xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringRef.h"
75 #include "llvm/Analysis/AssumptionCache.h"
76 #include "llvm/Analysis/ConstantFolding.h"
77 #include "llvm/Analysis/InstructionSimplify.h"
78 #include "llvm/Analysis/LoopInfo.h"
79 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
80 #include "llvm/Analysis/TargetLibraryInfo.h"
81 #include "llvm/Analysis/ValueTracking.h"
82 #include "llvm/Config/llvm-config.h"
83 #include "llvm/IR/Argument.h"
84 #include "llvm/IR/BasicBlock.h"
85 #include "llvm/IR/CFG.h"
86 #include "llvm/IR/Constant.h"
87 #include "llvm/IR/ConstantRange.h"
88 #include "llvm/IR/Constants.h"
89 #include "llvm/IR/DataLayout.h"
90 #include "llvm/IR/DerivedTypes.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Function.h"
93 #include "llvm/IR/GlobalAlias.h"
94 #include "llvm/IR/GlobalValue.h"
95 #include "llvm/IR/InstIterator.h"
96 #include "llvm/IR/InstrTypes.h"
97 #include "llvm/IR/Instruction.h"
98 #include "llvm/IR/Instructions.h"
99 #include "llvm/IR/IntrinsicInst.h"
100 #include "llvm/IR/Intrinsics.h"
101 #include "llvm/IR/LLVMContext.h"
102 #include "llvm/IR/Operator.h"
103 #include "llvm/IR/PatternMatch.h"
104 #include "llvm/IR/Type.h"
105 #include "llvm/IR/Use.h"
106 #include "llvm/IR/User.h"
107 #include "llvm/IR/Value.h"
108 #include "llvm/IR/Verifier.h"
109 #include "llvm/InitializePasses.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/Casting.h"
112 #include "llvm/Support/CommandLine.h"
113 #include "llvm/Support/Compiler.h"
114 #include "llvm/Support/Debug.h"
115 #include "llvm/Support/ErrorHandling.h"
116 #include "llvm/Support/KnownBits.h"
117 #include "llvm/Support/SaveAndRestore.h"
118 #include "llvm/Support/raw_ostream.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <climits>
122 #include <cstdint>
123 #include <cstdlib>
124 #include <map>
125 #include <memory>
126 #include <numeric>
127 #include <optional>
128 #include <tuple>
129 #include <utility>
130 #include <vector>
131 
132 using namespace llvm;
133 using namespace PatternMatch;
134 
135 #define DEBUG_TYPE "scalar-evolution"
136 
137 STATISTIC(NumTripCountsComputed,
138           "Number of loops with predictable loop counts");
139 STATISTIC(NumTripCountsNotComputed,
140           "Number of loops without predictable loop counts");
141 STATISTIC(NumBruteForceTripCountsComputed,
142           "Number of loops with trip counts computed by force");
143 
144 #ifdef EXPENSIVE_CHECKS
145 bool llvm::VerifySCEV = true;
146 #else
147 bool llvm::VerifySCEV = false;
148 #endif
149 
150 static cl::opt<unsigned>
151     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                             cl::desc("Maximum number of iterations SCEV will "
153                                      "symbolically execute a constant "
154                                      "derived loop"),
155                             cl::init(100));
156 
157 static cl::opt<bool, true> VerifySCEVOpt(
158     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool> VerifySCEVStrict(
161     "verify-scev-strict", cl::Hidden,
162     cl::desc("Enable stricter verification with -verify-scev is passed"));
163 static cl::opt<bool>
164     VerifySCEVMap("verify-scev-maps", cl::Hidden,
165                   cl::desc("Verify no dangling value in ScalarEvolution's "
166                            "ExprValueMap (slow)"));
167 
168 static cl::opt<bool> VerifyIR(
169     "scev-verify-ir", cl::Hidden,
170     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
171     cl::init(false));
172 
173 static cl::opt<unsigned> MulOpsInlineThreshold(
174     "scev-mulops-inline-threshold", cl::Hidden,
175     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
176     cl::init(32));
177 
178 static cl::opt<unsigned> AddOpsInlineThreshold(
179     "scev-addops-inline-threshold", cl::Hidden,
180     cl::desc("Threshold for inlining addition operands into a SCEV"),
181     cl::init(500));
182 
183 static cl::opt<unsigned> MaxSCEVCompareDepth(
184     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
185     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
186     cl::init(32));
187 
188 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
189     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
190     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
191     cl::init(2));
192 
193 static cl::opt<unsigned> MaxValueCompareDepth(
194     "scalar-evolution-max-value-compare-depth", cl::Hidden,
195     cl::desc("Maximum depth of recursive value complexity comparisons"),
196     cl::init(2));
197 
198 static cl::opt<unsigned>
199     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
200                   cl::desc("Maximum depth of recursive arithmetics"),
201                   cl::init(32));
202 
203 static cl::opt<unsigned> MaxConstantEvolvingDepth(
204     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
205     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
206 
207 static cl::opt<unsigned>
208     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
209                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
210                  cl::init(8));
211 
212 static cl::opt<unsigned>
213     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
214                   cl::desc("Max coefficients in AddRec during evolving"),
215                   cl::init(8));
216 
217 static cl::opt<unsigned>
218     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
219                   cl::desc("Size of the expression which is considered huge"),
220                   cl::init(4096));
221 
222 static cl::opt<unsigned> RangeIterThreshold(
223     "scev-range-iter-threshold", cl::Hidden,
224     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
225     cl::init(32));
226 
227 static cl::opt<bool>
228 ClassifyExpressions("scalar-evolution-classify-expressions",
229     cl::Hidden, cl::init(true),
230     cl::desc("When printing analysis, include information on every instruction"));
231 
232 static cl::opt<bool> UseExpensiveRangeSharpening(
233     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
234     cl::init(false),
235     cl::desc("Use more powerful methods of sharpening expression ranges. May "
236              "be costly in terms of compile time"));
237 
238 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
239     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
240     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
241              "Phi strongly connected components"),
242     cl::init(8));
243 
244 static cl::opt<bool>
245     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
246                             cl::desc("Handle <= and >= in finite loops"),
247                             cl::init(true));
248 
249 static cl::opt<bool> UseContextForNoWrapFlagInference(
250     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
251     cl::desc("Infer nuw/nsw flags using context where suitable"),
252     cl::init(true));
253 
254 //===----------------------------------------------------------------------===//
255 //                           SCEV class definitions
256 //===----------------------------------------------------------------------===//
257 
258 //===----------------------------------------------------------------------===//
259 // Implementation of the SCEV class.
260 //
261 
262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
263 LLVM_DUMP_METHOD void SCEV::dump() const {
264   print(dbgs());
265   dbgs() << '\n';
266 }
267 #endif
268 
269 void SCEV::print(raw_ostream &OS) const {
270   switch (getSCEVType()) {
271   case scConstant:
272     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
273     return;
274   case scPtrToInt: {
275     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
276     const SCEV *Op = PtrToInt->getOperand();
277     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
278        << *PtrToInt->getType() << ")";
279     return;
280   }
281   case scTruncate: {
282     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
283     const SCEV *Op = Trunc->getOperand();
284     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
285        << *Trunc->getType() << ")";
286     return;
287   }
288   case scZeroExtend: {
289     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
290     const SCEV *Op = ZExt->getOperand();
291     OS << "(zext " << *Op->getType() << " " << *Op << " to "
292        << *ZExt->getType() << ")";
293     return;
294   }
295   case scSignExtend: {
296     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
297     const SCEV *Op = SExt->getOperand();
298     OS << "(sext " << *Op->getType() << " " << *Op << " to "
299        << *SExt->getType() << ")";
300     return;
301   }
302   case scAddRecExpr: {
303     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
304     OS << "{" << *AR->getOperand(0);
305     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
306       OS << ",+," << *AR->getOperand(i);
307     OS << "}<";
308     if (AR->hasNoUnsignedWrap())
309       OS << "nuw><";
310     if (AR->hasNoSignedWrap())
311       OS << "nsw><";
312     if (AR->hasNoSelfWrap() &&
313         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
314       OS << "nw><";
315     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
316     OS << ">";
317     return;
318   }
319   case scAddExpr:
320   case scMulExpr:
321   case scUMaxExpr:
322   case scSMaxExpr:
323   case scUMinExpr:
324   case scSMinExpr:
325   case scSequentialUMinExpr: {
326     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
327     const char *OpStr = nullptr;
328     switch (NAry->getSCEVType()) {
329     case scAddExpr: OpStr = " + "; break;
330     case scMulExpr: OpStr = " * "; break;
331     case scUMaxExpr: OpStr = " umax "; break;
332     case scSMaxExpr: OpStr = " smax "; break;
333     case scUMinExpr:
334       OpStr = " umin ";
335       break;
336     case scSMinExpr:
337       OpStr = " smin ";
338       break;
339     case scSequentialUMinExpr:
340       OpStr = " umin_seq ";
341       break;
342     default:
343       llvm_unreachable("There are no other nary expression types.");
344     }
345     OS << "(";
346     ListSeparator LS(OpStr);
347     for (const SCEV *Op : NAry->operands())
348       OS << LS << *Op;
349     OS << ")";
350     switch (NAry->getSCEVType()) {
351     case scAddExpr:
352     case scMulExpr:
353       if (NAry->hasNoUnsignedWrap())
354         OS << "<nuw>";
355       if (NAry->hasNoSignedWrap())
356         OS << "<nsw>";
357       break;
358     default:
359       // Nothing to print for other nary expressions.
360       break;
361     }
362     return;
363   }
364   case scUDivExpr: {
365     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
366     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
367     return;
368   }
369   case scUnknown: {
370     const SCEVUnknown *U = cast<SCEVUnknown>(this);
371     Type *AllocTy;
372     if (U->isSizeOf(AllocTy)) {
373       OS << "sizeof(" << *AllocTy << ")";
374       return;
375     }
376     if (U->isAlignOf(AllocTy)) {
377       OS << "alignof(" << *AllocTy << ")";
378       return;
379     }
380 
381     Type *CTy;
382     Constant *FieldNo;
383     if (U->isOffsetOf(CTy, FieldNo)) {
384       OS << "offsetof(" << *CTy << ", ";
385       FieldNo->printAsOperand(OS, false);
386       OS << ")";
387       return;
388     }
389 
390     // Otherwise just print it normally.
391     U->getValue()->printAsOperand(OS, false);
392     return;
393   }
394   case scCouldNotCompute:
395     OS << "***COULDNOTCOMPUTE***";
396     return;
397   }
398   llvm_unreachable("Unknown SCEV kind!");
399 }
400 
401 Type *SCEV::getType() const {
402   switch (getSCEVType()) {
403   case scConstant:
404     return cast<SCEVConstant>(this)->getType();
405   case scPtrToInt:
406   case scTruncate:
407   case scZeroExtend:
408   case scSignExtend:
409     return cast<SCEVCastExpr>(this)->getType();
410   case scAddRecExpr:
411     return cast<SCEVAddRecExpr>(this)->getType();
412   case scMulExpr:
413     return cast<SCEVMulExpr>(this)->getType();
414   case scUMaxExpr:
415   case scSMaxExpr:
416   case scUMinExpr:
417   case scSMinExpr:
418     return cast<SCEVMinMaxExpr>(this)->getType();
419   case scSequentialUMinExpr:
420     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
421   case scAddExpr:
422     return cast<SCEVAddExpr>(this)->getType();
423   case scUDivExpr:
424     return cast<SCEVUDivExpr>(this)->getType();
425   case scUnknown:
426     return cast<SCEVUnknown>(this)->getType();
427   case scCouldNotCompute:
428     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
429   }
430   llvm_unreachable("Unknown SCEV kind!");
431 }
432 
433 ArrayRef<const SCEV *> SCEV::operands() const {
434   switch (getSCEVType()) {
435   case scConstant:
436   case scUnknown:
437     return {};
438   case scPtrToInt:
439   case scTruncate:
440   case scZeroExtend:
441   case scSignExtend:
442     return cast<SCEVCastExpr>(this)->operands();
443   case scAddRecExpr:
444   case scAddExpr:
445   case scMulExpr:
446   case scUMaxExpr:
447   case scSMaxExpr:
448   case scUMinExpr:
449   case scSMinExpr:
450   case scSequentialUMinExpr:
451     return cast<SCEVNAryExpr>(this)->operands();
452   case scUDivExpr:
453     return cast<SCEVUDivExpr>(this)->operands();
454   case scCouldNotCompute:
455     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
456   }
457   llvm_unreachable("Unknown SCEV kind!");
458 }
459 
460 bool SCEV::isZero() const {
461   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
462     return SC->getValue()->isZero();
463   return false;
464 }
465 
466 bool SCEV::isOne() const {
467   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
468     return SC->getValue()->isOne();
469   return false;
470 }
471 
472 bool SCEV::isAllOnesValue() const {
473   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
474     return SC->getValue()->isMinusOne();
475   return false;
476 }
477 
478 bool SCEV::isNonConstantNegative() const {
479   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
480   if (!Mul) return false;
481 
482   // If there is a constant factor, it will be first.
483   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
484   if (!SC) return false;
485 
486   // Return true if the value is negative, this matches things like (-42 * V).
487   return SC->getAPInt().isNegative();
488 }
489 
490 SCEVCouldNotCompute::SCEVCouldNotCompute() :
491   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
492 
493 bool SCEVCouldNotCompute::classof(const SCEV *S) {
494   return S->getSCEVType() == scCouldNotCompute;
495 }
496 
497 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
498   FoldingSetNodeID ID;
499   ID.AddInteger(scConstant);
500   ID.AddPointer(V);
501   void *IP = nullptr;
502   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
503   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
504   UniqueSCEVs.InsertNode(S, IP);
505   return S;
506 }
507 
508 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
509   return getConstant(ConstantInt::get(getContext(), Val));
510 }
511 
512 const SCEV *
513 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
514   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
515   return getConstant(ConstantInt::get(ITy, V, isSigned));
516 }
517 
518 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
519                            const SCEV *op, Type *ty)
520     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
521 
522 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
523                                    Type *ITy)
524     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
525   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
526          "Must be a non-bit-width-changing pointer-to-integer cast!");
527 }
528 
529 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
530                                            SCEVTypes SCEVTy, const SCEV *op,
531                                            Type *ty)
532     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
533 
534 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
535                                    Type *ty)
536     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
537   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
538          "Cannot truncate non-integer value!");
539 }
540 
541 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
542                                        const SCEV *op, Type *ty)
543     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
544   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
545          "Cannot zero extend non-integer value!");
546 }
547 
548 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
549                                        const SCEV *op, Type *ty)
550     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
551   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
552          "Cannot sign extend non-integer value!");
553 }
554 
555 void SCEVUnknown::deleted() {
556   // Clear this SCEVUnknown from various maps.
557   SE->forgetMemoizedResults(this);
558 
559   // Remove this SCEVUnknown from the uniquing map.
560   SE->UniqueSCEVs.RemoveNode(this);
561 
562   // Release the value.
563   setValPtr(nullptr);
564 }
565 
566 void SCEVUnknown::allUsesReplacedWith(Value *New) {
567   // Clear this SCEVUnknown from various maps.
568   SE->forgetMemoizedResults(this);
569 
570   // Remove this SCEVUnknown from the uniquing map.
571   SE->UniqueSCEVs.RemoveNode(this);
572 
573   // Replace the value pointer in case someone is still using this SCEVUnknown.
574   setValPtr(New);
575 }
576 
577 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
578   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
579     if (VCE->getOpcode() == Instruction::PtrToInt)
580       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
581         if (CE->getOpcode() == Instruction::GetElementPtr &&
582             CE->getOperand(0)->isNullValue() &&
583             CE->getNumOperands() == 2)
584           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
585             if (CI->isOne()) {
586               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
587               return true;
588             }
589 
590   return false;
591 }
592 
593 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
594   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
595     if (VCE->getOpcode() == Instruction::PtrToInt)
596       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
597         if (CE->getOpcode() == Instruction::GetElementPtr &&
598             CE->getOperand(0)->isNullValue()) {
599           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
600           if (StructType *STy = dyn_cast<StructType>(Ty))
601             if (!STy->isPacked() &&
602                 CE->getNumOperands() == 3 &&
603                 CE->getOperand(1)->isNullValue()) {
604               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
605                 if (CI->isOne() &&
606                     STy->getNumElements() == 2 &&
607                     STy->getElementType(0)->isIntegerTy(1)) {
608                   AllocTy = STy->getElementType(1);
609                   return true;
610                 }
611             }
612         }
613 
614   return false;
615 }
616 
617 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
618   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
619     if (VCE->getOpcode() == Instruction::PtrToInt)
620       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
621         if (CE->getOpcode() == Instruction::GetElementPtr &&
622             CE->getNumOperands() == 3 &&
623             CE->getOperand(0)->isNullValue() &&
624             CE->getOperand(1)->isNullValue()) {
625           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
626           // Ignore vector types here so that ScalarEvolutionExpander doesn't
627           // emit getelementptrs that index into vectors.
628           if (Ty->isStructTy() || Ty->isArrayTy()) {
629             CTy = Ty;
630             FieldNo = CE->getOperand(2);
631             return true;
632           }
633         }
634 
635   return false;
636 }
637 
638 //===----------------------------------------------------------------------===//
639 //                               SCEV Utilities
640 //===----------------------------------------------------------------------===//
641 
642 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
643 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
644 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
645 /// have been previously deemed to be "equally complex" by this routine.  It is
646 /// intended to avoid exponential time complexity in cases like:
647 ///
648 ///   %a = f(%x, %y)
649 ///   %b = f(%a, %a)
650 ///   %c = f(%b, %b)
651 ///
652 ///   %d = f(%x, %y)
653 ///   %e = f(%d, %d)
654 ///   %f = f(%e, %e)
655 ///
656 ///   CompareValueComplexity(%f, %c)
657 ///
658 /// Since we do not continue running this routine on expression trees once we
659 /// have seen unequal values, there is no need to track them in the cache.
660 static int
661 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
662                        const LoopInfo *const LI, Value *LV, Value *RV,
663                        unsigned Depth) {
664   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
665     return 0;
666 
667   // Order pointer values after integer values. This helps SCEVExpander form
668   // GEPs.
669   bool LIsPointer = LV->getType()->isPointerTy(),
670        RIsPointer = RV->getType()->isPointerTy();
671   if (LIsPointer != RIsPointer)
672     return (int)LIsPointer - (int)RIsPointer;
673 
674   // Compare getValueID values.
675   unsigned LID = LV->getValueID(), RID = RV->getValueID();
676   if (LID != RID)
677     return (int)LID - (int)RID;
678 
679   // Sort arguments by their position.
680   if (const auto *LA = dyn_cast<Argument>(LV)) {
681     const auto *RA = cast<Argument>(RV);
682     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
683     return (int)LArgNo - (int)RArgNo;
684   }
685 
686   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
687     const auto *RGV = cast<GlobalValue>(RV);
688 
689     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
690       auto LT = GV->getLinkage();
691       return !(GlobalValue::isPrivateLinkage(LT) ||
692                GlobalValue::isInternalLinkage(LT));
693     };
694 
695     // Use the names to distinguish the two values, but only if the
696     // names are semantically important.
697     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
698       return LGV->getName().compare(RGV->getName());
699   }
700 
701   // For instructions, compare their loop depth, and their operand count.  This
702   // is pretty loose.
703   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
704     const auto *RInst = cast<Instruction>(RV);
705 
706     // Compare loop depths.
707     const BasicBlock *LParent = LInst->getParent(),
708                      *RParent = RInst->getParent();
709     if (LParent != RParent) {
710       unsigned LDepth = LI->getLoopDepth(LParent),
711                RDepth = LI->getLoopDepth(RParent);
712       if (LDepth != RDepth)
713         return (int)LDepth - (int)RDepth;
714     }
715 
716     // Compare the number of operands.
717     unsigned LNumOps = LInst->getNumOperands(),
718              RNumOps = RInst->getNumOperands();
719     if (LNumOps != RNumOps)
720       return (int)LNumOps - (int)RNumOps;
721 
722     for (unsigned Idx : seq(0u, LNumOps)) {
723       int Result =
724           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
725                                  RInst->getOperand(Idx), Depth + 1);
726       if (Result != 0)
727         return Result;
728     }
729   }
730 
731   EqCacheValue.unionSets(LV, RV);
732   return 0;
733 }
734 
735 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
736 // than RHS, respectively. A three-way result allows recursive comparisons to be
737 // more efficient.
738 // If the max analysis depth was reached, return std::nullopt, assuming we do
739 // not know if they are equivalent for sure.
740 static std::optional<int>
741 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
742                       EquivalenceClasses<const Value *> &EqCacheValue,
743                       const LoopInfo *const LI, const SCEV *LHS,
744                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
745   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
746   if (LHS == RHS)
747     return 0;
748 
749   // Primarily, sort the SCEVs by their getSCEVType().
750   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
751   if (LType != RType)
752     return (int)LType - (int)RType;
753 
754   if (EqCacheSCEV.isEquivalent(LHS, RHS))
755     return 0;
756 
757   if (Depth > MaxSCEVCompareDepth)
758     return std::nullopt;
759 
760   // Aside from the getSCEVType() ordering, the particular ordering
761   // isn't very important except that it's beneficial to be consistent,
762   // so that (a + b) and (b + a) don't end up as different expressions.
763   switch (LType) {
764   case scUnknown: {
765     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
766     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
767 
768     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
769                                    RU->getValue(), Depth + 1);
770     if (X == 0)
771       EqCacheSCEV.unionSets(LHS, RHS);
772     return X;
773   }
774 
775   case scConstant: {
776     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
777     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
778 
779     // Compare constant values.
780     const APInt &LA = LC->getAPInt();
781     const APInt &RA = RC->getAPInt();
782     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
783     if (LBitWidth != RBitWidth)
784       return (int)LBitWidth - (int)RBitWidth;
785     return LA.ult(RA) ? -1 : 1;
786   }
787 
788   case scAddRecExpr: {
789     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
790     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
791 
792     // There is always a dominance between two recs that are used by one SCEV,
793     // so we can safely sort recs by loop header dominance. We require such
794     // order in getAddExpr.
795     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
796     if (LLoop != RLoop) {
797       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
798       assert(LHead != RHead && "Two loops share the same header?");
799       if (DT.dominates(LHead, RHead))
800         return 1;
801       else
802         assert(DT.dominates(RHead, LHead) &&
803                "No dominance between recurrences used by one SCEV?");
804       return -1;
805     }
806 
807     [[fallthrough]];
808   }
809 
810   case scTruncate:
811   case scZeroExtend:
812   case scSignExtend:
813   case scPtrToInt:
814   case scAddExpr:
815   case scMulExpr:
816   case scUDivExpr:
817   case scSMaxExpr:
818   case scUMaxExpr:
819   case scSMinExpr:
820   case scUMinExpr:
821   case scSequentialUMinExpr: {
822     ArrayRef<const SCEV *> LOps = LHS->operands();
823     ArrayRef<const SCEV *> ROps = RHS->operands();
824 
825     // Lexicographically compare n-ary-like expressions.
826     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
827     if (LNumOps != RNumOps)
828       return (int)LNumOps - (int)RNumOps;
829 
830     for (unsigned i = 0; i != LNumOps; ++i) {
831       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
832                                      ROps[i], DT, Depth + 1);
833       if (X != 0)
834         return X;
835     }
836     EqCacheSCEV.unionSets(LHS, RHS);
837     return 0;
838   }
839 
840   case scCouldNotCompute:
841     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
842   }
843   llvm_unreachable("Unknown SCEV kind!");
844 }
845 
846 /// Given a list of SCEV objects, order them by their complexity, and group
847 /// objects of the same complexity together by value.  When this routine is
848 /// finished, we know that any duplicates in the vector are consecutive and that
849 /// complexity is monotonically increasing.
850 ///
851 /// Note that we go take special precautions to ensure that we get deterministic
852 /// results from this routine.  In other words, we don't want the results of
853 /// this to depend on where the addresses of various SCEV objects happened to
854 /// land in memory.
855 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
856                               LoopInfo *LI, DominatorTree &DT) {
857   if (Ops.size() < 2) return;  // Noop
858 
859   EquivalenceClasses<const SCEV *> EqCacheSCEV;
860   EquivalenceClasses<const Value *> EqCacheValue;
861 
862   // Whether LHS has provably less complexity than RHS.
863   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
864     auto Complexity =
865         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
866     return Complexity && *Complexity < 0;
867   };
868   if (Ops.size() == 2) {
869     // This is the common case, which also happens to be trivially simple.
870     // Special case it.
871     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
872     if (IsLessComplex(RHS, LHS))
873       std::swap(LHS, RHS);
874     return;
875   }
876 
877   // Do the rough sort by complexity.
878   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
879     return IsLessComplex(LHS, RHS);
880   });
881 
882   // Now that we are sorted by complexity, group elements of the same
883   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
884   // be extremely short in practice.  Note that we take this approach because we
885   // do not want to depend on the addresses of the objects we are grouping.
886   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
887     const SCEV *S = Ops[i];
888     unsigned Complexity = S->getSCEVType();
889 
890     // If there are any objects of the same complexity and same value as this
891     // one, group them.
892     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
893       if (Ops[j] == S) { // Found a duplicate.
894         // Move it to immediately after i'th element.
895         std::swap(Ops[i+1], Ops[j]);
896         ++i;   // no need to rescan it.
897         if (i == e-2) return;  // Done!
898       }
899     }
900   }
901 }
902 
903 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
904 /// least HugeExprThreshold nodes).
905 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
906   return any_of(Ops, [](const SCEV *S) {
907     return S->getExpressionSize() >= HugeExprThreshold;
908   });
909 }
910 
911 //===----------------------------------------------------------------------===//
912 //                      Simple SCEV method implementations
913 //===----------------------------------------------------------------------===//
914 
915 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
916 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
917                                        ScalarEvolution &SE,
918                                        Type *ResultTy) {
919   // Handle the simplest case efficiently.
920   if (K == 1)
921     return SE.getTruncateOrZeroExtend(It, ResultTy);
922 
923   // We are using the following formula for BC(It, K):
924   //
925   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
926   //
927   // Suppose, W is the bitwidth of the return value.  We must be prepared for
928   // overflow.  Hence, we must assure that the result of our computation is
929   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
930   // safe in modular arithmetic.
931   //
932   // However, this code doesn't use exactly that formula; the formula it uses
933   // is something like the following, where T is the number of factors of 2 in
934   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
935   // exponentiation:
936   //
937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
938   //
939   // This formula is trivially equivalent to the previous formula.  However,
940   // this formula can be implemented much more efficiently.  The trick is that
941   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
942   // arithmetic.  To do exact division in modular arithmetic, all we have
943   // to do is multiply by the inverse.  Therefore, this step can be done at
944   // width W.
945   //
946   // The next issue is how to safely do the division by 2^T.  The way this
947   // is done is by doing the multiplication step at a width of at least W + T
948   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
949   // when we perform the division by 2^T (which is equivalent to a right shift
950   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
951   // truncated out after the division by 2^T.
952   //
953   // In comparison to just directly using the first formula, this technique
954   // is much more efficient; using the first formula requires W * K bits,
955   // but this formula less than W + K bits. Also, the first formula requires
956   // a division step, whereas this formula only requires multiplies and shifts.
957   //
958   // It doesn't matter whether the subtraction step is done in the calculation
959   // width or the input iteration count's width; if the subtraction overflows,
960   // the result must be zero anyway.  We prefer here to do it in the width of
961   // the induction variable because it helps a lot for certain cases; CodeGen
962   // isn't smart enough to ignore the overflow, which leads to much less
963   // efficient code if the width of the subtraction is wider than the native
964   // register width.
965   //
966   // (It's possible to not widen at all by pulling out factors of 2 before
967   // the multiplication; for example, K=2 can be calculated as
968   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
969   // extra arithmetic, so it's not an obvious win, and it gets
970   // much more complicated for K > 3.)
971 
972   // Protection from insane SCEVs; this bound is conservative,
973   // but it probably doesn't matter.
974   if (K > 1000)
975     return SE.getCouldNotCompute();
976 
977   unsigned W = SE.getTypeSizeInBits(ResultTy);
978 
979   // Calculate K! / 2^T and T; we divide out the factors of two before
980   // multiplying for calculating K! / 2^T to avoid overflow.
981   // Other overflow doesn't matter because we only care about the bottom
982   // W bits of the result.
983   APInt OddFactorial(W, 1);
984   unsigned T = 1;
985   for (unsigned i = 3; i <= K; ++i) {
986     APInt Mult(W, i);
987     unsigned TwoFactors = Mult.countTrailingZeros();
988     T += TwoFactors;
989     Mult.lshrInPlace(TwoFactors);
990     OddFactorial *= Mult;
991   }
992 
993   // We need at least W + T bits for the multiplication step
994   unsigned CalculationBits = W + T;
995 
996   // Calculate 2^T, at width T+W.
997   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
998 
999   // Calculate the multiplicative inverse of K! / 2^T;
1000   // this multiplication factor will perform the exact division by
1001   // K! / 2^T.
1002   APInt Mod = APInt::getSignedMinValue(W+1);
1003   APInt MultiplyFactor = OddFactorial.zext(W+1);
1004   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1005   MultiplyFactor = MultiplyFactor.trunc(W);
1006 
1007   // Calculate the product, at width T+W
1008   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1009                                                       CalculationBits);
1010   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1011   for (unsigned i = 1; i != K; ++i) {
1012     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1013     Dividend = SE.getMulExpr(Dividend,
1014                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1015   }
1016 
1017   // Divide by 2^T
1018   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1019 
1020   // Truncate the result, and divide by K! / 2^T.
1021 
1022   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1023                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1024 }
1025 
1026 /// Return the value of this chain of recurrences at the specified iteration
1027 /// number.  We can evaluate this recurrence by multiplying each element in the
1028 /// chain by the binomial coefficient corresponding to it.  In other words, we
1029 /// can evaluate {A,+,B,+,C,+,D} as:
1030 ///
1031 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1032 ///
1033 /// where BC(It, k) stands for binomial coefficient.
1034 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1035                                                 ScalarEvolution &SE) const {
1036   return evaluateAtIteration(operands(), It, SE);
1037 }
1038 
1039 const SCEV *
1040 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1041                                     const SCEV *It, ScalarEvolution &SE) {
1042   assert(Operands.size() > 0);
1043   const SCEV *Result = Operands[0];
1044   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1045     // The computation is correct in the face of overflow provided that the
1046     // multiplication is performed _after_ the evaluation of the binomial
1047     // coefficient.
1048     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1049     if (isa<SCEVCouldNotCompute>(Coeff))
1050       return Coeff;
1051 
1052     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1053   }
1054   return Result;
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //                    SCEV Expression folder implementations
1059 //===----------------------------------------------------------------------===//
1060 
1061 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1062                                                      unsigned Depth) {
1063   assert(Depth <= 1 &&
1064          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1065 
1066   // We could be called with an integer-typed operands during SCEV rewrites.
1067   // Since the operand is an integer already, just perform zext/trunc/self cast.
1068   if (!Op->getType()->isPointerTy())
1069     return Op;
1070 
1071   // What would be an ID for such a SCEV cast expression?
1072   FoldingSetNodeID ID;
1073   ID.AddInteger(scPtrToInt);
1074   ID.AddPointer(Op);
1075 
1076   void *IP = nullptr;
1077 
1078   // Is there already an expression for such a cast?
1079   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1080     return S;
1081 
1082   // It isn't legal for optimizations to construct new ptrtoint expressions
1083   // for non-integral pointers.
1084   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1085     return getCouldNotCompute();
1086 
1087   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1088 
1089   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1090   // is sufficiently wide to represent all possible pointer values.
1091   // We could theoretically teach SCEV to truncate wider pointers, but
1092   // that isn't implemented for now.
1093   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1094       getDataLayout().getTypeSizeInBits(IntPtrTy))
1095     return getCouldNotCompute();
1096 
1097   // If not, is this expression something we can't reduce any further?
1098   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1099     // Perform some basic constant folding. If the operand of the ptr2int cast
1100     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1101     // left as-is), but produce a zero constant.
1102     // NOTE: We could handle a more general case, but lack motivational cases.
1103     if (isa<ConstantPointerNull>(U->getValue()))
1104       return getZero(IntPtrTy);
1105 
1106     // Create an explicit cast node.
1107     // We can reuse the existing insert position since if we get here,
1108     // we won't have made any changes which would invalidate it.
1109     SCEV *S = new (SCEVAllocator)
1110         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1111     UniqueSCEVs.InsertNode(S, IP);
1112     registerUser(S, Op);
1113     return S;
1114   }
1115 
1116   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1117                        "non-SCEVUnknown's.");
1118 
1119   // Otherwise, we've got some expression that is more complex than just a
1120   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1121   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1122   // only, and the expressions must otherwise be integer-typed.
1123   // So sink the cast down to the SCEVUnknown's.
1124 
1125   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1126   /// which computes a pointer-typed value, and rewrites the whole expression
1127   /// tree so that *all* the computations are done on integers, and the only
1128   /// pointer-typed operands in the expression are SCEVUnknown.
1129   class SCEVPtrToIntSinkingRewriter
1130       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1131     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1132 
1133   public:
1134     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1135 
1136     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1137       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1138       return Rewriter.visit(Scev);
1139     }
1140 
1141     const SCEV *visit(const SCEV *S) {
1142       Type *STy = S->getType();
1143       // If the expression is not pointer-typed, just keep it as-is.
1144       if (!STy->isPointerTy())
1145         return S;
1146       // Else, recursively sink the cast down into it.
1147       return Base::visit(S);
1148     }
1149 
1150     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1151       SmallVector<const SCEV *, 2> Operands;
1152       bool Changed = false;
1153       for (const auto *Op : Expr->operands()) {
1154         Operands.push_back(visit(Op));
1155         Changed |= Op != Operands.back();
1156       }
1157       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1158     }
1159 
1160     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1161       SmallVector<const SCEV *, 2> Operands;
1162       bool Changed = false;
1163       for (const auto *Op : Expr->operands()) {
1164         Operands.push_back(visit(Op));
1165         Changed |= Op != Operands.back();
1166       }
1167       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1168     }
1169 
1170     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1171       assert(Expr->getType()->isPointerTy() &&
1172              "Should only reach pointer-typed SCEVUnknown's.");
1173       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1174     }
1175   };
1176 
1177   // And actually perform the cast sinking.
1178   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1179   assert(IntOp->getType()->isIntegerTy() &&
1180          "We must have succeeded in sinking the cast, "
1181          "and ending up with an integer-typed expression!");
1182   return IntOp;
1183 }
1184 
1185 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1186   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1187 
1188   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1189   if (isa<SCEVCouldNotCompute>(IntOp))
1190     return IntOp;
1191 
1192   return getTruncateOrZeroExtend(IntOp, Ty);
1193 }
1194 
1195 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1196                                              unsigned Depth) {
1197   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1198          "This is not a truncating conversion!");
1199   assert(isSCEVable(Ty) &&
1200          "This is not a conversion to a SCEVable type!");
1201   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1202   Ty = getEffectiveSCEVType(Ty);
1203 
1204   FoldingSetNodeID ID;
1205   ID.AddInteger(scTruncate);
1206   ID.AddPointer(Op);
1207   ID.AddPointer(Ty);
1208   void *IP = nullptr;
1209   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1210 
1211   // Fold if the operand is constant.
1212   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1213     return getConstant(
1214       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1215 
1216   // trunc(trunc(x)) --> trunc(x)
1217   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1218     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1219 
1220   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1221   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1222     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1223 
1224   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1225   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1226     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1227 
1228   if (Depth > MaxCastDepth) {
1229     SCEV *S =
1230         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1231     UniqueSCEVs.InsertNode(S, IP);
1232     registerUser(S, Op);
1233     return S;
1234   }
1235 
1236   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1237   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1238   // if after transforming we have at most one truncate, not counting truncates
1239   // that replace other casts.
1240   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1241     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1242     SmallVector<const SCEV *, 4> Operands;
1243     unsigned numTruncs = 0;
1244     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1245          ++i) {
1246       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1247       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1248           isa<SCEVTruncateExpr>(S))
1249         numTruncs++;
1250       Operands.push_back(S);
1251     }
1252     if (numTruncs < 2) {
1253       if (isa<SCEVAddExpr>(Op))
1254         return getAddExpr(Operands);
1255       else if (isa<SCEVMulExpr>(Op))
1256         return getMulExpr(Operands);
1257       else
1258         llvm_unreachable("Unexpected SCEV type for Op.");
1259     }
1260     // Although we checked in the beginning that ID is not in the cache, it is
1261     // possible that during recursion and different modification ID was inserted
1262     // into the cache. So if we find it, just return it.
1263     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1264       return S;
1265   }
1266 
1267   // If the input value is a chrec scev, truncate the chrec's operands.
1268   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1269     SmallVector<const SCEV *, 4> Operands;
1270     for (const SCEV *Op : AddRec->operands())
1271       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1272     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1273   }
1274 
1275   // Return zero if truncating to known zeros.
1276   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1277   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1278     return getZero(Ty);
1279 
1280   // The cast wasn't folded; create an explicit cast node. We can reuse
1281   // the existing insert position since if we get here, we won't have
1282   // made any changes which would invalidate it.
1283   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1284                                                  Op, Ty);
1285   UniqueSCEVs.InsertNode(S, IP);
1286   registerUser(S, Op);
1287   return S;
1288 }
1289 
1290 // Get the limit of a recurrence such that incrementing by Step cannot cause
1291 // signed overflow as long as the value of the recurrence within the
1292 // loop does not exceed this limit before incrementing.
1293 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1294                                                  ICmpInst::Predicate *Pred,
1295                                                  ScalarEvolution *SE) {
1296   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1297   if (SE->isKnownPositive(Step)) {
1298     *Pred = ICmpInst::ICMP_SLT;
1299     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1300                            SE->getSignedRangeMax(Step));
1301   }
1302   if (SE->isKnownNegative(Step)) {
1303     *Pred = ICmpInst::ICMP_SGT;
1304     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1305                            SE->getSignedRangeMin(Step));
1306   }
1307   return nullptr;
1308 }
1309 
1310 // Get the limit of a recurrence such that incrementing by Step cannot cause
1311 // unsigned overflow as long as the value of the recurrence within the loop does
1312 // not exceed this limit before incrementing.
1313 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1314                                                    ICmpInst::Predicate *Pred,
1315                                                    ScalarEvolution *SE) {
1316   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317   *Pred = ICmpInst::ICMP_ULT;
1318 
1319   return SE->getConstant(APInt::getMinValue(BitWidth) -
1320                          SE->getUnsignedRangeMax(Step));
1321 }
1322 
1323 namespace {
1324 
1325 struct ExtendOpTraitsBase {
1326   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1327                                                           unsigned);
1328 };
1329 
1330 // Used to make code generic over signed and unsigned overflow.
1331 template <typename ExtendOp> struct ExtendOpTraits {
1332   // Members present:
1333   //
1334   // static const SCEV::NoWrapFlags WrapType;
1335   //
1336   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1337   //
1338   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1339   //                                           ICmpInst::Predicate *Pred,
1340   //                                           ScalarEvolution *SE);
1341 };
1342 
1343 template <>
1344 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1345   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1346 
1347   static const GetExtendExprTy GetExtendExpr;
1348 
1349   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1350                                              ICmpInst::Predicate *Pred,
1351                                              ScalarEvolution *SE) {
1352     return getSignedOverflowLimitForStep(Step, Pred, SE);
1353   }
1354 };
1355 
1356 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1357     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1358 
1359 template <>
1360 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1361   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1362 
1363   static const GetExtendExprTy GetExtendExpr;
1364 
1365   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1366                                              ICmpInst::Predicate *Pred,
1367                                              ScalarEvolution *SE) {
1368     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1369   }
1370 };
1371 
1372 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1373     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1374 
1375 } // end anonymous namespace
1376 
1377 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1378 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1379 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1380 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1381 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1382 // expression "Step + sext/zext(PreIncAR)" is congruent with
1383 // "sext/zext(PostIncAR)"
1384 template <typename ExtendOpTy>
1385 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1386                                         ScalarEvolution *SE, unsigned Depth) {
1387   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1388   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1389 
1390   const Loop *L = AR->getLoop();
1391   const SCEV *Start = AR->getStart();
1392   const SCEV *Step = AR->getStepRecurrence(*SE);
1393 
1394   // Check for a simple looking step prior to loop entry.
1395   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1396   if (!SA)
1397     return nullptr;
1398 
1399   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1400   // subtraction is expensive. For this purpose, perform a quick and dirty
1401   // difference, by checking for Step in the operand list.
1402   SmallVector<const SCEV *, 4> DiffOps;
1403   for (const SCEV *Op : SA->operands())
1404     if (Op != Step)
1405       DiffOps.push_back(Op);
1406 
1407   if (DiffOps.size() == SA->getNumOperands())
1408     return nullptr;
1409 
1410   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1411   // `Step`:
1412 
1413   // 1. NSW/NUW flags on the step increment.
1414   auto PreStartFlags =
1415     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1416   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1417   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1418       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1419 
1420   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1421   // "S+X does not sign/unsign-overflow".
1422   //
1423 
1424   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1425   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1426       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1427     return PreStart;
1428 
1429   // 2. Direct overflow check on the step operation's expression.
1430   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1431   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1432   const SCEV *OperandExtendedStart =
1433       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1434                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1435   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1436     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1437       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1438       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1439       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1440       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1441     }
1442     return PreStart;
1443   }
1444 
1445   // 3. Loop precondition.
1446   ICmpInst::Predicate Pred;
1447   const SCEV *OverflowLimit =
1448       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1449 
1450   if (OverflowLimit &&
1451       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1452     return PreStart;
1453 
1454   return nullptr;
1455 }
1456 
1457 // Get the normalized zero or sign extended expression for this AddRec's Start.
1458 template <typename ExtendOpTy>
1459 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1460                                         ScalarEvolution *SE,
1461                                         unsigned Depth) {
1462   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1463 
1464   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1465   if (!PreStart)
1466     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1467 
1468   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1469                                              Depth),
1470                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1471 }
1472 
1473 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1474 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1475 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1476 //
1477 // Formally:
1478 //
1479 //     {S,+,X} == {S-T,+,X} + T
1480 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1481 //
1482 // If ({S-T,+,X} + T) does not overflow  ... (1)
1483 //
1484 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1485 //
1486 // If {S-T,+,X} does not overflow  ... (2)
1487 //
1488 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1489 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1490 //
1491 // If (S-T)+T does not overflow  ... (3)
1492 //
1493 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1494 //      == {Ext(S),+,Ext(X)} == LHS
1495 //
1496 // Thus, if (1), (2) and (3) are true for some T, then
1497 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1498 //
1499 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1500 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1501 // to check for (1) and (2).
1502 //
1503 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1504 // is `Delta` (defined below).
1505 template <typename ExtendOpTy>
1506 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1507                                                 const SCEV *Step,
1508                                                 const Loop *L) {
1509   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1510 
1511   // We restrict `Start` to a constant to prevent SCEV from spending too much
1512   // time here.  It is correct (but more expensive) to continue with a
1513   // non-constant `Start` and do a general SCEV subtraction to compute
1514   // `PreStart` below.
1515   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1516   if (!StartC)
1517     return false;
1518 
1519   APInt StartAI = StartC->getAPInt();
1520 
1521   for (unsigned Delta : {-2, -1, 1, 2}) {
1522     const SCEV *PreStart = getConstant(StartAI - Delta);
1523 
1524     FoldingSetNodeID ID;
1525     ID.AddInteger(scAddRecExpr);
1526     ID.AddPointer(PreStart);
1527     ID.AddPointer(Step);
1528     ID.AddPointer(L);
1529     void *IP = nullptr;
1530     const auto *PreAR =
1531       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1532 
1533     // Give up if we don't already have the add recurrence we need because
1534     // actually constructing an add recurrence is relatively expensive.
1535     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1536       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1537       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1538       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1539           DeltaS, &Pred, this);
1540       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1541         return true;
1542     }
1543   }
1544 
1545   return false;
1546 }
1547 
1548 // Finds an integer D for an expression (C + x + y + ...) such that the top
1549 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1550 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1551 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1552 // the (C + x + y + ...) expression is \p WholeAddExpr.
1553 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1554                                             const SCEVConstant *ConstantTerm,
1555                                             const SCEVAddExpr *WholeAddExpr) {
1556   const APInt &C = ConstantTerm->getAPInt();
1557   const unsigned BitWidth = C.getBitWidth();
1558   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1559   uint32_t TZ = BitWidth;
1560   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1561     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1562   if (TZ) {
1563     // Set D to be as many least significant bits of C as possible while still
1564     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1565     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1566   }
1567   return APInt(BitWidth, 0);
1568 }
1569 
1570 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1571 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1572 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1573 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1574 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1575                                             const APInt &ConstantStart,
1576                                             const SCEV *Step) {
1577   const unsigned BitWidth = ConstantStart.getBitWidth();
1578   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1579   if (TZ)
1580     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1581                          : ConstantStart;
1582   return APInt(BitWidth, 0);
1583 }
1584 
1585 static void insertFoldCacheEntry(
1586     const ScalarEvolution::FoldID &ID, const SCEV *S,
1587     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1588     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1589         &FoldCacheUser) {
1590   auto I = FoldCache.insert({ID, S});
1591   if (!I.second) {
1592     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1593     // entry.
1594     auto &UserIDs = FoldCacheUser[I.first->second];
1595     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1596     for (unsigned I = 0; I != UserIDs.size(); ++I)
1597       if (UserIDs[I] == ID) {
1598         std::swap(UserIDs[I], UserIDs.back());
1599         break;
1600       }
1601     UserIDs.pop_back();
1602     I.first->second = S;
1603   }
1604   auto R = FoldCacheUser.insert({S, {}});
1605   R.first->second.push_back(ID);
1606 }
1607 
1608 const SCEV *
1609 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1610   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1611          "This is not an extending conversion!");
1612   assert(isSCEVable(Ty) &&
1613          "This is not a conversion to a SCEVable type!");
1614   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1615   Ty = getEffectiveSCEVType(Ty);
1616 
1617   FoldID ID;
1618   ID.addInteger(scZeroExtend);
1619   ID.addPointer(Op);
1620   ID.addPointer(Ty);
1621   auto Iter = FoldCache.find(ID);
1622   if (Iter != FoldCache.end())
1623     return Iter->second;
1624 
1625   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1626   if (!isa<SCEVZeroExtendExpr>(S))
1627     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1628   return S;
1629 }
1630 
1631 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1632                                                    unsigned Depth) {
1633   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1634          "This is not an extending conversion!");
1635   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1636   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1637 
1638   // Fold if the operand is constant.
1639   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1640     return getConstant(
1641       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1642 
1643   // zext(zext(x)) --> zext(x)
1644   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1645     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1646 
1647   // Before doing any expensive analysis, check to see if we've already
1648   // computed a SCEV for this Op and Ty.
1649   FoldingSetNodeID ID;
1650   ID.AddInteger(scZeroExtend);
1651   ID.AddPointer(Op);
1652   ID.AddPointer(Ty);
1653   void *IP = nullptr;
1654   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1655   if (Depth > MaxCastDepth) {
1656     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1657                                                      Op, Ty);
1658     UniqueSCEVs.InsertNode(S, IP);
1659     registerUser(S, Op);
1660     return S;
1661   }
1662 
1663   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1664   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1665     // It's possible the bits taken off by the truncate were all zero bits. If
1666     // so, we should be able to simplify this further.
1667     const SCEV *X = ST->getOperand();
1668     ConstantRange CR = getUnsignedRange(X);
1669     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1670     unsigned NewBits = getTypeSizeInBits(Ty);
1671     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1672             CR.zextOrTrunc(NewBits)))
1673       return getTruncateOrZeroExtend(X, Ty, Depth);
1674   }
1675 
1676   // If the input value is a chrec scev, and we can prove that the value
1677   // did not overflow the old, smaller, value, we can zero extend all of the
1678   // operands (often constants).  This allows analysis of something like
1679   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1680   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1681     if (AR->isAffine()) {
1682       const SCEV *Start = AR->getStart();
1683       const SCEV *Step = AR->getStepRecurrence(*this);
1684       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1685       const Loop *L = AR->getLoop();
1686 
1687       if (!AR->hasNoUnsignedWrap()) {
1688         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1689         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1690       }
1691 
1692       // If we have special knowledge that this addrec won't overflow,
1693       // we don't need to do any further analysis.
1694       if (AR->hasNoUnsignedWrap()) {
1695         Start =
1696             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1697         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1698         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1699       }
1700 
1701       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1702       // Note that this serves two purposes: It filters out loops that are
1703       // simply not analyzable, and it covers the case where this code is
1704       // being called from within backedge-taken count analysis, such that
1705       // attempting to ask for the backedge-taken count would likely result
1706       // in infinite recursion. In the later case, the analysis code will
1707       // cope with a conservative value, and it will take care to purge
1708       // that value once it has finished.
1709       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1710       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1711         // Manually compute the final value for AR, checking for overflow.
1712 
1713         // Check whether the backedge-taken count can be losslessly casted to
1714         // the addrec's type. The count is always unsigned.
1715         const SCEV *CastedMaxBECount =
1716             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1717         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1718             CastedMaxBECount, MaxBECount->getType(), Depth);
1719         if (MaxBECount == RecastedMaxBECount) {
1720           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1721           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1722           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1723                                         SCEV::FlagAnyWrap, Depth + 1);
1724           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1725                                                           SCEV::FlagAnyWrap,
1726                                                           Depth + 1),
1727                                                WideTy, Depth + 1);
1728           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1729           const SCEV *WideMaxBECount =
1730             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1731           const SCEV *OperandExtendedAdd =
1732             getAddExpr(WideStart,
1733                        getMulExpr(WideMaxBECount,
1734                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1735                                   SCEV::FlagAnyWrap, Depth + 1),
1736                        SCEV::FlagAnyWrap, Depth + 1);
1737           if (ZAdd == OperandExtendedAdd) {
1738             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1739             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1740             // Return the expression with the addrec on the outside.
1741             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1742                                                              Depth + 1);
1743             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1744             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1745           }
1746           // Similar to above, only this time treat the step value as signed.
1747           // This covers loops that count down.
1748           OperandExtendedAdd =
1749             getAddExpr(WideStart,
1750                        getMulExpr(WideMaxBECount,
1751                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1752                                   SCEV::FlagAnyWrap, Depth + 1),
1753                        SCEV::FlagAnyWrap, Depth + 1);
1754           if (ZAdd == OperandExtendedAdd) {
1755             // Cache knowledge of AR NW, which is propagated to this AddRec.
1756             // Negative step causes unsigned wrap, but it still can't self-wrap.
1757             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1758             // Return the expression with the addrec on the outside.
1759             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1760                                                              Depth + 1);
1761             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1762             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1763           }
1764         }
1765       }
1766 
1767       // Normally, in the cases we can prove no-overflow via a
1768       // backedge guarding condition, we can also compute a backedge
1769       // taken count for the loop.  The exceptions are assumptions and
1770       // guards present in the loop -- SCEV is not great at exploiting
1771       // these to compute max backedge taken counts, but can still use
1772       // these to prove lack of overflow.  Use this fact to avoid
1773       // doing extra work that may not pay off.
1774       if (!isa<SCEVCouldNotCompute>(MaxBECount) || !AC.assumptions().empty()) {
1775 
1776         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1778         if (AR->hasNoUnsignedWrap()) {
1779           // Same as nuw case above - duplicated here to avoid a compile time
1780           // issue.  It's not clear that the order of checks does matter, but
1781           // it's one of two issue possible causes for a change which was
1782           // reverted.  Be conservative for the moment.
1783           Start =
1784               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1785           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1786           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1787         }
1788 
1789         // For a negative step, we can extend the operands iff doing so only
1790         // traverses values in the range zext([0,UINT_MAX]).
1791         if (isKnownNegative(Step)) {
1792           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1793                                       getSignedRangeMin(Step));
1794           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1795               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1796             // Cache knowledge of AR NW, which is propagated to this
1797             // AddRec.  Negative step causes unsigned wrap, but it
1798             // still can't self-wrap.
1799             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1800             // Return the expression with the addrec on the outside.
1801             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1802                                                              Depth + 1);
1803             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1804             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1805           }
1806         }
1807       }
1808 
1809       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1810       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1811       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1812       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1813         const APInt &C = SC->getAPInt();
1814         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1815         if (D != 0) {
1816           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1817           const SCEV *SResidual =
1818               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1819           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1820           return getAddExpr(SZExtD, SZExtR,
1821                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1822                             Depth + 1);
1823         }
1824       }
1825 
1826       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1827         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1828         Start =
1829             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1830         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1831         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1832       }
1833     }
1834 
1835   // zext(A % B) --> zext(A) % zext(B)
1836   {
1837     const SCEV *LHS;
1838     const SCEV *RHS;
1839     if (matchURem(Op, LHS, RHS))
1840       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1841                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1842   }
1843 
1844   // zext(A / B) --> zext(A) / zext(B).
1845   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1846     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1847                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1848 
1849   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1850     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1851     if (SA->hasNoUnsignedWrap()) {
1852       // If the addition does not unsign overflow then we can, by definition,
1853       // commute the zero extension with the addition operation.
1854       SmallVector<const SCEV *, 4> Ops;
1855       for (const auto *Op : SA->operands())
1856         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1857       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1858     }
1859 
1860     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1861     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1862     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1863     //
1864     // Often address arithmetics contain expressions like
1865     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1866     // This transformation is useful while proving that such expressions are
1867     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1868     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1869       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1870       if (D != 0) {
1871         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1872         const SCEV *SResidual =
1873             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1874         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1875         return getAddExpr(SZExtD, SZExtR,
1876                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1877                           Depth + 1);
1878       }
1879     }
1880   }
1881 
1882   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1883     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1884     if (SM->hasNoUnsignedWrap()) {
1885       // If the multiply does not unsign overflow then we can, by definition,
1886       // commute the zero extension with the multiply operation.
1887       SmallVector<const SCEV *, 4> Ops;
1888       for (const auto *Op : SM->operands())
1889         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1890       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1891     }
1892 
1893     // zext(2^K * (trunc X to iN)) to iM ->
1894     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1895     //
1896     // Proof:
1897     //
1898     //     zext(2^K * (trunc X to iN)) to iM
1899     //   = zext((trunc X to iN) << K) to iM
1900     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1901     //     (because shl removes the top K bits)
1902     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1903     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1904     //
1905     if (SM->getNumOperands() == 2)
1906       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1907         if (MulLHS->getAPInt().isPowerOf2())
1908           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1909             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1910                                MulLHS->getAPInt().logBase2();
1911             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1912             return getMulExpr(
1913                 getZeroExtendExpr(MulLHS, Ty),
1914                 getZeroExtendExpr(
1915                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1916                 SCEV::FlagNUW, Depth + 1);
1917           }
1918   }
1919 
1920   // The cast wasn't folded; create an explicit cast node.
1921   // Recompute the insert position, as it may have been invalidated.
1922   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1923   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1924                                                    Op, Ty);
1925   UniqueSCEVs.InsertNode(S, IP);
1926   registerUser(S, Op);
1927   return S;
1928 }
1929 
1930 const SCEV *
1931 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1932   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1933          "This is not an extending conversion!");
1934   assert(isSCEVable(Ty) &&
1935          "This is not a conversion to a SCEVable type!");
1936   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1937   Ty = getEffectiveSCEVType(Ty);
1938 
1939   FoldID ID;
1940   ID.addInteger(scSignExtend);
1941   ID.addPointer(Op);
1942   ID.addPointer(Ty);
1943   auto Iter = FoldCache.find(ID);
1944   if (Iter != FoldCache.end())
1945     return Iter->second;
1946 
1947   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1948   if (!isa<SCEVSignExtendExpr>(S))
1949     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1950   return S;
1951 }
1952 
1953 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1954                                                    unsigned Depth) {
1955   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1956          "This is not an extending conversion!");
1957   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1958   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1959   Ty = getEffectiveSCEVType(Ty);
1960 
1961   // Fold if the operand is constant.
1962   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1963     return getConstant(
1964       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1965 
1966   // sext(sext(x)) --> sext(x)
1967   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1968     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1969 
1970   // sext(zext(x)) --> zext(x)
1971   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1972     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1973 
1974   // Before doing any expensive analysis, check to see if we've already
1975   // computed a SCEV for this Op and Ty.
1976   FoldingSetNodeID ID;
1977   ID.AddInteger(scSignExtend);
1978   ID.AddPointer(Op);
1979   ID.AddPointer(Ty);
1980   void *IP = nullptr;
1981   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1982   // Limit recursion depth.
1983   if (Depth > MaxCastDepth) {
1984     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1985                                                      Op, Ty);
1986     UniqueSCEVs.InsertNode(S, IP);
1987     registerUser(S, Op);
1988     return S;
1989   }
1990 
1991   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1992   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1993     // It's possible the bits taken off by the truncate were all sign bits. If
1994     // so, we should be able to simplify this further.
1995     const SCEV *X = ST->getOperand();
1996     ConstantRange CR = getSignedRange(X);
1997     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1998     unsigned NewBits = getTypeSizeInBits(Ty);
1999     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
2000             CR.sextOrTrunc(NewBits)))
2001       return getTruncateOrSignExtend(X, Ty, Depth);
2002   }
2003 
2004   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
2005     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
2006     if (SA->hasNoSignedWrap()) {
2007       // If the addition does not sign overflow then we can, by definition,
2008       // commute the sign extension with the addition operation.
2009       SmallVector<const SCEV *, 4> Ops;
2010       for (const auto *Op : SA->operands())
2011         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2012       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2013     }
2014 
2015     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2016     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2017     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2018     //
2019     // For instance, this will bring two seemingly different expressions:
2020     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2021     //         sext(6 + 20 * %x + 24 * %y)
2022     // to the same form:
2023     //     2 + sext(4 + 20 * %x + 24 * %y)
2024     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2025       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2026       if (D != 0) {
2027         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2028         const SCEV *SResidual =
2029             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2030         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2031         return getAddExpr(SSExtD, SSExtR,
2032                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2033                           Depth + 1);
2034       }
2035     }
2036   }
2037   // If the input value is a chrec scev, and we can prove that the value
2038   // did not overflow the old, smaller, value, we can sign extend all of the
2039   // operands (often constants).  This allows analysis of something like
2040   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2041   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2042     if (AR->isAffine()) {
2043       const SCEV *Start = AR->getStart();
2044       const SCEV *Step = AR->getStepRecurrence(*this);
2045       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2046       const Loop *L = AR->getLoop();
2047 
2048       if (!AR->hasNoSignedWrap()) {
2049         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2050         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2051       }
2052 
2053       // If we have special knowledge that this addrec won't overflow,
2054       // we don't need to do any further analysis.
