xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <climits>
124 #include <cstdint>
125 #include <cstdlib>
126 #include <map>
127 #include <memory>
128 #include <numeric>
129 #include <optional>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 using namespace PatternMatch;
136 
137 #define DEBUG_TYPE "scalar-evolution"
138 
139 STATISTIC(NumExitCountsComputed,
140           "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed,
142           "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed,
144           "Number of loops with trip counts computed by force");
145 
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV = true;
148 #else
149 bool llvm::VerifySCEV = false;
150 #endif
151 
152 static cl::opt<unsigned>
153     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154                             cl::desc("Maximum number of iterations SCEV will "
155                                      "symbolically execute a constant "
156                                      "derived loop"),
157                             cl::init(100));
158 
159 static cl::opt<bool, true> VerifySCEVOpt(
160     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 
166 static cl::opt<bool> VerifyIR(
167     "scev-verify-ir", cl::Hidden,
168     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169     cl::init(false));
170 
171 static cl::opt<unsigned> MulOpsInlineThreshold(
172     "scev-mulops-inline-threshold", cl::Hidden,
173     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174     cl::init(32));
175 
176 static cl::opt<unsigned> AddOpsInlineThreshold(
177     "scev-addops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining addition operands into a SCEV"),
179     cl::init(500));
180 
181 static cl::opt<unsigned> MaxSCEVCompareDepth(
182     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184     cl::init(32));
185 
186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189     cl::init(2));
190 
191 static cl::opt<unsigned> MaxValueCompareDepth(
192     "scalar-evolution-max-value-compare-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive value complexity comparisons"),
194     cl::init(2));
195 
196 static cl::opt<unsigned>
197     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198                   cl::desc("Maximum depth of recursive arithmetics"),
199                   cl::init(32));
200 
201 static cl::opt<unsigned> MaxConstantEvolvingDepth(
202     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 
205 static cl::opt<unsigned>
206     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208                  cl::init(8));
209 
210 static cl::opt<unsigned>
211     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212                   cl::desc("Max coefficients in AddRec during evolving"),
213                   cl::init(8));
214 
215 static cl::opt<unsigned>
216     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217                   cl::desc("Size of the expression which is considered huge"),
218                   cl::init(4096));
219 
220 static cl::opt<unsigned> RangeIterThreshold(
221     "scev-range-iter-threshold", cl::Hidden,
222     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223     cl::init(32));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239              "Phi strongly connected components"),
240     cl::init(8));
241 
242 static cl::opt<bool>
243     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244                             cl::desc("Handle <= and >= in finite loops"),
245                             cl::init(true));
246 
247 static cl::opt<bool> UseContextForNoWrapFlagInference(
248     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249     cl::desc("Infer nuw/nsw flags using context where suitable"),
250     cl::init(true));
251 
252 //===----------------------------------------------------------------------===//
253 //                           SCEV class definitions
254 //===----------------------------------------------------------------------===//
255 
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
258 //
259 
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261 LLVM_DUMP_METHOD void SCEV::dump() const {
262   print(dbgs());
263   dbgs() << '\n';
264 }
265 #endif
266 
267 void SCEV::print(raw_ostream &OS) const {
268   switch (getSCEVType()) {
269   case scConstant:
270     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
271     return;
272   case scVScale:
273     OS << "vscale";
274     return;
275   case scPtrToInt: {
276     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
277     const SCEV *Op = PtrToInt->getOperand();
278     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279        << *PtrToInt->getType() << ")";
280     return;
281   }
282   case scTruncate: {
283     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
284     const SCEV *Op = Trunc->getOperand();
285     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286        << *Trunc->getType() << ")";
287     return;
288   }
289   case scZeroExtend: {
290     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
291     const SCEV *Op = ZExt->getOperand();
292     OS << "(zext " << *Op->getType() << " " << *Op << " to "
293        << *ZExt->getType() << ")";
294     return;
295   }
296   case scSignExtend: {
297     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
298     const SCEV *Op = SExt->getOperand();
299     OS << "(sext " << *Op->getType() << " " << *Op << " to "
300        << *SExt->getType() << ")";
301     return;
302   }
303   case scAddRecExpr: {
304     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
305     OS << "{" << *AR->getOperand(0);
306     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307       OS << ",+," << *AR->getOperand(i);
308     OS << "}<";
309     if (AR->hasNoUnsignedWrap())
310       OS << "nuw><";
311     if (AR->hasNoSignedWrap())
312       OS << "nsw><";
313     if (AR->hasNoSelfWrap() &&
314         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
315       OS << "nw><";
316     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
317     OS << ">";
318     return;
319   }
320   case scAddExpr:
321   case scMulExpr:
322   case scUMaxExpr:
323   case scSMaxExpr:
324   case scUMinExpr:
325   case scSMinExpr:
326   case scSequentialUMinExpr: {
327     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
328     const char *OpStr = nullptr;
329     switch (NAry->getSCEVType()) {
330     case scAddExpr: OpStr = " + "; break;
331     case scMulExpr: OpStr = " * "; break;
332     case scUMaxExpr: OpStr = " umax "; break;
333     case scSMaxExpr: OpStr = " smax "; break;
334     case scUMinExpr:
335       OpStr = " umin ";
336       break;
337     case scSMinExpr:
338       OpStr = " smin ";
339       break;
340     case scSequentialUMinExpr:
341       OpStr = " umin_seq ";
342       break;
343     default:
344       llvm_unreachable("There are no other nary expression types.");
345     }
346     OS << "(";
347     ListSeparator LS(OpStr);
348     for (const SCEV *Op : NAry->operands())
349       OS << LS << *Op;
350     OS << ")";
351     switch (NAry->getSCEVType()) {
352     case scAddExpr:
353     case scMulExpr:
354       if (NAry->hasNoUnsignedWrap())
355         OS << "<nuw>";
356       if (NAry->hasNoSignedWrap())
357         OS << "<nsw>";
358       break;
359     default:
360       // Nothing to print for other nary expressions.
