583 if (Seen.insert(User).second) 8584 Worklist.push_back(User); 8585 } 8586 } 8587 8588 /// Get the exact loop backedge taken count considering all loop exits. A 8589 /// computable result can only be returned for loops with all exiting blocks 8590 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8591 /// is never skipped. This is a valid assumption as long as the loop exits via 8592 /// that test. For precise results, it is the caller's responsibility to specify 8593 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8594 const SCEV * 8595 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8596 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8597 // If any exits were not computable, the loop is not computable. 8598 if (!isComplete() || ExitNotTaken.empty()) 8599 return SE->getCouldNotCompute(); 8600 8601 const BasicBlock *Latch = L->getLoopLatch(); 8602 // All exiting blocks we have collected must dominate the only backedge. 8603 if (!Latch) 8604 return SE->getCouldNotCompute(); 8605 8606 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8607 // count is simply a minimum out of all these calculated exit counts. 8608 SmallVector<const SCEV *, 2> Ops; 8609 for (const auto &ENT : ExitNotTaken) { 8610 const SCEV *BECount = ENT.ExactNotTaken; 8611 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8612 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8613 "We should only have known counts for exiting blocks that dominate " 8614 "latch!"); 8615 8616 Ops.push_back(BECount); 8617 8618 if (Preds) 8619 for (const auto *P : ENT.Predicates) 8620 Preds->push_back(P); 8621 8622 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8623 "Predicate should be always true!"); 8624 } 8625 8626 // If an earlier exit exits on the first iteration (exit count zero), then 8627 // a later poison exit count should not propagate into the result. This are 8628 // exactly the semantics provided by umin_seq. 8629 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8630 } 8631 8632 /// Get the exact not taken count for this loop exit. 8633 const SCEV * 8634 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8635 ScalarEvolution *SE) const { 8636 for (const auto &ENT : ExitNotTaken) 8637 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8638 return ENT.ExactNotTaken; 8639 8640 return SE->getCouldNotCompute(); 8641 } 8642 8643 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8644 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8645 for (const auto &ENT : ExitNotTaken) 8646 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8647 return ENT.ConstantMaxNotTaken; 8648 8649 return SE->getCouldNotCompute(); 8650 } 8651 8652 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8653 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8654 for (const auto &ENT : ExitNotTaken) 8655 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8656 return ENT.SymbolicMaxNotTaken; 8657 8658 return SE->getCouldNotCompute(); 8659 } 8660 8661 /// getConstantMax - Get the constant max backedge taken count for the loop. 8662 const SCEV * 8663 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8664 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8665 return !ENT.hasAlwaysTruePredicate(); 8666 }; 8667 8668 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8669 return SE->getCouldNotCompute(); 8670 8671 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8672 isa<SCEVConstant>(getConstantMax())) && 8673 "No point in having a non-constant max backedge taken count!"); 8674 return getConstantMax(); 8675 } 8676 8677 const SCEV * 8678 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8679 ScalarEvolution *SE) { 8680 if (!SymbolicMax) 8681 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8682 return SymbolicMax; 8683 } 8684 8685 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8686 ScalarEvolution *SE) const { 8687 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8688 return !ENT.hasAlwaysTruePredicate(); 8689 }; 8690 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8691 } 8692 8693 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8694 : ExitLimit(E, E, E, false, std::nullopt) {} 8695 8696 ScalarEvolution::ExitLimit::ExitLimit( 8697 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8698 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8699 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8700 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), 8701 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { 8702 // If we prove the max count is zero, so is the symbolic bound. This happens 8703 // in practice due to differences in a) how context sensitive we've chosen 8704 // to be and b) how we reason about bounds implied by UB. 8705 if (ConstantMaxNotTaken->isZero()) { 8706 this->ExactNotTaken = E = ConstantMaxNotTaken; 8707 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; 8708 } 8709 8710 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8711 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8712 "Exact is not allowed to be less precise than Constant Max"); 8713 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8714 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && 8715 "Exact is not allowed to be less precise than Symbolic Max"); 8716 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || 8717 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8718 "Symbolic Max is not allowed to be less precise than Constant Max"); 8719 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8720 isa<SCEVConstant>(ConstantMaxNotTaken)) && 8721 "No point in having a non-constant max backedge taken count!"); 8722 for (const auto *PredSet : PredSetList) 8723 for (const auto *P : *PredSet) 8724 addPredicate(P); 8725 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8726 "Backedge count should be int"); 8727 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8728 !ConstantMaxNotTaken->getType()->isPointerTy()) && 8729 "Max backedge count should be int"); 8730 } 8731 8732 ScalarEvolution::ExitLimit::ExitLimit( 8733 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8734 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8735 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8736 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, 8737 { &PredSet }) {} 8738 8739 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8740 /// computable exit into a persistent ExitNotTakenInfo array. 8741 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8742 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8743 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8744 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8745 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8746 8747 ExitNotTaken.reserve(ExitCounts.size()); 8748 std::transform(ExitCounts.begin(), ExitCounts.end(), 8749 std::back_inserter(ExitNotTaken), 8750 [&](const EdgeExitInfo &EEI) { 8751 BasicBlock *ExitBB = EEI.first; 8752 const ExitLimit &EL = EEI.second; 8753 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, 8754 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, 8755 EL.Predicates); 8756 }); 8757 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8758 isa<SCEVConstant>(ConstantMax)) && 8759 "No point in having a non-constant max backedge taken count!"); 8760 } 8761 8762 /// Compute the number of times the backedge of the specified loop will execute. 8763 ScalarEvolution::BackedgeTakenInfo 8764 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8765 bool AllowPredicates) { 8766 SmallVector<BasicBlock *, 8> ExitingBlocks; 8767 L->getExitingBlocks(ExitingBlocks); 8768 8769 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8770 8771 SmallVector<EdgeExitInfo, 4> ExitCounts; 8772 bool CouldComputeBECount = true; 8773 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8774 const SCEV *MustExitMaxBECount = nullptr; 8775 const SCEV *MayExitMaxBECount = nullptr; 8776 bool MustExitMaxOrZero = false; 8777 8778 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8779 // and compute maxBECount. 8780 // Do a union of all the predicates here. 8781 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8782 BasicBlock *ExitBB = ExitingBlocks[i]; 8783 8784 // We canonicalize untaken exits to br (constant), ignore them so that 8785 // proving an exit untaken doesn't negatively impact our ability to reason 8786 // about the loop as whole. 8787 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8788 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8789 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8790 if (ExitIfTrue == CI->isZero()) 8791 continue; 8792 } 8793 8794 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8795 8796 assert((AllowPredicates || EL.Predicates.empty()) && 8797 "Predicated exit limit when predicates are not allowed!"); 8798 8799 // 1. For each exit that can be computed, add an entry to ExitCounts. 8800 // CouldComputeBECount is true only if all exits can be computed. 8801 if (EL.ExactNotTaken == getCouldNotCompute()) 8802 // We couldn't compute an exact value for this exit, so 8803 // we won't be able to compute an exact value for the loop. 8804 CouldComputeBECount = false; 8805 // Remember exit count if either exact or symbolic is known. Because 8806 // Exact always implies symbolic, only check symbolic. 8807 if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) 8808 ExitCounts.emplace_back(ExitBB, EL); 8809 else 8810 assert(EL.ExactNotTaken == getCouldNotCompute() && 8811 "Exact is known but symbolic isn't?"); 8812 8813 // 2. Derive the loop's MaxBECount from each exit's max number of 8814 // non-exiting iterations. Partition the loop exits into two kinds: 8815 // LoopMustExits and LoopMayExits. 8816 // 8817 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8818 // is a LoopMayExit. If any computable LoopMustExit is found, then 8819 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable 8820 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8821 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than 8822 // any 8823 // computable EL.ConstantMaxNotTaken. 8824 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && 8825 DT.dominates(ExitBB, Latch)) { 8826 if (!MustExitMaxBECount) { 8827 MustExitMaxBECount = EL.ConstantMaxNotTaken; 8828 MustExitMaxOrZero = EL.MaxOrZero; 8829 } else { 8830 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, 8831 EL.ConstantMaxNotTaken); 8832 } 8833 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8834 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) 8835 MayExitMaxBECount = EL.ConstantMaxNotTaken; 8836 else { 8837 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, 8838 EL.ConstantMaxNotTaken); 8839 } 8840 } 8841 } 8842 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8843 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8844 // The loop backedge will be taken the maximum or zero times if there's 8845 // a single exit that must be taken the maximum or zero times. 8846 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8847 8848 // Remember which SCEVs are used in exit limits for invalidation purposes. 8849 // We only care about non-constant SCEVs here, so we can ignore 8850 // EL.ConstantMaxNotTaken 8851 // and MaxBECount, which must be SCEVConstant. 8852 for (const auto &Pair : ExitCounts) { 8853 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8854 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8855 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) 8856 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( 8857 {L, AllowPredicates}); 8858 } 8859 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8860 MaxBECount, MaxOrZero); 8861 } 8862 8863 ScalarEvolution::ExitLimit 8864 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8865 bool AllowPredicates) { 8866 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8867 // If our exiting block does not dominate the latch, then its connection with 8868 // loop's exit limit may be far from trivial. 8869 const BasicBlock *Latch = L->getLoopLatch(); 8870 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8871 return getCouldNotCompute(); 8872 8873 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8874 Instruction *Term = ExitingBlock->getTerminator(); 8875 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8876 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8877 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8878 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8879 "It should have one successor in loop and one exit block!"); 8880 // Proceed to the next level to examine the exit condition expression. 8881 return computeExitLimitFromCond( 8882 L, BI->getCondition(), ExitIfTrue, 8883 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8884 } 8885 8886 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8887 // For switch, make sure that there is a single exit from the loop. 8888 BasicBlock *Exit = nullptr; 8889 for (auto *SBB : successors(ExitingBlock)) 8890 if (!L->contains(SBB)) { 8891 if (Exit) // Multiple exit successors. 8892 return getCouldNotCompute(); 8893 Exit = SBB; 8894 } 8895 assert(Exit && "Exiting block must have at least one exit"); 8896 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8897 /*ControlsExit=*/IsOnlyExit); 8898 } 8899 8900 return getCouldNotCompute(); 8901 } 8902 8903 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8904 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8905 bool ControlsExit, bool AllowPredicates) { 8906 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8907 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8908 ControlsExit, AllowPredicates); 8909 } 8910 8911 std::optional<ScalarEvolution::ExitLimit> 8912 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8913 bool ExitIfTrue, bool ControlsExit, 8914 bool AllowPredicates) { 8915 (void)this->L; 8916 (void)this->ExitIfTrue; 8917 (void)this->AllowPredicates; 8918 8919 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8920 this->AllowPredicates == AllowPredicates && 8921 "Variance in assumed invariant key components!"); 8922 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8923 if (Itr == TripCountMap.end()) 8924 return std::nullopt; 8925 return Itr->second; 8926 } 8927 8928 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8929 bool ExitIfTrue, 8930 bool ControlsExit, 8931 bool AllowPredicates, 8932 const ExitLimit &EL) { 8933 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8934 this->AllowPredicates == AllowPredicates && 8935 "Variance in assumed invariant key components!"); 8936 8937 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8938 assert(InsertResult.second && "Expected successful insertion!"); 8939 (void)InsertResult; 8940 (void)ExitIfTrue; 8941 } 8942 8943 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8944 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8945 bool ControlsExit, bool AllowPredicates) { 8946 8947 if (auto MaybeEL = 8948 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8949 return *MaybeEL; 8950 8951 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8952 ControlsExit, AllowPredicates); 8953 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8954 return EL; 8955 } 8956 8957 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8958 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8959 bool ControlsExit, bool AllowPredicates) { 8960 // Handle BinOp conditions (And, Or). 8961 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8962 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8963 return *LimitFromBinOp; 8964 8965 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8966 // Proceed to the next level to examine the icmp. 8967 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8968 ExitLimit EL = 8969 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8970 if (EL.hasFullInfo() || !AllowPredicates) 8971 return EL; 8972 8973 // Try again, but use SCEV predicates this time. 8974 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8975 /*AllowPredicates=*/true); 8976 } 8977 8978 // Check for a constant condition. These are normally stripped out by 8979 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8980 // preserve the CFG and is temporarily leaving constant conditions 8981 // in place. 8982 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8983 if (ExitIfTrue == !CI->getZExtValue()) 8984 // The backedge is always taken. 8985 return getCouldNotCompute(); 8986 else 8987 // The backedge is never taken. 8988 return getZero(CI->getType()); 8989 } 8990 8991 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8992 // with a constant step, we can form an equivalent icmp predicate and figure 8993 // out how many iterations will be taken before we exit. 8994 const WithOverflowInst *WO; 8995 const APInt *C; 8996 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8997 match(WO->getRHS(), m_APInt(C))) { 8998 ConstantRange NWR = 8999 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 9000 WO->getNoWrapKind()); 9001 CmpInst::Predicate Pred; 9002 APInt NewRHSC, Offset; 9003 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 9004 if (!ExitIfTrue) 9005 Pred = ICmpInst::getInversePredicate(Pred); 9006 auto *LHS = getSCEV(WO->getLHS()); 9007 if (Offset != 0) 9008 LHS = getAddExpr(LHS, getConstant(Offset)); 9009 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 9010 ControlsExit, AllowPredicates); 9011 if (EL.hasAnyInfo()) return EL; 9012 } 9013 9014 // If it's not an integer or pointer comparison then compute it the hard way. 9015 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9016 } 9017 9018 std::optional<ScalarEvolution::ExitLimit> 9019 ScalarEvolution::computeExitLimitFromCondFromBinOp( 9020 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 9021 bool ControlsExit, bool AllowPredicates) { 9022 // Check if the controlling expression for this loop is an And or Or. 9023 Value *Op0, *Op1; 9024 bool IsAnd = false; 9025 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 9026 IsAnd = true; 9027 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 9028 IsAnd = false; 9029 else 9030 return std::nullopt; 9031 9032 // EitherMayExit is true in these two cases: 9033 // br (and Op0 Op1), loop, exit 9034 // br (or Op0 Op1), exit, loop 9035 bool EitherMayExit = IsAnd ^ ExitIfTrue; 9036 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 9037 ControlsExit && !EitherMayExit, 9038 AllowPredicates); 9039 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 9040 ControlsExit && !EitherMayExit, 9041 AllowPredicates); 9042 9043 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 9044 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 9045 if (isa<ConstantInt>(Op1)) 9046 return Op1 == NeutralElement ? EL0 : EL1; 9047 if (isa<ConstantInt>(Op0)) 9048 return Op0 == NeutralElement ? EL1 : EL0; 9049 9050 const SCEV *BECount = getCouldNotCompute(); 9051 const SCEV *ConstantMaxBECount = getCouldNotCompute(); 9052 const SCEV *SymbolicMaxBECount = getCouldNotCompute(); 9053 if (EitherMayExit) { 9054 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); 9055 // Both conditions must be same for the loop to continue executing. 9056 // Choose the less conservative count. 9057 if (EL0.ExactNotTaken != getCouldNotCompute() && 9058 EL1.ExactNotTaken != getCouldNotCompute()) { 9059 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 9060 UseSequentialUMin); 9061 } 9062 if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) 9063 ConstantMaxBECount = EL1.ConstantMaxNotTaken; 9064 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) 9065 ConstantMaxBECount = EL0.ConstantMaxNotTaken; 9066 else 9067 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, 9068 EL1.ConstantMaxNotTaken); 9069 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) 9070 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; 9071 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) 9072 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; 9073 else 9074 SymbolicMaxBECount = getUMinFromMismatchedTypes( 9075 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); 9076 } else { 9077 // Both conditions must be same at the same time for the loop to exit. 9078 // For now, be conservative. 9079 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 9080 BECount = EL0.ExactNotTaken; 9081 } 9082 9083 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 9084 // to be more aggressive when computing BECount than when computing 9085 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken 9086 // and 9087 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and 9088 // EL1.ConstantMaxNotTaken to not. 9089 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 9090 !isa<SCEVCouldNotCompute>(BECount)) 9091 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 9092 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) 9093 SymbolicMaxBECount = 9094 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 9095 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 9096 { &EL0.Predicates, &EL1.Predicates }); 9097 } 9098 9099 ScalarEvolution::ExitLimit 9100 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 9101 ICmpInst *ExitCond, 9102 bool ExitIfTrue, 9103 bool ControlsExit, 9104 bool AllowPredicates) { 9105 // If the condition was exit on true, convert the condition to exit on false 9106 ICmpInst::Predicate Pred; 9107 if (!ExitIfTrue) 9108 Pred = ExitCond->getPredicate(); 9109 else 9110 Pred = ExitCond->getInversePredicate(); 9111 const ICmpInst::Predicate OriginalPred = Pred; 9112 9113 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 9114 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 9115 9116 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 9117 AllowPredicates); 9118 if (EL.hasAnyInfo()) return EL; 9119 9120 auto *ExhaustiveCount = 9121 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9122 9123 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 9124 return ExhaustiveCount; 9125 9126 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 9127 ExitCond->getOperand(1), L, OriginalPred); 9128 } 9129 ScalarEvolution::ExitLimit 9130 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 9131 ICmpInst::Predicate Pred, 9132 const SCEV *LHS, const SCEV *RHS, 9133 bool ControlsExit, 9134 bool AllowPredicates) { 9135 9136 // Try to evaluate any dependencies out of the loop. 9137 LHS = getSCEVAtScope(LHS, L); 9138 RHS = getSCEVAtScope(RHS, L); 9139 9140 // At this point, we would like to compute how many iterations of the 9141 // loop the predicate will return true for these inputs. 9142 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 9143 // If there is a loop-invariant, force it into the RHS. 9144 std::swap(LHS, RHS); 9145 Pred = ICmpInst::getSwappedPredicate(Pred); 9146 } 9147 9148 bool ControllingFiniteLoop = 9149 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 9150 // Simplify the operands before analyzing them. 9151 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 9152 (EnableFiniteLoopControl ? ControllingFiniteLoop 9153 : false)); 9154 9155 // If we have a comparison of a chrec against a constant, try to use value 9156 // ranges to answer this query. 9157 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 9158 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 9159 if (AddRec->getLoop() == L) { 9160 // Form the constant range. 9161 ConstantRange CompRange = 9162 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 9163 9164 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 9165 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 9166 } 9167 9168 // If this loop must exit based on this condition (or execute undefined 9169 // behaviour), and we can prove the test sequence produced must repeat 9170 // the same values on self-wrap of the IV, then we can infer that IV 9171 // doesn't self wrap because if it did, we'd have an infinite (undefined) 9172 // loop. 9173 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 9174 // TODO: We can peel off any functions which are invertible *in L*. Loop 9175 // invariant terms are effectively constants for our purposes here. 9176 auto *InnerLHS = LHS; 9177 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 9178 InnerLHS = ZExt->getOperand(); 9179 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 9180 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 9181 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 9182 StrideC && StrideC->getAPInt().isPowerOf2()) { 9183 auto Flags = AR->getNoWrapFlags(); 9184 Flags = setFlags(Flags, SCEV::FlagNW); 9185 SmallVector<const SCEV*> Operands{AR->operands()}; 9186 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9187 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9188 } 9189 } 9190 } 9191 9192 switch (Pred) { 9193 case ICmpInst::ICMP_NE: { // while (X != Y) 9194 // Convert to: while (X-Y != 0) 9195 if (LHS->getType()->isPointerTy()) { 9196 LHS = getLosslessPtrToIntExpr(LHS); 9197 if (isa<SCEVCouldNotCompute>(LHS)) 9198 return LHS; 9199 } 9200 if (RHS->getType()->isPointerTy()) { 9201 RHS = getLosslessPtrToIntExpr(RHS); 9202 if (isa<SCEVCouldNotCompute>(RHS)) 9203 return RHS; 9204 } 9205 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 9206 AllowPredicates); 9207 if (EL.hasAnyInfo()) return EL; 9208 break; 9209 } 9210 case ICmpInst::ICMP_EQ: { // while (X == Y) 9211 // Convert to: while (X-Y == 0) 9212 if (LHS->getType()->isPointerTy()) { 9213 LHS = getLosslessPtrToIntExpr(LHS); 9214 if (isa<SCEVCouldNotCompute>(LHS)) 9215 return LHS; 9216 } 9217 if (RHS->getType()->isPointerTy()) { 9218 RHS = getLosslessPtrToIntExpr(RHS); 9219 if (isa<SCEVCouldNotCompute>(RHS)) 9220 return RHS; 9221 } 9222 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 9223 if (EL.hasAnyInfo()) return EL; 9224 break; 9225 } 9226 case ICmpInst::ICMP_SLT: 9227 case ICmpInst::ICMP_ULT: { // while (X < Y) 9228 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 9229 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 9230 AllowPredicates); 9231 if (EL.hasAnyInfo()) return EL; 9232 break; 9233 } 9234 case ICmpInst::ICMP_SGT: 9235 case ICmpInst::ICMP_UGT: { // while (X > Y) 9236 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 9237 ExitLimit EL = 9238 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 9239 AllowPredicates); 9240 if (EL.hasAnyInfo()) return EL; 9241 break; 9242 } 9243 default: 9244 break; 9245 } 9246 9247 return getCouldNotCompute(); 9248 } 9249 9250 ScalarEvolution::ExitLimit 9251 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 9252 SwitchInst *Switch, 9253 BasicBlock *ExitingBlock, 9254 bool ControlsExit) { 9255 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 9256 9257 // Give up if the exit is the default dest of a switch. 9258 if (Switch->getDefaultDest() == ExitingBlock) 9259 return getCouldNotCompute(); 9260 9261 assert(L->contains(Switch->getDefaultDest()) && 9262 "Default case must not exit the loop!"); 9263 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 9264 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 9265 9266 // while (X != Y) --> while (X-Y != 0) 9267 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 9268 if (EL.hasAnyInfo()) 9269 return EL; 9270 9271 return getCouldNotCompute(); 9272 } 9273 9274 static ConstantInt * 9275 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9276 ScalarEvolution &SE) { 9277 const SCEV *InVal = SE.getConstant(C); 9278 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9279 assert(isa<SCEVConstant>(Val) && 9280 "Evaluation of SCEV at constant didn't fold correctly?"); 9281 return cast<SCEVConstant>(Val)->getValue(); 9282 } 9283 9284 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9285 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9286 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9287 if (!RHS) 9288 return getCouldNotCompute(); 9289 9290 const BasicBlock *Latch = L->getLoopLatch(); 9291 if (!Latch) 9292 return getCouldNotCompute(); 9293 9294 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9295 if (!Predecessor) 9296 return getCouldNotCompute(); 9297 9298 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9299 // Return LHS in OutLHS and shift_opt in OutOpCode. 9300 auto MatchPositiveShift = 9301 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9302 9303 using namespace PatternMatch; 9304 9305 ConstantInt *ShiftAmt; 9306 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9307 OutOpCode = Instruction::LShr; 9308 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9309 OutOpCode = Instruction::AShr; 9310 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9311 OutOpCode = Instruction::Shl; 9312 else 9313 return false; 9314 9315 return ShiftAmt->getValue().isStrictlyPositive(); 9316 }; 9317 9318 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9319 // 9320 // loop: 9321 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9322 // %iv.shifted = lshr i32 %iv, <positive constant> 9323 // 9324 // Return true on a successful match. Return the corresponding PHI node (%iv 9325 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9326 auto MatchShiftRecurrence = 9327 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9328 std::optional<Instruction::BinaryOps> PostShiftOpCode; 9329 9330 { 9331 Instruction::BinaryOps OpC; 9332 Value *V; 9333 9334 // If we encounter a shift instruction, "peel off" the shift operation, 9335 // and remember that we did so. Later when we inspect %iv's backedge 9336 // value, we will make sure that the backedge value uses the same 9337 // operation. 9338 // 9339 // Note: the peeled shift operation does not have to be the same 9340 // instruction as the one feeding into the PHI's backedge value. We only 9341 // really care about it being the same *kind* of shift instruction -- 9342 // that's all that is required for our later inferences to hold. 9343 if (MatchPositiveShift(LHS, V, OpC)) { 9344 PostShiftOpCode = OpC; 9345 LHS = V; 9346 } 9347 } 9348 9349 PNOut = dyn_cast<PHINode>(LHS); 9350 if (!PNOut || PNOut->getParent() != L->getHeader()) 9351 return false; 9352 9353 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9354 Value *OpLHS; 9355 9356 return 9357 // The backedge value for the PHI node must be a shift by a positive 9358 // amount 9359 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9360 9361 // of the PHI node itself 9362 OpLHS == PNOut && 9363 9364 // and the kind of shift should be match the kind of shift we peeled 9365 // off, if any. 9366 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9367 }; 9368 9369 PHINode *PN; 9370 Instruction::BinaryOps OpCode; 9371 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9372 return getCouldNotCompute(); 9373 9374 const DataLayout &DL = getDataLayout(); 9375 9376 // The key rationale for this optimization is that for some kinds of shift 9377 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9378 // within a finite number of iterations. If the condition guarding the 9379 // backedge (in the sense that the backedge is taken if the condition is true) 9380 // is false for the value the shift recurrence stabilizes to, then we know 9381 // that the backedge is taken only a finite number of times. 