2055       if (AR->hasNoSignedWrap()) {
2056         Start =
2057             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2058         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2059         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2060       }
2061 
2062       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2063       // Note that this serves two purposes: It filters out loops that are
2064       // simply not analyzable, and it covers the case where this code is
2065       // being called from within backedge-taken count analysis, such that
2066       // attempting to ask for the backedge-taken count would likely result
2067       // in infinite recursion. In the later case, the analysis code will
2068       // cope with a conservative value, and it will take care to purge
2069       // that value once it has finished.
2070       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2071       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2072         // Manually compute the final value for AR, checking for
2073         // overflow.
2074 
2075         // Check whether the backedge-taken count can be losslessly casted to
2076         // the addrec's type. The count is always unsigned.
2077         const SCEV *CastedMaxBECount =
2078             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2079         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2080             CastedMaxBECount, MaxBECount->getType(), Depth);
2081         if (MaxBECount == RecastedMaxBECount) {
2082           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2083           // Check whether Start+Step*MaxBECount has no signed overflow.
2084           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2085                                         SCEV::FlagAnyWrap, Depth + 1);
2086           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2087                                                           SCEV::FlagAnyWrap,
2088                                                           Depth + 1),
2089                                                WideTy, Depth + 1);
2090           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2091           const SCEV *WideMaxBECount =
2092             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2093           const SCEV *OperandExtendedAdd =
2094             getAddExpr(WideStart,
2095                        getMulExpr(WideMaxBECount,
2096                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2097                                   SCEV::FlagAnyWrap, Depth + 1),
2098                        SCEV::FlagAnyWrap, Depth + 1);
2099           if (SAdd == OperandExtendedAdd) {
2100             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2101             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2102             // Return the expression with the addrec on the outside.
2103             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2104                                                              Depth + 1);
2105             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2106             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2107           }
2108           // Similar to above, only this time treat the step value as unsigned.
2109           // This covers loops that count up with an unsigned step.
2110           OperandExtendedAdd =
2111             getAddExpr(WideStart,
2112                        getMulExpr(WideMaxBECount,
2113                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2114                                   SCEV::FlagAnyWrap, Depth + 1),
2115                        SCEV::FlagAnyWrap, Depth + 1);
2116           if (SAdd == OperandExtendedAdd) {
2117             // If AR wraps around then
2118             //
2119             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2120             // => SAdd != OperandExtendedAdd
2121             //
2122             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2123             // (SAdd == OperandExtendedAdd => AR is NW)
2124 
2125             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2126 
2127             // Return the expression with the addrec on the outside.
2128             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2129                                                              Depth + 1);
2130             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2131             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2132           }
2133         }
2134       }
2135 
2136       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2137       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2138       if (AR->hasNoSignedWrap()) {
2139         // Same as nsw case above - duplicated here to avoid a compile time
2140         // issue.  It's not clear that the order of checks does matter, but
2141         // it's one of two issue possible causes for a change which was
2142         // reverted.  Be conservative for the moment.
2143         Start =
2144             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2145         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2146         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2147       }
2148 
2149       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2150       // if D + (C - D + Step * n) could be proven to not signed wrap
2151       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2152       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2153         const APInt &C = SC->getAPInt();
2154         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2155         if (D != 0) {
2156           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2157           const SCEV *SResidual =
2158               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2159           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2160           return getAddExpr(SSExtD, SSExtR,
2161                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2162                             Depth + 1);
2163         }
2164       }
2165 
2166       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2167         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2168         Start =
2169             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2170         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2171         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2172       }
2173     }
2174 
2175   // If the input value is provably positive and we could not simplify
2176   // away the sext build a zext instead.
2177   if (isKnownNonNegative(Op))
2178     return getZeroExtendExpr(Op, Ty, Depth + 1);
2179 
2180   // The cast wasn't folded; create an explicit cast node.
2181   // Recompute the insert position, as it may have been invalidated.
2182   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2183   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2184                                                    Op, Ty);
2185   UniqueSCEVs.InsertNode(S, IP);
2186   registerUser(S, { Op });
2187   return S;
2188 }
2189 
2190 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2191                                          Type *Ty) {
2192   switch (Kind) {
2193   case scTruncate:
2194     return getTruncateExpr(Op, Ty);
2195   case scZeroExtend:
2196     return getZeroExtendExpr(Op, Ty);
2197   case scSignExtend:
2198     return getSignExtendExpr(Op, Ty);
2199   case scPtrToInt:
2200     return getPtrToIntExpr(Op, Ty);
2201   default:
2202     llvm_unreachable("Not a SCEV cast expression!");
2203   }
2204 }
2205 
2206 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2207 /// unspecified bits out to the given type.
2208 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2209                                               Type *Ty) {
2210   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2211          "This is not an extending conversion!");
2212   assert(isSCEVable(Ty) &&
2213          "This is not a conversion to a SCEVable type!");
2214   Ty = getEffectiveSCEVType(Ty);
2215 
2216   // Sign-extend negative constants.
2217   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2218     if (SC->getAPInt().isNegative())
2219       return getSignExtendExpr(Op, Ty);
2220 
2221   // Peel off a truncate cast.
2222   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2223     const SCEV *NewOp = T->getOperand();
2224     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2225       return getAnyExtendExpr(NewOp, Ty);
2226     return getTruncateOrNoop(NewOp, Ty);
2227   }
2228 
2229   // Next try a zext cast. If the cast is folded, use it.
2230   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2231   if (!isa<SCEVZeroExtendExpr>(ZExt))
2232     return ZExt;
2233 
2234   // Next try a sext cast. If the cast is folded, use it.
2235   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2236   if (!isa<SCEVSignExtendExpr>(SExt))
2237     return SExt;
2238 
2239   // Force the cast to be folded into the operands of an addrec.
2240   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2241     SmallVector<const SCEV *, 4> Ops;
2242     for (const SCEV *Op : AR->operands())
2243       Ops.push_back(getAnyExtendExpr(Op, Ty));
2244     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2245   }
2246 
2247   // If the expression is obviously signed, use the sext cast value.
2248   if (isa<SCEVSMaxExpr>(Op))
2249     return SExt;
2250 
2251   // Absent any other information, use the zext cast value.
2252   return ZExt;
2253 }
2254 
2255 /// Process the given Ops list, which is a list of operands to be added under
2256 /// the given scale, update the given map. This is a helper function for
2257 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2258 /// that would form an add expression like this:
2259 ///
2260 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2261 ///
2262 /// where A and B are constants, update the map with these values:
2263 ///
2264 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2265 ///
2266 /// and add 13 + A*B*29 to AccumulatedConstant.
2267 /// This will allow getAddRecExpr to produce this:
2268 ///
2269 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2270 ///
2271 /// This form often exposes folding opportunities that are hidden in
2272 /// the original operand list.
2273 ///
2274 /// Return true iff it appears that any interesting folding opportunities
2275 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2276 /// the common case where no interesting opportunities are present, and
2277 /// is also used as a check to avoid infinite recursion.
2278 static bool
2279 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2280                              SmallVectorImpl<const SCEV *> &NewOps,
2281                              APInt &AccumulatedConstant,
2282                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2283                              ScalarEvolution &SE) {
2284   bool Interesting = false;
2285 
2286   // Iterate over the add operands. They are sorted, with constants first.
2287   unsigned i = 0;
2288   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2289     ++i;
2290     // Pull a buried constant out to the outside.
2291     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2292       Interesting = true;
2293     AccumulatedConstant += Scale * C->getAPInt();
2294   }
2295 
2296   // Next comes everything else. We're especially interested in multiplies
2297   // here, but they're in the middle, so just visit the rest with one loop.
2298   for (; i != Ops.size(); ++i) {
2299     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2300     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2301       APInt NewScale =
2302           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2303       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2304         // A multiplication of a constant with another add; recurse.
2305         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2306         Interesting |=
2307           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2308                                        Add->operands(), NewScale, SE);
2309       } else {
2310         // A multiplication of a constant with some other value. Update
2311         // the map.
2312         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2313         const SCEV *Key = SE.getMulExpr(MulOps);
2314         auto Pair = M.insert({Key, NewScale});
2315         if (Pair.second) {
2316           NewOps.push_back(Pair.first->first);
2317         } else {
2318           Pair.first->second += NewScale;
2319           // The map already had an entry for this value, which may indicate
2320           // a folding opportunity.
2321           Interesting = true;
2322         }
2323       }
2324     } else {
2325       // An ordinary operand. Update the map.
2326       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2327           M.insert({Ops[i], Scale});
2328       if (Pair.second) {
2329         NewOps.push_back(Pair.first->first);
2330       } else {
2331         Pair.first->second += Scale;
2332         // The map already had an entry for this value, which may indicate
2333         // a folding opportunity.
2334         Interesting = true;
2335       }
2336     }
2337   }
2338 
2339   return Interesting;
2340 }
2341 
2342 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2343                                       const SCEV *LHS, const SCEV *RHS,
2344                                       const Instruction *CtxI) {
2345   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2346                                             SCEV::NoWrapFlags, unsigned);
2347   switch (BinOp) {
2348   default:
2349     llvm_unreachable("Unsupported binary op");
2350   case Instruction::Add:
2351     Operation = &ScalarEvolution::getAddExpr;
2352     break;
2353   case Instruction::Sub:
2354     Operation = &ScalarEvolution::getMinusSCEV;
2355     break;
2356   case Instruction::Mul:
2357     Operation = &ScalarEvolution::getMulExpr;
2358     break;
2359   }
2360 
2361   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2362       Signed ? &ScalarEvolution::getSignExtendExpr
2363              : &ScalarEvolution::getZeroExtendExpr;
2364 
2365   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2366   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2367   auto *WideTy =
2368       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2369 
2370   const SCEV *A = (this->*Extension)(
2371       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2372   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2373   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2374   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2375   if (A == B)
2376     return true;
2377   // Can we use context to prove the fact we need?
2378   if (!CtxI)
2379     return false;
2380   // We can prove that add(x, constant) doesn't wrap if isKnownPredicateAt can
2381   // guarantee that x <= max_int - constant at the given context.
2382   // TODO: Support other operations.
2383   if (BinOp != Instruction::Add)
2384     return false;
2385   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2386   // TODO: Lift this limitation.
2387   if (!RHSC)
2388     return false;
2389   APInt C = RHSC->getAPInt();
2390   // TODO: Also lift this limitation.
2391   if (Signed && C.isNegative())
2392     return false;
2393   unsigned NumBits = C.getBitWidth();
2394   APInt Max =
2395       Signed ? APInt::getSignedMaxValue(NumBits) : APInt::getMaxValue(NumBits);
2396   APInt Limit = Max - C;
2397   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2398   return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2399 }
2400 
2401 std::optional<SCEV::NoWrapFlags>
2402 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2403     const OverflowingBinaryOperator *OBO) {
2404   // It cannot be done any better.
2405   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2406     return std::nullopt;
2407 
2408   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2409 
2410   if (OBO->hasNoUnsignedWrap())
2411     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2412   if (OBO->hasNoSignedWrap())
2413     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2414 
2415   bool Deduced = false;
2416 
2417   if (OBO->getOpcode() != Instruction::Add &&
2418       OBO->getOpcode() != Instruction::Sub &&
2419       OBO->getOpcode() != Instruction::Mul)
2420     return std::nullopt;
2421 
2422   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2423   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2424 
2425   const Instruction *CtxI =
2426       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2427   if (!OBO->hasNoUnsignedWrap() &&
2428       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2429                       /* Signed */ false, LHS, RHS, CtxI)) {
2430     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2431     Deduced = true;
2432   }
2433 
2434   if (!OBO->hasNoSignedWrap() &&
2435       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2436                       /* Signed */ true, LHS, RHS, CtxI)) {
2437     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2438     Deduced = true;
2439   }
2440 
2441   if (Deduced)
2442     return Flags;
2443   return std::nullopt;
2444 }
2445 
2446 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2447 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2448 // can't-overflow flags for the operation if possible.
2449 static SCEV::NoWrapFlags
2450 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2451                       const ArrayRef<const SCEV *> Ops,
2452                       SCEV::NoWrapFlags Flags) {
2453   using namespace std::placeholders;
2454 
2455   using OBO = OverflowingBinaryOperator;
2456 
2457   bool CanAnalyze =
2458       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2459   (void)CanAnalyze;
2460   assert(CanAnalyze && "don't call from other places!");
2461 
2462   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2463   SCEV::NoWrapFlags SignOrUnsignWrap =
2464       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2465 
2466   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2467   auto IsKnownNonNegative = [&](const SCEV *S) {
2468     return SE->isKnownNonNegative(S);
2469   };
2470 
2471   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2472     Flags =
2473         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2474 
2475   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2476 
2477   if (SignOrUnsignWrap != SignOrUnsignMask &&
2478       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2479       isa<SCEVConstant>(Ops[0])) {
2480 
2481     auto Opcode = [&] {
2482       switch (Type) {
2483       case scAddExpr:
2484         return Instruction::Add;
2485       case scMulExpr:
2486         return Instruction::Mul;
2487       default:
2488         llvm_unreachable("Unexpected SCEV op.");
2489       }
2490     }();
2491 
2492     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2493 
2494     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2495     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2496       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2497           Opcode, C, OBO::NoSignedWrap);
2498       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2499         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2500     }
2501 
2502     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2503     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2504       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2505           Opcode, C, OBO::NoUnsignedWrap);
2506       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2507         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2508     }
2509   }
2510 
2511   // <0,+,nonnegative><nw> is also nuw
2512   // TODO: Add corresponding nsw case
2513   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2514       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2515       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2516     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2517 
2518   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2519   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2520       Ops.size() == 2) {
2521     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2522       if (UDiv->getOperand(1) == Ops[1])
2523         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2524     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2525       if (UDiv->getOperand(1) == Ops[0])
2526         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2527   }
2528 
2529   return Flags;
2530 }
2531 
2532 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2533   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2534 }
2535 
2536 /// Get a canonical add expression, or something simpler if possible.
2537 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2538                                         SCEV::NoWrapFlags OrigFlags,
2539                                         unsigned Depth) {
2540   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2541          "only nuw or nsw allowed");
2542   assert(!Ops.empty() && "Cannot get empty add!");
2543   if (Ops.size() == 1) return Ops[0];
2544 #ifndef NDEBUG
2545   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2546   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2547     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2548            "SCEVAddExpr operand types don't match!");
2549   unsigned NumPtrs = count_if(
2550       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2551   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2552 #endif
2553 
2554   // Sort by complexity, this groups all similar expression types together.
2555   GroupByComplexity(Ops, &LI, DT);
2556 
2557   // If there are any constants, fold them together.
2558   unsigned Idx = 0;
2559   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2560     ++Idx;
2561     assert(Idx < Ops.size());
2562     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2563       // We found two constants, fold them together!
2564       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2565       if (Ops.size() == 2) return Ops[0];
2566       Ops.erase(Ops.begin()+1);  // Erase the folded element
2567       LHSC = cast<SCEVConstant>(Ops[0]);
2568     }
2569 
2570     // If we are left with a constant zero being added, strip it off.
2571     if (LHSC->getValue()->isZero()) {
2572       Ops.erase(Ops.begin());
2573       --Idx;
2574     }
2575 
2576     if (Ops.size() == 1) return Ops[0];
2577   }
2578 
2579   // Delay expensive flag strengthening until necessary.
2580   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2581     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2582   };
2583 
2584   // Limit recursion calls depth.
2585   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2586     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2587 
2588   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2589     // Don't strengthen flags if we have no new information.
2590     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2591     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2592       Add->setNoWrapFlags(ComputeFlags(Ops));
2593     return S;
2594   }
2595 
2596   // Okay, check to see if the same value occurs in the operand list more than
2597   // once.  If so, merge them together into an multiply expression.  Since we
2598   // sorted the list, these values are required to be adjacent.
2599   Type *Ty = Ops[0]->getType();
2600   bool FoundMatch = false;
2601   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2602     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2603       // Scan ahead to count how many equal operands there are.
2604       unsigned Count = 2;
2605       while (i+Count != e && Ops[i+Count] == Ops[i])
2606         ++Count;
2607       // Merge the values into a multiply.
2608       const SCEV *Scale = getConstant(Ty, Count);
2609       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2610       if (Ops.size() == Count)
2611         return Mul;
2612       Ops[i] = Mul;
2613       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2614       --i; e -= Count - 1;
2615       FoundMatch = true;
2616     }
2617   if (FoundMatch)
2618     return getAddExpr(Ops, OrigFlags, Depth + 1);
2619 
2620   // Check for truncates. If all the operands are truncated from the same
2621   // type, see if factoring out the truncate would permit the result to be
2622   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2623   // if the contents of the resulting outer trunc fold to something simple.
2624   auto FindTruncSrcType = [&]() -> Type * {
2625     // We're ultimately looking to fold an addrec of truncs and muls of only
2626     // constants and truncs, so if we find any other types of SCEV
2627     // as operands of the addrec then we bail and return nullptr here.
2628     // Otherwise, we return the type of the operand of a trunc that we find.
2629     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2630       return T->getOperand()->getType();
2631     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2632       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2633       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2634         return T->getOperand()->getType();
2635     }
2636     return nullptr;
2637   };
2638   if (auto *SrcType = FindTruncSrcType()) {
2639     SmallVector<const SCEV *, 8> LargeOps;
2640     bool Ok = true;
2641     // Check all the operands to see if they can be represented in the
2642     // source type of the truncate.
2643     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2644       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2645         if (T->getOperand()->getType() != SrcType) {
2646           Ok = false;
2647           break;
2648         }
2649         LargeOps.push_back(T->getOperand());
2650       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2651         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2652       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2653         SmallVector<const SCEV *, 8> LargeMulOps;
2654         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2655           if (const SCEVTruncateExpr *T =
2656                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2657             if (T->getOperand()->getType() != SrcType) {
2658               Ok = false;
2659               break;
2660             }
2661             LargeMulOps.push_back(T->getOperand());
2662           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2663             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2664           } else {
2665             Ok = false;
2666             break;
2667           }
2668         }
2669         if (Ok)
2670           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2671       } else {
2672         Ok = false;
2673         break;
2674       }
2675     }
2676     if (Ok) {
2677       // Evaluate the expression in the larger type.
2678       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2679       // If it folds to something simple, use it. Otherwise, don't.
2680       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2681         return getTruncateExpr(Fold, Ty);
2682     }
2683   }
2684 
2685   if (Ops.size() == 2) {
2686     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2687     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2688     // C1).
2689     const SCEV *A = Ops[0];
2690     const SCEV *B = Ops[1];
2691     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2692     auto *C = dyn_cast<SCEVConstant>(A);
2693     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2694       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2695       auto C2 = C->getAPInt();
2696       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2697 
2698       APInt ConstAdd = C1 + C2;
2699       auto AddFlags = AddExpr->getNoWrapFlags();
2700       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2701       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2702           ConstAdd.ule(C1)) {
2703         PreservedFlags =
2704             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2705       }
2706 
2707       // Adding a constant with the same sign and small magnitude is NSW, if the
2708       // original AddExpr was NSW.
2709       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2710           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2711           ConstAdd.abs().ule(C1.abs())) {
2712         PreservedFlags =
2713             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2714       }
2715 
2716       if (PreservedFlags != SCEV::FlagAnyWrap) {
2717         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2718         NewOps[0] = getConstant(ConstAdd);
2719         return getAddExpr(NewOps, PreservedFlags);
2720       }
2721     }
2722   }
2723 
2724   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2725   if (Ops.size() == 2) {
2726     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2727     if (Mul && Mul->getNumOperands() == 2 &&
2728         Mul->getOperand(0)->isAllOnesValue()) {
2729       const SCEV *X;
2730       const SCEV *Y;
2731       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2732         return getMulExpr(Y, getUDivExpr(X, Y));
2733       }
2734     }
2735   }
2736 
2737   // Skip past any other cast SCEVs.
2738   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2739     ++Idx;
2740 
2741   // If there are add operands they would be next.
2742   if (Idx < Ops.size()) {
2743     bool DeletedAdd = false;
2744     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2745     // common NUW flag for expression after inlining. Other flags cannot be
2746     // preserved, because they may depend on the original order of operations.
2747     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2748     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2749       if (Ops.size() > AddOpsInlineThreshold ||
2750           Add->getNumOperands() > AddOpsInlineThreshold)
2751         break;
2752       // If we have an add, expand the add operands onto the end of the operands
2753       // list.
2754       Ops.erase(Ops.begin()+Idx);
2755       append_range(Ops, Add->operands());
2756       DeletedAdd = true;
2757       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2758     }
2759 
2760     // If we deleted at least one add, we added operands to the end of the list,
2761     // and they are not necessarily sorted.  Recurse to resort and resimplify
2762     // any operands we just acquired.
2763     if (DeletedAdd)
2764       return getAddExpr(Ops, CommonFlags, Depth + 1);
2765   }
2766 
2767   // Skip over the add expression until we get to a multiply.
2768   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2769     ++Idx;
2770 
2771   // Check to see if there are any folding opportunities present with
2772   // operands multiplied by constant values.
2773   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2774     uint64_t BitWidth = getTypeSizeInBits(Ty);
2775     DenseMap<const SCEV *, APInt> M;
2776     SmallVector<const SCEV *, 8> NewOps;
2777     APInt AccumulatedConstant(BitWidth, 0);
2778     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2779                                      Ops, APInt(BitWidth, 1), *this)) {
2780       struct APIntCompare {
2781         bool operator()(const APInt &LHS, const APInt &RHS) const {
2782           return LHS.ult(RHS);
2783         }
2784       };
2785 
2786       // Some interesting folding opportunity is present, so its worthwhile to
2787       // re-generate the operands list. Group the operands by constant scale,
2788       // to avoid multiplying by the same constant scale multiple times.
2789       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2790       for (const SCEV *NewOp : NewOps)
2791         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2792       // Re-generate the operands list.
2793       Ops.clear();
2794       if (AccumulatedConstant != 0)
2795         Ops.push_back(getConstant(AccumulatedConstant));
2796       for (auto &MulOp : MulOpLists) {
2797         if (MulOp.first == 1) {
2798           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2799         } else if (MulOp.first != 0) {
2800           Ops.push_back(getMulExpr(
2801               getConstant(MulOp.first),
2802               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2803               SCEV::FlagAnyWrap, Depth + 1));
2804         }
2805       }
2806       if (Ops.empty())
2807         return getZero(Ty);
2808       if (Ops.size() == 1)
2809         return Ops[0];
2810       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2811     }
2812   }
2813 
2814   // If we are adding something to a multiply expression, make sure the
2815   // something is not already an operand of the multiply.  If so, merge it into
2816   // the multiply.
2817   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2818     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2819     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2820       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2821       if (isa<SCEVConstant>(MulOpSCEV))
2822         continue;
2823       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2824         if (MulOpSCEV == Ops[AddOp]) {
2825           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2826           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2827           if (Mul->getNumOperands() != 2) {
2828             // If the multiply has more than two operands, we must get the
2829             // Y*Z term.
2830             SmallVector<const SCEV *, 4> MulOps(
2831                 Mul->operands().take_front(MulOp));
2832             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2833             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2834           }
2835           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2836           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2837           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2838                                             SCEV::FlagAnyWrap, Depth + 1);
2839           if (Ops.size() == 2) return OuterMul;
2840           if (AddOp < Idx) {
2841             Ops.erase(Ops.begin()+AddOp);
2842             Ops.erase(Ops.begin()+Idx-1);
2843           } else {
2844             Ops.erase(Ops.begin()+Idx);
2845             Ops.erase(Ops.begin()+AddOp-1);
2846           }
2847           Ops.push_back(OuterMul);
2848           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2849         }
2850 
2851       // Check this multiply against other multiplies being added together.
2852       for (unsigned OtherMulIdx = Idx+1;
2853            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2854            ++OtherMulIdx) {
2855         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2856         // If MulOp occurs in OtherMul, we can fold the two multiplies
2857         // together.
2858         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2859              OMulOp != e; ++OMulOp)
2860           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2861             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2862             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2863             if (Mul->getNumOperands() != 2) {
2864               SmallVector<const SCEV *, 4> MulOps(
2865                   Mul->operands().take_front(MulOp));
2866               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2867               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2868             }
2869             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2870             if (OtherMul->getNumOperands() != 2) {
2871               SmallVector<const SCEV *, 4> MulOps(
2872                   OtherMul->operands().take_front(OMulOp));
2873               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2874               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2875             }
2876             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2877             const SCEV *InnerMulSum =
2878                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2879             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2880                                               SCEV::FlagAnyWrap, Depth + 1);
2881             if (Ops.size() == 2) return OuterMul;
2882             Ops.erase(Ops.begin()+Idx);
2883             Ops.erase(Ops.begin()+OtherMulIdx-1);
2884             Ops.push_back(OuterMul);
2885             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2886           }
2887       }
2888     }
2889   }
2890 
2891   // If there are any add recurrences in the operands list, see if any other
2892   // added values are loop invariant.  If so, we can fold them into the
2893   // recurrence.
2894   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2895     ++Idx;
2896 
2897   // Scan over all recurrences, trying to fold loop invariants into them.
2898   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2899     // Scan all of the other operands to this add and add them to the vector if
2900     // they are loop invariant w.r.t. the recurrence.
2901     SmallVector<const SCEV *, 8> LIOps;
2902     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2903     const Loop *AddRecLoop = AddRec->getLoop();
2904     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2905       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2906         LIOps.push_back(Ops[i]);
2907         Ops.erase(Ops.begin()+i);
2908         --i; --e;
2909       }
2910 
2911     // If we found some loop invariants, fold them into the recurrence.
2912     if (!LIOps.empty()) {
2913       // Compute nowrap flags for the addition of the loop-invariant ops and
2914       // the addrec. Temporarily push it as an operand for that purpose. These
2915       // flags are valid in the scope of the addrec only.
2916       LIOps.push_back(AddRec);
2917       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2918       LIOps.pop_back();
2919 
2920       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2921       LIOps.push_back(AddRec->getStart());
2922 
2923       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2924 
2925       // It is not in general safe to propagate flags valid on an add within
2926       // the addrec scope to one outside it.  We must prove that the inner
2927       // scope is guaranteed to execute if the outer one does to be able to
2928       // safely propagate.  We know the program is undefined if poison is
2929       // produced on the inner scoped addrec.  We also know that *for this use*
2930       // the outer scoped add can't overflow (because of the flags we just
2931       // computed for the inner scoped add) without the program being undefined.
2932       // Proving that entry to the outer scope neccesitates entry to the inner
2933       // scope, thus proves the program undefined if the flags would be violated
2934       // in the outer scope.
2935       SCEV::NoWrapFlags AddFlags = Flags;
2936       if (AddFlags != SCEV::FlagAnyWrap) {
2937         auto *DefI = getDefiningScopeBound(LIOps);
2938         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2939         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2940           AddFlags = SCEV::FlagAnyWrap;
2941       }
2942       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2943 
2944       // Build the new addrec. Propagate the NUW and NSW flags if both the
2945       // outer add and the inner addrec are guaranteed to have no overflow.
2946       // Always propagate NW.
2947       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2948       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2949 
2950       // If all of the other operands were loop invariant, we are done.
2951       if (Ops.size() == 1) return NewRec;
2952 
2953       // Otherwise, add the folded AddRec by the non-invariant parts.
2954       for (unsigned i = 0;; ++i)
2955         if (Ops[i] == AddRec) {
2956           Ops[i] = NewRec;
2957           break;
2958         }
2959       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2960     }
2961 
2962     // Okay, if there weren't any loop invariants to be folded, check to see if
2963     // there are multiple AddRec's with the same loop induction variable being
2964     // added together.  If so, we can fold them.
2965     for (unsigned OtherIdx = Idx+1;
2966          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2967          ++OtherIdx) {
2968       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2969       // so that the 1st found AddRecExpr is dominated by all others.
2970       assert(DT.dominates(
2971            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2972            AddRec->getLoop()->getHeader()) &&
2973         "AddRecExprs are not sorted in reverse dominance order?");
2974       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2975         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2976         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2977         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2978              ++OtherIdx) {
2979           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2980           if (OtherAddRec->getLoop() == AddRecLoop) {
2981             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2982                  i != e; ++i) {
2983               if (i >= AddRecOps.size()) {
2984                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2985                 break;
2986               }
2987               SmallVector<const SCEV *, 2> TwoOps = {
2988                   AddRecOps[i], OtherAddRec->getOperand(i)};
2989               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2990             }
2991             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2992           }
2993         }
2994         // Step size has changed, so we cannot guarantee no self-wraparound.
2995         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2996         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2997       }
2998     }
2999 
3000     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3001     // next one.
3002   }
3003 
3004   // Okay, it looks like we really DO need an add expr.  Check to see if we
3005   // already have one, otherwise create a new one.
3006   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
3007 }
3008 
3009 const SCEV *
3010 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
3011                                     SCEV::NoWrapFlags Flags) {
3012   FoldingSetNodeID ID;
3013   ID.AddInteger(scAddExpr);
3014   for (const SCEV *Op : Ops)
3015     ID.AddPointer(Op);
3016   void *IP = nullptr;
3017   SCEVAddExpr *S =
3018       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3019   if (!S) {
3020     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3021     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3022     S = new (SCEVAllocator)
3023         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
3024     UniqueSCEVs.InsertNode(S, IP);
3025     registerUser(S, Ops);
3026   }
3027   S->setNoWrapFlags(Flags);
3028   return S;
3029 }
3030 
3031 const SCEV *
3032 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3033                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3034   FoldingSetNodeID ID;
3035   ID.AddInteger(scAddRecExpr);
3036   for (const SCEV *Op : Ops)
3037     ID.AddPointer(Op);
3038   ID.AddPointer(L);
3039   void *IP = nullptr;
3040   SCEVAddRecExpr *S =
3041       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3042   if (!S) {
3043     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3044     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3045     S = new (SCEVAllocator)
3046         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3047     UniqueSCEVs.InsertNode(S, IP);
3048     LoopUsers[L].push_back(S);
3049     registerUser(S, Ops);
3050   }
3051   setNoWrapFlags(S, Flags);
3052   return S;
3053 }
3054 
3055 const SCEV *
3056 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3057                                     SCEV::NoWrapFlags Flags) {
3058   FoldingSetNodeID ID;
3059   ID.AddInteger(scMulExpr);
3060   for (const SCEV *Op : Ops)
3061     ID.AddPointer(Op);
3062   void *IP = nullptr;
3063   SCEVMulExpr *S =
3064     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3065   if (!S) {
3066     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3067     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3068     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3069                                         O, Ops.size());
3070     UniqueSCEVs.InsertNode(S, IP);
3071     registerUser(S, Ops);
3072   }
3073   S->setNoWrapFlags(Flags);
3074   return S;
3075 }
3076 
3077 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3078   uint64_t k = i*j;
3079   if (j > 1 && k / j != i) Overflow = true;
3080   return k;
3081 }
3082 
3083 /// Compute the result of "n choose k", the binomial coefficient.  If an
3084 /// intermediate computation overflows, Overflow will be set and the return will
3085 /// be garbage. Overflow is not cleared on absence of overflow.
3086 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3087   // We use the multiplicative formula:
3088   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3089   // At each iteration, we take the n-th term of the numeral and divide by the
3090   // (k-n)th term of the denominator.  This division will always produce an
3091   // integral result, and helps reduce the chance of overflow in the
3092   // intermediate computations. However, we can still overflow even when the
3093   // final result would fit.
3094 
3095   if (n == 0 || n == k) return 1;
3096   if (k > n) return 0;
3097 
3098   if (k > n/2)
3099     k = n-k;
3100 
3101   uint64_t r = 1;
3102   for (uint64_t i = 1; i <= k; ++i) {
3103     r = umul_ov(r, n-(i-1), Overflow);
3104     r /= i;
3105   }
3106   return r;
3107 }
3108 
3109 /// Determine if any of the operands in this SCEV are a constant or if
3110 /// any of the add or multiply expressions in this SCEV contain a constant.
3111 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3112   struct FindConstantInAddMulChain {
3113     bool FoundConstant = false;
3114 
3115     bool follow(const SCEV *S) {
3116       FoundConstant |= isa<SCEVConstant>(S);
3117       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3118     }
3119 
3120     bool isDone() const {
3121       return FoundConstant;
3122     }
3123   };
3124 
3125   FindConstantInAddMulChain F;
3126   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3127   ST.visitAll(StartExpr);
3128   return F.FoundConstant;
3129 }
3130 
3131 /// Get a canonical multiply expression, or something simpler if possible.
3132 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3133                                         SCEV::NoWrapFlags OrigFlags,
3134                                         unsigned Depth) {
3135   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3136          "only nuw or nsw allowed");
3137   assert(!Ops.empty() && "Cannot get empty mul!");
3138   if (Ops.size() == 1) return Ops[0];
3139 #ifndef NDEBUG
3140   Type *ETy = Ops[0]->getType();
3141   assert(!ETy->isPointerTy());
3142   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3143     assert(Ops[i]->getType() == ETy &&
3144            "SCEVMulExpr operand types don't match!");
3145 #endif
3146 
3147   // Sort by complexity, this groups all similar expression types together.
3148   GroupByComplexity(Ops, &LI, DT);
3149 
3150   // If there are any constants, fold them together.
3151   unsigned Idx = 0;
3152   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3153     ++Idx;
3154     assert(Idx < Ops.size());
3155     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3156       // We found two constants, fold them together!
3157       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3158       if (Ops.size() == 2) return Ops[0];
3159       Ops.erase(Ops.begin()+1);  // Erase the folded element
3160       LHSC = cast<SCEVConstant>(Ops[0]);
3161     }
3162 
3163     // If we have a multiply of zero, it will always be zero.
3164     if (LHSC->getValue()->isZero())
3165       return LHSC;
3166 
3167     // If we are left with a constant one being multiplied, strip it off.
3168     if (LHSC->getValue()->isOne()) {
3169       Ops.erase(Ops.begin());
3170       --Idx;
3171     }
3172 
3173     if (Ops.size() == 1)
3174       return Ops[0];
3175   }
3176 
3177   // Delay expensive flag strengthening until necessary.
3178   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3179     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3180   };
3181 
3182   // Limit recursion calls depth.
3183   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3184     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3185 
3186   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3187     // Don't strengthen flags if we have no new information.
3188     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3189     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3190       Mul->setNoWrapFlags(ComputeFlags(Ops));
3191     return S;
3192   }
3193 
3194   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3195     if (Ops.size() == 2) {
3196       // C1*(C2+V) -> C1*C2 + C1*V
3197       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3198         // If any of Add's ops are Adds or Muls with a constant, apply this
3199         // transformation as well.
3200         //
3201         // TODO: There are some cases where this transformation is not
3202         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3203         // this transformation should be narrowed down.
3204         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3205           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3206                                        SCEV::FlagAnyWrap, Depth + 1);
3207           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3208                                        SCEV::FlagAnyWrap, Depth + 1);
3209           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3210         }
3211 
3212       if (Ops[0]->isAllOnesValue()) {
3213         // If we have a mul by -1 of an add, try distributing the -1 among the
3214         // add operands.
3215         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3216           SmallVector<const SCEV *, 4> NewOps;
3217           bool AnyFolded = false;
3218           for (const SCEV *AddOp : Add->operands()) {
3219             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3220                                          Depth + 1);
3221             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3222             NewOps.push_back(Mul);
3223           }
3224           if (AnyFolded)
3225             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3226         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3227           // Negation preserves a recurrence's no self-wrap property.
3228           SmallVector<const SCEV *, 4> Operands;
3229           for (const SCEV *AddRecOp : AddRec->operands())
3230             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3231                                           Depth + 1));
3232 
3233           return getAddRecExpr(Operands, AddRec->getLoop(),
3234                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3235         }
3236       }
3237     }
3238   }
3239 
3240   // Skip over the add expression until we get to a multiply.
3241   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3242     ++Idx;
3243 
3244   // If there are mul operands inline them all into this expression.
3245   if (Idx < Ops.size()) {
3246     bool DeletedMul = false;
3247     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3248       if (Ops.size() > MulOpsInlineThreshold)
3249         break;
3250       // If we have an mul, expand the mul operands onto the end of the
3251       // operands list.
3252       Ops.erase(Ops.begin()+Idx);
3253       append_range(Ops, Mul->operands());
3254       DeletedMul = true;
3255     }
3256 
3257     // If we deleted at least one mul, we added operands to the end of the
3258     // list, and they are not necessarily sorted.  Recurse to resort and
3259     // resimplify any operands we just acquired.
3260     if (DeletedMul)
3261       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3262   }
3263 
3264   // If there are any add recurrences in the operands list, see if any other
3265   // added values are loop invariant.  If so, we can fold them into the
3266   // recurrence.
3267   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3268     ++Idx;
3269 
3270   // Scan over all recurrences, trying to fold loop invariants into them.
3271   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3272     // Scan all of the other operands to this mul and add them to the vector
3273     // if they are loop invariant w.r.t. the recurrence.
3274     SmallVector<const SCEV *, 8> LIOps;
3275     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3276     const Loop *AddRecLoop = AddRec->getLoop();
3277     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3278       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3279         LIOps.push_back(Ops[i]);
3280         Ops.erase(Ops.begin()+i);
3281         --i; --e;
3282       }
3283 
3284     // If we found some loop invariants, fold them into the recurrence.
3285     if (!LIOps.empty()) {
3286       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3287       SmallVector<const SCEV *, 4> NewOps;
3288       NewOps.reserve(AddRec->getNumOperands());
3289       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3290       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3291         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3292                                     SCEV::FlagAnyWrap, Depth + 1));
3293 
3294       // Build the new addrec. Propagate the NUW and NSW flags if both the
3295       // outer mul and the inner addrec are guaranteed to have no overflow.
3296       //
3297       // No self-wrap cannot be guaranteed after changing the step size, but
3298       // will be inferred if either NUW or NSW is true.
3299       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3300       const SCEV *NewRec = getAddRecExpr(
3301           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3302 
3303       // If all of the other operands were loop invariant, we are done.
3304       if (Ops.size() == 1) return NewRec;
3305 
3306       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3307       for (unsigned i = 0;; ++i)
3308         if (Ops[i] == AddRec) {
3309           Ops[i] = NewRec;
3310           break;
3311         }
3312       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3313     }
3314 
3315     // Okay, if there weren't any loop invariants to be folded, check to see
3316     // if there are multiple AddRec's with the same loop induction variable
3317     // being multiplied together.  If so, we can fold them.
3318 
3319     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3320     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3321     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3322     //   ]]],+,...up to x=2n}.
3323     // Note that the arguments to choose() are always integers with values
3324     // known at compile time, never SCEV objects.
3325     //
3326     // The implementation avoids pointless extra computations when the two
3327     // addrec's are of different length (mathematically, it's equivalent to
3328     // an infinite stream of zeros on the right).
3329     bool OpsModified = false;
3330     for (unsigned OtherIdx = Idx+1;
3331          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3332          ++OtherIdx) {
3333       const SCEVAddRecExpr *OtherAddRec =
3334         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3335       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3336         continue;
3337 
3338       // Limit max number of arguments to avoid creation of unreasonably big
3339       // SCEVAddRecs with very complex operands.
3340       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3341           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3342         continue;
3343 
3344       bool Overflow = false;
3345       Type *Ty = AddRec->getType();
3346       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3347       SmallVector<const SCEV*, 7> AddRecOps;
3348       for (int x = 0, xe = AddRec->getNumOperands() +
3349              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3350         SmallVector <const SCEV *, 7> SumOps;
3351         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3352           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3353           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3354                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3355                z < ze && !Overflow; ++z) {
3356             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3357             uint64_t Coeff;
3358             if (LargerThan64Bits)
3359               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3360             else
3361               Coeff = Coeff1*Coeff2;
3362             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3363             const SCEV *Term1 = AddRec->getOperand(y-z);
3364             const SCEV *Term2 = OtherAddRec->getOperand(z);
3365             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3366                                         SCEV::FlagAnyWrap, Depth + 1));
3367           }
3368         }
3369         if (SumOps.empty())
3370           SumOps.push_back(getZero(Ty));
3371         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3372       }
3373       if (!Overflow) {
3374         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3375                                               SCEV::FlagAnyWrap);
3376         if (Ops.size() == 2) return NewAddRec;
3377         Ops[Idx] = NewAddRec;
3378         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3379         OpsModified = true;
3380         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3381         if (!AddRec)
3382           break;
3383       }
3384     }
3385     if (OpsModified)
3386       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3387 
3388     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3389     // next one.
3390   }
3391 
3392   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3393   // already have one, otherwise create a new one.
3394   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3395 }
3396 
3397 /// Represents an unsigned remainder expression based on unsigned division.
3398 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3399                                          const SCEV *RHS) {
3400   assert(getEffectiveSCEVType(LHS->getType()) ==
3401          getEffectiveSCEVType(RHS->getType()) &&
3402          "SCEVURemExpr operand types don't match!");
3403 
3404   // Short-circuit easy cases
3405   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3406     // If constant is one, the result is trivial
3407     if (RHSC->getValue()->isOne())
3408       return getZero(LHS->getType()); // X urem 1 --> 0
3409 
3410     // If constant is a power of two, fold into a zext(trunc(LHS)).
3411     if (RHSC->getAPInt().isPowerOf2()) {
3412       Type *FullTy = LHS->getType();
3413       Type *TruncTy =
3414           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3415       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3416     }
3417   }
3418 
3419   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3420   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3421   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3422   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3423 }
3424 
3425 /// Get a canonical unsigned division expression, or something simpler if
3426 /// possible.
3427 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3428                                          const SCEV *RHS) {
3429   assert(!LHS->getType()->isPointerTy() &&
3430          "SCEVUDivExpr operand can't be pointer!");
3431   assert(LHS->getType() == RHS->getType() &&
3432          "SCEVUDivExpr operand types don't match!");
3433 
3434   FoldingSetNodeID ID;
3435   ID.AddInteger(scUDivExpr);
3436   ID.AddPointer(LHS);
3437   ID.AddPointer(RHS);
3438   void *IP = nullptr;
3439   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3440     return S;
3441 
3442   // 0 udiv Y == 0
3443   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3444     if (LHSC->getValue()->isZero())
3445       return LHS;
3446 
3447   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3448     if (RHSC->getValue()->isOne())
3449       return LHS;                               // X udiv 1 --> x
3450     // If the denominator is zero, the result of the udiv is undefined. Don't
3451     // try to analyze it, because the resolution chosen here may differ from
3452     // the resolution chosen in other parts of the compiler.
3453     if (!RHSC->getValue()->isZero()) {
3454       // Determine if the division can be folded into the operands of
3455       // its operands.
3456       // TODO: Generalize this to non-constants by using known-bits information.
3457       Type *Ty = LHS->getType();
3458       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3459       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3460       // For non-power-of-two values, effectively round the value up to the
3461       // nearest power of two.
3462       if (!RHSC->getAPInt().isPowerOf2())
3463         ++MaxShiftAmt;
3464       IntegerType *ExtTy =
3465         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3466       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3467         if (const SCEVConstant *Step =
3468             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3469           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3470           const APInt &StepInt = Step->getAPInt();
3471           const APInt &DivInt = RHSC->getAPInt();
3472           if (!StepInt.urem(DivInt) &&
3473               getZeroExtendExpr(AR, ExtTy) ==
3474               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3475                             getZeroExtendExpr(Step, ExtTy),
3476                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3477             SmallVector<const SCEV *, 4> Operands;
3478             for (const SCEV *Op : AR->operands())
3479               Operands.push_back(getUDivExpr(Op, RHS));
3480             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3481           }
3482           /// Get a canonical UDivExpr for a recurrence.
3483           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3484           // We can currently only fold X%N if X is constant.
3485           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3486           if (StartC && !DivInt.urem(StepInt) &&
3487               getZeroExtendExpr(AR, ExtTy) ==
3488               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3489                             getZeroExtendExpr(Step, ExtTy),
3490                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3491             const APInt &StartInt = StartC->getAPInt();
3492             const APInt &StartRem = StartInt.urem(StepInt);
3493             if (StartRem != 0) {
3494               const SCEV *NewLHS =
3495                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3496                                 AR->getLoop(), SCEV::FlagNW);
3497               if (LHS != NewLHS) {
3498                 LHS = NewLHS;
3499 
3500                 // Reset the ID to include the new LHS, and check if it is
3501                 // already cached.
3502                 ID.clear();
3503                 ID.AddInteger(scUDivExpr);
3504                 ID.AddPointer(LHS);
3505                 ID.AddPointer(RHS);
3506                 IP = nullptr;
3507                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3508                   return S;
3509               }
3510             }
3511           }
3512         }
3513       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3514       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3515         SmallVector<const SCEV *, 4> Operands;
3516         for (const SCEV *Op : M->operands())
3517           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3518         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3519           // Find an operand that's safely divisible.
3520           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3521             const SCEV *Op = M->getOperand(i);
3522             const SCEV *Div = getUDivExpr(Op, RHSC);
3523             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3524               Operands = SmallVector<const SCEV *, 4>(M->operands());
3525               Operands[i] = Div;
3526               return getMulExpr(Operands);
3527             }
3528           }
3529       }
3530 
3531       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3532       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3533         if (auto *DivisorConstant =
3534                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3535           bool Overflow = false;
3536           APInt NewRHS =
3537               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3538           if (Overflow) {
3539             return getConstant(RHSC->getType(), 0, false);
3540           }
3541           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3542         }
3543       }
3544 
3545       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3546       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3547         SmallVector<const SCEV *, 4> Operands;
3548         for (const SCEV *Op : A->operands())
3549           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3550         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3551           Operands.clear();
3552           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3553             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3554             if (isa<SCEVUDivExpr>(Op) ||
3555                 getMulExpr(Op, RHS) != A->getOperand(i))
3556               break;
3557             Operands.push_back(Op);
3558           }
3559           if (Operands.size() == A->getNumOperands())
3560             return getAddExpr(Operands);
3561         }
3562       }
3563 
3564       // Fold if both operands are constant.
3565       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3566         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3567     }
3568   }
3569 
3570   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3571   // changes). Make sure we get a new one.
3572   IP = nullptr;
3573   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3574   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3575                                              LHS, RHS);
3576   UniqueSCEVs.InsertNode(S, IP);
3577   registerUser(S, {LHS, RHS});
3578   return S;
3579 }
3580 
3581 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3582   APInt A = C1->getAPInt().abs();
3583   APInt B = C2->getAPInt().abs();
3584   uint32_t ABW = A.getBitWidth();
3585   uint32_t BBW = B.getBitWidth();
3586 
3587   if (ABW > BBW)
3588     B = B.zext(ABW);
3589   else if (ABW < BBW)
3590     A = A.zext(BBW);
3591 
3592   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3593 }
3594 
3595 /// Get a canonical unsigned division expression, or something simpler if
3596 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3597 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3598 /// it's not exact because the udiv may be clearing bits.
3599 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3600                                               const SCEV *RHS) {
3601   // TODO: we could try to find factors in all sorts of things, but for now we
3602   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3603   // end of this file for inspiration.
3604 
3605   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3606   if (!Mul || !Mul->hasNoUnsignedWrap())
3607     return getUDivExpr(LHS, RHS);
3608 
3609   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3610     // If the mulexpr multiplies by a constant, then that constant must be the
3611     // first element of the mulexpr.
3612     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3613       if (LHSCst == RHSCst) {
3614         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3615         return getMulExpr(Operands);
3616       }
3617 
3618       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3619       // that there's a factor provided by one of the other terms. We need to
3620       // check.
3621       APInt Factor = gcd(LHSCst, RHSCst);
3622       if (!Factor.isIntN(1)) {
3623         LHSCst =
3624             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3625         RHSCst =
3626             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3627         SmallVector<const SCEV *, 2> Operands;
3628         Operands.push_back(LHSCst);
3629         append_range(Operands, Mul->operands().drop_front());
3630         LHS = getMulExpr(Operands);
3631         RHS = RHSCst;
3632         Mul = dyn_cast<SCEVMulExpr>(LHS);
3633         if (!Mul)
3634           return getUDivExactExpr(LHS, RHS);
3635       }
3636     }
3637   }
3638 
3639   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3640     if (Mul->getOperand(i) == RHS) {
3641       SmallVector<const SCEV *, 2> Operands;
3642       append_range(Operands, Mul->operands().take_front(i));
3643       append_range(Operands, Mul->operands().drop_front(i + 1));
3644       return getMulExpr(Operands);
3645     }
3646   }
3647 
3648   return getUDivExpr(LHS, RHS);
3649 }
3650 
3651 /// Get an add recurrence expression for the specified loop.  Simplify the
3652 /// expression as much as possible.
3653 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3654                                            const Loop *L,
3655                                            SCEV::NoWrapFlags Flags) {
3656   SmallVector<const SCEV *, 4> Operands;
3657   Operands.push_back(Start);
3658   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3659     if (StepChrec->getLoop() == L) {
3660       append_range(Operands, StepChrec->operands());
3661       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3662     }
3663 
3664   Operands.push_back(Step);
3665   return getAddRecExpr(Operands, L, Flags);
3666 }
3667 
3668 /// Get an add recurrence expression for the specified loop.  Simplify the
3669 /// expression as much as possible.
3670 const SCEV *
3671 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3672                                const Loop *L, SCEV::NoWrapFlags Flags) {
3673   if (Operands.size() == 1) return Operands[0];
3674 #ifndef NDEBUG
3675   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3676   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3677     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3678            "SCEVAddRecExpr operand types don't match!");
3679     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3680   }
3681   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3682     assert(isLoopInvariant(Operands[i], L) &&
3683            "SCEVAddRecExpr operand is not loop-invariant!");
3684 #endif
3685 
3686   if (Operands.back()->isZero()) {
3687     Operands.pop_back();
3688     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3689   }
3690 
3691   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3692   // use that information to infer NUW and NSW flags. However, computing a
3693   // BE count requires calling getAddRecExpr, so we may not yet have a
3694   // meaningful BE count at this point (and if we don't, we'd be stuck
3695   // with a SCEVCouldNotCompute as the cached BE count).
3696 
3697   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3698 
3699   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3700   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3701     const Loop *NestedLoop = NestedAR->getLoop();
3702     if (L->contains(NestedLoop)
3703             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3704             : (!NestedLoop->contains(L) &&
3705                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3706       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3707       Operands[0] = NestedAR->getStart();
3708       // AddRecs require their operands be loop-invariant with respect to their
3709       // loops. Don't perform this transformation if it would break this
3710       // requirement.
3711       bool AllInvariant = all_of(
3712           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3713 
3714       if (AllInvariant) {
3715         // Create a recurrence for the outer loop with the same step size.
3716         //
3717         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3718         // inner recurrence has the same property.
3719         SCEV::NoWrapFlags OuterFlags =
3720           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3721 
3722         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3723         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3724           return isLoopInvariant(Op, NestedLoop);
3725         });
3726 
3727         if (AllInvariant) {
3728           // Ok, both add recurrences are valid after the transformation.
3729           //
3730           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3731           // the outer recurrence has the same property.
3732           SCEV::NoWrapFlags InnerFlags =
3733             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3734           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3735         }
3736       }
3737       // Reset Operands to its original state.
3738       Operands[0] = NestedAR;
3739     }
3740   }
3741 
3742   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3743   // already have one, otherwise create a new one.
3744   return getOrCreateAddRecExpr(Operands, L, Flags);
3745 }
3746 
3747 const SCEV *
3748 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3749                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3750   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3751   // getSCEV(Base)->getType() has the same address space as Base->getType()
3752   // because SCEV::getType() preserves the address space.
3753   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3754   const bool AssumeInBoundsFlags = [&]() {
3755     if (!GEP->isInBounds())
3756       return false;
3757 
3758     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3759     // but to do that, we have to ensure that said flag is valid in the entire
3760     // defined scope of the SCEV.
3761     auto *GEPI = dyn_cast<Instruction>(GEP);
3762     // TODO: non-instructions have global scope.  We might be able to prove
3763     // some global scope cases
3764     return GEPI && isSCEVExprNeverPoison(GEPI);
3765   }();
3766 
3767   SCEV::NoWrapFlags OffsetWrap =
3768     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3769 
3770   Type *CurTy = GEP->getType();
3771   bool FirstIter = true;
3772   SmallVector<const SCEV *, 4> Offsets;
3773   for (const SCEV *IndexExpr : IndexExprs) {
3774     // Compute the (potentially symbolic) offset in bytes for this index.
3775     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3776       // For a struct, add the member offset.
3777       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3778       unsigned FieldNo = Index->getZExtValue();
3779       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3780       Offsets.push_back(FieldOffset);
3781 
3782       // Update CurTy to the type of the field at Index.
3783       CurTy = STy->getTypeAtIndex(Index);
3784     } else {
3785       // Update CurTy to its element type.
3786       if (FirstIter) {
3787         assert(isa<PointerType>(CurTy) &&
3788                "The first index of a GEP indexes a pointer");
3789         CurTy = GEP->getSourceElementType();
3790         FirstIter = false;
3791       } else {
3792         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3793       }
3794       // For an array, add the element offset, explicitly scaled.
3795       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3796       // Getelementptr indices are signed.
3797       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3798 
3799       // Multiply the index by the element size to compute the element offset.
3800       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3801       Offsets.push_back(LocalOffset);
3802     }
3803   }
3804 
3805   // Handle degenerate case of GEP without offsets.
3806   if (Offsets.empty())
3807     return BaseExpr;
3808 
3809   // Add the offsets together, assuming nsw if inbounds.
3810   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3811   // Add the base address and the offset. We cannot use the nsw flag, as the
3812   // base address is unsigned. However, if we know that the offset is
3813   // non-negative, we can use nuw.
3814   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3815                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3816   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3817   assert(BaseExpr->getType() == GEPExpr->getType() &&
3818          "GEP should not change type mid-flight.");
3819   return GEPExpr;
3820 }
3821 
3822 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3823                                                ArrayRef<const SCEV *> Ops) {
3824   FoldingSetNodeID ID;
3825   ID.AddInteger(SCEVType);
3826   for (const SCEV *Op : Ops)
3827     ID.AddPointer(Op);
3828   void *IP = nullptr;
3829   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3830 }
3831 
3832 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3833   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3834   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3835 }
3836 
3837 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3838                                            SmallVectorImpl<const SCEV *> &Ops) {
3839   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3840   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3841   if (Ops.size() == 1) return Ops[0];
3842 #ifndef NDEBUG
3843   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3844   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3845     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3846            "Operand types don't match!");
3847     assert(Ops[0]->getType()->isPointerTy() ==
3848                Ops[i]->getType()->isPointerTy() &&
3849            "min/max should be consistently pointerish");
3850   }
3851 #endif
3852 
3853   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3854   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3855 
3856   // Sort by complexity, this groups all similar expression types together.
3857   GroupByComplexity(Ops, &LI, DT);
3858 
3859   // Check if we have created the same expression before.
3860   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3861     return S;
3862   }
3863 
3864   // If there are any constants, fold them together.
3865   unsigned Idx = 0;
3866   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3867     ++Idx;
3868     assert(Idx < Ops.size());
3869     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3870       if (Kind == scSMaxExpr)
3871         return APIntOps::smax(LHS, RHS);
3872       else if (Kind == scSMinExpr)
3873         return APIntOps::smin(LHS, RHS);
3874       else if (Kind == scUMaxExpr)
3875         return APIntOps::umax(LHS, RHS);
3876       else if (Kind == scUMinExpr)
3877         return APIntOps::umin(LHS, RHS);
3878       llvm_unreachable("Unknown SCEV min/max opcode");
3879     };
3880 
3881     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3882       // We found two constants, fold them together!
3883       ConstantInt *Fold = ConstantInt::get(
3884           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3885       Ops[0] = getConstant(Fold);
3886       Ops.erase(Ops.begin()+1);  // Erase the folded element
3887       if (Ops.size() == 1) return Ops[0];
3888       LHSC = cast<SCEVConstant>(Ops[0]);
3889     }
3890 
3891     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3892     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3893 
3894     if (IsMax ? IsMinV : IsMaxV) {
3895       // If we are left with a constant minimum(/maximum)-int, strip it off.
3896       Ops.erase(Ops.begin());
3897       --Idx;
3898     } else if (IsMax ? IsMaxV : IsMinV) {
3899       // If we have a max(/min) with a constant maximum(/minimum)-int,
3900       // it will always be the extremum.
3901       return LHSC;
3902     }
3903 
3904     if (Ops.size() == 1) return Ops[0];
3905   }
3906 
3907   // Find the first operation of the same kind
3908   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3909     ++Idx;
3910 
3911   // Check to see if one of the operands is of the same kind. If so, expand its
3912   // operands onto our operand list, and recurse to simplify.
3913   if (Idx < Ops.size()) {
3914     bool DeletedAny = false;
3915     while (Ops[Idx]->getSCEVType() == Kind) {
3916       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3917       Ops.erase(Ops.begin()+Idx);
3918       append_range(Ops, SMME->operands());
3919       DeletedAny = true;
3920     }
3921 
3922     if (DeletedAny)
3923       return getMinMaxExpr(Kind, Ops);
3924   }
3925 
3926   // Okay, check to see if the same value occurs in the operand list twice.  If
3927   // so, delete one.  Since we sorted the list, these values are required to
3928   // be adjacent.
3929   llvm::CmpInst::Predicate GEPred =
3930       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3931   llvm::CmpInst::Predicate LEPred =
3932       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3933   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3934   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3935   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3936     if (Ops[i] == Ops[i + 1] ||
3937         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3938       //  X op Y op Y  -->  X op Y
3939       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3940       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3941       --i;
3942       --e;
3943     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3944                                                Ops[i + 1])) {
3945       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3946       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3947       --i;
3948       --e;
3949     }
3950   }
3951 
3952   if (Ops.size() == 1) return Ops[0];
3953 
3954   assert(!Ops.empty() && "Reduced smax down to nothing!");
3955 
3956   // Okay, it looks like we really DO need an expr.  Check to see if we
3957   // already have one, otherwise create a new one.