361       break;
362     }
363     return;
364   }
365   case scUDivExpr: {
366     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
367     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368     return;
369   }
370   case scUnknown:
371     cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
372     return;
373   case scCouldNotCompute:
374     OS << "***COULDNOTCOMPUTE***";
375     return;
376   }
377   llvm_unreachable("Unknown SCEV kind!");
378 }
379 
380 Type *SCEV::getType() const {
381   switch (getSCEVType()) {
382   case scConstant:
383     return cast<SCEVConstant>(this)->getType();
384   case scVScale:
385     return cast<SCEVVScale>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392     return cast<SCEVAddRecExpr>(this)->getType();
393   case scMulExpr:
394     return cast<SCEVMulExpr>(this)->getType();
395   case scUMaxExpr:
396   case scSMaxExpr:
397   case scUMinExpr:
398   case scSMinExpr:
399     return cast<SCEVMinMaxExpr>(this)->getType();
400   case scSequentialUMinExpr:
401     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
402   case scAddExpr:
403     return cast<SCEVAddExpr>(this)->getType();
404   case scUDivExpr:
405     return cast<SCEVUDivExpr>(this)->getType();
406   case scUnknown:
407     return cast<SCEVUnknown>(this)->getType();
408   case scCouldNotCompute:
409     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
410   }
411   llvm_unreachable("Unknown SCEV kind!");
412 }
413 
414 ArrayRef<const SCEV *> SCEV::operands() const {
415   switch (getSCEVType()) {
416   case scConstant:
417   case scVScale:
418   case scUnknown:
419     return {};
420   case scPtrToInt:
421   case scTruncate:
422   case scZeroExtend:
423   case scSignExtend:
424     return cast<SCEVCastExpr>(this)->operands();
425   case scAddRecExpr:
426   case scAddExpr:
427   case scMulExpr:
428   case scUMaxExpr:
429   case scSMaxExpr:
430   case scUMinExpr:
431   case scSMinExpr:
432   case scSequentialUMinExpr:
433     return cast<SCEVNAryExpr>(this)->operands();
434   case scUDivExpr:
435     return cast<SCEVUDivExpr>(this)->operands();
436   case scCouldNotCompute:
437     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
438   }
439   llvm_unreachable("Unknown SCEV kind!");
440 }
441 
442 bool SCEV::isZero() const {
443   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
444     return SC->getValue()->isZero();
445   return false;
446 }
447 
448 bool SCEV::isOne() const {
449   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
450     return SC->getValue()->isOne();
451   return false;
452 }
453 
454 bool SCEV::isAllOnesValue() const {
455   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
456     return SC->getValue()->isMinusOne();
457   return false;
458 }
459 
460 bool SCEV::isNonConstantNegative() const {
461   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
462   if (!Mul) return false;
463 
464   // If there is a constant factor, it will be first.
465   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
466   if (!SC) return false;
467 
468   // Return true if the value is negative, this matches things like (-42 * V).