9382 9383 ConstantInt *StableValue = nullptr; 9384 switch (OpCode) { 9385 default: 9386 llvm_unreachable("Impossible case!"); 9387 9388 case Instruction::AShr: { 9389 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9390 // bitwidth(K) iterations. 9391 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9392 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9393 Predecessor->getTerminator(), &DT); 9394 auto *Ty = cast<IntegerType>(RHS->getType()); 9395 if (Known.isNonNegative()) 9396 StableValue = ConstantInt::get(Ty, 0); 9397 else if (Known.isNegative()) 9398 StableValue = ConstantInt::get(Ty, -1, true); 9399 else 9400 return getCouldNotCompute(); 9401 9402 break; 9403 } 9404 case Instruction::LShr: 9405 case Instruction::Shl: 9406 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9407 // stabilize to 0 in at most bitwidth(K) iterations. 9408 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9409 break; 9410 } 9411 9412 auto *Result = 9413 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9414 assert(Result->getType()->isIntegerTy(1) && 9415 "Otherwise cannot be an operand to a branch instruction"); 9416 9417 if (Result->isZeroValue()) { 9418 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9419 const SCEV *UpperBound = 9420 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9421 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); 9422 } 9423 9424 return getCouldNotCompute(); 9425 } 9426 9427 /// Return true if we can constant fold an instruction of the specified type, 9428 /// assuming that all operands were constants. 9429 static bool CanConstantFold(const Instruction *I) { 9430 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9431 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9432 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9433 return true; 9434 9435 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9436 if (const Function *F = CI->getCalledFunction()) 9437 return canConstantFoldCallTo(CI, F); 9438 return false; 9439 } 9440 9441 /// Determine whether this instruction can constant evolve within this loop 9442 /// assuming its operands can all constant evolve. 9443 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9444 // An instruction outside of the loop can't be derived from a loop PHI. 9445 if (!L->contains(I)) return false; 9446 9447 if (isa<PHINode>(I)) { 9448 // We don't currently keep track of the control flow needed to evaluate 9449 // PHIs, so we cannot handle PHIs inside of loops. 9450 return L->getHeader() == I->getParent(); 9451 } 9452 9453 // If we won't be able to constant fold this expression even if the operands 9454 // are constants, bail early. 9455 return CanConstantFold(I); 9456 } 9457 9458 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9459 /// recursing through each instruction operand until reaching a loop header phi. 9460 static PHINode * 9461 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9462 DenseMap<Instruction *, PHINode *> &PHIMap, 9463 unsigned Depth) { 9464 if (Depth > MaxConstantEvolvingDepth) 9465 return nullptr; 9466 9467 // Otherwise, we can evaluate this instruction if all of its operands are 9468 // constant or derived from a PHI node themselves. 9469 PHINode *PHI = nullptr; 9470 for (Value *Op : UseInst->operands()) { 9471 if (isa<Constant>(Op)) continue; 9472 9473 Instruction *OpInst = dyn_cast<Instruction>(Op); 9474 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9475 9476 PHINode *P = dyn_cast<PHINode>(OpInst); 9477 if (!P) 9478 // If this operand is already visited, reuse the prior result. 9479 // We may have P != PHI if this is the deepest point at which the 9480 // inconsistent paths meet. 9481 P = PHIMap.lookup(OpInst); 9482 if (!P) { 9483 // Recurse and memoize the results, whether a phi is found or not. 9484 // This recursive call invalidates pointers into PHIMap. 9485 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9486 PHIMap[OpInst] = P; 9487 } 9488 if (!P) 9489 return nullptr; // Not evolving from PHI 9490 if (PHI && PHI != P) 9491 return nullptr; // Evolving from multiple different PHIs. 9492 PHI = P; 9493 } 9494 // This is a expression evolving from a constant PHI! 9495 return PHI; 9496 } 9497 9498 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9499 /// in the loop that V is derived from. We allow arbitrary operations along the 9500 /// way, but the operands of an operation must either be constants or a value 9501 /// derived from a constant PHI. If this expression does not fit with these 9502 /// constraints, return null. 9503 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9504 Instruction *I = dyn_cast<Instruction>(V); 9505 if (!I || !canConstantEvolve(I, L)) return nullptr; 9506 9507 if (PHINode *PN = dyn_cast<PHINode>(I)) 9508 return PN; 9509 9510 // Record non-constant instructions contained by the loop. 9511 DenseMap<Instruction *, PHINode *> PHIMap; 9512 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9513 } 9514 9515 /// EvaluateExpression - Given an expression that passes the 9516 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9517 /// in the loop has the value PHIVal. If we can't fold this expression for some 9518 /// reason, return null. 9519 static Constant *EvaluateExpression(Value *V, const Loop *L, 9520 DenseMap<Instruction *, Constant *> &Vals, 9521 const DataLayout &DL, 9522 const TargetLibraryInfo *TLI) { 9523 // Convenient constant check, but redundant for recursive calls. 9524 if (Constant *C = dyn_cast<Constant>(V)) return C; 9525 Instruction *I = dyn_cast<Instruction>(V); 9526 if (!I) return nullptr; 9527 9528 if (Constant *C = Vals.lookup(I)) return C; 9529 9530 // An instruction inside the loop depends on a value outside the loop that we 9531 // weren't given a mapping for, or a value such as a call inside the loop. 9532 if (!canConstantEvolve(I, L)) return nullptr; 9533 9534 // An unmapped PHI can be due to a branch or another loop inside this loop, 9535 // or due to this not being the initial iteration through a loop where we 9536 // couldn't compute the evolution of this particular PHI last time. 9537 if (isa<PHINode>(I)) return nullptr; 9538 9539 std::vector<Constant*> Operands(I->getNumOperands()); 9540 9541 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9542 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9543 if (!Operand) { 9544 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9545 if (!Operands[i]) return nullptr; 9546 continue; 9547 } 9548 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9549 Vals[Operand] = C; 9550 if (!C) return nullptr; 9551 Operands[i] = C; 9552 } 9553 9554 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9555 } 9556 9557 9558 // If every incoming value to PN except the one for BB is a specific Constant, 9559 // return that, else return nullptr. 9560 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9561 Constant *IncomingVal = nullptr; 9562 9563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9564 if (PN->getIncomingBlock(i) == BB) 9565 continue; 9566 9567 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9568 if (!CurrentVal) 9569 return nullptr; 9570 9571 if (IncomingVal != CurrentVal) { 9572 if (IncomingVal) 9573 return nullptr; 9574 IncomingVal = CurrentVal; 9575 } 9576 } 9577 9578 return IncomingVal; 9579 } 9580 9581 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9582 /// in the header of its containing loop, we know the loop executes a 9583 /// constant number of times, and the PHI node is just a recurrence 9584 /// involving constants, fold it. 9585 Constant * 9586 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9587 const APInt &BEs, 9588 const Loop *L) { 9589 auto I = ConstantEvolutionLoopExitValue.find(PN); 9590 if (I != ConstantEvolutionLoopExitValue.end()) 9591 return I->second; 9592 9593 if (BEs.ugt(MaxBruteForceIterations)) 9594 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9595 9596 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9597 9598 DenseMap<Instruction *, Constant *> CurrentIterVals; 9599 BasicBlock *Header = L->getHeader(); 9600 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9601 9602 BasicBlock *Latch = L->getLoopLatch(); 9603 if (!Latch) 9604 return nullptr; 9605 9606 for (PHINode &PHI : Header->phis()) { 9607 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9608 CurrentIterVals[&PHI] = StartCST; 9609 } 9610 if (!CurrentIterVals.count(PN)) 9611 return RetVal = nullptr; 9612 9613 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9614 9615 // Execute the loop symbolically to determine the exit value. 9616 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9617 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9618 9619 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9620 unsigned IterationNum = 0; 9621 const DataLayout &DL = getDataLayout(); 9622 for (; ; ++IterationNum) { 9623 if (IterationNum == NumIterations) 9624 return RetVal = CurrentIterVals[PN]; // Got exit value! 9625 9626 // Compute the value of the PHIs for the next iteration. 9627 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9628 DenseMap<Instruction *, Constant *> NextIterVals; 9629 Constant *NextPHI = 9630 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9631 if (!NextPHI) 9632 return nullptr; // Couldn't evaluate! 9633 NextIterVals[PN] = NextPHI; 9634 9635 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9636 9637 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9638 // cease to be able to evaluate one of them or if they stop evolving, 9639 // because that doesn't necessarily prevent us from computing PN. 9640 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9641 for (const auto &I : CurrentIterVals) { 9642 PHINode *PHI = dyn_cast<PHINode>(I.first); 9643 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9644 PHIsToCompute.emplace_back(PHI, I.second); 9645 } 9646 // We use two distinct loops because EvaluateExpression may invalidate any 9647 // iterators into CurrentIterVals. 9648 for (const auto &I : PHIsToCompute) { 9649 PHINode *PHI = I.first; 9650 Constant *&NextPHI = NextIterVals[PHI]; 9651 if (!NextPHI) { // Not already computed. 9652 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9653 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9654 } 9655 if (NextPHI != I.second) 9656 StoppedEvolving = false; 9657 } 9658 9659 // If all entries in CurrentIterVals == NextIterVals then we can stop 9660 // iterating, the loop can't continue to change. 9661 if (StoppedEvolving) 9662 return RetVal = CurrentIterVals[PN]; 9663 9664 CurrentIterVals.swap(NextIterVals); 9665 } 9666 } 9667 9668 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9669 Value *Cond, 9670 bool ExitWhen) { 9671 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9672 if (!PN) return getCouldNotCompute(); 9673 9674 // If the loop is canonicalized, the PHI will have exactly two entries. 9675 // That's the only form we support here. 9676 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9677 9678 DenseMap<Instruction *, Constant *> CurrentIterVals; 9679 BasicBlock *Header = L->getHeader(); 9680 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9681 9682 BasicBlock *Latch = L->getLoopLatch(); 9683 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9684 9685 for (PHINode &PHI : Header->phis()) { 9686 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9687 CurrentIterVals[&PHI] = StartCST; 9688 } 9689 if (!CurrentIterVals.count(PN)) 9690 return getCouldNotCompute(); 9691 9692 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9693 // the loop symbolically to determine when the condition gets a value of 9694 // "ExitWhen". 9695 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9696 const DataLayout &DL = getDataLayout(); 9697 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9698 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9699 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9700 9701 // Couldn't symbolically evaluate. 9702 if (!CondVal) return getCouldNotCompute(); 9703 9704 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9705 ++NumBruteForceTripCountsComputed; 9706 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9707 } 9708 9709 // Update all the PHI nodes for the next iteration. 9710 DenseMap<Instruction *, Constant *> NextIterVals; 9711 9712 // Create a list of which PHIs we need to compute. We want to do this before 9713 // calling EvaluateExpression on them because that may invalidate iterators 9714 // into CurrentIterVals. 9715 SmallVector<PHINode *, 8> PHIsToCompute; 9716 for (const auto &I : CurrentIterVals) { 9717 PHINode *PHI = dyn_cast<PHINode>(I.first); 9718 if (!PHI || PHI->getParent() != Header) continue; 9719 PHIsToCompute.push_back(PHI); 9720 } 9721 for (PHINode *PHI : PHIsToCompute) { 9722 Constant *&NextPHI = NextIterVals[PHI]; 9723 if (NextPHI) continue; // Already computed! 9724 9725 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9726 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9727 } 9728 CurrentIterVals.swap(NextIterVals); 9729 } 9730 9731 // Too many iterations were needed to evaluate. 9732 return getCouldNotCompute(); 9733 } 9734 9735 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9736 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9737 ValuesAtScopes[V]; 9738 // Check to see if we've folded this expression at this loop before. 9739 for (auto &LS : Values) 9740 if (LS.first == L) 9741 return LS.second ? LS.second : V; 9742 9743 Values.emplace_back(L, nullptr); 9744 9745 // Otherwise compute it. 9746 const SCEV *C = computeSCEVAtScope(V, L); 9747 for (auto &LS : reverse(ValuesAtScopes[V])) 9748 if (LS.first == L) { 9749 LS.second = C; 9750 if (!isa<SCEVConstant>(C)) 9751 ValuesAtScopesUsers[C].push_back({L, V}); 9752 break; 9753 } 9754 return C; 9755 } 9756 9757 /// This builds up a Constant using the ConstantExpr interface. That way, we 9758 /// will return Constants for objects which aren't represented by a 9759 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9760 /// Returns NULL if the SCEV isn't representable as a Constant. 9761 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9762 switch (V->getSCEVType()) { 9763 case scCouldNotCompute: 9764 case scAddRecExpr: 9765 return nullptr; 9766 case scConstant: 9767 return cast<SCEVConstant>(V)->getValue(); 9768 case scUnknown: 9769 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9770 case scSignExtend: { 9771 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9772 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9773 return ConstantExpr::getSExt(CastOp, SS->getType()); 9774 return nullptr; 9775 } 9776 case scZeroExtend: { 9777 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9778 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9779 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9780 return nullptr; 9781 } 9782 case scPtrToInt: { 9783 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9784 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9785 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9786 9787 return nullptr; 9788 } 9789 case scTruncate: { 9790 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9791 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9792 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9793 return nullptr; 9794 } 9795 case scAddExpr: { 9796 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9797 Constant *C = nullptr; 9798 for (const SCEV *Op : SA->operands()) { 9799 Constant *OpC = BuildConstantFromSCEV(Op); 9800 if (!OpC) 9801 return nullptr; 9802 if (!C) { 9803 C = OpC; 9804 continue; 9805 } 9806 assert(!C->getType()->isPointerTy() && 9807 "Can only have one pointer, and it must be last"); 9808 if (auto *PT = dyn_cast<PointerType>(OpC->getType())) { 9809 // The offsets have been converted to bytes. We can add bytes to an 9810 // i8* by GEP with the byte count in the first index. 9811 Type *DestPtrTy = 9812 Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace()); 9813 OpC = ConstantExpr::getBitCast(OpC, DestPtrTy); 9814 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9815 OpC, C); 9816 } else { 9817 C = ConstantExpr::getAdd(C, OpC); 9818 } 9819 } 9820 return C; 9821 } 9822 case scMulExpr: { 9823 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9824 Constant *C = nullptr; 9825 for (const SCEV *Op : SM->operands()) { 9826 assert(!Op->getType()->isPointerTy() && "Can't multiply pointers"); 9827 Constant *OpC = BuildConstantFromSCEV(Op); 9828 if (!OpC) 9829 return nullptr; 9830 C = C ? ConstantExpr::getMul(C, OpC) : OpC; 9831 } 9832 return C; 9833 } 9834 case scUDivExpr: 9835 case scSMaxExpr: 9836 case scUMaxExpr: 9837 case scSMinExpr: 9838 case scUMinExpr: 9839 case scSequentialUMinExpr: 9840 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9841 } 9842 llvm_unreachable("Unknown SCEV kind!"); 9843 } 9844 9845 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9846 switch (V->getSCEVType()) { 9847 case scConstant: 9848 return V; 9849 case scAddRecExpr: { 9850 // If this is a loop recurrence for a loop that does not contain L, then we 9851 // are dealing with the final value computed by the loop. 9852 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); 9853 // First, attempt to evaluate each operand. 9854 // Avoid performing the look-up in the common case where the specified 9855 // expression has no loop-variant portions. 9856 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9857 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9858 if (OpAtScope == AddRec->getOperand(i)) 9859 continue; 9860 9861 // Okay, at least one of these operands is loop variant but might be 9862 // foldable. Build a new instance of the folded commutative expression. 9863 SmallVector<const SCEV *, 8> NewOps; 9864 NewOps.reserve(AddRec->getNumOperands()); 9865 append_range(NewOps, AddRec->operands().take_front(i)); 9866 NewOps.push_back(OpAtScope); 9867 for (++i; i != e; ++i) 9868 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9869 9870 const SCEV *FoldedRec = getAddRecExpr( 9871 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); 9872 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9873 // The addrec may be folded to a nonrecurrence, for example, if the 9874 // induction variable is multiplied by zero after constant folding. Go 9875 // ahead and return the folded value. 9876 if (!AddRec) 9877 return FoldedRec; 9878 break; 9879 } 9880 9881 // If the scope is outside the addrec's loop, evaluate it by using the 9882 // loop exit value of the addrec. 9883 if (!AddRec->getLoop()->contains(L)) { 9884 // To evaluate this recurrence, we need to know how many times the AddRec 9885 // loop iterates. Compute this now. 9886 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9887 if (BackedgeTakenCount == getCouldNotCompute()) 9888 return AddRec; 9889 9890 // Then, evaluate the AddRec. 9891 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9892 } 9893 9894 return AddRec; 9895 } 9896 case scTruncate: 9897 case scZeroExtend: 9898 case scSignExtend: 9899 case scPtrToInt: 9900 case scAddExpr: 9901 case scMulExpr: 9902 case scUDivExpr: 9903 case scUMaxExpr: 9904 case scSMaxExpr: 9905 case scUMinExpr: 9906 case scSMinExpr: 9907 case scSequentialUMinExpr: { 9908 ArrayRef<const SCEV *> Ops = V->operands(); 9909 // Avoid performing the look-up in the common case where the specified 9910 // expression has no loop-variant portions. 9911 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 9912 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); 9913 if (OpAtScope != Ops[i]) { 9914 // Okay, at least one of these operands is loop variant but might be 9915 // foldable. Build a new instance of the folded commutative expression. 9916 SmallVector<const SCEV *, 8> NewOps; 9917 NewOps.reserve(Ops.size()); 9918 append_range(NewOps, Ops.take_front(i)); 9919 NewOps.push_back(OpAtScope); 9920 9921 for (++i; i != e; ++i) { 9922 OpAtScope = getSCEVAtScope(Ops[i], L); 9923 NewOps.push_back(OpAtScope); 9924 } 9925 9926 switch (V->getSCEVType()) { 9927 case scTruncate: 9928 case scZeroExtend: 9929 case scSignExtend: 9930 case scPtrToInt: 9931 return getCastExpr(V->getSCEVType(), NewOps[0], V->getType()); 9932 case scAddExpr: 9933 return getAddExpr(NewOps, cast<SCEVAddExpr>(V)->getNoWrapFlags()); 9934 case scMulExpr: 9935 return getMulExpr(NewOps, cast<SCEVMulExpr>(V)->getNoWrapFlags()); 9936 case scUDivExpr: 9937 return getUDivExpr(NewOps[0], NewOps[1]); 9938 case scUMaxExpr: 9939 case scSMaxExpr: 9940 case scUMinExpr: 9941 case scSMinExpr: 9942 return getMinMaxExpr(V->getSCEVType(), NewOps); 9943 case scSequentialUMinExpr: 9944 return getSequentialMinMaxExpr(V->getSCEVType(), NewOps); 9945 case scConstant: 9946 case scAddRecExpr: 9947 case scUnknown: 9948 case scCouldNotCompute: 9949 llvm_unreachable("Can not get those expressions here."); 9950 } 9951 llvm_unreachable("Unknown n-ary-like SCEV type!"); 9952 } 9953 } 9954 // If we got here, all operands are loop invariant. 9955 return V; 9956 } 9957 case scUnknown: { 9958 // If this instruction is evolved from a constant-evolving PHI, compute the 9959 // exit value from the loop without using SCEVs. 9960 const SCEVUnknown *SU = cast<SCEVUnknown>(V); 9961 Instruction *I = dyn_cast<Instruction>(SU->getValue()); 9962 if (!I) 9963 return V; // This is some other type of SCEVUnknown, just return it. 9964 9965 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9966 const Loop *CurrLoop = this->LI[I->getParent()]; 9967 // Looking for loop exit value. 9968 if (CurrLoop && CurrLoop->getParentLoop() == L && 9969 PN->getParent() == CurrLoop->getHeader()) { 9970 // Okay, there is no closed form solution for the PHI node. Check 9971 // to see if the loop that contains it has a known backedge-taken 9972 // count. If so, we may be able to force computation of the exit 9973 // value. 9974 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9975 // This trivial case can show up in some degenerate cases where 9976 // the incoming IR has not yet been fully simplified. 9977 if (BackedgeTakenCount->isZero()) { 9978 Value *InitValue = nullptr; 9979 bool MultipleInitValues = false; 9980 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9981 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9982 if (!InitValue) 9983 InitValue = PN->getIncomingValue(i); 9984 else if (InitValue != PN->getIncomingValue(i)) { 9985 MultipleInitValues = true; 9986 break; 9987 } 9988 } 9989 } 9990 if (!MultipleInitValues && InitValue) 9991 return getSCEV(InitValue); 9992 } 9993 // Do we have a loop invariant value flowing around the backedge 9994 // for a loop which must execute the backedge? 9995 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9996 isKnownPositive(BackedgeTakenCount) && 9997 PN->getNumIncomingValues() == 2) { 9998 9999 unsigned InLoopPred = 10000 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 10001 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 10002 if (CurrLoop->isLoopInvariant(BackedgeVal)) 10003 return getSCEV(BackedgeVal); 10004 } 10005 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 10006 // Okay, we know how many times the containing loop executes. If 10007 // this is a constant evolving PHI node, get the final value at 10008 // the specified iteration number. 10009 Constant *RV = 10010 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); 10011 if (RV) 10012 return getSCEV(RV); 10013 } 10014 } 10015 10016 // If there is a single-input Phi, evaluate it at our scope. If we can 10017 // prove that this replacement does not break LCSSA form, use new value. 10018 if (PN->getNumOperands() == 1) { 10019 const SCEV *Input = getSCEV(PN->getOperand(0)); 10020 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 10021 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 10022 // for the simplest case just support constants. 10023 if (isa<SCEVConstant>(InputAtScope)) 10024 return InputAtScope; 10025 } 10026 } 10027 10028 // Okay, this is an expression that we cannot symbolically evaluate 10029 // into a SCEV. Check to see if it's possible to symbolically evaluate 10030 // the arguments into constants, and if so, try to constant propagate the 10031 // result. This is particularly useful for computing loop exit values. 10032 if (!CanConstantFold(I)) 10033 return V; // This is some other type of SCEVUnknown, just return it. 10034 10035 SmallVector<Constant *, 4> Operands; 10036 Operands.reserve(I->getNumOperands()); 10037 bool MadeImprovement = false; 10038 for (Value *Op : I->operands()) { 10039 if (Constant *C = dyn_cast<Constant>(Op)) { 10040 Operands.push_back(C); 10041 continue; 10042 } 10043 10044 // If any of the operands is non-constant and if they are 10045 // non-integer and non-pointer, don't even try to analyze them 10046 // with scev techniques. 10047 if (!isSCEVable(Op->getType())) 10048 return V; 10049 10050 const SCEV *OrigV = getSCEV(Op); 10051 const SCEV *OpV = getSCEVAtScope(OrigV, L); 10052 MadeImprovement |= OrigV != OpV; 10053 10054 Constant *C = BuildConstantFromSCEV(OpV); 10055 if (!C) 10056 return V; 10057 if (C->getType() != Op->getType()) 10058 C = ConstantExpr::getCast( 10059 CastInst::getCastOpcode(C, false, Op->getType(), false), C, 10060 Op->getType()); 10061 Operands.push_back(C); 10062 } 10063 10064 // Check to see if getSCEVAtScope actually made an improvement. 10065 if (!MadeImprovement) 10066 return V; // This is some other type of SCEVUnknown, just return it. 10067 10068 Constant *C = nullptr; 10069 const DataLayout &DL = getDataLayout(); 10070 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 10071 if (!C) 10072 return V; 10073 return getSCEV(C); 10074 } 10075 case scCouldNotCompute: 10076 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10077 } 10078 llvm_unreachable("Unknown SCEV type!"); 10079 } 10080 10081 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 10082 return getSCEVAtScope(getSCEV(V), L); 10083 } 10084 10085 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 10086 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 10087 return stripInjectiveFunctions(ZExt->getOperand()); 10088 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 10089 return stripInjectiveFunctions(SExt->getOperand()); 10090 return S; 10091 } 10092 10093 /// Finds the minimum unsigned root of the following equation: 10094 /// 10095 /// A * X = B (mod N) 10096 /// 10097 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 10098 /// A and B isn't important. 10099 /// 10100 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 10101 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 10102 ScalarEvolution &SE) { 10103 uint32_t BW = A.getBitWidth(); 10104 assert(BW == SE.getTypeSizeInBits(B->getType())); 10105 assert(A != 0 && "A must be non-zero."); 10106 10107 // 1. D = gcd(A, N) 10108 // 10109 // The gcd of A and N may have only one prime factor: 2. The number of 10110 // trailing zeros in A is its multiplicity 10111 uint32_t Mult2 = A.countTrailingZeros(); 10112 // D = 2^Mult2 10113 10114 // 2. Check if B is divisible by D. 10115 // 10116 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 10117 // is not less than multiplicity of this prime factor for D. 10118 if (SE.GetMinTrailingZeros(B) < Mult2) 10119 return SE.getCouldNotCompute(); 10120 10121 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 10122 // modulo (N / D). 10123 // 10124 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 10125 // (N / D) in general. The inverse itself always fits into BW bits, though, 10126 // so we immediately truncate it. 10127 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 10128 APInt Mod(BW + 1, 0); 10129 Mod.setBit(BW - Mult2); // Mod = N / D 10130 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 10131 10132 // 4. Compute the minimum unsigned root of the equation: 10133 // I * (B / D) mod (N / D) 10134 // To simplify the computation, we factor out the divide by D: 10135 // (I * B mod N) / D 10136 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 10137 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 10138 } 10139 10140 /// For a given quadratic addrec, generate coefficients of the corresponding 10141 /// quadratic equation, multiplied by a common value to ensure that they are 10142 /// integers. 10143 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 10144 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 10145 /// were multiplied by, and BitWidth is the bit width of the original addrec 10146 /// coefficients. 10147 /// This function returns std::nullopt if the addrec coefficients are not 10148 /// compile- time constants. 10149 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 10150 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 10151 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 10152 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 10153 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 10154 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 10155 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 10156 << *AddRec << '\n'); 10157 10158 // We currently can only solve this if the coefficients are constants. 10159 if (!LC || !MC || !NC) { 10160 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 10161 return std::nullopt; 10162 } 10163 10164 APInt L = LC->getAPInt(); 10165 APInt M = MC->getAPInt(); 10166 APInt N = NC->getAPInt(); 10167 assert(!N.isZero() && "This is not a quadratic addrec"); 10168 10169 unsigned BitWidth = LC->getAPInt().getBitWidth(); 10170 unsigned NewWidth = BitWidth + 1; 10171 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 10172 << BitWidth << '\n'); 10173 // The sign-extension (as opposed to a zero-extension) here matches the 10174 // extension used in SolveQuadraticEquationWrap (with the same motivation). 10175 N = N.sext(NewWidth); 10176 M = M.sext(NewWidth); 10177 L = L.sext(NewWidth); 10178 10179 // The increments are M, M+N, M+2N, ..., so the accumulated values are 10180 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 10181 // L+M, L+2M+N, L+3M+3N, ... 10182 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 10183 // 10184 // The equation Acc = 0 is then 10185 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 10186 // In a quadratic form it becomes: 10187 // N n^2 + (2M-N) n + 2L = 0. 10188 10189 APInt A = N; 10190 APInt B = 2 * M - A; 10191 APInt C = 2 * L; 10192 APInt T = APInt(NewWidth, 2); 10193 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 10194 << "x + " << C << ", coeff bw: " << NewWidth 10195 << ", multiplied by " << T << '\n'); 10196 return std::make_tuple(A, B, C, T, BitWidth); 10197 } 10198 10199 /// Helper function to compare optional APInts: 10200 /// (a) if X and Y both exist, return min(X, Y), 10201 /// (b) if neither X nor Y exist, return std::nullopt, 10202 /// (c) if exactly one of X and Y exists, return that value. 10203 static std::optional<APInt> MinOptional(std::optional<APInt> X, 10204 std::optional<APInt> Y) { 10205 if (X && Y) { 10206 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 10207 APInt XW = X->sext(W); 10208 APInt YW = Y->sext(W); 10209 return XW.slt(YW) ? *X : *Y; 10210 } 10211 if (!X && !Y) 10212 return std::nullopt; 10213 return X ? *X : *Y; 10214 } 10215 10216 /// Helper function to truncate an optional APInt to a given BitWidth. 