3958   FoldingSetNodeID ID;
3959   ID.AddInteger(Kind);
3960   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3961     ID.AddPointer(Ops[i]);
3962   void *IP = nullptr;
3963   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3964   if (ExistingSCEV)
3965     return ExistingSCEV;
3966   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3967   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3968   SCEV *S = new (SCEVAllocator)
3969       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3970 
3971   UniqueSCEVs.InsertNode(S, IP);
3972   registerUser(S, Ops);
3973   return S;
3974 }
3975 
3976 namespace {
3977 
3978 class SCEVSequentialMinMaxDeduplicatingVisitor final
3979     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3980                          std::optional<const SCEV *>> {
3981   using RetVal = std::optional<const SCEV *>;
3982   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3983 
3984   ScalarEvolution &SE;
3985   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3986   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3987   SmallPtrSet<const SCEV *, 16> SeenOps;
3988 
3989   bool canRecurseInto(SCEVTypes Kind) const {
3990     // We can only recurse into the SCEV expression of the same effective type
3991     // as the type of our root SCEV expression.
3992     return RootKind == Kind || NonSequentialRootKind == Kind;
3993   };
3994 
3995   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3996     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3997            "Only for min/max expressions.");
3998     SCEVTypes Kind = S->getSCEVType();
3999 
4000     if (!canRecurseInto(Kind))
4001       return S;
4002 
4003     auto *NAry = cast<SCEVNAryExpr>(S);
4004     SmallVector<const SCEV *> NewOps;
4005     bool Changed = visit(Kind, NAry->operands(), NewOps);
4006 
4007     if (!Changed)
4008       return S;
4009     if (NewOps.empty())
4010       return std::nullopt;
4011 
4012     return isa<SCEVSequentialMinMaxExpr>(S)
4013                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
4014                : SE.getMinMaxExpr(Kind, NewOps);
4015   }
4016 
4017   RetVal visit(const SCEV *S) {
4018     // Has the whole operand been seen already?
4019     if (!SeenOps.insert(S).second)
4020       return std::nullopt;
4021     return Base::visit(S);
4022   }
4023 
4024 public:
4025   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4026                                            SCEVTypes RootKind)
4027       : SE(SE), RootKind(RootKind),
4028         NonSequentialRootKind(
4029             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4030                 RootKind)) {}
4031 
4032   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4033                          SmallVectorImpl<const SCEV *> &NewOps) {
4034     bool Changed = false;
4035     SmallVector<const SCEV *> Ops;
4036     Ops.reserve(OrigOps.size());
4037 
4038     for (const SCEV *Op : OrigOps) {
4039       RetVal NewOp = visit(Op);
4040       if (NewOp != Op)
4041         Changed = true;
4042       if (NewOp)
4043         Ops.emplace_back(*NewOp);
4044     }
4045 
4046     if (Changed)
4047       NewOps = std::move(Ops);
4048     return Changed;
4049   }
4050 
4051   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4052 
4053   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4054 
4055   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4056 
4057   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4058 
4059   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4060 
4061   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4062 
4063   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4064 
4065   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4066 
4067   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4068 
4069   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4070     return visitAnyMinMaxExpr(Expr);
4071   }
4072 
4073   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4074     return visitAnyMinMaxExpr(Expr);
4075   }
4076 
4077   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4078     return visitAnyMinMaxExpr(Expr);
4079   }
4080 
4081   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4082     return visitAnyMinMaxExpr(Expr);
4083   }
4084 
4085   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4086     return visitAnyMinMaxExpr(Expr);
4087   }
4088 
4089   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4090 
4091   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4092 };
4093 
4094 } // namespace
4095 
4096 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4097   switch (Kind) {
4098   case scConstant:
4099   case scTruncate:
4100   case scZeroExtend:
4101   case scSignExtend:
4102   case scPtrToInt:
4103   case scAddExpr:
4104   case scMulExpr:
4105   case scUDivExpr:
4106   case scAddRecExpr:
4107   case scUMaxExpr:
4108   case scSMaxExpr:
4109   case scUMinExpr:
4110   case scSMinExpr:
4111   case scUnknown:
4112     // If any operand is poison, the whole expression is poison.
4113     return true;
4114   case scSequentialUMinExpr:
4115     // FIXME: if the *first* operand is poison, the whole expression is poison.
4116     return false; // Pessimistically, say that it does not propagate poison.
4117   case scCouldNotCompute:
4118     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4119   }
4120   llvm_unreachable("Unknown SCEV kind!");
4121 }
4122 
4123 /// Return true if V is poison given that AssumedPoison is already poison.
4124 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4125   // The only way poison may be introduced in a SCEV expression is from a
4126   // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4127   // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4128   // introduce poison -- they encode guaranteed, non-speculated knowledge.
4129   //
4130   // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4131   // with the notable exception of umin_seq, where only poison from the first
4132   // operand is (unconditionally) propagated.
4133   struct SCEVPoisonCollector {
4134     bool LookThroughSeq;
4135     SmallPtrSet<const SCEV *, 4> MaybePoison;
4136     SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {}
4137 
4138     bool follow(const SCEV *S) {
4139       if (!scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) {
4140         switch (S->getSCEVType()) {
4141         case scConstant:
4142         case scTruncate:
4143         case scZeroExtend:
4144         case scSignExtend:
4145         case scPtrToInt:
4146         case scAddExpr:
4147         case scMulExpr:
4148         case scUDivExpr:
4149         case scAddRecExpr:
4150         case scUMaxExpr:
4151         case scSMaxExpr:
4152         case scUMinExpr:
4153         case scSMinExpr:
4154         case scUnknown:
4155           llvm_unreachable("These all unconditionally propagate poison.");
4156         case scSequentialUMinExpr:
4157           // TODO: We can always follow the first operand,
4158           // but the SCEVTraversal API doesn't support this.
4159           if (!LookThroughSeq)
4160             return false;
4161           break;
4162         case scCouldNotCompute:
4163           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4164         }
4165       }
4166 
4167       if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4168         if (!isGuaranteedNotToBePoison(SU->getValue()))
4169           MaybePoison.insert(S);
4170       }
4171       return true;
4172     }
4173     bool isDone() const { return false; }
4174   };
4175 
4176   // First collect all SCEVs that might result in AssumedPoison to be poison.
4177   // We need to look through umin_seq here, because we want to find all SCEVs
4178   // that *might* result in poison, not only those that are *required* to.
4179   SCEVPoisonCollector PC1(/* LookThroughSeq */ true);
4180   visitAll(AssumedPoison, PC1);
4181 
4182   // AssumedPoison is never poison. As the assumption is false, the implication
4183   // is true. Don't bother walking the other SCEV in this case.
4184   if (PC1.MaybePoison.empty())
4185     return true;
4186 
4187   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4188   // as well. We cannot look through umin_seq here, as its argument only *may*
4189   // make the result poison.
4190   SCEVPoisonCollector PC2(/* LookThroughSeq */ false);
4191   visitAll(S, PC2);
4192 
4193   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4194   // it will also make S poison by being part of PC2.MaybePoison.
4195   return all_of(PC1.MaybePoison,
4196                 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); });
4197 }
4198 
4199 const SCEV *
4200 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4201                                          SmallVectorImpl<const SCEV *> &Ops) {
4202   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4203          "Not a SCEVSequentialMinMaxExpr!");
4204   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4205   if (Ops.size() == 1)
4206     return Ops[0];
4207 #ifndef NDEBUG
4208   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4209   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4210     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4211            "Operand types don't match!");
4212     assert(Ops[0]->getType()->isPointerTy() ==
4213                Ops[i]->getType()->isPointerTy() &&
4214            "min/max should be consistently pointerish");
4215   }
4216 #endif
4217 
4218   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4219   // so we can *NOT* do any kind of sorting of the expressions!
4220 
4221   // Check if we have created the same expression before.
4222   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4223     return S;
4224 
4225   // FIXME: there are *some* simplifications that we can do here.
4226 
4227   // Keep only the first instance of an operand.
4228   {
4229     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4230     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4231     if (Changed)
4232       return getSequentialMinMaxExpr(Kind, Ops);
4233   }
4234 
4235   // Check to see if one of the operands is of the same kind. If so, expand its
4236   // operands onto our operand list, and recurse to simplify.
4237   {
4238     unsigned Idx = 0;
4239     bool DeletedAny = false;
4240     while (Idx < Ops.size()) {
4241       if (Ops[Idx]->getSCEVType() != Kind) {
4242         ++Idx;
4243         continue;
4244       }
4245       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4246       Ops.erase(Ops.begin() + Idx);
4247       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4248                  SMME->operands().end());
4249       DeletedAny = true;
4250     }
4251 
4252     if (DeletedAny)
4253       return getSequentialMinMaxExpr(Kind, Ops);
4254   }
4255 
4256   const SCEV *SaturationPoint;
4257   ICmpInst::Predicate Pred;
4258   switch (Kind) {
4259   case scSequentialUMinExpr:
4260     SaturationPoint = getZero(Ops[0]->getType());
4261     Pred = ICmpInst::ICMP_ULE;
4262     break;
4263   default:
4264     llvm_unreachable("Not a sequential min/max type.");
4265   }
4266 
4267   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4268     // We can replace %x umin_seq %y with %x umin %y if either:
4269     //  * %y being poison implies %x is also poison.
4270     //  * %x cannot be the saturating value (e.g. zero for umin).
4271     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4272         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4273                                         SaturationPoint)) {
4274       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4275       Ops[i - 1] = getMinMaxExpr(
4276           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4277           SeqOps);
4278       Ops.erase(Ops.begin() + i);
4279       return getSequentialMinMaxExpr(Kind, Ops);
4280     }
4281     // Fold %x umin_seq %y to %x if %x ule %y.
4282     // TODO: We might be able to prove the predicate for a later operand.
4283     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4284       Ops.erase(Ops.begin() + i);
4285       return getSequentialMinMaxExpr(Kind, Ops);
4286     }
4287   }
4288 
4289   // Okay, it looks like we really DO need an expr.  Check to see if we
4290   // already have one, otherwise create a new one.
4291   FoldingSetNodeID ID;
4292   ID.AddInteger(Kind);
4293   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4294     ID.AddPointer(Ops[i]);
4295   void *IP = nullptr;
4296   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4297   if (ExistingSCEV)
4298     return ExistingSCEV;
4299 
4300   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4301   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4302   SCEV *S = new (SCEVAllocator)
4303       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4304 
4305   UniqueSCEVs.InsertNode(S, IP);
4306   registerUser(S, Ops);
4307   return S;
4308 }
4309 
4310 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4311   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4312   return getSMaxExpr(Ops);
4313 }
4314 
4315 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4316   return getMinMaxExpr(scSMaxExpr, Ops);
4317 }
4318 
4319 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4320   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4321   return getUMaxExpr(Ops);
4322 }
4323 
4324 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4325   return getMinMaxExpr(scUMaxExpr, Ops);
4326 }
4327 
4328 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4329                                          const SCEV *RHS) {
4330   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4331   return getSMinExpr(Ops);
4332 }
4333 
4334 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4335   return getMinMaxExpr(scSMinExpr, Ops);
4336 }
4337 
4338 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4339                                          bool Sequential) {
4340   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4341   return getUMinExpr(Ops, Sequential);
4342 }
4343 
4344 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4345                                          bool Sequential) {
4346   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4347                     : getMinMaxExpr(scUMinExpr, Ops);
4348 }
4349 
4350 const SCEV *
4351 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4352                                              ScalableVectorType *ScalableTy) {
4353   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4354   Constant *One = ConstantInt::get(IntTy, 1);
4355   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4356   // Note that the expression we created is the final expression, we don't
4357   // want to simplify it any further Also, if we call a normal getSCEV(),
4358   // we'll end up in an endless recursion. So just create an SCEVUnknown.
4359   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4360 }
4361 
4362 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4363   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4364     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4365   // We can bypass creating a target-independent constant expression and then
4366   // folding it back into a ConstantInt. This is just a compile-time
4367   // optimization.
4368   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4369 }
4370 
4371 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4372   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4373     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4374   // We can bypass creating a target-independent constant expression and then
4375   // folding it back into a ConstantInt. This is just a compile-time
4376   // optimization.
4377   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4378 }
4379 
4380 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4381                                              StructType *STy,
4382                                              unsigned FieldNo) {
4383   // We can bypass creating a target-independent constant expression and then
4384   // folding it back into a ConstantInt. This is just a compile-time
4385   // optimization.
4386   return getConstant(
4387       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4388 }
4389 
4390 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4391   // Don't attempt to do anything other than create a SCEVUnknown object
4392   // here.  createSCEV only calls getUnknown after checking for all other
4393   // interesting possibilities, and any other code that calls getUnknown
4394   // is doing so in order to hide a value from SCEV canonicalization.
4395 
4396   FoldingSetNodeID ID;
4397   ID.AddInteger(scUnknown);
4398   ID.AddPointer(V);
4399   void *IP = nullptr;
4400   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4401     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4402            "Stale SCEVUnknown in uniquing map!");
4403     return S;
4404   }
4405   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4406                                             FirstUnknown);
4407   FirstUnknown = cast<SCEVUnknown>(S);
4408   UniqueSCEVs.InsertNode(S, IP);
4409   return S;
4410 }
4411 
4412 //===----------------------------------------------------------------------===//
4413 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4414 //
4415 
4416 /// Test if values of the given type are analyzable within the SCEV
4417 /// framework. This primarily includes integer types, and it can optionally
4418 /// include pointer types if the ScalarEvolution class has access to
4419 /// target-specific information.
4420 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4421   // Integers and pointers are always SCEVable.
4422   return Ty->isIntOrPtrTy();
4423 }
4424 
4425 /// Return the size in bits of the specified type, for which isSCEVable must
4426 /// return true.
4427 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4428   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4429   if (Ty->isPointerTy())
4430     return getDataLayout().getIndexTypeSizeInBits(Ty);
4431   return getDataLayout().getTypeSizeInBits(Ty);
4432 }
4433 
4434 /// Return a type with the same bitwidth as the given type and which represents
4435 /// how SCEV will treat the given type, for which isSCEVable must return
4436 /// true. For pointer types, this is the pointer index sized integer type.
4437 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4438   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4439 
4440   if (Ty->isIntegerTy())
4441     return Ty;
4442 
4443   // The only other support type is pointer.
4444   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4445   return getDataLayout().getIndexType(Ty);
4446 }
4447 
4448 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4449   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4450 }
4451 
4452 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4453                                                          const SCEV *B) {
4454   /// For a valid use point to exist, the defining scope of one operand
4455   /// must dominate the other.
4456   bool PreciseA, PreciseB;
4457   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4458   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4459   if (!PreciseA || !PreciseB)
4460     // Can't tell.
4461     return false;
4462   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4463     DT.dominates(ScopeB, ScopeA);
4464 }
4465 
4466 
4467 const SCEV *ScalarEvolution::getCouldNotCompute() {
4468   return CouldNotCompute.get();
4469 }
4470 
4471 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4472   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4473     auto *SU = dyn_cast<SCEVUnknown>(S);
4474     return SU && SU->getValue() == nullptr;
4475   });
4476 
4477   return !ContainsNulls;
4478 }
4479 
4480 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4481   HasRecMapType::iterator I = HasRecMap.find(S);
4482   if (I != HasRecMap.end())
4483     return I->second;
4484 
4485   bool FoundAddRec =
4486       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4487   HasRecMap.insert({S, FoundAddRec});
4488   return FoundAddRec;
4489 }
4490 
4491 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4492 /// by the value and offset from any ValueOffsetPair in the set.
4493 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4494   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4495   if (SI == ExprValueMap.end())
4496     return std::nullopt;
4497 #ifndef NDEBUG
4498   if (VerifySCEVMap) {
4499     // Check there is no dangling Value in the set returned.
4500     for (Value *V : SI->second)
4501       assert(ValueExprMap.count(V));
4502   }
4503 #endif
4504   return SI->second.getArrayRef();
4505 }
4506 
4507 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4508 /// cannot be used separately. eraseValueFromMap should be used to remove
4509 /// V from ValueExprMap and ExprValueMap at the same time.
4510 void ScalarEvolution::eraseValueFromMap(Value *V) {
4511   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4512   if (I != ValueExprMap.end()) {
4513     auto EVIt = ExprValueMap.find(I->second);
4514     bool Removed = EVIt->second.remove(V);
4515     (void) Removed;
4516     assert(Removed && "Value not in ExprValueMap?");
4517     ValueExprMap.erase(I);
4518   }
4519 }
4520 
4521 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4522   // A recursive query may have already computed the SCEV. It should be
4523   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4524   // inferred nowrap flags.
4525   auto It = ValueExprMap.find_as(V);
4526   if (It == ValueExprMap.end()) {
4527     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4528     ExprValueMap[S].insert(V);
4529   }
4530 }
4531 
4532 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4533 /// create a new one.
4534 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4535   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4536 
4537   if (const SCEV *S = getExistingSCEV(V))
4538     return S;
4539   return createSCEVIter(V);
4540 }
4541 
4542 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4543   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4544 
4545   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4546   if (I != ValueExprMap.end()) {
4547     const SCEV *S = I->second;
4548     assert(checkValidity(S) &&
4549            "existing SCEV has not been properly invalidated");
4550     return S;
4551   }
4552   return nullptr;
4553 }
4554 
4555 /// Return a SCEV corresponding to -V = -1*V
4556 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4557                                              SCEV::NoWrapFlags Flags) {
4558   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4559     return getConstant(
4560                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4561 
4562   Type *Ty = V->getType();
4563   Ty = getEffectiveSCEVType(Ty);
4564   return getMulExpr(V, getMinusOne(Ty), Flags);
4565 }
4566 
4567 /// If Expr computes ~A, return A else return nullptr
4568 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4569   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4570   if (!Add || Add->getNumOperands() != 2 ||
4571       !Add->getOperand(0)->isAllOnesValue())
4572     return nullptr;
4573 
4574   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4575   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4576       !AddRHS->getOperand(0)->isAllOnesValue())
4577     return nullptr;
4578 
4579   return AddRHS->getOperand(1);
4580 }
4581 
4582 /// Return a SCEV corresponding to ~V = -1-V
4583 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4584   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4585 
4586   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4587     return getConstant(
4588                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4589 
4590   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4591   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4592     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4593       SmallVector<const SCEV *, 2> MatchedOperands;
4594       for (const SCEV *Operand : MME->operands()) {
4595         const SCEV *Matched = MatchNotExpr(Operand);
4596         if (!Matched)
4597           return (const SCEV *)nullptr;
4598         MatchedOperands.push_back(Matched);
4599       }
4600       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4601                            MatchedOperands);
4602     };
4603     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4604       return Replaced;
4605   }
4606 
4607   Type *Ty = V->getType();
4608   Ty = getEffectiveSCEVType(Ty);
4609   return getMinusSCEV(getMinusOne(Ty), V);
4610 }
4611 
4612 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4613   assert(P->getType()->isPointerTy());
4614 
4615   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4616     // The base of an AddRec is the first operand.
4617     SmallVector<const SCEV *> Ops{AddRec->operands()};
4618     Ops[0] = removePointerBase(Ops[0]);
4619     // Don't try to transfer nowrap flags for now. We could in some cases
4620     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4621     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4622   }
4623   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4624     // The base of an Add is the pointer operand.
4625     SmallVector<const SCEV *> Ops{Add->operands()};
4626     const SCEV **PtrOp = nullptr;
4627     for (const SCEV *&AddOp : Ops) {
4628       if (AddOp->getType()->isPointerTy()) {
4629         assert(!PtrOp && "Cannot have multiple pointer ops");
4630         PtrOp = &AddOp;
4631       }
4632     }
4633     *PtrOp = removePointerBase(*PtrOp);
4634     // Don't try to transfer nowrap flags for now. We could in some cases
4635     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4636     return getAddExpr(Ops);
4637   }
4638   // Any other expression must be a pointer base.
4639   return getZero(P->getType());
4640 }
4641 
4642 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4643                                           SCEV::NoWrapFlags Flags,
4644                                           unsigned Depth) {
4645   // Fast path: X - X --> 0.
4646   if (LHS == RHS)
4647     return getZero(LHS->getType());
4648 
4649   // If we subtract two pointers with different pointer bases, bail.
4650   // Eventually, we're going to add an assertion to getMulExpr that we
4651   // can't multiply by a pointer.
4652   if (RHS->getType()->isPointerTy()) {
4653     if (!LHS->getType()->isPointerTy() ||
4654         getPointerBase(LHS) != getPointerBase(RHS))
4655       return getCouldNotCompute();
4656     LHS = removePointerBase(LHS);
4657     RHS = removePointerBase(RHS);
4658   }
4659 
4660   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4661   // makes it so that we cannot make much use of NUW.
4662   auto AddFlags = SCEV::FlagAnyWrap;
4663   const bool RHSIsNotMinSigned =
4664       !getSignedRangeMin(RHS).isMinSignedValue();
4665   if (hasFlags(Flags, SCEV::FlagNSW)) {
4666     // Let M be the minimum representable signed value. Then (-1)*RHS
4667     // signed-wraps if and only if RHS is M. That can happen even for
4668     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4669     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4670     // (-1)*RHS, we need to prove that RHS != M.
4671     //
4672     // If LHS is non-negative and we know that LHS - RHS does not
4673     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4674     // either by proving that RHS > M or that LHS >= 0.
4675     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4676       AddFlags = SCEV::FlagNSW;
4677     }
4678   }
4679 
4680   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4681   // RHS is NSW and LHS >= 0.
4682   //
4683   // The difficulty here is that the NSW flag may have been proven
4684   // relative to a loop that is to be found in a recurrence in LHS and
4685   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4686   // larger scope than intended.
4687   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4688 
4689   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4690 }
4691 
4692 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4693                                                      unsigned Depth) {
4694   Type *SrcTy = V->getType();
4695   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4696          "Cannot truncate or zero extend with non-integer arguments!");
4697   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4698     return V;  // No conversion
4699   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4700     return getTruncateExpr(V, Ty, Depth);
4701   return getZeroExtendExpr(V, Ty, Depth);
4702 }
4703 
4704 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4705                                                      unsigned Depth) {
4706   Type *SrcTy = V->getType();
4707   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4708          "Cannot truncate or zero extend with non-integer arguments!");
4709   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4710     return V;  // No conversion
4711   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4712     return getTruncateExpr(V, Ty, Depth);
4713   return getSignExtendExpr(V, Ty, Depth);
4714 }
4715 
4716 const SCEV *
4717 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4718   Type *SrcTy = V->getType();
4719   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4720          "Cannot noop or zero extend with non-integer arguments!");
4721   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4722          "getNoopOrZeroExtend cannot truncate!");
4723   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4724     return V;  // No conversion
4725   return getZeroExtendExpr(V, Ty);
4726 }
4727 
4728 const SCEV *
4729 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4730   Type *SrcTy = V->getType();
4731   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4732          "Cannot noop or sign extend with non-integer arguments!");
4733   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4734          "getNoopOrSignExtend cannot truncate!");
4735   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4736     return V;  // No conversion
4737   return getSignExtendExpr(V, Ty);
4738 }
4739 
4740 const SCEV *
4741 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4742   Type *SrcTy = V->getType();
4743   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4744          "Cannot noop or any extend with non-integer arguments!");
4745   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4746          "getNoopOrAnyExtend cannot truncate!");
4747   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4748     return V;  // No conversion
4749   return getAnyExtendExpr(V, Ty);
4750 }
4751 
4752 const SCEV *
4753 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4754   Type *SrcTy = V->getType();
4755   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4756          "Cannot truncate or noop with non-integer arguments!");
4757   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4758          "getTruncateOrNoop cannot extend!");
4759   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4760     return V;  // No conversion
4761   return getTruncateExpr(V, Ty);
4762 }
4763 
4764 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4765                                                         const SCEV *RHS) {
4766   const SCEV *PromotedLHS = LHS;
4767   const SCEV *PromotedRHS = RHS;
4768 
4769   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4770     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4771   else
4772     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4773 
4774   return getUMaxExpr(PromotedLHS, PromotedRHS);
4775 }
4776 
4777 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4778                                                         const SCEV *RHS,
4779                                                         bool Sequential) {
4780   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4781   return getUMinFromMismatchedTypes(Ops, Sequential);
4782 }
4783 
4784 const SCEV *
4785 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4786                                             bool Sequential) {
4787   assert(!Ops.empty() && "At least one operand must be!");
4788   // Trivial case.
4789   if (Ops.size() == 1)
4790     return Ops[0];
4791 
4792   // Find the max type first.
4793   Type *MaxType = nullptr;
4794   for (const auto *S : Ops)
4795     if (MaxType)
4796       MaxType = getWiderType(MaxType, S->getType());
4797     else
4798       MaxType = S->getType();
4799   assert(MaxType && "Failed to find maximum type!");
4800 
4801   // Extend all ops to max type.
4802   SmallVector<const SCEV *, 2> PromotedOps;
4803   for (const auto *S : Ops)
4804     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4805 
4806   // Generate umin.
4807   return getUMinExpr(PromotedOps, Sequential);
4808 }
4809 
4810 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4811   // A pointer operand may evaluate to a nonpointer expression, such as null.
4812   if (!V->getType()->isPointerTy())
4813     return V;
4814 
4815   while (true) {
4816     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4817       V = AddRec->getStart();
4818     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4819       const SCEV *PtrOp = nullptr;
4820       for (const SCEV *AddOp : Add->operands()) {
4821         if (AddOp->getType()->isPointerTy()) {
4822           assert(!PtrOp && "Cannot have multiple pointer ops");
4823           PtrOp = AddOp;
4824         }
4825       }
4826       assert(PtrOp && "Must have pointer op");
4827       V = PtrOp;
4828     } else // Not something we can look further into.
4829       return V;
4830   }
4831 }
4832 
4833 /// Push users of the given Instruction onto the given Worklist.
4834 static void PushDefUseChildren(Instruction *I,
4835                                SmallVectorImpl<Instruction *> &Worklist,
4836                                SmallPtrSetImpl<Instruction *> &Visited) {
4837   // Push the def-use children onto the Worklist stack.
4838   for (User *U : I->users()) {
4839     auto *UserInsn = cast<Instruction>(U);
4840     if (Visited.insert(UserInsn).second)
4841       Worklist.push_back(UserInsn);
4842   }
4843 }
4844 
4845 namespace {
4846 
4847 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4848 /// expression in case its Loop is L. If it is not L then
4849 /// if IgnoreOtherLoops is true then use AddRec itself
4850 /// otherwise rewrite cannot be done.
4851 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4852 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4853 public:
4854   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4855                              bool IgnoreOtherLoops = true) {
4856     SCEVInitRewriter Rewriter(L, SE);
4857     const SCEV *Result = Rewriter.visit(S);
4858     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4859       return SE.getCouldNotCompute();
4860     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4861                ? SE.getCouldNotCompute()
4862                : Result;
4863   }
4864 
4865   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4866     if (!SE.isLoopInvariant(Expr, L))
4867       SeenLoopVariantSCEVUnknown = true;
4868     return Expr;
4869   }
4870 
4871   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4872     // Only re-write AddRecExprs for this loop.
4873     if (Expr->getLoop() == L)
4874       return Expr->getStart();
4875     SeenOtherLoops = true;
4876     return Expr;
4877   }
4878 
4879   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4880 
4881   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4882 
4883 private:
4884   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4885       : SCEVRewriteVisitor(SE), L(L) {}
4886 
4887   const Loop *L;
4888   bool SeenLoopVariantSCEVUnknown = false;
4889   bool SeenOtherLoops = false;
4890 };
4891 
4892 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4893 /// increment expression in case its Loop is L. If it is not L then
4894 /// use AddRec itself.
4895 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4896 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4897 public:
4898   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4899     SCEVPostIncRewriter Rewriter(L, SE);
4900     const SCEV *Result = Rewriter.visit(S);
4901     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4902         ? SE.getCouldNotCompute()
4903         : Result;
4904   }
4905 
4906   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4907     if (!SE.isLoopInvariant(Expr, L))
4908       SeenLoopVariantSCEVUnknown = true;
4909     return Expr;
4910   }
4911 
4912   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4913     // Only re-write AddRecExprs for this loop.
4914     if (Expr->getLoop() == L)
4915       return Expr->getPostIncExpr(SE);
4916     SeenOtherLoops = true;
4917     return Expr;
4918   }
4919 
4920   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4921 
4922   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4923 
4924 private:
4925   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4926       : SCEVRewriteVisitor(SE), L(L) {}
4927 
4928   const Loop *L;
4929   bool SeenLoopVariantSCEVUnknown = false;
4930   bool SeenOtherLoops = false;
4931 };
4932 
4933 /// This class evaluates the compare condition by matching it against the
4934 /// condition of loop latch. If there is a match we assume a true value
4935 /// for the condition while building SCEV nodes.
4936 class SCEVBackedgeConditionFolder
4937     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4938 public:
4939   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4940                              ScalarEvolution &SE) {
4941     bool IsPosBECond = false;
4942     Value *BECond = nullptr;
4943     if (BasicBlock *Latch = L->getLoopLatch()) {
4944       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4945       if (BI && BI->isConditional()) {
4946         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4947                "Both outgoing branches should not target same header!");
4948         BECond = BI->getCondition();
4949         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4950       } else {
4951         return S;
4952       }
4953     }
4954     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4955     return Rewriter.visit(S);
4956   }
4957 
4958   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4959     const SCEV *Result = Expr;
4960     bool InvariantF = SE.isLoopInvariant(Expr, L);
4961 
4962     if (!InvariantF) {
4963       Instruction *I = cast<Instruction>(Expr->getValue());
4964       switch (I->getOpcode()) {
4965       case Instruction::Select: {
4966         SelectInst *SI = cast<SelectInst>(I);
4967         std::optional<const SCEV *> Res =
4968             compareWithBackedgeCondition(SI->getCondition());
4969         if (Res) {
4970           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
4971           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4972         }
4973         break;
4974       }
4975       default: {
4976         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4977         if (Res)
4978           Result = *Res;
4979         break;
4980       }
4981       }
4982     }
4983     return Result;
4984   }
4985 
4986 private:
4987   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4988                                        bool IsPosBECond, ScalarEvolution &SE)
4989       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4990         IsPositiveBECond(IsPosBECond) {}
4991 
4992   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4993 
4994   const Loop *L;
4995   /// Loop back condition.
4996   Value *BackedgeCond = nullptr;
4997   /// Set to true if loop back is on positive branch condition.
4998   bool IsPositiveBECond;
4999 };
5000 
5001 std::optional<const SCEV *>
5002 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5003 
5004   // If value matches the backedge condition for loop latch,
5005   // then return a constant evolution node based on loopback
5006   // branch taken.
5007   if (BackedgeCond == IC)
5008     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
5009                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
5010   return std::nullopt;
5011 }
5012 
5013 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5014 public:
5015   static const SCEV *rewrite(const SCEV *S, const Loop *L,
5016                              ScalarEvolution &SE) {
5017     SCEVShiftRewriter Rewriter(L, SE);
5018     const SCEV *Result = Rewriter.visit(S);
5019     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5020   }
5021 
5022   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5023     // Only allow AddRecExprs for this loop.
5024     if (!SE.isLoopInvariant(Expr, L))
5025       Valid = false;
5026     return Expr;
5027   }
5028 
5029   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5030     if (Expr->getLoop() == L && Expr->isAffine())
5031       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5032     Valid = false;
5033     return Expr;
5034   }
5035 
5036   bool isValid() { return Valid; }
5037 
5038 private:
5039   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5040       : SCEVRewriteVisitor(SE), L(L) {}
5041 
5042   const Loop *L;
5043   bool Valid = true;
5044 };
5045 
5046 } // end anonymous namespace
5047 
5048 SCEV::NoWrapFlags
5049 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5050   if (!AR->isAffine())
5051     return SCEV::FlagAnyWrap;
5052 
5053   using OBO = OverflowingBinaryOperator;
5054 
5055   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5056 
5057   if (!AR->hasNoSignedWrap()) {
5058     ConstantRange AddRecRange = getSignedRange(AR);
5059     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5060 
5061     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5062         Instruction::Add, IncRange, OBO::NoSignedWrap);
5063     if (NSWRegion.contains(AddRecRange))
5064       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5065   }
5066 
5067   if (!AR->hasNoUnsignedWrap()) {
5068     ConstantRange AddRecRange = getUnsignedRange(AR);
5069     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5070 
5071     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5072         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5073     if (NUWRegion.contains(AddRecRange))
5074       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5075   }
5076 
5077   return Result;
5078 }
5079 
5080 SCEV::NoWrapFlags
5081 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5082   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5083 
5084   if (AR->hasNoSignedWrap())
5085     return Result;
5086 
5087   if (!AR->isAffine())
5088     return Result;
5089 
5090   // This function can be expensive, only try to prove NSW once per AddRec.
5091   if (!SignedWrapViaInductionTried.insert(AR).second)
5092     return Result;
5093 
5094   const SCEV *Step = AR->getStepRecurrence(*this);
5095   const Loop *L = AR->getLoop();
5096 
5097   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5098   // Note that this serves two purposes: It filters out loops that are
5099   // simply not analyzable, and it covers the case where this code is
5100   // being called from within backedge-taken count analysis, such that
5101   // attempting to ask for the backedge-taken count would likely result
5102   // in infinite recursion. In the later case, the analysis code will
5103   // cope with a conservative value, and it will take care to purge
5104   // that value once it has finished.
5105   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5106 
5107   // Normally, in the cases we can prove no-overflow via a
5108   // backedge guarding condition, we can also compute a backedge
5109   // taken count for the loop.  The exceptions are assumptions and
5110   // guards present in the loop -- SCEV is not great at exploiting
5111   // these to compute max backedge taken counts, but can still use
5112   // these to prove lack of overflow.  Use this fact to avoid
5113   // doing extra work that may not pay off.
5114 
5115   if (isa<SCEVCouldNotCompute>(MaxBECount) && AC.assumptions().empty())
5116     return Result;
5117 
5118   // If the backedge is guarded by a comparison with the pre-inc  value the
5119   // addrec is safe. Also, if the entry is guarded by a comparison with the
5120   // start value and the backedge is guarded by a comparison with the post-inc
5121   // value, the addrec is safe.
5122   ICmpInst::Predicate Pred;
5123   const SCEV *OverflowLimit =
5124     getSignedOverflowLimitForStep(Step, &Pred, this);
5125   if (OverflowLimit &&
5126       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5127        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5128     Result = setFlags(Result, SCEV::FlagNSW);
5129   }
5130   return Result;
5131 }
5132 SCEV::NoWrapFlags
5133 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5134   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5135 
5136   if (AR->hasNoUnsignedWrap())
5137     return Result;
5138 
5139   if (!AR->isAffine())
5140     return Result;
5141 
5142   // This function can be expensive, only try to prove NUW once per AddRec.
5143   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5144     return Result;
5145 
5146   const SCEV *Step = AR->getStepRecurrence(*this);
5147   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5148   const Loop *L = AR->getLoop();
5149 
5150   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5151   // Note that this serves two purposes: It filters out loops that are
5152   // simply not analyzable, and it covers the case where this code is
5153   // being called from within backedge-taken count analysis, such that
5154   // attempting to ask for the backedge-taken count would likely result
5155   // in infinite recursion. In the later case, the analysis code will
5156   // cope with a conservative value, and it will take care to purge
5157   // that value once it has finished.
5158   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5159 
5160   // Normally, in the cases we can prove no-overflow via a
5161   // backedge guarding condition, we can also compute a backedge
5162   // taken count for the loop.  The exceptions are assumptions and
5163   // guards present in the loop -- SCEV is not great at exploiting
5164   // these to compute max backedge taken counts, but can still use
5165   // these to prove lack of overflow.  Use this fact to avoid
5166   // doing extra work that may not pay off.
5167 
5168   if (isa<SCEVCouldNotCompute>(MaxBECount) && AC.assumptions().empty())
5169     return Result;
5170 
5171   // If the backedge is guarded by a comparison with the pre-inc  value the
5172   // addrec is safe. Also, if the entry is guarded by a comparison with the
5173   // start value and the backedge is guarded by a comparison with the post-inc
5174   // value, the addrec is safe.
5175   if (isKnownPositive(Step)) {
5176     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5177                                 getUnsignedRangeMax(Step));
5178     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5179         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5180       Result = setFlags(Result, SCEV::FlagNUW);
5181     }
5182   }
5183 
5184   return Result;
5185 }
5186 
5187 namespace {
5188 
5189 /// Represents an abstract binary operation.  This may exist as a
5190 /// normal instruction or constant expression, or may have been
5191 /// derived from an expression tree.
5192 struct BinaryOp {
5193   unsigned Opcode;
5194   Value *LHS;
5195   Value *RHS;
5196   bool IsNSW = false;
5197   bool IsNUW = false;
5198 
5199   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5200   /// constant expression.
5201   Operator *Op = nullptr;
5202 
5203   explicit BinaryOp(Operator *Op)
5204       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5205         Op(Op) {
5206     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5207       IsNSW = OBO->hasNoSignedWrap();
5208       IsNUW = OBO->hasNoUnsignedWrap();
5209     }
5210   }
5211 
5212   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5213                     bool IsNUW = false)
5214       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5215 };
5216 
5217 } // end anonymous namespace
5218 
5219 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5220 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5221                                              AssumptionCache &AC,
5222                                              const DominatorTree &DT,
5223                                              const Instruction *CxtI) {
5224   auto *Op = dyn_cast<Operator>(V);
5225   if (!Op)
5226     return std::nullopt;
5227 
5228   // Implementation detail: all the cleverness here should happen without
5229   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5230   // SCEV expressions when possible, and we should not break that.
5231 
5232   switch (Op->getOpcode()) {
5233   case Instruction::Add:
5234   case Instruction::Sub:
5235   case Instruction::Mul:
5236   case Instruction::UDiv:
5237   case Instruction::URem:
5238   case Instruction::And:
5239   case Instruction::AShr:
5240   case Instruction::Shl:
5241     return BinaryOp(Op);
5242 
5243   case Instruction::Or: {
5244     // LLVM loves to convert `add` of operands with no common bits
5245     // into an `or`. But SCEV really doesn't deal with `or` that well,
5246     // so try extra hard to recognize this `or` as an `add`.
5247     if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI,
5248                             &DT, /*UseInstrInfo=*/true))
5249       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5250                       /*IsNSW=*/true, /*IsNUW=*/true);
5251     return BinaryOp(Op);
5252   }
5253 
5254   case Instruction::Xor:
5255     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5256       // If the RHS of the xor is a signmask, then this is just an add.
5257       // Instcombine turns add of signmask into xor as a strength reduction step.
5258       if (RHSC->getValue().isSignMask())
5259         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5260     // Binary `xor` is a bit-wise `add`.
5261     if (V->getType()->isIntegerTy(1))
5262       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5263     return BinaryOp(Op);
5264 
5265   case Instruction::LShr:
5266     // Turn logical shift right of a constant into a unsigned divide.
5267     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5268       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5269 
5270       // If the shift count is not less than the bitwidth, the result of
5271       // the shift is undefined. Don't try to analyze it, because the
5272       // resolution chosen here may differ from the resolution chosen in
5273       // other parts of the compiler.
5274       if (SA->getValue().ult(BitWidth)) {
5275         Constant *X =
5276             ConstantInt::get(SA->getContext(),
5277                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5278         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5279       }
5280     }
5281     return BinaryOp(Op);
5282 
5283   case Instruction::ExtractValue: {
5284     auto *EVI = cast<ExtractValueInst>(Op);
5285     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5286       break;
5287 
5288     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5289     if (!WO)
5290       break;
5291 
5292     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5293     bool Signed = WO->isSigned();
5294     // TODO: Should add nuw/nsw flags for mul as well.
5295     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5296       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5297 
5298     // Now that we know that all uses of the arithmetic-result component of
5299     // CI are guarded by the overflow check, we can go ahead and pretend
5300     // that the arithmetic is non-overflowing.
5301     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5302                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5303   }
5304 
5305   default:
5306     break;
5307   }
5308 
5309   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5310   // semantics as a Sub, return a binary sub expression.
5311   if (auto *II = dyn_cast<IntrinsicInst>(V))
5312     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5313       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5314 
5315   return std::nullopt;
5316 }
5317 
5318 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5319 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5320 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5321 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5322 /// follows one of the following patterns:
5323 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5324 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5325 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5326 /// we return the type of the truncation operation, and indicate whether the
5327 /// truncated type should be treated as signed/unsigned by setting
5328 /// \p Signed to true/false, respectively.
5329 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5330                                bool &Signed, ScalarEvolution &SE) {
5331   // The case where Op == SymbolicPHI (that is, with no type conversions on
5332   // the way) is handled by the regular add recurrence creating logic and
5333   // would have already been triggered in createAddRecForPHI. Reaching it here
5334   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5335   // because one of the other operands of the SCEVAddExpr updating this PHI is
5336   // not invariant).
5337   //
5338   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5339   // this case predicates that allow us to prove that Op == SymbolicPHI will
5340   // be added.
5341   if (Op == SymbolicPHI)
5342     return nullptr;
5343 
5344   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5345   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5346   if (SourceBits != NewBits)
5347     return nullptr;
5348 
5349   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5350   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5351   if (!SExt && !ZExt)
5352     return nullptr;
5353   const SCEVTruncateExpr *Trunc =
5354       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5355            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5356   if (!Trunc)
5357     return nullptr;
5358   const SCEV *X = Trunc->getOperand();
5359   if (X != SymbolicPHI)
5360     return nullptr;
5361   Signed = SExt != nullptr;
5362   return Trunc->getType();
5363 }
5364 
5365 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5366   if (!PN->getType()->isIntegerTy())
5367     return nullptr;
5368   const Loop *L = LI.getLoopFor(PN->getParent());
5369   if (!L || L->getHeader() != PN->getParent())
5370     return nullptr;
5371   return L;
5372 }
5373 
5374 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5375 // computation that updates the phi follows the following pattern:
5376 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5377 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5378 // If so, try to see if it can be rewritten as an AddRecExpr under some
5379 // Predicates. If successful, return them as a pair. Also cache the results
5380 // of the analysis.
5381 //
5382 // Example usage scenario:
5383 //    Say the Rewriter is called for the following SCEV:
5384 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5385 //    where:
5386 //         %X = phi i64 (%Start, %BEValue)
5387 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5388 //    and call this function with %SymbolicPHI = %X.
5389 //
5390 //    The analysis will find that the value coming around the backedge has
5391 //    the following SCEV:
5392 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5393 //    Upon concluding that this matches the desired pattern, the function
5394 //    will return the pair {NewAddRec, SmallPredsVec} where:
5395 //         NewAddRec = {%Start,+,%Step}
5396 //         SmallPredsVec = {P1, P2, P3} as follows:
5397 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5398 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5399 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5400 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5401 //    under the predicates {P1,P2,P3}.
5402 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5403 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5404 //
5405 // TODO's:
5406 //
5407 // 1) Extend the Induction descriptor to also support inductions that involve
5408 //    casts: When needed (namely, when we are called in the context of the
5409 //    vectorizer induction analysis), a Set of cast instructions will be
5410 //    populated by this method, and provided back to isInductionPHI. This is
5411 //    needed to allow the vectorizer to properly record them to be ignored by
5412 //    the cost model and to avoid vectorizing them (otherwise these casts,
5413 //    which are redundant under the runtime overflow checks, will be
5414 //    vectorized, which can be costly).
5415 //
5416 // 2) Support additional induction/PHISCEV patterns: We also want to support
5417 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5418 //    after the induction update operation (the induction increment):
5419 //
5420 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5421 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5422 //
5423 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5424 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5425 //
5426 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5427 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5428 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5429   SmallVector<const SCEVPredicate *, 3> Predicates;
5430 
5431   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5432   // return an AddRec expression under some predicate.
5433 
5434   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5435   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5436   assert(L && "Expecting an integer loop header phi");
5437 
5438   // The loop may have multiple entrances or multiple exits; we can analyze
5439   // this phi as an addrec if it has a unique entry value and a unique
5440   // backedge value.
5441   Value *BEValueV = nullptr, *StartValueV = nullptr;
5442   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5443     Value *V = PN->getIncomingValue(i);
5444     if (L->contains(PN->getIncomingBlock(i))) {
5445       if (!BEValueV) {
5446         BEValueV = V;
5447       } else if (BEValueV != V) {
5448         BEValueV = nullptr;
5449         break;
5450       }
5451     } else if (!StartValueV) {
5452       StartValueV = V;
5453     } else if (StartValueV != V) {
5454       StartValueV = nullptr;
5455       break;
5456     }
5457   }
5458   if (!BEValueV || !StartValueV)
5459     return std::nullopt;
5460 
5461   const SCEV *BEValue = getSCEV(BEValueV);
5462 
5463   // If the value coming around the backedge is an add with the symbolic
5464   // value we just inserted, possibly with casts that we can ignore under
5465   // an appropriate runtime guard, then we found a simple induction variable!
5466   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5467   if (!Add)
5468     return std::nullopt;
5469 
5470   // If there is a single occurrence of the symbolic value, possibly
5471   // casted, replace it with a recurrence.
5472   unsigned FoundIndex = Add->getNumOperands();
5473   Type *TruncTy = nullptr;
5474   bool Signed;
5475   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5476     if ((TruncTy =
5477              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5478       if (FoundIndex == e) {
5479         FoundIndex = i;
5480         break;
5481       }
5482 
5483   if (FoundIndex == Add->getNumOperands())
5484     return std::nullopt;
5485 
5486   // Create an add with everything but the specified operand.
5487   SmallVector<const SCEV *, 8> Ops;
5488   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5489     if (i != FoundIndex)
5490       Ops.push_back(Add->getOperand(i));
5491   const SCEV *Accum = getAddExpr(Ops);
5492 
5493   // The runtime checks will not be valid if the step amount is
5494   // varying inside the loop.
5495   if (!isLoopInvariant(Accum, L))
5496     return std::nullopt;
5497 
5498   // *** Part2: Create the predicates
5499 
5500   // Analysis was successful: we have a phi-with-cast pattern for which we
5501   // can return an AddRec expression under the following predicates:
5502   //
5503   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5504   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5505   // P2: An Equal predicate that guarantees that
5506   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5507   // P3: An Equal predicate that guarantees that
5508   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5509   //
5510   // As we next prove, the above predicates guarantee that:
5511   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5512   //
5513   //
5514   // More formally, we want to prove that:
5515   //     Expr(i+1) = Start + (i+1) * Accum
5516   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5517   //
5518   // Given that:
5519   // 1) Expr(0) = Start
5520   // 2) Expr(1) = Start + Accum
5521   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5522   // 3) Induction hypothesis (step i):
5523   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5524   //
5525   // Proof:
5526   //  Expr(i+1) =
5527   //   = Start + (i+1)*Accum
5528   //   = (Start + i*Accum) + Accum
5529   //   = Expr(i) + Accum
5530   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5531   //                                                             :: from step i
5532   //
5533   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5534   //
5535   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5536   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5537   //     + Accum                                                     :: from P3
5538   //
5539   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5540   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5541   //
5542   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5543   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5544   //
5545   // By induction, the same applies to all iterations 1<=i<n:
5546   //
5547 
5548   // Create a truncated addrec for which we will add a no overflow check (P1).
5549   const SCEV *StartVal = getSCEV(StartValueV);
5550   const SCEV *PHISCEV =
5551       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5552                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5553 
5554   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5555   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5556   // will be constant.
5557   //
5558   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5559   // add P1.
5560   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5561     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5562         Signed ? SCEVWrapPredicate::IncrementNSSW
5563                : SCEVWrapPredicate::IncrementNUSW;
5564     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5565     Predicates.push_back(AddRecPred);
5566   }
5567 
5568   // Create the Equal Predicates P2,P3:
5569 
5570   // It is possible that the predicates P2 and/or P3 are computable at
5571   // compile time due to StartVal and/or Accum being constants.
5572   // If either one is, then we can check that now and escape if either P2
5573   // or P3 is false.
5574 
5575   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5576   // for each of StartVal and Accum
5577   auto getExtendedExpr = [&](const SCEV *Expr,
5578                              bool CreateSignExtend) -> const SCEV * {
5579     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5580     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5581     const SCEV *ExtendedExpr =
5582         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5583                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5584     return ExtendedExpr;
5585   };
5586 
5587   // Given:
5588   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5589   //               = getExtendedExpr(Expr)
5590   // Determine whether the predicate P: Expr == ExtendedExpr
5591   // is known to be false at compile time
5592   auto PredIsKnownFalse = [&](const SCEV *Expr,
5593                               const SCEV *ExtendedExpr) -> bool {
5594     return Expr != ExtendedExpr &&
5595            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5596   };
5597 
5598   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5599   if (PredIsKnownFalse(StartVal, StartExtended)) {
5600     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5601     return std::nullopt;
5602   }
5603 
5604   // The Step is always Signed (because the overflow checks are either
5605   // NSSW or NUSW)
5606   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5607   if (PredIsKnownFalse(Accum, AccumExtended)) {
5608     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5609     return std::nullopt;
5610   }
5611 
5612   auto AppendPredicate = [&](const SCEV *Expr,
5613                              const SCEV *ExtendedExpr) -> void {
5614     if (Expr != ExtendedExpr &&
5615         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5616       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5617       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5618       Predicates.push_back(Pred);
5619     }
5620   };
5621 
5622   AppendPredicate(StartVal, StartExtended);
5623   AppendPredicate(Accum, AccumExtended);
5624 
5625   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5626   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5627   // into NewAR if it will also add the runtime overflow checks specified in
5628   // Predicates.
5629   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5630 
5631   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5632       std::make_pair(NewAR, Predicates);
5633   // Remember the result of the analysis for this SCEV at this locayyytion.
5634   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5635   return PredRewrite;
5636 }
5637 
5638 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5639 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5640   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5641   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5642   if (!L)
5643     return std::nullopt;
5644 
5645   // Check to see if we already analyzed this PHI.
5646   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5647   if (I != PredicatedSCEVRewrites.end()) {
5648     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5649         I->second;
5650     // Analysis was done before and failed to create an AddRec:
5651     if (Rewrite.first == SymbolicPHI)
5652       return std::nullopt;
5653     // Analysis was done before and succeeded to create an AddRec under
5654     // a predicate:
5655     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5656     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5657     return Rewrite;
5658   }
5659 
5660   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5661     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5662 
5663   // Record in the cache that the analysis failed
5664   if (!Rewrite) {
5665     SmallVector<const SCEVPredicate *, 3> Predicates;
5666     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5667     return std::nullopt;
5668   }
5669 
5670   return Rewrite;
5671 }
5672 
5673 // FIXME: This utility is currently required because the Rewriter currently
5674 // does not rewrite this expression:
5675 // {0, +, (sext ix (trunc iy to ix) to iy)}
5676 // into {0, +, %step},
5677 // even when the following Equal predicate exists:
5678 // "%step == (sext ix (trunc iy to ix) to iy)".
5679 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5680     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5681   if (AR1 == AR2)
5682     return true;
5683 
5684   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5685     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5686         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5687       return false;
5688     return true;
5689   };
5690 
5691   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5692       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5693     return false;
5694   return true;
5695 }
5696 
5697 /// A helper function for createAddRecFromPHI to handle simple cases.
5698 ///
5699 /// This function tries to find an AddRec expression for the simplest (yet most
5700 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5701 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5702 /// technique for finding the AddRec expression.
5703 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5704                                                       Value *BEValueV,
5705                                                       Value *StartValueV) {
5706   const Loop *L = LI.getLoopFor(PN->getParent());
5707   assert(L && L->getHeader() == PN->getParent());
5708   assert(BEValueV && StartValueV);
5709 
5710   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5711   if (!BO)
5712     return nullptr;
5713 
5714   if (BO->Opcode != Instruction::Add)
5715     return nullptr;
5716 
5717   const SCEV *Accum = nullptr;
5718   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5719     Accum = getSCEV(BO->RHS);
5720   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5721     Accum = getSCEV(BO->LHS);
5722 
5723   if (!Accum)
5724     return nullptr;
5725 
5726   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5727   if (BO->IsNUW)
5728     Flags = setFlags(Flags, SCEV::FlagNUW);
5729   if (BO->IsNSW)
5730     Flags = setFlags(Flags, SCEV::FlagNSW);
5731 
5732   const SCEV *StartVal = getSCEV(StartValueV);
5733   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5734   insertValueToMap(PN, PHISCEV);
5735 
5736   // We can add Flags to the post-inc expression only if we
5737   // know that it is *undefined behavior* for BEValueV to
5738   // overflow.
5739   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5740     assert(isLoopInvariant(Accum, L) &&
5741            "Accum is defined outside L, but is not invariant?");
5742     if (isAddRecNeverPoison(BEInst, L))
5743       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5744   }
5745 
5746   return PHISCEV;
5747 }
5748 
5749 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5750   const Loop *L = LI.getLoopFor(PN->getParent());
5751   if (!L || L->getHeader() != PN->getParent())
5752     return nullptr;
5753 
5754   // The loop may have multiple entrances or multiple exits; we can analyze
5755   // this phi as an addrec if it has a unique entry value and a unique
5756   // backedge value.
5757   Value *BEValueV = nullptr, *StartValueV = nullptr;
5758   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5759     Value *V = PN->getIncomingValue(i);
5760     if (L->contains(PN->getIncomingBlock(i))) {
5761       if (!BEValueV) {
5762         BEValueV = V;
5763       } else if (BEValueV != V) {
5764         BEValueV = nullptr;
5765         break;
5766       }
5767     } else if (!StartValueV) {
5768       StartValueV = V;
5769     } else if (StartValueV != V) {
5770       StartValueV = nullptr;
5771       break;
5772     }
5773   }
5774   if (!BEValueV || !StartValueV)
5775     return nullptr;
5776 
5777   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5778          "PHI node already processed?");
5779 
5780   // First, try to find AddRec expression without creating a fictituos symbolic
5781   // value for PN.
5782   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5783     return S;
5784 
5785   // Handle PHI node value symbolically.
5786   const SCEV *SymbolicName = getUnknown(PN);
5787   insertValueToMap(PN, SymbolicName);
5788 
5789   // Using this symbolic name for the PHI, analyze the value coming around
5790   // the back-edge.
5791   const SCEV *BEValue = getSCEV(BEValueV);
5792 
5793   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5794   // has a special value for the first iteration of the loop.
5795 
5796   // If the value coming around the backedge is an add with the symbolic
5797   // value we just inserted, then we found a simple induction variable!
5798   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5799     // If there is a single occurrence of the symbolic value, replace it
5800     // with a recurrence.
5801     unsigned FoundIndex = Add->getNumOperands();
5802     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5803       if (Add->getOperand(i) == SymbolicName)
5804         if (FoundIndex == e) {
5805           FoundIndex = i;
5806           break;
5807         }
5808 
5809     if (FoundIndex != Add->getNumOperands()) {
5810       // Create an add with everything but the specified operand.
5811       SmallVector<const SCEV *, 8> Ops;
5812       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5813         if (i != FoundIndex)
5814           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5815                                                              L, *this));
5816       const SCEV *Accum = getAddExpr(Ops);
5817 
5818       // This is not a valid addrec if the step amount is varying each
5819       // loop iteration, but is not itself an addrec in this loop.
5820       if (isLoopInvariant(Accum, L) ||
5821           (isa<SCEVAddRecExpr>(Accum) &&
5822            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5823         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5824 
5825         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5826           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5827             if (BO->IsNUW)
5828               Flags = setFlags(Flags, SCEV::FlagNUW);
5829             if (BO->IsNSW)
5830               Flags = setFlags(Flags, SCEV::FlagNSW);
5831           }
5832         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5833           // If the increment is an inbounds GEP, then we know the address
5834           // space cannot be wrapped around. We cannot make any guarantee
5835           // about signed or unsigned overflow because pointers are
5836           // unsigned but we may have a negative index from the base
5837           // pointer. We can guarantee that no unsigned wrap occurs if the
5838           // indices form a positive value.
5839           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5840             Flags = setFlags(Flags, SCEV::FlagNW);
5841 
5842             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5843             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5844               Flags = setFlags(Flags, SCEV::FlagNUW);
5845           }
5846 
5847           // We cannot transfer nuw and nsw flags from subtraction
5848           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5849           // for instance.
5850         }
5851 
5852         const SCEV *StartVal = getSCEV(StartValueV);
5853         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5854 
5855         // Okay, for the entire analysis of this edge we assumed the PHI
5856         // to be symbolic.  We now need to go back and purge all of the
5857         // entries for the scalars that use the symbolic expression.
5858         forgetMemoizedResults(SymbolicName);
5859         insertValueToMap(PN, PHISCEV);
5860 
5861         // We can add Flags to the post-inc expression only if we
5862         // know that it is *undefined behavior* for BEValueV to
5863         // overflow.
5864         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5865           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5866             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5867 
5868         return PHISCEV;
5869       }
5870     }
5871   } else {
5872     // Otherwise, this could be a loop like this:
5873     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5874     // In this case, j = {1,+,1}  and BEValue is j.
5875     // Because the other in-value of i (0) fits the evolution of BEValue
5876     // i really is an addrec evolution.
5877     //
5878     // We can generalize this saying that i is the shifted value of BEValue
5879     // by one iteration:
5880     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5881     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5882     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5883     if (Shifted != getCouldNotCompute() &&
5884         Start != getCouldNotCompute()) {
5885       const SCEV *StartVal = getSCEV(StartValueV);
5886       if (Start == StartVal) {
5887         // Okay, for the entire analysis of this edge we assumed the PHI
5888         // to be symbolic.  We now need to go back and purge all of the
5889         // entries for the scalars that use the symbolic expression.
5890         forgetMemoizedResults(SymbolicName);
5891         insertValueToMap(PN, Shifted);
5892         return Shifted;
5893       }
5894     }
5895   }
5896 
5897   // Remove the temporary PHI node SCEV that has been inserted while intending
5898   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5899   // as it will prevent later (possibly simpler) SCEV expressions to be added
5900   // to the ValueExprMap.