469   return SC->getAPInt().isNegative();
470 }
471 
472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
474 
475 bool SCEVCouldNotCompute::classof(const SCEV *S) {
476   return S->getSCEVType() == scCouldNotCompute;
477 }
478 
479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480   FoldingSetNodeID ID;
481   ID.AddInteger(scConstant);
482   ID.AddPointer(V);
483   void *IP = nullptr;
484   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
485   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
486   UniqueSCEVs.InsertNode(S, IP);
487   return S;
488 }
489 
490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491   return getConstant(ConstantInt::get(getContext(), Val));
492 }
493 
494 const SCEV *
495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
497   return getConstant(ConstantInt::get(ITy, V, isSigned));
498 }
499 
500 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501   FoldingSetNodeID ID;
502   ID.AddInteger(scVScale);
503   ID.AddPointer(Ty);
504   void *IP = nullptr;
505   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
506     return S;
507   SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
508   UniqueSCEVs.InsertNode(S, IP);
509   return S;
510 }
511 
512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
513                            const SCEV *op, Type *ty)
514     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
515 
516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
517                                    Type *ITy)
518     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
519   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
520          "Must be a non-bit-width-changing pointer-to-integer cast!");
521 }
522 
523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
524                                            SCEVTypes SCEVTy, const SCEV *op,
525                                            Type *ty)
526     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
527 
528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
529                                    Type *ty)
530     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
531   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
532          "Cannot truncate non-integer value!");
533 }
534 
535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
536                                        const SCEV *op, Type *ty)
537     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
538   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539          "Cannot zero extend non-integer value!");
540 }
541 
542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
543                                        const SCEV *op, Type *ty)
544     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
545   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546          "Cannot sign extend non-integer value!");
547 }
548 
549 void SCEVUnknown::deleted() {
550   // Clear this SCEVUnknown from various maps.
551   SE->forgetMemoizedResults(this);
552 
553   // Remove this SCEVUnknown from the uniquing map.
554   SE->UniqueSCEVs.RemoveNode(this);
555 
556   // Release the value.
557   setValPtr(nullptr);
558 }
559 
560 void SCEVUnknown::allUsesReplacedWith(Value *New) {
561   // Clear this SCEVUnknown from various maps.
562   SE->forgetMemoizedResults(this);
563 
564   // Remove this SCEVUnknown from the uniquing map.
565   SE->UniqueSCEVs.RemoveNode(this);
566 
567   // Replace the value pointer in case someone is still using this SCEVUnknown.
568   setValPtr(New);
569 }
570 
571 //===----------------------------------------------------------------------===//
572 //                               SCEV Utilities
573 //===----------------------------------------------------------------------===//
574 
575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
577 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
578 /// have been previously deemed to be "equally complex" by this routine.  It is
579 /// intended to avoid exponential time complexity in cases like:
580 ///
581 ///   %a = f(%x, %y)
582 ///   %b = f(%a, %a)
583 ///   %c = f(%b, %b)
584 ///
585 ///   %d = f(%x, %y)
586 ///   %e = f(%d, %d)
587 ///   %f = f(%e, %e)
588 ///
589 ///   CompareValueComplexity(%f, %c)
590 ///
591 /// Since we do not continue running this routine on expression trees once we
592 /// have seen unequal values, there is no need to track them in the cache.
593 static int
594 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
595                        const LoopInfo *const LI, Value *LV, Value *RV,
596                        unsigned Depth) {
597   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
598     return 0;
599 
600   // Order pointer values after integer values. This helps SCEVExpander form
601   // GEPs.
602   bool LIsPointer = LV->getType()->isPointerTy(),
603        RIsPointer = RV->getType()->isPointerTy();
604   if (LIsPointer != RIsPointer)
605     return (int)LIsPointer - (int)RIsPointer;
606 
607   // Compare getValueID values.
608   unsigned LID = LV->getValueID(), RID = RV->getValueID();
609   if (LID != RID)
610     return (int)LID - (int)RID;
611 
612   // Sort arguments by their position.
613   if (const auto *LA = dyn_cast<Argument>(LV)) {
614     const auto *RA = cast<Argument>(RV);
615     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
616     return (int)LArgNo - (int)RArgNo;
617   }
618 
619   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
620     const auto *RGV = cast<GlobalValue>(RV);
621 
622     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
623       auto LT = GV->getLinkage();
624       return !(GlobalValue::isPrivateLinkage(LT) ||
625                GlobalValue::isInternalLinkage(LT));
626     };
627 
628     // Use the names to distinguish the two values, but only if the
629     // names are semantically important.
630     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
631       return LGV->getName().compare(RGV->getName());
632   }
633 
634   // For instructions, compare their loop depth, and their operand count.  This
635   // is pretty loose.
636   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
637     const auto *RInst = cast<Instruction>(RV);
638 
639     // Compare loop depths.
640     const BasicBlock *LParent = LInst->getParent(),
641                      *RParent = RInst->getParent();
642     if (LParent != RParent) {
643       unsigned LDepth = LI->getLoopDepth(LParent),
644                RDepth = LI->getLoopDepth(RParent);
645       if (LDepth != RDepth)
646         return (int)LDepth - (int)RDepth;
647     }
648 
649     // Compare the number of operands.
650     unsigned LNumOps = LInst->getNumOperands(),
651              RNumOps = RInst->getNumOperands();
652     if (LNumOps != RNumOps)
653       return (int)LNumOps - (int)RNumOps;
654 
655     for (unsigned Idx : seq(LNumOps)) {
656       int Result =
657           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
658                                  RInst->getOperand(Idx), Depth + 1);
659       if (Result != 0)
660         return Result;
661     }
662   }
663 
664   EqCacheValue.unionSets(LV, RV);
665   return 0;
666 }
667 
668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
669 // than RHS, respectively. A three-way result allows recursive comparisons to be
670 // more efficient.