10217 /// When solving addrec-related equations, it is preferable to return a value 10218 /// that has the same bit width as the original addrec's coefficients. If the 10219 /// solution fits in the original bit width, truncate it (except for i1). 10220 /// Returning a value of a different bit width may inhibit some optimizations. 10221 /// 10222 /// In general, a solution to a quadratic equation generated from an addrec 10223 /// may require BW+1 bits, where BW is the bit width of the addrec's 10224 /// coefficients. The reason is that the coefficients of the quadratic 10225 /// equation are BW+1 bits wide (to avoid truncation when converting from 10226 /// the addrec to the equation). 10227 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, 10228 unsigned BitWidth) { 10229 if (!X) 10230 return std::nullopt; 10231 unsigned W = X->getBitWidth(); 10232 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 10233 return X->trunc(BitWidth); 10234 return X; 10235 } 10236 10237 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 10238 /// iterations. The values L, M, N are assumed to be signed, and they 10239 /// should all have the same bit widths. 10240 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 10241 /// where BW is the bit width of the addrec's coefficients. 10242 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 10243 /// returned as such, otherwise the bit width of the returned value may 10244 /// be greater than BW. 10245 /// 10246 /// This function returns std::nullopt if 10247 /// (a) the addrec coefficients are not constant, or 10248 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 10249 /// like x^2 = 5, no integer solutions exist, in other cases an integer 10250 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 10251 static std::optional<APInt> 10252 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 10253 APInt A, B, C, M; 10254 unsigned BitWidth; 10255 auto T = GetQuadraticEquation(AddRec); 10256 if (!T) 10257 return std::nullopt; 10258 10259 std::tie(A, B, C, M, BitWidth) = *T; 10260 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 10261 std::optional<APInt> X = 10262 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); 10263 if (!X) 10264 return std::nullopt; 10265 10266 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 10267 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 10268 if (!V->isZero()) 10269 return std::nullopt; 10270 10271 return TruncIfPossible(X, BitWidth); 10272 } 10273 10274 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 10275 /// iterations. The values M, N are assumed to be signed, and they 10276 /// should all have the same bit widths. 10277 /// Find the least n such that c(n) does not belong to the given range, 10278 /// while c(n-1) does. 10279 /// 10280 /// This function returns std::nullopt if 10281 /// (a) the addrec coefficients are not constant, or 10282 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 10283 /// bounds of the range. 10284 static std::optional<APInt> 10285 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 10286 const ConstantRange &Range, ScalarEvolution &SE) { 10287 assert(AddRec->getOperand(0)->isZero() && 10288 "Starting value of addrec should be 0"); 10289 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 10290 << Range << ", addrec " << *AddRec << '\n'); 10291 // This case is handled in getNumIterationsInRange. Here we can assume that 10292 // we start in the range. 10293 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 10294 "Addrec's initial value should be in range"); 10295 10296 APInt A, B, C, M; 10297 unsigned BitWidth; 10298 auto T = GetQuadraticEquation(AddRec); 10299 if (!T) 10300 return std::nullopt; 10301 10302 // Be careful about the return value: there can be two reasons for not 10303 // returning an actual number. First, if no solutions to the equations 10304 // were found, and second, if the solutions don't leave the given range. 10305 // The first case means that the actual solution is "unknown", the second 10306 // means that it's known, but not valid. If the solution is unknown, we 10307 // cannot make any conclusions. 10308 // Return a pair: the optional solution and a flag indicating if the 10309 // solution was found. 10310 auto SolveForBoundary = 10311 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { 10312 // Solve for signed overflow and unsigned overflow, pick the lower 10313 // solution. 10314 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10315 << Bound << " (before multiplying by " << M << ")\n"); 10316 Bound *= M; // The quadratic equation multiplier. 10317 10318 std::optional<APInt> SO; 10319 if (BitWidth > 1) { 10320 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10321 "signed overflow\n"); 10322 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10323 } 10324 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10325 "unsigned overflow\n"); 10326 std::optional<APInt> UO = 10327 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); 10328 10329 auto LeavesRange = [&] (const APInt &X) { 10330 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10331 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10332 if (Range.contains(V0->getValue())) 10333 return false; 10334 // X should be at least 1, so X-1 is non-negative. 10335 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10336 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10337 if (Range.contains(V1->getValue())) 10338 return true; 10339 return false; 10340 }; 10341 10342 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there 10343 // can be a solution, but the function failed to find it. We cannot treat it 10344 // as "no solution". 10345 if (!SO || !UO) 10346 return {std::nullopt, false}; 10347 10348 // Check the smaller value first to see if it leaves the range. 10349 // At this point, both SO and UO must have values. 10350 std::optional<APInt> Min = MinOptional(SO, UO); 10351 if (LeavesRange(*Min)) 10352 return { Min, true }; 10353 std::optional<APInt> Max = Min == SO ? UO : SO; 10354 if (LeavesRange(*Max)) 10355 return { Max, true }; 10356 10357 // Solutions were found, but were eliminated, hence the "true". 10358 return {std::nullopt, true}; 10359 }; 10360 10361 std::tie(A, B, C, M, BitWidth) = *T; 10362 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10363 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10364 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10365 auto SL = SolveForBoundary(Lower); 10366 auto SU = SolveForBoundary(Upper); 10367 // If any of the solutions was unknown, no meaninigful conclusions can 10368 // be made. 10369 if (!SL.second || !SU.second) 10370 return std::nullopt; 10371 10372 // Claim: The correct solution is not some value between Min and Max. 10373 // 10374 // Justification: Assuming that Min and Max are different values, one of 10375 // them is when the first signed overflow happens, the other is when the 10376 // first unsigned overflow happens. Crossing the range boundary is only 10377 // possible via an overflow (treating 0 as a special case of it, modeling 10378 // an overflow as crossing k*2^W for some k). 10379 // 10380 // The interesting case here is when Min was eliminated as an invalid 10381 // solution, but Max was not. The argument is that if there was another 10382 // overflow between Min and Max, it would also have been eliminated if 10383 // it was considered. 10384 // 10385 // For a given boundary, it is possible to have two overflows of the same 10386 // type (signed/unsigned) without having the other type in between: this 10387 // can happen when the vertex of the parabola is between the iterations 10388 // corresponding to the overflows. This is only possible when the two 10389 // overflows cross k*2^W for the same k. In such case, if the second one 10390 // left the range (and was the first one to do so), the first overflow 10391 // would have to enter the range, which would mean that either we had left 10392 // the range before or that we started outside of it. Both of these cases 10393 // are contradictions. 10394 // 10395 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct 10396 // solution is not some value between the Max for this boundary and the 10397 // Min of the other boundary. 10398 // 10399 // Justification: Assume that we had such Max_A and Min_B corresponding 10400 // to range boundaries A and B and such that Max_A < Min_B. If there was 10401 // a solution between Max_A and Min_B, it would have to be caused by an 10402 // overflow corresponding to either A or B. It cannot correspond to B, 10403 // since Min_B is the first occurrence of such an overflow. If it 10404 // corresponded to A, it would have to be either a signed or an unsigned 10405 // overflow that is larger than both eliminated overflows for A. But 10406 // between the eliminated overflows and this overflow, the values would 10407 // cover the entire value space, thus crossing the other boundary, which 10408 // is a contradiction. 10409 10410 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10411 } 10412 10413 ScalarEvolution::ExitLimit 10414 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 10415 bool AllowPredicates) { 10416 10417 // This is only used for loops with a "x != y" exit test. The exit condition 10418 // is now expressed as a single expression, V = x-y. So the exit test is 10419 // effectively V != 0. We know and take advantage of the fact that this 10420 // expression only being used in a comparison by zero context. 10421 10422 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10423 // If the value is a constant 10424 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10425 // If the value is already zero, the branch will execute zero times. 10426 if (C->getValue()->isZero()) return C; 10427 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10428 } 10429 10430 const SCEVAddRecExpr *AddRec = 10431 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10432 10433 if (!AddRec && AllowPredicates) 10434 // Try to make this an AddRec using runtime tests, in the first X 10435 // iterations of this loop, where X is the SCEV expression found by the 10436 // algorithm below. 10437 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10438 10439 if (!AddRec || AddRec->getLoop() != L) 10440 return getCouldNotCompute(); 10441 10442 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10443 // the quadratic equation to solve it. 10444 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10445 // We can only use this value if the chrec ends up with an exact zero 10446 // value at this index. When solving for "X*X != 5", for example, we 10447 // should not accept a root of 2. 10448 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10449 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10450 return ExitLimit(R, R, R, false, Predicates); 10451 } 10452 return getCouldNotCompute(); 10453 } 10454 10455 // Otherwise we can only handle this if it is affine. 10456 if (!AddRec->isAffine()) 10457 return getCouldNotCompute(); 10458 10459 // If this is an affine expression, the execution count of this branch is 10460 // the minimum unsigned root of the following equation: 10461 // 10462 // Start + Step*N = 0 (mod 2^BW) 10463 // 10464 // equivalent to: 10465 // 10466 // Step*N = -Start (mod 2^BW) 10467 // 10468 // where BW is the common bit width of Start and Step. 10469 10470 // Get the initial value for the loop. 10471 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10472 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10473 10474 // For now we handle only constant steps. 10475 // 10476 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10477 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10478 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10479 // We have not yet seen any such cases. 10480 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10481 if (!StepC || StepC->getValue()->isZero()) 10482 return getCouldNotCompute(); 10483 10484 // For positive steps (counting up until unsigned overflow): 10485 // N = -Start/Step (as unsigned) 10486 // For negative steps (counting down to zero): 10487 // N = Start/-Step 10488 // First compute the unsigned distance from zero in the direction of Step. 10489 bool CountDown = StepC->getAPInt().isNegative(); 10490 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10491 10492 // Handle unitary steps, which cannot wraparound. 10493 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10494 // N = Distance (as unsigned) 10495 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10496 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10497 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10498 10499 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10500 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10501 // case, and see if we can improve the bound. 10502 // 10503 // Explicitly handling this here is necessary because getUnsignedRange 10504 // isn't context-sensitive; it doesn't know that we only care about the 10505 // range inside the loop. 10506 const SCEV *Zero = getZero(Distance->getType()); 10507 const SCEV *One = getOne(Distance->getType()); 10508 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10509 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10510 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10511 // as "unsigned_max(Distance + 1) - 1". 10512 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10513 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10514 } 10515 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, 10516 Predicates); 10517 } 10518 10519 // If the condition controls loop exit (the loop exits only if the expression 10520 // is true) and the addition is no-wrap we can use unsigned divide to 10521 // compute the backedge count. In this case, the step may not divide the 10522 // distance, but we don't care because if the condition is "missed" the loop 10523 // will have undefined behavior due to wrapping. 10524 if (ControlsExit && AddRec->hasNoSelfWrap() && 10525 loopHasNoAbnormalExits(AddRec->getLoop())) { 10526 const SCEV *Exact = 10527 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10528 const SCEV *ConstantMax = getCouldNotCompute(); 10529 if (Exact != getCouldNotCompute()) { 10530 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10531 ConstantMax = 10532 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10533 } 10534 const SCEV *SymbolicMax = 10535 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; 10536 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); 10537 } 10538 10539 // Solve the general equation. 10540 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10541 getNegativeSCEV(Start), *this); 10542 10543 const SCEV *M = E; 10544 if (E != getCouldNotCompute()) { 10545 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10546 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10547 } 10548 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; 10549 return ExitLimit(E, M, S, false, Predicates); 10550 } 10551 10552 ScalarEvolution::ExitLimit 10553 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10554 // Loops that look like: while (X == 0) are very strange indeed. We don't 10555 // handle them yet except for the trivial case. This could be expanded in the 10556 // future as needed. 10557 10558 // If the value is a constant, check to see if it is known to be non-zero 10559 // already. If so, the backedge will execute zero times. 10560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10561 if (!C->getValue()->isZero()) 10562 return getZero(C->getType()); 10563 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10564 } 10565 10566 // We could implement others, but I really doubt anyone writes loops like 10567 // this, and if they did, they would already be constant folded. 10568 return getCouldNotCompute(); 10569 } 10570 10571 std::pair<const BasicBlock *, const BasicBlock *> 10572 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10573 const { 10574 // If the block has a unique predecessor, then there is no path from the 10575 // predecessor to the block that does not go through the direct edge 10576 // from the predecessor to the block. 10577 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10578 return {Pred, BB}; 10579 10580 // A loop's header is defined to be a block that dominates the loop. 10581 // If the header has a unique predecessor outside the loop, it must be 10582 // a block that has exactly one successor that can reach the loop. 10583 if (const Loop *L = LI.getLoopFor(BB)) 10584 return {L->getLoopPredecessor(), L->getHeader()}; 10585 10586 return {nullptr, nullptr}; 10587 } 10588 10589 /// SCEV structural equivalence is usually sufficient for testing whether two 10590 /// expressions are equal, however for the purposes of looking for a condition 10591 /// guarding a loop, it can be useful to be a little more general, since a 10592 /// front-end may have replicated the controlling expression. 10593 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10594 // Quick check to see if they are the same SCEV. 10595 if (A == B) return true; 10596 10597 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10598 // Not all instructions that are "identical" compute the same value. For 10599 // instance, two distinct alloca instructions allocating the same type are 10600 // identical and do not read memory; but compute distinct values. 10601 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10602 }; 10603 10604 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10605 // two different instructions with the same value. Check for this case. 10606 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10607 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10608 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10609 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10610 if (ComputesEqualValues(AI, BI)) 10611 return true; 10612 10613 // Otherwise assume they may have a different value. 10614 return false; 10615 } 10616 10617 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10618 const SCEV *&LHS, const SCEV *&RHS, 10619 unsigned Depth, 10620 bool ControllingFiniteLoop) { 10621 bool Changed = false; 10622 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10623 // '0 != 0'. 10624 auto TrivialCase = [&](bool TriviallyTrue) { 10625 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10626 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10627 return true; 10628 }; 10629 // If we hit the max recursion limit bail out. 10630 if (Depth >= 3) 10631 return false; 10632 10633 // Canonicalize a constant to the right side. 10634 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10635 // Check for both operands constant. 10636 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10637 if (ConstantExpr::getICmp(Pred, 10638 LHSC->getValue(), 10639 RHSC->getValue())->isNullValue()) 10640 return TrivialCase(false); 10641 else 10642 return TrivialCase(true); 10643 } 10644 // Otherwise swap the operands to put the constant on the right. 10645 std::swap(LHS, RHS); 10646 Pred = ICmpInst::getSwappedPredicate(Pred); 10647 Changed = true; 10648 } 10649 10650 // If we're comparing an addrec with a value which is loop-invariant in the 10651 // addrec's loop, put the addrec on the left. Also make a dominance check, 10652 // as both operands could be addrecs loop-invariant in each other's loop. 10653 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10654 const Loop *L = AR->getLoop(); 10655 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10656 std::swap(LHS, RHS); 10657 Pred = ICmpInst::getSwappedPredicate(Pred); 10658 Changed = true; 10659 } 10660 } 10661 10662 // If there's a constant operand, canonicalize comparisons with boundary 10663 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10664 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10665 const APInt &RA = RC->getAPInt(); 10666 10667 bool SimplifiedByConstantRange = false; 10668 10669 if (!ICmpInst::isEquality(Pred)) { 10670 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10671 if (ExactCR.isFullSet()) 10672 return TrivialCase(true); 10673 else if (ExactCR.isEmptySet()) 10674 return TrivialCase(false); 10675 10676 APInt NewRHS; 10677 CmpInst::Predicate NewPred; 10678 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10679 ICmpInst::isEquality(NewPred)) { 10680 // We were able to convert an inequality to an equality. 10681 Pred = NewPred; 10682 RHS = getConstant(NewRHS); 10683 Changed = SimplifiedByConstantRange = true; 10684 } 10685 } 10686 10687 if (!SimplifiedByConstantRange) { 10688 switch (Pred) { 10689 default: 10690 break; 10691 case ICmpInst::ICMP_EQ: 10692 case ICmpInst::ICMP_NE: 10693 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10694 if (!RA) 10695 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10696 if (const SCEVMulExpr *ME = 10697 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10698 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10699 ME->getOperand(0)->isAllOnesValue()) { 10700 RHS = AE->getOperand(1); 10701 LHS = ME->getOperand(1); 10702 Changed = true; 10703 } 10704 break; 10705 10706 10707 // The "Should have been caught earlier!" messages refer to the fact 10708 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10709 // should have fired on the corresponding cases, and canonicalized the 10710 // check to trivial case. 10711 10712 case ICmpInst::ICMP_UGE: 10713 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10714 Pred = ICmpInst::ICMP_UGT; 10715 RHS = getConstant(RA - 1); 10716 Changed = true; 10717 break; 10718 case ICmpInst::ICMP_ULE: 10719 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10720 Pred = ICmpInst::ICMP_ULT; 10721 RHS = getConstant(RA + 1); 10722 Changed = true; 10723 break; 10724 case ICmpInst::ICMP_SGE: 10725 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10726 Pred = ICmpInst::ICMP_SGT; 10727 RHS = getConstant(RA - 1); 10728 Changed = true; 10729 break; 10730 case ICmpInst::ICMP_SLE: 10731 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10732 Pred = ICmpInst::ICMP_SLT; 10733 RHS = getConstant(RA + 1); 10734 Changed = true; 10735 break; 10736 } 10737 } 10738 } 10739 10740 // Check for obvious equality. 10741 if (HasSameValue(LHS, RHS)) { 10742 if (ICmpInst::isTrueWhenEqual(Pred)) 10743 return TrivialCase(true); 10744 if (ICmpInst::isFalseWhenEqual(Pred)) 10745 return TrivialCase(false); 10746 } 10747 10748 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10749 // adding or subtracting 1 from one of the operands. This can be done for 10750 // one of two reasons: 10751 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10752 // 2) The loop is finite, with this comparison controlling the exit. Since the 10753 // loop is finite, the bound cannot include the corresponding boundary 10754 // (otherwise it would loop forever). 10755 switch (Pred) { 10756 case ICmpInst::ICMP_SLE: 10757 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10758 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10759 SCEV::FlagNSW); 10760 Pred = ICmpInst::ICMP_SLT; 10761 Changed = true; 10762 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10763 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10764 SCEV::FlagNSW); 10765 Pred = ICmpInst::ICMP_SLT; 10766 Changed = true; 10767 } 10768 break; 10769 case ICmpInst::ICMP_SGE: 10770 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10771 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10772 SCEV::FlagNSW); 10773 Pred = ICmpInst::ICMP_SGT; 10774 Changed = true; 10775 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10776 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10777 SCEV::FlagNSW); 10778 Pred = ICmpInst::ICMP_SGT; 10779 Changed = true; 10780 } 10781 break; 10782 case ICmpInst::ICMP_ULE: 10783 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10784 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10785 SCEV::FlagNUW); 10786 Pred = ICmpInst::ICMP_ULT; 10787 Changed = true; 10788 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10789 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10790 Pred = ICmpInst::ICMP_ULT; 10791 Changed = true; 10792 } 10793 break; 10794 case ICmpInst::ICMP_UGE: 10795 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10796 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10797 Pred = ICmpInst::ICMP_UGT; 10798 Changed = true; 10799 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10800 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10801 SCEV::FlagNUW); 10802 Pred = ICmpInst::ICMP_UGT; 10803 Changed = true; 10804 } 10805 break; 10806 default: 10807 break; 10808 } 10809 10810 // TODO: More simplifications are possible here. 10811 10812 // Recursively simplify until we either hit a recursion limit or nothing 10813 // changes. 10814 if (Changed) 10815 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10816 ControllingFiniteLoop); 10817 10818 return Changed; 10819 } 10820 10821 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10822 return getSignedRangeMax(S).isNegative(); 10823 } 10824 10825 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10826 return getSignedRangeMin(S).isStrictlyPositive(); 10827 } 10828 10829 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10830 return !getSignedRangeMin(S).isNegative(); 10831 } 10832 10833 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10834 return !getSignedRangeMax(S).isStrictlyPositive(); 10835 } 10836 10837 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10838 return getUnsignedRangeMin(S) != 0; 10839 } 10840 10841 std::pair<const SCEV *, const SCEV *> 10842 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10843 // Compute SCEV on entry of loop L. 10844 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10845 if (Start == getCouldNotCompute()) 10846 return { Start, Start }; 10847 // Compute post increment SCEV for loop L. 10848 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10849 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10850 return { Start, PostInc }; 10851 } 10852 10853 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10854 const SCEV *LHS, const SCEV *RHS) { 10855 // First collect all loops. 10856 SmallPtrSet<const Loop *, 8> LoopsUsed; 10857 getUsedLoops(LHS, LoopsUsed); 10858 getUsedLoops(RHS, LoopsUsed); 10859 10860 if (LoopsUsed.empty()) 10861 return false; 10862 10863 // Domination relationship must be a linear order on collected loops. 10864 #ifndef NDEBUG 10865 for (const auto *L1 : LoopsUsed) 10866 for (const auto *L2 : LoopsUsed) 10867 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10868 DT.dominates(L2->getHeader(), L1->getHeader())) && 10869 "Domination relationship is not a linear order"); 10870 #endif 10871 10872 const Loop *MDL = 10873 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10874 [&](const Loop *L1, const Loop *L2) { 10875 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10876 }); 10877 10878 // Get init and post increment value for LHS. 10879 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10880 // if LHS contains unknown non-invariant SCEV then bail out. 10881 if (SplitLHS.first == getCouldNotCompute()) 10882 return false; 10883 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10884 // Get init and post increment value for RHS. 10885 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10886 // if RHS contains unknown non-invariant SCEV then bail out. 10887 if (SplitRHS.first == getCouldNotCompute()) 10888 return false; 10889 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10890 // It is possible that init SCEV contains an invariant load but it does 10891 // not dominate MDL and is not available at MDL loop entry, so we should 10892 // check it here. 10893 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10894 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10895 return false; 10896 10897 // It seems backedge guard check is faster than entry one so in some cases 10898 // it can speed up whole estimation by short circuit 10899 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10900 SplitRHS.second) && 10901 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10902 } 10903 10904 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10905 const SCEV *LHS, const SCEV *RHS) { 10906 // Canonicalize the inputs first. 10907 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10908 10909 if (isKnownViaInduction(Pred, LHS, RHS)) 10910 return true; 10911 10912 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10913 return true; 10914 10915 // Otherwise see what can be done with some simple reasoning. 10916 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10917 } 10918 10919 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10920 const SCEV *LHS, 10921 const SCEV *RHS) { 10922 if (isKnownPredicate(Pred, LHS, RHS)) 10923 return true; 10924 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10925 return false; 10926 return std::nullopt; 10927 } 10928 10929 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10930 const SCEV *LHS, const SCEV *RHS, 10931 const Instruction *CtxI) { 10932 // TODO: Analyze guards and assumes from Context's block. 10933 return isKnownPredicate(Pred, LHS, RHS) || 10934 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10935 } 10936 10937 std::optional<bool> 10938 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 10939 const SCEV *RHS, const Instruction *CtxI) { 10940 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10941 if (KnownWithoutContext) 10942 return KnownWithoutContext; 10943 10944 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10945 return true; 10946 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10947 ICmpInst::getInversePredicate(Pred), 10948 LHS, RHS)) 10949 return false; 10950 return std::nullopt; 10951 } 10952 10953 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10954 const SCEVAddRecExpr *LHS, 10955 const SCEV *RHS) { 10956 const Loop *L = LHS->getLoop(); 10957 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10958 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10959 } 10960 10961 std::optional<ScalarEvolution::MonotonicPredicateType> 10962 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10963 ICmpInst::Predicate Pred) { 10964 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10965 10966 #ifndef NDEBUG 10967 // Verify an invariant: inverting the predicate should turn a monotonically 10968 // increasing change to a monotonically decreasing one, and vice versa. 10969 if (Result) { 10970 auto ResultSwapped = 10971 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10972 10973 assert(*ResultSwapped != *Result && 10974 "monotonicity should flip as we flip the predicate"); 10975 } 10976 #endif 10977 10978 return Result; 10979 } 10980 10981 std::optional<ScalarEvolution::MonotonicPredicateType> 10982 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10983 ICmpInst::Predicate Pred) { 10984 // A zero step value for LHS means the induction variable is essentially a 10985 // loop invariant value. We don't really depend on the predicate actually 10986 // flipping from false to true (for increasing predicates, and the other way 10987 // around for decreasing predicates), all we care about is that *if* the 10988 // predicate changes then it only changes from false to true. 10989 // 10990 // A zero step value in itself is not very useful, but there may be places 10991 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10992 // as general as possible. 