5901   eraseValueFromMap(PN);
5902 
5903   return nullptr;
5904 }
5905 
5906 // Checks if the SCEV S is available at BB.  S is considered available at BB
5907 // if S can be materialized at BB without introducing a fault.
5908 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5909                                BasicBlock *BB) {
5910   struct CheckAvailable {
5911     bool TraversalDone = false;
5912     bool Available = true;
5913 
5914     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5915     BasicBlock *BB = nullptr;
5916     DominatorTree &DT;
5917 
5918     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5919       : L(L), BB(BB), DT(DT) {}
5920 
5921     bool setUnavailable() {
5922       TraversalDone = true;
5923       Available = false;
5924       return false;
5925     }
5926 
5927     bool follow(const SCEV *S) {
5928       switch (S->getSCEVType()) {
5929       case scConstant:
5930       case scPtrToInt:
5931       case scTruncate:
5932       case scZeroExtend:
5933       case scSignExtend:
5934       case scAddExpr:
5935       case scMulExpr:
5936       case scUMaxExpr:
5937       case scSMaxExpr:
5938       case scUMinExpr:
5939       case scSMinExpr:
5940       case scSequentialUMinExpr:
5941         // These expressions are available if their operand(s) is/are.
5942         return true;
5943 
5944       case scAddRecExpr: {
5945         // We allow add recurrences that are on the loop BB is in, or some
5946         // outer loop.  This guarantees availability because the value of the
5947         // add recurrence at BB is simply the "current" value of the induction
5948         // variable.  We can relax this in the future; for instance an add
5949         // recurrence on a sibling dominating loop is also available at BB.
5950         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5951         if (L && (ARLoop == L || ARLoop->contains(L)))
5952           return true;
5953 
5954         return setUnavailable();
5955       }
5956 
5957       case scUnknown: {
5958         // For SCEVUnknown, we check for simple dominance.
5959         const auto *SU = cast<SCEVUnknown>(S);
5960         Value *V = SU->getValue();
5961 
5962         if (isa<Argument>(V))
5963           return false;
5964 
5965         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5966           return false;
5967 
5968         return setUnavailable();
5969       }
5970 
5971       case scUDivExpr:
5972       case scCouldNotCompute:
5973         // We do not try to smart about these at all.
5974         return setUnavailable();
5975       }
5976       llvm_unreachable("Unknown SCEV kind!");
5977     }
5978 
5979     bool isDone() { return TraversalDone; }
5980   };
5981 
5982   CheckAvailable CA(L, BB, DT);
5983   SCEVTraversal<CheckAvailable> ST(CA);
5984 
5985   ST.visitAll(S);
5986   return CA.Available;
5987 }
5988 
5989 // Try to match a control flow sequence that branches out at BI and merges back
5990 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5991 // match.
5992 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5993                           Value *&C, Value *&LHS, Value *&RHS) {
5994   C = BI->getCondition();
5995 
5996   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5997   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5998 
5999   if (!LeftEdge.isSingleEdge())
6000     return false;
6001 
6002   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
6003 
6004   Use &LeftUse = Merge->getOperandUse(0);
6005   Use &RightUse = Merge->getOperandUse(1);
6006 
6007   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
6008     LHS = LeftUse;
6009     RHS = RightUse;
6010     return true;
6011   }
6012 
6013   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
6014     LHS = RightUse;
6015     RHS = LeftUse;
6016     return true;
6017   }
6018 
6019   return false;
6020 }
6021 
6022 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
6023   auto IsReachable =
6024       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
6025   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
6026     const Loop *L = LI.getLoopFor(PN->getParent());
6027 
6028     // We don't want to break LCSSA, even in a SCEV expression tree.
6029     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
6030       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
6031         return nullptr;
6032 
6033     // Try to match
6034     //
6035     //  br %cond, label %left, label %right
6036     // left:
6037     //  br label %merge
6038     // right:
6039     //  br label %merge
6040     // merge:
6041     //  V = phi [ %x, %left ], [ %y, %right ]
6042     //
6043     // as "select %cond, %x, %y"
6044 
6045     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
6046     assert(IDom && "At least the entry block should dominate PN");
6047 
6048     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
6049     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
6050 
6051     if (BI && BI->isConditional() &&
6052         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
6053         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
6054         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
6055       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
6056   }
6057 
6058   return nullptr;
6059 }
6060 
6061 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6062   if (const SCEV *S = createAddRecFromPHI(PN))
6063     return S;
6064 
6065   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6066     return S;
6067 
6068   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
6069     return getSCEV(V);
6070 
6071   // If it's not a loop phi, we can't handle it yet.
6072   return getUnknown(PN);
6073 }
6074 
6075 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6076                             SCEVTypes RootKind) {
6077   struct FindClosure {
6078     const SCEV *OperandToFind;
6079     const SCEVTypes RootKind; // Must be a sequential min/max expression.
6080     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6081 
6082     bool Found = false;
6083 
6084     bool canRecurseInto(SCEVTypes Kind) const {
6085       // We can only recurse into the SCEV expression of the same effective type
6086       // as the type of our root SCEV expression, and into zero-extensions.
6087       return RootKind == Kind || NonSequentialRootKind == Kind ||
6088              scZeroExtend == Kind;
6089     };
6090 
6091     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6092         : OperandToFind(OperandToFind), RootKind(RootKind),
6093           NonSequentialRootKind(
6094               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6095                   RootKind)) {}
6096 
6097     bool follow(const SCEV *S) {
6098       Found = S == OperandToFind;
6099 
6100       return !isDone() && canRecurseInto(S->getSCEVType());
6101     }
6102 
6103     bool isDone() const { return Found; }
6104   };
6105 
6106   FindClosure FC(OperandToFind, RootKind);
6107   visitAll(Root, FC);
6108   return FC.Found;
6109 }
6110 
6111 std::optional<const SCEV *>
6112 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6113                                                               ICmpInst *Cond,
6114                                                               Value *TrueVal,
6115                                                               Value *FalseVal) {
6116   // Try to match some simple smax or umax patterns.
6117   auto *ICI = Cond;
6118 
6119   Value *LHS = ICI->getOperand(0);
6120   Value *RHS = ICI->getOperand(1);
6121 
6122   switch (ICI->getPredicate()) {
6123   case ICmpInst::ICMP_SLT:
6124   case ICmpInst::ICMP_SLE:
6125   case ICmpInst::ICMP_ULT:
6126   case ICmpInst::ICMP_ULE:
6127     std::swap(LHS, RHS);
6128     [[fallthrough]];
6129   case ICmpInst::ICMP_SGT:
6130   case ICmpInst::ICMP_SGE:
6131   case ICmpInst::ICMP_UGT:
6132   case ICmpInst::ICMP_UGE:
6133     // a > b ? a+x : b+x  ->  max(a, b)+x
6134     // a > b ? b+x : a+x  ->  min(a, b)+x
6135     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6136       bool Signed = ICI->isSigned();
6137       const SCEV *LA = getSCEV(TrueVal);
6138       const SCEV *RA = getSCEV(FalseVal);
6139       const SCEV *LS = getSCEV(LHS);
6140       const SCEV *RS = getSCEV(RHS);
6141       if (LA->getType()->isPointerTy()) {
6142         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6143         // Need to make sure we can't produce weird expressions involving
6144         // negated pointers.
6145         if (LA == LS && RA == RS)
6146           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6147         if (LA == RS && RA == LS)
6148           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6149       }
6150       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6151         if (Op->getType()->isPointerTy()) {
6152           Op = getLosslessPtrToIntExpr(Op);
6153           if (isa<SCEVCouldNotCompute>(Op))
6154             return Op;
6155         }
6156         if (Signed)
6157           Op = getNoopOrSignExtend(Op, Ty);
6158         else
6159           Op = getNoopOrZeroExtend(Op, Ty);
6160         return Op;
6161       };
6162       LS = CoerceOperand(LS);
6163       RS = CoerceOperand(RS);
6164       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6165         break;
6166       const SCEV *LDiff = getMinusSCEV(LA, LS);
6167       const SCEV *RDiff = getMinusSCEV(RA, RS);
6168       if (LDiff == RDiff)
6169         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6170                           LDiff);
6171       LDiff = getMinusSCEV(LA, RS);
6172       RDiff = getMinusSCEV(RA, LS);
6173       if (LDiff == RDiff)
6174         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6175                           LDiff);
6176     }
6177     break;
6178   case ICmpInst::ICMP_NE:
6179     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6180     std::swap(TrueVal, FalseVal);
6181     [[fallthrough]];
6182   case ICmpInst::ICMP_EQ:
6183     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6184     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6185         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6186       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6187       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6188       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6189       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6190       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6191       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6192         return getAddExpr(getUMaxExpr(X, C), Y);
6193     }
6194     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6195     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6196     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6197     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6198     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6199         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6200       const SCEV *X = getSCEV(LHS);
6201       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6202         X = ZExt->getOperand();
6203       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6204         const SCEV *FalseValExpr = getSCEV(FalseVal);
6205         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6206           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6207                              /*Sequential=*/true);
6208       }
6209     }
6210     break;
6211   default:
6212     break;
6213   }
6214 
6215   return std::nullopt;
6216 }
6217 
6218 static std::optional<const SCEV *>
6219 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6220                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6221   assert(CondExpr->getType()->isIntegerTy(1) &&
6222          TrueExpr->getType() == FalseExpr->getType() &&
6223          TrueExpr->getType()->isIntegerTy(1) &&
6224          "Unexpected operands of a select.");
6225 
6226   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6227   //                        -->  C + (umin_seq  cond, x - C)
6228   //
6229   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6230   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6231   //                        -->  C + (umin_seq ~cond, x - C)
6232 
6233   // FIXME: while we can't legally model the case where both of the hands
6234   // are fully variable, we only require that the *difference* is constant.
6235   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6236     return std::nullopt;
6237 
6238   const SCEV *X, *C;
6239   if (isa<SCEVConstant>(TrueExpr)) {
6240     CondExpr = SE->getNotSCEV(CondExpr);
6241     X = FalseExpr;
6242     C = TrueExpr;
6243   } else {
6244     X = TrueExpr;
6245     C = FalseExpr;
6246   }
6247   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6248                                            /*Sequential=*/true));
6249 }
6250 
6251 static std::optional<const SCEV *>
6252 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6253                               Value *FalseVal) {
6254   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6255     return std::nullopt;
6256 
6257   const auto *SECond = SE->getSCEV(Cond);
6258   const auto *SETrue = SE->getSCEV(TrueVal);
6259   const auto *SEFalse = SE->getSCEV(FalseVal);
6260   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6261 }
6262 
6263 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6264     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6265   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6266   assert(TrueVal->getType() == FalseVal->getType() &&
6267          V->getType() == TrueVal->getType() &&
6268          "Types of select hands and of the result must match.");
6269 
6270   // For now, only deal with i1-typed `select`s.
6271   if (!V->getType()->isIntegerTy(1))
6272     return getUnknown(V);
6273 
6274   if (std::optional<const SCEV *> S =
6275           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6276     return *S;
6277 
6278   return getUnknown(V);
6279 }
6280 
6281 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6282                                                       Value *TrueVal,
6283                                                       Value *FalseVal) {
6284   // Handle "constant" branch or select. This can occur for instance when a
6285   // loop pass transforms an inner loop and moves on to process the outer loop.
6286   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6287     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6288 
6289   if (auto *I = dyn_cast<Instruction>(V)) {
6290     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6291       if (std::optional<const SCEV *> S =
6292               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6293                                                            TrueVal, FalseVal))
6294         return *S;
6295     }
6296   }
6297 
6298   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6299 }
6300 
6301 /// Expand GEP instructions into add and multiply operations. This allows them
6302 /// to be analyzed by regular SCEV code.
6303 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6304   assert(GEP->getSourceElementType()->isSized() &&
6305          "GEP source element type must be sized");
6306 
6307   SmallVector<const SCEV *, 4> IndexExprs;
6308   for (Value *Index : GEP->indices())
6309     IndexExprs.push_back(getSCEV(Index));
6310   return getGEPExpr(GEP, IndexExprs);
6311 }
6312 
6313 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6314   switch (S->getSCEVType()) {
6315   case scConstant:
6316     return cast<SCEVConstant>(S)->getAPInt().countTrailingZeros();
6317   case scTruncate: {
6318     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6319     return std::min(GetMinTrailingZeros(T->getOperand()),
6320                     (uint32_t)getTypeSizeInBits(T->getType()));
6321   }
6322   case scZeroExtend: {
6323     const SCEVZeroExtendExpr *E = cast<SCEVZeroExtendExpr>(S);
6324     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6325     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6326                ? getTypeSizeInBits(E->getType())
6327                : OpRes;
6328   }
6329   case scSignExtend: {
6330     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6331     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6332     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6333                ? getTypeSizeInBits(E->getType())
6334                : OpRes;
6335   }
6336   case scMulExpr: {
6337     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6338     // The result is the sum of all operands results.
6339     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6340     uint32_t BitWidth = getTypeSizeInBits(M->getType());
6341     for (unsigned i = 1, e = M->getNumOperands();
6342          SumOpRes != BitWidth && i != e; ++i)
6343       SumOpRes =
6344           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6345     return SumOpRes;
6346   }
6347   case scUDivExpr:
6348     return 0;
6349   case scPtrToInt:
6350   case scAddExpr:
6351   case scAddRecExpr:
6352   case scUMaxExpr:
6353   case scSMaxExpr:
6354   case scUMinExpr:
6355   case scSMinExpr:
6356   case scSequentialUMinExpr: {
6357     // The result is the min of all operands results.
6358     ArrayRef<const SCEV *> Ops = S->operands();
6359     uint32_t MinOpRes = GetMinTrailingZeros(Ops[0]);
6360     for (unsigned I = 1, E = Ops.size(); MinOpRes && I != E; ++I)
6361       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(Ops[I]));
6362     return MinOpRes;
6363   }
6364   case scUnknown: {
6365     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6366     // For a SCEVUnknown, ask ValueTracking.
6367     KnownBits Known =
6368         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6369     return Known.countMinTrailingZeros();
6370   }
6371   case scCouldNotCompute:
6372     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6373   }
6374   llvm_unreachable("Unknown SCEV kind!");
6375 }
6376 
6377 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6378   auto I = MinTrailingZerosCache.find(S);
6379   if (I != MinTrailingZerosCache.end())
6380     return I->second;
6381 
6382   uint32_t Result = GetMinTrailingZerosImpl(S);
6383   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6384   assert(InsertPair.second && "Should insert a new key");
6385   return InsertPair.first->second;
6386 }
6387 
6388 /// Helper method to assign a range to V from metadata present in the IR.
6389 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6390   if (Instruction *I = dyn_cast<Instruction>(V))
6391     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6392       return getConstantRangeFromMetadata(*MD);
6393 
6394   return std::nullopt;
6395 }
6396 
6397 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6398                                      SCEV::NoWrapFlags Flags) {
6399   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6400     AddRec->setNoWrapFlags(Flags);
6401     UnsignedRanges.erase(AddRec);
6402     SignedRanges.erase(AddRec);
6403   }
6404 }
6405 
6406 ConstantRange ScalarEvolution::
6407 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6408   const DataLayout &DL = getDataLayout();
6409 
6410   unsigned BitWidth = getTypeSizeInBits(U->getType());
6411   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6412 
6413   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6414   // use information about the trip count to improve our available range.  Note
6415   // that the trip count independent cases are already handled by known bits.
6416   // WARNING: The definition of recurrence used here is subtly different than
6417   // the one used by AddRec (and thus most of this file).  Step is allowed to
6418   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6419   // and other addrecs in the same loop (for non-affine addrecs).  The code
6420   // below intentionally handles the case where step is not loop invariant.
6421   auto *P = dyn_cast<PHINode>(U->getValue());
6422   if (!P)
6423     return FullSet;
6424 
6425   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6426   // even the values that are not available in these blocks may come from them,
6427   // and this leads to false-positive recurrence test.
6428   for (auto *Pred : predecessors(P->getParent()))
6429     if (!DT.isReachableFromEntry(Pred))
6430       return FullSet;
6431 
6432   BinaryOperator *BO;
6433   Value *Start, *Step;
6434   if (!matchSimpleRecurrence(P, BO, Start, Step))
6435     return FullSet;
6436 
6437   // If we found a recurrence in reachable code, we must be in a loop. Note
6438   // that BO might be in some subloop of L, and that's completely okay.
6439   auto *L = LI.getLoopFor(P->getParent());
6440   assert(L && L->getHeader() == P->getParent());
6441   if (!L->contains(BO->getParent()))
6442     // NOTE: This bailout should be an assert instead.  However, asserting
6443     // the condition here exposes a case where LoopFusion is querying SCEV
6444     // with malformed loop information during the midst of the transform.
6445     // There doesn't appear to be an obvious fix, so for the moment bailout
6446     // until the caller issue can be fixed.  PR49566 tracks the bug.
6447     return FullSet;
6448 
6449   // TODO: Extend to other opcodes such as mul, and div
6450   switch (BO->getOpcode()) {
6451   default:
6452     return FullSet;
6453   case Instruction::AShr:
6454   case Instruction::LShr:
6455   case Instruction::Shl:
6456     break;
6457   };
6458 
6459   if (BO->getOperand(0) != P)
6460     // TODO: Handle the power function forms some day.
6461     return FullSet;
6462 
6463   unsigned TC = getSmallConstantMaxTripCount(L);
6464   if (!TC || TC >= BitWidth)
6465     return FullSet;
6466 
6467   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6468   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6469   assert(KnownStart.getBitWidth() == BitWidth &&
6470          KnownStep.getBitWidth() == BitWidth);
6471 
6472   // Compute total shift amount, being careful of overflow and bitwidths.
6473   auto MaxShiftAmt = KnownStep.getMaxValue();
6474   APInt TCAP(BitWidth, TC-1);
6475   bool Overflow = false;
6476   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6477   if (Overflow)
6478     return FullSet;
6479 
6480   switch (BO->getOpcode()) {
6481   default:
6482     llvm_unreachable("filtered out above");
6483   case Instruction::AShr: {
6484     // For each ashr, three cases:
6485     //   shift = 0 => unchanged value
6486     //   saturation => 0 or -1
6487     //   other => a value closer to zero (of the same sign)
6488     // Thus, the end value is closer to zero than the start.
6489     auto KnownEnd = KnownBits::ashr(KnownStart,
6490                                     KnownBits::makeConstant(TotalShift));
6491     if (KnownStart.isNonNegative())
6492       // Analogous to lshr (simply not yet canonicalized)
6493       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6494                                         KnownStart.getMaxValue() + 1);
6495     if (KnownStart.isNegative())
6496       // End >=u Start && End <=s Start
6497       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6498                                         KnownEnd.getMaxValue() + 1);
6499     break;
6500   }
6501   case Instruction::LShr: {
6502     // For each lshr, three cases:
6503     //   shift = 0 => unchanged value
6504     //   saturation => 0
6505     //   other => a smaller positive number
6506     // Thus, the low end of the unsigned range is the last value produced.
6507     auto KnownEnd = KnownBits::lshr(KnownStart,
6508                                     KnownBits::makeConstant(TotalShift));
6509     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6510                                       KnownStart.getMaxValue() + 1);
6511   }
6512   case Instruction::Shl: {
6513     // Iff no bits are shifted out, value increases on every shift.
6514     auto KnownEnd = KnownBits::shl(KnownStart,
6515                                    KnownBits::makeConstant(TotalShift));
6516     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6517       return ConstantRange(KnownStart.getMinValue(),
6518                            KnownEnd.getMaxValue() + 1);
6519     break;
6520   }
6521   };
6522   return FullSet;
6523 }
6524 
6525 const ConstantRange &
6526 ScalarEvolution::getRangeRefIter(const SCEV *S,
6527                                  ScalarEvolution::RangeSignHint SignHint) {
6528   DenseMap<const SCEV *, ConstantRange> &Cache =
6529       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6530                                                        : SignedRanges;
6531   SmallVector<const SCEV *> WorkList;
6532   SmallPtrSet<const SCEV *, 8> Seen;
6533 
6534   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6535   // SCEVUnknown PHI node.
6536   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6537     if (!Seen.insert(Expr).second)
6538       return;
6539     if (Cache.find(Expr) != Cache.end())
6540       return;
6541     switch (Expr->getSCEVType()) {
6542     case scUnknown:
6543       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6544         break;
6545       [[fallthrough]];
6546     case scConstant:
6547     case scTruncate:
6548     case scZeroExtend:
6549     case scSignExtend:
6550     case scPtrToInt:
6551     case scAddExpr:
6552     case scMulExpr:
6553     case scUDivExpr:
6554     case scAddRecExpr:
6555     case scUMaxExpr:
6556     case scSMaxExpr:
6557     case scUMinExpr:
6558     case scSMinExpr:
6559     case scSequentialUMinExpr:
6560       WorkList.push_back(Expr);
6561       break;
6562     case scCouldNotCompute:
6563       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6564     }
6565   };
6566   AddToWorklist(S);
6567 
6568   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6569   for (unsigned I = 0; I != WorkList.size(); ++I) {
6570     const SCEV *P = WorkList[I];
6571     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6572     // If it is not a `SCEVUnknown`, just recurse into operands.
6573     if (!UnknownS) {
6574       for (const SCEV *Op : P->operands())
6575         AddToWorklist(Op);
6576       continue;
6577     }
6578     // `SCEVUnknown`'s require special treatment.
6579     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6580       if (!PendingPhiRangesIter.insert(P).second)
6581         continue;
6582       for (auto &Op : reverse(P->operands()))
6583         AddToWorklist(getSCEV(Op));
6584     }
6585   }
6586 
6587   if (!WorkList.empty()) {
6588     // Use getRangeRef to compute ranges for items in the worklist in reverse
6589     // order. This will force ranges for earlier operands to be computed before
6590     // their users in most cases.
6591     for (const SCEV *P :
6592          reverse(make_range(WorkList.begin() + 1, WorkList.end()))) {
6593       getRangeRef(P, SignHint);
6594 
6595       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6596         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6597           PendingPhiRangesIter.erase(P);
6598     }
6599   }
6600 
6601   return getRangeRef(S, SignHint, 0);
6602 }
6603 
6604 /// Determine the range for a particular SCEV.  If SignHint is
6605 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6606 /// with a "cleaner" unsigned (resp. signed) representation.
6607 const ConstantRange &ScalarEvolution::getRangeRef(
6608     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6609   DenseMap<const SCEV *, ConstantRange> &Cache =
6610       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6611                                                        : SignedRanges;
6612   ConstantRange::PreferredRangeType RangeType =
6613       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6614                                                        : ConstantRange::Signed;
6615 
6616   // See if we've computed this range already.
6617   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6618   if (I != Cache.end())
6619     return I->second;
6620 
6621   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6622     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6623 
6624   // Switch to iteratively computing the range for S, if it is part of a deeply
6625   // nested expression.
6626   if (Depth > RangeIterThreshold)
6627     return getRangeRefIter(S, SignHint);
6628 
6629   unsigned BitWidth = getTypeSizeInBits(S->getType());
6630   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6631   using OBO = OverflowingBinaryOperator;
6632 
6633   // If the value has known zeros, the maximum value will have those known zeros
6634   // as well.
6635   uint32_t TZ = GetMinTrailingZeros(S);
6636   if (TZ != 0) {
6637     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6638       ConservativeResult =
6639           ConstantRange(APInt::getMinValue(BitWidth),
6640                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6641     else
6642       ConservativeResult = ConstantRange(
6643           APInt::getSignedMinValue(BitWidth),
6644           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6645   }
6646 
6647   switch (S->getSCEVType()) {
6648   case scConstant:
6649     llvm_unreachable("Already handled above.");
6650   case scTruncate: {
6651     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6652     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6653     return setRange(
6654         Trunc, SignHint,
6655         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6656   }
6657   case scZeroExtend: {
6658     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6659     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6660     return setRange(
6661         ZExt, SignHint,
6662         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6663   }
6664   case scSignExtend: {
6665     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6666     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6667     return setRange(
6668         SExt, SignHint,
6669         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6670   }
6671   case scPtrToInt: {
6672     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6673     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6674     return setRange(PtrToInt, SignHint, X);
6675   }
6676   case scAddExpr: {
6677     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6678     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6679     unsigned WrapType = OBO::AnyWrap;
6680     if (Add->hasNoSignedWrap())
6681       WrapType |= OBO::NoSignedWrap;
6682     if (Add->hasNoUnsignedWrap())
6683       WrapType |= OBO::NoUnsignedWrap;
6684     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6685       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6686                           WrapType, RangeType);
6687     return setRange(Add, SignHint,
6688                     ConservativeResult.intersectWith(X, RangeType));
6689   }
6690   case scMulExpr: {
6691     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6692     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6693     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6694       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6695     return setRange(Mul, SignHint,
6696                     ConservativeResult.intersectWith(X, RangeType));
6697   }
6698   case scUDivExpr: {
6699     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6700     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6701     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6702     return setRange(UDiv, SignHint,
6703                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6704   }
6705   case scAddRecExpr: {
6706     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6707     // If there's no unsigned wrap, the value will never be less than its
6708     // initial value.
6709     if (AddRec->hasNoUnsignedWrap()) {
6710       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6711       if (!UnsignedMinValue.isZero())
6712         ConservativeResult = ConservativeResult.intersectWith(
6713             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6714     }
6715 
6716     // If there's no signed wrap, and all the operands except initial value have
6717     // the same sign or zero, the value won't ever be:
6718     // 1: smaller than initial value if operands are non negative,
6719     // 2: bigger than initial value if operands are non positive.
6720     // For both cases, value can not cross signed min/max boundary.
6721     if (AddRec->hasNoSignedWrap()) {
6722       bool AllNonNeg = true;
6723       bool AllNonPos = true;
6724       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6725         if (!isKnownNonNegative(AddRec->getOperand(i)))
6726           AllNonNeg = false;
6727         if (!isKnownNonPositive(AddRec->getOperand(i)))
6728           AllNonPos = false;
6729       }
6730       if (AllNonNeg)
6731         ConservativeResult = ConservativeResult.intersectWith(
6732             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6733                                        APInt::getSignedMinValue(BitWidth)),
6734             RangeType);
6735       else if (AllNonPos)
6736         ConservativeResult = ConservativeResult.intersectWith(
6737             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6738                                        getSignedRangeMax(AddRec->getStart()) +
6739                                            1),
6740             RangeType);
6741     }
6742 
6743     // TODO: non-affine addrec
6744     if (AddRec->isAffine()) {
6745       const SCEV *MaxBECount =
6746           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6747       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6748           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6749         auto RangeFromAffine = getRangeForAffineAR(
6750             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6751             BitWidth);
6752         ConservativeResult =
6753             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6754 
6755         auto RangeFromFactoring = getRangeViaFactoring(
6756             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6757             BitWidth);
6758         ConservativeResult =
6759             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6760       }
6761 
6762       // Now try symbolic BE count and more powerful methods.
6763       if (UseExpensiveRangeSharpening) {
6764         const SCEV *SymbolicMaxBECount =
6765             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6766         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6767             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6768             AddRec->hasNoSelfWrap()) {
6769           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6770               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6771           ConservativeResult =
6772               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6773         }
6774       }
6775     }
6776 
6777     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6778   }
6779   case scUMaxExpr:
6780   case scSMaxExpr:
6781   case scUMinExpr:
6782   case scSMinExpr:
6783   case scSequentialUMinExpr: {
6784     Intrinsic::ID ID;
6785     switch (S->getSCEVType()) {
6786     case scUMaxExpr:
6787       ID = Intrinsic::umax;
6788       break;
6789     case scSMaxExpr:
6790       ID = Intrinsic::smax;
6791       break;
6792     case scUMinExpr:
6793     case scSequentialUMinExpr:
6794       ID = Intrinsic::umin;
6795       break;
6796     case scSMinExpr:
6797       ID = Intrinsic::smin;
6798       break;
6799     default:
6800       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6801     }
6802 
6803     const auto *NAry = cast<SCEVNAryExpr>(S);
6804     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6805     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6806       X = X.intrinsic(
6807           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6808     return setRange(S, SignHint,
6809                     ConservativeResult.intersectWith(X, RangeType));
6810   }
6811   case scUnknown: {
6812     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6813 
6814     // Check if the IR explicitly contains !range metadata.
6815     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6816     if (MDRange)
6817       ConservativeResult =
6818           ConservativeResult.intersectWith(*MDRange, RangeType);
6819 
6820     // Use facts about recurrences in the underlying IR.  Note that add
6821     // recurrences are AddRecExprs and thus don't hit this path.  This
6822     // primarily handles shift recurrences.
6823     auto CR = getRangeForUnknownRecurrence(U);
6824     ConservativeResult = ConservativeResult.intersectWith(CR);
6825 
6826     // See if ValueTracking can give us a useful range.
6827     const DataLayout &DL = getDataLayout();
6828     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6829     if (Known.getBitWidth() != BitWidth)
6830       Known = Known.zextOrTrunc(BitWidth);
6831 
6832     // ValueTracking may be able to compute a tighter result for the number of
6833     // sign bits than for the value of those sign bits.
6834     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6835     if (U->getType()->isPointerTy()) {
6836       // If the pointer size is larger than the index size type, this can cause
6837       // NS to be larger than BitWidth. So compensate for this.
6838       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6839       int ptrIdxDiff = ptrSize - BitWidth;
6840       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6841         NS -= ptrIdxDiff;
6842     }
6843 
6844     if (NS > 1) {
6845       // If we know any of the sign bits, we know all of the sign bits.
6846       if (!Known.Zero.getHiBits(NS).isZero())
6847         Known.Zero.setHighBits(NS);
6848       if (!Known.One.getHiBits(NS).isZero())
6849         Known.One.setHighBits(NS);
6850     }
6851 
6852     if (Known.getMinValue() != Known.getMaxValue() + 1)
6853       ConservativeResult = ConservativeResult.intersectWith(
6854           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6855           RangeType);
6856     if (NS > 1)
6857       ConservativeResult = ConservativeResult.intersectWith(
6858           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6859                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6860           RangeType);
6861 
6862     // A range of Phi is a subset of union of all ranges of its input.
6863     if (PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6864       // Make sure that we do not run over cycled Phis.
6865       if (PendingPhiRanges.insert(Phi).second) {
6866         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6867 
6868         for (const auto &Op : Phi->operands()) {
6869           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6870           RangeFromOps = RangeFromOps.unionWith(OpRange);
6871           // No point to continue if we already have a full set.
6872           if (RangeFromOps.isFullSet())
6873             break;
6874         }
6875         ConservativeResult =
6876             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6877         bool Erased = PendingPhiRanges.erase(Phi);
6878         assert(Erased && "Failed to erase Phi properly?");
6879         (void)Erased;
6880       }
6881     }
6882 
6883     // vscale can't be equal to zero
6884     if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue()))
6885       if (II->getIntrinsicID() == Intrinsic::vscale) {
6886         ConstantRange Disallowed = APInt::getZero(BitWidth);
6887         ConservativeResult = ConservativeResult.difference(Disallowed);
6888       }
6889 
6890     return setRange(U, SignHint, std::move(ConservativeResult));
6891   }
6892   case scCouldNotCompute:
6893     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6894   }
6895 
6896   return setRange(S, SignHint, std::move(ConservativeResult));
6897 }
6898 
6899 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6900 // values that the expression can take. Initially, the expression has a value
6901 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6902 // argument defines if we treat Step as signed or unsigned.
6903 static ConstantRange getRangeForAffineARHelper(APInt Step,
6904                                                const ConstantRange &StartRange,
6905                                                const APInt &MaxBECount,
6906                                                unsigned BitWidth, bool Signed) {
6907   // If either Step or MaxBECount is 0, then the expression won't change, and we
6908   // just need to return the initial range.
6909   if (Step == 0 || MaxBECount == 0)
6910     return StartRange;
6911 
6912   // If we don't know anything about the initial value (i.e. StartRange is
6913   // FullRange), then we don't know anything about the final range either.
6914   // Return FullRange.
6915   if (StartRange.isFullSet())
6916     return ConstantRange::getFull(BitWidth);
6917 
6918   // If Step is signed and negative, then we use its absolute value, but we also
6919   // note that we're moving in the opposite direction.
6920   bool Descending = Signed && Step.isNegative();
6921 
6922   if (Signed)
6923     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6924     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6925     // This equations hold true due to the well-defined wrap-around behavior of
6926     // APInt.
6927     Step = Step.abs();
6928 
6929   // Check if Offset is more than full span of BitWidth. If it is, the
6930   // expression is guaranteed to overflow.
6931   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6932     return ConstantRange::getFull(BitWidth);
6933 
6934   // Offset is by how much the expression can change. Checks above guarantee no
6935   // overflow here.
6936   APInt Offset = Step * MaxBECount;
6937 
6938   // Minimum value of the final range will match the minimal value of StartRange
6939   // if the expression is increasing and will be decreased by Offset otherwise.
6940   // Maximum value of the final range will match the maximal value of StartRange
6941   // if the expression is decreasing and will be increased by Offset otherwise.
6942   APInt StartLower = StartRange.getLower();
6943   APInt StartUpper = StartRange.getUpper() - 1;
6944   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6945                                    : (StartUpper + std::move(Offset));
6946 
6947   // It's possible that the new minimum/maximum value will fall into the initial
6948   // range (due to wrap around). This means that the expression can take any
6949   // value in this bitwidth, and we have to return full range.
6950   if (StartRange.contains(MovedBoundary))
6951     return ConstantRange::getFull(BitWidth);
6952 
6953   APInt NewLower =
6954       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6955   APInt NewUpper =
6956       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6957   NewUpper += 1;
6958 
6959   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6960   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6961 }
6962 
6963 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6964                                                    const SCEV *Step,
6965                                                    const SCEV *MaxBECount,
6966                                                    unsigned BitWidth) {
6967   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6968          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6969          "Precondition!");
6970 
6971   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6972   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6973 
6974   // First, consider step signed.
6975   ConstantRange StartSRange = getSignedRange(Start);
6976   ConstantRange StepSRange = getSignedRange(Step);
6977 
6978   // If Step can be both positive and negative, we need to find ranges for the
6979   // maximum absolute step values in both directions and union them.
6980   ConstantRange SR =
6981       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6982                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6983   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6984                                               StartSRange, MaxBECountValue,
6985                                               BitWidth, /* Signed = */ true));
6986 
6987   // Next, consider step unsigned.
6988   ConstantRange UR = getRangeForAffineARHelper(
6989       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6990       MaxBECountValue, BitWidth, /* Signed = */ false);
6991 
6992   // Finally, intersect signed and unsigned ranges.
6993   return SR.intersectWith(UR, ConstantRange::Smallest);
6994 }
6995 
6996 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6997     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6998     ScalarEvolution::RangeSignHint SignHint) {
6999   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7000   assert(AddRec->hasNoSelfWrap() &&
7001          "This only works for non-self-wrapping AddRecs!");
7002   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7003   const SCEV *Step = AddRec->getStepRecurrence(*this);
7004   // Only deal with constant step to save compile time.
7005   if (!isa<SCEVConstant>(Step))
7006     return ConstantRange::getFull(BitWidth);
7007   // Let's make sure that we can prove that we do not self-wrap during
7008   // MaxBECount iterations. We need this because MaxBECount is a maximum
7009   // iteration count estimate, and we might infer nw from some exit for which we
7010   // do not know max exit count (or any other side reasoning).
7011   // TODO: Turn into assert at some point.
7012   if (getTypeSizeInBits(MaxBECount->getType()) >
7013       getTypeSizeInBits(AddRec->getType()))
7014     return ConstantRange::getFull(BitWidth);
7015   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
7016   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
7017   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
7018   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
7019   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
7020                                          MaxItersWithoutWrap))
7021     return ConstantRange::getFull(BitWidth);
7022 
7023   ICmpInst::Predicate LEPred =
7024       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7025   ICmpInst::Predicate GEPred =
7026       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7027   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7028 
7029   // We know that there is no self-wrap. Let's take Start and End values and
7030   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7031   // the iteration. They either lie inside the range [Min(Start, End),
7032   // Max(Start, End)] or outside it:
7033   //
7034   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7035   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7036   //
7037   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7038   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7039   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7040   // Start <= End and step is positive, or Start >= End and step is negative.
7041   const SCEV *Start = AddRec->getStart();
7042   ConstantRange StartRange = getRangeRef(Start, SignHint);
7043   ConstantRange EndRange = getRangeRef(End, SignHint);
7044   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7045   // If they already cover full iteration space, we will know nothing useful
7046   // even if we prove what we want to prove.
7047   if (RangeBetween.isFullSet())
7048     return RangeBetween;
7049   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7050   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7051                                : RangeBetween.isWrappedSet();
7052   if (IsWrappedSet)
7053     return ConstantRange::getFull(BitWidth);
7054 
7055   if (isKnownPositive(Step) &&
7056       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7057     return RangeBetween;
7058   else if (isKnownNegative(Step) &&
7059            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7060     return RangeBetween;
7061   return ConstantRange::getFull(BitWidth);
7062 }
7063 
7064 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7065                                                     const SCEV *Step,
7066                                                     const SCEV *MaxBECount,
7067                                                     unsigned BitWidth) {
7068   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7069   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7070 
7071   struct SelectPattern {
7072     Value *Condition = nullptr;
7073     APInt TrueValue;
7074     APInt FalseValue;
7075 
7076     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7077                            const SCEV *S) {
7078       std::optional<unsigned> CastOp;
7079       APInt Offset(BitWidth, 0);
7080 
7081       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7082              "Should be!");
7083 
7084       // Peel off a constant offset:
7085       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7086         // In the future we could consider being smarter here and handle
7087         // {Start+Step,+,Step} too.
7088         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7089           return;
7090 
7091         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7092         S = SA->getOperand(1);
7093       }
7094 
7095       // Peel off a cast operation
7096       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7097         CastOp = SCast->getSCEVType();
7098         S = SCast->getOperand();
7099       }
7100 
7101       using namespace llvm::PatternMatch;
7102 
7103       auto *SU = dyn_cast<SCEVUnknown>(S);
7104       const APInt *TrueVal, *FalseVal;
7105       if (!SU ||
7106           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7107                                           m_APInt(FalseVal)))) {
7108         Condition = nullptr;
7109         return;
7110       }
7111 
7112       TrueValue = *TrueVal;
7113       FalseValue = *FalseVal;
7114 
7115       // Re-apply the cast we peeled off earlier
7116       if (CastOp)
7117         switch (*CastOp) {
7118         default:
7119           llvm_unreachable("Unknown SCEV cast type!");
7120 
7121         case scTruncate:
7122           TrueValue = TrueValue.trunc(BitWidth);
7123           FalseValue = FalseValue.trunc(BitWidth);
7124           break;
7125         case scZeroExtend:
7126           TrueValue = TrueValue.zext(BitWidth);
7127           FalseValue = FalseValue.zext(BitWidth);
7128           break;
7129         case scSignExtend:
7130           TrueValue = TrueValue.sext(BitWidth);
7131           FalseValue = FalseValue.sext(BitWidth);
7132           break;
7133         }
7134 
7135       // Re-apply the constant offset we peeled off earlier
7136       TrueValue += Offset;
7137       FalseValue += Offset;
7138     }
7139 
7140     bool isRecognized() { return Condition != nullptr; }
7141   };
7142 
7143   SelectPattern StartPattern(*this, BitWidth, Start);
7144   if (!StartPattern.isRecognized())
7145     return ConstantRange::getFull(BitWidth);
7146 
7147   SelectPattern StepPattern(*this, BitWidth, Step);
7148   if (!StepPattern.isRecognized())
7149     return ConstantRange::getFull(BitWidth);
7150 
7151   if (StartPattern.Condition != StepPattern.Condition) {
7152     // We don't handle this case today; but we could, by considering four
7153     // possibilities below instead of two. I'm not sure if there are cases where
7154     // that will help over what getRange already does, though.
7155     return ConstantRange::getFull(BitWidth);
7156   }
7157 
7158   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7159   // construct arbitrary general SCEV expressions here.  This function is called
7160   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7161   // say) can end up caching a suboptimal value.
7162 
7163   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7164   // C2352 and C2512 (otherwise it isn't needed).
7165 
7166   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7167   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7168   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7169   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7170 
7171   ConstantRange TrueRange =
7172       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
7173   ConstantRange FalseRange =
7174       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
7175 
7176   return TrueRange.unionWith(FalseRange);
7177 }
7178 
7179 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7180   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7181   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7182 
7183   // Return early if there are no flags to propagate to the SCEV.
7184   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7185   if (BinOp->hasNoUnsignedWrap())
7186     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7187   if (BinOp->hasNoSignedWrap())
7188     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7189   if (Flags == SCEV::FlagAnyWrap)
7190     return SCEV::FlagAnyWrap;
7191 
7192   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7193 }
7194 
7195 const Instruction *
7196 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7197   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7198     return &*AddRec->getLoop()->getHeader()->begin();
7199   if (auto *U = dyn_cast<SCEVUnknown>(S))
7200     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7201       return I;
7202   return nullptr;
7203 }
7204 
7205 const Instruction *
7206 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7207                                        bool &Precise) {
7208   Precise = true;
7209   // Do a bounded search of the def relation of the requested SCEVs.
7210   SmallSet<const SCEV *, 16> Visited;
7211   SmallVector<const SCEV *> Worklist;
7212   auto pushOp = [&](const SCEV *S) {
7213     if (!Visited.insert(S).second)
7214       return;
7215     // Threshold of 30 here is arbitrary.
7216     if (Visited.size() > 30) {
7217       Precise = false;
7218       return;
7219     }
7220     Worklist.push_back(S);
7221   };
7222 
7223   for (const auto *S : Ops)
7224     pushOp(S);
7225 
7226   const Instruction *Bound = nullptr;
7227   while (!Worklist.empty()) {
7228     auto *S = Worklist.pop_back_val();
7229     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7230       if (!Bound || DT.dominates(Bound, DefI))
7231         Bound = DefI;
7232     } else {
7233       for (const auto *Op : S->operands())
7234         pushOp(Op);
7235     }
7236   }
7237   return Bound ? Bound : &*F.getEntryBlock().begin();
7238 }
7239 
7240 const Instruction *
7241 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7242   bool Discard;
7243   return getDefiningScopeBound(Ops, Discard);
7244 }
7245 
7246 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7247                                                         const Instruction *B) {
7248   if (A->getParent() == B->getParent() &&
7249       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7250                                                  B->getIterator()))
7251     return true;
7252 
7253   auto *BLoop = LI.getLoopFor(B->getParent());
7254   if (BLoop && BLoop->getHeader() == B->getParent() &&
7255       BLoop->getLoopPreheader() == A->getParent() &&
7256       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7257                                                  A->getParent()->end()) &&
7258       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7259                                                  B->getIterator()))
7260     return true;
7261   return false;
7262 }
7263 
7264 
7265 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7266   // Only proceed if we can prove that I does not yield poison.
7267   if (!programUndefinedIfPoison(I))
7268     return false;
7269 
7270   // At this point we know that if I is executed, then it does not wrap
7271   // according to at least one of NSW or NUW. If I is not executed, then we do
7272   // not know if the calculation that I represents would wrap. Multiple
7273   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7274   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7275   // derived from other instructions that map to the same SCEV. We cannot make
7276   // that guarantee for cases where I is not executed. So we need to find a
7277   // upper bound on the defining scope for the SCEV, and prove that I is
7278   // executed every time we enter that scope.  When the bounding scope is a
7279   // loop (the common case), this is equivalent to proving I executes on every
7280   // iteration of that loop.
7281   SmallVector<const SCEV *> SCEVOps;
7282   for (const Use &Op : I->operands()) {
7283     // I could be an extractvalue from a call to an overflow intrinsic.
7284     // TODO: We can do better here in some cases.
7285     if (isSCEVable(Op->getType()))
7286       SCEVOps.push_back(getSCEV(Op));
7287   }
7288   auto *DefI = getDefiningScopeBound(SCEVOps);
7289   return isGuaranteedToTransferExecutionTo(DefI, I);
7290 }
7291 
7292 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7293   // If we know that \c I can never be poison period, then that's enough.
7294   if (isSCEVExprNeverPoison(I))
7295     return true;
7296 
7297   // For an add recurrence specifically, we assume that infinite loops without
7298   // side effects are undefined behavior, and then reason as follows:
7299   //
7300   // If the add recurrence is poison in any iteration, it is poison on all
7301   // future iterations (since incrementing poison yields poison). If the result
7302   // of the add recurrence is fed into the loop latch condition and the loop
7303   // does not contain any throws or exiting blocks other than the latch, we now
7304   // have the ability to "choose" whether the backedge is taken or not (by
7305   // choosing a sufficiently evil value for the poison feeding into the branch)
7306   // for every iteration including and after the one in which \p I first became
7307   // poison.  There are two possibilities (let's call the iteration in which \p
7308   // I first became poison as K):
7309   //
7310   //  1. In the set of iterations including and after K, the loop body executes
7311   //     no side effects.  In this case executing the backege an infinte number
7312   //     of times will yield undefined behavior.
7313   //
7314   //  2. In the set of iterations including and after K, the loop body executes
7315   //     at least one side effect.  In this case, that specific instance of side
7316   //     effect is control dependent on poison, which also yields undefined
7317   //     behavior.
7318 
7319   auto *ExitingBB = L->getExitingBlock();
7320   auto *LatchBB = L->getLoopLatch();
7321   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
7322     return false;
7323 
7324   SmallPtrSet<const Instruction *, 16> Pushed;
7325   SmallVector<const Instruction *, 8> PoisonStack;
7326 
7327   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7328   // things that are known to be poison under that assumption go on the
7329   // PoisonStack.
7330   Pushed.insert(I);
7331   PoisonStack.push_back(I);
7332 
7333   bool LatchControlDependentOnPoison = false;
7334   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
7335     const Instruction *Poison = PoisonStack.pop_back_val();
7336 
7337     for (const Use &U : Poison->uses()) {
7338       const User *PoisonUser = U.getUser();
7339       if (propagatesPoison(U)) {
7340         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
7341           PoisonStack.push_back(cast<Instruction>(PoisonUser));
7342       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
7343         assert(BI->isConditional() && "Only possibility!");
7344         if (BI->getParent() == LatchBB) {
7345           LatchControlDependentOnPoison = true;
7346           break;
7347         }
7348       }
7349     }
7350   }
7351 
7352   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
7353 }
7354 
7355 ScalarEvolution::LoopProperties
7356 ScalarEvolution::getLoopProperties(const Loop *L) {
7357   using LoopProperties = ScalarEvolution::LoopProperties;
7358 
7359   auto Itr = LoopPropertiesCache.find(L);
7360   if (Itr == LoopPropertiesCache.end()) {
7361     auto HasSideEffects = [](Instruction *I) {
7362       if (auto *SI = dyn_cast<StoreInst>(I))
7363         return !SI->isSimple();
7364 
7365       return I->mayThrow() || I->mayWriteToMemory();
7366     };
7367 
7368     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7369                          /*HasNoSideEffects*/ true};
7370 
7371     for (auto *BB : L->getBlocks())
7372       for (auto &I : *BB) {
7373         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7374           LP.HasNoAbnormalExits = false;
7375         if (HasSideEffects(&I))
7376           LP.HasNoSideEffects = false;
7377         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7378           break; // We're already as pessimistic as we can get.
7379       }
7380 
7381     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7382     assert(InsertPair.second && "We just checked!");
7383     Itr = InsertPair.first;
7384   }
7385 
7386   return Itr->second;
7387 }
7388 
7389 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7390   // A mustprogress loop without side effects must be finite.
7391   // TODO: The check used here is very conservative.  It's only *specific*
7392   // side effects which are well defined in infinite loops.
7393   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7394 }
7395 
7396 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7397   // Worklist item with a Value and a bool indicating whether all operands have
7398   // been visited already.
7399   using PointerTy = PointerIntPair<Value *, 1, bool>;
7400   SmallVector<PointerTy> Stack;
7401 
7402   Stack.emplace_back(V, true);
7403   Stack.emplace_back(V, false);
7404   while (!Stack.empty()) {
7405     auto E = Stack.pop_back_val();
7406     Value *CurV = E.getPointer();
7407 
7408     if (getExistingSCEV(CurV))
7409       continue;
7410 
7411     SmallVector<Value *> Ops;
7412     const SCEV *CreatedSCEV = nullptr;
7413     // If all operands have been visited already, create the SCEV.
7414     if (E.getInt()) {
7415       CreatedSCEV = createSCEV(CurV);
7416     } else {
7417       // Otherwise get the operands we need to create SCEV's for before creating
7418       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7419       // just use it.
7420       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7421     }
7422 
7423     if (CreatedSCEV) {
7424       insertValueToMap(CurV, CreatedSCEV);
7425     } else {
7426       // Queue CurV for SCEV creation, followed by its's operands which need to
7427       // be constructed first.
7428       Stack.emplace_back(CurV, true);
7429       for (Value *Op : Ops)
7430         Stack.emplace_back(Op, false);
7431     }
7432   }
7433 
7434   return getExistingSCEV(V);
7435 }
7436 
7437 const SCEV *
7438 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7439   if (!isSCEVable(V->getType()))
7440     return getUnknown(V);
7441 
7442   if (Instruction *I = dyn_cast<Instruction>(V)) {
7443     // Don't attempt to analyze instructions in blocks that aren't
7444     // reachable. Such instructions don't matter, and they aren't required
7445     // to obey basic rules for definitions dominating uses which this
7446     // analysis depends on.
7447     if (!DT.isReachableFromEntry(I->getParent()))
7448       return getUnknown(PoisonValue::get(V->getType()));
7449   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7450     return getConstant(CI);
7451   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
7452     if (!GA->isInterposable()) {
7453       Ops.push_back(GA->getAliasee());
7454       return nullptr;
7455     }
7456     return getUnknown(V);
7457   } else if (!isa<ConstantExpr>(V))
7458     return getUnknown(V);
7459 
7460   Operator *U = cast<Operator>(V);
7461   if (auto BO =
7462           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7463     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7464     switch (BO->Opcode) {
7465     case Instruction::Add:
7466     case Instruction::Mul: {
7467       // For additions and multiplications, traverse add/mul chains for which we
7468       // can potentially create a single SCEV, to reduce the number of
7469       // get{Add,Mul}Expr calls.
7470       do {
7471         if (BO->Op) {
7472           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7473             Ops.push_back(BO->Op);
7474             break;
7475           }
7476         }
7477         Ops.push_back(BO->RHS);
7478         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7479                                    dyn_cast<Instruction>(V));
7480         if (!NewBO ||
7481             (U->getOpcode() == Instruction::Add &&
7482              (NewBO->Opcode != Instruction::Add &&
7483               NewBO->Opcode != Instruction::Sub)) ||
7484             (U->getOpcode() == Instruction::Mul &&
7485              NewBO->Opcode != Instruction::Mul)) {
7486           Ops.push_back(BO->LHS);
7487           break;
7488         }
7489         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7490         // requires a SCEV for the LHS.
7491         if (NewBO->Op && (NewBO->IsNSW || NewBO->IsNUW)) {
7492           auto *I = dyn_cast<Instruction>(NewBO->Op);
7493           if (I && programUndefinedIfPoison(I)) {
7494             Ops.push_back(BO->LHS);
7495             break;
7496           }
7497         }
7498         BO = NewBO;
7499       } while (true);
7500       return nullptr;
7501     }
7502     case Instruction::Sub:
7503     case Instruction::UDiv:
7504     case Instruction::URem:
7505       break;
7506     case Instruction::AShr:
7507     case Instruction::Shl:
7508     case Instruction::Xor:
7509       if (!IsConstArg)
7510         return nullptr;
7511       break;
7512     case Instruction::And:
7513     case Instruction::Or:
7514       if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1))
7515         return nullptr;
7516       break;
7517     case Instruction::LShr:
7518       return getUnknown(V);
7519     default:
7520       llvm_unreachable("Unhandled binop");
7521       break;
7522     }
7523 
7524     Ops.push_back(BO->LHS);
7525     Ops.push_back(BO->RHS);
7526     return nullptr;
7527   }
7528 
7529   switch (U->getOpcode()) {
7530   case Instruction::Trunc:
7531   case Instruction::ZExt:
7532   case Instruction::SExt:
7533   case Instruction::PtrToInt:
7534     Ops.push_back(U->getOperand(0));
7535     return nullptr;
7536 
7537   case Instruction::BitCast:
7538     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7539       Ops.push_back(U->getOperand(0));
7540       return nullptr;
7541     }
7542     return getUnknown(V);
7543 
7544   case Instruction::SDiv:
7545   case Instruction::SRem:
7546     Ops.push_back(U->getOperand(0));
7547     Ops.push_back(U->getOperand(1));
7548     return nullptr;
7549 
7550   case Instruction::GetElementPtr:
7551     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7552            "GEP source element type must be sized");
7553     for (Value *Index : U->operands())
7554       Ops.push_back(Index);
7555     return nullptr;
7556 
7557   case Instruction::IntToPtr:
7558     return getUnknown(V);
7559 
7560   case Instruction::PHI:
7561     // Keep constructing SCEVs' for phis recursively for now.
7562     return nullptr;
7563 
7564   case Instruction::Select: {
7565     // Check if U is a select that can be simplified to a SCEVUnknown.
7566     auto CanSimplifyToUnknown = [this, U]() {
7567       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7568         return false;
7569 
7570       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7571       if (!ICI)
7572         return false;
7573       Value *LHS = ICI->getOperand(0);
7574       Value *RHS = ICI->getOperand(1);
7575       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7576           ICI->getPredicate() == CmpInst::ICMP_NE) {
7577         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7578           return true;
7579       } else if (getTypeSizeInBits(LHS->getType()) >
7580                  getTypeSizeInBits(U->getType()))
7581         return true;
7582       return false;
7583     };
7584     if (CanSimplifyToUnknown())
7585       return getUnknown(U);
7586 
7587     for (Value *Inc : U->operands())
7588       Ops.push_back(Inc);
7589     return nullptr;
7590     break;
7591   }
7592   case Instruction::Call:
7593   case Instruction::Invoke:
7594     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7595       Ops.push_back(RV);
7596       return nullptr;
7597     }
7598 
7599     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7600       switch (II->getIntrinsicID()) {
7601       case Intrinsic::abs:
7602         Ops.push_back(II->getArgOperand(0));
7603         return nullptr;
7604       case Intrinsic::umax:
7605       case Intrinsic::umin:
7606       case Intrinsic::smax:
7607       case Intrinsic::smin:
7608       case Intrinsic::usub_sat:
7609       case Intrinsic::uadd_sat:
7610         Ops.push_back(II->getArgOperand(0));
7611         Ops.push_back(II->getArgOperand(1));
7612         return nullptr;
7613       case Intrinsic::start_loop_iterations:
7614       case Intrinsic::annotation:
7615       case Intrinsic::ptr_annotation:
7616         Ops.push_back(II->getArgOperand(0));
7617         return nullptr;
7618       default:
7619         break;
7620       }
7621     }
7622     break;
7623   }
7624 
7625   return nullptr;
7626 }
7627 
7628 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7629   if (!isSCEVable(V->getType()))
7630     return getUnknown(V);
7631 
7632   if (Instruction *I = dyn_cast<Instruction>(V)) {
7633     // Don't attempt to analyze instructions in blocks that aren't
7634     // reachable. Such instructions don't matter, and they aren't required
7635     // to obey basic rules for definitions dominating uses which this
7636     // analysis depends on.
7637     if (!DT.isReachableFromEntry(I->getParent()))
7638       return getUnknown(PoisonValue::get(V->getType()));
7639   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7640     return getConstant(CI);
7641   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7642     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7643   else if (!isa<ConstantExpr>(V))
7644     return getUnknown(V);
7645 
7646   const SCEV *LHS;
7647   const SCEV *RHS;
7648 
7649   Operator *U = cast<Operator>(V);
7650   if (auto BO =
7651           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7652     switch (BO->Opcode) {
7653     case Instruction::Add: {
7654       // The simple thing to do would be to just call getSCEV on both operands
7655       // and call getAddExpr with the result. However if we're looking at a
7656       // bunch of things all added together, this can be quite inefficient,
7657       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7658       // Instead, gather up all the operands and make a single getAddExpr call.
7659       // LLVM IR canonical form means we need only traverse the left operands.
7660       SmallVector<const SCEV *, 4> AddOps;
7661       do {
7662         if (BO->Op) {
7663           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7664             AddOps.push_back(OpSCEV);
7665             break;
7666           }
7667 
7668           // If a NUW or NSW flag can be applied to the SCEV for this
7669           // addition, then compute the SCEV for this addition by itself
7670           // with a separate call to getAddExpr. We need to do that
7671           // instead of pushing the operands of the addition onto AddOps,
7672           // since the flags are only known to apply to this particular
7673           // addition - they may not apply to other additions that can be
7674           // formed with operands from AddOps.
7675           const SCEV *RHS = getSCEV(BO->RHS);
7676           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7677           if (Flags != SCEV::FlagAnyWrap) {
7678             const SCEV *LHS = getSCEV(BO->LHS);
7679             if (BO->Opcode == Instruction::Sub)
7680               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7681             else
7682               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7683             break;
7684           }
7685         }
7686 
7687         if (BO->Opcode == Instruction::Sub)
7688           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7689         else
7690           AddOps.push_back(getSCEV(BO->RHS));
7691 
7692         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7693                                    dyn_cast<Instruction>(V));
7694         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7695                        NewBO->Opcode != Instruction::Sub)) {
7696           AddOps.push_back(getSCEV(BO->LHS));
7697           break;
7698         }
7699         BO = NewBO;
7700       } while (true);
7701 
7702       return getAddExpr(AddOps);
7703     }
7704 
7705     case Instruction::Mul: {
7706       SmallVector<const SCEV *, 4> MulOps;
7707       do {
7708         if (BO->Op) {
7709           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7710             MulOps.push_back(OpSCEV);
7711             break;
7712           }
7713 
7714           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7715           if (Flags != SCEV::FlagAnyWrap) {
7716             LHS = getSCEV(BO->LHS);
7717             RHS = getSCEV(BO->RHS);
7718             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7719             break;
7720           }
7721         }
7722 
7723         MulOps.push_back(getSCEV(BO->RHS));
7724         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7725                                    dyn_cast<Instruction>(V));
7726         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7727           MulOps.push_back(getSCEV(BO->LHS));
7728           break;
7729         }
7730         BO = NewBO;
7731       } while (true);
7732 
7733       return getMulExpr(MulOps);
7734     }
7735     case Instruction::UDiv:
7736       LHS = getSCEV(BO->LHS);
7737       RHS = getSCEV(BO->RHS);
7738       return getUDivExpr(LHS, RHS);
7739     case Instruction::URem:
7740       LHS = getSCEV(BO->LHS);
7741       RHS = getSCEV(BO->RHS);
7742       return getURemExpr(LHS, RHS);
7743     case Instruction::Sub: {
7744       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7745       if (BO->Op)
7746         Flags = getNoWrapFlagsFromUB(BO->Op);
7747       LHS = getSCEV(BO->LHS);
7748       RHS = getSCEV(BO->RHS);
7749       return getMinusSCEV(LHS, RHS, Flags);
7750     }
7751     case Instruction::And:
7752       // For an expression like x&255 that merely masks off the high bits,
7753       // use zext(trunc(x)) as the SCEV expression.