671 // If the max analysis depth was reached, return std::nullopt, assuming we do
672 // not know if they are equivalent for sure.
673 static std::optional<int>
674 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
675                       EquivalenceClasses<const Value *> &EqCacheValue,
676                       const LoopInfo *const LI, const SCEV *LHS,
677                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
678   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
679   if (LHS == RHS)
680     return 0;
681 
682   // Primarily, sort the SCEVs by their getSCEVType().
683   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
684   if (LType != RType)
685     return (int)LType - (int)RType;
686 
687   if (EqCacheSCEV.isEquivalent(LHS, RHS))
688     return 0;
689 
690   if (Depth > MaxSCEVCompareDepth)
691     return std::nullopt;
692 
693   // Aside from the getSCEVType() ordering, the particular ordering
694   // isn't very important except that it's beneficial to be consistent,
695   // so that (a + b) and (b + a) don't end up as different expressions.
696   switch (LType) {
697   case scUnknown: {
698     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
699     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
700 
701     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
702                                    RU->getValue(), Depth + 1);
703     if (X == 0)
704       EqCacheSCEV.unionSets(LHS, RHS);
705     return X;
706   }
707 
708   case scConstant: {
709     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
710     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
711 
712     // Compare constant values.
713     const APInt &LA = LC->getAPInt();
714     const APInt &RA = RC->getAPInt();
715     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
716     if (LBitWidth != RBitWidth)
717       return (int)LBitWidth - (int)RBitWidth;
718     return LA.ult(RA) ? -1 : 1;
719   }
720 
721   case scVScale: {
722     const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
723     const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
724     return LTy->getBitWidth() - RTy->getBitWidth();
725   }
726 
727   case scAddRecExpr: {
728     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
729     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
730 
731     // There is always a dominance between two recs that are used by one SCEV,
732     // so we can safely sort recs by loop header dominance. We require such
733     // order in getAddExpr.
734     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
735     if (LLoop != RLoop) {
736       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
737       assert(LHead != RHead && "Two loops share the same header?");
738       if (DT.dominates(LHead, RHead))
739         return 1;
740       assert(DT.dominates(RHead, LHead) &&
741              "No dominance between recurrences used by one SCEV?");
742       return -1;
743     }
744 
745     [[fallthrough]];
746   }
747 
748   case scTruncate:
749   case scZeroExtend:
750   case scSignExtend:
751   case scPtrToInt:
752   case scAddExpr:
753   case scMulExpr:
754   case scUDivExpr:
755   case scSMaxExpr:
756   case scUMaxExpr:
757   case scSMinExpr:
758   case scUMinExpr:
759   case scSequentialUMinExpr: {
760     ArrayRef<const SCEV *> LOps = LHS->operands();
761     ArrayRef<const SCEV *> ROps = RHS->operands();
762 
763     // Lexicographically compare n-ary-like expressions.
764     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
765     if (LNumOps != RNumOps)
766       return (int)LNumOps - (int)RNumOps;
767 
768     for (unsigned i = 0; i != LNumOps; ++i) {
769       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
770                                      ROps[i], DT, Depth + 1);
771       if (X != 0)
772         return X;
773     }
774     EqCacheSCEV.unionSets(LHS, RHS);
775     return 0;
776   }
777 
778   case scCouldNotCompute:
779     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
780   }
781   llvm_unreachable("Unknown SCEV kind!");
782 }
783 
784 /// Given a list of SCEV objects, order them by their complexity, and group
785 /// objects of the same complexity together by value.  When this routine is
786 /// finished, we know that any duplicates in the vector are consecutive and that
787 /// complexity is monotonically increasing.
788 ///
789 /// Note that we go take special precautions to ensure that we get deterministic
790 /// results from this routine.  In other words, we don't want the results of
791 /// this to depend on where the addresses of various SCEV objects happened to
792 /// land in memory.
793 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
794                               LoopInfo *LI, DominatorTree &DT) {
795   if (Ops.size() < 2) return;  // Noop
796 
797   EquivalenceClasses<const SCEV *> EqCacheSCEV;
798   EquivalenceClasses<const Value *> EqCacheValue;
799 
800   // Whether LHS has provably less complexity than RHS.
801   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
802     auto Complexity =
803         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
804     return Complexity && *Complexity < 0;
805   };
806   if (Ops.size() == 2) {
807     // This is the common case, which also happens to be trivially simple.
808     // Special case it.
809     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
810     if (IsLessComplex(RHS, LHS))
811       std::swap(LHS, RHS);
812     return;
813   }
814 
815   // Do the rough sort by complexity.
816   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
817     return IsLessComplex(LHS, RHS);
818   });
819 
820   // Now that we are sorted by complexity, group elements of the same
821   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
822   // be extremely short in practice.  Note that we take this approach because we
823   // do not want to depend on the addresses of the objects we are grouping.