10993 10994 // Only handle LE/LT/GE/GT predicates. 10995 if (!ICmpInst::isRelational(Pred)) 10996 return std::nullopt; 10997 10998 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10999 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 11000 "Should be greater or less!"); 11001 11002 // Check that AR does not wrap. 11003 if (ICmpInst::isUnsigned(Pred)) { 11004 if (!LHS->hasNoUnsignedWrap()) 11005 return std::nullopt; 11006 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11007 } else { 11008 assert(ICmpInst::isSigned(Pred) && 11009 "Relational predicate is either signed or unsigned!"); 11010 if (!LHS->hasNoSignedWrap()) 11011 return std::nullopt; 11012 11013 const SCEV *Step = LHS->getStepRecurrence(*this); 11014 11015 if (isKnownNonNegative(Step)) 11016 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11017 11018 if (isKnownNonPositive(Step)) 11019 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11020 11021 return std::nullopt; 11022 } 11023 } 11024 11025 std::optional<ScalarEvolution::LoopInvariantPredicate> 11026 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 11027 const SCEV *LHS, const SCEV *RHS, 11028 const Loop *L, 11029 const Instruction *CtxI) { 11030 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11031 if (!isLoopInvariant(RHS, L)) { 11032 if (!isLoopInvariant(LHS, L)) 11033 return std::nullopt; 11034 11035 std::swap(LHS, RHS); 11036 Pred = ICmpInst::getSwappedPredicate(Pred); 11037 } 11038 11039 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11040 if (!ArLHS || ArLHS->getLoop() != L) 11041 return std::nullopt; 11042 11043 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 11044 if (!MonotonicType) 11045 return std::nullopt; 11046 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 11047 // true as the loop iterates, and the backedge is control dependent on 11048 // "ArLHS `Pred` RHS" == true then we can reason as follows: 11049 // 11050 // * if the predicate was false in the first iteration then the predicate 11051 // is never evaluated again, since the loop exits without taking the 11052 // backedge. 11053 // * if the predicate was true in the first iteration then it will 11054 // continue to be true for all future iterations since it is 11055 // monotonically increasing. 11056 // 11057 // For both the above possibilities, we can replace the loop varying 11058 // predicate with its value on the first iteration of the loop (which is 11059 // loop invariant). 11060 // 11061 // A similar reasoning applies for a monotonically decreasing predicate, by 11062 // replacing true with false and false with true in the above two bullets. 11063 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 11064 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 11065 11066 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 11067 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11068 RHS); 11069 11070 if (!CtxI) 11071 return std::nullopt; 11072 // Try to prove via context. 11073 // TODO: Support other cases. 11074 switch (Pred) { 11075 default: 11076 break; 11077 case ICmpInst::ICMP_ULE: 11078 case ICmpInst::ICMP_ULT: { 11079 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!"); 11080 // Given preconditions 11081 // (1) ArLHS does not cross the border of positive and negative parts of 11082 // range because of: 11083 // - Positive step; (TODO: lift this limitation) 11084 // - nuw - does not cross zero boundary; 11085 // - nsw - does not cross SINT_MAX boundary; 11086 // (2) ArLHS <s RHS 11087 // (3) RHS >=s 0 11088 // we can replace the loop variant ArLHS <u RHS condition with loop 11089 // invariant Start(ArLHS) <u RHS. 11090 // 11091 // Because of (1) there are two options: 11092 // - ArLHS is always negative. It means that ArLHS <u RHS is always false; 11093 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. 11094 // It means that ArLHS <s RHS <=> ArLHS <u RHS. 11095 // Because of (2) ArLHS <u RHS is trivially true. 11096 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. 11097 // We can strengthen this to Start(ArLHS) <u RHS. 11098 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); 11099 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && 11100 isKnownPositive(ArLHS->getStepRecurrence(*this)) && 11101 isKnownNonNegative(RHS) && 11102 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) 11103 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11104 RHS); 11105 } 11106 } 11107 11108 return std::nullopt; 11109 } 11110 11111 std::optional<ScalarEvolution::LoopInvariantPredicate> 11112 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 11113 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11114 const Instruction *CtxI, const SCEV *MaxIter) { 11115 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11116 Pred, LHS, RHS, L, CtxI, MaxIter)) 11117 return LIP; 11118 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) 11119 // Number of iterations expressed as UMIN isn't always great for expressing 11120 // the value on the last iteration. If the straightforward approach didn't 11121 // work, try the following trick: if the a predicate is invariant for X, it 11122 // is also invariant for umin(X, ...). So try to find something that works 11123 // among subexpressions of MaxIter expressed as umin. 11124 for (auto *Op : UMin->operands()) 11125 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11126 Pred, LHS, RHS, L, CtxI, Op)) 11127 return LIP; 11128 return std::nullopt; 11129 } 11130 11131 std::optional<ScalarEvolution::LoopInvariantPredicate> 11132 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( 11133 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11134 const Instruction *CtxI, const SCEV *MaxIter) { 11135 // Try to prove the following set of facts: 11136 // - The predicate is monotonic in the iteration space. 11137 // - If the check does not fail on the 1st iteration: 11138 // - No overflow will happen during first MaxIter iterations; 11139 // - It will not fail on the MaxIter'th iteration. 11140 // If the check does fail on the 1st iteration, we leave the loop and no 11141 // other checks matter. 11142 11143 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11144 if (!isLoopInvariant(RHS, L)) { 11145 if (!isLoopInvariant(LHS, L)) 11146 return std::nullopt; 11147 11148 std::swap(LHS, RHS); 11149 Pred = ICmpInst::getSwappedPredicate(Pred); 11150 } 11151 11152 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 11153 if (!AR || AR->getLoop() != L) 11154 return std::nullopt; 11155 11156 // The predicate must be relational (i.e. <, <=, >=, >). 11157 if (!ICmpInst::isRelational(Pred)) 11158 return std::nullopt; 11159 11160 // TODO: Support steps other than +/- 1. 11161 const SCEV *Step = AR->getStepRecurrence(*this); 11162 auto *One = getOne(Step->getType()); 11163 auto *MinusOne = getNegativeSCEV(One); 11164 if (Step != One && Step != MinusOne) 11165 return std::nullopt; 11166 11167 // Type mismatch here means that MaxIter is potentially larger than max 11168 // unsigned value in start type, which mean we cannot prove no wrap for the 11169 // indvar. 11170 if (AR->getType() != MaxIter->getType()) 11171 return std::nullopt; 11172 11173 // Value of IV on suggested last iteration. 11174 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 11175 // Does it still meet the requirement? 11176 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 11177 return std::nullopt; 11178 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 11179 // not exceed max unsigned value of this type), this effectively proves 11180 // that there is no wrap during the iteration. To prove that there is no 11181 // signed/unsigned wrap, we need to check that 11182 // Start <= Last for step = 1 or Start >= Last for step = -1. 11183 ICmpInst::Predicate NoOverflowPred = 11184 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11185 if (Step == MinusOne) 11186 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 11187 const SCEV *Start = AR->getStart(); 11188 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 11189 return std::nullopt; 11190 11191 // Everything is fine. 11192 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 11193 } 11194 11195 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 11196 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 11197 if (HasSameValue(LHS, RHS)) 11198 return ICmpInst::isTrueWhenEqual(Pred); 11199 11200 // This code is split out from isKnownPredicate because it is called from 11201 // within isLoopEntryGuardedByCond. 11202 11203 auto CheckRanges = [&](const ConstantRange &RangeLHS, 11204 const ConstantRange &RangeRHS) { 11205 return RangeLHS.icmp(Pred, RangeRHS); 11206 }; 11207 11208 // The check at the top of the function catches the case where the values are 11209 // known to be equal. 11210 if (Pred == CmpInst::ICMP_EQ) 11211 return false; 11212 11213 if (Pred == CmpInst::ICMP_NE) { 11214 auto SL = getSignedRange(LHS); 11215 auto SR = getSignedRange(RHS); 11216 if (CheckRanges(SL, SR)) 11217 return true; 11218 auto UL = getUnsignedRange(LHS); 11219 auto UR = getUnsignedRange(RHS); 11220 if (CheckRanges(UL, UR)) 11221 return true; 11222 auto *Diff = getMinusSCEV(LHS, RHS); 11223 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 11224 } 11225 11226 if (CmpInst::isSigned(Pred)) { 11227 auto SL = getSignedRange(LHS); 11228 auto SR = getSignedRange(RHS); 11229 return CheckRanges(SL, SR); 11230 } 11231 11232 auto UL = getUnsignedRange(LHS); 11233 auto UR = getUnsignedRange(RHS); 11234 return CheckRanges(UL, UR); 11235 } 11236 11237 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 11238 const SCEV *LHS, 11239 const SCEV *RHS) { 11240 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 11241 // C1 and C2 are constant integers. If either X or Y are not add expressions, 11242 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 11243 // OutC1 and OutC2. 11244 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 11245 APInt &OutC1, APInt &OutC2, 11246 SCEV::NoWrapFlags ExpectedFlags) { 11247 const SCEV *XNonConstOp, *XConstOp; 11248 const SCEV *YNonConstOp, *YConstOp; 11249 SCEV::NoWrapFlags XFlagsPresent; 11250 SCEV::NoWrapFlags YFlagsPresent; 11251 11252 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 11253 XConstOp = getZero(X->getType()); 11254 XNonConstOp = X; 11255 XFlagsPresent = ExpectedFlags; 11256 } 11257 if (!isa<SCEVConstant>(XConstOp) || 11258 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 11259 return false; 11260 11261 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 11262 YConstOp = getZero(Y->getType()); 11263 YNonConstOp = Y; 11264 YFlagsPresent = ExpectedFlags; 11265 } 11266 11267 if (!isa<SCEVConstant>(YConstOp) || 11268 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 11269 return false; 11270 11271 if (YNonConstOp != XNonConstOp) 11272 return false; 11273 11274 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 11275 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 11276 11277 return true; 11278 }; 11279 11280 APInt C1; 11281 APInt C2; 11282 11283 switch (Pred) { 11284 default: 11285 break; 11286 11287 case ICmpInst::ICMP_SGE: 11288 std::swap(LHS, RHS); 11289 [[fallthrough]]; 11290 case ICmpInst::ICMP_SLE: 11291 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 11292 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 11293 return true; 11294 11295 break; 11296 11297 case ICmpInst::ICMP_SGT: 11298 std::swap(LHS, RHS); 11299 [[fallthrough]]; 11300 case ICmpInst::ICMP_SLT: 11301 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 11302 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 11303 return true; 11304 11305 break; 11306 11307 case ICmpInst::ICMP_UGE: 11308 std::swap(LHS, RHS); 11309 [[fallthrough]]; 11310 case ICmpInst::ICMP_ULE: 11311 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 11312 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 11313 return true; 11314 11315 break; 11316 11317 case ICmpInst::ICMP_UGT: 11318 std::swap(LHS, RHS); 11319 [[fallthrough]]; 11320 case ICmpInst::ICMP_ULT: 11321 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 11322 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 11323 return true; 11324 break; 11325 } 11326 11327 return false; 11328 } 11329 11330 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 11331 const SCEV *LHS, 11332 const SCEV *RHS) { 11333 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 11334 return false; 11335 11336 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 11337 // the stack can result in exponential time complexity. 11338 SaveAndRestore Restore(ProvingSplitPredicate, true); 11339 11340 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 11341 // 11342 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 11343 // isKnownPredicate. isKnownPredicate is more powerful, but also more 11344 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 11345 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 11346 // use isKnownPredicate later if needed. 11347 return isKnownNonNegative(RHS) && 11348 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 11349 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 11350 } 11351 11352 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 11353 ICmpInst::Predicate Pred, 11354 const SCEV *LHS, const SCEV *RHS) { 11355 // No need to even try if we know the module has no guards. 11356 if (AC.assumptions().empty()) 11357 return false; 11358 11359 return any_of(*BB, [&](const Instruction &I) { 11360 using namespace llvm::PatternMatch; 11361 11362 Value *Condition; 11363 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11364 m_Value(Condition))) && 11365 isImpliedCond(Pred, LHS, RHS, Condition, false); 11366 }); 11367 } 11368 11369 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11370 /// protected by a conditional between LHS and RHS. This is used to 11371 /// to eliminate casts. 11372 bool 11373 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11374 ICmpInst::Predicate Pred, 11375 const SCEV *LHS, const SCEV *RHS) { 11376 // Interpret a null as meaning no loop, where there is obviously no guard 11377 // (interprocedural conditions notwithstanding). Do not bother about 11378 // unreachable loops. 11379 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11380 return true; 11381 11382 if (VerifyIR) 11383 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11384 "This cannot be done on broken IR!"); 11385 11386 11387 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11388 return true; 11389 11390 BasicBlock *Latch = L->getLoopLatch(); 11391 if (!Latch) 11392 return false; 11393 11394 BranchInst *LoopContinuePredicate = 11395 dyn_cast<BranchInst>(Latch->getTerminator()); 11396 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11397 isImpliedCond(Pred, LHS, RHS, 11398 LoopContinuePredicate->getCondition(), 11399 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11400 return true; 11401 11402 // We don't want more than one activation of the following loops on the stack 11403 // -- that can lead to O(n!) time complexity. 11404 if (WalkingBEDominatingConds) 11405 return false; 11406 11407 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); 11408 11409 // See if we can exploit a trip count to prove the predicate. 11410 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11411 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11412 if (LatchBECount != getCouldNotCompute()) { 11413 // We know that Latch branches back to the loop header exactly 11414 // LatchBECount times. This means the backdege condition at Latch is 11415 // equivalent to "{0,+,1} u< LatchBECount". 11416 Type *Ty = LatchBECount->getType(); 11417 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11418 const SCEV *LoopCounter = 11419 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11420 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11421 LatchBECount)) 11422 return true; 11423 } 11424 11425 // Check conditions due to any @llvm.assume intrinsics. 11426 for (auto &AssumeVH : AC.assumptions()) { 11427 if (!AssumeVH) 11428 continue; 11429 auto *CI = cast<CallInst>(AssumeVH); 11430 if (!DT.dominates(CI, Latch->getTerminator())) 11431 continue; 11432 11433 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11434 return true; 11435 } 11436 11437 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11438 return true; 11439 11440 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11441 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11442 assert(DTN && "should reach the loop header before reaching the root!"); 11443 11444 BasicBlock *BB = DTN->getBlock(); 11445 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11446 return true; 11447 11448 BasicBlock *PBB = BB->getSinglePredecessor(); 11449 if (!PBB) 11450 continue; 11451 11452 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11453 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11454 continue; 11455 11456 Value *Condition = ContinuePredicate->getCondition(); 11457 11458 // If we have an edge `E` within the loop body that dominates the only 11459 // latch, the condition guarding `E` also guards the backedge. This 11460 // reasoning works only for loops with a single latch. 11461 11462 BasicBlockEdge DominatingEdge(PBB, BB); 11463 if (DominatingEdge.isSingleEdge()) { 11464 // We're constructively (and conservatively) enumerating edges within the 11465 // loop body that dominate the latch. The dominator tree better agree 11466 // with us on this: 11467 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11468 11469 if (isImpliedCond(Pred, LHS, RHS, Condition, 11470 BB != ContinuePredicate->getSuccessor(0))) 11471 return true; 11472 } 11473 } 11474 11475 return false; 11476 } 11477 11478 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11479 ICmpInst::Predicate Pred, 11480 const SCEV *LHS, 11481 const SCEV *RHS) { 11482 // Do not bother proving facts for unreachable code. 11483 if (!DT.isReachableFromEntry(BB)) 11484 return true; 11485 if (VerifyIR) 11486 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11487 "This cannot be done on broken IR!"); 11488 11489 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11490 // the facts (a >= b && a != b) separately. A typical situation is when the 11491 // non-strict comparison is known from ranges and non-equality is known from 11492 // dominating predicates. If we are proving strict comparison, we always try 11493 // to prove non-equality and non-strict comparison separately. 11494 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11495 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11496 bool ProvedNonStrictComparison = false; 11497 bool ProvedNonEquality = false; 11498 11499 auto SplitAndProve = 11500 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11501 if (!ProvedNonStrictComparison) 11502 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11503 if (!ProvedNonEquality) 11504 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11505 if (ProvedNonStrictComparison && ProvedNonEquality) 11506 return true; 11507 return false; 11508 }; 11509 11510 if (ProvingStrictComparison) { 11511 auto ProofFn = [&](ICmpInst::Predicate P) { 11512 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11513 }; 11514 if (SplitAndProve(ProofFn)) 11515 return true; 11516 } 11517 11518 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11519 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11520 const Instruction *CtxI = &BB->front(); 11521 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11522 return true; 11523 if (ProvingStrictComparison) { 11524 auto ProofFn = [&](ICmpInst::Predicate P) { 11525 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11526 }; 11527 if (SplitAndProve(ProofFn)) 11528 return true; 11529 } 11530 return false; 11531 }; 11532 11533 // Starting at the block's predecessor, climb up the predecessor chain, as long 11534 // as there are predecessors that can be found that have unique successors 11535 // leading to the original block. 11536 const Loop *ContainingLoop = LI.getLoopFor(BB); 11537 const BasicBlock *PredBB; 11538 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11539 PredBB = ContainingLoop->getLoopPredecessor(); 11540 else 11541 PredBB = BB->getSinglePredecessor(); 11542 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11543 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11544 const BranchInst *BlockEntryPredicate = 11545 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11546 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11547 continue; 11548 11549 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11550 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11551 return true; 11552 } 11553 11554 // Check conditions due to any @llvm.assume intrinsics. 11555 for (auto &AssumeVH : AC.assumptions()) { 11556 if (!AssumeVH) 11557 continue; 11558 auto *CI = cast<CallInst>(AssumeVH); 11559 if (!DT.dominates(CI, BB)) 11560 continue; 11561 11562 if (ProveViaCond(CI->getArgOperand(0), false)) 11563 return true; 11564 } 11565 11566 return false; 11567 } 11568 11569 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11570 ICmpInst::Predicate Pred, 11571 const SCEV *LHS, 11572 const SCEV *RHS) { 11573 // Interpret a null as meaning no loop, where there is obviously no guard 11574 // (interprocedural conditions notwithstanding). 11575 if (!L) 11576 return false; 11577 11578 // Both LHS and RHS must be available at loop entry. 11579 assert(isAvailableAtLoopEntry(LHS, L) && 11580 "LHS is not available at Loop Entry"); 11581 assert(isAvailableAtLoopEntry(RHS, L) && 11582 "RHS is not available at Loop Entry"); 11583 11584 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11585 return true; 11586 11587 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11588 } 11589 11590 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11591 const SCEV *RHS, 11592 const Value *FoundCondValue, bool Inverse, 11593 const Instruction *CtxI) { 11594 // False conditions implies anything. Do not bother analyzing it further. 11595 if (FoundCondValue == 11596 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11597 return true; 11598 11599 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11600 return false; 11601 11602 auto ClearOnExit = 11603 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11604 11605 // Recursively handle And and Or conditions. 11606 const Value *Op0, *Op1; 11607 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11608 if (!Inverse) 11609 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11610 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11611 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11612 if (Inverse) 11613 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11614 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11615 } 11616 11617 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11618 if (!ICI) return false; 11619 11620 // Now that we found a conditional branch that dominates the loop or controls 11621 // the loop latch. Check to see if it is the comparison we are looking for. 11622 ICmpInst::Predicate FoundPred; 11623 if (Inverse) 11624 FoundPred = ICI->getInversePredicate(); 11625 else 11626 FoundPred = ICI->getPredicate(); 11627 11628 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11629 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11630 11631 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11632 } 11633 11634 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11635 const SCEV *RHS, 11636 ICmpInst::Predicate FoundPred, 11637 const SCEV *FoundLHS, const SCEV *FoundRHS, 11638 const Instruction *CtxI) { 11639 // Balance the types. 11640 if (getTypeSizeInBits(LHS->getType()) < 11641 getTypeSizeInBits(FoundLHS->getType())) { 11642 // For unsigned and equality predicates, try to prove that both found 11643 // operands fit into narrow unsigned range. If so, try to prove facts in 11644 // narrow types. 11645 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11646 !FoundRHS->getType()->isPointerTy()) { 11647 auto *NarrowType = LHS->getType(); 11648 auto *WideType = FoundLHS->getType(); 11649 auto BitWidth = getTypeSizeInBits(NarrowType); 11650 const SCEV *MaxValue = getZeroExtendExpr( 11651 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11652 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11653 MaxValue) && 11654 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11655 MaxValue)) { 11656 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11657 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11658 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11659 TruncFoundRHS, CtxI)) 11660 return true; 11661 } 11662 } 11663 11664 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11665 return false; 11666 if (CmpInst::isSigned(Pred)) { 11667 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11668 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11669 } else { 11670 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11671 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11672 } 11673 } else if (getTypeSizeInBits(LHS->getType()) > 11674 getTypeSizeInBits(FoundLHS->getType())) { 11675 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11676 return false; 11677 if (CmpInst::isSigned(FoundPred)) { 11678 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11679 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11680 } else { 11681 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11682 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11683 } 11684 } 11685 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11686 FoundRHS, CtxI); 11687 } 11688 11689 bool ScalarEvolution::isImpliedCondBalancedTypes( 11690 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11691 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11692 const Instruction *CtxI) { 11693 assert(getTypeSizeInBits(LHS->getType()) == 11694 getTypeSizeInBits(FoundLHS->getType()) && 11695 "Types should be balanced!"); 11696 // Canonicalize the query to match the way instcombine will have 11697 // canonicalized the comparison. 11698 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11699 if (LHS == RHS) 11700 return CmpInst::isTrueWhenEqual(Pred); 11701 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11702 if (FoundLHS == FoundRHS) 11703 return CmpInst::isFalseWhenEqual(FoundPred); 11704 11705 // Check to see if we can make the LHS or RHS match. 11706 if (LHS == FoundRHS || RHS == FoundLHS) { 11707 if (isa<SCEVConstant>(RHS)) { 11708 std::swap(FoundLHS, FoundRHS); 11709 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11710 } else { 11711 std::swap(LHS, RHS); 11712 Pred = ICmpInst::getSwappedPredicate(Pred); 11713 } 11714 } 11715 11716 // Check whether the found predicate is the same as the desired predicate. 11717 if (FoundPred == Pred) 11718 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11719 11720 // Check whether swapping the found predicate makes it the same as the 11721 // desired predicate. 11722 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11723 // We can write the implication 11724 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11725 // using one of the following ways: 11726 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11727 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11728 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11729 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11730 // Forms 1. and 2. require swapping the operands of one condition. Don't 11731 // do this if it would break canonical constant/addrec ordering. 11732 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11733 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11734 CtxI); 11735 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11736 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11737 11738 // There's no clear preference between forms 3. and 4., try both. Avoid 11739 // forming getNotSCEV of pointer values as the resulting subtract is 11740 // not legal. 11741 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11742 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11743 FoundLHS, FoundRHS, CtxI)) 11744 return true; 11745 11746 if (!FoundLHS->getType()->isPointerTy() && 11747 !FoundRHS->getType()->isPointerTy() && 11748 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11749 getNotSCEV(FoundRHS), CtxI)) 11750 return true; 11751 11752 return false; 11753 } 11754 11755 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11756 CmpInst::Predicate P2) { 11757 assert(P1 != P2 && "Handled earlier!"); 11758 return CmpInst::isRelational(P2) && 11759 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11760 }; 11761 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11762 // Unsigned comparison is the same as signed comparison when both the 11763 // operands are non-negative or negative. 11764 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11765 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11766 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11767 // Create local copies that we can freely swap and canonicalize our 11768 // conditions to "le/lt". 11769 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11770 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11771 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11772 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11773 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11774 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11775 std::swap(CanonicalLHS, CanonicalRHS); 11776 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11777 } 11778 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11779 "Must be!"); 11780 assert((ICmpInst::isLT(CanonicalFoundPred) || 11781 ICmpInst::isLE(CanonicalFoundPred)) && 11782 "Must be!"); 11783 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11784 // Use implication: 11785 // x <u y && y >=s 0 --> x <s y. 11786 // If we can prove the left part, the right part is also proven. 11787 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11788 CanonicalRHS, CanonicalFoundLHS, 11789 CanonicalFoundRHS); 11790 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11791 // Use implication: 11792 // x <s y && y <s 0 --> x <u y. 11793 // If we can prove the left part, the right part is also proven. 11794 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11795 CanonicalRHS, CanonicalFoundLHS, 11796 CanonicalFoundRHS); 11797 } 11798 11799 // Check if we can make progress by sharpening ranges. 11800 if (FoundPred == ICmpInst::ICMP_NE && 11801 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11802 11803 const SCEVConstant *C = nullptr; 11804 const SCEV *V = nullptr; 11805 11806 if (isa<SCEVConstant>(FoundLHS)) { 11807 C = cast<SCEVConstant>(FoundLHS); 11808 V = FoundRHS; 11809 } else { 11810 C = cast<SCEVConstant>(FoundRHS); 11811 V = FoundLHS; 11812 } 11813 11814 // The guarding predicate tells us that C != V. If the known range 11815 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11816 // range we consider has to correspond to same signedness as the 11817 // predicate we're interested in folding. 