7754       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7755         if (CI->isZero())
7756           return getSCEV(BO->RHS);
7757         if (CI->isMinusOne())
7758           return getSCEV(BO->LHS);
7759         const APInt &A = CI->getValue();
7760 
7761         // Instcombine's ShrinkDemandedConstant may strip bits out of
7762         // constants, obscuring what would otherwise be a low-bits mask.
7763         // Use computeKnownBits to compute what ShrinkDemandedConstant
7764         // knew about to reconstruct a low-bits mask value.
7765         unsigned LZ = A.countLeadingZeros();
7766         unsigned TZ = A.countTrailingZeros();
7767         unsigned BitWidth = A.getBitWidth();
7768         KnownBits Known(BitWidth);
7769         computeKnownBits(BO->LHS, Known, getDataLayout(),
7770                          0, &AC, nullptr, &DT);
7771 
7772         APInt EffectiveMask =
7773             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7774         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7775           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7776           const SCEV *LHS = getSCEV(BO->LHS);
7777           const SCEV *ShiftedLHS = nullptr;
7778           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7779             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7780               // For an expression like (x * 8) & 8, simplify the multiply.
7781               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7782               unsigned GCD = std::min(MulZeros, TZ);
7783               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7784               SmallVector<const SCEV*, 4> MulOps;
7785               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7786               append_range(MulOps, LHSMul->operands().drop_front());
7787               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7788               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7789             }
7790           }
7791           if (!ShiftedLHS)
7792             ShiftedLHS = getUDivExpr(LHS, MulCount);
7793           return getMulExpr(
7794               getZeroExtendExpr(
7795                   getTruncateExpr(ShiftedLHS,
7796                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7797                   BO->LHS->getType()),
7798               MulCount);
7799         }
7800       }
7801       // Binary `and` is a bit-wise `umin`.
7802       if (BO->LHS->getType()->isIntegerTy(1)) {
7803         LHS = getSCEV(BO->LHS);
7804         RHS = getSCEV(BO->RHS);
7805         return getUMinExpr(LHS, RHS);
7806       }
7807       break;
7808 
7809     case Instruction::Or:
7810       // Binary `or` is a bit-wise `umax`.
7811       if (BO->LHS->getType()->isIntegerTy(1)) {
7812         LHS = getSCEV(BO->LHS);
7813         RHS = getSCEV(BO->RHS);
7814         return getUMaxExpr(LHS, RHS);
7815       }
7816       break;
7817 
7818     case Instruction::Xor:
7819       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7820         // If the RHS of xor is -1, then this is a not operation.
7821         if (CI->isMinusOne())
7822           return getNotSCEV(getSCEV(BO->LHS));
7823 
7824         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7825         // This is a variant of the check for xor with -1, and it handles
7826         // the case where instcombine has trimmed non-demanded bits out
7827         // of an xor with -1.
7828         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7829           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7830             if (LBO->getOpcode() == Instruction::And &&
7831                 LCI->getValue() == CI->getValue())
7832               if (const SCEVZeroExtendExpr *Z =
7833                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7834                 Type *UTy = BO->LHS->getType();
7835                 const SCEV *Z0 = Z->getOperand();
7836                 Type *Z0Ty = Z0->getType();
7837                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7838 
7839                 // If C is a low-bits mask, the zero extend is serving to
7840                 // mask off the high bits. Complement the operand and
7841                 // re-apply the zext.
7842                 if (CI->getValue().isMask(Z0TySize))
7843                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7844 
7845                 // If C is a single bit, it may be in the sign-bit position
7846                 // before the zero-extend. In this case, represent the xor
7847                 // using an add, which is equivalent, and re-apply the zext.
7848                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7849                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7850                     Trunc.isSignMask())
7851                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7852                                            UTy);
7853               }
7854       }
7855       break;
7856 
7857     case Instruction::Shl:
7858       // Turn shift left of a constant amount into a multiply.
7859       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7860         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7861 
7862         // If the shift count is not less than the bitwidth, the result of
7863         // the shift is undefined. Don't try to analyze it, because the
7864         // resolution chosen here may differ from the resolution chosen in
7865         // other parts of the compiler.
7866         if (SA->getValue().uge(BitWidth))
7867           break;
7868 
7869         // We can safely preserve the nuw flag in all cases. It's also safe to
7870         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7871         // requires special handling. It can be preserved as long as we're not
7872         // left shifting by bitwidth - 1.
7873         auto Flags = SCEV::FlagAnyWrap;
7874         if (BO->Op) {
7875           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7876           if ((MulFlags & SCEV::FlagNSW) &&
7877               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7878             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7879           if (MulFlags & SCEV::FlagNUW)
7880             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7881         }
7882 
7883         ConstantInt *X = ConstantInt::get(
7884             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7885         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7886       }
7887       break;
7888 
7889     case Instruction::AShr: {
7890       // AShr X, C, where C is a constant.
7891       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7892       if (!CI)
7893         break;
7894 
7895       Type *OuterTy = BO->LHS->getType();
7896       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7897       // If the shift count is not less than the bitwidth, the result of
7898       // the shift is undefined. Don't try to analyze it, because the
7899       // resolution chosen here may differ from the resolution chosen in
7900       // other parts of the compiler.
7901       if (CI->getValue().uge(BitWidth))
7902         break;
7903 
7904       if (CI->isZero())
7905         return getSCEV(BO->LHS); // shift by zero --> noop
7906 
7907       uint64_t AShrAmt = CI->getZExtValue();
7908       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7909 
7910       Operator *L = dyn_cast<Operator>(BO->LHS);
7911       if (L && L->getOpcode() == Instruction::Shl) {
7912         // X = Shl A, n
7913         // Y = AShr X, m
7914         // Both n and m are constant.
7915 
7916         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7917         if (L->getOperand(1) == BO->RHS)
7918           // For a two-shift sext-inreg, i.e. n = m,
7919           // use sext(trunc(x)) as the SCEV expression.
7920           return getSignExtendExpr(
7921               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7922 
7923         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7924         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7925           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7926           if (ShlAmt > AShrAmt) {
7927             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7928             // expression. We already checked that ShlAmt < BitWidth, so
7929             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7930             // ShlAmt - AShrAmt < Amt.
7931             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7932                                             ShlAmt - AShrAmt);
7933             return getSignExtendExpr(
7934                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7935                 getConstant(Mul)), OuterTy);
7936           }
7937         }
7938       }
7939       break;
7940     }
7941     }
7942   }
7943 
7944   switch (U->getOpcode()) {
7945   case Instruction::Trunc:
7946     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7947 
7948   case Instruction::ZExt:
7949     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7950 
7951   case Instruction::SExt:
7952     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
7953                                 dyn_cast<Instruction>(V))) {
7954       // The NSW flag of a subtract does not always survive the conversion to
7955       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7956       // more likely to preserve NSW and allow later AddRec optimisations.
7957       //
7958       // NOTE: This is effectively duplicating this logic from getSignExtend:
7959       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7960       // but by that point the NSW information has potentially been lost.
7961       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7962         Type *Ty = U->getType();
7963         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7964         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7965         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7966       }
7967     }
7968     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7969 
7970   case Instruction::BitCast:
7971     // BitCasts are no-op casts so we just eliminate the cast.
7972     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7973       return getSCEV(U->getOperand(0));
7974     break;
7975 
7976   case Instruction::PtrToInt: {
7977     // Pointer to integer cast is straight-forward, so do model it.
7978     const SCEV *Op = getSCEV(U->getOperand(0));
7979     Type *DstIntTy = U->getType();
7980     // But only if effective SCEV (integer) type is wide enough to represent
7981     // all possible pointer values.
7982     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7983     if (isa<SCEVCouldNotCompute>(IntOp))
7984       return getUnknown(V);
7985     return IntOp;
7986   }
7987   case Instruction::IntToPtr:
7988     // Just don't deal with inttoptr casts.
7989     return getUnknown(V);
7990 
7991   case Instruction::SDiv:
7992     // If both operands are non-negative, this is just an udiv.
7993     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7994         isKnownNonNegative(getSCEV(U->getOperand(1))))
7995       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7996     break;
7997 
7998   case Instruction::SRem:
7999     // If both operands are non-negative, this is just an urem.
8000     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8001         isKnownNonNegative(getSCEV(U->getOperand(1))))
8002       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8003     break;
8004 
8005   case Instruction::GetElementPtr:
8006     return createNodeForGEP(cast<GEPOperator>(U));
8007 
8008   case Instruction::PHI:
8009     return createNodeForPHI(cast<PHINode>(U));
8010 
8011   case Instruction::Select:
8012     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8013                                     U->getOperand(2));
8014 
8015   case Instruction::Call:
8016   case Instruction::Invoke:
8017     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8018       return getSCEV(RV);
8019 
8020     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8021       switch (II->getIntrinsicID()) {
8022       case Intrinsic::abs:
8023         return getAbsExpr(
8024             getSCEV(II->getArgOperand(0)),
8025             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8026       case Intrinsic::umax:
8027         LHS = getSCEV(II->getArgOperand(0));
8028         RHS = getSCEV(II->getArgOperand(1));
8029         return getUMaxExpr(LHS, RHS);
8030       case Intrinsic::umin:
8031         LHS = getSCEV(II->getArgOperand(0));
8032         RHS = getSCEV(II->getArgOperand(1));
8033         return getUMinExpr(LHS, RHS);
8034       case Intrinsic::smax:
8035         LHS = getSCEV(II->getArgOperand(0));
8036         RHS = getSCEV(II->getArgOperand(1));
8037         return getSMaxExpr(LHS, RHS);
8038       case Intrinsic::smin:
8039         LHS = getSCEV(II->getArgOperand(0));
8040         RHS = getSCEV(II->getArgOperand(1));
8041         return getSMinExpr(LHS, RHS);
8042       case Intrinsic::usub_sat: {
8043         const SCEV *X = getSCEV(II->getArgOperand(0));
8044         const SCEV *Y = getSCEV(II->getArgOperand(1));
8045         const SCEV *ClampedY = getUMinExpr(X, Y);
8046         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8047       }
8048       case Intrinsic::uadd_sat: {
8049         const SCEV *X = getSCEV(II->getArgOperand(0));
8050         const SCEV *Y = getSCEV(II->getArgOperand(1));
8051         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8052         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8053       }
8054       case Intrinsic::start_loop_iterations:
8055       case Intrinsic::annotation:
8056       case Intrinsic::ptr_annotation:
8057         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8058         // just eqivalent to the first operand for SCEV purposes.
8059         return getSCEV(II->getArgOperand(0));
8060       default:
8061         break;
8062       }
8063     }
8064     break;
8065   }
8066 
8067   return getUnknown(V);
8068 }
8069 
8070 //===----------------------------------------------------------------------===//
8071 //                   Iteration Count Computation Code
8072 //
8073 
8074 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8075                                                        bool Extend) {
8076   if (isa<SCEVCouldNotCompute>(ExitCount))
8077     return getCouldNotCompute();
8078 
8079   auto *ExitCountType = ExitCount->getType();
8080   assert(ExitCountType->isIntegerTy());
8081 
8082   if (!Extend)
8083     return getAddExpr(ExitCount, getOne(ExitCountType));
8084 
8085   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
8086                                     1 + ExitCountType->getScalarSizeInBits());
8087   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
8088                     getOne(WiderType));
8089 }
8090 
8091 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8092   if (!ExitCount)
8093     return 0;
8094 
8095   ConstantInt *ExitConst = ExitCount->getValue();
8096 
8097   // Guard against huge trip counts.
8098   if (ExitConst->getValue().getActiveBits() > 32)
8099     return 0;
8100 
8101   // In case of integer overflow, this returns 0, which is correct.
8102   return ((unsigned)ExitConst->getZExtValue()) + 1;
8103 }
8104 
8105 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8106   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8107   return getConstantTripCount(ExitCount);
8108 }
8109 
8110 unsigned
8111 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8112                                            const BasicBlock *ExitingBlock) {
8113   assert(ExitingBlock && "Must pass a non-null exiting block!");
8114   assert(L->isLoopExiting(ExitingBlock) &&
8115          "Exiting block must actually branch out of the loop!");
8116   const SCEVConstant *ExitCount =
8117       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8118   return getConstantTripCount(ExitCount);
8119 }
8120 
8121 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8122   const auto *MaxExitCount =
8123       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8124   return getConstantTripCount(MaxExitCount);
8125 }
8126 
8127 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
8128   // We can't infer from Array in Irregular Loop.
8129   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
8130   if (!L->isLoopSimplifyForm() || !L->isInnermost())
8131     return getCouldNotCompute();
8132 
8133   // FIXME: To make the scene more typical, we only analysis loops that have
8134   // one exiting block and that block must be the latch. To make it easier to
8135   // capture loops that have memory access and memory access will be executed
8136   // in each iteration.
8137   const BasicBlock *LoopLatch = L->getLoopLatch();
8138   assert(LoopLatch && "See defination of simplify form loop.");
8139   if (L->getExitingBlock() != LoopLatch)
8140     return getCouldNotCompute();
8141 
8142   const DataLayout &DL = getDataLayout();
8143   SmallVector<const SCEV *> InferCountColl;
8144   for (auto *BB : L->getBlocks()) {
8145     // Go here, we can know that Loop is a single exiting and simplified form
8146     // loop. Make sure that infer from Memory Operation in those BBs must be
8147     // executed in loop. First step, we can make sure that max execution time
8148     // of MemAccessBB in loop represents latch max excution time.
8149     // If MemAccessBB does not dom Latch, skip.
8150     //            Entry
8151     //              │
8152     //        ┌─────▼─────┐
8153     //        │Loop Header◄─────┐
8154     //        └──┬──────┬─┘     │
8155     //           │      │       │
8156     //  ┌────────▼──┐ ┌─▼─────┐ │
8157     //  │MemAccessBB│ │OtherBB│ │
8158     //  └────────┬──┘ └─┬─────┘ │
8159     //           │      │       │
8160     //         ┌─▼──────▼─┐     │
8161     //         │Loop Latch├─────┘
8162     //         └────┬─────┘
8163     //              ▼
8164     //             Exit
8165     if (!DT.dominates(BB, LoopLatch))
8166       continue;
8167 
8168     for (Instruction &Inst : *BB) {
8169       // Find Memory Operation Instruction.
8170       auto *GEP = getLoadStorePointerOperand(&Inst);
8171       if (!GEP)
8172         continue;
8173 
8174       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
8175       // Do not infer from scalar type, eg."ElemSize = sizeof()".
8176       if (!ElemSize)
8177         continue;
8178 
8179       // Use a existing polynomial recurrence on the trip count.
8180       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
8181       if (!AddRec)
8182         continue;
8183       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
8184       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
8185       if (!ArrBase || !Step)
8186         continue;
8187       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
8188 
8189       // Only handle { %array + step },
8190       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
8191       if (AddRec->getStart() != ArrBase)
8192         continue;
8193 
8194       // Memory operation pattern which have gaps.
8195       // Or repeat memory opreation.
8196       // And index of GEP wraps arround.
8197       if (Step->getAPInt().getActiveBits() > 32 ||
8198           Step->getAPInt().getZExtValue() !=
8199               ElemSize->getAPInt().getZExtValue() ||
8200           Step->isZero() || Step->getAPInt().isNegative())
8201         continue;
8202 
8203       // Only infer from stack array which has certain size.
8204       // Make sure alloca instruction is not excuted in loop.
8205       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
8206       if (!AllocateInst || L->contains(AllocateInst->getParent()))
8207         continue;
8208 
8209       // Make sure only handle normal array.
8210       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
8211       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
8212       if (!Ty || !ArrSize || !ArrSize->isOne())
8213         continue;
8214 
8215       // FIXME: Since gep indices are silently zext to the indexing type,
8216       // we will have a narrow gep index which wraps around rather than
8217       // increasing strictly, we shoule ensure that step is increasing
8218       // strictly by the loop iteration.
8219       // Now we can infer a max execution time by MemLength/StepLength.
8220       const SCEV *MemSize =
8221           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
8222       auto *MaxExeCount =
8223           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
8224       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
8225         continue;
8226 
8227       // If the loop reaches the maximum number of executions, we can not
8228       // access bytes starting outside the statically allocated size without
8229       // being immediate UB. But it is allowed to enter loop header one more
8230       // time.
8231       auto *InferCount = dyn_cast<SCEVConstant>(
8232           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
8233       // Discard the maximum number of execution times under 32bits.
8234       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
8235         continue;
8236 
8237       InferCountColl.push_back(InferCount);
8238     }
8239   }
8240 
8241   if (InferCountColl.size() == 0)
8242     return getCouldNotCompute();
8243 
8244   return getUMinFromMismatchedTypes(InferCountColl);
8245 }
8246 
8247 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8248   SmallVector<BasicBlock *, 8> ExitingBlocks;
8249   L->getExitingBlocks(ExitingBlocks);
8250 
8251   std::optional<unsigned> Res;
8252   for (auto *ExitingBB : ExitingBlocks) {
8253     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8254     if (!Res)
8255       Res = Multiple;
8256     Res = (unsigned)std::gcd(*Res, Multiple);
8257   }
8258   return Res.value_or(1);
8259 }
8260 
8261 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8262                                                        const SCEV *ExitCount) {
8263   if (ExitCount == getCouldNotCompute())
8264     return 1;
8265 
8266   // Get the trip count
8267   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
8268 
8269   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
8270   if (!TC)
8271     // Attempt to factor more general cases. Returns the greatest power of
8272     // two divisor. If overflow happens, the trip count expression is still
8273     // divisible by the greatest power of 2 divisor returned.
8274     return 1U << std::min((uint32_t)31,
8275                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
8276 
8277   ConstantInt *Result = TC->getValue();
8278 
8279   // Guard against huge trip counts (this requires checking
8280   // for zero to handle the case where the trip count == -1 and the
8281   // addition wraps).
8282   if (!Result || Result->getValue().getActiveBits() > 32 ||
8283       Result->getValue().getActiveBits() == 0)
8284     return 1;
8285 
8286   return (unsigned)Result->getZExtValue();
8287 }
8288 
8289 /// Returns the largest constant divisor of the trip count of this loop as a
8290 /// normal unsigned value, if possible. This means that the actual trip count is
8291 /// always a multiple of the returned value (don't forget the trip count could
8292 /// very well be zero as well!).
8293 ///
8294 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8295 /// multiple of a constant (which is also the case if the trip count is simply
8296 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8297 /// if the trip count is very large (>= 2^32).
8298 ///
8299 /// As explained in the comments for getSmallConstantTripCount, this assumes
8300 /// that control exits the loop via ExitingBlock.
8301 unsigned
8302 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8303                                               const BasicBlock *ExitingBlock) {
8304   assert(ExitingBlock && "Must pass a non-null exiting block!");
8305   assert(L->isLoopExiting(ExitingBlock) &&
8306          "Exiting block must actually branch out of the loop!");
8307   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8308   return getSmallConstantTripMultiple(L, ExitCount);
8309 }
8310 
8311 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8312                                           const BasicBlock *ExitingBlock,
8313                                           ExitCountKind Kind) {
8314   switch (Kind) {
8315   case Exact:
8316     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8317   case SymbolicMaximum:
8318     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8319   case ConstantMaximum:
8320     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8321   };
8322   llvm_unreachable("Invalid ExitCountKind!");
8323 }
8324 
8325 const SCEV *
8326 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8327                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8328   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8329 }
8330 
8331 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8332                                                    ExitCountKind Kind) {
8333   switch (Kind) {
8334   case Exact:
8335     return getBackedgeTakenInfo(L).getExact(L, this);
8336   case ConstantMaximum:
8337     return getBackedgeTakenInfo(L).getConstantMax(this);
8338   case SymbolicMaximum:
8339     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8340   };
8341   llvm_unreachable("Invalid ExitCountKind!");
8342 }
8343 
8344 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8345   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8346 }
8347 
8348 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8349 static void PushLoopPHIs(const Loop *L,
8350                          SmallVectorImpl<Instruction *> &Worklist,
8351                          SmallPtrSetImpl<Instruction *> &Visited) {
8352   BasicBlock *Header = L->getHeader();
8353 
8354   // Push all Loop-header PHIs onto the Worklist stack.
8355   for (PHINode &PN : Header->phis())
8356     if (Visited.insert(&PN).second)
8357       Worklist.push_back(&PN);
8358 }
8359 
8360 const ScalarEvolution::BackedgeTakenInfo &
8361 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8362   auto &BTI = getBackedgeTakenInfo(L);
8363   if (BTI.hasFullInfo())
8364     return BTI;
8365 
8366   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8367 
8368   if (!Pair.second)
8369     return Pair.first->second;
8370 
8371   BackedgeTakenInfo Result =
8372       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8373 
8374   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8375 }
8376 
8377 ScalarEvolution::BackedgeTakenInfo &
8378 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8379   // Initially insert an invalid entry for this loop. If the insertion
8380   // succeeds, proceed to actually compute a backedge-taken count and
8381   // update the value. The temporary CouldNotCompute value tells SCEV
8382   // code elsewhere that it shouldn't attempt to request a new
8383   // backedge-taken count, which could result in infinite recursion.
8384   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8385       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8386   if (!Pair.second)
8387     return Pair.first->second;
8388 
8389   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8390   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8391   // must be cleared in this scope.
8392   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8393 
8394   // In product build, there are no usage of statistic.
8395   (void)NumTripCountsComputed;
8396   (void)NumTripCountsNotComputed;
8397 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
8398   const SCEV *BEExact = Result.getExact(L, this);
8399   if (BEExact != getCouldNotCompute()) {
8400     assert(isLoopInvariant(BEExact, L) &&
8401            isLoopInvariant(Result.getConstantMax(this), L) &&
8402            "Computed backedge-taken count isn't loop invariant for loop!");
8403     ++NumTripCountsComputed;
8404   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
8405              isa<PHINode>(L->getHeader()->begin())) {
8406     // Only count loops that have phi nodes as not being computable.
8407     ++NumTripCountsNotComputed;
8408   }
8409 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
8410 
8411   // Now that we know more about the trip count for this loop, forget any
8412   // existing SCEV values for PHI nodes in this loop since they are only
8413   // conservative estimates made without the benefit of trip count
8414   // information. This invalidation is not necessary for correctness, and is
8415   // only done to produce more precise results.
8416   if (Result.hasAnyInfo()) {
8417     // Invalidate any expression using an addrec in this loop.
8418     SmallVector<const SCEV *, 8> ToForget;
8419     auto LoopUsersIt = LoopUsers.find(L);
8420     if (LoopUsersIt != LoopUsers.end())
8421       append_range(ToForget, LoopUsersIt->second);
8422     forgetMemoizedResults(ToForget);
8423 
8424     // Invalidate constant-evolved loop header phis.
8425     for (PHINode &PN : L->getHeader()->phis())
8426       ConstantEvolutionLoopExitValue.erase(&PN);
8427   }
8428 
8429   // Re-lookup the insert position, since the call to
8430   // computeBackedgeTakenCount above could result in a
8431   // recusive call to getBackedgeTakenInfo (on a different
8432   // loop), which would invalidate the iterator computed
8433   // earlier.
8434   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8435 }
8436 
8437 void ScalarEvolution::forgetAllLoops() {
8438   // This method is intended to forget all info about loops. It should
8439   // invalidate caches as if the following happened:
8440   // - The trip counts of all loops have changed arbitrarily
8441   // - Every llvm::Value has been updated in place to produce a different
8442   // result.
8443   BackedgeTakenCounts.clear();
8444   PredicatedBackedgeTakenCounts.clear();
8445   BECountUsers.clear();
8446   LoopPropertiesCache.clear();
8447   ConstantEvolutionLoopExitValue.clear();
8448   ValueExprMap.clear();
8449   ValuesAtScopes.clear();
8450   ValuesAtScopesUsers.clear();
8451   LoopDispositions.clear();
8452   BlockDispositions.clear();
8453   UnsignedRanges.clear();
8454   SignedRanges.clear();
8455   ExprValueMap.clear();
8456   HasRecMap.clear();
8457   MinTrailingZerosCache.clear();
8458   PredicatedSCEVRewrites.clear();
8459   FoldCache.clear();
8460   FoldCacheUser.clear();
8461 }
8462 
8463 void ScalarEvolution::forgetLoop(const Loop *L) {
8464   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8465   SmallVector<Instruction *, 32> Worklist;
8466   SmallPtrSet<Instruction *, 16> Visited;
8467   SmallVector<const SCEV *, 16> ToForget;
8468 
8469   // Iterate over all the loops and sub-loops to drop SCEV information.
8470   while (!LoopWorklist.empty()) {
8471     auto *CurrL = LoopWorklist.pop_back_val();
8472 
8473     // Drop any stored trip count value.
8474     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8475     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8476 
8477     // Drop information about predicated SCEV rewrites for this loop.
8478     for (auto I = PredicatedSCEVRewrites.begin();
8479          I != PredicatedSCEVRewrites.end();) {
8480       std::pair<const SCEV *, const Loop *> Entry = I->first;
8481       if (Entry.second == CurrL)
8482         PredicatedSCEVRewrites.erase(I++);
8483       else
8484         ++I;
8485     }
8486 
8487     auto LoopUsersItr = LoopUsers.find(CurrL);
8488     if (LoopUsersItr != LoopUsers.end()) {
8489       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8490                 LoopUsersItr->second.end());
8491     }
8492 
8493     // Drop information about expressions based on loop-header PHIs.
8494     PushLoopPHIs(CurrL, Worklist, Visited);
8495 
8496     while (!Worklist.empty()) {
8497       Instruction *I = Worklist.pop_back_val();
8498 
8499       ValueExprMapType::iterator It =
8500           ValueExprMap.find_as(static_cast<Value *>(I));
8501       if (It != ValueExprMap.end()) {
8502         eraseValueFromMap(It->first);
8503         ToForget.push_back(It->second);
8504         if (PHINode *PN = dyn_cast<PHINode>(I))
8505           ConstantEvolutionLoopExitValue.erase(PN);
8506       }
8507 
8508       PushDefUseChildren(I, Worklist, Visited);
8509     }
8510 
8511     LoopPropertiesCache.erase(CurrL);
8512     // Forget all contained loops too, to avoid dangling entries in the
8513     // ValuesAtScopes map.
8514     LoopWorklist.append(CurrL->begin(), CurrL->end());
8515   }
8516   forgetMemoizedResults(ToForget);
8517 }
8518 
8519 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8520   forgetLoop(L->getOutermostLoop());
8521 }
8522 
8523 void ScalarEvolution::forgetValue(Value *V) {
8524   Instruction *I = dyn_cast<Instruction>(V);
8525   if (!I) return;
8526 
8527   // Drop information about expressions based on loop-header PHIs.
8528   SmallVector<Instruction *, 16> Worklist;
8529   SmallPtrSet<Instruction *, 8> Visited;
8530   SmallVector<const SCEV *, 8> ToForget;
8531   Worklist.push_back(I);
8532   Visited.insert(I);
8533 
8534   while (!Worklist.empty()) {
8535     I = Worklist.pop_back_val();
8536     ValueExprMapType::iterator It =
8537       ValueExprMap.find_as(static_cast<Value *>(I));
8538     if (It != ValueExprMap.end()) {
8539       eraseValueFromMap(It->first);
8540       ToForget.push_back(It->second);
8541       if (PHINode *PN = dyn_cast<PHINode>(I))
8542         ConstantEvolutionLoopExitValue.erase(PN);
8543     }
8544 
8545     PushDefUseChildren(I, Worklist, Visited);
8546   }
8547   forgetMemoizedResults(ToForget);
8548 }
8549 
8550 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8551 
8552 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8553   // Unless a specific value is passed to invalidation, completely clear both
8554   // caches.
8555   if (!V) {
8556     BlockDispositions.clear();
8557     LoopDispositions.clear();
8558     return;
8559   }
8560 
8561   if (!isSCEVable(V->getType()))
8562     return;
8563 
8564   const SCEV *S = getExistingSCEV(V);
8565   if (!S)
8566     return;
8567 
8568   // Invalidate the block and loop dispositions cached for S. Dispositions of
8569   // S's users may change if S's disposition changes (i.e. a user may change to
8570   // loop-invariant, if S changes to loop invariant), so also invalidate
8571   // dispositions of S's users recursively.
8572   SmallVector<const SCEV *, 8> Worklist = {S};
8573   SmallPtrSet<const SCEV *, 8> Seen = {S};
8574   while (!Worklist.empty()) {
8575     const SCEV *Curr = Worklist.pop_back_val();
8576     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8577     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8578     if (!LoopDispoRemoved && !BlockDispoRemoved)
8579       continue;
8580     auto Users = SCEVUsers.find(Curr);
8581     if (Users != SCEVUsers.end())
8582       for (const auto *User : Users->second)
8583         if (Seen.insert(User).second)
8584           Worklist.push_back(User);
8585   }
8586 }
8587 
8588 /// Get the exact loop backedge taken count considering all loop exits. A
8589 /// computable result can only be returned for loops with all exiting blocks
8590 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8591 /// is never skipped. This is a valid assumption as long as the loop exits via
8592 /// that test. For precise results, it is the caller's responsibility to specify
8593 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8594 const SCEV *
8595 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8596                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8597   // If any exits were not computable, the loop is not computable.
8598   if (!isComplete() || ExitNotTaken.empty())
8599     return SE->getCouldNotCompute();
8600 
8601   const BasicBlock *Latch = L->getLoopLatch();
8602   // All exiting blocks we have collected must dominate the only backedge.
8603   if (!Latch)
8604     return SE->getCouldNotCompute();
8605 
8606   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8607   // count is simply a minimum out of all these calculated exit counts.
8608   SmallVector<const SCEV *, 2> Ops;
8609   for (const auto &ENT : ExitNotTaken) {
8610     const SCEV *BECount = ENT.ExactNotTaken;
8611     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8612     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8613            "We should only have known counts for exiting blocks that dominate "
8614            "latch!");
8615 
8616     Ops.push_back(BECount);
8617 
8618     if (Preds)
8619       for (const auto *P : ENT.Predicates)
8620         Preds->push_back(P);
8621 
8622     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8623            "Predicate should be always true!");
8624   }
8625 
8626   // If an earlier exit exits on the first iteration (exit count zero), then
8627   // a later poison exit count should not propagate into the result. This are
8628   // exactly the semantics provided by umin_seq.
8629   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8630 }
8631 
8632 /// Get the exact not taken count for this loop exit.
8633 const SCEV *
8634 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8635                                              ScalarEvolution *SE) const {
8636   for (const auto &ENT : ExitNotTaken)
8637     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8638       return ENT.ExactNotTaken;
8639 
8640   return SE->getCouldNotCompute();
8641 }
8642 
8643 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8644     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8645   for (const auto &ENT : ExitNotTaken)
8646     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8647       return ENT.ConstantMaxNotTaken;
8648 
8649   return SE->getCouldNotCompute();
8650 }
8651 
8652 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8653     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8654   for (const auto &ENT : ExitNotTaken)
8655     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8656       return ENT.SymbolicMaxNotTaken;
8657 
8658   return SE->getCouldNotCompute();
8659 }
8660 
8661 /// getConstantMax - Get the constant max backedge taken count for the loop.
8662 const SCEV *
8663 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8664   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8665     return !ENT.hasAlwaysTruePredicate();
8666   };
8667 
8668   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8669     return SE->getCouldNotCompute();
8670 
8671   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8672           isa<SCEVConstant>(getConstantMax())) &&
8673          "No point in having a non-constant max backedge taken count!");
8674   return getConstantMax();
8675 }
8676 
8677 const SCEV *
8678 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8679                                                    ScalarEvolution *SE) {
8680   if (!SymbolicMax)
8681     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8682   return SymbolicMax;
8683 }
8684 
8685 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8686     ScalarEvolution *SE) const {
8687   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8688     return !ENT.hasAlwaysTruePredicate();
8689   };
8690   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8691 }
8692 
8693 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8694     : ExitLimit(E, E, E, false, std::nullopt) {}
8695 
8696 ScalarEvolution::ExitLimit::ExitLimit(
8697     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8698     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8699     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8700     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8701       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8702   // If we prove the max count is zero, so is the symbolic bound.  This happens
8703   // in practice due to differences in a) how context sensitive we've chosen
8704   // to be and b) how we reason about bounds implied by UB.
8705   if (ConstantMaxNotTaken->isZero()) {
8706     this->ExactNotTaken = E = ConstantMaxNotTaken;
8707     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8708   }
8709 
8710   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8711           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8712          "Exact is not allowed to be less precise than Constant Max");
8713   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8714           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8715          "Exact is not allowed to be less precise than Symbolic Max");
8716   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8717           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8718          "Symbolic Max is not allowed to be less precise than Constant Max");
8719   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8720           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8721          "No point in having a non-constant max backedge taken count!");
8722   for (const auto *PredSet : PredSetList)
8723     for (const auto *P : *PredSet)
8724       addPredicate(P);
8725   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8726          "Backedge count should be int");
8727   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8728           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8729          "Max backedge count should be int");
8730 }
8731 
8732 ScalarEvolution::ExitLimit::ExitLimit(
8733     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8734     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8735     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8736     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8737                 { &PredSet }) {}
8738 
8739 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8740 /// computable exit into a persistent ExitNotTakenInfo array.
8741 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8742     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8743     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8744     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8745   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8746 
8747   ExitNotTaken.reserve(ExitCounts.size());
8748   std::transform(ExitCounts.begin(), ExitCounts.end(),
8749                  std::back_inserter(ExitNotTaken),
8750                  [&](const EdgeExitInfo &EEI) {
8751         BasicBlock *ExitBB = EEI.first;
8752         const ExitLimit &EL = EEI.second;
8753         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8754                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8755                                 EL.Predicates);
8756   });
8757   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8758           isa<SCEVConstant>(ConstantMax)) &&
8759          "No point in having a non-constant max backedge taken count!");
8760 }
8761 
8762 /// Compute the number of times the backedge of the specified loop will execute.
8763 ScalarEvolution::BackedgeTakenInfo
8764 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8765                                            bool AllowPredicates) {
8766   SmallVector<BasicBlock *, 8> ExitingBlocks;
8767   L->getExitingBlocks(ExitingBlocks);
8768 
8769   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8770 
8771   SmallVector<EdgeExitInfo, 4> ExitCounts;
8772   bool CouldComputeBECount = true;
8773   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8774   const SCEV *MustExitMaxBECount = nullptr;
8775   const SCEV *MayExitMaxBECount = nullptr;
8776   bool MustExitMaxOrZero = false;
8777 
8778   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8779   // and compute maxBECount.
8780   // Do a union of all the predicates here.
8781   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8782     BasicBlock *ExitBB = ExitingBlocks[i];
8783 
8784     // We canonicalize untaken exits to br (constant), ignore them so that
8785     // proving an exit untaken doesn't negatively impact our ability to reason
8786     // about the loop as whole.
8787     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8788       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8789         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8790         if (ExitIfTrue == CI->isZero())
8791           continue;
8792       }
8793 
8794     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8795 
8796     assert((AllowPredicates || EL.Predicates.empty()) &&
8797            "Predicated exit limit when predicates are not allowed!");
8798 
8799     // 1. For each exit that can be computed, add an entry to ExitCounts.
8800     // CouldComputeBECount is true only if all exits can be computed.
8801     if (EL.ExactNotTaken == getCouldNotCompute())
8802       // We couldn't compute an exact value for this exit, so
8803       // we won't be able to compute an exact value for the loop.
8804       CouldComputeBECount = false;
8805     // Remember exit count if either exact or symbolic is known. Because
8806     // Exact always implies symbolic, only check symbolic.
8807     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8808       ExitCounts.emplace_back(ExitBB, EL);
8809     else
8810       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8811              "Exact is known but symbolic isn't?");
8812 
8813     // 2. Derive the loop's MaxBECount from each exit's max number of
8814     // non-exiting iterations. Partition the loop exits into two kinds:
8815     // LoopMustExits and LoopMayExits.
8816     //
8817     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8818     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8819     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8820     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8821     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8822     // any
8823     // computable EL.ConstantMaxNotTaken.
8824     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8825         DT.dominates(ExitBB, Latch)) {
8826       if (!MustExitMaxBECount) {
8827         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8828         MustExitMaxOrZero = EL.MaxOrZero;
8829       } else {
8830         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8831                                                         EL.ConstantMaxNotTaken);
8832       }
8833     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8834       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8835         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8836       else {
8837         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8838                                                        EL.ConstantMaxNotTaken);
8839       }
8840     }
8841   }
8842   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8843     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8844   // The loop backedge will be taken the maximum or zero times if there's
8845   // a single exit that must be taken the maximum or zero times.
8846   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8847 
8848   // Remember which SCEVs are used in exit limits for invalidation purposes.
8849   // We only care about non-constant SCEVs here, so we can ignore
8850   // EL.ConstantMaxNotTaken
8851   // and MaxBECount, which must be SCEVConstant.
8852   for (const auto &Pair : ExitCounts) {
8853     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8854       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8855     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8856       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8857           {L, AllowPredicates});
8858   }
8859   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8860                            MaxBECount, MaxOrZero);
8861 }
8862 
8863 ScalarEvolution::ExitLimit
8864 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8865                                       bool AllowPredicates) {
8866   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8867   // If our exiting block does not dominate the latch, then its connection with
8868   // loop's exit limit may be far from trivial.
8869   const BasicBlock *Latch = L->getLoopLatch();
8870   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8871     return getCouldNotCompute();
8872 
8873   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8874   Instruction *Term = ExitingBlock->getTerminator();
8875   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8876     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8877     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8878     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8879            "It should have one successor in loop and one exit block!");
8880     // Proceed to the next level to examine the exit condition expression.
8881     return computeExitLimitFromCond(
8882         L, BI->getCondition(), ExitIfTrue,
8883         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8884   }
8885 
8886   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8887     // For switch, make sure that there is a single exit from the loop.
8888     BasicBlock *Exit = nullptr;
8889     for (auto *SBB : successors(ExitingBlock))
8890       if (!L->contains(SBB)) {
8891         if (Exit) // Multiple exit successors.
8892           return getCouldNotCompute();
8893         Exit = SBB;
8894       }
8895     assert(Exit && "Exiting block must have at least one exit");
8896     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8897                                                 /*ControlsExit=*/IsOnlyExit);
8898   }
8899 
8900   return getCouldNotCompute();
8901 }
8902 
8903 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8904     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8905     bool ControlsExit, bool AllowPredicates) {
8906   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8907   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8908                                         ControlsExit, AllowPredicates);
8909 }
8910 
8911 std::optional<ScalarEvolution::ExitLimit>
8912 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8913                                       bool ExitIfTrue, bool ControlsExit,
8914                                       bool AllowPredicates) {
8915   (void)this->L;
8916   (void)this->ExitIfTrue;
8917   (void)this->AllowPredicates;
8918 
8919   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8920          this->AllowPredicates == AllowPredicates &&
8921          "Variance in assumed invariant key components!");
8922   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8923   if (Itr == TripCountMap.end())
8924     return std::nullopt;
8925   return Itr->second;
8926 }
8927 
8928 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8929                                              bool ExitIfTrue,
8930                                              bool ControlsExit,
8931                                              bool AllowPredicates,
8932                                              const ExitLimit &EL) {
8933   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8934          this->AllowPredicates == AllowPredicates &&
8935          "Variance in assumed invariant key components!");
8936 
8937   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8938   assert(InsertResult.second && "Expected successful insertion!");
8939   (void)InsertResult;
8940   (void)ExitIfTrue;
8941 }
8942 
8943 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8944     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8945     bool ControlsExit, bool AllowPredicates) {
8946 
8947   if (auto MaybeEL =
8948           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8949     return *MaybeEL;
8950 
8951   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8952                                               ControlsExit, AllowPredicates);
8953   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8954   return EL;
8955 }
8956 
8957 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8958     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8959     bool ControlsExit, bool AllowPredicates) {
8960   // Handle BinOp conditions (And, Or).
8961   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8962           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8963     return *LimitFromBinOp;
8964 
8965   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8966   // Proceed to the next level to examine the icmp.
8967   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8968     ExitLimit EL =
8969         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8970     if (EL.hasFullInfo() || !AllowPredicates)
8971       return EL;
8972 
8973     // Try again, but use SCEV predicates this time.
8974     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8975                                     /*AllowPredicates=*/true);
8976   }
8977 
8978   // Check for a constant condition. These are normally stripped out by
8979   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8980   // preserve the CFG and is temporarily leaving constant conditions
8981   // in place.
8982   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8983     if (ExitIfTrue == !CI->getZExtValue())
8984       // The backedge is always taken.
8985       return getCouldNotCompute();
8986     else
8987       // The backedge is never taken.
8988       return getZero(CI->getType());
8989   }
8990 
8991   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8992   // with a constant step, we can form an equivalent icmp predicate and figure
8993   // out how many iterations will be taken before we exit.
8994   const WithOverflowInst *WO;
8995   const APInt *C;
8996   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8997       match(WO->getRHS(), m_APInt(C))) {
8998     ConstantRange NWR =
8999       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
9000                                            WO->getNoWrapKind());
9001     CmpInst::Predicate Pred;
9002     APInt NewRHSC, Offset;
9003     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
9004     if (!ExitIfTrue)
9005       Pred = ICmpInst::getInversePredicate(Pred);
9006     auto *LHS = getSCEV(WO->getLHS());
9007     if (Offset != 0)
9008       LHS = getAddExpr(LHS, getConstant(Offset));
9009     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
9010                                        ControlsExit, AllowPredicates);
9011     if (EL.hasAnyInfo()) return EL;
9012   }
9013 
9014   // If it's not an integer or pointer comparison then compute it the hard way.
9015   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9016 }
9017 
9018 std::optional<ScalarEvolution::ExitLimit>
9019 ScalarEvolution::computeExitLimitFromCondFromBinOp(
9020     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9021     bool ControlsExit, bool AllowPredicates) {
9022   // Check if the controlling expression for this loop is an And or Or.
9023   Value *Op0, *Op1;
9024   bool IsAnd = false;
9025   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
9026     IsAnd = true;
9027   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
9028     IsAnd = false;
9029   else
9030     return std::nullopt;
9031 
9032   // EitherMayExit is true in these two cases:
9033   //   br (and Op0 Op1), loop, exit
9034   //   br (or  Op0 Op1), exit, loop
9035   bool EitherMayExit = IsAnd ^ ExitIfTrue;
9036   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
9037                                                  ControlsExit && !EitherMayExit,
9038                                                  AllowPredicates);
9039   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
9040                                                  ControlsExit && !EitherMayExit,
9041                                                  AllowPredicates);
9042 
9043   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9044   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
9045   if (isa<ConstantInt>(Op1))
9046     return Op1 == NeutralElement ? EL0 : EL1;
9047   if (isa<ConstantInt>(Op0))
9048     return Op0 == NeutralElement ? EL1 : EL0;
9049 
9050   const SCEV *BECount = getCouldNotCompute();
9051   const SCEV *ConstantMaxBECount = getCouldNotCompute();
9052   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9053   if (EitherMayExit) {
9054     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
9055     // Both conditions must be same for the loop to continue executing.
9056     // Choose the less conservative count.
9057     if (EL0.ExactNotTaken != getCouldNotCompute() &&
9058         EL1.ExactNotTaken != getCouldNotCompute()) {
9059       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
9060                                            UseSequentialUMin);
9061     }
9062     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9063       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9064     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9065       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9066     else
9067       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
9068                                                       EL1.ConstantMaxNotTaken);
9069     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9070       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9071     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9072       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9073     else
9074       SymbolicMaxBECount = getUMinFromMismatchedTypes(
9075           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9076   } else {
9077     // Both conditions must be same at the same time for the loop to exit.
9078     // For now, be conservative.
9079     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9080       BECount = EL0.ExactNotTaken;
9081   }
9082 
9083   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9084   // to be more aggressive when computing BECount than when computing
9085   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
9086   // and
9087   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9088   // EL1.ConstantMaxNotTaken to not.
9089   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
9090       !isa<SCEVCouldNotCompute>(BECount))
9091     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
9092   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
9093     SymbolicMaxBECount =
9094         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9095   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9096                    { &EL0.Predicates, &EL1.Predicates });
9097 }
9098 
9099 ScalarEvolution::ExitLimit
9100 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
9101                                           ICmpInst *ExitCond,
9102                                           bool ExitIfTrue,
9103                                           bool ControlsExit,
9104                                           bool AllowPredicates) {
9105   // If the condition was exit on true, convert the condition to exit on false
9106   ICmpInst::Predicate Pred;
9107   if (!ExitIfTrue)
9108     Pred = ExitCond->getPredicate();
9109   else
9110     Pred = ExitCond->getInversePredicate();
9111   const ICmpInst::Predicate OriginalPred = Pred;
9112 
9113   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9114   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9115 
9116   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
9117                                           AllowPredicates);
9118   if (EL.hasAnyInfo()) return EL;
9119 
9120   auto *ExhaustiveCount =
9121       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9122 
9123   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9124     return ExhaustiveCount;
9125 
9126   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9127                                       ExitCond->getOperand(1), L, OriginalPred);
9128 }
9129 ScalarEvolution::ExitLimit
9130 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
9131                                           ICmpInst::Predicate Pred,
9132                                           const SCEV *LHS, const SCEV *RHS,
9133                                           bool ControlsExit,
9134                                           bool AllowPredicates) {
9135 
9136   // Try to evaluate any dependencies out of the loop.
9137   LHS = getSCEVAtScope(LHS, L);
9138   RHS = getSCEVAtScope(RHS, L);
9139 
9140   // At this point, we would like to compute how many iterations of the
9141   // loop the predicate will return true for these inputs.
9142   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9143     // If there is a loop-invariant, force it into the RHS.
9144     std::swap(LHS, RHS);
9145     Pred = ICmpInst::getSwappedPredicate(Pred);
9146   }
9147 
9148   bool ControllingFiniteLoop =
9149       ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
9150   // Simplify the operands before analyzing them.
9151   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
9152                              (EnableFiniteLoopControl ? ControllingFiniteLoop
9153                                                      : false));
9154 
9155   // If we have a comparison of a chrec against a constant, try to use value
9156   // ranges to answer this query.
9157   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9158     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9159       if (AddRec->getLoop() == L) {
9160         // Form the constant range.
9161         ConstantRange CompRange =
9162             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9163 
9164         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9165         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9166       }
9167 
9168   // If this loop must exit based on this condition (or execute undefined
9169   // behaviour), and we can prove the test sequence produced must repeat
9170   // the same values on self-wrap of the IV, then we can infer that IV
9171   // doesn't self wrap because if it did, we'd have an infinite (undefined)
9172   // loop.
9173   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9174     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9175     // invariant terms are effectively constants for our purposes here.
9176     auto *InnerLHS = LHS;
9177     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9178       InnerLHS = ZExt->getOperand();
9179     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9180       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9181       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9182           StrideC && StrideC->getAPInt().isPowerOf2()) {
9183         auto Flags = AR->getNoWrapFlags();
9184         Flags = setFlags(Flags, SCEV::FlagNW);
9185         SmallVector<const SCEV*> Operands{AR->operands()};
9186         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9187         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9188       }
9189     }
9190   }
9191 
9192   switch (Pred) {
9193   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9194     // Convert to: while (X-Y != 0)
9195     if (LHS->getType()->isPointerTy()) {
9196       LHS = getLosslessPtrToIntExpr(LHS);
9197       if (isa<SCEVCouldNotCompute>(LHS))
9198         return LHS;
9199     }
9200     if (RHS->getType()->isPointerTy()) {
9201       RHS = getLosslessPtrToIntExpr(RHS);
9202       if (isa<SCEVCouldNotCompute>(RHS))
9203         return RHS;
9204     }
9205     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
9206                                 AllowPredicates);
9207     if (EL.hasAnyInfo()) return EL;
9208     break;
9209   }
9210   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9211     // Convert to: while (X-Y == 0)
9212     if (LHS->getType()->isPointerTy()) {
9213       LHS = getLosslessPtrToIntExpr(LHS);
9214       if (isa<SCEVCouldNotCompute>(LHS))
9215         return LHS;
9216     }
9217     if (RHS->getType()->isPointerTy()) {
9218       RHS = getLosslessPtrToIntExpr(RHS);
9219       if (isa<SCEVCouldNotCompute>(RHS))
9220         return RHS;
9221     }
9222     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9223     if (EL.hasAnyInfo()) return EL;
9224     break;
9225   }
9226   case ICmpInst::ICMP_SLT:
9227   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
9228     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
9229     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
9230                                     AllowPredicates);
9231     if (EL.hasAnyInfo()) return EL;
9232     break;
9233   }
9234   case ICmpInst::ICMP_SGT:
9235   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
9236     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
9237     ExitLimit EL =
9238         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
9239                             AllowPredicates);
9240     if (EL.hasAnyInfo()) return EL;
9241     break;
9242   }
9243   default:
9244     break;
9245   }
9246 
9247   return getCouldNotCompute();
9248 }
9249 
9250 ScalarEvolution::ExitLimit
9251 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9252                                                       SwitchInst *Switch,
9253                                                       BasicBlock *ExitingBlock,
9254                                                       bool ControlsExit) {
9255   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9256 
9257   // Give up if the exit is the default dest of a switch.
9258   if (Switch->getDefaultDest() == ExitingBlock)
9259     return getCouldNotCompute();
9260 
9261   assert(L->contains(Switch->getDefaultDest()) &&
9262          "Default case must not exit the loop!");
9263   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9264   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9265 
9266   // while (X != Y) --> while (X-Y != 0)
9267   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
9268   if (EL.hasAnyInfo())
9269     return EL;
9270 
9271   return getCouldNotCompute();
9272 }
9273 
9274 static ConstantInt *
9275 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9276                                 ScalarEvolution &SE) {
9277   const SCEV *InVal = SE.getConstant(C);
9278   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9279   assert(isa<SCEVConstant>(Val) &&
9280          "Evaluation of SCEV at constant didn't fold correctly?");
9281   return cast<SCEVConstant>(Val)->getValue();
9282 }
9283 
9284 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9285     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9286   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9287   if (!RHS)
9288     return getCouldNotCompute();
9289 
9290   const BasicBlock *Latch = L->getLoopLatch();
9291   if (!Latch)
9292     return getCouldNotCompute();
9293 
9294   const BasicBlock *Predecessor = L->getLoopPredecessor();
9295   if (!Predecessor)
9296     return getCouldNotCompute();
9297 
9298   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9299   // Return LHS in OutLHS and shift_opt in OutOpCode.
9300   auto MatchPositiveShift =
9301       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9302 
9303     using namespace PatternMatch;
9304 
9305     ConstantInt *ShiftAmt;
9306     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9307       OutOpCode = Instruction::LShr;
9308     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9309       OutOpCode = Instruction::AShr;
9310     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9311       OutOpCode = Instruction::Shl;
9312     else
9313       return false;
9314 
9315     return ShiftAmt->getValue().isStrictlyPositive();
9316   };
9317 
9318   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9319   //
9320   // loop:
9321   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9322   //   %iv.shifted = lshr i32 %iv, <positive constant>
9323   //
9324   // Return true on a successful match.  Return the corresponding PHI node (%iv
9325   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9326   auto MatchShiftRecurrence =
9327       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9328     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9329 
9330     {
9331       Instruction::BinaryOps OpC;
9332       Value *V;
9333 
9334       // If we encounter a shift instruction, "peel off" the shift operation,
9335       // and remember that we did so.  Later when we inspect %iv's backedge
9336       // value, we will make sure that the backedge value uses the same
9337       // operation.
9338       //
9339       // Note: the peeled shift operation does not have to be the same
9340       // instruction as the one feeding into the PHI's backedge value.  We only
9341       // really care about it being the same *kind* of shift instruction --
9342       // that's all that is required for our later inferences to hold.
9343       if (MatchPositiveShift(LHS, V, OpC)) {
9344         PostShiftOpCode = OpC;
9345         LHS = V;
9346       }
9347     }
9348 
9349     PNOut = dyn_cast<PHINode>(LHS);
9350     if (!PNOut || PNOut->getParent() != L->getHeader())
9351       return false;
9352 
9353     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9354     Value *OpLHS;
9355 
9356     return
9357         // The backedge value for the PHI node must be a shift by a positive
9358         // amount
9359         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9360 
9361         // of the PHI node itself
9362         OpLHS == PNOut &&
9363 
9364         // and the kind of shift should be match the kind of shift we peeled
9365         // off, if any.
9366         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9367   };
9368 
9369   PHINode *PN;
9370   Instruction::BinaryOps OpCode;
9371   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9372     return getCouldNotCompute();
9373 
9374   const DataLayout &DL = getDataLayout();
9375 
9376   // The key rationale for this optimization is that for some kinds of shift
9377   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9378   // within a finite number of iterations.  If the condition guarding the
9379   // backedge (in the sense that the backedge is taken if the condition is true)
9380   // is false for the value the shift recurrence stabilizes to, then we know
9381   // that the backedge is taken only a finite number of times.
9382 
9383   ConstantInt *StableValue = nullptr;
9384   switch (OpCode) {
9385   default:
9386     llvm_unreachable("Impossible case!");
9387 
9388   case Instruction::AShr: {
9389     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9390     // bitwidth(K) iterations.
9391     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9392     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9393                                        Predecessor->getTerminator(), &DT);
9394     auto *Ty = cast<IntegerType>(RHS->getType());
9395     if (Known.isNonNegative())
9396       StableValue = ConstantInt::get(Ty, 0);
9397     else if (Known.isNegative())
9398       StableValue = ConstantInt::get(Ty, -1, true);
9399     else
9400       return getCouldNotCompute();
9401 
9402     break;
9403   }
9404   case Instruction::LShr:
9405   case Instruction::Shl:
9406     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9407     // stabilize to 0 in at most bitwidth(K) iterations.
9408     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9409     break;
9410   }
9411 
9412   auto *Result =
9413       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9414   assert(Result->getType()->isIntegerTy(1) &&
9415          "Otherwise cannot be an operand to a branch instruction");
9416 
9417   if (Result->isZeroValue()) {
9418     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9419     const SCEV *UpperBound =
9420         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9421     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9422   }
9423 
9424   return getCouldNotCompute();
9425 }
9426 
9427 /// Return true if we can constant fold an instruction of the specified type,
9428 /// assuming that all operands were constants.
9429 static bool CanConstantFold(const Instruction *I) {
9430   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9431       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9432       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9433     return true;
9434 
9435   if (const CallInst *CI = dyn_cast<CallInst>(I))
9436     if (const Function *F = CI->getCalledFunction())
9437       return canConstantFoldCallTo(CI, F);
9438   return false;
9439 }
9440 
9441 /// Determine whether this instruction can constant evolve within this loop
9442 /// assuming its operands can all constant evolve.
9443 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9444   // An instruction outside of the loop can't be derived from a loop PHI.
9445   if (!L->contains(I)) return false;
9446 
9447   if (isa<PHINode>(I)) {
9448     // We don't currently keep track of the control flow needed to evaluate
9449     // PHIs, so we cannot handle PHIs inside of loops.
9450     return L->getHeader() == I->getParent();
9451   }
9452 
9453   // If we won't be able to constant fold this expression even if the operands
9454   // are constants, bail early.
9455   return CanConstantFold(I);
9456 }
9457 
9458 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9459 /// recursing through each instruction operand until reaching a loop header phi.
9460 static PHINode *
9461 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9462                                DenseMap<Instruction *, PHINode *> &PHIMap,
9463                                unsigned Depth) {
9464   if (Depth > MaxConstantEvolvingDepth)
9465     return nullptr;
9466 
9467   // Otherwise, we can evaluate this instruction if all of its operands are
9468   // constant or derived from a PHI node themselves.
9469   PHINode *PHI = nullptr;
9470   for (Value *Op : UseInst->operands()) {
9471     if (isa<Constant>(Op)) continue;
9472 
9473     Instruction *OpInst = dyn_cast<Instruction>(Op);
9474     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9475 
9476     PHINode *P = dyn_cast<PHINode>(OpInst);
9477     if (!P)
9478       // If this operand is already visited, reuse the prior result.
9479       // We may have P != PHI if this is the deepest point at which the
9480       // inconsistent paths meet.
9481       P = PHIMap.lookup(OpInst);
9482     if (!P) {
9483       // Recurse and memoize the results, whether a phi is found or not.
9484       // This recursive call invalidates pointers into PHIMap.
9485       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9486       PHIMap[OpInst] = P;
9487     }
9488     if (!P)
9489       return nullptr;  // Not evolving from PHI
9490     if (PHI && PHI != P)
9491       return nullptr;  // Evolving from multiple different PHIs.
9492     PHI = P;
9493   }
9494   // This is a expression evolving from a constant PHI!
9495   return PHI;
9496 }
9497 
9498 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9499 /// in the loop that V is derived from.  We allow arbitrary operations along the
9500 /// way, but the operands of an operation must either be constants or a value
9501 /// derived from a constant PHI.  If this expression does not fit with these
9502 /// constraints, return null.
9503 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9504   Instruction *I = dyn_cast<Instruction>(V);
9505   if (!I || !canConstantEvolve(I, L)) return nullptr;
9506 
9507   if (PHINode *PN = dyn_cast<PHINode>(I))
9508     return PN;
9509 
9510   // Record non-constant instructions contained by the loop.