824   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
825     const SCEV *S = Ops[i];
826     unsigned Complexity = S->getSCEVType();
827 
828     // If there are any objects of the same complexity and same value as this
829     // one, group them.
830     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
831       if (Ops[j] == S) { // Found a duplicate.
832         // Move it to immediately after i'th element.
833         std::swap(Ops[i+1], Ops[j]);
834         ++i;   // no need to rescan it.
835         if (i == e-2) return;  // Done!
836       }
837     }
838   }
839 }
840 
841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
842 /// least HugeExprThreshold nodes).
843 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
844   return any_of(Ops, [](const SCEV *S) {
845     return S->getExpressionSize() >= HugeExprThreshold;
846   });
847 }
848 
849 //===----------------------------------------------------------------------===//
850 //                      Simple SCEV method implementations
851 //===----------------------------------------------------------------------===//
852 
853 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
854 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
855                                        ScalarEvolution &SE,
856                                        Type *ResultTy) {
857   // Handle the simplest case efficiently.
858   if (K == 1)
859     return SE.getTruncateOrZeroExtend(It, ResultTy);
860 
861   // We are using the following formula for BC(It, K):
862   //
863   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
864   //
865   // Suppose, W is the bitwidth of the return value.  We must be prepared for
866   // overflow.  Hence, we must assure that the result of our computation is
867   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
868   // safe in modular arithmetic.
869   //
870   // However, this code doesn't use exactly that formula; the formula it uses
871   // is something like the following, where T is the number of factors of 2 in
872   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
873   // exponentiation:
874   //
875   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
876   //
877   // This formula is trivially equivalent to the previous formula.  However,
878   // this formula can be implemented much more efficiently.  The trick is that
879   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
880   // arithmetic.  To do exact division in modular arithmetic, all we have
881   // to do is multiply by the inverse.  Therefore, this step can be done at
882   // width W.
883   //
884   // The next issue is how to safely do the division by 2^T.  The way this
885   // is done is by doing the multiplication step at a width of at least W + T
886   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
887   // when we perform the division by 2^T (which is equivalent to a right shift
888   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
889   // truncated out after the division by 2^T.
890   //
891   // In comparison to just directly using the first formula, this technique
892   // is much more efficient; using the first formula requires W * K bits,
893   // but this formula less than W + K bits. Also, the first formula requires
894   // a division step, whereas this formula only requires multiplies and shifts.
895   //
896   // It doesn't matter whether the subtraction step is done in the calculation
897   // width or the input iteration count's width; if the subtraction overflows,
898   // the result must be zero anyway.  We prefer here to do it in the width of
899   // the induction variable because it helps a lot for certain cases; CodeGen
900   // isn't smart enough to ignore the overflow, which leads to much less
901   // efficient code if the width of the subtraction is wider than the native
902   // register width.
903   //
904   // (It's possible to not widen at all by pulling out factors of 2 before
905   // the multiplication; for example, K=2 can be calculated as
906   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
907   // extra arithmetic, so it's not an obvious win, and it gets
908   // much more complicated for K > 3.)
909 
910   // Protection from insane SCEVs; this bound is conservative,
911   // but it probably doesn't matter.
912   if (K > 1000)
913     return SE.getCouldNotCompute();
914 
915   unsigned W = SE.getTypeSizeInBits(ResultTy);
916 
917   // Calculate K! / 2^T and T; we divide out the factors of two before
918   // multiplying for calculating K! / 2^T to avoid overflow.
919   // Other overflow doesn't matter because we only care about the bottom
920   // W bits of the result.
921   APInt OddFactorial(W, 1);
922   unsigned T = 1;
923   for (unsigned i = 3; i <= K; ++i) {
924     APInt Mult(W, i);
925     unsigned TwoFactors = Mult.countr_zero();
926     T += TwoFactors;
927     Mult.lshrInPlace(TwoFactors);
928     OddFactorial *= Mult;
929   }
930 
931   // We need at least W + T bits for the multiplication step
932   unsigned CalculationBits = W + T;
933 
934   // Calculate 2^T, at width T+W.
935   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
936 
937   // Calculate the multiplicative inverse of K! / 2^T;
938   // this multiplication factor will perform the exact division by
939   // K! / 2^T.
940   APInt Mod = APInt::getSignedMinValue(W+1);
941   APInt MultiplyFactor = OddFactorial.zext(W+1);
942   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
943   MultiplyFactor = MultiplyFactor.trunc(W);
944 
945   // Calculate the product, at width T+W
946   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
947                                                       CalculationBits);
948   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
949   for (unsigned i = 1; i != K; ++i) {
950     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
951     Dividend = SE.getMulExpr(Dividend,
952                              SE.getTruncateOrZeroExtend(S, CalculationTy));
953   }
954 
955   // Divide by 2^T
956   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
957 
958   // Truncate the result, and divide by K! / 2^T.