11818 11819 APInt Min = ICmpInst::isSigned(Pred) ? 11820 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11821 11822 if (Min == C->getAPInt()) { 11823 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11824 // This is true even if (Min + 1) wraps around -- in case of 11825 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11826 11827 APInt SharperMin = Min + 1; 11828 11829 switch (Pred) { 11830 case ICmpInst::ICMP_SGE: 11831 case ICmpInst::ICMP_UGE: 11832 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11833 // RHS, we're done. 11834 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11835 CtxI)) 11836 return true; 11837 [[fallthrough]]; 11838 11839 case ICmpInst::ICMP_SGT: 11840 case ICmpInst::ICMP_UGT: 11841 // We know from the range information that (V `Pred` Min || 11842 // V == Min). We know from the guarding condition that !(V 11843 // == Min). This gives us 11844 // 11845 // V `Pred` Min || V == Min && !(V == Min) 11846 // => V `Pred` Min 11847 // 11848 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11849 11850 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11851 return true; 11852 break; 11853 11854 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11855 case ICmpInst::ICMP_SLE: 11856 case ICmpInst::ICMP_ULE: 11857 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11858 LHS, V, getConstant(SharperMin), CtxI)) 11859 return true; 11860 [[fallthrough]]; 11861 11862 case ICmpInst::ICMP_SLT: 11863 case ICmpInst::ICMP_ULT: 11864 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11865 LHS, V, getConstant(Min), CtxI)) 11866 return true; 11867 break; 11868 11869 default: 11870 // No change 11871 break; 11872 } 11873 } 11874 } 11875 11876 // Check whether the actual condition is beyond sufficient. 11877 if (FoundPred == ICmpInst::ICMP_EQ) 11878 if (ICmpInst::isTrueWhenEqual(Pred)) 11879 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11880 return true; 11881 if (Pred == ICmpInst::ICMP_NE) 11882 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11883 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11884 return true; 11885 11886 // Otherwise assume the worst. 11887 return false; 11888 } 11889 11890 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11891 const SCEV *&L, const SCEV *&R, 11892 SCEV::NoWrapFlags &Flags) { 11893 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11894 if (!AE || AE->getNumOperands() != 2) 11895 return false; 11896 11897 L = AE->getOperand(0); 11898 R = AE->getOperand(1); 11899 Flags = AE->getNoWrapFlags(); 11900 return true; 11901 } 11902 11903 std::optional<APInt> 11904 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { 11905 // We avoid subtracting expressions here because this function is usually 11906 // fairly deep in the call stack (i.e. is called many times). 11907 11908 // X - X = 0. 11909 if (More == Less) 11910 return APInt(getTypeSizeInBits(More->getType()), 0); 11911 11912 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11913 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11914 const auto *MAR = cast<SCEVAddRecExpr>(More); 11915 11916 if (LAR->getLoop() != MAR->getLoop()) 11917 return std::nullopt; 11918 11919 // We look at affine expressions only; not for correctness but to keep 11920 // getStepRecurrence cheap. 11921 if (!LAR->isAffine() || !MAR->isAffine()) 11922 return std::nullopt; 11923 11924 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11925 return std::nullopt; 11926 11927 Less = LAR->getStart(); 11928 More = MAR->getStart(); 11929 11930 // fall through 11931 } 11932 11933 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11934 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11935 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11936 return M - L; 11937 } 11938 11939 SCEV::NoWrapFlags Flags; 11940 const SCEV *LLess = nullptr, *RLess = nullptr; 11941 const SCEV *LMore = nullptr, *RMore = nullptr; 11942 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11943 // Compare (X + C1) vs X. 11944 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11945 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11946 if (RLess == More) 11947 return -(C1->getAPInt()); 11948 11949 // Compare X vs (X + C2). 11950 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11951 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11952 if (RMore == Less) 11953 return C2->getAPInt(); 11954 11955 // Compare (X + C1) vs (X + C2). 11956 if (C1 && C2 && RLess == RMore) 11957 return C2->getAPInt() - C1->getAPInt(); 11958 11959 return std::nullopt; 11960 } 11961 11962 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11963 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11964 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11965 // Try to recognize the following pattern: 11966 // 11967 // FoundRHS = ... 11968 // ... 11969 // loop: 11970 // FoundLHS = {Start,+,W} 11971 // context_bb: // Basic block from the same loop 11972 // known(Pred, FoundLHS, FoundRHS) 11973 // 11974 // If some predicate is known in the context of a loop, it is also known on 11975 // each iteration of this loop, including the first iteration. Therefore, in 11976 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11977 // prove the original pred using this fact. 11978 if (!CtxI) 11979 return false; 11980 const BasicBlock *ContextBB = CtxI->getParent(); 11981 // Make sure AR varies in the context block. 11982 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11983 const Loop *L = AR->getLoop(); 11984 // Make sure that context belongs to the loop and executes on 1st iteration 11985 // (if it ever executes at all). 11986 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11987 return false; 11988 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11989 return false; 11990 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11991 } 11992 11993 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11994 const Loop *L = AR->getLoop(); 11995 // Make sure that context belongs to the loop and executes on 1st iteration 11996 // (if it ever executes at all). 11997 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11998 return false; 11999 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 12000 return false; 12001 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 12002 } 12003 12004 return false; 12005 } 12006 12007 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 12008 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 12009 const SCEV *FoundLHS, const SCEV *FoundRHS) { 12010 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 12011 return false; 12012 12013 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 12014 if (!AddRecLHS) 12015 return false; 12016 12017 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 12018 if (!AddRecFoundLHS) 12019 return false; 12020 12021 // We'd like to let SCEV reason about control dependencies, so we constrain 12022 // both the inequalities to be about add recurrences on the same loop. This 12023 // way we can use isLoopEntryGuardedByCond later. 12024 12025 const Loop *L = AddRecFoundLHS->getLoop(); 12026 if (L != AddRecLHS->getLoop()) 12027 return false; 12028 12029 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 12030 // 12031 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 12032 // ... (2) 12033 // 12034 // Informal proof for (2), assuming (1) [*]: 12035 // 12036 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 12037 // 12038 // Then 12039 // 12040 // FoundLHS s< FoundRHS s< INT_MIN - C 12041 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 12042 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 12043 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 12044 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 12045 // <=> FoundLHS + C s< FoundRHS + C 12046 // 12047 // [*]: (1) can be proved by ruling out overflow. 12048 // 12049 // [**]: This can be proved by analyzing all the four possibilities: 12050 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 12051 // (A s>= 0, B s>= 0). 12052 // 12053 // Note: 12054 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 12055 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 12056 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 12057 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 12058 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 12059 // C)". 12060 12061 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 12062 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 12063 if (!LDiff || !RDiff || *LDiff != *RDiff) 12064 return false; 12065 12066 if (LDiff->isMinValue()) 12067 return true; 12068 12069 APInt FoundRHSLimit; 12070 12071 if (Pred == CmpInst::ICMP_ULT) { 12072 FoundRHSLimit = -(*RDiff); 12073 } else { 12074 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 12075 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 12076 } 12077 12078 // Try to prove (1) or (2), as needed. 12079 return isAvailableAtLoopEntry(FoundRHS, L) && 12080 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 12081 getConstant(FoundRHSLimit)); 12082 } 12083 12084 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 12085 const SCEV *LHS, const SCEV *RHS, 12086 const SCEV *FoundLHS, 12087 const SCEV *FoundRHS, unsigned Depth) { 12088 const PHINode *LPhi = nullptr, *RPhi = nullptr; 12089 12090 auto ClearOnExit = make_scope_exit([&]() { 12091 if (LPhi) { 12092 bool Erased = PendingMerges.erase(LPhi); 12093 assert(Erased && "Failed to erase LPhi!"); 12094 (void)Erased; 12095 } 12096 if (RPhi) { 12097 bool Erased = PendingMerges.erase(RPhi); 12098 assert(Erased && "Failed to erase RPhi!"); 12099 (void)Erased; 12100 } 12101 }); 12102 12103 // Find respective Phis and check that they are not being pending. 12104 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 12105 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 12106 if (!PendingMerges.insert(Phi).second) 12107 return false; 12108 LPhi = Phi; 12109 } 12110 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 12111 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 12112 // If we detect a loop of Phi nodes being processed by this method, for 12113 // example: 12114 // 12115 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 12116 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 12117 // 12118 // we don't want to deal with a case that complex, so return conservative 12119 // answer false. 12120 if (!PendingMerges.insert(Phi).second) 12121 return false; 12122 RPhi = Phi; 12123 } 12124 12125 // If none of LHS, RHS is a Phi, nothing to do here. 12126 if (!LPhi && !RPhi) 12127 return false; 12128 12129 // If there is a SCEVUnknown Phi we are interested in, make it left. 12130 if (!LPhi) { 12131 std::swap(LHS, RHS); 12132 std::swap(FoundLHS, FoundRHS); 12133 std::swap(LPhi, RPhi); 12134 Pred = ICmpInst::getSwappedPredicate(Pred); 12135 } 12136 12137 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 12138 const BasicBlock *LBB = LPhi->getParent(); 12139 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12140 12141 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 12142 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 12143 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 12144 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 12145 }; 12146 12147 if (RPhi && RPhi->getParent() == LBB) { 12148 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 12149 // If we compare two Phis from the same block, and for each entry block 12150 // the predicate is true for incoming values from this block, then the 12151 // predicate is also true for the Phis. 12152 for (const BasicBlock *IncBB : predecessors(LBB)) { 12153 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12154 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 12155 if (!ProvedEasily(L, R)) 12156 return false; 12157 } 12158 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 12159 // Case two: RHS is also a Phi from the same basic block, and it is an 12160 // AddRec. It means that there is a loop which has both AddRec and Unknown 12161 // PHIs, for it we can compare incoming values of AddRec from above the loop 12162 // and latch with their respective incoming values of LPhi. 12163 // TODO: Generalize to handle loops with many inputs in a header. 12164 if (LPhi->getNumIncomingValues() != 2) return false; 12165 12166 auto *RLoop = RAR->getLoop(); 12167 auto *Predecessor = RLoop->getLoopPredecessor(); 12168 assert(Predecessor && "Loop with AddRec with no predecessor?"); 12169 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 12170 if (!ProvedEasily(L1, RAR->getStart())) 12171 return false; 12172 auto *Latch = RLoop->getLoopLatch(); 12173 assert(Latch && "Loop with AddRec with no latch?"); 12174 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 12175 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 12176 return false; 12177 } else { 12178 // In all other cases go over inputs of LHS and compare each of them to RHS, 12179 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 12180 // At this point RHS is either a non-Phi, or it is a Phi from some block 12181 // different from LBB. 12182 for (const BasicBlock *IncBB : predecessors(LBB)) { 12183 // Check that RHS is available in this block. 12184 if (!dominates(RHS, IncBB)) 12185 return false; 12186 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12187 // Make sure L does not refer to a value from a potentially previous 12188 // iteration of a loop. 12189 if (!properlyDominates(L, LBB)) 12190 return false; 12191 if (!ProvedEasily(L, RHS)) 12192 return false; 12193 } 12194 } 12195 return true; 12196 } 12197 12198 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 12199 const SCEV *LHS, 12200 const SCEV *RHS, 12201 const SCEV *FoundLHS, 12202 const SCEV *FoundRHS) { 12203 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 12204 // sure that we are dealing with same LHS. 12205 if (RHS == FoundRHS) { 12206 std::swap(LHS, RHS); 12207 std::swap(FoundLHS, FoundRHS); 12208 Pred = ICmpInst::getSwappedPredicate(Pred); 12209 } 12210 if (LHS != FoundLHS) 12211 return false; 12212 12213 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 12214 if (!SUFoundRHS) 12215 return false; 12216 12217 Value *Shiftee, *ShiftValue; 12218 12219 using namespace PatternMatch; 12220 if (match(SUFoundRHS->getValue(), 12221 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 12222 auto *ShifteeS = getSCEV(Shiftee); 12223 // Prove one of the following: 12224 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 12225 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 12226 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12227 // ---> LHS <s RHS 12228 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12229 // ---> LHS <=s RHS 12230 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 12231 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 12232 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 12233 if (isKnownNonNegative(ShifteeS)) 12234 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 12235 } 12236 12237 return false; 12238 } 12239 12240 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 12241 const SCEV *LHS, const SCEV *RHS, 12242 const SCEV *FoundLHS, 12243 const SCEV *FoundRHS, 12244 const Instruction *CtxI) { 12245 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12246 return true; 12247 12248 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12249 return true; 12250 12251 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12252 return true; 12253 12254 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 12255 CtxI)) 12256 return true; 12257 12258 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 12259 FoundLHS, FoundRHS); 12260 } 12261 12262 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 12263 template <typename MinMaxExprType> 12264 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 12265 const SCEV *Candidate) { 12266 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 12267 if (!MinMaxExpr) 12268 return false; 12269 12270 return is_contained(MinMaxExpr->operands(), Candidate); 12271 } 12272 12273 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 12274 ICmpInst::Predicate Pred, 12275 const SCEV *LHS, const SCEV *RHS) { 12276 // If both sides are affine addrecs for the same loop, with equal 12277 // steps, and we know the recurrences don't wrap, then we only 12278 // need to check the predicate on the starting values. 12279 12280 if (!ICmpInst::isRelational(Pred)) 12281 return false; 12282 12283 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 12284 if (!LAR) 12285 return false; 12286 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12287 if (!RAR) 12288 return false; 12289 if (LAR->getLoop() != RAR->getLoop()) 12290 return false; 12291 if (!LAR->isAffine() || !RAR->isAffine()) 12292 return false; 12293 12294 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 12295 return false; 12296 12297 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 12298 SCEV::FlagNSW : SCEV::FlagNUW; 12299 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 12300 return false; 12301 12302 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 12303 } 12304 12305 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 12306 /// expression? 12307 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 12308 ICmpInst::Predicate Pred, 12309 const SCEV *LHS, const SCEV *RHS) { 12310 switch (Pred) { 12311 default: 12312 return false; 12313 12314 case ICmpInst::ICMP_SGE: 12315 std::swap(LHS, RHS); 12316 [[fallthrough]]; 12317 case ICmpInst::ICMP_SLE: 12318 return 12319 // min(A, ...) <= A 12320 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 12321 // A <= max(A, ...) 12322 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 12323 12324 case ICmpInst::ICMP_UGE: 12325 std::swap(LHS, RHS); 12326 [[fallthrough]]; 12327 case ICmpInst::ICMP_ULE: 12328 return 12329 // min(A, ...) <= A 12330 // FIXME: what about umin_seq? 12331 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 12332 // A <= max(A, ...) 12333 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 12334 } 12335 12336 llvm_unreachable("covered switch fell through?!"); 12337 } 12338 12339 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 12340 const SCEV *LHS, const SCEV *RHS, 12341 const SCEV *FoundLHS, 12342 const SCEV *FoundRHS, 12343 unsigned Depth) { 12344 assert(getTypeSizeInBits(LHS->getType()) == 12345 getTypeSizeInBits(RHS->getType()) && 12346 "LHS and RHS have different sizes?"); 12347 assert(getTypeSizeInBits(FoundLHS->getType()) == 12348 getTypeSizeInBits(FoundRHS->getType()) && 12349 "FoundLHS and FoundRHS have different sizes?"); 12350 // We want to avoid hurting the compile time with analysis of too big trees. 12351 if (Depth > MaxSCEVOperationsImplicationDepth) 12352 return false; 12353 12354 // We only want to work with GT comparison so far. 12355 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12356 Pred = CmpInst::getSwappedPredicate(Pred); 12357 std::swap(LHS, RHS); 12358 std::swap(FoundLHS, FoundRHS); 12359 } 12360 12361 // For unsigned, try to reduce it to corresponding signed comparison. 12362 if (Pred == ICmpInst::ICMP_UGT) 12363 // We can replace unsigned predicate with its signed counterpart if all 12364 // involved values are non-negative. 12365 // TODO: We could have better support for unsigned. 12366 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12367 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12368 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12369 // use this fact to prove that LHS and RHS are non-negative. 12370 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12371 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12372 FoundRHS) && 12373 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12374 FoundRHS)) 12375 Pred = ICmpInst::ICMP_SGT; 12376 } 12377 12378 if (Pred != ICmpInst::ICMP_SGT) 12379 return false; 12380 12381 auto GetOpFromSExt = [&](const SCEV *S) { 12382 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12383 return Ext->getOperand(); 12384 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12385 // the constant in some cases. 12386 return S; 12387 }; 12388 12389 // Acquire values from extensions. 12390 auto *OrigLHS = LHS; 12391 auto *OrigFoundLHS = FoundLHS; 12392 LHS = GetOpFromSExt(LHS); 12393 FoundLHS = GetOpFromSExt(FoundLHS); 12394 12395 // Is the SGT predicate can be proved trivially or using the found context. 12396 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12397 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12398 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12399 FoundRHS, Depth + 1); 12400 }; 12401 12402 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12403 // We want to avoid creation of any new non-constant SCEV. Since we are 12404 // going to compare the operands to RHS, we should be certain that we don't 12405 // need any size extensions for this. So let's decline all cases when the 12406 // sizes of types of LHS and RHS do not match. 12407 // TODO: Maybe try to get RHS from sext to catch more cases? 12408 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12409 return false; 12410 12411 // Should not overflow. 12412 if (!LHSAddExpr->hasNoSignedWrap()) 12413 return false; 12414 12415 auto *LL = LHSAddExpr->getOperand(0); 12416 auto *LR = LHSAddExpr->getOperand(1); 12417 auto *MinusOne = getMinusOne(RHS->getType()); 12418 12419 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12420 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12421 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12422 }; 12423 // Try to prove the following rule: 12424 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12425 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12426 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12427 return true; 12428 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12429 Value *LL, *LR; 12430 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12431 12432 using namespace llvm::PatternMatch; 12433 12434 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12435 // Rules for division. 12436 // We are going to perform some comparisons with Denominator and its 12437 // derivative expressions. In general case, creating a SCEV for it may 12438 // lead to a complex analysis of the entire graph, and in particular it 12439 // can request trip count recalculation for the same loop. This would 12440 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12441 // this, we only want to create SCEVs that are constants in this section. 12442 // So we bail if Denominator is not a constant. 12443 if (!isa<ConstantInt>(LR)) 12444 return false; 12445 12446 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12447 12448 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12449 // then a SCEV for the numerator already exists and matches with FoundLHS. 12450 auto *Numerator = getExistingSCEV(LL); 12451 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12452 return false; 12453 12454 // Make sure that the numerator matches with FoundLHS and the denominator 12455 // is positive. 12456 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12457 return false; 12458 12459 auto *DTy = Denominator->getType(); 12460 auto *FRHSTy = FoundRHS->getType(); 12461 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12462 // One of types is a pointer and another one is not. We cannot extend 12463 // them properly to a wider type, so let us just reject this case. 12464 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12465 // to avoid this check. 12466 return false; 12467 12468 // Given that: 12469 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12470 auto *WTy = getWiderType(DTy, FRHSTy); 12471 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12472 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12473 12474 // Try to prove the following rule: 12475 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12476 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12477 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12478 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12479 if (isKnownNonPositive(RHS) && 12480 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12481 return true; 12482 12483 // Try to prove the following rule: 12484 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12485 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12486 // If we divide it by Denominator > 2, then: 12487 // 1. If FoundLHS is negative, then the result is 0. 12488 // 2. If FoundLHS is non-negative, then the result is non-negative. 12489 // Anyways, the result is non-negative. 12490 auto *MinusOne = getMinusOne(WTy); 12491 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12492 if (isKnownNegative(RHS) && 12493 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12494 return true; 12495 } 12496 } 12497 12498 // If our expression contained SCEVUnknown Phis, and we split it down and now 12499 // need to prove something for them, try to prove the predicate for every 12500 // possible incoming values of those Phis. 12501 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12502 return true; 12503 12504 return false; 12505 } 12506 12507 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12508 const SCEV *LHS, const SCEV *RHS) { 12509 // zext x u<= sext x, sext x s<= zext x 12510 switch (Pred) { 12511 case ICmpInst::ICMP_SGE: 12512 std::swap(LHS, RHS); 12513 [[fallthrough]]; 12514 case ICmpInst::ICMP_SLE: { 12515 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12516 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12517 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12518 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12519 return true; 12520 break; 12521 } 12522 case ICmpInst::ICMP_UGE: 12523 std::swap(LHS, RHS); 12524 [[fallthrough]]; 12525 case ICmpInst::ICMP_ULE: { 12526 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12527 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12528 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12529 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12530 return true; 12531 break; 12532 } 12533 default: 12534 break; 12535 }; 12536 return false; 12537 } 12538 12539 bool 12540 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12541 const SCEV *LHS, const SCEV *RHS) { 12542 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12543 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12544 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12545 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12546 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12547 } 12548 12549 bool 12550 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12551 const SCEV *LHS, const SCEV *RHS, 12552 const SCEV *FoundLHS, 12553 const SCEV *FoundRHS) { 12554 switch (Pred) { 12555 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12556 case ICmpInst::ICMP_EQ: 12557 case ICmpInst::ICMP_NE: 12558 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12559 return true; 12560 break; 12561 case ICmpInst::ICMP_SLT: 12562 case ICmpInst::ICMP_SLE: 12563 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12564 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12565 return true; 12566 break; 12567 case ICmpInst::ICMP_SGT: 12568 case ICmpInst::ICMP_SGE: 12569 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12570 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12571 return true; 12572 break; 12573 case ICmpInst::ICMP_ULT: 12574 case ICmpInst::ICMP_ULE: 12575 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12576 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12577 return true; 12578 break; 12579 case ICmpInst::ICMP_UGT: 12580 case ICmpInst::ICMP_UGE: 12581 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12582 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12583 return true; 12584 break; 12585 } 12586 12587 // Maybe it can be proved via operations? 12588 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12589 return true; 12590 12591 return false; 12592 } 12593 12594 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12595 const SCEV *LHS, 12596 const SCEV *RHS, 12597 const SCEV *FoundLHS, 12598 const SCEV *FoundRHS) { 12599 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12600 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12601 // reduce the compile time impact of this optimization. 12602 return false; 12603 12604 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12605 if (!Addend) 12606 return false; 12607 12608 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12609 12610 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12611 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12612 ConstantRange FoundLHSRange = 12613 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12614 12615 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12616 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12617 12618 // We can also compute the range of values for `LHS` that satisfy the 12619 // consequent, "`LHS` `Pred` `RHS`": 12620 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12621 // The antecedent implies the consequent if every value of `LHS` that 12622 // satisfies the antecedent also satisfies the consequent. 12623 return LHSRange.icmp(Pred, ConstRHS); 12624 } 12625 12626 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12627 bool IsSigned) { 12628 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12629 12630 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12631 const SCEV *One = getOne(Stride->getType()); 12632 12633 if (IsSigned) { 12634 APInt MaxRHS = getSignedRangeMax(RHS); 12635 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12636 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12637 12638 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12639 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12640 } 12641 12642 APInt MaxRHS = getUnsignedRangeMax(RHS); 12643 APInt MaxValue = APInt::getMaxValue(BitWidth); 12644 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12645 12646 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12647 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12648 } 12649 12650 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12651 bool IsSigned) { 12652 12653 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12654 const SCEV *One = getOne(Stride->getType()); 12655 12656 if (IsSigned) { 12657 APInt MinRHS = getSignedRangeMin(RHS); 12658 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12659 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12660 12661 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12662 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12663 } 12664 12665 APInt MinRHS = getUnsignedRangeMin(RHS); 12666 APInt MinValue = APInt::getMinValue(BitWidth); 12667 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12668 12669 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12670 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12671 } 12672 12673 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12674 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12675 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12676 // expression fixes the case of N=0. 