9511   DenseMap<Instruction *, PHINode *> PHIMap;
9512   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9513 }
9514 
9515 /// EvaluateExpression - Given an expression that passes the
9516 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9517 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9518 /// reason, return null.
9519 static Constant *EvaluateExpression(Value *V, const Loop *L,
9520                                     DenseMap<Instruction *, Constant *> &Vals,
9521                                     const DataLayout &DL,
9522                                     const TargetLibraryInfo *TLI) {
9523   // Convenient constant check, but redundant for recursive calls.
9524   if (Constant *C = dyn_cast<Constant>(V)) return C;
9525   Instruction *I = dyn_cast<Instruction>(V);
9526   if (!I) return nullptr;
9527 
9528   if (Constant *C = Vals.lookup(I)) return C;
9529 
9530   // An instruction inside the loop depends on a value outside the loop that we
9531   // weren't given a mapping for, or a value such as a call inside the loop.
9532   if (!canConstantEvolve(I, L)) return nullptr;
9533 
9534   // An unmapped PHI can be due to a branch or another loop inside this loop,
9535   // or due to this not being the initial iteration through a loop where we
9536   // couldn't compute the evolution of this particular PHI last time.
9537   if (isa<PHINode>(I)) return nullptr;
9538 
9539   std::vector<Constant*> Operands(I->getNumOperands());
9540 
9541   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9542     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9543     if (!Operand) {
9544       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9545       if (!Operands[i]) return nullptr;
9546       continue;
9547     }
9548     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9549     Vals[Operand] = C;
9550     if (!C) return nullptr;
9551     Operands[i] = C;
9552   }
9553 
9554   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9555 }
9556 
9557 
9558 // If every incoming value to PN except the one for BB is a specific Constant,
9559 // return that, else return nullptr.
9560 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9561   Constant *IncomingVal = nullptr;
9562 
9563   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9564     if (PN->getIncomingBlock(i) == BB)
9565       continue;
9566 
9567     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9568     if (!CurrentVal)
9569       return nullptr;
9570 
9571     if (IncomingVal != CurrentVal) {
9572       if (IncomingVal)
9573         return nullptr;
9574       IncomingVal = CurrentVal;
9575     }
9576   }
9577 
9578   return IncomingVal;
9579 }
9580 
9581 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9582 /// in the header of its containing loop, we know the loop executes a
9583 /// constant number of times, and the PHI node is just a recurrence
9584 /// involving constants, fold it.
9585 Constant *
9586 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9587                                                    const APInt &BEs,
9588                                                    const Loop *L) {
9589   auto I = ConstantEvolutionLoopExitValue.find(PN);
9590   if (I != ConstantEvolutionLoopExitValue.end())
9591     return I->second;
9592 
9593   if (BEs.ugt(MaxBruteForceIterations))
9594     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9595 
9596   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9597 
9598   DenseMap<Instruction *, Constant *> CurrentIterVals;
9599   BasicBlock *Header = L->getHeader();
9600   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9601 
9602   BasicBlock *Latch = L->getLoopLatch();
9603   if (!Latch)
9604     return nullptr;
9605 
9606   for (PHINode &PHI : Header->phis()) {
9607     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9608       CurrentIterVals[&PHI] = StartCST;
9609   }
9610   if (!CurrentIterVals.count(PN))
9611     return RetVal = nullptr;
9612 
9613   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9614 
9615   // Execute the loop symbolically to determine the exit value.
9616   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9617          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9618 
9619   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9620   unsigned IterationNum = 0;
9621   const DataLayout &DL = getDataLayout();
9622   for (; ; ++IterationNum) {
9623     if (IterationNum == NumIterations)
9624       return RetVal = CurrentIterVals[PN];  // Got exit value!
9625 
9626     // Compute the value of the PHIs for the next iteration.
9627     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9628     DenseMap<Instruction *, Constant *> NextIterVals;
9629     Constant *NextPHI =
9630         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9631     if (!NextPHI)
9632       return nullptr;        // Couldn't evaluate!
9633     NextIterVals[PN] = NextPHI;
9634 
9635     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9636 
9637     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9638     // cease to be able to evaluate one of them or if they stop evolving,
9639     // because that doesn't necessarily prevent us from computing PN.
9640     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9641     for (const auto &I : CurrentIterVals) {
9642       PHINode *PHI = dyn_cast<PHINode>(I.first);
9643       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9644       PHIsToCompute.emplace_back(PHI, I.second);
9645     }
9646     // We use two distinct loops because EvaluateExpression may invalidate any
9647     // iterators into CurrentIterVals.
9648     for (const auto &I : PHIsToCompute) {
9649       PHINode *PHI = I.first;
9650       Constant *&NextPHI = NextIterVals[PHI];
9651       if (!NextPHI) {   // Not already computed.
9652         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9653         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9654       }
9655       if (NextPHI != I.second)
9656         StoppedEvolving = false;
9657     }
9658 
9659     // If all entries in CurrentIterVals == NextIterVals then we can stop
9660     // iterating, the loop can't continue to change.
9661     if (StoppedEvolving)
9662       return RetVal = CurrentIterVals[PN];
9663 
9664     CurrentIterVals.swap(NextIterVals);
9665   }
9666 }
9667 
9668 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9669                                                           Value *Cond,
9670                                                           bool ExitWhen) {
9671   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9672   if (!PN) return getCouldNotCompute();
9673 
9674   // If the loop is canonicalized, the PHI will have exactly two entries.
9675   // That's the only form we support here.
9676   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9677 
9678   DenseMap<Instruction *, Constant *> CurrentIterVals;
9679   BasicBlock *Header = L->getHeader();
9680   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9681 
9682   BasicBlock *Latch = L->getLoopLatch();
9683   assert(Latch && "Should follow from NumIncomingValues == 2!");
9684 
9685   for (PHINode &PHI : Header->phis()) {
9686     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9687       CurrentIterVals[&PHI] = StartCST;
9688   }
9689   if (!CurrentIterVals.count(PN))
9690     return getCouldNotCompute();
9691 
9692   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9693   // the loop symbolically to determine when the condition gets a value of
9694   // "ExitWhen".
9695   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9696   const DataLayout &DL = getDataLayout();
9697   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9698     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9699         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9700 
9701     // Couldn't symbolically evaluate.
9702     if (!CondVal) return getCouldNotCompute();
9703 
9704     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9705       ++NumBruteForceTripCountsComputed;
9706       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9707     }
9708 
9709     // Update all the PHI nodes for the next iteration.
9710     DenseMap<Instruction *, Constant *> NextIterVals;
9711 
9712     // Create a list of which PHIs we need to compute. We want to do this before
9713     // calling EvaluateExpression on them because that may invalidate iterators
9714     // into CurrentIterVals.
9715     SmallVector<PHINode *, 8> PHIsToCompute;
9716     for (const auto &I : CurrentIterVals) {
9717       PHINode *PHI = dyn_cast<PHINode>(I.first);
9718       if (!PHI || PHI->getParent() != Header) continue;
9719       PHIsToCompute.push_back(PHI);
9720     }
9721     for (PHINode *PHI : PHIsToCompute) {
9722       Constant *&NextPHI = NextIterVals[PHI];
9723       if (NextPHI) continue;    // Already computed!
9724 
9725       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9726       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9727     }
9728     CurrentIterVals.swap(NextIterVals);
9729   }
9730 
9731   // Too many iterations were needed to evaluate.
9732   return getCouldNotCompute();
9733 }
9734 
9735 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9736   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9737       ValuesAtScopes[V];
9738   // Check to see if we've folded this expression at this loop before.
9739   for (auto &LS : Values)
9740     if (LS.first == L)
9741       return LS.second ? LS.second : V;
9742 
9743   Values.emplace_back(L, nullptr);
9744 
9745   // Otherwise compute it.
9746   const SCEV *C = computeSCEVAtScope(V, L);
9747   for (auto &LS : reverse(ValuesAtScopes[V]))
9748     if (LS.first == L) {
9749       LS.second = C;
9750       if (!isa<SCEVConstant>(C))
9751         ValuesAtScopesUsers[C].push_back({L, V});
9752       break;
9753     }
9754   return C;
9755 }
9756 
9757 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9758 /// will return Constants for objects which aren't represented by a
9759 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9760 /// Returns NULL if the SCEV isn't representable as a Constant.
9761 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9762   switch (V->getSCEVType()) {
9763   case scCouldNotCompute:
9764   case scAddRecExpr:
9765     return nullptr;
9766   case scConstant:
9767     return cast<SCEVConstant>(V)->getValue();
9768   case scUnknown:
9769     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9770   case scSignExtend: {
9771     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9772     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9773       return ConstantExpr::getSExt(CastOp, SS->getType());
9774     return nullptr;
9775   }
9776   case scZeroExtend: {
9777     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9778     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9779       return ConstantExpr::getZExt(CastOp, SZ->getType());
9780     return nullptr;
9781   }
9782   case scPtrToInt: {
9783     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9784     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9785       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9786 
9787     return nullptr;
9788   }
9789   case scTruncate: {
9790     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9791     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9792       return ConstantExpr::getTrunc(CastOp, ST->getType());
9793     return nullptr;
9794   }
9795   case scAddExpr: {
9796     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9797     Constant *C = nullptr;
9798     for (const SCEV *Op : SA->operands()) {
9799       Constant *OpC = BuildConstantFromSCEV(Op);
9800       if (!OpC)
9801         return nullptr;
9802       if (!C) {
9803         C = OpC;
9804         continue;
9805       }
9806       assert(!C->getType()->isPointerTy() &&
9807              "Can only have one pointer, and it must be last");
9808       if (auto *PT = dyn_cast<PointerType>(OpC->getType())) {
9809         // The offsets have been converted to bytes.  We can add bytes to an
9810         // i8* by GEP with the byte count in the first index.
9811         Type *DestPtrTy =
9812             Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace());
9813         OpC = ConstantExpr::getBitCast(OpC, DestPtrTy);
9814         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9815                                            OpC, C);
9816       } else {
9817         C = ConstantExpr::getAdd(C, OpC);
9818       }
9819     }
9820     return C;
9821   }
9822   case scMulExpr: {
9823     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9824     Constant *C = nullptr;
9825     for (const SCEV *Op : SM->operands()) {
9826       assert(!Op->getType()->isPointerTy() && "Can't multiply pointers");
9827       Constant *OpC = BuildConstantFromSCEV(Op);
9828       if (!OpC)
9829         return nullptr;
9830       C = C ? ConstantExpr::getMul(C, OpC) : OpC;
9831     }
9832     return C;
9833   }
9834   case scUDivExpr:
9835   case scSMaxExpr:
9836   case scUMaxExpr:
9837   case scSMinExpr:
9838   case scUMinExpr:
9839   case scSequentialUMinExpr:
9840     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9841   }
9842   llvm_unreachable("Unknown SCEV kind!");
9843 }
9844 
9845 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9846   switch (V->getSCEVType()) {
9847   case scConstant:
9848     return V;
9849   case scAddRecExpr: {
9850     // If this is a loop recurrence for a loop that does not contain L, then we
9851     // are dealing with the final value computed by the loop.
9852     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9853     // First, attempt to evaluate each operand.
9854     // Avoid performing the look-up in the common case where the specified
9855     // expression has no loop-variant portions.
9856     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9857       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9858       if (OpAtScope == AddRec->getOperand(i))
9859         continue;
9860 
9861       // Okay, at least one of these operands is loop variant but might be
9862       // foldable.  Build a new instance of the folded commutative expression.
9863       SmallVector<const SCEV *, 8> NewOps;
9864       NewOps.reserve(AddRec->getNumOperands());
9865       append_range(NewOps, AddRec->operands().take_front(i));
9866       NewOps.push_back(OpAtScope);
9867       for (++i; i != e; ++i)
9868         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9869 
9870       const SCEV *FoldedRec = getAddRecExpr(
9871           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9872       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9873       // The addrec may be folded to a nonrecurrence, for example, if the
9874       // induction variable is multiplied by zero after constant folding. Go
9875       // ahead and return the folded value.
9876       if (!AddRec)
9877         return FoldedRec;
9878       break;
9879     }
9880 
9881     // If the scope is outside the addrec's loop, evaluate it by using the
9882     // loop exit value of the addrec.
9883     if (!AddRec->getLoop()->contains(L)) {
9884       // To evaluate this recurrence, we need to know how many times the AddRec
9885       // loop iterates.  Compute this now.
9886       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9887       if (BackedgeTakenCount == getCouldNotCompute())
9888         return AddRec;
9889 
9890       // Then, evaluate the AddRec.
9891       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9892     }
9893 
9894     return AddRec;
9895   }
9896   case scTruncate:
9897   case scZeroExtend:
9898   case scSignExtend:
9899   case scPtrToInt:
9900   case scAddExpr:
9901   case scMulExpr:
9902   case scUDivExpr:
9903   case scUMaxExpr:
9904   case scSMaxExpr:
9905   case scUMinExpr:
9906   case scSMinExpr:
9907   case scSequentialUMinExpr: {
9908     ArrayRef<const SCEV *> Ops = V->operands();
9909     // Avoid performing the look-up in the common case where the specified
9910     // expression has no loop-variant portions.
9911     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9912       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9913       if (OpAtScope != Ops[i]) {
9914         // Okay, at least one of these operands is loop variant but might be
9915         // foldable.  Build a new instance of the folded commutative expression.
9916         SmallVector<const SCEV *, 8> NewOps;
9917         NewOps.reserve(Ops.size());
9918         append_range(NewOps, Ops.take_front(i));
9919         NewOps.push_back(OpAtScope);
9920 
9921         for (++i; i != e; ++i) {
9922           OpAtScope = getSCEVAtScope(Ops[i], L);
9923           NewOps.push_back(OpAtScope);
9924         }
9925 
9926         switch (V->getSCEVType()) {
9927         case scTruncate:
9928         case scZeroExtend:
9929         case scSignExtend:
9930         case scPtrToInt:
9931           return getCastExpr(V->getSCEVType(), NewOps[0], V->getType());
9932         case scAddExpr:
9933           return getAddExpr(NewOps, cast<SCEVAddExpr>(V)->getNoWrapFlags());
9934         case scMulExpr:
9935           return getMulExpr(NewOps, cast<SCEVMulExpr>(V)->getNoWrapFlags());
9936         case scUDivExpr:
9937           return getUDivExpr(NewOps[0], NewOps[1]);
9938         case scUMaxExpr:
9939         case scSMaxExpr:
9940         case scUMinExpr:
9941         case scSMinExpr:
9942           return getMinMaxExpr(V->getSCEVType(), NewOps);
9943         case scSequentialUMinExpr:
9944           return getSequentialMinMaxExpr(V->getSCEVType(), NewOps);
9945         case scConstant:
9946         case scAddRecExpr:
9947         case scUnknown:
9948         case scCouldNotCompute:
9949           llvm_unreachable("Can not get those expressions here.");
9950         }
9951         llvm_unreachable("Unknown n-ary-like SCEV type!");
9952       }
9953     }
9954     // If we got here, all operands are loop invariant.
9955     return V;
9956   }
9957   case scUnknown: {
9958     // If this instruction is evolved from a constant-evolving PHI, compute the
9959     // exit value from the loop without using SCEVs.
9960     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9961     Instruction *I = dyn_cast<Instruction>(SU->getValue());
9962     if (!I)
9963       return V; // This is some other type of SCEVUnknown, just return it.
9964 
9965     if (PHINode *PN = dyn_cast<PHINode>(I)) {
9966       const Loop *CurrLoop = this->LI[I->getParent()];
9967       // Looking for loop exit value.
9968       if (CurrLoop && CurrLoop->getParentLoop() == L &&
9969           PN->getParent() == CurrLoop->getHeader()) {
9970         // Okay, there is no closed form solution for the PHI node.  Check
9971         // to see if the loop that contains it has a known backedge-taken
9972         // count.  If so, we may be able to force computation of the exit
9973         // value.
9974         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9975         // This trivial case can show up in some degenerate cases where
9976         // the incoming IR has not yet been fully simplified.
9977         if (BackedgeTakenCount->isZero()) {
9978           Value *InitValue = nullptr;
9979           bool MultipleInitValues = false;
9980           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9981             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9982               if (!InitValue)
9983                 InitValue = PN->getIncomingValue(i);
9984               else if (InitValue != PN->getIncomingValue(i)) {
9985                 MultipleInitValues = true;
9986                 break;
9987               }
9988             }
9989           }
9990           if (!MultipleInitValues && InitValue)
9991             return getSCEV(InitValue);
9992         }
9993         // Do we have a loop invariant value flowing around the backedge
9994         // for a loop which must execute the backedge?
9995         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9996             isKnownPositive(BackedgeTakenCount) &&
9997             PN->getNumIncomingValues() == 2) {
9998 
9999           unsigned InLoopPred =
10000               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
10001           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
10002           if (CurrLoop->isLoopInvariant(BackedgeVal))
10003             return getSCEV(BackedgeVal);
10004         }
10005         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
10006           // Okay, we know how many times the containing loop executes.  If
10007           // this is a constant evolving PHI node, get the final value at
10008           // the specified iteration number.
10009           Constant *RV =
10010               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
10011           if (RV)
10012             return getSCEV(RV);
10013         }
10014       }
10015 
10016       // If there is a single-input Phi, evaluate it at our scope. If we can
10017       // prove that this replacement does not break LCSSA form, use new value.
10018       if (PN->getNumOperands() == 1) {
10019         const SCEV *Input = getSCEV(PN->getOperand(0));
10020         const SCEV *InputAtScope = getSCEVAtScope(Input, L);
10021         // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
10022         // for the simplest case just support constants.
10023         if (isa<SCEVConstant>(InputAtScope))
10024           return InputAtScope;
10025       }
10026     }
10027 
10028     // Okay, this is an expression that we cannot symbolically evaluate
10029     // into a SCEV.  Check to see if it's possible to symbolically evaluate
10030     // the arguments into constants, and if so, try to constant propagate the
10031     // result.  This is particularly useful for computing loop exit values.
10032     if (!CanConstantFold(I))
10033       return V; // This is some other type of SCEVUnknown, just return it.
10034 
10035     SmallVector<Constant *, 4> Operands;
10036     Operands.reserve(I->getNumOperands());
10037     bool MadeImprovement = false;
10038     for (Value *Op : I->operands()) {
10039       if (Constant *C = dyn_cast<Constant>(Op)) {
10040         Operands.push_back(C);
10041         continue;
10042       }
10043 
10044       // If any of the operands is non-constant and if they are
10045       // non-integer and non-pointer, don't even try to analyze them
10046       // with scev techniques.
10047       if (!isSCEVable(Op->getType()))
10048         return V;
10049 
10050       const SCEV *OrigV = getSCEV(Op);
10051       const SCEV *OpV = getSCEVAtScope(OrigV, L);
10052       MadeImprovement |= OrigV != OpV;
10053 
10054       Constant *C = BuildConstantFromSCEV(OpV);
10055       if (!C)
10056         return V;
10057       if (C->getType() != Op->getType())
10058         C = ConstantExpr::getCast(
10059             CastInst::getCastOpcode(C, false, Op->getType(), false), C,
10060             Op->getType());
10061       Operands.push_back(C);
10062     }
10063 
10064     // Check to see if getSCEVAtScope actually made an improvement.
10065     if (!MadeImprovement)
10066       return V; // This is some other type of SCEVUnknown, just return it.
10067 
10068     Constant *C = nullptr;
10069     const DataLayout &DL = getDataLayout();
10070     C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
10071     if (!C)
10072       return V;
10073     return getSCEV(C);
10074   }
10075   case scCouldNotCompute:
10076     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10077   }
10078   llvm_unreachable("Unknown SCEV type!");
10079 }
10080 
10081 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10082   return getSCEVAtScope(getSCEV(V), L);
10083 }
10084 
10085 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10086   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
10087     return stripInjectiveFunctions(ZExt->getOperand());
10088   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10089     return stripInjectiveFunctions(SExt->getOperand());
10090   return S;
10091 }
10092 
10093 /// Finds the minimum unsigned root of the following equation:
10094 ///
10095 ///     A * X = B (mod N)
10096 ///
10097 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10098 /// A and B isn't important.
10099 ///
10100 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10101 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10102                                                ScalarEvolution &SE) {
10103   uint32_t BW = A.getBitWidth();
10104   assert(BW == SE.getTypeSizeInBits(B->getType()));
10105   assert(A != 0 && "A must be non-zero.");
10106 
10107   // 1. D = gcd(A, N)
10108   //
10109   // The gcd of A and N may have only one prime factor: 2. The number of
10110   // trailing zeros in A is its multiplicity
10111   uint32_t Mult2 = A.countTrailingZeros();
10112   // D = 2^Mult2
10113 
10114   // 2. Check if B is divisible by D.
10115   //
10116   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10117   // is not less than multiplicity of this prime factor for D.
10118   if (SE.GetMinTrailingZeros(B) < Mult2)
10119     return SE.getCouldNotCompute();
10120 
10121   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10122   // modulo (N / D).
10123   //
10124   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10125   // (N / D) in general. The inverse itself always fits into BW bits, though,
10126   // so we immediately truncate it.
10127   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
10128   APInt Mod(BW + 1, 0);
10129   Mod.setBit(BW - Mult2);  // Mod = N / D
10130   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
10131 
10132   // 4. Compute the minimum unsigned root of the equation:
10133   // I * (B / D) mod (N / D)
10134   // To simplify the computation, we factor out the divide by D:
10135   // (I * B mod N) / D
10136   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10137   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10138 }
10139 
10140 /// For a given quadratic addrec, generate coefficients of the corresponding
10141 /// quadratic equation, multiplied by a common value to ensure that they are
10142 /// integers.
10143 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10144 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10145 /// were multiplied by, and BitWidth is the bit width of the original addrec
10146 /// coefficients.
10147 /// This function returns std::nullopt if the addrec coefficients are not
10148 /// compile- time constants.
10149 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10150 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10151   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10152   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10153   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10154   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10155   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10156                     << *AddRec << '\n');
10157 
10158   // We currently can only solve this if the coefficients are constants.
10159   if (!LC || !MC || !NC) {
10160     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10161     return std::nullopt;
10162   }
10163 
10164   APInt L = LC->getAPInt();
10165   APInt M = MC->getAPInt();
10166   APInt N = NC->getAPInt();
10167   assert(!N.isZero() && "This is not a quadratic addrec");
10168 
10169   unsigned BitWidth = LC->getAPInt().getBitWidth();
10170   unsigned NewWidth = BitWidth + 1;
10171   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10172                     << BitWidth << '\n');
10173   // The sign-extension (as opposed to a zero-extension) here matches the
10174   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10175   N = N.sext(NewWidth);
10176   M = M.sext(NewWidth);
10177   L = L.sext(NewWidth);
10178 
10179   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10180   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10181   //   L+M, L+2M+N, L+3M+3N, ...
10182   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10183   //
10184   // The equation Acc = 0 is then
10185   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10186   // In a quadratic form it becomes:
10187   //   N n^2 + (2M-N) n + 2L = 0.
10188 
10189   APInt A = N;
10190   APInt B = 2 * M - A;
10191   APInt C = 2 * L;
10192   APInt T = APInt(NewWidth, 2);
10193   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10194                     << "x + " << C << ", coeff bw: " << NewWidth
10195                     << ", multiplied by " << T << '\n');
10196   return std::make_tuple(A, B, C, T, BitWidth);
10197 }
10198 
10199 /// Helper function to compare optional APInts:
10200 /// (a) if X and Y both exist, return min(X, Y),
10201 /// (b) if neither X nor Y exist, return std::nullopt,
10202 /// (c) if exactly one of X and Y exists, return that value.
10203 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10204                                         std::optional<APInt> Y) {
10205   if (X && Y) {
10206     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10207     APInt XW = X->sext(W);
10208     APInt YW = Y->sext(W);
10209     return XW.slt(YW) ? *X : *Y;
10210   }
10211   if (!X && !Y)
10212     return std::nullopt;
10213   return X ? *X : *Y;
10214 }
10215 
10216 /// Helper function to truncate an optional APInt to a given BitWidth.
10217 /// When solving addrec-related equations, it is preferable to return a value
10218 /// that has the same bit width as the original addrec's coefficients. If the
10219 /// solution fits in the original bit width, truncate it (except for i1).
10220 /// Returning a value of a different bit width may inhibit some optimizations.
10221 ///
10222 /// In general, a solution to a quadratic equation generated from an addrec
10223 /// may require BW+1 bits, where BW is the bit width of the addrec's
10224 /// coefficients. The reason is that the coefficients of the quadratic
10225 /// equation are BW+1 bits wide (to avoid truncation when converting from
10226 /// the addrec to the equation).
10227 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10228                                             unsigned BitWidth) {
10229   if (!X)
10230     return std::nullopt;
10231   unsigned W = X->getBitWidth();
10232   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10233     return X->trunc(BitWidth);
10234   return X;
10235 }
10236 
10237 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10238 /// iterations. The values L, M, N are assumed to be signed, and they
10239 /// should all have the same bit widths.
10240 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10241 /// where BW is the bit width of the addrec's coefficients.
10242 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10243 /// returned as such, otherwise the bit width of the returned value may
10244 /// be greater than BW.
10245 ///
10246 /// This function returns std::nullopt if
10247 /// (a) the addrec coefficients are not constant, or
10248 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10249 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10250 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10251 static std::optional<APInt>
10252 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10253   APInt A, B, C, M;
10254   unsigned BitWidth;
10255   auto T = GetQuadraticEquation(AddRec);
10256   if (!T)
10257     return std::nullopt;
10258 
10259   std::tie(A, B, C, M, BitWidth) = *T;
10260   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10261   std::optional<APInt> X =
10262       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10263   if (!X)
10264     return std::nullopt;
10265 
10266   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10267   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10268   if (!V->isZero())
10269     return std::nullopt;
10270 
10271   return TruncIfPossible(X, BitWidth);
10272 }
10273 
10274 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10275 /// iterations. The values M, N are assumed to be signed, and they
10276 /// should all have the same bit widths.
10277 /// Find the least n such that c(n) does not belong to the given range,
10278 /// while c(n-1) does.
10279 ///
10280 /// This function returns std::nullopt if
10281 /// (a) the addrec coefficients are not constant, or
10282 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10283 ///     bounds of the range.
10284 static std::optional<APInt>
10285 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10286                           const ConstantRange &Range, ScalarEvolution &SE) {
10287   assert(AddRec->getOperand(0)->isZero() &&
10288          "Starting value of addrec should be 0");
10289   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10290                     << Range << ", addrec " << *AddRec << '\n');
10291   // This case is handled in getNumIterationsInRange. Here we can assume that
10292   // we start in the range.
10293   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10294          "Addrec's initial value should be in range");
10295 
10296   APInt A, B, C, M;
10297   unsigned BitWidth;
10298   auto T = GetQuadraticEquation(AddRec);
10299   if (!T)
10300     return std::nullopt;
10301 
10302   // Be careful about the return value: there can be two reasons for not
10303   // returning an actual number. First, if no solutions to the equations
10304   // were found, and second, if the solutions don't leave the given range.
10305   // The first case means that the actual solution is "unknown", the second
10306   // means that it's known, but not valid. If the solution is unknown, we
10307   // cannot make any conclusions.
10308   // Return a pair: the optional solution and a flag indicating if the
10309   // solution was found.
10310   auto SolveForBoundary =
10311       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10312     // Solve for signed overflow and unsigned overflow, pick the lower
10313     // solution.
10314     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10315                       << Bound << " (before multiplying by " << M << ")\n");
10316     Bound *= M; // The quadratic equation multiplier.
10317 
10318     std::optional<APInt> SO;
10319     if (BitWidth > 1) {
10320       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10321                            "signed overflow\n");
10322       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10323     }
10324     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10325                          "unsigned overflow\n");
10326     std::optional<APInt> UO =
10327         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10328 
10329     auto LeavesRange = [&] (const APInt &X) {
10330       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10331       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10332       if (Range.contains(V0->getValue()))
10333         return false;
10334       // X should be at least 1, so X-1 is non-negative.
10335       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10336       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10337       if (Range.contains(V1->getValue()))
10338         return true;
10339       return false;
10340     };
10341 
10342     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10343     // can be a solution, but the function failed to find it. We cannot treat it
10344     // as "no solution".
10345     if (!SO || !UO)
10346       return {std::nullopt, false};
10347 
10348     // Check the smaller value first to see if it leaves the range.
10349     // At this point, both SO and UO must have values.
10350     std::optional<APInt> Min = MinOptional(SO, UO);
10351     if (LeavesRange(*Min))
10352       return { Min, true };
10353     std::optional<APInt> Max = Min == SO ? UO : SO;
10354     if (LeavesRange(*Max))
10355       return { Max, true };
10356 
10357     // Solutions were found, but were eliminated, hence the "true".
10358     return {std::nullopt, true};
10359   };
10360 
10361   std::tie(A, B, C, M, BitWidth) = *T;
10362   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10363   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10364   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10365   auto SL = SolveForBoundary(Lower);
10366   auto SU = SolveForBoundary(Upper);
10367   // If any of the solutions was unknown, no meaninigful conclusions can
10368   // be made.
10369   if (!SL.second || !SU.second)
10370     return std::nullopt;
10371 
10372   // Claim: The correct solution is not some value between Min and Max.
10373   //
10374   // Justification: Assuming that Min and Max are different values, one of
10375   // them is when the first signed overflow happens, the other is when the
10376   // first unsigned overflow happens. Crossing the range boundary is only
10377   // possible via an overflow (treating 0 as a special case of it, modeling
10378   // an overflow as crossing k*2^W for some k).
10379   //
10380   // The interesting case here is when Min was eliminated as an invalid
10381   // solution, but Max was not. The argument is that if there was another
10382   // overflow between Min and Max, it would also have been eliminated if
10383   // it was considered.
10384   //
10385   // For a given boundary, it is possible to have two overflows of the same
10386   // type (signed/unsigned) without having the other type in between: this
10387   // can happen when the vertex of the parabola is between the iterations
10388   // corresponding to the overflows. This is only possible when the two
10389   // overflows cross k*2^W for the same k. In such case, if the second one
10390   // left the range (and was the first one to do so), the first overflow
10391   // would have to enter the range, which would mean that either we had left
10392   // the range before or that we started outside of it. Both of these cases
10393   // are contradictions.
10394   //
10395   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10396   // solution is not some value between the Max for this boundary and the
10397   // Min of the other boundary.
10398   //
10399   // Justification: Assume that we had such Max_A and Min_B corresponding
10400   // to range boundaries A and B and such that Max_A < Min_B. If there was
10401   // a solution between Max_A and Min_B, it would have to be caused by an
10402   // overflow corresponding to either A or B. It cannot correspond to B,
10403   // since Min_B is the first occurrence of such an overflow. If it
10404   // corresponded to A, it would have to be either a signed or an unsigned
10405   // overflow that is larger than both eliminated overflows for A. But
10406   // between the eliminated overflows and this overflow, the values would
10407   // cover the entire value space, thus crossing the other boundary, which
10408   // is a contradiction.
10409 
10410   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10411 }
10412 
10413 ScalarEvolution::ExitLimit
10414 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
10415                               bool AllowPredicates) {
10416 
10417   // This is only used for loops with a "x != y" exit test. The exit condition
10418   // is now expressed as a single expression, V = x-y. So the exit test is
10419   // effectively V != 0.  We know and take advantage of the fact that this
10420   // expression only being used in a comparison by zero context.
10421 
10422   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10423   // If the value is a constant
10424   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10425     // If the value is already zero, the branch will execute zero times.
10426     if (C->getValue()->isZero()) return C;
10427     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10428   }
10429 
10430   const SCEVAddRecExpr *AddRec =
10431       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10432 
10433   if (!AddRec && AllowPredicates)
10434     // Try to make this an AddRec using runtime tests, in the first X
10435     // iterations of this loop, where X is the SCEV expression found by the
10436     // algorithm below.
10437     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10438 
10439   if (!AddRec || AddRec->getLoop() != L)
10440     return getCouldNotCompute();
10441 
10442   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10443   // the quadratic equation to solve it.
10444   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10445     // We can only use this value if the chrec ends up with an exact zero
10446     // value at this index.  When solving for "X*X != 5", for example, we
10447     // should not accept a root of 2.
10448     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10449       const auto *R = cast<SCEVConstant>(getConstant(*S));
10450       return ExitLimit(R, R, R, false, Predicates);
10451     }
10452     return getCouldNotCompute();
10453   }
10454 
10455   // Otherwise we can only handle this if it is affine.
10456   if (!AddRec->isAffine())
10457     return getCouldNotCompute();
10458 
10459   // If this is an affine expression, the execution count of this branch is
10460   // the minimum unsigned root of the following equation:
10461   //
10462   //     Start + Step*N = 0 (mod 2^BW)
10463   //
10464   // equivalent to:
10465   //
10466   //             Step*N = -Start (mod 2^BW)
10467   //
10468   // where BW is the common bit width of Start and Step.
10469 
10470   // Get the initial value for the loop.
10471   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10472   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10473 
10474   // For now we handle only constant steps.
10475   //
10476   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10477   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10478   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10479   // We have not yet seen any such cases.
10480   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10481   if (!StepC || StepC->getValue()->isZero())
10482     return getCouldNotCompute();
10483 
10484   // For positive steps (counting up until unsigned overflow):
10485   //   N = -Start/Step (as unsigned)
10486   // For negative steps (counting down to zero):
10487   //   N = Start/-Step
10488   // First compute the unsigned distance from zero in the direction of Step.
10489   bool CountDown = StepC->getAPInt().isNegative();
10490   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10491 
10492   // Handle unitary steps, which cannot wraparound.
10493   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10494   //   N = Distance (as unsigned)
10495   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10496     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10497     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10498 
10499     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10500     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10501     // case, and see if we can improve the bound.
10502     //
10503     // Explicitly handling this here is necessary because getUnsignedRange
10504     // isn't context-sensitive; it doesn't know that we only care about the
10505     // range inside the loop.
10506     const SCEV *Zero = getZero(Distance->getType());
10507     const SCEV *One = getOne(Distance->getType());
10508     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10509     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10510       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10511       // as "unsigned_max(Distance + 1) - 1".
10512       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10513       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10514     }
10515     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10516                      Predicates);
10517   }
10518 
10519   // If the condition controls loop exit (the loop exits only if the expression
10520   // is true) and the addition is no-wrap we can use unsigned divide to
10521   // compute the backedge count.  In this case, the step may not divide the
10522   // distance, but we don't care because if the condition is "missed" the loop
10523   // will have undefined behavior due to wrapping.
10524   if (ControlsExit && AddRec->hasNoSelfWrap() &&
10525       loopHasNoAbnormalExits(AddRec->getLoop())) {
10526     const SCEV *Exact =
10527         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10528     const SCEV *ConstantMax = getCouldNotCompute();
10529     if (Exact != getCouldNotCompute()) {
10530       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10531       ConstantMax =
10532           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10533     }
10534     const SCEV *SymbolicMax =
10535         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10536     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10537   }
10538 
10539   // Solve the general equation.
10540   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10541                                                getNegativeSCEV(Start), *this);
10542 
10543   const SCEV *M = E;
10544   if (E != getCouldNotCompute()) {
10545     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10546     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10547   }
10548   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10549   return ExitLimit(E, M, S, false, Predicates);
10550 }
10551 
10552 ScalarEvolution::ExitLimit
10553 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10554   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10555   // handle them yet except for the trivial case.  This could be expanded in the
10556   // future as needed.
10557 
10558   // If the value is a constant, check to see if it is known to be non-zero
10559   // already.  If so, the backedge will execute zero times.
10560   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10561     if (!C->getValue()->isZero())
10562       return getZero(C->getType());
10563     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10564   }
10565 
10566   // We could implement others, but I really doubt anyone writes loops like
10567   // this, and if they did, they would already be constant folded.
10568   return getCouldNotCompute();
10569 }
10570 
10571 std::pair<const BasicBlock *, const BasicBlock *>
10572 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10573     const {
10574   // If the block has a unique predecessor, then there is no path from the
10575   // predecessor to the block that does not go through the direct edge
10576   // from the predecessor to the block.
10577   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10578     return {Pred, BB};
10579 
10580   // A loop's header is defined to be a block that dominates the loop.
10581   // If the header has a unique predecessor outside the loop, it must be
10582   // a block that has exactly one successor that can reach the loop.
10583   if (const Loop *L = LI.getLoopFor(BB))
10584     return {L->getLoopPredecessor(), L->getHeader()};
10585 
10586   return {nullptr, nullptr};
10587 }
10588 
10589 /// SCEV structural equivalence is usually sufficient for testing whether two
10590 /// expressions are equal, however for the purposes of looking for a condition
10591 /// guarding a loop, it can be useful to be a little more general, since a
10592 /// front-end may have replicated the controlling expression.
10593 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10594   // Quick check to see if they are the same SCEV.
10595   if (A == B) return true;
10596 
10597   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10598     // Not all instructions that are "identical" compute the same value.  For
10599     // instance, two distinct alloca instructions allocating the same type are
10600     // identical and do not read memory; but compute distinct values.
10601     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10602   };
10603 
10604   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10605   // two different instructions with the same value. Check for this case.
10606   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10607     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10608       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10609         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10610           if (ComputesEqualValues(AI, BI))
10611             return true;
10612 
10613   // Otherwise assume they may have a different value.
10614   return false;
10615 }
10616 
10617 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10618                                            const SCEV *&LHS, const SCEV *&RHS,
10619                                            unsigned Depth,
10620                                            bool ControllingFiniteLoop) {
10621   bool Changed = false;
10622   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10623   // '0 != 0'.
10624   auto TrivialCase = [&](bool TriviallyTrue) {
10625     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10626     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10627     return true;
10628   };
10629   // If we hit the max recursion limit bail out.
10630   if (Depth >= 3)
10631     return false;
10632 
10633   // Canonicalize a constant to the right side.
10634   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10635     // Check for both operands constant.
10636     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10637       if (ConstantExpr::getICmp(Pred,
10638                                 LHSC->getValue(),
10639                                 RHSC->getValue())->isNullValue())
10640         return TrivialCase(false);
10641       else
10642         return TrivialCase(true);
10643     }
10644     // Otherwise swap the operands to put the constant on the right.
10645     std::swap(LHS, RHS);
10646     Pred = ICmpInst::getSwappedPredicate(Pred);
10647     Changed = true;
10648   }
10649 
10650   // If we're comparing an addrec with a value which is loop-invariant in the
10651   // addrec's loop, put the addrec on the left. Also make a dominance check,
10652   // as both operands could be addrecs loop-invariant in each other's loop.
10653   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10654     const Loop *L = AR->getLoop();
10655     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10656       std::swap(LHS, RHS);
10657       Pred = ICmpInst::getSwappedPredicate(Pred);
10658       Changed = true;
10659     }
10660   }
10661 
10662   // If there's a constant operand, canonicalize comparisons with boundary
10663   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10664   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10665     const APInt &RA = RC->getAPInt();
10666 
10667     bool SimplifiedByConstantRange = false;
10668 
10669     if (!ICmpInst::isEquality(Pred)) {
10670       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10671       if (ExactCR.isFullSet())
10672         return TrivialCase(true);
10673       else if (ExactCR.isEmptySet())
10674         return TrivialCase(false);
10675 
10676       APInt NewRHS;
10677       CmpInst::Predicate NewPred;
10678       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10679           ICmpInst::isEquality(NewPred)) {
10680         // We were able to convert an inequality to an equality.
10681         Pred = NewPred;
10682         RHS = getConstant(NewRHS);
10683         Changed = SimplifiedByConstantRange = true;
10684       }
10685     }
10686 
10687     if (!SimplifiedByConstantRange) {
10688       switch (Pred) {
10689       default:
10690         break;
10691       case ICmpInst::ICMP_EQ:
10692       case ICmpInst::ICMP_NE:
10693         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10694         if (!RA)
10695           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10696             if (const SCEVMulExpr *ME =
10697                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10698               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10699                   ME->getOperand(0)->isAllOnesValue()) {
10700                 RHS = AE->getOperand(1);
10701                 LHS = ME->getOperand(1);
10702                 Changed = true;
10703               }
10704         break;
10705 
10706 
10707         // The "Should have been caught earlier!" messages refer to the fact
10708         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10709         // should have fired on the corresponding cases, and canonicalized the
10710         // check to trivial case.
10711 
10712       case ICmpInst::ICMP_UGE:
10713         assert(!RA.isMinValue() && "Should have been caught earlier!");
10714         Pred = ICmpInst::ICMP_UGT;
10715         RHS = getConstant(RA - 1);
10716         Changed = true;
10717         break;
10718       case ICmpInst::ICMP_ULE:
10719         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10720         Pred = ICmpInst::ICMP_ULT;
10721         RHS = getConstant(RA + 1);
10722         Changed = true;
10723         break;
10724       case ICmpInst::ICMP_SGE:
10725         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10726         Pred = ICmpInst::ICMP_SGT;
10727         RHS = getConstant(RA - 1);
10728         Changed = true;
10729         break;
10730       case ICmpInst::ICMP_SLE:
10731         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10732         Pred = ICmpInst::ICMP_SLT;
10733         RHS = getConstant(RA + 1);
10734         Changed = true;
10735         break;
10736       }
10737     }
10738   }
10739 
10740   // Check for obvious equality.
10741   if (HasSameValue(LHS, RHS)) {
10742     if (ICmpInst::isTrueWhenEqual(Pred))
10743       return TrivialCase(true);
10744     if (ICmpInst::isFalseWhenEqual(Pred))
10745       return TrivialCase(false);
10746   }
10747 
10748   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10749   // adding or subtracting 1 from one of the operands. This can be done for
10750   // one of two reasons:
10751   // 1) The range of the RHS does not include the (signed/unsigned) boundaries
10752   // 2) The loop is finite, with this comparison controlling the exit. Since the
10753   // loop is finite, the bound cannot include the corresponding boundary
10754   // (otherwise it would loop forever).
10755   switch (Pred) {
10756   case ICmpInst::ICMP_SLE:
10757     if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) {
10758       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10759                        SCEV::FlagNSW);
10760       Pred = ICmpInst::ICMP_SLT;
10761       Changed = true;
10762     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10763       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10764                        SCEV::FlagNSW);
10765       Pred = ICmpInst::ICMP_SLT;
10766       Changed = true;
10767     }
10768     break;
10769   case ICmpInst::ICMP_SGE:
10770     if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) {
10771       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10772                        SCEV::FlagNSW);
10773       Pred = ICmpInst::ICMP_SGT;
10774       Changed = true;
10775     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10776       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10777                        SCEV::FlagNSW);
10778       Pred = ICmpInst::ICMP_SGT;
10779       Changed = true;
10780     }
10781     break;
10782   case ICmpInst::ICMP_ULE:
10783     if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) {
10784       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10785                        SCEV::FlagNUW);
10786       Pred = ICmpInst::ICMP_ULT;
10787       Changed = true;
10788     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10789       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10790       Pred = ICmpInst::ICMP_ULT;
10791       Changed = true;
10792     }
10793     break;
10794   case ICmpInst::ICMP_UGE:
10795     if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) {
10796       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10797       Pred = ICmpInst::ICMP_UGT;
10798       Changed = true;
10799     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10800       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10801                        SCEV::FlagNUW);
10802       Pred = ICmpInst::ICMP_UGT;
10803       Changed = true;
10804     }
10805     break;
10806   default:
10807     break;
10808   }
10809 
10810   // TODO: More simplifications are possible here.
10811 
10812   // Recursively simplify until we either hit a recursion limit or nothing
10813   // changes.
10814   if (Changed)
10815     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1,
10816                                 ControllingFiniteLoop);
10817 
10818   return Changed;
10819 }
10820 
10821 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10822   return getSignedRangeMax(S).isNegative();
10823 }
10824 
10825 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10826   return getSignedRangeMin(S).isStrictlyPositive();
10827 }
10828 
10829 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10830   return !getSignedRangeMin(S).isNegative();
10831 }
10832 
10833 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10834   return !getSignedRangeMax(S).isStrictlyPositive();
10835 }
10836 
10837 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10838   return getUnsignedRangeMin(S) != 0;
10839 }
10840 
10841 std::pair<const SCEV *, const SCEV *>
10842 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10843   // Compute SCEV on entry of loop L.
10844   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10845   if (Start == getCouldNotCompute())
10846     return { Start, Start };
10847   // Compute post increment SCEV for loop L.
10848   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10849   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10850   return { Start, PostInc };
10851 }
10852 
10853 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10854                                           const SCEV *LHS, const SCEV *RHS) {
10855   // First collect all loops.
10856   SmallPtrSet<const Loop *, 8> LoopsUsed;
10857   getUsedLoops(LHS, LoopsUsed);
10858   getUsedLoops(RHS, LoopsUsed);
10859 
10860   if (LoopsUsed.empty())
10861     return false;
10862 
10863   // Domination relationship must be a linear order on collected loops.
10864 #ifndef NDEBUG
10865   for (const auto *L1 : LoopsUsed)
10866     for (const auto *L2 : LoopsUsed)
10867       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10868               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10869              "Domination relationship is not a linear order");
10870 #endif
10871 
10872   const Loop *MDL =
10873       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10874                         [&](const Loop *L1, const Loop *L2) {
10875          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10876        });
10877 
10878   // Get init and post increment value for LHS.
10879   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10880   // if LHS contains unknown non-invariant SCEV then bail out.
10881   if (SplitLHS.first == getCouldNotCompute())
10882     return false;
10883   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10884   // Get init and post increment value for RHS.
10885   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10886   // if RHS contains unknown non-invariant SCEV then bail out.
10887   if (SplitRHS.first == getCouldNotCompute())
10888     return false;
10889   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10890   // It is possible that init SCEV contains an invariant load but it does
10891   // not dominate MDL and is not available at MDL loop entry, so we should
10892   // check it here.
10893   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10894       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10895     return false;
10896 
10897   // It seems backedge guard check is faster than entry one so in some cases
10898   // it can speed up whole estimation by short circuit
10899   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10900                                      SplitRHS.second) &&
10901          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10902 }
10903 
10904 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10905                                        const SCEV *LHS, const SCEV *RHS) {
10906   // Canonicalize the inputs first.
10907   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10908 
10909   if (isKnownViaInduction(Pred, LHS, RHS))
10910     return true;
10911 
10912   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10913     return true;
10914 
10915   // Otherwise see what can be done with some simple reasoning.
10916   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10917 }
10918 
10919 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10920                                                        const SCEV *LHS,
10921                                                        const SCEV *RHS) {
10922   if (isKnownPredicate(Pred, LHS, RHS))
10923     return true;
10924   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10925     return false;
10926   return std::nullopt;
10927 }
10928 
10929 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10930                                          const SCEV *LHS, const SCEV *RHS,
10931                                          const Instruction *CtxI) {
10932   // TODO: Analyze guards and assumes from Context's block.
10933   return isKnownPredicate(Pred, LHS, RHS) ||
10934          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10935 }
10936 
10937 std::optional<bool>
10938 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10939                                      const SCEV *RHS, const Instruction *CtxI) {
10940   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10941   if (KnownWithoutContext)
10942     return KnownWithoutContext;
10943 
10944   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10945     return true;
10946   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10947                                           ICmpInst::getInversePredicate(Pred),
10948                                           LHS, RHS))
10949     return false;
10950   return std::nullopt;
10951 }
10952 
10953 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10954                                               const SCEVAddRecExpr *LHS,
10955                                               const SCEV *RHS) {
10956   const Loop *L = LHS->getLoop();
10957   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10958          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10959 }
10960 
10961 std::optional<ScalarEvolution::MonotonicPredicateType>
10962 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10963                                            ICmpInst::Predicate Pred) {
10964   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10965 
10966 #ifndef NDEBUG
10967   // Verify an invariant: inverting the predicate should turn a monotonically
10968   // increasing change to a monotonically decreasing one, and vice versa.
10969   if (Result) {
10970     auto ResultSwapped =
10971         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10972 
10973     assert(*ResultSwapped != *Result &&
10974            "monotonicity should flip as we flip the predicate");
10975   }
10976 #endif
10977 
10978   return Result;
10979 }
10980 
10981 std::optional<ScalarEvolution::MonotonicPredicateType>
10982 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10983                                                ICmpInst::Predicate Pred) {
10984   // A zero step value for LHS means the induction variable is essentially a
10985   // loop invariant value. We don't really depend on the predicate actually
10986   // flipping from false to true (for increasing predicates, and the other way
10987   // around for decreasing predicates), all we care about is that *if* the
10988   // predicate changes then it only changes from false to true.
10989   //
10990   // A zero step value in itself is not very useful, but there may be places
10991   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10992   // as general as possible.
10993 
10994   // Only handle LE/LT/GE/GT predicates.
10995   if (!ICmpInst::isRelational(Pred))
10996     return std::nullopt;
10997 
10998   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10999   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
11000          "Should be greater or less!");
11001 
11002   // Check that AR does not wrap.
11003   if (ICmpInst::isUnsigned(Pred)) {
11004     if (!LHS->hasNoUnsignedWrap())
11005       return std::nullopt;
11006     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11007   } else {
11008     assert(ICmpInst::isSigned(Pred) &&
11009            "Relational predicate is either signed or unsigned!");
11010     if (!LHS->hasNoSignedWrap())
11011       return std::nullopt;
11012 
11013     const SCEV *Step = LHS->getStepRecurrence(*this);
11014 
11015     if (isKnownNonNegative(Step))
11016       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11017 
11018     if (isKnownNonPositive(Step))
11019       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11020 
11021     return std::nullopt;
11022   }
11023 }
11024 
11025 std::optional<ScalarEvolution::LoopInvariantPredicate>
11026 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
11027                                            const SCEV *LHS, const SCEV *RHS,
11028                                            const Loop *L,
11029                                            const Instruction *CtxI) {
11030   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11031   if (!isLoopInvariant(RHS, L)) {
11032     if (!isLoopInvariant(LHS, L))
11033       return std::nullopt;
11034 
11035     std::swap(LHS, RHS);
11036     Pred = ICmpInst::getSwappedPredicate(Pred);
11037   }
11038 
11039   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11040   if (!ArLHS || ArLHS->getLoop() != L)
11041     return std::nullopt;
11042 
11043   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
11044   if (!MonotonicType)
11045     return std::nullopt;
11046   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
11047   // true as the loop iterates, and the backedge is control dependent on
11048   // "ArLHS `Pred` RHS" == true then we can reason as follows:
11049   //
11050   //   * if the predicate was false in the first iteration then the predicate
11051   //     is never evaluated again, since the loop exits without taking the
11052   //     backedge.
11053   //   * if the predicate was true in the first iteration then it will
11054   //     continue to be true for all future iterations since it is
11055   //     monotonically increasing.
11056   //
11057   // For both the above possibilities, we can replace the loop varying
11058   // predicate with its value on the first iteration of the loop (which is
11059   // loop invariant).
11060   //
11061   // A similar reasoning applies for a monotonically decreasing predicate, by
11062   // replacing true with false and false with true in the above two bullets.
11063   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11064   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
11065 
11066   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
11067     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11068                                                    RHS);
11069 
11070   if (!CtxI)
11071     return std::nullopt;
11072   // Try to prove via context.
11073   // TODO: Support other cases.
11074   switch (Pred) {
11075   default:
11076     break;
11077   case ICmpInst::ICMP_ULE:
11078   case ICmpInst::ICMP_ULT: {
11079     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11080     // Given preconditions
11081     // (1) ArLHS does not cross the border of positive and negative parts of
11082     //     range because of:
11083     //     - Positive step; (TODO: lift this limitation)
11084     //     - nuw - does not cross zero boundary;
11085     //     - nsw - does not cross SINT_MAX boundary;
11086     // (2) ArLHS <s RHS
11087     // (3) RHS >=s 0
11088     // we can replace the loop variant ArLHS <u RHS condition with loop
11089     // invariant Start(ArLHS) <u RHS.
11090     //
11091     // Because of (1) there are two options:
11092     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11093     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11094     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
11095     //   Because of (2) ArLHS <u RHS is trivially true.
11096     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11097     // We can strengthen this to Start(ArLHS) <u RHS.
11098     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
11099     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11100         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
11101         isKnownNonNegative(RHS) &&
11102         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
11103       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11104                                                      RHS);
11105   }
11106   }
11107 
11108   return std::nullopt;
11109 }
11110 
11111 std::optional<ScalarEvolution::LoopInvariantPredicate>
11112 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11113     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11114     const Instruction *CtxI, const SCEV *MaxIter) {
11115   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11116           Pred, LHS, RHS, L, CtxI, MaxIter))
11117     return LIP;
11118   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11119     // Number of iterations expressed as UMIN isn't always great for expressing
11120     // the value on the last iteration. If the straightforward approach didn't
11121     // work, try the following trick: if the a predicate is invariant for X, it
11122     // is also invariant for umin(X, ...). So try to find something that works
11123     // among subexpressions of MaxIter expressed as umin.
11124     for (auto *Op : UMin->operands())
11125       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11126               Pred, LHS, RHS, L, CtxI, Op))
11127         return LIP;
11128   return std::nullopt;
11129 }
11130 
11131 std::optional<ScalarEvolution::LoopInvariantPredicate>
11132 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11133     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11134     const Instruction *CtxI, const SCEV *MaxIter) {
11135   // Try to prove the following set of facts:
11136   // - The predicate is monotonic in the iteration space.
11137   // - If the check does not fail on the 1st iteration:
11138   //   - No overflow will happen during first MaxIter iterations;
11139   //   - It will not fail on the MaxIter'th iteration.
11140   // If the check does fail on the 1st iteration, we leave the loop and no
11141   // other checks matter.
11142 
11143   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11144   if (!isLoopInvariant(RHS, L)) {
11145     if (!isLoopInvariant(LHS, L))
11146       return std::nullopt;
11147 
11148     std::swap(LHS, RHS);
11149     Pred = ICmpInst::getSwappedPredicate(Pred);
11150   }
11151 
11152   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11153   if (!AR || AR->getLoop() != L)
11154     return std::nullopt;
11155 
11156   // The predicate must be relational (i.e. <, <=, >=, >).
11157   if (!ICmpInst::isRelational(Pred))
11158     return std::nullopt;
11159 
11160   // TODO: Support steps other than +/- 1.
11161   const SCEV *Step = AR->getStepRecurrence(*this);
11162   auto *One = getOne(Step->getType());
11163   auto *MinusOne = getNegativeSCEV(One);
11164   if (Step != One && Step != MinusOne)
11165     return std::nullopt;
11166 
11167   // Type mismatch here means that MaxIter is potentially larger than max
11168   // unsigned value in start type, which mean we cannot prove no wrap for the
11169   // indvar.
11170   if (AR->getType() != MaxIter->getType())
11171     return std::nullopt;
11172 
11173   // Value of IV on suggested last iteration.
11174   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11175   // Does it still meet the requirement?
11176   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11177     return std::nullopt;
11178   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11179   // not exceed max unsigned value of this type), this effectively proves
11180   // that there is no wrap during the iteration. To prove that there is no
11181   // signed/unsigned wrap, we need to check that
11182   // Start <= Last for step = 1 or Start >= Last for step = -1.
11183   ICmpInst::Predicate NoOverflowPred =
11184       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11185   if (Step == MinusOne)
11186     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11187   const SCEV *Start = AR->getStart();
11188   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11189     return std::nullopt;
11190 
11191   // Everything is fine.
11192   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11193 }
11194 
11195 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11196     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11197   if (HasSameValue(LHS, RHS))
11198     return ICmpInst::isTrueWhenEqual(Pred);
11199 
11200   // This code is split out from isKnownPredicate because it is called from
11201   // within isLoopEntryGuardedByCond.
11202 
11203   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11204                          const ConstantRange &RangeRHS) {
11205     return RangeLHS.icmp(Pred, RangeRHS);
11206   };
11207 
11208   // The check at the top of the function catches the case where the values are
11209   // known to be equal.
11210   if (Pred == CmpInst::ICMP_EQ)
11211     return false;
11212 
11213   if (Pred == CmpInst::ICMP_NE) {
11214     auto SL = getSignedRange(LHS);
11215     auto SR = getSignedRange(RHS);
11216     if (CheckRanges(SL, SR))
11217       return true;
11218     auto UL = getUnsignedRange(LHS);
11219     auto UR = getUnsignedRange(RHS);
11220     if (CheckRanges(UL, UR))
11221       return true;
11222     auto *Diff = getMinusSCEV(LHS, RHS);
11223     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11224   }
11225 
11226   if (CmpInst::isSigned(Pred)) {
11227     auto SL = getSignedRange(LHS);
11228     auto SR = getSignedRange(RHS);
11229     return CheckRanges(SL, SR);
11230   }
11231 
11232   auto UL = getUnsignedRange(LHS);
11233   auto UR = getUnsignedRange(RHS);
11234   return CheckRanges(UL, UR);
11235 }
11236 
11237 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11238                                                     const SCEV *LHS,
11239                                                     const SCEV *RHS) {
11240   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11241   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11242   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11243   // OutC1 and OutC2.