959 
960   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
961                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
962 }
963 
964 /// Return the value of this chain of recurrences at the specified iteration
965 /// number.  We can evaluate this recurrence by multiplying each element in the
966 /// chain by the binomial coefficient corresponding to it.  In other words, we
967 /// can evaluate {A,+,B,+,C,+,D} as:
968 ///
969 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
970 ///
971 /// where BC(It, k) stands for binomial coefficient.
972 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
973                                                 ScalarEvolution &SE) const {
974   return evaluateAtIteration(operands(), It, SE);
975 }
976 
977 const SCEV *
978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
979                                     const SCEV *It, ScalarEvolution &SE) {
980   assert(Operands.size() > 0);
981   const SCEV *Result = Operands[0];
982   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
983     // The computation is correct in the face of overflow provided that the
984     // multiplication is performed _after_ the evaluation of the binomial
985     // coefficient.
986     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
987     if (isa<SCEVCouldNotCompute>(Coeff))
988       return Coeff;
989 
990     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
991   }
992   return Result;
993 }
994 
995 //===----------------------------------------------------------------------===//
996 //                    SCEV Expression folder implementations
997 //===----------------------------------------------------------------------===//
998 
999 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1000                                                      unsigned Depth) {
1001   assert(Depth <= 1 &&
1002          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1003 
1004   // We could be called with an integer-typed operands during SCEV rewrites.
1005   // Since the operand is an integer already, just perform zext/trunc/self cast.
1006   if (!Op->getType()->isPointerTy())
1007     return Op;
1008 
1009   // What would be an ID for such a SCEV cast expression?
1010   FoldingSetNodeID ID;
1011   ID.AddInteger(scPtrToInt);
1012   ID.AddPointer(Op);
1013 
1014   void *IP = nullptr;
1015 
1016   // Is there already an expression for such a cast?
1017   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1018     return S;
1019 
1020   // It isn't legal for optimizations to construct new ptrtoint expressions
1021   // for non-integral pointers.
1022   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1023     return getCouldNotCompute();
1024 
1025   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1026 
1027   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1028   // is sufficiently wide to represent all possible pointer values.
1029   // We could theoretically teach SCEV to truncate wider pointers, but
1030   // that isn't implemented for now.
1031   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1032       getDataLayout().getTypeSizeInBits(IntPtrTy))
1033     return getCouldNotCompute();
1034 
1035   // If not, is this expression something we can't reduce any further?
1036   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1037     // Perform some basic constant folding. If the operand of the ptr2int cast
1038     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1039     // left as-is), but produce a zero constant.
1040     // NOTE: We could handle a more general case, but lack motivational cases.
1041     if (isa<ConstantPointerNull>(U->getValue()))
1042       return getZero(IntPtrTy);
1043 
1044     // Create an explicit cast node.
1045     // We can reuse the existing insert position since if we get here,
1046     // we won't have made any changes which would invalidate it.
1047     SCEV *S = new (SCEVAllocator)
1048         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1049     UniqueSCEVs.InsertNode(S, IP);
1050     registerUser(S, Op);
1051     return S;
1052   }
1053 
1054   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1055                        "non-SCEVUnknown's.");
1056 
1057   // Otherwise, we've got some expression that is more complex than just a
1058   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1059   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1060   // only, and the expressions must otherwise be integer-typed.
1061   // So sink the cast down to the SCEVUnknown's.
1062 
1063   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1064   /// which computes a pointer-typed value, and rewrites the whole expression
1065   /// tree so that *all* the computations are done on integers, and the only
1066   /// pointer-typed operands in the expression are SCEVUnknown.
1067   class SCEVPtrToIntSinkingRewriter
1068       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1069     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1070 
1071   public:
1072     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1073 
1074     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1075       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1076       return Rewriter.visit(Scev);
1077     }
1078 
1079     const SCEV *visit(const SCEV *S) {
1080       Type *STy = S->getType();
1081       // If the expression is not pointer-typed, just keep it as-is.
1082       if (!STy->isPointerTy())
1083         return S;
1084       // Else, recursively sink the cast down into it.
1085       return Base::visit(S);
1086     }
1087 
1088     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1089       SmallVector<const SCEV *, 2> Operands;
1090       bool Changed = false;
1091       for (const auto *Op : Expr->operands()) {
1092         Operands.push_back(visit(Op));
1093         Changed |= Op != Operands.back();
1094       }
1095       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1096     }
1097 
1098     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1099       SmallVector<const SCEV *, 2> Operands;
1100       bool Changed = false;
1101       for (const auto *Op : Expr->operands()) {
1102         Operands.push_back(visit(Op));
1103         Changed |= Op != Operands.back();
1104       }
1105       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1106     }
1107 
1108     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1109       assert(Expr->getType()->isPointerTy() &&
1110              "Should only reach pointer-typed SCEVUnknown's.");
1111       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1112     }
1113   };
1114 
1115   // And actually perform the cast sinking.