12677 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12678 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12679 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12680 } 12681 12682 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12683 const SCEV *Stride, 12684 const SCEV *End, 12685 unsigned BitWidth, 12686 bool IsSigned) { 12687 // The logic in this function assumes we can represent a positive stride. 12688 // If we can't, the backedge-taken count must be zero. 12689 if (IsSigned && BitWidth == 1) 12690 return getZero(Stride->getType()); 12691 12692 // This code below only been closely audited for negative strides in the 12693 // unsigned comparison case, it may be correct for signed comparison, but 12694 // that needs to be established. 12695 if (IsSigned && isKnownNegative(Stride)) 12696 return getCouldNotCompute(); 12697 12698 // Calculate the maximum backedge count based on the range of values 12699 // permitted by Start, End, and Stride. 12700 APInt MinStart = 12701 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12702 12703 APInt MinStride = 12704 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12705 12706 // We assume either the stride is positive, or the backedge-taken count 12707 // is zero. So force StrideForMaxBECount to be at least one. 12708 APInt One(BitWidth, 1); 12709 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12710 : APIntOps::umax(One, MinStride); 12711 12712 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12713 : APInt::getMaxValue(BitWidth); 12714 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12715 12716 // Although End can be a MAX expression we estimate MaxEnd considering only 12717 // the case End = RHS of the loop termination condition. This is safe because 12718 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12719 // taken count. 12720 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12721 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12722 12723 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12724 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12725 : APIntOps::umax(MaxEnd, MinStart); 12726 12727 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12728 getConstant(StrideForMaxBECount) /* Step */); 12729 } 12730 12731 ScalarEvolution::ExitLimit 12732 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12733 const Loop *L, bool IsSigned, 12734 bool ControlsExit, bool AllowPredicates) { 12735 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12736 12737 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12738 bool PredicatedIV = false; 12739 12740 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12741 // Can we prove this loop *must* be UB if overflow of IV occurs? 12742 // Reasoning goes as follows: 12743 // * Suppose the IV did self wrap. 12744 // * If Stride evenly divides the iteration space, then once wrap 12745 // occurs, the loop must revisit the same values. 12746 // * We know that RHS is invariant, and that none of those values 12747 // caused this exit to be taken previously. Thus, this exit is 12748 // dynamically dead. 12749 // * If this is the sole exit, then a dead exit implies the loop 12750 // must be infinite if there are no abnormal exits. 12751 // * If the loop were infinite, then it must either not be mustprogress 12752 // or have side effects. Otherwise, it must be UB. 12753 // * It can't (by assumption), be UB so we have contradicted our 12754 // premise and can conclude the IV did not in fact self-wrap. 12755 if (!isLoopInvariant(RHS, L)) 12756 return false; 12757 12758 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12759 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12760 return false; 12761 12762 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12763 return false; 12764 12765 return loopIsFiniteByAssumption(L); 12766 }; 12767 12768 if (!IV) { 12769 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12770 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12771 if (AR && AR->getLoop() == L && AR->isAffine()) { 12772 auto canProveNUW = [&]() { 12773 if (!isLoopInvariant(RHS, L)) 12774 return false; 12775 12776 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12777 // We need the sequence defined by AR to strictly increase in the 12778 // unsigned integer domain for the logic below to hold. 12779 return false; 12780 12781 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12782 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12783 // If RHS <=u Limit, then there must exist a value V in the sequence 12784 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12785 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12786 // overflow occurs. This limit also implies that a signed comparison 12787 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12788 // the high bits on both sides must be zero. 12789 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12790 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12791 Limit = Limit.zext(OuterBitWidth); 12792 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12793 }; 12794 auto Flags = AR->getNoWrapFlags(); 12795 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12796 Flags = setFlags(Flags, SCEV::FlagNUW); 12797 12798 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12799 if (AR->hasNoUnsignedWrap()) { 12800 // Emulate what getZeroExtendExpr would have done during construction 12801 // if we'd been able to infer the fact just above at that time. 12802 const SCEV *Step = AR->getStepRecurrence(*this); 12803 Type *Ty = ZExt->getType(); 12804 auto *S = getAddRecExpr( 12805 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12806 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12807 IV = dyn_cast<SCEVAddRecExpr>(S); 12808 } 12809 } 12810 } 12811 } 12812 12813 12814 if (!IV && AllowPredicates) { 12815 // Try to make this an AddRec using runtime tests, in the first X 12816 // iterations of this loop, where X is the SCEV expression found by the 12817 // algorithm below. 12818 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12819 PredicatedIV = true; 12820 } 12821 12822 // Avoid weird loops 12823 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12824 return getCouldNotCompute(); 12825 12826 // A precondition of this method is that the condition being analyzed 12827 // reaches an exiting branch which dominates the latch. Given that, we can 12828 // assume that an increment which violates the nowrap specification and 12829 // produces poison must cause undefined behavior when the resulting poison 12830 // value is branched upon and thus we can conclude that the backedge is 12831 // taken no more often than would be required to produce that poison value. 12832 // Note that a well defined loop can exit on the iteration which violates 12833 // the nowrap specification if there is another exit (either explicit or 12834 // implicit/exceptional) which causes the loop to execute before the 12835 // exiting instruction we're analyzing would trigger UB. 12836 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12837 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12838 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12839 12840 const SCEV *Stride = IV->getStepRecurrence(*this); 12841 12842 bool PositiveStride = isKnownPositive(Stride); 12843 12844 // Avoid negative or zero stride values. 12845 if (!PositiveStride) { 12846 // We can compute the correct backedge taken count for loops with unknown 12847 // strides if we can prove that the loop is not an infinite loop with side 12848 // effects. Here's the loop structure we are trying to handle - 12849 // 12850 // i = start 12851 // do { 12852 // A[i] = i; 12853 // i += s; 12854 // } while (i < end); 12855 // 12856 // The backedge taken count for such loops is evaluated as - 12857 // (max(end, start + stride) - start - 1) /u stride 12858 // 12859 // The additional preconditions that we need to check to prove correctness 12860 // of the above formula is as follows - 12861 // 12862 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12863 // NoWrap flag). 12864 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12865 // no side effects within the loop) 12866 // c) loop has a single static exit (with no abnormal exits) 12867 // 12868 // Precondition a) implies that if the stride is negative, this is a single 12869 // trip loop. The backedge taken count formula reduces to zero in this case. 12870 // 12871 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12872 // then a zero stride means the backedge can't be taken without executing 12873 // undefined behavior. 12874 // 12875 // The positive stride case is the same as isKnownPositive(Stride) returning 12876 // true (original behavior of the function). 12877 // 12878 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12879 !loopHasNoAbnormalExits(L)) 12880 return getCouldNotCompute(); 12881 12882 if (!isKnownNonZero(Stride)) { 12883 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12884 // if it might eventually be greater than start and if so, on which 12885 // iteration. We can't even produce a useful upper bound. 12886 if (!isLoopInvariant(RHS, L)) 12887 return getCouldNotCompute(); 12888 12889 // We allow a potentially zero stride, but we need to divide by stride 12890 // below. Since the loop can't be infinite and this check must control 12891 // the sole exit, we can infer the exit must be taken on the first 12892 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12893 // we know the numerator in the divides below must be zero, so we can 12894 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12895 // and produce the right result. 12896 // FIXME: Handle the case where Stride is poison? 12897 auto wouldZeroStrideBeUB = [&]() { 12898 // Proof by contradiction. Suppose the stride were zero. If we can 12899 // prove that the backedge *is* taken on the first iteration, then since 12900 // we know this condition controls the sole exit, we must have an 12901 // infinite loop. We can't have a (well defined) infinite loop per 12902 // check just above. 12903 // Note: The (Start - Stride) term is used to get the start' term from 12904 // (start' + stride,+,stride). Remember that we only care about the 12905 // result of this expression when stride == 0 at runtime. 12906 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12907 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12908 }; 12909 if (!wouldZeroStrideBeUB()) { 12910 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12911 } 12912 } 12913 } else if (!Stride->isOne() && !NoWrap) { 12914 auto isUBOnWrap = [&]() { 12915 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12916 // follows trivially from the fact that every (un)signed-wrapped, but 12917 // not self-wrapped value must be LT than the last value before 12918 // (un)signed wrap. Since we know that last value didn't exit, nor 12919 // will any smaller one. 12920 return canAssumeNoSelfWrap(IV); 12921 }; 12922 12923 // Avoid proven overflow cases: this will ensure that the backedge taken 12924 // count will not generate any unsigned overflow. Relaxed no-overflow 12925 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12926 // undefined behaviors like the case of C language. 12927 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12928 return getCouldNotCompute(); 12929 } 12930 12931 // On all paths just preceeding, we established the following invariant: 12932 // IV can be assumed not to overflow up to and including the exiting 12933 // iteration. We proved this in one of two ways: 12934 // 1) We can show overflow doesn't occur before the exiting iteration 12935 // 1a) canIVOverflowOnLT, and b) step of one 12936 // 2) We can show that if overflow occurs, the loop must execute UB 12937 // before any possible exit. 12938 // Note that we have not yet proved RHS invariant (in general). 12939 12940 const SCEV *Start = IV->getStart(); 12941 12942 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12943 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12944 // Use integer-typed versions for actual computation; we can't subtract 12945 // pointers in general. 12946 const SCEV *OrigStart = Start; 12947 const SCEV *OrigRHS = RHS; 12948 if (Start->getType()->isPointerTy()) { 12949 Start = getLosslessPtrToIntExpr(Start); 12950 if (isa<SCEVCouldNotCompute>(Start)) 12951 return Start; 12952 } 12953 if (RHS->getType()->isPointerTy()) { 12954 RHS = getLosslessPtrToIntExpr(RHS); 12955 if (isa<SCEVCouldNotCompute>(RHS)) 12956 return RHS; 12957 } 12958 12959 // When the RHS is not invariant, we do not know the end bound of the loop and 12960 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12961 // calculate the MaxBECount, given the start, stride and max value for the end 12962 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12963 // checked above). 12964 if (!isLoopInvariant(RHS, L)) { 12965 const SCEV *MaxBECount = computeMaxBECountForLT( 12966 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12967 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12968 MaxBECount, false /*MaxOrZero*/, Predicates); 12969 } 12970 12971 // We use the expression (max(End,Start)-Start)/Stride to describe the 12972 // backedge count, as if the backedge is taken at least once max(End,Start) 12973 // is End and so the result is as above, and if not max(End,Start) is Start 12974 // so we get a backedge count of zero. 12975 const SCEV *BECount = nullptr; 12976 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12977 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12978 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12979 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12980 // Can we prove (max(RHS,Start) > Start - Stride? 12981 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12982 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12983 // In this case, we can use a refined formula for computing backedge taken 12984 // count. The general formula remains: 12985 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12986 // We want to use the alternate formula: 12987 // "((End - 1) - (Start - Stride)) /u Stride" 12988 // Let's do a quick case analysis to show these are equivalent under 12989 // our precondition that max(RHS,Start) > Start - Stride. 12990 // * For RHS <= Start, the backedge-taken count must be zero. 12991 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12992 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12993 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12994 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12995 // this to the stride of 1 case. 12996 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12997 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12998 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12999 // "((RHS - (Start - Stride) - 1) /u Stride". 13000 // Our preconditions trivially imply no overflow in that form. 13001 const SCEV *MinusOne = getMinusOne(Stride->getType()); 13002 const SCEV *Numerator = 13003 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 13004 BECount = getUDivExpr(Numerator, Stride); 13005 } 13006 13007 const SCEV *BECountIfBackedgeTaken = nullptr; 13008 if (!BECount) { 13009 auto canProveRHSGreaterThanEqualStart = [&]() { 13010 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 13011 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 13012 return true; 13013 13014 // (RHS > Start - 1) implies RHS >= Start. 13015 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 13016 // "Start - 1" doesn't overflow. 13017 // * For signed comparison, if Start - 1 does overflow, it's equal 13018 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 13019 // * For unsigned comparison, if Start - 1 does overflow, it's equal 13020 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 13021 // 13022 // FIXME: Should isLoopEntryGuardedByCond do this for us? 13023 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13024 auto *StartMinusOne = getAddExpr(OrigStart, 13025 getMinusOne(OrigStart->getType())); 13026 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 13027 }; 13028 13029 // If we know that RHS >= Start in the context of loop, then we know that 13030 // max(RHS, Start) = RHS at this point. 13031 const SCEV *End; 13032 if (canProveRHSGreaterThanEqualStart()) { 13033 End = RHS; 13034 } else { 13035 // If RHS < Start, the backedge will be taken zero times. So in 13036 // general, we can write the backedge-taken count as: 13037 // 13038 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 13039 // 13040 // We convert it to the following to make it more convenient for SCEV: 13041 // 13042 // ceil(max(RHS, Start) - Start) / Stride 13043 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 13044 13045 // See what would happen if we assume the backedge is taken. This is 13046 // used to compute MaxBECount. 13047 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 13048 } 13049 13050 // At this point, we know: 13051 // 13052 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 13053 // 2. The index variable doesn't overflow. 13054 // 13055 // Therefore, we know N exists such that 13056 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 13057 // doesn't overflow. 13058 // 13059 // Using this information, try to prove whether the addition in 13060 // "(Start - End) + (Stride - 1)" has unsigned overflow. 13061 const SCEV *One = getOne(Stride->getType()); 13062 bool MayAddOverflow = [&] { 13063 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 13064 if (StrideC->getAPInt().isPowerOf2()) { 13065 // Suppose Stride is a power of two, and Start/End are unsigned 13066 // integers. Let UMAX be the largest representable unsigned 13067 // integer. 13068 // 13069 // By the preconditions of this function, we know 13070 // "(Start + Stride * N) >= End", and this doesn't overflow. 13071 // As a formula: 13072 // 13073 // End <= (Start + Stride * N) <= UMAX 13074 // 13075 // Subtracting Start from all the terms: 13076 // 13077 // End - Start <= Stride * N <= UMAX - Start 13078 // 13079 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 13080 // 13081 // End - Start <= Stride * N <= UMAX 13082 // 13083 // Stride * N is a multiple of Stride. Therefore, 13084 // 13085 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 13086 // 13087 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 13088 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 13089 // 13090 // End - Start <= Stride * N <= UMAX - Stride - 1 13091 // 13092 // Dropping the middle term: 13093 // 13094 // End - Start <= UMAX - Stride - 1 13095 // 13096 // Adding Stride - 1 to both sides: 13097 // 13098 // (End - Start) + (Stride - 1) <= UMAX 13099 // 13100 // In other words, the addition doesn't have unsigned overflow. 13101 // 13102 // A similar proof works if we treat Start/End as signed values. 13103 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 13104 // use signed max instead of unsigned max. Note that we're trying 13105 // to prove a lack of unsigned overflow in either case. 13106 return false; 13107 } 13108 } 13109 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 13110 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 13111 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 13112 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 13113 // 13114 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 13115 return false; 13116 } 13117 return true; 13118 }(); 13119 13120 const SCEV *Delta = getMinusSCEV(End, Start); 13121 if (!MayAddOverflow) { 13122 // floor((D + (S - 1)) / S) 13123 // We prefer this formulation if it's legal because it's fewer operations. 13124 BECount = 13125 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 13126 } else { 13127 BECount = getUDivCeilSCEV(Delta, Stride); 13128 } 13129 } 13130 13131 const SCEV *ConstantMaxBECount; 13132 bool MaxOrZero = false; 13133 if (isa<SCEVConstant>(BECount)) { 13134 ConstantMaxBECount = BECount; 13135 } else if (BECountIfBackedgeTaken && 13136 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 13137 // If we know exactly how many times the backedge will be taken if it's 13138 // taken at least once, then the backedge count will either be that or 13139 // zero. 13140 ConstantMaxBECount = BECountIfBackedgeTaken; 13141 MaxOrZero = true; 13142 } else { 13143 ConstantMaxBECount = computeMaxBECountForLT( 13144 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13145 } 13146 13147 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 13148 !isa<SCEVCouldNotCompute>(BECount)) 13149 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 13150 13151 const SCEV *SymbolicMaxBECount = 13152 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13153 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, 13154 Predicates); 13155 } 13156 13157 ScalarEvolution::ExitLimit 13158 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 13159 const Loop *L, bool IsSigned, 13160 bool ControlsExit, bool AllowPredicates) { 13161 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 13162 // We handle only IV > Invariant 13163 if (!isLoopInvariant(RHS, L)) 13164 return getCouldNotCompute(); 13165 13166 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 13167 if (!IV && AllowPredicates) 13168 // Try to make this an AddRec using runtime tests, in the first X 13169 // iterations of this loop, where X is the SCEV expression found by the 13170 // algorithm below. 13171 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13172 13173 // Avoid weird loops 13174 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13175 return getCouldNotCompute(); 13176 13177 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13178 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 13179 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13180 13181 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 13182 13183 // Avoid negative or zero stride values 13184 if (!isKnownPositive(Stride)) 13185 return getCouldNotCompute(); 13186 13187 // Avoid proven overflow cases: this will ensure that the backedge taken count 13188 // will not generate any unsigned overflow. Relaxed no-overflow conditions 13189 // exploit NoWrapFlags, allowing to optimize in presence of undefined 13190 // behaviors like the case of C language. 13191 if (!Stride->isOne() && !NoWrap) 13192 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 13193 return getCouldNotCompute(); 13194 13195 const SCEV *Start = IV->getStart(); 13196 const SCEV *End = RHS; 13197 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 13198 // If we know that Start >= RHS in the context of loop, then we know that 13199 // min(RHS, Start) = RHS at this point. 13200 if (isLoopEntryGuardedByCond( 13201 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 13202 End = RHS; 13203 else 13204 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 13205 } 13206 13207 if (Start->getType()->isPointerTy()) { 13208 Start = getLosslessPtrToIntExpr(Start); 13209 if (isa<SCEVCouldNotCompute>(Start)) 13210 return Start; 13211 } 13212 if (End->getType()->isPointerTy()) { 13213 End = getLosslessPtrToIntExpr(End); 13214 if (isa<SCEVCouldNotCompute>(End)) 13215 return End; 13216 } 13217 13218 // Compute ((Start - End) + (Stride - 1)) / Stride. 13219 // FIXME: This can overflow. Holding off on fixing this for now; 13220 // howManyGreaterThans will hopefully be gone soon. 13221 const SCEV *One = getOne(Stride->getType()); 13222 const SCEV *BECount = getUDivExpr( 13223 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 13224 13225 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 13226 : getUnsignedRangeMax(Start); 13227 13228 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 13229 : getUnsignedRangeMin(Stride); 13230 13231 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 13232 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 13233 : APInt::getMinValue(BitWidth) + (MinStride - 1); 13234 13235 // Although End can be a MIN expression we estimate MinEnd considering only 13236 // the case End = RHS. This is safe because in the other case (Start - End) 13237 // is zero, leading to a zero maximum backedge taken count. 13238 APInt MinEnd = 13239 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 13240 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 13241 13242 const SCEV *ConstantMaxBECount = 13243 isa<SCEVConstant>(BECount) 13244 ? BECount 13245 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 13246 getConstant(MinStride)); 13247 13248 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) 13249 ConstantMaxBECount = BECount; 13250 const SCEV *SymbolicMaxBECount = 13251 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13252 13253 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 13254 Predicates); 13255 } 13256 13257 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 13258 ScalarEvolution &SE) const { 13259 if (Range.isFullSet()) // Infinite loop. 13260 return SE.getCouldNotCompute(); 13261 13262 // If the start is a non-zero constant, shift the range to simplify things. 13263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 13264 if (!SC->getValue()->isZero()) { 13265 SmallVector<const SCEV *, 4> Operands(operands()); 13266 Operands[0] = SE.getZero(SC->getType()); 13267 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 13268 getNoWrapFlags(FlagNW)); 13269 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 13270 return ShiftedAddRec->getNumIterationsInRange( 13271 Range.subtract(SC->getAPInt()), SE); 13272 // This is strange and shouldn't happen. 13273 return SE.getCouldNotCompute(); 13274 } 13275 13276 // The only time we can solve this is when we have all constant indices. 13277 // Otherwise, we cannot determine the overflow conditions. 13278 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 13279 return SE.getCouldNotCompute(); 13280 13281 // Okay at this point we know that all elements of the chrec are constants and 13282 // that the start element is zero. 13283 13284 // First check to see if the range contains zero. If not, the first 13285 // iteration exits. 13286 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 13287 if (!Range.contains(APInt(BitWidth, 0))) 13288 return SE.getZero(getType()); 13289 13290 if (isAffine()) { 13291 // If this is an affine expression then we have this situation: 13292 // Solve {0,+,A} in Range === Ax in Range 13293 13294 // We know that zero is in the range. If A is positive then we know that 13295 // the upper value of the range must be the first possible exit value. 13296 // If A is negative then the lower of the range is the last possible loop 13297 // value. Also note that we already checked for a full range. 13298 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 13299 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 13300 13301 // The exit value should be (End+A)/A. 13302 APInt ExitVal = (End + A).udiv(A); 13303 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 13304 13305 // Evaluate at the exit value. If we really did fall out of the valid 13306 // range, then we computed our trip count, otherwise wrap around or other 13307 // things must have happened. 13308 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 13309 if (Range.contains(Val->getValue())) 13310 return SE.getCouldNotCompute(); // Something strange happened 13311 13312 // Ensure that the previous value is in the range. 13313 assert(Range.contains( 13314 EvaluateConstantChrecAtConstant(this, 13315 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 13316 "Linear scev computation is off in a bad way!"); 13317 return SE.getConstant(ExitValue); 13318 } 13319 13320 if (isQuadratic()) { 13321 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 13322 return SE.getConstant(*S); 13323 } 13324 13325 return SE.getCouldNotCompute(); 13326 } 13327 13328 const SCEVAddRecExpr * 13329 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 13330 assert(getNumOperands() > 1 && "AddRec with zero step?"); 13331 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 13332 // but in this case we cannot guarantee that the value returned will be an 13333 // AddRec because SCEV does not have a fixed point where it stops 13334 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 13335 // may happen if we reach arithmetic depth limit while simplifying. So we 13336 // construct the returned value explicitly. 13337 SmallVector<const SCEV *, 3> Ops; 13338 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 13339 // (this + Step) is {A+B,+,B+C,+...,+,N}. 13340 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 13341 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 13342 // We know that the last operand is not a constant zero (otherwise it would 13343 // have been popped out earlier). This guarantees us that if the result has 13344 // the same last operand, then it will also not be popped out, meaning that 13345 // the returned value will be an AddRec. 13346 const SCEV *Last = getOperand(getNumOperands() - 1); 13347 assert(!Last->isZero() && "Recurrency with zero step?"); 13348 Ops.push_back(Last); 13349 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13350 SCEV::FlagAnyWrap)); 13351 } 13352 13353 // Return true when S contains at least an undef value. 13354 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13355 return SCEVExprContains(S, [](const SCEV *S) { 13356 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13357 return isa<UndefValue>(SU->getValue()); 13358 return false; 13359 }); 13360 } 13361 13362 // Return true when S contains a value that is a nullptr. 13363 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13364 return SCEVExprContains(S, [](const SCEV *S) { 13365 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13366 return SU->getValue() == nullptr; 13367 return false; 13368 }); 13369 } 13370 13371 /// Return the size of an element read or written by Inst. 13372 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13373 Type *Ty; 13374 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13375 Ty = Store->getValueOperand()->getType(); 13376 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13377 Ty = Load->getType(); 13378 else 13379 return nullptr; 13380 13381 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13382 return getSizeOfExpr(ETy, Ty); 13383 } 13384 13385 //===----------------------------------------------------------------------===// 13386 // SCEVCallbackVH Class Implementation 13387 //===----------------------------------------------------------------------===// 13388 13389 void ScalarEvolution::SCEVCallbackVH::deleted() { 13390 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13391 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13392 SE->ConstantEvolutionLoopExitValue.erase(PN); 13393 SE->eraseValueFromMap(getValPtr()); 13394 // this now dangles! 13395 } 13396 13397 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13398 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13399 13400 // Forget all the expressions associated with users of the old value, 13401 // so that future queries will recompute the expressions using the new 13402 // value. 