11244   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11245                                       APInt &OutC1, APInt &OutC2,
11246                                       SCEV::NoWrapFlags ExpectedFlags) {
11247     const SCEV *XNonConstOp, *XConstOp;
11248     const SCEV *YNonConstOp, *YConstOp;
11249     SCEV::NoWrapFlags XFlagsPresent;
11250     SCEV::NoWrapFlags YFlagsPresent;
11251 
11252     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11253       XConstOp = getZero(X->getType());
11254       XNonConstOp = X;
11255       XFlagsPresent = ExpectedFlags;
11256     }
11257     if (!isa<SCEVConstant>(XConstOp) ||
11258         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11259       return false;
11260 
11261     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11262       YConstOp = getZero(Y->getType());
11263       YNonConstOp = Y;
11264       YFlagsPresent = ExpectedFlags;
11265     }
11266 
11267     if (!isa<SCEVConstant>(YConstOp) ||
11268         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11269       return false;
11270 
11271     if (YNonConstOp != XNonConstOp)
11272       return false;
11273 
11274     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11275     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11276 
11277     return true;
11278   };
11279 
11280   APInt C1;
11281   APInt C2;
11282 
11283   switch (Pred) {
11284   default:
11285     break;
11286 
11287   case ICmpInst::ICMP_SGE:
11288     std::swap(LHS, RHS);
11289     [[fallthrough]];
11290   case ICmpInst::ICMP_SLE:
11291     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11292     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11293       return true;
11294 
11295     break;
11296 
11297   case ICmpInst::ICMP_SGT:
11298     std::swap(LHS, RHS);
11299     [[fallthrough]];
11300   case ICmpInst::ICMP_SLT:
11301     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11302     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11303       return true;
11304 
11305     break;
11306 
11307   case ICmpInst::ICMP_UGE:
11308     std::swap(LHS, RHS);
11309     [[fallthrough]];
11310   case ICmpInst::ICMP_ULE:
11311     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11312     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
11313       return true;
11314 
11315     break;
11316 
11317   case ICmpInst::ICMP_UGT:
11318     std::swap(LHS, RHS);
11319     [[fallthrough]];
11320   case ICmpInst::ICMP_ULT:
11321     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11322     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
11323       return true;
11324     break;
11325   }
11326 
11327   return false;
11328 }
11329 
11330 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11331                                                    const SCEV *LHS,
11332                                                    const SCEV *RHS) {
11333   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11334     return false;
11335 
11336   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11337   // the stack can result in exponential time complexity.
11338   SaveAndRestore Restore(ProvingSplitPredicate, true);
11339 
11340   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11341   //
11342   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11343   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11344   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11345   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11346   // use isKnownPredicate later if needed.
11347   return isKnownNonNegative(RHS) &&
11348          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11349          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11350 }
11351 
11352 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11353                                         ICmpInst::Predicate Pred,
11354                                         const SCEV *LHS, const SCEV *RHS) {
11355   // No need to even try if we know the module has no guards.
11356   if (AC.assumptions().empty())
11357     return false;
11358 
11359   return any_of(*BB, [&](const Instruction &I) {
11360     using namespace llvm::PatternMatch;
11361 
11362     Value *Condition;
11363     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11364                          m_Value(Condition))) &&
11365            isImpliedCond(Pred, LHS, RHS, Condition, false);
11366   });
11367 }
11368 
11369 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11370 /// protected by a conditional between LHS and RHS.  This is used to
11371 /// to eliminate casts.
11372 bool
11373 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11374                                              ICmpInst::Predicate Pred,
11375                                              const SCEV *LHS, const SCEV *RHS) {
11376   // Interpret a null as meaning no loop, where there is obviously no guard
11377   // (interprocedural conditions notwithstanding). Do not bother about
11378   // unreachable loops.
11379   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11380     return true;
11381 
11382   if (VerifyIR)
11383     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11384            "This cannot be done on broken IR!");
11385 
11386 
11387   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11388     return true;
11389 
11390   BasicBlock *Latch = L->getLoopLatch();
11391   if (!Latch)
11392     return false;
11393 
11394   BranchInst *LoopContinuePredicate =
11395     dyn_cast<BranchInst>(Latch->getTerminator());
11396   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11397       isImpliedCond(Pred, LHS, RHS,
11398                     LoopContinuePredicate->getCondition(),
11399                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11400     return true;
11401 
11402   // We don't want more than one activation of the following loops on the stack
11403   // -- that can lead to O(n!) time complexity.
11404   if (WalkingBEDominatingConds)
11405     return false;
11406 
11407   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11408 
11409   // See if we can exploit a trip count to prove the predicate.
11410   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11411   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11412   if (LatchBECount != getCouldNotCompute()) {
11413     // We know that Latch branches back to the loop header exactly
11414     // LatchBECount times.  This means the backdege condition at Latch is
11415     // equivalent to  "{0,+,1} u< LatchBECount".
11416     Type *Ty = LatchBECount->getType();
11417     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11418     const SCEV *LoopCounter =
11419       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11420     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11421                       LatchBECount))
11422       return true;
11423   }
11424 
11425   // Check conditions due to any @llvm.assume intrinsics.
11426   for (auto &AssumeVH : AC.assumptions()) {
11427     if (!AssumeVH)
11428       continue;
11429     auto *CI = cast<CallInst>(AssumeVH);
11430     if (!DT.dominates(CI, Latch->getTerminator()))
11431       continue;
11432 
11433     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11434       return true;
11435   }
11436 
11437   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11438     return true;
11439 
11440   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11441        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11442     assert(DTN && "should reach the loop header before reaching the root!");
11443 
11444     BasicBlock *BB = DTN->getBlock();
11445     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11446       return true;
11447 
11448     BasicBlock *PBB = BB->getSinglePredecessor();
11449     if (!PBB)
11450       continue;
11451 
11452     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11453     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11454       continue;
11455 
11456     Value *Condition = ContinuePredicate->getCondition();
11457 
11458     // If we have an edge `E` within the loop body that dominates the only
11459     // latch, the condition guarding `E` also guards the backedge.  This
11460     // reasoning works only for loops with a single latch.
11461 
11462     BasicBlockEdge DominatingEdge(PBB, BB);
11463     if (DominatingEdge.isSingleEdge()) {
11464       // We're constructively (and conservatively) enumerating edges within the
11465       // loop body that dominate the latch.  The dominator tree better agree
11466       // with us on this:
11467       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11468 
11469       if (isImpliedCond(Pred, LHS, RHS, Condition,
11470                         BB != ContinuePredicate->getSuccessor(0)))
11471         return true;
11472     }
11473   }
11474 
11475   return false;
11476 }
11477 
11478 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11479                                                      ICmpInst::Predicate Pred,
11480                                                      const SCEV *LHS,
11481                                                      const SCEV *RHS) {
11482   // Do not bother proving facts for unreachable code.
11483   if (!DT.isReachableFromEntry(BB))
11484     return true;
11485   if (VerifyIR)
11486     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11487            "This cannot be done on broken IR!");
11488 
11489   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11490   // the facts (a >= b && a != b) separately. A typical situation is when the
11491   // non-strict comparison is known from ranges and non-equality is known from
11492   // dominating predicates. If we are proving strict comparison, we always try
11493   // to prove non-equality and non-strict comparison separately.
11494   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11495   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11496   bool ProvedNonStrictComparison = false;
11497   bool ProvedNonEquality = false;
11498 
11499   auto SplitAndProve =
11500     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11501     if (!ProvedNonStrictComparison)
11502       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11503     if (!ProvedNonEquality)
11504       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11505     if (ProvedNonStrictComparison && ProvedNonEquality)
11506       return true;
11507     return false;
11508   };
11509 
11510   if (ProvingStrictComparison) {
11511     auto ProofFn = [&](ICmpInst::Predicate P) {
11512       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11513     };
11514     if (SplitAndProve(ProofFn))
11515       return true;
11516   }
11517 
11518   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11519   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11520     const Instruction *CtxI = &BB->front();
11521     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11522       return true;
11523     if (ProvingStrictComparison) {
11524       auto ProofFn = [&](ICmpInst::Predicate P) {
11525         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11526       };
11527       if (SplitAndProve(ProofFn))
11528         return true;
11529     }
11530     return false;
11531   };
11532 
11533   // Starting at the block's predecessor, climb up the predecessor chain, as long
11534   // as there are predecessors that can be found that have unique successors
11535   // leading to the original block.
11536   const Loop *ContainingLoop = LI.getLoopFor(BB);
11537   const BasicBlock *PredBB;
11538   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11539     PredBB = ContainingLoop->getLoopPredecessor();
11540   else
11541     PredBB = BB->getSinglePredecessor();
11542   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11543        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11544     const BranchInst *BlockEntryPredicate =
11545         dyn_cast<BranchInst>(Pair.first->getTerminator());
11546     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11547       continue;
11548 
11549     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11550                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11551       return true;
11552   }
11553 
11554   // Check conditions due to any @llvm.assume intrinsics.
11555   for (auto &AssumeVH : AC.assumptions()) {
11556     if (!AssumeVH)
11557       continue;
11558     auto *CI = cast<CallInst>(AssumeVH);
11559     if (!DT.dominates(CI, BB))
11560       continue;
11561 
11562     if (ProveViaCond(CI->getArgOperand(0), false))
11563       return true;
11564   }
11565 
11566   return false;
11567 }
11568 
11569 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11570                                                ICmpInst::Predicate Pred,
11571                                                const SCEV *LHS,
11572                                                const SCEV *RHS) {
11573   // Interpret a null as meaning no loop, where there is obviously no guard
11574   // (interprocedural conditions notwithstanding).
11575   if (!L)
11576     return false;
11577 
11578   // Both LHS and RHS must be available at loop entry.
11579   assert(isAvailableAtLoopEntry(LHS, L) &&
11580          "LHS is not available at Loop Entry");
11581   assert(isAvailableAtLoopEntry(RHS, L) &&
11582          "RHS is not available at Loop Entry");
11583 
11584   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11585     return true;
11586 
11587   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11588 }
11589 
11590 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11591                                     const SCEV *RHS,
11592                                     const Value *FoundCondValue, bool Inverse,
11593                                     const Instruction *CtxI) {
11594   // False conditions implies anything. Do not bother analyzing it further.
11595   if (FoundCondValue ==
11596       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11597     return true;
11598 
11599   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11600     return false;
11601 
11602   auto ClearOnExit =
11603       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11604 
11605   // Recursively handle And and Or conditions.
11606   const Value *Op0, *Op1;
11607   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11608     if (!Inverse)
11609       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11610              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11611   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11612     if (Inverse)
11613       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11614              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11615   }
11616 
11617   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11618   if (!ICI) return false;
11619 
11620   // Now that we found a conditional branch that dominates the loop or controls
11621   // the loop latch. Check to see if it is the comparison we are looking for.
11622   ICmpInst::Predicate FoundPred;
11623   if (Inverse)
11624     FoundPred = ICI->getInversePredicate();
11625   else
11626     FoundPred = ICI->getPredicate();
11627 
11628   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11629   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11630 
11631   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11632 }
11633 
11634 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11635                                     const SCEV *RHS,
11636                                     ICmpInst::Predicate FoundPred,
11637                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11638                                     const Instruction *CtxI) {
11639   // Balance the types.
11640   if (getTypeSizeInBits(LHS->getType()) <
11641       getTypeSizeInBits(FoundLHS->getType())) {
11642     // For unsigned and equality predicates, try to prove that both found
11643     // operands fit into narrow unsigned range. If so, try to prove facts in
11644     // narrow types.
11645     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11646         !FoundRHS->getType()->isPointerTy()) {
11647       auto *NarrowType = LHS->getType();
11648       auto *WideType = FoundLHS->getType();
11649       auto BitWidth = getTypeSizeInBits(NarrowType);
11650       const SCEV *MaxValue = getZeroExtendExpr(
11651           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11652       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11653                                           MaxValue) &&
11654           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11655                                           MaxValue)) {
11656         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11657         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11658         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11659                                        TruncFoundRHS, CtxI))
11660           return true;
11661       }
11662     }
11663 
11664     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11665       return false;
11666     if (CmpInst::isSigned(Pred)) {
11667       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11668       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11669     } else {
11670       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11671       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11672     }
11673   } else if (getTypeSizeInBits(LHS->getType()) >
11674       getTypeSizeInBits(FoundLHS->getType())) {
11675     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11676       return false;
11677     if (CmpInst::isSigned(FoundPred)) {
11678       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11679       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11680     } else {
11681       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11682       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11683     }
11684   }
11685   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11686                                     FoundRHS, CtxI);
11687 }
11688 
11689 bool ScalarEvolution::isImpliedCondBalancedTypes(
11690     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11691     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11692     const Instruction *CtxI) {
11693   assert(getTypeSizeInBits(LHS->getType()) ==
11694              getTypeSizeInBits(FoundLHS->getType()) &&
11695          "Types should be balanced!");
11696   // Canonicalize the query to match the way instcombine will have
11697   // canonicalized the comparison.
11698   if (SimplifyICmpOperands(Pred, LHS, RHS))
11699     if (LHS == RHS)
11700       return CmpInst::isTrueWhenEqual(Pred);
11701   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11702     if (FoundLHS == FoundRHS)
11703       return CmpInst::isFalseWhenEqual(FoundPred);
11704 
11705   // Check to see if we can make the LHS or RHS match.
11706   if (LHS == FoundRHS || RHS == FoundLHS) {
11707     if (isa<SCEVConstant>(RHS)) {
11708       std::swap(FoundLHS, FoundRHS);
11709       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11710     } else {
11711       std::swap(LHS, RHS);
11712       Pred = ICmpInst::getSwappedPredicate(Pred);
11713     }
11714   }
11715 
11716   // Check whether the found predicate is the same as the desired predicate.
11717   if (FoundPred == Pred)
11718     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11719 
11720   // Check whether swapping the found predicate makes it the same as the
11721   // desired predicate.
11722   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11723     // We can write the implication
11724     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11725     // using one of the following ways:
11726     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11727     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11728     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11729     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11730     // Forms 1. and 2. require swapping the operands of one condition. Don't
11731     // do this if it would break canonical constant/addrec ordering.
11732     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11733       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11734                                    CtxI);
11735     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11736       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11737 
11738     // There's no clear preference between forms 3. and 4., try both.  Avoid
11739     // forming getNotSCEV of pointer values as the resulting subtract is
11740     // not legal.
11741     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11742         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11743                               FoundLHS, FoundRHS, CtxI))
11744       return true;
11745 
11746     if (!FoundLHS->getType()->isPointerTy() &&
11747         !FoundRHS->getType()->isPointerTy() &&
11748         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11749                               getNotSCEV(FoundRHS), CtxI))
11750       return true;
11751 
11752     return false;
11753   }
11754 
11755   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11756                                    CmpInst::Predicate P2) {
11757     assert(P1 != P2 && "Handled earlier!");
11758     return CmpInst::isRelational(P2) &&
11759            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11760   };
11761   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11762     // Unsigned comparison is the same as signed comparison when both the
11763     // operands are non-negative or negative.
11764     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11765         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11766       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11767     // Create local copies that we can freely swap and canonicalize our
11768     // conditions to "le/lt".
11769     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11770     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11771                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11772     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11773       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11774       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11775       std::swap(CanonicalLHS, CanonicalRHS);
11776       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11777     }
11778     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11779            "Must be!");
11780     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11781             ICmpInst::isLE(CanonicalFoundPred)) &&
11782            "Must be!");
11783     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11784       // Use implication:
11785       // x <u y && y >=s 0 --> x <s y.
11786       // If we can prove the left part, the right part is also proven.
11787       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11788                                    CanonicalRHS, CanonicalFoundLHS,
11789                                    CanonicalFoundRHS);
11790     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11791       // Use implication:
11792       // x <s y && y <s 0 --> x <u y.
11793       // If we can prove the left part, the right part is also proven.
11794       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11795                                    CanonicalRHS, CanonicalFoundLHS,
11796                                    CanonicalFoundRHS);
11797   }
11798 
11799   // Check if we can make progress by sharpening ranges.
11800   if (FoundPred == ICmpInst::ICMP_NE &&
11801       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11802 
11803     const SCEVConstant *C = nullptr;
11804     const SCEV *V = nullptr;
11805 
11806     if (isa<SCEVConstant>(FoundLHS)) {
11807       C = cast<SCEVConstant>(FoundLHS);
11808       V = FoundRHS;
11809     } else {
11810       C = cast<SCEVConstant>(FoundRHS);
11811       V = FoundLHS;
11812     }
11813 
11814     // The guarding predicate tells us that C != V. If the known range
11815     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11816     // range we consider has to correspond to same signedness as the
11817     // predicate we're interested in folding.
11818 
11819     APInt Min = ICmpInst::isSigned(Pred) ?
11820         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11821 
11822     if (Min == C->getAPInt()) {
11823       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11824       // This is true even if (Min + 1) wraps around -- in case of
11825       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11826 
11827       APInt SharperMin = Min + 1;
11828 
11829       switch (Pred) {
11830         case ICmpInst::ICMP_SGE:
11831         case ICmpInst::ICMP_UGE:
11832           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11833           // RHS, we're done.
11834           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11835                                     CtxI))
11836             return true;
11837           [[fallthrough]];
11838 
11839         case ICmpInst::ICMP_SGT:
11840         case ICmpInst::ICMP_UGT:
11841           // We know from the range information that (V `Pred` Min ||
11842           // V == Min).  We know from the guarding condition that !(V
11843           // == Min).  This gives us
11844           //
11845           //       V `Pred` Min || V == Min && !(V == Min)
11846           //   =>  V `Pred` Min
11847           //
11848           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11849 
11850           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11851             return true;
11852           break;
11853 
11854         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11855         case ICmpInst::ICMP_SLE:
11856         case ICmpInst::ICMP_ULE:
11857           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11858                                     LHS, V, getConstant(SharperMin), CtxI))
11859             return true;
11860           [[fallthrough]];
11861 
11862         case ICmpInst::ICMP_SLT:
11863         case ICmpInst::ICMP_ULT:
11864           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11865                                     LHS, V, getConstant(Min), CtxI))
11866             return true;
11867           break;
11868 
11869         default:
11870           // No change
11871           break;
11872       }
11873     }
11874   }
11875 
11876   // Check whether the actual condition is beyond sufficient.
11877   if (FoundPred == ICmpInst::ICMP_EQ)
11878     if (ICmpInst::isTrueWhenEqual(Pred))
11879       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11880         return true;
11881   if (Pred == ICmpInst::ICMP_NE)
11882     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11883       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11884         return true;
11885 
11886   // Otherwise assume the worst.
11887   return false;
11888 }
11889 
11890 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11891                                      const SCEV *&L, const SCEV *&R,
11892                                      SCEV::NoWrapFlags &Flags) {
11893   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11894   if (!AE || AE->getNumOperands() != 2)
11895     return false;
11896 
11897   L = AE->getOperand(0);
11898   R = AE->getOperand(1);
11899   Flags = AE->getNoWrapFlags();
11900   return true;
11901 }
11902 
11903 std::optional<APInt>
11904 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11905   // We avoid subtracting expressions here because this function is usually
11906   // fairly deep in the call stack (i.e. is called many times).
11907 
11908   // X - X = 0.
11909   if (More == Less)
11910     return APInt(getTypeSizeInBits(More->getType()), 0);
11911 
11912   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11913     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11914     const auto *MAR = cast<SCEVAddRecExpr>(More);
11915 
11916     if (LAR->getLoop() != MAR->getLoop())
11917       return std::nullopt;
11918 
11919     // We look at affine expressions only; not for correctness but to keep
11920     // getStepRecurrence cheap.
11921     if (!LAR->isAffine() || !MAR->isAffine())
11922       return std::nullopt;
11923 
11924     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11925       return std::nullopt;
11926 
11927     Less = LAR->getStart();
11928     More = MAR->getStart();
11929 
11930     // fall through
11931   }
11932 
11933   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11934     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11935     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11936     return M - L;
11937   }
11938 
11939   SCEV::NoWrapFlags Flags;
11940   const SCEV *LLess = nullptr, *RLess = nullptr;
11941   const SCEV *LMore = nullptr, *RMore = nullptr;
11942   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11943   // Compare (X + C1) vs X.
11944   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11945     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11946       if (RLess == More)
11947         return -(C1->getAPInt());
11948 
11949   // Compare X vs (X + C2).
11950   if (splitBinaryAdd(More, LMore, RMore, Flags))
11951     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11952       if (RMore == Less)
11953         return C2->getAPInt();
11954 
11955   // Compare (X + C1) vs (X + C2).
11956   if (C1 && C2 && RLess == RMore)
11957     return C2->getAPInt() - C1->getAPInt();
11958 
11959   return std::nullopt;
11960 }
11961 
11962 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11963     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11964     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11965   // Try to recognize the following pattern:
11966   //
11967   //   FoundRHS = ...
11968   // ...
11969   // loop:
11970   //   FoundLHS = {Start,+,W}
11971   // context_bb: // Basic block from the same loop
11972   //   known(Pred, FoundLHS, FoundRHS)
11973   //
11974   // If some predicate is known in the context of a loop, it is also known on
11975   // each iteration of this loop, including the first iteration. Therefore, in
11976   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11977   // prove the original pred using this fact.
11978   if (!CtxI)
11979     return false;
11980   const BasicBlock *ContextBB = CtxI->getParent();
11981   // Make sure AR varies in the context block.
11982   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11983     const Loop *L = AR->getLoop();
11984     // Make sure that context belongs to the loop and executes on 1st iteration
11985     // (if it ever executes at all).
11986     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11987       return false;
11988     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11989       return false;
11990     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11991   }
11992 
11993   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11994     const Loop *L = AR->getLoop();
11995     // Make sure that context belongs to the loop and executes on 1st iteration
11996     // (if it ever executes at all).
11997     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11998       return false;
11999     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
12000       return false;
12001     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
12002   }
12003 
12004   return false;
12005 }
12006 
12007 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
12008     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
12009     const SCEV *FoundLHS, const SCEV *FoundRHS) {
12010   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
12011     return false;
12012 
12013   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
12014   if (!AddRecLHS)
12015     return false;
12016 
12017   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
12018   if (!AddRecFoundLHS)
12019     return false;
12020 
12021   // We'd like to let SCEV reason about control dependencies, so we constrain
12022   // both the inequalities to be about add recurrences on the same loop.  This
12023   // way we can use isLoopEntryGuardedByCond later.
12024 
12025   const Loop *L = AddRecFoundLHS->getLoop();
12026   if (L != AddRecLHS->getLoop())
12027     return false;
12028 
12029   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
12030   //
12031   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
12032   //                                                                  ... (2)
12033   //
12034   // Informal proof for (2), assuming (1) [*]:
12035   //
12036   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12037   //
12038   // Then
12039   //
12040   //       FoundLHS s< FoundRHS s< INT_MIN - C
12041   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
12042   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12043   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
12044   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12045   // <=>  FoundLHS + C s< FoundRHS + C
12046   //
12047   // [*]: (1) can be proved by ruling out overflow.
12048   //
12049   // [**]: This can be proved by analyzing all the four possibilities:
12050   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12051   //    (A s>= 0, B s>= 0).
12052   //
12053   // Note:
12054   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12055   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
12056   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
12057   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
12058   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12059   // C)".
12060 
12061   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
12062   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
12063   if (!LDiff || !RDiff || *LDiff != *RDiff)
12064     return false;
12065 
12066   if (LDiff->isMinValue())
12067     return true;
12068 
12069   APInt FoundRHSLimit;
12070 
12071   if (Pred == CmpInst::ICMP_ULT) {
12072     FoundRHSLimit = -(*RDiff);
12073   } else {
12074     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12075     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
12076   }
12077 
12078   // Try to prove (1) or (2), as needed.
12079   return isAvailableAtLoopEntry(FoundRHS, L) &&
12080          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
12081                                   getConstant(FoundRHSLimit));
12082 }
12083 
12084 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
12085                                         const SCEV *LHS, const SCEV *RHS,
12086                                         const SCEV *FoundLHS,
12087                                         const SCEV *FoundRHS, unsigned Depth) {
12088   const PHINode *LPhi = nullptr, *RPhi = nullptr;
12089 
12090   auto ClearOnExit = make_scope_exit([&]() {
12091     if (LPhi) {
12092       bool Erased = PendingMerges.erase(LPhi);
12093       assert(Erased && "Failed to erase LPhi!");
12094       (void)Erased;
12095     }
12096     if (RPhi) {
12097       bool Erased = PendingMerges.erase(RPhi);
12098       assert(Erased && "Failed to erase RPhi!");
12099       (void)Erased;
12100     }
12101   });
12102 
12103   // Find respective Phis and check that they are not being pending.
12104   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12105     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12106       if (!PendingMerges.insert(Phi).second)
12107         return false;
12108       LPhi = Phi;
12109     }
12110   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12111     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12112       // If we detect a loop of Phi nodes being processed by this method, for
12113       // example:
12114       //
12115       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12116       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12117       //
12118       // we don't want to deal with a case that complex, so return conservative
12119       // answer false.
12120       if (!PendingMerges.insert(Phi).second)
12121         return false;
12122       RPhi = Phi;
12123     }
12124 
12125   // If none of LHS, RHS is a Phi, nothing to do here.
12126   if (!LPhi && !RPhi)
12127     return false;
12128 
12129   // If there is a SCEVUnknown Phi we are interested in, make it left.
12130   if (!LPhi) {
12131     std::swap(LHS, RHS);
12132     std::swap(FoundLHS, FoundRHS);
12133     std::swap(LPhi, RPhi);
12134     Pred = ICmpInst::getSwappedPredicate(Pred);
12135   }
12136 
12137   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12138   const BasicBlock *LBB = LPhi->getParent();
12139   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12140 
12141   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12142     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12143            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
12144            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12145   };
12146 
12147   if (RPhi && RPhi->getParent() == LBB) {
12148     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12149     // If we compare two Phis from the same block, and for each entry block
12150     // the predicate is true for incoming values from this block, then the
12151     // predicate is also true for the Phis.
12152     for (const BasicBlock *IncBB : predecessors(LBB)) {
12153       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12154       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12155       if (!ProvedEasily(L, R))
12156         return false;
12157     }
12158   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12159     // Case two: RHS is also a Phi from the same basic block, and it is an
12160     // AddRec. It means that there is a loop which has both AddRec and Unknown
12161     // PHIs, for it we can compare incoming values of AddRec from above the loop
12162     // and latch with their respective incoming values of LPhi.
12163     // TODO: Generalize to handle loops with many inputs in a header.
12164     if (LPhi->getNumIncomingValues() != 2) return false;
12165 
12166     auto *RLoop = RAR->getLoop();
12167     auto *Predecessor = RLoop->getLoopPredecessor();
12168     assert(Predecessor && "Loop with AddRec with no predecessor?");
12169     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12170     if (!ProvedEasily(L1, RAR->getStart()))
12171       return false;
12172     auto *Latch = RLoop->getLoopLatch();
12173     assert(Latch && "Loop with AddRec with no latch?");
12174     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12175     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12176       return false;
12177   } else {
12178     // In all other cases go over inputs of LHS and compare each of them to RHS,
12179     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12180     // At this point RHS is either a non-Phi, or it is a Phi from some block
12181     // different from LBB.
12182     for (const BasicBlock *IncBB : predecessors(LBB)) {
12183       // Check that RHS is available in this block.
12184       if (!dominates(RHS, IncBB))
12185         return false;
12186       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12187       // Make sure L does not refer to a value from a potentially previous
12188       // iteration of a loop.
12189       if (!properlyDominates(L, LBB))
12190         return false;
12191       if (!ProvedEasily(L, RHS))
12192         return false;
12193     }
12194   }
12195   return true;
12196 }
12197 
12198 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12199                                                     const SCEV *LHS,
12200                                                     const SCEV *RHS,
12201                                                     const SCEV *FoundLHS,
12202                                                     const SCEV *FoundRHS) {
12203   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12204   // sure that we are dealing with same LHS.
12205   if (RHS == FoundRHS) {
12206     std::swap(LHS, RHS);
12207     std::swap(FoundLHS, FoundRHS);
12208     Pred = ICmpInst::getSwappedPredicate(Pred);
12209   }
12210   if (LHS != FoundLHS)
12211     return false;
12212 
12213   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12214   if (!SUFoundRHS)
12215     return false;
12216 
12217   Value *Shiftee, *ShiftValue;
12218 
12219   using namespace PatternMatch;
12220   if (match(SUFoundRHS->getValue(),
12221             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12222     auto *ShifteeS = getSCEV(Shiftee);
12223     // Prove one of the following:
12224     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12225     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12226     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12227     //   ---> LHS <s RHS
12228     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12229     //   ---> LHS <=s RHS
12230     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12231       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12232     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12233       if (isKnownNonNegative(ShifteeS))
12234         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12235   }
12236 
12237   return false;
12238 }
12239 
12240 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12241                                             const SCEV *LHS, const SCEV *RHS,
12242                                             const SCEV *FoundLHS,
12243                                             const SCEV *FoundRHS,
12244                                             const Instruction *CtxI) {
12245   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
12246     return true;
12247 
12248   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12249     return true;
12250 
12251   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12252     return true;
12253 
12254   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12255                                           CtxI))
12256     return true;
12257 
12258   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12259                                      FoundLHS, FoundRHS);
12260 }
12261 
12262 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12263 template <typename MinMaxExprType>
12264 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12265                                  const SCEV *Candidate) {
12266   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12267   if (!MinMaxExpr)
12268     return false;
12269 
12270   return is_contained(MinMaxExpr->operands(), Candidate);
12271 }
12272 
12273 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12274                                            ICmpInst::Predicate Pred,
12275                                            const SCEV *LHS, const SCEV *RHS) {
12276   // If both sides are affine addrecs for the same loop, with equal
12277   // steps, and we know the recurrences don't wrap, then we only
12278   // need to check the predicate on the starting values.
12279 
12280   if (!ICmpInst::isRelational(Pred))
12281     return false;
12282 
12283   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12284   if (!LAR)
12285     return false;
12286   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12287   if (!RAR)
12288     return false;
12289   if (LAR->getLoop() != RAR->getLoop())
12290     return false;
12291   if (!LAR->isAffine() || !RAR->isAffine())
12292     return false;
12293 
12294   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12295     return false;
12296 
12297   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12298                          SCEV::FlagNSW : SCEV::FlagNUW;
12299   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12300     return false;
12301 
12302   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12303 }
12304 
12305 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12306 /// expression?
12307 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12308                                         ICmpInst::Predicate Pred,
12309                                         const SCEV *LHS, const SCEV *RHS) {
12310   switch (Pred) {
12311   default:
12312     return false;
12313 
12314   case ICmpInst::ICMP_SGE:
12315     std::swap(LHS, RHS);
12316     [[fallthrough]];
12317   case ICmpInst::ICMP_SLE:
12318     return
12319         // min(A, ...) <= A
12320         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12321         // A <= max(A, ...)
12322         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12323 
12324   case ICmpInst::ICMP_UGE:
12325     std::swap(LHS, RHS);
12326     [[fallthrough]];
12327   case ICmpInst::ICMP_ULE:
12328     return
12329         // min(A, ...) <= A
12330         // FIXME: what about umin_seq?
12331         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12332         // A <= max(A, ...)
12333         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12334   }
12335 
12336   llvm_unreachable("covered switch fell through?!");
12337 }
12338 
12339 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12340                                              const SCEV *LHS, const SCEV *RHS,
12341                                              const SCEV *FoundLHS,
12342                                              const SCEV *FoundRHS,
12343                                              unsigned Depth) {
12344   assert(getTypeSizeInBits(LHS->getType()) ==
12345              getTypeSizeInBits(RHS->getType()) &&
12346          "LHS and RHS have different sizes?");
12347   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12348              getTypeSizeInBits(FoundRHS->getType()) &&
12349          "FoundLHS and FoundRHS have different sizes?");
12350   // We want to avoid hurting the compile time with analysis of too big trees.
12351   if (Depth > MaxSCEVOperationsImplicationDepth)
12352     return false;
12353 
12354   // We only want to work with GT comparison so far.
12355   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12356     Pred = CmpInst::getSwappedPredicate(Pred);
12357     std::swap(LHS, RHS);
12358     std::swap(FoundLHS, FoundRHS);
12359   }
12360 
12361   // For unsigned, try to reduce it to corresponding signed comparison.
12362   if (Pred == ICmpInst::ICMP_UGT)
12363     // We can replace unsigned predicate with its signed counterpart if all
12364     // involved values are non-negative.
12365     // TODO: We could have better support for unsigned.
12366     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12367       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12368       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12369       // use this fact to prove that LHS and RHS are non-negative.
12370       const SCEV *MinusOne = getMinusOne(LHS->getType());
12371       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12372                                 FoundRHS) &&
12373           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12374                                 FoundRHS))
12375         Pred = ICmpInst::ICMP_SGT;
12376     }
12377 
12378   if (Pred != ICmpInst::ICMP_SGT)
12379     return false;
12380 
12381   auto GetOpFromSExt = [&](const SCEV *S) {
12382     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12383       return Ext->getOperand();
12384     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12385     // the constant in some cases.
12386     return S;
12387   };
12388 
12389   // Acquire values from extensions.
12390   auto *OrigLHS = LHS;
12391   auto *OrigFoundLHS = FoundLHS;
12392   LHS = GetOpFromSExt(LHS);
12393   FoundLHS = GetOpFromSExt(FoundLHS);
12394 
12395   // Is the SGT predicate can be proved trivially or using the found context.
12396   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12397     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12398            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12399                                   FoundRHS, Depth + 1);
12400   };
12401 
12402   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12403     // We want to avoid creation of any new non-constant SCEV. Since we are
12404     // going to compare the operands to RHS, we should be certain that we don't
12405     // need any size extensions for this. So let's decline all cases when the
12406     // sizes of types of LHS and RHS do not match.
12407     // TODO: Maybe try to get RHS from sext to catch more cases?
12408     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12409       return false;
12410 
12411     // Should not overflow.
12412     if (!LHSAddExpr->hasNoSignedWrap())
12413       return false;
12414 
12415     auto *LL = LHSAddExpr->getOperand(0);
12416     auto *LR = LHSAddExpr->getOperand(1);
12417     auto *MinusOne = getMinusOne(RHS->getType());
12418 
12419     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12420     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12421       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12422     };
12423     // Try to prove the following rule:
12424     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12425     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12426     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12427       return true;
12428   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12429     Value *LL, *LR;
12430     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12431 
12432     using namespace llvm::PatternMatch;
12433 
12434     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12435       // Rules for division.
12436       // We are going to perform some comparisons with Denominator and its
12437       // derivative expressions. In general case, creating a SCEV for it may
12438       // lead to a complex analysis of the entire graph, and in particular it
12439       // can request trip count recalculation for the same loop. This would
12440       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12441       // this, we only want to create SCEVs that are constants in this section.
12442       // So we bail if Denominator is not a constant.
12443       if (!isa<ConstantInt>(LR))
12444         return false;
12445 
12446       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12447 
12448       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12449       // then a SCEV for the numerator already exists and matches with FoundLHS.
12450       auto *Numerator = getExistingSCEV(LL);
12451       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12452         return false;
12453 
12454       // Make sure that the numerator matches with FoundLHS and the denominator
12455       // is positive.
12456       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12457         return false;
12458 
12459       auto *DTy = Denominator->getType();
12460       auto *FRHSTy = FoundRHS->getType();
12461       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12462         // One of types is a pointer and another one is not. We cannot extend
12463         // them properly to a wider type, so let us just reject this case.
12464         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12465         // to avoid this check.
12466         return false;
12467 
12468       // Given that:
12469       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12470       auto *WTy = getWiderType(DTy, FRHSTy);
12471       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12472       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12473 
12474       // Try to prove the following rule:
12475       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12476       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12477       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12478       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12479       if (isKnownNonPositive(RHS) &&
12480           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12481         return true;
12482 
12483       // Try to prove the following rule:
12484       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12485       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12486       // If we divide it by Denominator > 2, then:
12487       // 1. If FoundLHS is negative, then the result is 0.
12488       // 2. If FoundLHS is non-negative, then the result is non-negative.
12489       // Anyways, the result is non-negative.
12490       auto *MinusOne = getMinusOne(WTy);
12491       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12492       if (isKnownNegative(RHS) &&
12493           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12494         return true;
12495     }
12496   }
12497 
12498   // If our expression contained SCEVUnknown Phis, and we split it down and now
12499   // need to prove something for them, try to prove the predicate for every
12500   // possible incoming values of those Phis.
12501   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12502     return true;
12503 
12504   return false;
12505 }
12506 
12507 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12508                                         const SCEV *LHS, const SCEV *RHS) {
12509   // zext x u<= sext x, sext x s<= zext x
12510   switch (Pred) {
12511   case ICmpInst::ICMP_SGE:
12512     std::swap(LHS, RHS);
12513     [[fallthrough]];
12514   case ICmpInst::ICMP_SLE: {
12515     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12516     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12517     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12518     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12519       return true;
12520     break;
12521   }
12522   case ICmpInst::ICMP_UGE:
12523     std::swap(LHS, RHS);
12524     [[fallthrough]];
12525   case ICmpInst::ICMP_ULE: {
12526     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12527     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12528     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12529     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12530       return true;
12531     break;
12532   }
12533   default:
12534     break;
12535   };
12536   return false;
12537 }
12538 
12539 bool
12540 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12541                                            const SCEV *LHS, const SCEV *RHS) {
12542   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12543          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12544          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12545          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12546          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12547 }
12548 
12549 bool
12550 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12551                                              const SCEV *LHS, const SCEV *RHS,
12552                                              const SCEV *FoundLHS,
12553                                              const SCEV *FoundRHS) {
12554   switch (Pred) {
12555   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12556   case ICmpInst::ICMP_EQ:
12557   case ICmpInst::ICMP_NE:
12558     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12559       return true;
12560     break;
12561   case ICmpInst::ICMP_SLT:
12562   case ICmpInst::ICMP_SLE:
12563     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12564         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12565       return true;
12566     break;
12567   case ICmpInst::ICMP_SGT:
12568   case ICmpInst::ICMP_SGE:
12569     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12570         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12571       return true;
12572     break;
12573   case ICmpInst::ICMP_ULT:
12574   case ICmpInst::ICMP_ULE:
12575     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12576         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12577       return true;
12578     break;
12579   case ICmpInst::ICMP_UGT:
12580   case ICmpInst::ICMP_UGE:
12581     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12582         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12583       return true;
12584     break;
12585   }
12586 
12587   // Maybe it can be proved via operations?
12588   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12589     return true;
12590 
12591   return false;
12592 }
12593 
12594 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12595                                                      const SCEV *LHS,
12596                                                      const SCEV *RHS,
12597                                                      const SCEV *FoundLHS,
12598                                                      const SCEV *FoundRHS) {
12599   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12600     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12601     // reduce the compile time impact of this optimization.
12602     return false;
12603 
12604   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12605   if (!Addend)
12606     return false;
12607 
12608   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12609 
12610   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12611   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12612   ConstantRange FoundLHSRange =
12613       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
12614 
12615   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12616   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12617 
12618   // We can also compute the range of values for `LHS` that satisfy the
12619   // consequent, "`LHS` `Pred` `RHS`":
12620   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12621   // The antecedent implies the consequent if every value of `LHS` that
12622   // satisfies the antecedent also satisfies the consequent.
12623   return LHSRange.icmp(Pred, ConstRHS);
12624 }
12625 
12626 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12627                                         bool IsSigned) {
12628   assert(isKnownPositive(Stride) && "Positive stride expected!");
12629 
12630   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12631   const SCEV *One = getOne(Stride->getType());
12632 
12633   if (IsSigned) {
12634     APInt MaxRHS = getSignedRangeMax(RHS);
12635     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12636     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12637 
12638     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12639     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12640   }
12641 
12642   APInt MaxRHS = getUnsignedRangeMax(RHS);
12643   APInt MaxValue = APInt::getMaxValue(BitWidth);
12644   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12645 
12646   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12647   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12648 }
12649 
12650 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12651                                         bool IsSigned) {
12652 
12653   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12654   const SCEV *One = getOne(Stride->getType());
12655 
12656   if (IsSigned) {
12657     APInt MinRHS = getSignedRangeMin(RHS);
12658     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12659     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12660 
12661     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12662     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12663   }
12664 
12665   APInt MinRHS = getUnsignedRangeMin(RHS);
12666   APInt MinValue = APInt::getMinValue(BitWidth);
12667   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12668 
12669   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12670   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12671 }
12672 
12673 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12674   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12675   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12676   // expression fixes the case of N=0.
12677   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12678   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12679   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12680 }
12681 
12682 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12683                                                     const SCEV *Stride,
12684                                                     const SCEV *End,
12685                                                     unsigned BitWidth,
12686                                                     bool IsSigned) {
12687   // The logic in this function assumes we can represent a positive stride.
12688   // If we can't, the backedge-taken count must be zero.
12689   if (IsSigned && BitWidth == 1)
12690     return getZero(Stride->getType());
12691 
12692   // This code below only been closely audited for negative strides in the
12693   // unsigned comparison case, it may be correct for signed comparison, but
12694   // that needs to be established.
12695   if (IsSigned && isKnownNegative(Stride))
12696     return getCouldNotCompute();
12697 
12698   // Calculate the maximum backedge count based on the range of values
12699   // permitted by Start, End, and Stride.
12700   APInt MinStart =
12701       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12702 
12703   APInt MinStride =
12704       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12705 
12706   // We assume either the stride is positive, or the backedge-taken count
12707   // is zero. So force StrideForMaxBECount to be at least one.
12708   APInt One(BitWidth, 1);
12709   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12710                                        : APIntOps::umax(One, MinStride);
12711 
12712   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12713                             : APInt::getMaxValue(BitWidth);
12714   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12715 
12716   // Although End can be a MAX expression we estimate MaxEnd considering only
12717   // the case End = RHS of the loop termination condition. This is safe because
12718   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12719   // taken count.
12720   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12721                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12722 
12723   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12724   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12725                     : APIntOps::umax(MaxEnd, MinStart);
12726 
12727   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12728                          getConstant(StrideForMaxBECount) /* Step */);
12729 }
12730 
12731 ScalarEvolution::ExitLimit
12732 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12733                                   const Loop *L, bool IsSigned,
12734                                   bool ControlsExit, bool AllowPredicates) {
12735   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12736 
12737   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12738   bool PredicatedIV = false;
12739 
12740   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12741     // Can we prove this loop *must* be UB if overflow of IV occurs?
12742     // Reasoning goes as follows:
12743     // * Suppose the IV did self wrap.
12744     // * If Stride evenly divides the iteration space, then once wrap
12745     //   occurs, the loop must revisit the same values.
12746     // * We know that RHS is invariant, and that none of those values
12747     //   caused this exit to be taken previously.  Thus, this exit is
12748     //   dynamically dead.
12749     // * If this is the sole exit, then a dead exit implies the loop
12750     //   must be infinite if there are no abnormal exits.
12751     // * If the loop were infinite, then it must either not be mustprogress
12752     //   or have side effects. Otherwise, it must be UB.
12753     // * It can't (by assumption), be UB so we have contradicted our
12754     //   premise and can conclude the IV did not in fact self-wrap.
12755     if (!isLoopInvariant(RHS, L))
12756       return false;
12757 
12758     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12759     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12760       return false;
12761 
12762     if (!ControlsExit || !loopHasNoAbnormalExits(L))
12763       return false;
12764 
12765     return loopIsFiniteByAssumption(L);
12766   };
12767 
12768   if (!IV) {
12769     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12770       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12771       if (AR && AR->getLoop() == L && AR->isAffine()) {
12772         auto canProveNUW = [&]() {
12773           if (!isLoopInvariant(RHS, L))
12774             return false;
12775 
12776           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12777             // We need the sequence defined by AR to strictly increase in the
12778             // unsigned integer domain for the logic below to hold.
12779             return false;
12780 
12781           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12782           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12783           // If RHS <=u Limit, then there must exist a value V in the sequence
12784           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12785           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12786           // overflow occurs.  This limit also implies that a signed comparison
12787           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12788           // the high bits on both sides must be zero.
12789           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12790           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12791           Limit = Limit.zext(OuterBitWidth);
12792           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12793         };
12794         auto Flags = AR->getNoWrapFlags();
12795         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12796           Flags = setFlags(Flags, SCEV::FlagNUW);
12797 
12798         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12799         if (AR->hasNoUnsignedWrap()) {
12800           // Emulate what getZeroExtendExpr would have done during construction
12801           // if we'd been able to infer the fact just above at that time.
12802           const SCEV *Step = AR->getStepRecurrence(*this);
12803           Type *Ty = ZExt->getType();
12804           auto *S = getAddRecExpr(
12805             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12806             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12807           IV = dyn_cast<SCEVAddRecExpr>(S);
12808         }
12809       }
12810     }
12811   }
12812 
12813 
12814   if (!IV && AllowPredicates) {
12815     // Try to make this an AddRec using runtime tests, in the first X
12816     // iterations of this loop, where X is the SCEV expression found by the
12817     // algorithm below.
12818     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12819     PredicatedIV = true;
12820   }
12821 
12822   // Avoid weird loops
12823   if (!IV || IV->getLoop() != L || !IV->isAffine())
12824     return getCouldNotCompute();
12825 
12826   // A precondition of this method is that the condition being analyzed
12827   // reaches an exiting branch which dominates the latch.  Given that, we can
12828   // assume that an increment which violates the nowrap specification and
12829   // produces poison must cause undefined behavior when the resulting poison
12830   // value is branched upon and thus we can conclude that the backedge is
12831   // taken no more often than would be required to produce that poison value.
12832   // Note that a well defined loop can exit on the iteration which violates
12833   // the nowrap specification if there is another exit (either explicit or
12834   // implicit/exceptional) which causes the loop to execute before the
12835   // exiting instruction we're analyzing would trigger UB.
12836   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12837   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12838   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12839 
12840   const SCEV *Stride = IV->getStepRecurrence(*this);
12841 
12842   bool PositiveStride = isKnownPositive(Stride);
12843 
12844   // Avoid negative or zero stride values.
12845   if (!PositiveStride) {
12846     // We can compute the correct backedge taken count for loops with unknown
12847     // strides if we can prove that the loop is not an infinite loop with side
12848     // effects. Here's the loop structure we are trying to handle -
12849     //
12850     // i = start
12851     // do {
12852     //   A[i] = i;
12853     //   i += s;
12854     // } while (i < end);
12855     //
12856     // The backedge taken count for such loops is evaluated as -
12857     // (max(end, start + stride) - start - 1) /u stride
12858     //
12859     // The additional preconditions that we need to check to prove correctness
12860     // of the above formula is as follows -
12861     //
12862     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12863     //    NoWrap flag).
12864     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12865     //    no side effects within the loop)
12866     // c) loop has a single static exit (with no abnormal exits)
12867     //
12868     // Precondition a) implies that if the stride is negative, this is a single
12869     // trip loop. The backedge taken count formula reduces to zero in this case.
12870     //
12871     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12872     // then a zero stride means the backedge can't be taken without executing
12873     // undefined behavior.
12874     //
12875     // The positive stride case is the same as isKnownPositive(Stride) returning
12876     // true (original behavior of the function).
12877     //
12878     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12879         !loopHasNoAbnormalExits(L))
12880       return getCouldNotCompute();
12881 
12882     if (!isKnownNonZero(Stride)) {
12883       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12884       // if it might eventually be greater than start and if so, on which
12885       // iteration.  We can't even produce a useful upper bound.
12886       if (!isLoopInvariant(RHS, L))
12887         return getCouldNotCompute();
12888 
12889       // We allow a potentially zero stride, but we need to divide by stride
12890       // below.  Since the loop can't be infinite and this check must control
12891       // the sole exit, we can infer the exit must be taken on the first
12892       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12893       // we know the numerator in the divides below must be zero, so we can
12894       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12895       // and produce the right result.
12896       // FIXME: Handle the case where Stride is poison?
12897       auto wouldZeroStrideBeUB = [&]() {
12898         // Proof by contradiction.  Suppose the stride were zero.  If we can
12899         // prove that the backedge *is* taken on the first iteration, then since
12900         // we know this condition controls the sole exit, we must have an
12901         // infinite loop.  We can't have a (well defined) infinite loop per
12902         // check just above.
12903         // Note: The (Start - Stride) term is used to get the start' term from
12904         // (start' + stride,+,stride). Remember that we only care about the
12905         // result of this expression when stride == 0 at runtime.
12906         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12907         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12908       };
12909       if (!wouldZeroStrideBeUB()) {
12910         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12911       }
12912     }
12913   } else if (!Stride->isOne() && !NoWrap) {
12914     auto isUBOnWrap = [&]() {
12915       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12916       // follows trivially from the fact that every (un)signed-wrapped, but
12917       // not self-wrapped value must be LT than the last value before
12918       // (un)signed wrap.  Since we know that last value didn't exit, nor
12919       // will any smaller one.
12920       return canAssumeNoSelfWrap(IV);
12921     };
12922 
12923     // Avoid proven overflow cases: this will ensure that the backedge taken
12924     // count will not generate any unsigned overflow. Relaxed no-overflow
12925     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12926     // undefined behaviors like the case of C language.
12927     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12928       return getCouldNotCompute();
12929   }
12930 
12931   // On all paths just preceeding, we established the following invariant:
12932   //   IV can be assumed not to overflow up to and including the exiting
12933   //   iteration.  We proved this in one of two ways:
12934   //   1) We can show overflow doesn't occur before the exiting iteration
12935   //      1a) canIVOverflowOnLT, and b) step of one
12936   //   2) We can show that if overflow occurs, the loop must execute UB
12937   //      before any possible exit.
12938   // Note that we have not yet proved RHS invariant (in general).
12939 
12940   const SCEV *Start = IV->getStart();
12941 
12942   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12943   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12944   // Use integer-typed versions for actual computation; we can't subtract
12945   // pointers in general.
12946   const SCEV *OrigStart = Start;
12947   const SCEV *OrigRHS = RHS;
12948   if (Start->getType()->isPointerTy()) {
12949     Start = getLosslessPtrToIntExpr(Start);
12950     if (isa<SCEVCouldNotCompute>(Start))
12951       return Start;
12952   }
12953   if (RHS->getType()->isPointerTy()) {
12954     RHS = getLosslessPtrToIntExpr(RHS);
12955     if (isa<SCEVCouldNotCompute>(RHS))
12956       return RHS;
12957   }
12958 
12959   // When the RHS is not invariant, we do not know the end bound of the loop and
12960   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12961   // calculate the MaxBECount, given the start, stride and max value for the end
12962   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12963   // checked above).
12964   if (!isLoopInvariant(RHS, L)) {
12965     const SCEV *MaxBECount = computeMaxBECountForLT(
12966         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12967     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12968                      MaxBECount, false /*MaxOrZero*/, Predicates);
12969   }
12970 
12971   // We use the expression (max(End,Start)-Start)/Stride to describe the
12972   // backedge count, as if the backedge is taken at least once max(End,Start)
12973   // is End and so the result is as above, and if not max(End,Start) is Start
12974   // so we get a backedge count of zero.
12975   const SCEV *BECount = nullptr;
12976   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12977   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12978   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12979   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12980   // Can we prove (max(RHS,Start) > Start - Stride?
12981   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12982       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12983     // In this case, we can use a refined formula for computing backedge taken
12984     // count.  The general formula remains:
12985     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12986     // We want to use the alternate formula:
12987     //   "((End - 1) - (Start - Stride)) /u Stride"
12988     // Let's do a quick case analysis to show these are equivalent under
12989     // our precondition that max(RHS,Start) > Start - Stride.
12990     // * For RHS <= Start, the backedge-taken count must be zero.
12991     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12992     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12993     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12994     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12995     //     this to the stride of 1 case.
12996     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12997     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12998     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12999     //   "((RHS - (Start - Stride) - 1) /u Stride".
13000     //   Our preconditions trivially imply no overflow in that form.
13001     const SCEV *MinusOne = getMinusOne(Stride->getType());
13002     const SCEV *Numerator =
13003         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
13004     BECount = getUDivExpr(Numerator, Stride);
13005   }
13006 
13007   const SCEV *BECountIfBackedgeTaken = nullptr;
13008   if (!BECount) {
13009     auto canProveRHSGreaterThanEqualStart = [&]() {
13010       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13011       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
13012         return true;
13013 
13014       // (RHS > Start - 1) implies RHS >= Start.
13015       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
13016       //   "Start - 1" doesn't overflow.
13017       // * For signed comparison, if Start - 1 does overflow, it's equal
13018       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
13019       // * For unsigned comparison, if Start - 1 does overflow, it's equal
13020       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
13021       //
13022       // FIXME: Should isLoopEntryGuardedByCond do this for us?
13023       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13024       auto *StartMinusOne = getAddExpr(OrigStart,
13025                                        getMinusOne(OrigStart->getType()));
13026       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
13027     };
13028 
13029     // If we know that RHS >= Start in the context of loop, then we know that
13030     // max(RHS, Start) = RHS at this point.
13031     const SCEV *End;
13032     if (canProveRHSGreaterThanEqualStart()) {
13033       End = RHS;
13034     } else {
13035       // If RHS < Start, the backedge will be taken zero times.  So in
13036       // general, we can write the backedge-taken count as:
13037       //
13038       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
13039       //
13040       // We convert it to the following to make it more convenient for SCEV:
13041       //
13042       //     ceil(max(RHS, Start) - Start) / Stride
13043       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
13044 
13045       // See what would happen if we assume the backedge is taken. This is
13046       // used to compute MaxBECount.
13047       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
13048     }
13049 
13050     // At this point, we know:
13051     //
13052     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13053     // 2. The index variable doesn't overflow.
13054     //
13055     // Therefore, we know N exists such that
13056     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13057     // doesn't overflow.
13058     //
13059     // Using this information, try to prove whether the addition in
13060     // "(Start - End) + (Stride - 1)" has unsigned overflow.
13061     const SCEV *One = getOne(Stride->getType());
13062     bool MayAddOverflow = [&] {
13063       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
13064         if (StrideC->getAPInt().isPowerOf2()) {
13065           // Suppose Stride is a power of two, and Start/End are unsigned
13066           // integers.  Let UMAX be the largest representable unsigned
13067           // integer.
13068           //
13069           // By the preconditions of this function, we know
13070           // "(Start + Stride * N) >= End", and this doesn't overflow.
13071           // As a formula:
13072           //
13073           //   End <= (Start + Stride * N) <= UMAX
13074           //
13075           // Subtracting Start from all the terms:
13076           //
13077           //   End - Start <= Stride * N <= UMAX - Start
13078           //
13079           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
13080           //
13081           //   End - Start <= Stride * N <= UMAX
13082           //
13083           // Stride * N is a multiple of Stride. Therefore,
13084           //
13085           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13086           //
13087           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
13088           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
13089           //
13090           //   End - Start <= Stride * N <= UMAX - Stride - 1
13091           //
13092           // Dropping the middle term:
13093           //
13094           //   End - Start <= UMAX - Stride - 1
13095           //
13096           // Adding Stride - 1 to both sides:
13097           //
13098           //   (End - Start) + (Stride - 1) <= UMAX
13099           //
13100           // In other words, the addition doesn't have unsigned overflow.
13101           //
13102           // A similar proof works if we treat Start/End as signed values.
13103           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
13104           // use signed max instead of unsigned max. Note that we're trying
13105           // to prove a lack of unsigned overflow in either case.
13106           return false;
13107         }
13108       }
13109       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13110         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
13111         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
13112         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
13113         //
13114         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
13115         return false;
13116       }
13117       return true;
13118     }();
13119 
13120     const SCEV *Delta = getMinusSCEV(End, Start);
13121     if (!MayAddOverflow) {
13122       // floor((D + (S - 1)) / S)
13123       // We prefer this formulation if it's legal because it's fewer operations.
13124       BECount =
13125           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13126     } else {
13127       BECount = getUDivCeilSCEV(Delta, Stride);
13128     }
13129   }
13130 
13131   const SCEV *ConstantMaxBECount;
13132   bool MaxOrZero = false;
13133   if (isa<SCEVConstant>(BECount)) {
13134     ConstantMaxBECount = BECount;
13135   } else if (BECountIfBackedgeTaken &&
13136              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13137     // If we know exactly how many times the backedge will be taken if it's
13138     // taken at least once, then the backedge count will either be that or
13139     // zero.
13140     ConstantMaxBECount = BECountIfBackedgeTaken;
13141     MaxOrZero = true;
13142   } else {
13143     ConstantMaxBECount = computeMaxBECountForLT(
13144         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13145   }
13146 
13147   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13148       !isa<SCEVCouldNotCompute>(BECount))
13149     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13150 
13151   const SCEV *SymbolicMaxBECount =
13152       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13153   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13154                    Predicates);
13155 }
13156 
13157 ScalarEvolution::ExitLimit
13158 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
13159                                      const Loop *L, bool IsSigned,
13160                                      bool ControlsExit, bool AllowPredicates) {
13161   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13162   // We handle only IV > Invariant
13163   if (!isLoopInvariant(RHS, L))
13164     return getCouldNotCompute();
13165 
13166   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13167   if (!IV && AllowPredicates)
13168     // Try to make this an AddRec using runtime tests, in the first X
13169     // iterations of this loop, where X is the SCEV expression found by the
13170     // algorithm below.
13171     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13172 
13173   // Avoid weird loops
13174   if (!IV || IV->getLoop() != L || !IV->isAffine())
13175     return getCouldNotCompute();
13176 
13177   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13178   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
13179   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13180 
13181   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13182 
13183   // Avoid negative or zero stride values
13184   if (!isKnownPositive(Stride))
13185     return getCouldNotCompute();
13186 
13187   // Avoid proven overflow cases: this will ensure that the backedge taken count
13188   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13189   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13190   // behaviors like the case of C language.
13191   if (!Stride->isOne() && !NoWrap)
13192     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13193       return getCouldNotCompute();
13194 
13195   const SCEV *Start = IV->getStart();
13196   const SCEV *End = RHS;
13197   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13198     // If we know that Start >= RHS in the context of loop, then we know that
13199     // min(RHS, Start) = RHS at this point.
13200     if (isLoopEntryGuardedByCond(
13201             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13202       End = RHS;
13203     else
13204       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13205   }
13206 
13207   if (Start->getType()->isPointerTy()) {
13208     Start = getLosslessPtrToIntExpr(Start);
13209     if (isa<SCEVCouldNotCompute>(Start))
13210       return Start;
13211   }
13212   if (End->getType()->isPointerTy()) {
13213     End = getLosslessPtrToIntExpr(End);
13214     if (isa<SCEVCouldNotCompute>(End))
13215       return End;
13216   }
13217 
13218   // Compute ((Start - End) + (Stride - 1)) / Stride.
13219   // FIXME: This can overflow. Holding off on fixing this for now;
13220   // howManyGreaterThans will hopefully be gone soon.
13221   const SCEV *One = getOne(Stride->getType());
13222   const SCEV *BECount = getUDivExpr(
13223       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13224 
13225   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13226                             : getUnsignedRangeMax(Start);
13227 
13228   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13229                              : getUnsignedRangeMin(Stride);
13230 
13231   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13232   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13233                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13234 
13235   // Although End can be a MIN expression we estimate MinEnd considering only
13236   // the case End = RHS. This is safe because in the other case (Start - End)
13237   // is zero, leading to a zero maximum backedge taken count.