1116   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1117   assert(IntOp->getType()->isIntegerTy() &&
1118          "We must have succeeded in sinking the cast, "
1119          "and ending up with an integer-typed expression!");
1120   return IntOp;
1121 }
1122 
1123 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1124   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1125 
1126   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1127   if (isa<SCEVCouldNotCompute>(IntOp))
1128     return IntOp;
1129 
1130   return getTruncateOrZeroExtend(IntOp, Ty);
1131 }
1132 
1133 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1134                                              unsigned Depth) {
1135   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1136          "This is not a truncating conversion!");
1137   assert(isSCEVable(Ty) &&
1138          "This is not a conversion to a SCEVable type!");
1139   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1140   Ty = getEffectiveSCEVType(Ty);
1141 
1142   FoldingSetNodeID ID;
1143   ID.AddInteger(scTruncate);
1144   ID.AddPointer(Op);
1145   ID.AddPointer(Ty);
1146   void *IP = nullptr;
1147   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1148 
1149   // Fold if the operand is constant.
1150   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1151     return getConstant(
1152       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1153 
1154   // trunc(trunc(x)) --> trunc(x)
1155   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1156     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1157 
1158   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1159   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1160     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1161 
1162   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1163   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1164     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1165 
1166   if (Depth > MaxCastDepth) {
1167     SCEV *S =
1168         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1169     UniqueSCEVs.InsertNode(S, IP);
1170     registerUser(S, Op);
1171     return S;
1172   }
1173 
1174   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1175   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1176   // if after transforming we have at most one truncate, not counting truncates
1177   // that replace other casts.
1178   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1179     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1180     SmallVector<const SCEV *, 4> Operands;
1181     unsigned numTruncs = 0;
1182     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1183          ++i) {
1184       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1185       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1186           isa<SCEVTruncateExpr>(S))
1187         numTruncs++;
1188       Operands.push_back(S);
1189     }
1190     if (numTruncs < 2) {
1191       if (isa<SCEVAddExpr>(Op))
1192         return getAddExpr(Operands);
1193       if (isa<SCEVMulExpr>(Op))
1194         return getMulExpr(Operands);
1195       llvm_unreachable("Unexpected SCEV type for Op.");
1196     }
1197     // Although we checked in the beginning that ID is not in the cache, it is
1198     // possible that during recursion and different modification ID was inserted
1199     // into the cache. So if we find it, just return it.
1200     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1201       return S;
1202   }
1203 
1204   // If the input value is a chrec scev, truncate the chrec's operands.
1205   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1206     SmallVector<const SCEV *, 4> Operands;
1207     for (const SCEV *Op : AddRec->operands())
1208       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1209     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1210   }
1211 
1212   // Return zero if truncating to known zeros.
1213   uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1214   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1215     return getZero(Ty);
1216 
1217   // The cast wasn't folded; create an explicit cast node. We can reuse
1218   // the existing insert position since if we get here, we won't have
1219   // made any changes which would invalidate it.
1220   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1221                                                  Op, Ty);
1222   UniqueSCEVs.InsertNode(S, IP);
1223   registerUser(S, Op);
1224   return S;
1225 }
1226 
1227 // Get the limit of a recurrence such that incrementing by Step cannot cause
1228 // signed overflow as long as the value of the recurrence within the
1229 // loop does not exceed this limit before incrementing.
1230 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1231                                                  ICmpInst::Predicate *Pred,
1232                                                  ScalarEvolution *SE) {
1233   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1234   if (SE->isKnownPositive(Step)) {
1235     *Pred = ICmpInst::ICMP_SLT;
1236     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1237                            SE->getSignedRangeMax(Step));
1238   }
1239   if (SE->isKnownNegative(Step)) {
1240     *Pred = ICmpInst::ICMP_SGT;
1241     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1242                            SE->getSignedRangeMin(Step));
1243   }
1244   return nullptr;
1245 }
1246 
1247 // Get the limit of a recurrence such that incrementing by Step cannot cause
1248 // unsigned overflow as long as the value of the recurrence within the loop does
1249 // not exceed this limit before incrementing.
1250 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1251                                                    ICmpInst::Predicate *Pred,
1252                                                    ScalarEvolution *SE) {
1253   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1254   *Pred = ICmpInst::ICMP_ULT;
1255 
1256   return SE->getConstant(APInt::getMinValue(BitWidth) -
1257                          SE->getUnsignedRangeMax(Step));
1258 }
1259 
1260 namespace {
1261 
1262 struct ExtendOpTraitsBase {
1263   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1264                                                           unsigned);
1265 };
1266 
1267 // Used to make code generic over signed and unsigned overflow.