13403 Value *Old = getValPtr(); 13404 SmallVector<User *, 16> Worklist(Old->users()); 13405 SmallPtrSet<User *, 8> Visited; 13406 while (!Worklist.empty()) { 13407 User *U = Worklist.pop_back_val(); 13408 // Deleting the Old value will cause this to dangle. Postpone 13409 // that until everything else is done. 13410 if (U == Old) 13411 continue; 13412 if (!Visited.insert(U).second) 13413 continue; 13414 if (PHINode *PN = dyn_cast<PHINode>(U)) 13415 SE->ConstantEvolutionLoopExitValue.erase(PN); 13416 SE->eraseValueFromMap(U); 13417 llvm::append_range(Worklist, U->users()); 13418 } 13419 // Delete the Old value. 13420 if (PHINode *PN = dyn_cast<PHINode>(Old)) 13421 SE->ConstantEvolutionLoopExitValue.erase(PN); 13422 SE->eraseValueFromMap(Old); 13423 // this now dangles! 13424 } 13425 13426 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13427 : CallbackVH(V), SE(se) {} 13428 13429 //===----------------------------------------------------------------------===// 13430 // ScalarEvolution Class Implementation 13431 //===----------------------------------------------------------------------===// 13432 13433 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13434 AssumptionCache &AC, DominatorTree &DT, 13435 LoopInfo &LI) 13436 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 13437 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13438 LoopDispositions(64), BlockDispositions(64) {} 13439 13440 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13441 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 13442 CouldNotCompute(std::move(Arg.CouldNotCompute)), 13443 ValueExprMap(std::move(Arg.ValueExprMap)), 13444 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13445 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13446 PendingMerges(std::move(Arg.PendingMerges)), 13447 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 13448 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13449 PredicatedBackedgeTakenCounts( 13450 std::move(Arg.PredicatedBackedgeTakenCounts)), 13451 BECountUsers(std::move(Arg.BECountUsers)), 13452 ConstantEvolutionLoopExitValue( 13453 std::move(Arg.ConstantEvolutionLoopExitValue)), 13454 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13455 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13456 LoopDispositions(std::move(Arg.LoopDispositions)), 13457 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13458 BlockDispositions(std::move(Arg.BlockDispositions)), 13459 SCEVUsers(std::move(Arg.SCEVUsers)), 13460 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13461 SignedRanges(std::move(Arg.SignedRanges)), 13462 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13463 UniquePreds(std::move(Arg.UniquePreds)), 13464 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13465 LoopUsers(std::move(Arg.LoopUsers)), 13466 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13467 FirstUnknown(Arg.FirstUnknown) { 13468 Arg.FirstUnknown = nullptr; 13469 } 13470 13471 ScalarEvolution::~ScalarEvolution() { 13472 // Iterate through all the SCEVUnknown instances and call their 13473 // destructors, so that they release their references to their values. 13474 for (SCEVUnknown *U = FirstUnknown; U;) { 13475 SCEVUnknown *Tmp = U; 13476 U = U->Next; 13477 Tmp->~SCEVUnknown(); 13478 } 13479 FirstUnknown = nullptr; 13480 13481 ExprValueMap.clear(); 13482 ValueExprMap.clear(); 13483 HasRecMap.clear(); 13484 BackedgeTakenCounts.clear(); 13485 PredicatedBackedgeTakenCounts.clear(); 13486 13487 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13488 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13489 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13490 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13491 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13492 } 13493 13494 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13495 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13496 } 13497 13498 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13499 const Loop *L) { 13500 // Print all inner loops first 13501 for (Loop *I : *L) 13502 PrintLoopInfo(OS, SE, I); 13503 13504 OS << "Loop "; 13505 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13506 OS << ": "; 13507 13508 SmallVector<BasicBlock *, 8> ExitingBlocks; 13509 L->getExitingBlocks(ExitingBlocks); 13510 if (ExitingBlocks.size() != 1) 13511 OS << "<multiple exits> "; 13512 13513 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 13514 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 13515 else 13516 OS << "Unpredictable backedge-taken count.\n"; 13517 13518 if (ExitingBlocks.size() > 1) 13519 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13520 OS << " exit count for " << ExitingBlock->getName() << ": " 13521 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13522 } 13523 13524 OS << "Loop "; 13525 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13526 OS << ": "; 13527 13528 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); 13529 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { 13530 OS << "constant max backedge-taken count is " << *ConstantBTC; 13531 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13532 OS << ", actual taken count either this or zero."; 13533 } else { 13534 OS << "Unpredictable constant max backedge-taken count. "; 13535 } 13536 13537 OS << "\n" 13538 "Loop "; 13539 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13540 OS << ": "; 13541 13542 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); 13543 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { 13544 OS << "symbolic max backedge-taken count is " << *SymbolicBTC; 13545 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13546 OS << ", actual taken count either this or zero."; 13547 } else { 13548 OS << "Unpredictable symbolic max backedge-taken count. "; 13549 } 13550 13551 OS << "\n"; 13552 if (ExitingBlocks.size() > 1) 13553 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13554 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " 13555 << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum) 13556 << "\n"; 13557 } 13558 13559 OS << "Loop "; 13560 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13561 OS << ": "; 13562 13563 SmallVector<const SCEVPredicate *, 4> Preds; 13564 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13565 if (!isa<SCEVCouldNotCompute>(PBT)) { 13566 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13567 OS << " Predicates:\n"; 13568 for (const auto *P : Preds) 13569 P->print(OS, 4); 13570 } else { 13571 OS << "Unpredictable predicated backedge-taken count. "; 13572 } 13573 OS << "\n"; 13574 13575 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13576 OS << "Loop "; 13577 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13578 OS << ": "; 13579 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13580 } 13581 } 13582 13583 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13584 switch (LD) { 13585 case ScalarEvolution::LoopVariant: 13586 return "Variant"; 13587 case ScalarEvolution::LoopInvariant: 13588 return "Invariant"; 13589 case ScalarEvolution::LoopComputable: 13590 return "Computable"; 13591 } 13592 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13593 } 13594 13595 void ScalarEvolution::print(raw_ostream &OS) const { 13596 // ScalarEvolution's implementation of the print method is to print 13597 // out SCEV values of all instructions that are interesting. Doing 13598 // this potentially causes it to create new SCEV objects though, 13599 // which technically conflicts with the const qualifier. This isn't 13600 // observable from outside the class though, so casting away the 13601 // const isn't dangerous. 13602 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13603 13604 if (ClassifyExpressions) { 13605 OS << "Classifying expressions for: "; 13606 F.printAsOperand(OS, /*PrintType=*/false); 13607 OS << "\n"; 13608 for (Instruction &I : instructions(F)) 13609 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13610 OS << I << '\n'; 13611 OS << " --> "; 13612 const SCEV *SV = SE.getSCEV(&I); 13613 SV->print(OS); 13614 if (!isa<SCEVCouldNotCompute>(SV)) { 13615 OS << " U: "; 13616 SE.getUnsignedRange(SV).print(OS); 13617 OS << " S: "; 13618 SE.getSignedRange(SV).print(OS); 13619 } 13620 13621 const Loop *L = LI.getLoopFor(I.getParent()); 13622 13623 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13624 if (AtUse != SV) { 13625 OS << " --> "; 13626 AtUse->print(OS); 13627 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13628 OS << " U: "; 13629 SE.getUnsignedRange(AtUse).print(OS); 13630 OS << " S: "; 13631 SE.getSignedRange(AtUse).print(OS); 13632 } 13633 } 13634 13635 if (L) { 13636 OS << "\t\t" "Exits: "; 13637 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13638 if (!SE.isLoopInvariant(ExitValue, L)) { 13639 OS << "<<Unknown>>"; 13640 } else { 13641 OS << *ExitValue; 13642 } 13643 13644 bool First = true; 13645 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13646 if (First) { 13647 OS << "\t\t" "LoopDispositions: { "; 13648 First = false; 13649 } else { 13650 OS << ", "; 13651 } 13652 13653 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13654 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13655 } 13656 13657 for (const auto *InnerL : depth_first(L)) { 13658 if (InnerL == L) 13659 continue; 13660 if (First) { 13661 OS << "\t\t" "LoopDispositions: { "; 13662 First = false; 13663 } else { 13664 OS << ", "; 13665 } 13666 13667 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13668 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13669 } 13670 13671 OS << " }"; 13672 } 13673 13674 OS << "\n"; 13675 } 13676 } 13677 13678 OS << "Determining loop execution counts for: "; 13679 F.printAsOperand(OS, /*PrintType=*/false); 13680 OS << "\n"; 13681 for (Loop *I : LI) 13682 PrintLoopInfo(OS, &SE, I); 13683 } 13684 13685 ScalarEvolution::LoopDisposition 13686 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13687 auto &Values = LoopDispositions[S]; 13688 for (auto &V : Values) { 13689 if (V.getPointer() == L) 13690 return V.getInt(); 13691 } 13692 Values.emplace_back(L, LoopVariant); 13693 LoopDisposition D = computeLoopDisposition(S, L); 13694 auto &Values2 = LoopDispositions[S]; 13695 for (auto &V : llvm::reverse(Values2)) { 13696 if (V.getPointer() == L) { 13697 V.setInt(D); 13698 break; 13699 } 13700 } 13701 return D; 13702 } 13703 13704 ScalarEvolution::LoopDisposition 13705 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13706 switch (S->getSCEVType()) { 13707 case scConstant: 13708 return LoopInvariant; 13709 case scAddRecExpr: { 13710 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13711 13712 // If L is the addrec's loop, it's computable. 13713 if (AR->getLoop() == L) 13714 return LoopComputable; 13715 13716 // Add recurrences are never invariant in the function-body (null loop). 13717 if (!L) 13718 return LoopVariant; 13719 13720 // Everything that is not defined at loop entry is variant. 13721 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13722 return LoopVariant; 13723 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13724 " dominate the contained loop's header?"); 13725 13726 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13727 if (AR->getLoop()->contains(L)) 13728 return LoopInvariant; 13729 13730 // This recurrence is variant w.r.t. L if any of its operands 13731 // are variant. 13732 for (const auto *Op : AR->operands()) 13733 if (!isLoopInvariant(Op, L)) 13734 return LoopVariant; 13735 13736 // Otherwise it's loop-invariant. 13737 return LoopInvariant; 13738 } 13739 case scTruncate: 13740 case scZeroExtend: 13741 case scSignExtend: 13742 case scPtrToInt: 13743 case scAddExpr: 13744 case scMulExpr: 13745 case scUDivExpr: 13746 case scUMaxExpr: 13747 case scSMaxExpr: 13748 case scUMinExpr: 13749 case scSMinExpr: 13750 case scSequentialUMinExpr: { 13751 bool HasVarying = false; 13752 for (const auto *Op : S->operands()) { 13753 LoopDisposition D = getLoopDisposition(Op, L); 13754 if (D == LoopVariant) 13755 return LoopVariant; 13756 if (D == LoopComputable) 13757 HasVarying = true; 13758 } 13759 return HasVarying ? LoopComputable : LoopInvariant; 13760 } 13761 case scUnknown: 13762 // All non-instruction values are loop invariant. All instructions are loop 13763 // invariant if they are not contained in the specified loop. 13764 // Instructions are never considered invariant in the function body 13765 // (null loop) because they are defined within the "loop". 13766 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13767 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13768 return LoopInvariant; 13769 case scCouldNotCompute: 13770 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13771 } 13772 llvm_unreachable("Unknown SCEV kind!"); 13773 } 13774 13775 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13776 return getLoopDisposition(S, L) == LoopInvariant; 13777 } 13778 13779 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13780 return getLoopDisposition(S, L) == LoopComputable; 13781 } 13782 13783 ScalarEvolution::BlockDisposition 13784 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13785 auto &Values = BlockDispositions[S]; 13786 for (auto &V : Values) { 13787 if (V.getPointer() == BB) 13788 return V.getInt(); 13789 } 13790 Values.emplace_back(BB, DoesNotDominateBlock); 13791 BlockDisposition D = computeBlockDisposition(S, BB); 13792 auto &Values2 = BlockDispositions[S]; 13793 for (auto &V : llvm::reverse(Values2)) { 13794 if (V.getPointer() == BB) { 13795 V.setInt(D); 13796 break; 13797 } 13798 } 13799 return D; 13800 } 13801 13802 ScalarEvolution::BlockDisposition 13803 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13804 switch (S->getSCEVType()) { 13805 case scConstant: 13806 return ProperlyDominatesBlock; 13807 case scAddRecExpr: { 13808 // This uses a "dominates" query instead of "properly dominates" query 13809 // to test for proper dominance too, because the instruction which 13810 // produces the addrec's value is a PHI, and a PHI effectively properly 13811 // dominates its entire containing block. 13812 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13813 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13814 return DoesNotDominateBlock; 13815 13816 // Fall through into SCEVNAryExpr handling. 13817 [[fallthrough]]; 13818 } 13819 case scTruncate: 13820 case scZeroExtend: 13821 case scSignExtend: 13822 case scPtrToInt: 13823 case scAddExpr: 13824 case scMulExpr: 13825 case scUDivExpr: 13826 case scUMaxExpr: 13827 case scSMaxExpr: 13828 case scUMinExpr: 13829 case scSMinExpr: 13830 case scSequentialUMinExpr: { 13831 bool Proper = true; 13832 for (const SCEV *NAryOp : S->operands()) { 13833 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13834 if (D == DoesNotDominateBlock) 13835 return DoesNotDominateBlock; 13836 if (D == DominatesBlock) 13837 Proper = false; 13838 } 13839 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13840 } 13841 case scUnknown: 13842 if (Instruction *I = 13843 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13844 if (I->getParent() == BB) 13845 return DominatesBlock; 13846 if (DT.properlyDominates(I->getParent(), BB)) 13847 return ProperlyDominatesBlock; 13848 return DoesNotDominateBlock; 13849 } 13850 return ProperlyDominatesBlock; 13851 case scCouldNotCompute: 13852 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13853 } 13854 llvm_unreachable("Unknown SCEV kind!"); 13855 } 13856 13857 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13858 return getBlockDisposition(S, BB) >= DominatesBlock; 13859 } 13860 13861 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13862 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13863 } 13864 13865 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13866 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13867 } 13868 13869 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13870 bool Predicated) { 13871 auto &BECounts = 13872 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13873 auto It = BECounts.find(L); 13874 if (It != BECounts.end()) { 13875 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13876 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 13877 if (!isa<SCEVConstant>(S)) { 13878 auto UserIt = BECountUsers.find(S); 13879 assert(UserIt != BECountUsers.end()); 13880 UserIt->second.erase({L, Predicated}); 13881 } 13882 } 13883 } 13884 BECounts.erase(It); 13885 } 13886 } 13887 13888 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13889 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13890 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13891 13892 while (!Worklist.empty()) { 13893 const SCEV *Curr = Worklist.pop_back_val(); 13894 auto Users = SCEVUsers.find(Curr); 13895 if (Users != SCEVUsers.end()) 13896 for (const auto *User : Users->second) 13897 if (ToForget.insert(User).second) 13898 Worklist.push_back(User); 13899 } 13900 13901 for (const auto *S : ToForget) 13902 forgetMemoizedResultsImpl(S); 13903 13904 for (auto I = PredicatedSCEVRewrites.begin(); 13905 I != PredicatedSCEVRewrites.end();) { 13906 std::pair<const SCEV *, const Loop *> Entry = I->first; 13907 if (ToForget.count(Entry.first)) 13908 PredicatedSCEVRewrites.erase(I++); 13909 else 13910 ++I; 13911 } 13912 } 13913 13914 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13915 LoopDispositions.erase(S); 13916 BlockDispositions.erase(S); 13917 UnsignedRanges.erase(S); 13918 SignedRanges.erase(S); 13919 HasRecMap.erase(S); 13920 MinTrailingZerosCache.erase(S); 13921 13922 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { 13923 UnsignedWrapViaInductionTried.erase(AR); 13924 SignedWrapViaInductionTried.erase(AR); 13925 } 13926 13927 auto ExprIt = ExprValueMap.find(S); 13928 if (ExprIt != ExprValueMap.end()) { 13929 for (Value *V : ExprIt->second) { 13930 auto ValueIt = ValueExprMap.find_as(V); 13931 if (ValueIt != ValueExprMap.end()) 13932 ValueExprMap.erase(ValueIt); 13933 } 13934 ExprValueMap.erase(ExprIt); 13935 } 13936 13937 auto ScopeIt = ValuesAtScopes.find(S); 13938 if (ScopeIt != ValuesAtScopes.end()) { 13939 for (const auto &Pair : ScopeIt->second) 13940 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13941 erase_value(ValuesAtScopesUsers[Pair.second], 13942 std::make_pair(Pair.first, S)); 13943 ValuesAtScopes.erase(ScopeIt); 13944 } 13945 13946 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13947 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13948 for (const auto &Pair : ScopeUserIt->second) 13949 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13950 ValuesAtScopesUsers.erase(ScopeUserIt); 13951 } 13952 13953 auto BEUsersIt = BECountUsers.find(S); 13954 if (BEUsersIt != BECountUsers.end()) { 13955 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13956 auto Copy = BEUsersIt->second; 13957 for (const auto &Pair : Copy) 13958 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13959 BECountUsers.erase(BEUsersIt); 13960 } 13961 13962 auto FoldUser = FoldCacheUser.find(S); 13963 if (FoldUser != FoldCacheUser.end()) 13964 for (auto &KV : FoldUser->second) 13965 FoldCache.erase(KV); 13966 FoldCacheUser.erase(S); 13967 } 13968 13969 void 13970 ScalarEvolution::getUsedLoops(const SCEV *S, 13971 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13972 struct FindUsedLoops { 13973 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13974 : LoopsUsed(LoopsUsed) {} 13975 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13976 bool follow(const SCEV *S) { 13977 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13978 LoopsUsed.insert(AR->getLoop()); 13979 return true; 13980 } 13981 13982 bool isDone() const { return false; } 13983 }; 13984 13985 FindUsedLoops F(LoopsUsed); 13986 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13987 } 13988 13989 void ScalarEvolution::getReachableBlocks( 13990 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13991 SmallVector<BasicBlock *> Worklist; 13992 Worklist.push_back(&F.getEntryBlock()); 13993 while (!Worklist.empty()) { 13994 BasicBlock *BB = Worklist.pop_back_val(); 13995 if (!Reachable.insert(BB).second) 13996 continue; 13997 13998 Value *Cond; 13999 BasicBlock *TrueBB, *FalseBB; 14000 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 14001 m_BasicBlock(FalseBB)))) { 14002 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 14003 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 14004 continue; 14005 } 14006 14007 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14008 const SCEV *L = getSCEV(Cmp->getOperand(0)); 14009 const SCEV *R = getSCEV(Cmp->getOperand(1)); 14010 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 14011 Worklist.push_back(TrueBB); 14012 continue; 14013 } 14014 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 14015 R)) { 14016 Worklist.push_back(FalseBB); 14017 continue; 14018 } 14019 } 14020 } 14021 14022 append_range(Worklist, successors(BB)); 14023 } 14024 } 14025 14026 void ScalarEvolution::verify() const { 14027 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 14028 ScalarEvolution SE2(F, TLI, AC, DT, LI); 14029 14030 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 14031 14032 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 14033 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 14034 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 14035 14036 const SCEV *visitConstant(const SCEVConstant *Constant) { 14037 return SE.getConstant(Constant->getAPInt()); 14038 } 14039 14040 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14041 return SE.getUnknown(Expr->getValue()); 14042 } 14043 14044 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 14045 return SE.getCouldNotCompute(); 14046 } 14047 }; 14048 14049 SCEVMapper SCM(SE2); 14050 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 14051 SE2.getReachableBlocks(ReachableBlocks, F); 14052 14053 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 14054 if (containsUndefs(Old) || containsUndefs(New)) { 14055 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 14056 // not propagate undef aggressively). This means we can (and do) fail 14057 // verification in cases where a transform makes a value go from "undef" 14058 // to "undef+1" (say). The transform is fine, since in both cases the 14059 // result is "undef", but SCEV thinks the value increased by 1. 14060 return nullptr; 14061 } 14062 14063 // Unless VerifySCEVStrict is set, we only compare constant deltas. 14064 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 14065 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 14066 return nullptr; 14067 14068 return Delta; 14069 }; 14070 14071 while (!LoopStack.empty()) { 14072 auto *L = LoopStack.pop_back_val(); 14073 llvm::append_range(LoopStack, *L); 14074 14075 // Only verify BECounts in reachable loops. For an unreachable loop, 14076 // any BECount is legal. 14077 if (!ReachableBlocks.contains(L->getHeader())) 14078 continue; 14079 14080 // Only verify cached BECounts. Computing new BECounts may change the 14081 // results of subsequent SCEV uses. 14082 auto It = BackedgeTakenCounts.find(L); 14083 if (It == BackedgeTakenCounts.end()) 14084 continue; 14085 14086 auto *CurBECount = 14087 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 14088 auto *NewBECount = SE2.getBackedgeTakenCount(L); 14089 14090 if (CurBECount == SE2.getCouldNotCompute() || 14091 NewBECount == SE2.getCouldNotCompute()) { 14092 // NB! This situation is legal, but is very suspicious -- whatever pass 14093 // change the loop to make a trip count go from could not compute to 14094 // computable or vice-versa *should have* invalidated SCEV. However, we 14095 // choose not to assert here (for now) since we don't want false 14096 // positives. 14097 continue; 14098 } 14099 14100 if (SE.getTypeSizeInBits(CurBECount->getType()) > 14101 SE.getTypeSizeInBits(NewBECount->getType())) 14102 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 14103 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 14104 SE.getTypeSizeInBits(NewBECount->getType())) 14105 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 14106 14107 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 14108 if (Delta && !Delta->isZero()) { 14109 dbgs() << "Trip Count for " << *L << " Changed!\n"; 14110 dbgs() << "Old: " << *CurBECount << "\n"; 14111 dbgs() << "New: " << *NewBECount << "\n"; 14112 dbgs() << "Delta: " << *Delta << "\n"; 14113 std::abort(); 14114 } 14115 } 14116 14117 // Collect all valid loops currently in LoopInfo. 14118 SmallPtrSet<Loop *, 32> ValidLoops; 14119 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 14120 while (!Worklist.empty()) { 14121 Loop *L = Worklist.pop_back_val(); 14122 if (ValidLoops.insert(L).second) 14123 Worklist.append(L->begin(), L->end()); 14124 } 14125 for (const auto &KV : ValueExprMap) { 14126 #ifndef NDEBUG 14127 // Check for SCEV expressions referencing invalid/deleted loops. 14128 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 14129 assert(ValidLoops.contains(AR->getLoop()) && 14130 "AddRec references invalid loop"); 14131 } 14132 #endif 14133 14134 // Check that the value is also part of the reverse map. 14135 auto It = ExprValueMap.find(KV.second); 14136 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 14137 dbgs() << "Value " << *KV.first 14138 << " is in ValueExprMap but not in ExprValueMap\n"; 14139 std::abort(); 14140 } 14141 14142 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 14143 if (!ReachableBlocks.contains(I->getParent())) 14144 continue; 14145 const SCEV *OldSCEV = SCM.visit(KV.second); 14146 const SCEV *NewSCEV = SE2.getSCEV(I); 14147 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 14148 if (Delta && !Delta->isZero()) { 14149 dbgs() << "SCEV for value " << *I << " changed!\n" 14150 << "Old: " << *OldSCEV << "\n" 14151 << "New: " << *NewSCEV << "\n" 14152 << "Delta: " << *Delta << "\n"; 14153 std::abort(); 14154 } 14155 } 14156 } 14157 14158 for (const auto &KV : ExprValueMap) { 14159 for (Value *V : KV.second) { 14160 auto It = ValueExprMap.find_as(V); 14161 if (It == ValueExprMap.end()) { 14162 dbgs() << "Value " << *V 14163 << " is in ExprValueMap but not in ValueExprMap\n"; 14164 std::abort(); 14165 } 14166 if (It->second != KV.first) { 14167 dbgs() << "Value " << *V << " mapped to " << *It->second 14168 << " rather than " << *KV.first << "\n"; 14169 std::abort(); 14170 } 14171 } 14172 } 14173 14174 // Verify integrity of SCEV users. 14175 for (const auto &S : UniqueSCEVs) { 14176 for (const auto *Op : S.operands()) { 14177 // We do not store dependencies of constants. 14178 if (isa<SCEVConstant>(Op)) 14179 continue; 14180 auto It = SCEVUsers.find(Op); 14181 if (It != SCEVUsers.end() && It->second.count(&S)) 14182 continue; 14183 dbgs() << "Use of operand " << *Op << " by user " << S 14184 << " is not being tracked!\n"; 14185 std::abort(); 14186 } 14187 } 14188 14189 // Verify integrity of ValuesAtScopes users. 14190 for (const auto &ValueAndVec : ValuesAtScopes) { 14191 const SCEV *Value = ValueAndVec.first; 14192 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 14193 const Loop *L = LoopAndValueAtScope.first; 14194 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 14195 if (!isa<SCEVConstant>(ValueAtScope)) { 14196 auto It = ValuesAtScopesUsers.find(ValueAtScope); 14197 if (It != ValuesAtScopesUsers.end() && 14198 is_contained(It->second, std::make_pair(L, Value))) 14199 continue; 14200 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14201 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 14202 std::abort(); 14203 } 14204 } 14205 } 14206 14207 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 14208 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 14209 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 14210 const Loop *L = LoopAndValue.first; 14211 const SCEV *Value = LoopAndValue.second; 14212 assert(!isa<SCEVConstant>(Value)); 14213 auto It = ValuesAtScopes.find(Value); 14214 if (It != ValuesAtScopes.end() && 14215 is_contained(It->second, std::make_pair(L, ValueAtScope))) 14216 continue; 14217 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14218 << *ValueAtScope << " missing in ValuesAtScopes\n"; 14219 std::abort(); 14220 } 14221 } 14222 14223 // Verify integrity of BECountUsers. 14224 auto VerifyBECountUsers = [&](bool Predicated) { 14225 auto &BECounts = 14226 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14227 for (const auto &LoopAndBEInfo : BECounts) { 14228 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 14229 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14230 if (!isa<SCEVConstant>(S)) { 14231 auto UserIt = BECountUsers.find(S); 14232 if (UserIt != BECountUsers.end() && 14233 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 14234 continue; 14235 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first 14236 << " missing from BECountUsers\n"; 14237 std::abort(); 14238 } 14239 } 14240 } 14241 } 14242 }; 14243 VerifyBECountUsers(/* Predicated */ false); 14244 VerifyBECountUsers(/* Predicated */ true); 14245 14246 // Verify intergity of loop disposition cache. 14247 for (auto &[S, Values] : LoopDispositions) { 14248 for (auto [Loop, CachedDisposition] : Values) { 14249 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); 14250 if (CachedDisposition != RecomputedDisposition) { 14251 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop 14252 << " is incorrect: cached " 14253 << loopDispositionToStr(CachedDisposition) << ", actual " 14254 << loopDispositionToStr(RecomputedDisposition) << "\n"; 14255 std::abort(); 14256 } 14257 } 14258 } 14259 14260 // Verify integrity of the block disposition cache. 14261 for (auto &[S, Values] : BlockDispositions) { 14262 for (auto [BB, CachedDisposition] : Values) { 14263 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); 14264 if (CachedDisposition != RecomputedDisposition) { 14265 dbgs() << "Cached disposition of " << *S << " for block %" 14266 << BB->getName() << " is incorrect! \n"; 14267 std::abort(); 14268 } 14269 } 14270 } 14271 14272 // Verify FoldCache/FoldCacheUser caches. 14273 for (auto [FoldID, Expr] : FoldCache) { 14274 auto I = FoldCacheUser.find(Expr); 14275 if (I == FoldCacheUser.end()) { 14276 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr 14277 << "!\n"; 14278 std::abort(); 14279 } 14280 if (!is_contained(I->second, FoldID)) { 14281 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; 14282 std::abort(); 14283 } 14284 } 14285 for (auto [Expr, IDs] : FoldCacheUser) { 14286 for (auto &FoldID : IDs) { 14287 auto I = FoldCache.find(FoldID); 14288 if (I == FoldCache.end()) { 14289 dbgs() << "Missing entry in FoldCache for expression " << *Expr 14290 << "!\n"; 14291 std::abort(); 14292 } 14293 if (I->second != Expr) { 14294 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " 14295 << *I->second << " != " << *Expr << "!\n"; 14296 std::abort(); 14297 } 14298 } 14299 } 14300 } 14301 14302 bool ScalarEvolution::invalidate( 14303 Function &F, const PreservedAnalyses &PA, 14304 FunctionAnalysisManager::Invalidator &Inv) { 14305 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 14306 // of its dependencies is invalidated. 