13238   APInt MinEnd =
13239     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13240              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13241 
13242   const SCEV *ConstantMaxBECount =
13243       isa<SCEVConstant>(BECount)
13244           ? BECount
13245           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13246                             getConstant(MinStride));
13247 
13248   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13249     ConstantMaxBECount = BECount;
13250   const SCEV *SymbolicMaxBECount =
13251       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13252 
13253   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13254                    Predicates);
13255 }
13256 
13257 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13258                                                     ScalarEvolution &SE) const {
13259   if (Range.isFullSet())  // Infinite loop.
13260     return SE.getCouldNotCompute();
13261 
13262   // If the start is a non-zero constant, shift the range to simplify things.
13263   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13264     if (!SC->getValue()->isZero()) {
13265       SmallVector<const SCEV *, 4> Operands(operands());
13266       Operands[0] = SE.getZero(SC->getType());
13267       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13268                                              getNoWrapFlags(FlagNW));
13269       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13270         return ShiftedAddRec->getNumIterationsInRange(
13271             Range.subtract(SC->getAPInt()), SE);
13272       // This is strange and shouldn't happen.
13273       return SE.getCouldNotCompute();
13274     }
13275 
13276   // The only time we can solve this is when we have all constant indices.
13277   // Otherwise, we cannot determine the overflow conditions.
13278   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13279     return SE.getCouldNotCompute();
13280 
13281   // Okay at this point we know that all elements of the chrec are constants and
13282   // that the start element is zero.
13283 
13284   // First check to see if the range contains zero.  If not, the first
13285   // iteration exits.
13286   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13287   if (!Range.contains(APInt(BitWidth, 0)))
13288     return SE.getZero(getType());
13289 
13290   if (isAffine()) {
13291     // If this is an affine expression then we have this situation:
13292     //   Solve {0,+,A} in Range  ===  Ax in Range
13293 
13294     // We know that zero is in the range.  If A is positive then we know that
13295     // the upper value of the range must be the first possible exit value.
13296     // If A is negative then the lower of the range is the last possible loop
13297     // value.  Also note that we already checked for a full range.
13298     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13299     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13300 
13301     // The exit value should be (End+A)/A.
13302     APInt ExitVal = (End + A).udiv(A);
13303     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13304 
13305     // Evaluate at the exit value.  If we really did fall out of the valid
13306     // range, then we computed our trip count, otherwise wrap around or other
13307     // things must have happened.
13308     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13309     if (Range.contains(Val->getValue()))
13310       return SE.getCouldNotCompute();  // Something strange happened
13311 
13312     // Ensure that the previous value is in the range.
13313     assert(Range.contains(
13314            EvaluateConstantChrecAtConstant(this,
13315            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13316            "Linear scev computation is off in a bad way!");
13317     return SE.getConstant(ExitValue);
13318   }
13319 
13320   if (isQuadratic()) {
13321     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13322       return SE.getConstant(*S);
13323   }
13324 
13325   return SE.getCouldNotCompute();
13326 }
13327 
13328 const SCEVAddRecExpr *
13329 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13330   assert(getNumOperands() > 1 && "AddRec with zero step?");
13331   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13332   // but in this case we cannot guarantee that the value returned will be an
13333   // AddRec because SCEV does not have a fixed point where it stops
13334   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13335   // may happen if we reach arithmetic depth limit while simplifying. So we
13336   // construct the returned value explicitly.
13337   SmallVector<const SCEV *, 3> Ops;
13338   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13339   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13340   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13341     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13342   // We know that the last operand is not a constant zero (otherwise it would
13343   // have been popped out earlier). This guarantees us that if the result has
13344   // the same last operand, then it will also not be popped out, meaning that
13345   // the returned value will be an AddRec.
13346   const SCEV *Last = getOperand(getNumOperands() - 1);
13347   assert(!Last->isZero() && "Recurrency with zero step?");
13348   Ops.push_back(Last);
13349   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13350                                                SCEV::FlagAnyWrap));
13351 }
13352 
13353 // Return true when S contains at least an undef value.
13354 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13355   return SCEVExprContains(S, [](const SCEV *S) {
13356     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13357       return isa<UndefValue>(SU->getValue());
13358     return false;
13359   });
13360 }
13361 
13362 // Return true when S contains a value that is a nullptr.
13363 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13364   return SCEVExprContains(S, [](const SCEV *S) {
13365     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13366       return SU->getValue() == nullptr;
13367     return false;
13368   });
13369 }
13370 
13371 /// Return the size of an element read or written by Inst.
13372 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13373   Type *Ty;
13374   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13375     Ty = Store->getValueOperand()->getType();
13376   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13377     Ty = Load->getType();
13378   else
13379     return nullptr;
13380 
13381   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13382   return getSizeOfExpr(ETy, Ty);
13383 }
13384 
13385 //===----------------------------------------------------------------------===//
13386 //                   SCEVCallbackVH Class Implementation
13387 //===----------------------------------------------------------------------===//
13388 
13389 void ScalarEvolution::SCEVCallbackVH::deleted() {
13390   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13391   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13392     SE->ConstantEvolutionLoopExitValue.erase(PN);
13393   SE->eraseValueFromMap(getValPtr());
13394   // this now dangles!
13395 }
13396 
13397 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13398   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13399 
13400   // Forget all the expressions associated with users of the old value,
13401   // so that future queries will recompute the expressions using the new
13402   // value.
13403   Value *Old = getValPtr();
13404   SmallVector<User *, 16> Worklist(Old->users());
13405   SmallPtrSet<User *, 8> Visited;
13406   while (!Worklist.empty()) {
13407     User *U = Worklist.pop_back_val();
13408     // Deleting the Old value will cause this to dangle. Postpone
13409     // that until everything else is done.
13410     if (U == Old)
13411       continue;
13412     if (!Visited.insert(U).second)
13413       continue;
13414     if (PHINode *PN = dyn_cast<PHINode>(U))
13415       SE->ConstantEvolutionLoopExitValue.erase(PN);
13416     SE->eraseValueFromMap(U);
13417     llvm::append_range(Worklist, U->users());
13418   }
13419   // Delete the Old value.
13420   if (PHINode *PN = dyn_cast<PHINode>(Old))
13421     SE->ConstantEvolutionLoopExitValue.erase(PN);
13422   SE->eraseValueFromMap(Old);
13423   // this now dangles!
13424 }
13425 
13426 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13427   : CallbackVH(V), SE(se) {}
13428 
13429 //===----------------------------------------------------------------------===//
13430 //                   ScalarEvolution Class Implementation
13431 //===----------------------------------------------------------------------===//
13432 
13433 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13434                                  AssumptionCache &AC, DominatorTree &DT,
13435                                  LoopInfo &LI)
13436     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13437       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13438       LoopDispositions(64), BlockDispositions(64) {}
13439 
13440 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13441     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
13442       CouldNotCompute(std::move(Arg.CouldNotCompute)),
13443       ValueExprMap(std::move(Arg.ValueExprMap)),
13444       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13445       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13446       PendingMerges(std::move(Arg.PendingMerges)),
13447       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
13448       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13449       PredicatedBackedgeTakenCounts(
13450           std::move(Arg.PredicatedBackedgeTakenCounts)),
13451       BECountUsers(std::move(Arg.BECountUsers)),
13452       ConstantEvolutionLoopExitValue(
13453           std::move(Arg.ConstantEvolutionLoopExitValue)),
13454       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13455       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13456       LoopDispositions(std::move(Arg.LoopDispositions)),
13457       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13458       BlockDispositions(std::move(Arg.BlockDispositions)),
13459       SCEVUsers(std::move(Arg.SCEVUsers)),
13460       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13461       SignedRanges(std::move(Arg.SignedRanges)),
13462       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13463       UniquePreds(std::move(Arg.UniquePreds)),
13464       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13465       LoopUsers(std::move(Arg.LoopUsers)),
13466       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13467       FirstUnknown(Arg.FirstUnknown) {
13468   Arg.FirstUnknown = nullptr;
13469 }
13470 
13471 ScalarEvolution::~ScalarEvolution() {
13472   // Iterate through all the SCEVUnknown instances and call their
13473   // destructors, so that they release their references to their values.
13474   for (SCEVUnknown *U = FirstUnknown; U;) {
13475     SCEVUnknown *Tmp = U;
13476     U = U->Next;
13477     Tmp->~SCEVUnknown();
13478   }
13479   FirstUnknown = nullptr;
13480 
13481   ExprValueMap.clear();
13482   ValueExprMap.clear();
13483   HasRecMap.clear();
13484   BackedgeTakenCounts.clear();
13485   PredicatedBackedgeTakenCounts.clear();
13486 
13487   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13488   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13489   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13490   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13491   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13492 }
13493 
13494 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13495   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13496 }
13497 
13498 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13499                           const Loop *L) {
13500   // Print all inner loops first
13501   for (Loop *I : *L)
13502     PrintLoopInfo(OS, SE, I);
13503 
13504   OS << "Loop ";
13505   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13506   OS << ": ";
13507 
13508   SmallVector<BasicBlock *, 8> ExitingBlocks;
13509   L->getExitingBlocks(ExitingBlocks);
13510   if (ExitingBlocks.size() != 1)
13511     OS << "<multiple exits> ";
13512 
13513   if (SE->hasLoopInvariantBackedgeTakenCount(L))
13514     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13515   else
13516     OS << "Unpredictable backedge-taken count.\n";
13517 
13518   if (ExitingBlocks.size() > 1)
13519     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13520       OS << "  exit count for " << ExitingBlock->getName() << ": "
13521          << *SE->getExitCount(L, ExitingBlock) << "\n";
13522     }
13523 
13524   OS << "Loop ";
13525   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13526   OS << ": ";
13527 
13528   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13529   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13530     OS << "constant max backedge-taken count is " << *ConstantBTC;
13531     if (SE->isBackedgeTakenCountMaxOrZero(L))
13532       OS << ", actual taken count either this or zero.";
13533   } else {
13534     OS << "Unpredictable constant max backedge-taken count. ";
13535   }
13536 
13537   OS << "\n"
13538         "Loop ";
13539   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13540   OS << ": ";
13541 
13542   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13543   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13544     OS << "symbolic max backedge-taken count is " << *SymbolicBTC;
13545     if (SE->isBackedgeTakenCountMaxOrZero(L))
13546       OS << ", actual taken count either this or zero.";
13547   } else {
13548     OS << "Unpredictable symbolic max backedge-taken count. ";
13549   }
13550 
13551   OS << "\n";
13552   if (ExitingBlocks.size() > 1)
13553     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13554       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": "
13555          << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum)
13556          << "\n";
13557     }
13558 
13559   OS << "Loop ";
13560   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13561   OS << ": ";
13562 
13563   SmallVector<const SCEVPredicate *, 4> Preds;
13564   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13565   if (!isa<SCEVCouldNotCompute>(PBT)) {
13566     OS << "Predicated backedge-taken count is " << *PBT << "\n";
13567     OS << " Predicates:\n";
13568     for (const auto *P : Preds)
13569       P->print(OS, 4);
13570   } else {
13571     OS << "Unpredictable predicated backedge-taken count. ";
13572   }
13573   OS << "\n";
13574 
13575   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13576     OS << "Loop ";
13577     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13578     OS << ": ";
13579     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13580   }
13581 }
13582 
13583 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
13584   switch (LD) {
13585   case ScalarEvolution::LoopVariant:
13586     return "Variant";
13587   case ScalarEvolution::LoopInvariant:
13588     return "Invariant";
13589   case ScalarEvolution::LoopComputable:
13590     return "Computable";
13591   }
13592   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
13593 }
13594 
13595 void ScalarEvolution::print(raw_ostream &OS) const {
13596   // ScalarEvolution's implementation of the print method is to print
13597   // out SCEV values of all instructions that are interesting. Doing
13598   // this potentially causes it to create new SCEV objects though,
13599   // which technically conflicts with the const qualifier. This isn't
13600   // observable from outside the class though, so casting away the
13601   // const isn't dangerous.
13602   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13603 
13604   if (ClassifyExpressions) {
13605     OS << "Classifying expressions for: ";
13606     F.printAsOperand(OS, /*PrintType=*/false);
13607     OS << "\n";
13608     for (Instruction &I : instructions(F))
13609       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13610         OS << I << '\n';
13611         OS << "  -->  ";
13612         const SCEV *SV = SE.getSCEV(&I);
13613         SV->print(OS);
13614         if (!isa<SCEVCouldNotCompute>(SV)) {
13615           OS << " U: ";
13616           SE.getUnsignedRange(SV).print(OS);
13617           OS << " S: ";
13618           SE.getSignedRange(SV).print(OS);
13619         }
13620 
13621         const Loop *L = LI.getLoopFor(I.getParent());
13622 
13623         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13624         if (AtUse != SV) {
13625           OS << "  -->  ";
13626           AtUse->print(OS);
13627           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13628             OS << " U: ";
13629             SE.getUnsignedRange(AtUse).print(OS);
13630             OS << " S: ";
13631             SE.getSignedRange(AtUse).print(OS);
13632           }
13633         }
13634 
13635         if (L) {
13636           OS << "\t\t" "Exits: ";
13637           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13638           if (!SE.isLoopInvariant(ExitValue, L)) {
13639             OS << "<<Unknown>>";
13640           } else {
13641             OS << *ExitValue;
13642           }
13643 
13644           bool First = true;
13645           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13646             if (First) {
13647               OS << "\t\t" "LoopDispositions: { ";
13648               First = false;
13649             } else {
13650               OS << ", ";
13651             }
13652 
13653             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13654             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
13655           }
13656 
13657           for (const auto *InnerL : depth_first(L)) {
13658             if (InnerL == L)
13659               continue;
13660             if (First) {
13661               OS << "\t\t" "LoopDispositions: { ";
13662               First = false;
13663             } else {
13664               OS << ", ";
13665             }
13666 
13667             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13668             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
13669           }
13670 
13671           OS << " }";
13672         }
13673 
13674         OS << "\n";
13675       }
13676   }
13677 
13678   OS << "Determining loop execution counts for: ";
13679   F.printAsOperand(OS, /*PrintType=*/false);
13680   OS << "\n";
13681   for (Loop *I : LI)
13682     PrintLoopInfo(OS, &SE, I);
13683 }
13684 
13685 ScalarEvolution::LoopDisposition
13686 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13687   auto &Values = LoopDispositions[S];
13688   for (auto &V : Values) {
13689     if (V.getPointer() == L)
13690       return V.getInt();
13691   }
13692   Values.emplace_back(L, LoopVariant);
13693   LoopDisposition D = computeLoopDisposition(S, L);
13694   auto &Values2 = LoopDispositions[S];
13695   for (auto &V : llvm::reverse(Values2)) {
13696     if (V.getPointer() == L) {
13697       V.setInt(D);
13698       break;
13699     }
13700   }
13701   return D;
13702 }
13703 
13704 ScalarEvolution::LoopDisposition
13705 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13706   switch (S->getSCEVType()) {
13707   case scConstant:
13708     return LoopInvariant;
13709   case scAddRecExpr: {
13710     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13711 
13712     // If L is the addrec's loop, it's computable.
13713     if (AR->getLoop() == L)
13714       return LoopComputable;
13715 
13716     // Add recurrences are never invariant in the function-body (null loop).
13717     if (!L)
13718       return LoopVariant;
13719 
13720     // Everything that is not defined at loop entry is variant.
13721     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13722       return LoopVariant;
13723     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13724            " dominate the contained loop's header?");
13725 
13726     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13727     if (AR->getLoop()->contains(L))
13728       return LoopInvariant;
13729 
13730     // This recurrence is variant w.r.t. L if any of its operands
13731     // are variant.
13732     for (const auto *Op : AR->operands())
13733       if (!isLoopInvariant(Op, L))
13734         return LoopVariant;
13735 
13736     // Otherwise it's loop-invariant.
13737     return LoopInvariant;
13738   }
13739   case scTruncate:
13740   case scZeroExtend:
13741   case scSignExtend:
13742   case scPtrToInt:
13743   case scAddExpr:
13744   case scMulExpr:
13745   case scUDivExpr:
13746   case scUMaxExpr:
13747   case scSMaxExpr:
13748   case scUMinExpr:
13749   case scSMinExpr:
13750   case scSequentialUMinExpr: {
13751     bool HasVarying = false;
13752     for (const auto *Op : S->operands()) {
13753       LoopDisposition D = getLoopDisposition(Op, L);
13754       if (D == LoopVariant)
13755         return LoopVariant;
13756       if (D == LoopComputable)
13757         HasVarying = true;
13758     }
13759     return HasVarying ? LoopComputable : LoopInvariant;
13760   }
13761   case scUnknown:
13762     // All non-instruction values are loop invariant.  All instructions are loop
13763     // invariant if they are not contained in the specified loop.
13764     // Instructions are never considered invariant in the function body
13765     // (null loop) because they are defined within the "loop".
13766     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13767       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13768     return LoopInvariant;
13769   case scCouldNotCompute:
13770     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13771   }
13772   llvm_unreachable("Unknown SCEV kind!");
13773 }
13774 
13775 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13776   return getLoopDisposition(S, L) == LoopInvariant;
13777 }
13778 
13779 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13780   return getLoopDisposition(S, L) == LoopComputable;
13781 }
13782 
13783 ScalarEvolution::BlockDisposition
13784 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13785   auto &Values = BlockDispositions[S];
13786   for (auto &V : Values) {
13787     if (V.getPointer() == BB)
13788       return V.getInt();
13789   }
13790   Values.emplace_back(BB, DoesNotDominateBlock);
13791   BlockDisposition D = computeBlockDisposition(S, BB);
13792   auto &Values2 = BlockDispositions[S];
13793   for (auto &V : llvm::reverse(Values2)) {
13794     if (V.getPointer() == BB) {
13795       V.setInt(D);
13796       break;
13797     }
13798   }
13799   return D;
13800 }
13801 
13802 ScalarEvolution::BlockDisposition
13803 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13804   switch (S->getSCEVType()) {
13805   case scConstant:
13806     return ProperlyDominatesBlock;
13807   case scAddRecExpr: {
13808     // This uses a "dominates" query instead of "properly dominates" query
13809     // to test for proper dominance too, because the instruction which
13810     // produces the addrec's value is a PHI, and a PHI effectively properly
13811     // dominates its entire containing block.
13812     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13813     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13814       return DoesNotDominateBlock;
13815 
13816     // Fall through into SCEVNAryExpr handling.
13817     [[fallthrough]];
13818   }
13819   case scTruncate:
13820   case scZeroExtend:
13821   case scSignExtend:
13822   case scPtrToInt:
13823   case scAddExpr:
13824   case scMulExpr:
13825   case scUDivExpr:
13826   case scUMaxExpr:
13827   case scSMaxExpr:
13828   case scUMinExpr:
13829   case scSMinExpr:
13830   case scSequentialUMinExpr: {
13831     bool Proper = true;
13832     for (const SCEV *NAryOp : S->operands()) {
13833       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13834       if (D == DoesNotDominateBlock)
13835         return DoesNotDominateBlock;
13836       if (D == DominatesBlock)
13837         Proper = false;
13838     }
13839     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13840   }
13841   case scUnknown:
13842     if (Instruction *I =
13843           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13844       if (I->getParent() == BB)
13845         return DominatesBlock;
13846       if (DT.properlyDominates(I->getParent(), BB))
13847         return ProperlyDominatesBlock;
13848       return DoesNotDominateBlock;
13849     }
13850     return ProperlyDominatesBlock;
13851   case scCouldNotCompute:
13852     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13853   }
13854   llvm_unreachable("Unknown SCEV kind!");
13855 }
13856 
13857 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13858   return getBlockDisposition(S, BB) >= DominatesBlock;
13859 }
13860 
13861 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13862   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13863 }
13864 
13865 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13866   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13867 }
13868 
13869 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13870                                                 bool Predicated) {
13871   auto &BECounts =
13872       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13873   auto It = BECounts.find(L);
13874   if (It != BECounts.end()) {
13875     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13876       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
13877         if (!isa<SCEVConstant>(S)) {
13878           auto UserIt = BECountUsers.find(S);
13879           assert(UserIt != BECountUsers.end());
13880           UserIt->second.erase({L, Predicated});
13881         }
13882       }
13883     }
13884     BECounts.erase(It);
13885   }
13886 }
13887 
13888 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13889   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13890   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13891 
13892   while (!Worklist.empty()) {
13893     const SCEV *Curr = Worklist.pop_back_val();
13894     auto Users = SCEVUsers.find(Curr);
13895     if (Users != SCEVUsers.end())
13896       for (const auto *User : Users->second)
13897         if (ToForget.insert(User).second)
13898           Worklist.push_back(User);
13899   }
13900 
13901   for (const auto *S : ToForget)
13902     forgetMemoizedResultsImpl(S);
13903 
13904   for (auto I = PredicatedSCEVRewrites.begin();
13905        I != PredicatedSCEVRewrites.end();) {
13906     std::pair<const SCEV *, const Loop *> Entry = I->first;
13907     if (ToForget.count(Entry.first))
13908       PredicatedSCEVRewrites.erase(I++);
13909     else
13910       ++I;
13911   }
13912 }
13913 
13914 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13915   LoopDispositions.erase(S);
13916   BlockDispositions.erase(S);
13917   UnsignedRanges.erase(S);
13918   SignedRanges.erase(S);
13919   HasRecMap.erase(S);
13920   MinTrailingZerosCache.erase(S);
13921 
13922   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
13923     UnsignedWrapViaInductionTried.erase(AR);
13924     SignedWrapViaInductionTried.erase(AR);
13925   }
13926 
13927   auto ExprIt = ExprValueMap.find(S);
13928   if (ExprIt != ExprValueMap.end()) {
13929     for (Value *V : ExprIt->second) {
13930       auto ValueIt = ValueExprMap.find_as(V);
13931       if (ValueIt != ValueExprMap.end())
13932         ValueExprMap.erase(ValueIt);
13933     }
13934     ExprValueMap.erase(ExprIt);
13935   }
13936 
13937   auto ScopeIt = ValuesAtScopes.find(S);
13938   if (ScopeIt != ValuesAtScopes.end()) {
13939     for (const auto &Pair : ScopeIt->second)
13940       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13941         erase_value(ValuesAtScopesUsers[Pair.second],
13942                     std::make_pair(Pair.first, S));
13943     ValuesAtScopes.erase(ScopeIt);
13944   }
13945 
13946   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13947   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13948     for (const auto &Pair : ScopeUserIt->second)
13949       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13950     ValuesAtScopesUsers.erase(ScopeUserIt);
13951   }
13952 
13953   auto BEUsersIt = BECountUsers.find(S);
13954   if (BEUsersIt != BECountUsers.end()) {
13955     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13956     auto Copy = BEUsersIt->second;
13957     for (const auto &Pair : Copy)
13958       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13959     BECountUsers.erase(BEUsersIt);
13960   }
13961 
13962   auto FoldUser = FoldCacheUser.find(S);
13963   if (FoldUser != FoldCacheUser.end())
13964     for (auto &KV : FoldUser->second)
13965       FoldCache.erase(KV);
13966   FoldCacheUser.erase(S);
13967 }
13968 
13969 void
13970 ScalarEvolution::getUsedLoops(const SCEV *S,
13971                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13972   struct FindUsedLoops {
13973     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13974         : LoopsUsed(LoopsUsed) {}
13975     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13976     bool follow(const SCEV *S) {
13977       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13978         LoopsUsed.insert(AR->getLoop());
13979       return true;
13980     }
13981 
13982     bool isDone() const { return false; }
13983   };
13984 
13985   FindUsedLoops F(LoopsUsed);
13986   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13987 }
13988 
13989 void ScalarEvolution::getReachableBlocks(
13990     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13991   SmallVector<BasicBlock *> Worklist;
13992   Worklist.push_back(&F.getEntryBlock());
13993   while (!Worklist.empty()) {
13994     BasicBlock *BB = Worklist.pop_back_val();
13995     if (!Reachable.insert(BB).second)
13996       continue;
13997 
13998     Value *Cond;
13999     BasicBlock *TrueBB, *FalseBB;
14000     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
14001                                         m_BasicBlock(FalseBB)))) {
14002       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
14003         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
14004         continue;
14005       }
14006 
14007       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14008         const SCEV *L = getSCEV(Cmp->getOperand(0));
14009         const SCEV *R = getSCEV(Cmp->getOperand(1));
14010         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
14011           Worklist.push_back(TrueBB);
14012           continue;
14013         }
14014         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
14015                                               R)) {
14016           Worklist.push_back(FalseBB);
14017           continue;
14018         }
14019       }
14020     }
14021 
14022     append_range(Worklist, successors(BB));
14023   }
14024 }
14025 
14026 void ScalarEvolution::verify() const {
14027   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14028   ScalarEvolution SE2(F, TLI, AC, DT, LI);
14029 
14030   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14031 
14032   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14033   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14034     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14035 
14036     const SCEV *visitConstant(const SCEVConstant *Constant) {
14037       return SE.getConstant(Constant->getAPInt());
14038     }
14039 
14040     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14041       return SE.getUnknown(Expr->getValue());
14042     }
14043 
14044     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14045       return SE.getCouldNotCompute();
14046     }
14047   };
14048 
14049   SCEVMapper SCM(SE2);
14050   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14051   SE2.getReachableBlocks(ReachableBlocks, F);
14052 
14053   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14054     if (containsUndefs(Old) || containsUndefs(New)) {
14055       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14056       // not propagate undef aggressively).  This means we can (and do) fail
14057       // verification in cases where a transform makes a value go from "undef"
14058       // to "undef+1" (say).  The transform is fine, since in both cases the
14059       // result is "undef", but SCEV thinks the value increased by 1.
14060       return nullptr;
14061     }
14062 
14063     // Unless VerifySCEVStrict is set, we only compare constant deltas.
14064     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
14065     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
14066       return nullptr;
14067 
14068     return Delta;
14069   };
14070 
14071   while (!LoopStack.empty()) {
14072     auto *L = LoopStack.pop_back_val();
14073     llvm::append_range(LoopStack, *L);
14074 
14075     // Only verify BECounts in reachable loops. For an unreachable loop,
14076     // any BECount is legal.
14077     if (!ReachableBlocks.contains(L->getHeader()))
14078       continue;
14079 
14080     // Only verify cached BECounts. Computing new BECounts may change the
14081     // results of subsequent SCEV uses.
14082     auto It = BackedgeTakenCounts.find(L);
14083     if (It == BackedgeTakenCounts.end())
14084       continue;
14085 
14086     auto *CurBECount =
14087         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14088     auto *NewBECount = SE2.getBackedgeTakenCount(L);
14089 
14090     if (CurBECount == SE2.getCouldNotCompute() ||
14091         NewBECount == SE2.getCouldNotCompute()) {
14092       // NB! This situation is legal, but is very suspicious -- whatever pass
14093       // change the loop to make a trip count go from could not compute to
14094       // computable or vice-versa *should have* invalidated SCEV.  However, we
14095       // choose not to assert here (for now) since we don't want false
14096       // positives.
14097       continue;
14098     }
14099 
14100     if (SE.getTypeSizeInBits(CurBECount->getType()) >
14101         SE.getTypeSizeInBits(NewBECount->getType()))
14102       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14103     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14104              SE.getTypeSizeInBits(NewBECount->getType()))
14105       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14106 
14107     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14108     if (Delta && !Delta->isZero()) {
14109       dbgs() << "Trip Count for " << *L << " Changed!\n";
14110       dbgs() << "Old: " << *CurBECount << "\n";
14111       dbgs() << "New: " << *NewBECount << "\n";
14112       dbgs() << "Delta: " << *Delta << "\n";
14113       std::abort();
14114     }
14115   }
14116 
14117   // Collect all valid loops currently in LoopInfo.
14118   SmallPtrSet<Loop *, 32> ValidLoops;
14119   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14120   while (!Worklist.empty()) {
14121     Loop *L = Worklist.pop_back_val();
14122     if (ValidLoops.insert(L).second)
14123       Worklist.append(L->begin(), L->end());
14124   }
14125   for (const auto &KV : ValueExprMap) {
14126 #ifndef NDEBUG
14127     // Check for SCEV expressions referencing invalid/deleted loops.
14128     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14129       assert(ValidLoops.contains(AR->getLoop()) &&
14130              "AddRec references invalid loop");
14131     }
14132 #endif
14133 
14134     // Check that the value is also part of the reverse map.
14135     auto It = ExprValueMap.find(KV.second);
14136     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14137       dbgs() << "Value " << *KV.first
14138              << " is in ValueExprMap but not in ExprValueMap\n";
14139       std::abort();
14140     }
14141 
14142     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14143       if (!ReachableBlocks.contains(I->getParent()))
14144         continue;
14145       const SCEV *OldSCEV = SCM.visit(KV.second);
14146       const SCEV *NewSCEV = SE2.getSCEV(I);
14147       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14148       if (Delta && !Delta->isZero()) {
14149         dbgs() << "SCEV for value " << *I << " changed!\n"
14150                << "Old: " << *OldSCEV << "\n"
14151                << "New: " << *NewSCEV << "\n"
14152                << "Delta: " << *Delta << "\n";
14153         std::abort();
14154       }
14155     }
14156   }
14157 
14158   for (const auto &KV : ExprValueMap) {
14159     for (Value *V : KV.second) {
14160       auto It = ValueExprMap.find_as(V);
14161       if (It == ValueExprMap.end()) {
14162         dbgs() << "Value " << *V
14163                << " is in ExprValueMap but not in ValueExprMap\n";
14164         std::abort();
14165       }
14166       if (It->second != KV.first) {
14167         dbgs() << "Value " << *V << " mapped to " << *It->second
14168                << " rather than " << *KV.first << "\n";
14169         std::abort();
14170       }
14171     }
14172   }
14173 
14174   // Verify integrity of SCEV users.
14175   for (const auto &S : UniqueSCEVs) {
14176     for (const auto *Op : S.operands()) {
14177       // We do not store dependencies of constants.
14178       if (isa<SCEVConstant>(Op))
14179         continue;
14180       auto It = SCEVUsers.find(Op);
14181       if (It != SCEVUsers.end() && It->second.count(&S))
14182         continue;
14183       dbgs() << "Use of operand  " << *Op << " by user " << S
14184              << " is not being tracked!\n";
14185       std::abort();
14186     }
14187   }
14188 
14189   // Verify integrity of ValuesAtScopes users.
14190   for (const auto &ValueAndVec : ValuesAtScopes) {
14191     const SCEV *Value = ValueAndVec.first;
14192     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14193       const Loop *L = LoopAndValueAtScope.first;
14194       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14195       if (!isa<SCEVConstant>(ValueAtScope)) {
14196         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14197         if (It != ValuesAtScopesUsers.end() &&
14198             is_contained(It->second, std::make_pair(L, Value)))
14199           continue;
14200         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14201                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14202         std::abort();
14203       }
14204     }
14205   }
14206 
14207   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14208     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14209     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14210       const Loop *L = LoopAndValue.first;
14211       const SCEV *Value = LoopAndValue.second;
14212       assert(!isa<SCEVConstant>(Value));
14213       auto It = ValuesAtScopes.find(Value);
14214       if (It != ValuesAtScopes.end() &&
14215           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14216         continue;
14217       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14218              << *ValueAtScope << " missing in ValuesAtScopes\n";
14219       std::abort();
14220     }
14221   }
14222 
14223   // Verify integrity of BECountUsers.
14224   auto VerifyBECountUsers = [&](bool Predicated) {
14225     auto &BECounts =
14226         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14227     for (const auto &LoopAndBEInfo : BECounts) {
14228       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14229         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14230           if (!isa<SCEVConstant>(S)) {
14231             auto UserIt = BECountUsers.find(S);
14232             if (UserIt != BECountUsers.end() &&
14233                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14234               continue;
14235             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14236                    << " missing from BECountUsers\n";
14237             std::abort();
14238           }
14239         }
14240       }
14241     }
14242   };
14243   VerifyBECountUsers(/* Predicated */ false);
14244   VerifyBECountUsers(/* Predicated */ true);
14245 
14246   // Verify intergity of loop disposition cache.
14247   for (auto &[S, Values] : LoopDispositions) {
14248     for (auto [Loop, CachedDisposition] : Values) {
14249       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14250       if (CachedDisposition != RecomputedDisposition) {
14251         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14252                << " is incorrect: cached "
14253                << loopDispositionToStr(CachedDisposition) << ", actual "
14254                << loopDispositionToStr(RecomputedDisposition) << "\n";
14255         std::abort();
14256       }
14257     }
14258   }
14259 
14260   // Verify integrity of the block disposition cache.
14261   for (auto &[S, Values] : BlockDispositions) {
14262     for (auto [BB, CachedDisposition] : Values) {
14263       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14264       if (CachedDisposition != RecomputedDisposition) {
14265         dbgs() << "Cached disposition of " << *S << " for block %"
14266                << BB->getName() << " is incorrect! \n";
14267         std::abort();
14268       }
14269     }
14270   }
14271 
14272   // Verify FoldCache/FoldCacheUser caches.
14273   for (auto [FoldID, Expr] : FoldCache) {
14274     auto I = FoldCacheUser.find(Expr);
14275     if (I == FoldCacheUser.end()) {
14276       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14277              << "!\n";
14278       std::abort();
14279     }
14280     if (!is_contained(I->second, FoldID)) {
14281       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14282       std::abort();
14283     }
14284   }
14285   for (auto [Expr, IDs] : FoldCacheUser) {
14286     for (auto &FoldID : IDs) {
14287       auto I = FoldCache.find(FoldID);
14288       if (I == FoldCache.end()) {
14289         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14290                << "!\n";
14291         std::abort();
14292       }
14293       if (I->second != Expr) {
14294         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14295                << *I->second << " != " << *Expr << "!\n";
14296         std::abort();
14297       }
14298     }
14299   }
14300 }
14301 
14302 bool ScalarEvolution::invalidate(
14303     Function &F, const PreservedAnalyses &PA,
14304     FunctionAnalysisManager::Invalidator &Inv) {
14305   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14306   // of its dependencies is invalidated.
14307   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14308   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14309          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14310          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14311          Inv.invalidate<LoopAnalysis>(F, PA);
14312 }
14313 
14314 AnalysisKey ScalarEvolutionAnalysis::Key;
14315 
14316 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14317                                              FunctionAnalysisManager &AM) {
14318   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
14319                          AM.getResult<AssumptionAnalysis>(F),
14320                          AM.getResult<DominatorTreeAnalysis>(F),
14321                          AM.getResult<LoopAnalysis>(F));
14322 }
14323 
14324 PreservedAnalyses
14325 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14326   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14327   return PreservedAnalyses::all();
14328 }
14329 
14330 PreservedAnalyses
14331 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14332   // For compatibility with opt's -analyze feature under legacy pass manager
14333   // which was not ported to NPM. This keeps tests using
14334   // update_analyze_test_checks.py working.
14335   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14336      << F.getName() << "':\n";
14337   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14338   return PreservedAnalyses::all();
14339 }
14340 
14341 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14342                       "Scalar Evolution Analysis", false, true)
14343 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14344 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14346 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14347 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14348                     "Scalar Evolution Analysis", false, true)
14349 
14350 char ScalarEvolutionWrapperPass::ID = 0;
14351 
14352 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14353   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14354 }
14355 
14356 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14357   SE.reset(new ScalarEvolution(
14358       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14359       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14360       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14361       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14362   return false;
14363 }
14364 
14365 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14366 
14367 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14368   SE->print(OS);
14369 }
14370 
14371 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14372   if (!VerifySCEV)
14373     return;
14374 
14375   SE->verify();
14376 }
14377 
14378 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14379   AU.setPreservesAll();
14380   AU.addRequiredTransitive<AssumptionCacheTracker>();
14381   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14382   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14383   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14384 }
14385 
14386 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14387                                                         const SCEV *RHS) {
14388   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14389 }
14390 
14391 const SCEVPredicate *
14392 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14393                                      const SCEV *LHS, const SCEV *RHS) {
14394   FoldingSetNodeID ID;
14395   assert(LHS->getType() == RHS->getType() &&
14396          "Type mismatch between LHS and RHS");
14397   // Unique this node based on the arguments
14398   ID.AddInteger(SCEVPredicate::P_Compare);
14399   ID.AddInteger(Pred);
14400   ID.AddPointer(LHS);
14401   ID.AddPointer(RHS);
14402   void *IP = nullptr;
14403   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14404     return S;
14405   SCEVComparePredicate *Eq = new (SCEVAllocator)
14406     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14407   UniquePreds.InsertNode(Eq, IP);
14408   return Eq;
14409 }
14410 
14411 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14412     const SCEVAddRecExpr *AR,
14413     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14414   FoldingSetNodeID ID;
14415   // Unique this node based on the arguments
14416   ID.AddInteger(SCEVPredicate::P_Wrap);
14417   ID.AddPointer(AR);
14418   ID.AddInteger(AddedFlags);
14419   void *IP = nullptr;
14420   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14421     return S;
14422   auto *OF = new (SCEVAllocator)
14423       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14424   UniquePreds.InsertNode(OF, IP);
14425   return OF;
14426 }
14427 
14428 namespace {
14429 
14430 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14431 public:
14432 
14433   /// Rewrites \p S in the context of a loop L and the SCEV predication
14434   /// infrastructure.
14435   ///
14436   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14437   /// equivalences present in \p Pred.
14438   ///
14439   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14440   /// \p NewPreds such that the result will be an AddRecExpr.
14441   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14442                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14443                              const SCEVPredicate *Pred) {
14444     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14445     return Rewriter.visit(S);
14446   }
14447 
14448   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14449     if (Pred) {
14450       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14451         for (const auto *Pred : U->getPredicates())
14452           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14453             if (IPred->getLHS() == Expr &&
14454                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14455               return IPred->getRHS();
14456       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14457         if (IPred->getLHS() == Expr &&
14458             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14459           return IPred->getRHS();
14460       }
14461     }
14462     return convertToAddRecWithPreds(Expr);
14463   }
14464 
14465   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14466     const SCEV *Operand = visit(Expr->getOperand());
14467     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14468     if (AR && AR->getLoop() == L && AR->isAffine()) {
14469       // This couldn't be folded because the operand didn't have the nuw
14470       // flag. Add the nusw flag as an assumption that we could make.
14471       const SCEV *Step = AR->getStepRecurrence(SE);
14472       Type *Ty = Expr->getType();
14473       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14474         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14475                                 SE.getSignExtendExpr(Step, Ty), L,
14476                                 AR->getNoWrapFlags());
14477     }
14478     return SE.getZeroExtendExpr(Operand, Expr->getType());
14479   }
14480 
14481   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14482     const SCEV *Operand = visit(Expr->getOperand());
14483     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14484     if (AR && AR->getLoop() == L && AR->isAffine()) {
14485       // This couldn't be folded because the operand didn't have the nsw
14486       // flag. Add the nssw flag as an assumption that we could make.
14487       const SCEV *Step = AR->getStepRecurrence(SE);
14488       Type *Ty = Expr->getType();
14489       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14490         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14491                                 SE.getSignExtendExpr(Step, Ty), L,
14492                                 AR->getNoWrapFlags());
14493     }
14494     return SE.getSignExtendExpr(Operand, Expr->getType());
14495   }
14496 
14497 private:
14498   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14499                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14500                         const SCEVPredicate *Pred)
14501       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14502 
14503   bool addOverflowAssumption(const SCEVPredicate *P) {
14504     if (!NewPreds) {
14505       // Check if we've already made this assumption.
14506       return Pred && Pred->implies(P);
14507     }
14508     NewPreds->insert(P);
14509     return true;
14510   }
14511 
14512   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14513                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14514     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14515     return addOverflowAssumption(A);
14516   }
14517 
14518   // If \p Expr represents a PHINode, we try to see if it can be represented
14519   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14520   // to add this predicate as a runtime overflow check, we return the AddRec.
14521   // If \p Expr does not meet these conditions (is not a PHI node, or we
14522   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14523   // return \p Expr.
14524   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14525     if (!isa<PHINode>(Expr->getValue()))
14526       return Expr;
14527     std::optional<
14528         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14529         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14530     if (!PredicatedRewrite)
14531       return Expr;
14532     for (const auto *P : PredicatedRewrite->second){
14533       // Wrap predicates from outer loops are not supported.
14534       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14535         if (L != WP->getExpr()->getLoop())
14536           return Expr;
14537       }
14538       if (!addOverflowAssumption(P))
14539         return Expr;
14540     }
14541     return PredicatedRewrite->first;
14542   }
14543 
14544   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14545   const SCEVPredicate *Pred;
14546   const Loop *L;
14547 };
14548 
14549 } // end anonymous namespace
14550 
14551 const SCEV *
14552 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14553                                        const SCEVPredicate &Preds) {
14554   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14555 }
14556 
14557 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14558     const SCEV *S, const Loop *L,
14559     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14560   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14561   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14562   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14563 
14564   if (!AddRec)
14565     return nullptr;
14566 
14567   // Since the transformation was successful, we can now transfer the SCEV
14568   // predicates.
14569   for (const auto *P : TransformPreds)
14570     Preds.insert(P);
14571 
14572   return AddRec;
14573 }
14574 
14575 /// SCEV predicates
14576 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14577                              SCEVPredicateKind Kind)
14578     : FastID(ID), Kind(Kind) {}
14579 
14580 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14581                                    const ICmpInst::Predicate Pred,
14582                                    const SCEV *LHS, const SCEV *RHS)
14583   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14584   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14585   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14586 }
14587 
14588 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14589   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14590 
14591   if (!Op)
14592     return false;
14593 
14594   if (Pred != ICmpInst::ICMP_EQ)
14595     return false;
14596 
14597   return Op->LHS == LHS && Op->RHS == RHS;
14598 }
14599 
14600 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14601 
14602 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14603   if (Pred == ICmpInst::ICMP_EQ)
14604     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14605   else
14606     OS.indent(Depth) << "Compare predicate: " << *LHS
14607                      << " " << CmpInst::getPredicateName(Pred) << ") "
14608                      << *RHS << "\n";
14609 
14610 }
14611 
14612 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14613                                      const SCEVAddRecExpr *AR,
14614                                      IncrementWrapFlags Flags)
14615     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14616 
14617 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14618 
14619 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14620   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14621 
14622   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14623 }
14624 
14625 bool SCEVWrapPredicate::isAlwaysTrue() const {
14626   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14627   IncrementWrapFlags IFlags = Flags;
14628 
14629   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14630     IFlags = clearFlags(IFlags, IncrementNSSW);
14631 
14632   return IFlags == IncrementAnyWrap;
14633 }
14634 
14635 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14636   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14637   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14638     OS << "<nusw>";
14639   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14640     OS << "<nssw>";
14641   OS << "\n";
14642 }
14643 
14644 SCEVWrapPredicate::IncrementWrapFlags
14645 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14646                                    ScalarEvolution &SE) {
14647   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14648   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14649 
14650   // We can safely transfer the NSW flag as NSSW.
14651   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14652     ImpliedFlags = IncrementNSSW;
14653 
14654   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14655     // If the increment is positive, the SCEV NUW flag will also imply the
14656     // WrapPredicate NUSW flag.
14657     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14658       if (Step->getValue()->getValue().isNonNegative())
14659         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14660   }
14661 
14662   return ImpliedFlags;
14663 }
14664 
14665 /// Union predicates don't get cached so create a dummy set ID for it.
14666 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14667   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14668   for (const auto *P : Preds)
14669     add(P);
14670 }
14671 
14672 bool SCEVUnionPredicate::isAlwaysTrue() const {
14673   return all_of(Preds,
14674                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14675 }
14676 
14677 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14678   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14679     return all_of(Set->Preds,
14680                   [this](const SCEVPredicate *I) { return this->implies(I); });
14681 
14682   return any_of(Preds,
14683                 [N](const SCEVPredicate *I) { return I->implies(N); });
14684 }
14685 
14686 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14687   for (const auto *Pred : Preds)
14688     Pred->print(OS, Depth);
14689 }
14690 
14691 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14692   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14693     for (const auto *Pred : Set->Preds)
14694       add(Pred);
14695     return;
14696   }
14697 
14698   Preds.push_back(N);
14699 }
14700 
14701 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14702                                                      Loop &L)
14703     : SE(SE), L(L) {
14704   SmallVector<const SCEVPredicate*, 4> Empty;
14705   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14706 }
14707 
14708 void ScalarEvolution::registerUser(const SCEV *User,
14709                                    ArrayRef<const SCEV *> Ops) {
14710   for (const auto *Op : Ops)
14711     // We do not expect that forgetting cached data for SCEVConstants will ever
14712     // open any prospects for sharpening or introduce any correctness issues,
14713     // so we don't bother storing their dependencies.
14714     if (!isa<SCEVConstant>(Op))
14715       SCEVUsers[Op].insert(User);
14716 }
14717 
14718 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14719   const SCEV *Expr = SE.getSCEV(V);
14720   RewriteEntry &Entry = RewriteMap[Expr];
14721 
14722   // If we already have an entry and the version matches, return it.
14723   if (Entry.second && Generation == Entry.first)
14724     return Entry.second;
14725 
14726   // We found an entry but it's stale. Rewrite the stale entry
14727   // according to the current predicate.
14728   if (Entry.second)
14729     Expr = Entry.second;
14730 
14731   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14732   Entry = {Generation, NewSCEV};
14733 
14734   return NewSCEV;
14735 }
14736 
14737 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14738   if (!BackedgeCount) {
14739     SmallVector<const SCEVPredicate *, 4> Preds;
14740     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14741     for (const auto *P : Preds)
14742       addPredicate(*P);
14743   }
14744   return BackedgeCount;
14745 }
14746 
14747 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14748   if (Preds->implies(&Pred))
14749     return;
14750 
14751   auto &OldPreds = Preds->getPredicates();
14752   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14753   NewPreds.push_back(&Pred);
14754   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14755   updateGeneration();
14756 }
14757 
14758 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14759   return *Preds;
14760 }
14761 
14762 void PredicatedScalarEvolution::updateGeneration() {
14763   // If the generation number wrapped recompute everything.
14764   if (++Generation == 0) {
14765     for (auto &II : RewriteMap) {
14766       const SCEV *Rewritten = II.second.second;
14767       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14768     }
14769   }
14770 }
14771 
14772 void PredicatedScalarEvolution::setNoOverflow(
14773     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14774   const SCEV *Expr = getSCEV(V);
14775   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14776 
14777   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14778 
14779   // Clear the statically implied flags.
14780   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14781   addPredicate(*SE.getWrapPredicate(AR, Flags));
14782 
14783   auto II = FlagsMap.insert({V, Flags});
14784   if (!II.second)
14785     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14786 }
14787 
14788 bool PredicatedScalarEvolution::hasNoOverflow(
14789     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14790   const SCEV *Expr = getSCEV(V);
14791   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14792 
14793   Flags = SCEVWrapPredicate::clearFlags(
14794       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14795 
14796   auto II = FlagsMap.find(V);
14797 
14798   if (II != FlagsMap.end())
14799     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14800 
14801   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14802 }
14803 
14804 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14805   const SCEV *Expr = this->getSCEV(V);
14806   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14807   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14808 
14809   if (!New)
14810     return nullptr;
14811 
14812   for (const auto *P : NewPreds)
14813     addPredicate(*P);
14814 
14815   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14816   return New;
14817 }
14818 
14819 PredicatedScalarEvolution::PredicatedScalarEvolution(
14820     const PredicatedScalarEvolution &Init)
14821   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14822     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14823     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14824   for (auto I : Init.FlagsMap)
14825     FlagsMap.insert(I);
14826 }
14827 
14828 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14829   // For each block.
14830   for (auto *BB : L.getBlocks())
14831     for (auto &I : *BB) {
14832       if (!SE.isSCEVable(I.getType()))
14833         continue;
14834 
14835       auto *Expr = SE.getSCEV(&I);
14836       auto II = RewriteMap.find(Expr);
14837 
14838       if (II == RewriteMap.end())
14839         continue;
14840 
14841       // Don't print things that are not interesting.
14842       if (II->second.second == Expr)
14843         continue;
14844 
14845       OS.indent(Depth) << "[PSE]" << I << ":\n";
14846       OS.indent(Depth + 2) << *Expr << "\n";
14847       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14848     }
14849 }
14850 
14851 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14852 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14853 // for URem with constant power-of-2 second operands.
14854 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14855 // 4, A / B becomes X / 8).
14856 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14857                                 const SCEV *&RHS) {
14858   // Try to match 'zext (trunc A to iB) to iY', which is used
14859   // for URem with constant power-of-2 second operands. Make sure the size of
14860   // the operand A matches the size of the whole expressions.
14861   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14862     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14863       LHS = Trunc->getOperand();
14864       // Bail out if the type of the LHS is larger than the type of the
14865       // expression for now.
14866       if (getTypeSizeInBits(LHS->getType()) >
14867           getTypeSizeInBits(Expr->getType()))
14868         return false;
14869       if (LHS->getType() != Expr->getType())
14870         LHS = getZeroExtendExpr(LHS, Expr->getType());
14871       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14872                         << getTypeSizeInBits(Trunc->getType()));
14873       return true;
14874     }
14875   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14876   if (Add == nullptr || Add->getNumOperands() != 2)
14877     return false;
14878 
14879   const SCEV *A = Add->getOperand(1);
14880   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14881 
14882   if (Mul == nullptr)
14883     return false;
14884 
14885   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14886     // (SomeExpr + (-(SomeExpr / B) * B)).
14887     if (Expr == getURemExpr(A, B)) {
14888       LHS = A;
14889       RHS = B;
14890       return true;
14891     }
14892     return false;
14893   };
14894 
14895   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14896   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14897     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14898            MatchURemWithDivisor(Mul->getOperand(2));
14899 
14900   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14901   if (Mul->getNumOperands() == 2)
14902     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14903            MatchURemWithDivisor(Mul->getOperand(0)) ||
14904            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14905            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14906   return false;
14907 }
14908 
14909 const SCEV *
14910 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14911   SmallVector<BasicBlock*, 16> ExitingBlocks;
14912   L->getExitingBlocks(ExitingBlocks);
14913 
14914   // Form an expression for the maximum exit count possible for this loop. We
14915   // merge the max and exact information to approximate a version of
14916   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14917   SmallVector<const SCEV*, 4> ExitCounts;
14918   for (BasicBlock *ExitingBB : ExitingBlocks) {
14919     const SCEV *ExitCount =
14920         getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum);
14921     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14922       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14923              "We should only have known counts for exiting blocks that "
14924              "dominate latch!");
14925       ExitCounts.push_back(ExitCount);
14926     }
14927   }
14928   if (ExitCounts.empty())
14929     return getCouldNotCompute();
14930   return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
14931 }
14932 
14933 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14934 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14935 /// replacement is loop invariant in the loop of the AddRec.
14936 ///
14937 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14938 /// supported.
14939 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14940   const DenseMap<const SCEV *, const SCEV *> &Map;
14941 
14942 public:
14943   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14944                         DenseMap<const SCEV *, const SCEV *> &M)
14945       : SCEVRewriteVisitor(SE), Map(M) {}
14946 
14947   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14948 
14949   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14950     auto I = Map.find(Expr);
14951     if (I == Map.end())
14952       return Expr;
14953     return I->second;
14954   }
14955 
14956   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14957     auto I = Map.find(Expr);
14958     if (I == Map.end())
14959       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14960           Expr);
14961     return I->second;
14962   }
14963 };
14964 
14965 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14966   SmallVector<const SCEV *> ExprsToRewrite;
14967   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14968                               const SCEV *RHS,
14969                               DenseMap<const SCEV *, const SCEV *>
14970                                   &RewriteMap) {
14971     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14972     // replacement SCEV which isn't directly implied by the structure of that
14973     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14974     // legal.  See the scoping rules for flags in the header to understand why.
14975 
14976     // If LHS is a constant, apply information to the other expression.
14977     if (isa<SCEVConstant>(LHS)) {
14978       std::swap(LHS, RHS);
14979       Predicate = CmpInst::getSwappedPredicate(Predicate);
14980     }
14981 
14982     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14983     // create this form when combining two checks of the form (X u< C2 + C1) and
14984     // (X >=u C1).
14985     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14986                                  &ExprsToRewrite]() {
14987       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14988       if (!AddExpr || AddExpr->getNumOperands() != 2)
14989         return false;
14990 
14991       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14992       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14993       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14994       if (!C1 || !C2 || !LHSUnknown)
14995         return false;
14996 
14997       auto ExactRegion =
14998           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14999               .sub(C1->getAPInt());
15000 
15001       // Bail out, unless we have a non-wrapping, monotonic range.
15002       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15003         return false;
15004       auto I = RewriteMap.find(LHSUnknown);
15005       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15006       RewriteMap[LHSUnknown] = getUMaxExpr(
15007           getConstant(ExactRegion.getUnsignedMin()),
15008           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
15009       ExprsToRewrite.push_back(LHSUnknown);
15010       return true;
15011     };
15012     if (MatchRangeCheckIdiom())
15013       return;
15014 
15015     // If we have LHS == 0, check if LHS is computing a property of some unknown
15016     // SCEV %v which we can rewrite %v to express explicitly.
15017     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15018     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15019         RHSC->getValue()->isNullValue()) {
15020       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15021       // explicitly express that.
15022       const SCEV *URemLHS = nullptr;
15023       const SCEV *URemRHS = nullptr;
15024       if (matchURem(LHS, URemLHS, URemRHS)) {
15025         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15026           const auto *Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
15027           RewriteMap[LHSUnknown] = Multiple;
15028           ExprsToRewrite.push_back(LHSUnknown);
15029           return;
15030         }
15031       }
15032     }
15033 
15034     // Do not apply information for constants or if RHS contains an AddRec.
15035     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
15036       return;
15037 
15038     // If RHS is SCEVUnknown, make sure the information is applied to it.
15039     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15040       std::swap(LHS, RHS);
15041       Predicate = CmpInst::getSwappedPredicate(Predicate);
15042     }
15043 
15044     // Limit to expressions that can be rewritten.
15045     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
15046       return;
15047 
15048     // Check whether LHS has already been rewritten. In that case we want to
15049     // chain further rewrites onto the already rewritten value.
15050     auto I = RewriteMap.find(LHS);
15051     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
15052 
15053     const SCEV *RewrittenRHS = nullptr;
15054     switch (Predicate) {
15055     case CmpInst::ICMP_ULT:
15056       RewrittenRHS =
15057           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
15058       break;
15059     case CmpInst::ICMP_SLT:
15060       RewrittenRHS =
15061           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
15062       break;
15063     case CmpInst::ICMP_ULE:
15064       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
15065       break;
15066     case CmpInst::ICMP_SLE:
15067       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
15068       break;
15069     case CmpInst::ICMP_UGT:
15070       RewrittenRHS =
15071           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
15072       break;
15073     case CmpInst::ICMP_SGT:
15074       RewrittenRHS =
15075           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
15076       break;
15077     case CmpInst::ICMP_UGE:
15078       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
15079       break;
15080     case CmpInst::ICMP_SGE:
15081       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
15082       break;
15083     case CmpInst::ICMP_EQ:
15084       if (isa<SCEVConstant>(RHS))
15085         RewrittenRHS = RHS;
15086       break;
15087     case CmpInst::ICMP_NE:
15088       if (isa<SCEVConstant>(RHS) &&
15089           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
15090         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
15091       break;
15092     default:
15093       break;
15094     }
15095 
15096     if (RewrittenRHS) {
15097       RewriteMap[LHS] = RewrittenRHS;
15098       if (LHS == RewrittenLHS)
15099         ExprsToRewrite.push_back(LHS);
15100     }
15101   };
15102 
15103   BasicBlock *Header = L->getHeader();
15104   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15105   // First, collect information from assumptions dominating the loop.
15106   for (auto &AssumeVH : AC.assumptions()) {
15107     if (!AssumeVH)
15108       continue;
15109     auto *AssumeI = cast<CallInst>(AssumeVH);
15110     if (!DT.dominates(AssumeI, Header))
15111       continue;
15112     Terms.emplace_back(AssumeI->getOperand(0), true);
15113   }
15114 
15115   // Second, collect conditions from dominating branches. Starting at the loop
15116   // predecessor, climb up the predecessor chain, as long as there are
15117   // predecessors that can be found that have unique successors leading to the
15118   // original header.
15119   // TODO: share this logic with isLoopEntryGuardedByCond.
15120   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15121            L->getLoopPredecessor(), Header);
15122        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15123 
15124     const BranchInst *LoopEntryPredicate =
15125         dyn_cast<BranchInst>(Pair.first->getTerminator());
15126     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15127       continue;
15128 
15129     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15130                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15131   }
15132 
15133   // Now apply the information from the collected conditions to RewriteMap.
15134   // Conditions are processed in reverse order, so the earliest conditions is
15135   // processed first. This ensures the SCEVs with the shortest dependency chains
15136   // are constructed first.
15137   DenseMap<const SCEV *, const SCEV *> RewriteMap;
15138   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15139     SmallVector<Value *, 8> Worklist;
15140     SmallPtrSet<Value *, 8> Visited;
15141     Worklist.push_back(Term);
15142     while (!Worklist.empty()) {
15143       Value *Cond = Worklist.pop_back_val();
15144       if (!Visited.insert(Cond).second)
15145         continue;
15146 
15147       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15148         auto Predicate =
15149             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15150         const auto *LHS = getSCEV(Cmp->getOperand(0));
15151         const auto *RHS = getSCEV(Cmp->getOperand(1));
15152         CollectCondition(Predicate, LHS, RHS, RewriteMap);
15153         continue;
15154       }
15155 
15156       Value *L, *R;
15157       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15158                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15159         Worklist.push_back(L);
15160         Worklist.push_back(R);
15161       }
15162     }
15163   }
15164 
15165   if (RewriteMap.empty())
15166     return Expr;
15167 
15168   // Now that all rewrite information is collect, rewrite the collected
15169   // expressions with the information in the map. This applies information to
15170   // sub-expressions.
15171   if (ExprsToRewrite.size() > 1) {
15172     for (const SCEV *Expr : ExprsToRewrite) {
15173       const SCEV *RewriteTo = RewriteMap[Expr];
15174       RewriteMap.erase(Expr);
15175       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15176       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
15177     }
15178   }
15179 
15180   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15181   return Rewriter.visit(Expr);
15182 }
15183