14307 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 14308 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 14309 Inv.invalidate<AssumptionAnalysis>(F, PA) || 14310 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 14311 Inv.invalidate<LoopAnalysis>(F, PA); 14312 } 14313 14314 AnalysisKey ScalarEvolutionAnalysis::Key; 14315 14316 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 14317 FunctionAnalysisManager &AM) { 14318 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 14319 AM.getResult<AssumptionAnalysis>(F), 14320 AM.getResult<DominatorTreeAnalysis>(F), 14321 AM.getResult<LoopAnalysis>(F)); 14322 } 14323 14324 PreservedAnalyses 14325 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 14326 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 14327 return PreservedAnalyses::all(); 14328 } 14329 14330 PreservedAnalyses 14331 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 14332 // For compatibility with opt's -analyze feature under legacy pass manager 14333 // which was not ported to NPM. This keeps tests using 14334 // update_analyze_test_checks.py working. 14335 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 14336 << F.getName() << "':\n"; 14337 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 14338 return PreservedAnalyses::all(); 14339 } 14340 14341 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 14342 "Scalar Evolution Analysis", false, true) 14343 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14344 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 14345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 14346 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 14347 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 14348 "Scalar Evolution Analysis", false, true) 14349 14350 char ScalarEvolutionWrapperPass::ID = 0; 14351 14352 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 14353 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 14354 } 14355 14356 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 14357 SE.reset(new ScalarEvolution( 14358 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 14359 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 14360 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 14361 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 14362 return false; 14363 } 14364 14365 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 14366 14367 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 14368 SE->print(OS); 14369 } 14370 14371 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 14372 if (!VerifySCEV) 14373 return; 14374 14375 SE->verify(); 14376 } 14377 14378 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 14379 AU.setPreservesAll(); 14380 AU.addRequiredTransitive<AssumptionCacheTracker>(); 14381 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 14382 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 14383 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 14384 } 14385 14386 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 14387 const SCEV *RHS) { 14388 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 14389 } 14390 14391 const SCEVPredicate * 14392 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 14393 const SCEV *LHS, const SCEV *RHS) { 14394 FoldingSetNodeID ID; 14395 assert(LHS->getType() == RHS->getType() && 14396 "Type mismatch between LHS and RHS"); 14397 // Unique this node based on the arguments 14398 ID.AddInteger(SCEVPredicate::P_Compare); 14399 ID.AddInteger(Pred); 14400 ID.AddPointer(LHS); 14401 ID.AddPointer(RHS); 14402 void *IP = nullptr; 14403 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14404 return S; 14405 SCEVComparePredicate *Eq = new (SCEVAllocator) 14406 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14407 UniquePreds.InsertNode(Eq, IP); 14408 return Eq; 14409 } 14410 14411 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14412 const SCEVAddRecExpr *AR, 14413 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14414 FoldingSetNodeID ID; 14415 // Unique this node based on the arguments 14416 ID.AddInteger(SCEVPredicate::P_Wrap); 14417 ID.AddPointer(AR); 14418 ID.AddInteger(AddedFlags); 14419 void *IP = nullptr; 14420 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14421 return S; 14422 auto *OF = new (SCEVAllocator) 14423 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14424 UniquePreds.InsertNode(OF, IP); 14425 return OF; 14426 } 14427 14428 namespace { 14429 14430 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14431 public: 14432 14433 /// Rewrites \p S in the context of a loop L and the SCEV predication 14434 /// infrastructure. 14435 /// 14436 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14437 /// equivalences present in \p Pred. 14438 /// 14439 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14440 /// \p NewPreds such that the result will be an AddRecExpr. 14441 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14442 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14443 const SCEVPredicate *Pred) { 14444 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14445 return Rewriter.visit(S); 14446 } 14447 14448 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14449 if (Pred) { 14450 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14451 for (const auto *Pred : U->getPredicates()) 14452 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14453 if (IPred->getLHS() == Expr && 14454 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14455 return IPred->getRHS(); 14456 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14457 if (IPred->getLHS() == Expr && 14458 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14459 return IPred->getRHS(); 14460 } 14461 } 14462 return convertToAddRecWithPreds(Expr); 14463 } 14464 14465 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14466 const SCEV *Operand = visit(Expr->getOperand()); 14467 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14468 if (AR && AR->getLoop() == L && AR->isAffine()) { 14469 // This couldn't be folded because the operand didn't have the nuw 14470 // flag. Add the nusw flag as an assumption that we could make. 14471 const SCEV *Step = AR->getStepRecurrence(SE); 14472 Type *Ty = Expr->getType(); 14473 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14474 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14475 SE.getSignExtendExpr(Step, Ty), L, 14476 AR->getNoWrapFlags()); 14477 } 14478 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14479 } 14480 14481 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14482 const SCEV *Operand = visit(Expr->getOperand()); 14483 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14484 if (AR && AR->getLoop() == L && AR->isAffine()) { 14485 // This couldn't be folded because the operand didn't have the nsw 14486 // flag. Add the nssw flag as an assumption that we could make. 14487 const SCEV *Step = AR->getStepRecurrence(SE); 14488 Type *Ty = Expr->getType(); 14489 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14490 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14491 SE.getSignExtendExpr(Step, Ty), L, 14492 AR->getNoWrapFlags()); 14493 } 14494 return SE.getSignExtendExpr(Operand, Expr->getType()); 14495 } 14496 14497 private: 14498 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14499 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14500 const SCEVPredicate *Pred) 14501 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14502 14503 bool addOverflowAssumption(const SCEVPredicate *P) { 14504 if (!NewPreds) { 14505 // Check if we've already made this assumption. 14506 return Pred && Pred->implies(P); 14507 } 14508 NewPreds->insert(P); 14509 return true; 14510 } 14511 14512 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14513 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14514 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14515 return addOverflowAssumption(A); 14516 } 14517 14518 // If \p Expr represents a PHINode, we try to see if it can be represented 14519 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14520 // to add this predicate as a runtime overflow check, we return the AddRec. 14521 // If \p Expr does not meet these conditions (is not a PHI node, or we 14522 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14523 // return \p Expr. 14524 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14525 if (!isa<PHINode>(Expr->getValue())) 14526 return Expr; 14527 std::optional< 14528 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14529 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14530 if (!PredicatedRewrite) 14531 return Expr; 14532 for (const auto *P : PredicatedRewrite->second){ 14533 // Wrap predicates from outer loops are not supported. 14534 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14535 if (L != WP->getExpr()->getLoop()) 14536 return Expr; 14537 } 14538 if (!addOverflowAssumption(P)) 14539 return Expr; 14540 } 14541 return PredicatedRewrite->first; 14542 } 14543 14544 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14545 const SCEVPredicate *Pred; 14546 const Loop *L; 14547 }; 14548 14549 } // end anonymous namespace 14550 14551 const SCEV * 14552 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14553 const SCEVPredicate &Preds) { 14554 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14555 } 14556 14557 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14558 const SCEV *S, const Loop *L, 14559 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14560 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14561 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14562 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14563 14564 if (!AddRec) 14565 return nullptr; 14566 14567 // Since the transformation was successful, we can now transfer the SCEV 14568 // predicates. 14569 for (const auto *P : TransformPreds) 14570 Preds.insert(P); 14571 14572 return AddRec; 14573 } 14574 14575 /// SCEV predicates 14576 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14577 SCEVPredicateKind Kind) 14578 : FastID(ID), Kind(Kind) {} 14579 14580 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14581 const ICmpInst::Predicate Pred, 14582 const SCEV *LHS, const SCEV *RHS) 14583 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14584 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14585 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14586 } 14587 14588 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14589 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14590 14591 if (!Op) 14592 return false; 14593 14594 if (Pred != ICmpInst::ICMP_EQ) 14595 return false; 14596 14597 return Op->LHS == LHS && Op->RHS == RHS; 14598 } 14599 14600 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14601 14602 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14603 if (Pred == ICmpInst::ICMP_EQ) 14604 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14605 else 14606 OS.indent(Depth) << "Compare predicate: " << *LHS 14607 << " " << CmpInst::getPredicateName(Pred) << ") " 14608 << *RHS << "\n"; 14609 14610 } 14611 14612 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14613 const SCEVAddRecExpr *AR, 14614 IncrementWrapFlags Flags) 14615 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14616 14617 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14618 14619 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14620 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14621 14622 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14623 } 14624 14625 bool SCEVWrapPredicate::isAlwaysTrue() const { 14626 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14627 IncrementWrapFlags IFlags = Flags; 14628 14629 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14630 IFlags = clearFlags(IFlags, IncrementNSSW); 14631 14632 return IFlags == IncrementAnyWrap; 14633 } 14634 14635 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14636 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14637 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14638 OS << "<nusw>"; 14639 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14640 OS << "<nssw>"; 14641 OS << "\n"; 14642 } 14643 14644 SCEVWrapPredicate::IncrementWrapFlags 14645 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14646 ScalarEvolution &SE) { 14647 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14648 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14649 14650 // We can safely transfer the NSW flag as NSSW. 14651 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14652 ImpliedFlags = IncrementNSSW; 14653 14654 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14655 // If the increment is positive, the SCEV NUW flag will also imply the 14656 // WrapPredicate NUSW flag. 14657 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14658 if (Step->getValue()->getValue().isNonNegative()) 14659 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14660 } 14661 14662 return ImpliedFlags; 14663 } 14664 14665 /// Union predicates don't get cached so create a dummy set ID for it. 14666 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14667 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14668 for (const auto *P : Preds) 14669 add(P); 14670 } 14671 14672 bool SCEVUnionPredicate::isAlwaysTrue() const { 14673 return all_of(Preds, 14674 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14675 } 14676 14677 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14678 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14679 return all_of(Set->Preds, 14680 [this](const SCEVPredicate *I) { return this->implies(I); }); 14681 14682 return any_of(Preds, 14683 [N](const SCEVPredicate *I) { return I->implies(N); }); 14684 } 14685 14686 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14687 for (const auto *Pred : Preds) 14688 Pred->print(OS, Depth); 14689 } 14690 14691 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14692 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14693 for (const auto *Pred : Set->Preds) 14694 add(Pred); 14695 return; 14696 } 14697 14698 Preds.push_back(N); 14699 } 14700 14701 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14702 Loop &L) 14703 : SE(SE), L(L) { 14704 SmallVector<const SCEVPredicate*, 4> Empty; 14705 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14706 } 14707 14708 void ScalarEvolution::registerUser(const SCEV *User, 14709 ArrayRef<const SCEV *> Ops) { 14710 for (const auto *Op : Ops) 14711 // We do not expect that forgetting cached data for SCEVConstants will ever 14712 // open any prospects for sharpening or introduce any correctness issues, 14713 // so we don't bother storing their dependencies. 14714 if (!isa<SCEVConstant>(Op)) 14715 SCEVUsers[Op].insert(User); 14716 } 14717 14718 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14719 const SCEV *Expr = SE.getSCEV(V); 14720 RewriteEntry &Entry = RewriteMap[Expr]; 14721 14722 // If we already have an entry and the version matches, return it. 14723 if (Entry.second && Generation == Entry.first) 14724 return Entry.second; 14725 14726 // We found an entry but it's stale. Rewrite the stale entry 14727 // according to the current predicate. 14728 if (Entry.second) 14729 Expr = Entry.second; 14730 14731 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14732 Entry = {Generation, NewSCEV}; 14733 14734 return NewSCEV; 14735 } 14736 14737 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14738 if (!BackedgeCount) { 14739 SmallVector<const SCEVPredicate *, 4> Preds; 14740 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14741 for (const auto *P : Preds) 14742 addPredicate(*P); 14743 } 14744 return BackedgeCount; 14745 } 14746 14747 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14748 if (Preds->implies(&Pred)) 14749 return; 14750 14751 auto &OldPreds = Preds->getPredicates(); 14752 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14753 NewPreds.push_back(&Pred); 14754 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14755 updateGeneration(); 14756 } 14757 14758 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14759 return *Preds; 14760 } 14761 14762 void PredicatedScalarEvolution::updateGeneration() { 14763 // If the generation number wrapped recompute everything. 14764 if (++Generation == 0) { 14765 for (auto &II : RewriteMap) { 14766 const SCEV *Rewritten = II.second.second; 14767 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14768 } 14769 } 14770 } 14771 14772 void PredicatedScalarEvolution::setNoOverflow( 14773 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14774 const SCEV *Expr = getSCEV(V); 14775 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14776 14777 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14778 14779 // Clear the statically implied flags. 14780 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14781 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14782 14783 auto II = FlagsMap.insert({V, Flags}); 14784 if (!II.second) 14785 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14786 } 14787 14788 bool PredicatedScalarEvolution::hasNoOverflow( 14789 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14790 const SCEV *Expr = getSCEV(V); 14791 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14792 14793 Flags = SCEVWrapPredicate::clearFlags( 14794 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14795 14796 auto II = FlagsMap.find(V); 14797 14798 if (II != FlagsMap.end()) 14799 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14800 14801 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14802 } 14803 14804 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14805 const SCEV *Expr = this->getSCEV(V); 14806 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14807 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14808 14809 if (!New) 14810 return nullptr; 14811 14812 for (const auto *P : NewPreds) 14813 addPredicate(*P); 14814 14815 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14816 return New; 14817 } 14818 14819 PredicatedScalarEvolution::PredicatedScalarEvolution( 14820 const PredicatedScalarEvolution &Init) 14821 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14822 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14823 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14824 for (auto I : Init.FlagsMap) 14825 FlagsMap.insert(I); 14826 } 14827 14828 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14829 // For each block. 14830 for (auto *BB : L.getBlocks()) 14831 for (auto &I : *BB) { 14832 if (!SE.isSCEVable(I.getType())) 14833 continue; 14834 14835 auto *Expr = SE.getSCEV(&I); 14836 auto II = RewriteMap.find(Expr); 14837 14838 if (II == RewriteMap.end()) 14839 continue; 14840 14841 // Don't print things that are not interesting. 14842 if (II->second.second == Expr) 14843 continue; 14844 14845 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14846 OS.indent(Depth + 2) << *Expr << "\n"; 14847 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14848 } 14849 } 14850 14851 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14852 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14853 // for URem with constant power-of-2 second operands. 14854 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14855 // 4, A / B becomes X / 8). 14856 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14857 const SCEV *&RHS) { 14858 // Try to match 'zext (trunc A to iB) to iY', which is used 14859 // for URem with constant power-of-2 second operands. Make sure the size of 14860 // the operand A matches the size of the whole expressions. 14861 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14862 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14863 LHS = Trunc->getOperand(); 14864 // Bail out if the type of the LHS is larger than the type of the 14865 // expression for now. 14866 if (getTypeSizeInBits(LHS->getType()) > 14867 getTypeSizeInBits(Expr->getType())) 14868 return false; 14869 if (LHS->getType() != Expr->getType()) 14870 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14871 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14872 << getTypeSizeInBits(Trunc->getType())); 14873 return true; 14874 } 14875 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14876 if (Add == nullptr || Add->getNumOperands() != 2) 14877 return false; 14878 14879 const SCEV *A = Add->getOperand(1); 14880 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14881 14882 if (Mul == nullptr) 14883 return false; 14884 14885 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14886 // (SomeExpr + (-(SomeExpr / B) * B)). 14887 if (Expr == getURemExpr(A, B)) { 14888 LHS = A; 14889 RHS = B; 14890 return true; 14891 } 14892 return false; 14893 }; 14894 14895 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14896 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14897 return MatchURemWithDivisor(Mul->getOperand(1)) || 14898 MatchURemWithDivisor(Mul->getOperand(2)); 14899 14900 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14901 if (Mul->getNumOperands() == 2) 14902 return MatchURemWithDivisor(Mul->getOperand(1)) || 14903 MatchURemWithDivisor(Mul->getOperand(0)) || 14904 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14905 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14906 return false; 14907 } 14908 14909 const SCEV * 14910 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14911 SmallVector<BasicBlock*, 16> ExitingBlocks; 14912 L->getExitingBlocks(ExitingBlocks); 14913 14914 // Form an expression for the maximum exit count possible for this loop. We 14915 // merge the max and exact information to approximate a version of 14916 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14917 SmallVector<const SCEV*, 4> ExitCounts; 14918 for (BasicBlock *ExitingBB : ExitingBlocks) { 14919 const SCEV *ExitCount = 14920 getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum); 14921 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14922 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14923 "We should only have known counts for exiting blocks that " 14924 "dominate latch!"); 14925 ExitCounts.push_back(ExitCount); 14926 } 14927 } 14928 if (ExitCounts.empty()) 14929 return getCouldNotCompute(); 14930 return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); 14931 } 14932 14933 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14934 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14935 /// replacement is loop invariant in the loop of the AddRec. 14936 /// 14937 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14938 /// supported. 14939 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14940 const DenseMap<const SCEV *, const SCEV *> ⤅ 14941 14942 public: 14943 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14944 DenseMap<const SCEV *, const SCEV *> &M) 14945 : SCEVRewriteVisitor(SE), Map(M) {} 14946 14947 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14948 14949 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14950 auto I = Map.find(Expr); 14951 if (I == Map.end()) 14952 return Expr; 14953 return I->second; 14954 } 14955 14956 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14957 auto I = Map.find(Expr); 14958 if (I == Map.end()) 14959 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14960 Expr); 14961 return I->second; 14962 } 14963 }; 14964 14965 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14966 SmallVector<const SCEV *> ExprsToRewrite; 14967 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14968 const SCEV *RHS, 14969 DenseMap<const SCEV *, const SCEV *> 14970 &RewriteMap) { 14971 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14972 // replacement SCEV which isn't directly implied by the structure of that 14973 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14974 // legal. See the scoping rules for flags in the header to understand why. 14975 14976 // If LHS is a constant, apply information to the other expression. 14977 if (isa<SCEVConstant>(LHS)) { 14978 std::swap(LHS, RHS); 14979 Predicate = CmpInst::getSwappedPredicate(Predicate); 14980 } 14981 14982 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14983 // create this form when combining two checks of the form (X u< C2 + C1) and 14984 // (X >=u C1). 14985 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14986 &ExprsToRewrite]() { 14987 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14988 if (!AddExpr || AddExpr->getNumOperands() != 2) 14989 return false; 14990 14991 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14992 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14993 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14994 if (!C1 || !C2 || !LHSUnknown) 14995 return false; 14996 14997 auto ExactRegion = 14998 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14999 .sub(C1->getAPInt()); 15000 15001 // Bail out, unless we have a non-wrapping, monotonic range. 15002 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 15003 return false; 15004 auto I = RewriteMap.find(LHSUnknown); 15005 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 15006 RewriteMap[LHSUnknown] = getUMaxExpr( 15007 getConstant(ExactRegion.getUnsignedMin()), 15008 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 15009 ExprsToRewrite.push_back(LHSUnknown); 15010 return true; 15011 }; 15012 if (MatchRangeCheckIdiom()) 15013 return; 15014 15015 // If we have LHS == 0, check if LHS is computing a property of some unknown 15016 // SCEV %v which we can rewrite %v to express explicitly. 15017 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 15018 if (Predicate == CmpInst::ICMP_EQ && RHSC && 15019 RHSC->getValue()->isNullValue()) { 15020 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 15021 // explicitly express that. 15022 const SCEV *URemLHS = nullptr; 15023 const SCEV *URemRHS = nullptr; 15024 if (matchURem(LHS, URemLHS, URemRHS)) { 15025 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 15026 const auto *Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 15027 RewriteMap[LHSUnknown] = Multiple; 15028 ExprsToRewrite.push_back(LHSUnknown); 15029 return; 15030 } 15031 } 15032 } 15033 15034 // Do not apply information for constants or if RHS contains an AddRec. 15035 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 15036 return; 15037 15038 // If RHS is SCEVUnknown, make sure the information is applied to it. 15039 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 15040 std::swap(LHS, RHS); 15041 Predicate = CmpInst::getSwappedPredicate(Predicate); 15042 } 15043 15044 // Limit to expressions that can be rewritten. 15045 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 15046 return; 15047 15048 // Check whether LHS has already been rewritten. In that case we want to 15049 // chain further rewrites onto the already rewritten value. 15050 auto I = RewriteMap.find(LHS); 15051 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 15052 15053 const SCEV *RewrittenRHS = nullptr; 15054 switch (Predicate) { 15055 case CmpInst::ICMP_ULT: 15056 RewrittenRHS = 15057 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 15058 break; 15059 case CmpInst::ICMP_SLT: 15060 RewrittenRHS = 15061 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 15062 break; 15063 case CmpInst::ICMP_ULE: 15064 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 15065 break; 15066 case CmpInst::ICMP_SLE: 15067 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 15068 break; 15069 case CmpInst::ICMP_UGT: 15070 RewrittenRHS = 15071 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 15072 break; 15073 case CmpInst::ICMP_SGT: 15074 RewrittenRHS = 15075 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 15076 break; 15077 case CmpInst::ICMP_UGE: 15078 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 15079 break; 15080 case CmpInst::ICMP_SGE: 15081 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 15082 break; 15083 case CmpInst::ICMP_EQ: 15084 if (isa<SCEVConstant>(RHS)) 15085 RewrittenRHS = RHS; 15086 break; 15087 case CmpInst::ICMP_NE: 15088 if (isa<SCEVConstant>(RHS) && 15089 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 15090 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 15091 break; 15092 default: 15093 break; 15094 } 15095 15096 if (RewrittenRHS) { 15097 RewriteMap[LHS] = RewrittenRHS; 15098 if (LHS == RewrittenLHS) 15099 ExprsToRewrite.push_back(LHS); 15100 } 15101 }; 15102 15103 BasicBlock *Header = L->getHeader(); 15104 SmallVector<PointerIntPair<Value *, 1, bool>> Terms; 15105 // First, collect information from assumptions dominating the loop. 15106 for (auto &AssumeVH : AC.assumptions()) { 15107 if (!AssumeVH) 15108 continue; 15109 auto *AssumeI = cast<CallInst>(AssumeVH); 15110 if (!DT.dominates(AssumeI, Header)) 15111 continue; 15112 Terms.emplace_back(AssumeI->getOperand(0), true); 15113 } 15114 15115 // Second, collect conditions from dominating branches. Starting at the loop 15116 // predecessor, climb up the predecessor chain, as long as there are 15117 // predecessors that can be found that have unique successors leading to the 15118 // original header. 15119 // TODO: share this logic with isLoopEntryGuardedByCond. 15120 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 15121 L->getLoopPredecessor(), Header); 15122 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 15123 15124 const BranchInst *LoopEntryPredicate = 15125 dyn_cast<BranchInst>(Pair.first->getTerminator()); 15126 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 15127 continue; 15128 15129 Terms.emplace_back(LoopEntryPredicate->getCondition(), 15130 LoopEntryPredicate->getSuccessor(0) == Pair.second); 15131 } 15132 15133 // Now apply the information from the collected conditions to RewriteMap. 15134 // Conditions are processed in reverse order, so the earliest conditions is 15135 // processed first. This ensures the SCEVs with the shortest dependency chains 15136 // are constructed first. 15137 DenseMap<const SCEV *, const SCEV *> RewriteMap; 15138 for (auto [Term, EnterIfTrue] : reverse(Terms)) { 15139 SmallVector<Value *, 8> Worklist; 15140 SmallPtrSet<Value *, 8> Visited; 15141 Worklist.push_back(Term); 15142 while (!Worklist.empty()) { 15143 Value *Cond = Worklist.pop_back_val(); 15144 if (!Visited.insert(Cond).second) 15145 continue; 15146 15147 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 15148 auto Predicate = 15149 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 15150 const auto *LHS = getSCEV(Cmp->getOperand(0)); 15151 const auto *RHS = getSCEV(Cmp->getOperand(1)); 15152 CollectCondition(Predicate, LHS, RHS, RewriteMap); 15153 continue; 15154 } 15155 15156 Value *L, *R; 15157 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 15158 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 15159 Worklist.push_back(L); 15160 Worklist.push_back(R); 15161 } 15162 } 15163 } 15164 15165 if (RewriteMap.empty()) 15166 return Expr; 15167 15168 // Now that all rewrite information is collect, rewrite the collected 15169 // expressions with the information in the map. This applies information to 15170 // sub-expressions. 15171 if (ExprsToRewrite.size() > 1) { 15172 for (const SCEV *Expr : ExprsToRewrite) { 15173 const SCEV *RewriteTo = RewriteMap[Expr]; 15174 RewriteMap.erase(Expr); 15175 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15176 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 15177 } 15178 } 15179 15180 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15181 return Rewriter.visit(Expr); 15182 } 15183