1268 template <typename ExtendOp> struct ExtendOpTraits {
1269   // Members present:
1270   //
1271   // static const SCEV::NoWrapFlags WrapType;
1272   //
1273   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1274   //
1275   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1276   //                                           ICmpInst::Predicate *Pred,
1277   //                                           ScalarEvolution *SE);
1278 };
1279 
1280 template <>
1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1282   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1283 
1284   static const GetExtendExprTy GetExtendExpr;
1285 
1286   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1287                                              ICmpInst::Predicate *Pred,
1288                                              ScalarEvolution *SE) {
1289     return getSignedOverflowLimitForStep(Step, Pred, SE);
1290   }
1291 };
1292 
1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1294     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1295 
1296 template <>
1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1298   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1299 
1300   static const GetExtendExprTy GetExtendExpr;
1301 
1302   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1303                                              ICmpInst::Predicate *Pred,
1304                                              ScalarEvolution *SE) {
1305     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1306   }
1307 };
1308 
1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1310     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1311 
1312 } // end anonymous namespace
1313 
1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1319 // expression "Step + sext/zext(PreIncAR)" is congruent with
1320 // "sext/zext(PostIncAR)"
1321 template <typename ExtendOpTy>
1322 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1323                                         ScalarEvolution *SE, unsigned Depth) {
1324   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1325   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1326 
1327   const Loop *L = AR->getLoop();
1328   const SCEV *Start = AR->getStart();
1329   const SCEV *Step = AR->getStepRecurrence(*SE);
1330 
1331   // Check for a simple looking step prior to loop entry.
1332   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1333   if (!SA)
1334     return nullptr;
1335 
1336   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1337   // subtraction is expensive. For this purpose, perform a quick and dirty
1338   // difference, by checking for Step in the operand list. Note, that
1339   // SA might have repeated ops, like %a + %a + ..., so only remove one.
1340   SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1341   for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1342     if (*It == Step) {
1343       DiffOps.erase(It);
1344       break;
1345     }
1346 
1347   if (DiffOps.size() == SA->getNumOperands())
1348     return nullptr;
1349 
1350   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1351   // `Step`:
1352 
1353   // 1. NSW/NUW flags on the step increment.
1354   auto PreStartFlags =
1355     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1356   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1357   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1358       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1359 
1360   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1361   // "S+X does not sign/unsign-overflow".
1362   //
1363 
1364   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1365   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1366       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1367     return PreStart;
1368 
1369   // 2. Direct overflow check on the step operation's expression.
1370   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1371   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1372   const SCEV *OperandExtendedStart =
1373       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1374                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1375   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1376     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1377       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1378       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1379       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1380       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1381     }
1382     return PreStart;
1383   }
1384 
1385   // 3. Loop precondition.
1386   ICmpInst::Predicate Pred;
1387   const SCEV *OverflowLimit =
1388       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1389 
1390   if (OverflowLimit &&
1391       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1392     return PreStart;
1393 
1394   return nullptr;
1395 }
1396 
1397 // Get the normalized zero or sign extended expression for this AddRec's Start.
1398 template <typename ExtendOpTy>
1399 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1400                                         ScalarEvolution *SE,
1401                                         unsigned Depth) {
1402   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1403 
1404   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1405   if (!PreStart)
1406     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1407 
1408   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1409                                              Depth),
1410                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1411 }
1412 
1413 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1414 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1415 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1416 //
1417 // Formally:
1418 //
1419 //     {S,+,X} == {S-T,+,X} + T
1420 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1421 //
1422 // If ({S-T,+,X} + T) does not overflow  ... (1)
1423 //
1424 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1425 //
1426 // If {S-T,+,X} does not overflow  ... (2)
1427 //
1428 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1429 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1430 //
1431 // If (S-T)+T does not overflow  ... (3)
1432 //
1433 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1434 //      == {Ext(S),+,Ext(X)} == LHS
1435 //
1436 // Thus, if (1), (2) and (3) are true for some T, then
1437 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1438 //
1439 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1440 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1441 // to check for (1) and (2).
1442 //
1443 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1444 // is `Delta` (defined below).
1445 template <typename ExtendOpTy>
1446 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1447                                                 const SCEV *Step,
1448                                                 const Loop *L) {
1449   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1450 
1451   // We restrict `Start` to a constant to prevent SCEV from spending too much
1452   // time here.  It is correct (but more expensive) to continue with a
1453   // non-constant `Start` and do a general SCEV subtraction to compute
1454   // `PreStart` below.
1455   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1456   if (!StartC)
1457     return false;
1458 
1459   APInt StartAI = StartC->getAPInt();
1460 
1461   for (unsigned Delta : {-2, -1, 1, 2}) {
1462     const SCEV *PreStart = getConstant(StartAI - Delta);
1463 
1464     FoldingSetNodeID ID;
1465     ID.AddInteger(scAddRecExpr);
1466     ID.AddPointer(PreStart);
1467     ID.AddPointer(Step);
1468     ID.AddPointer(L);
1469     void *IP = nullptr;
1470     const auto *PreAR =
1471       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1472 
1473     // Give up if we don't already have the add recurrence we need because
1474     // actually constructing an add recurrence is relatively expensive.
1475     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1476       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1477       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1478       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1479           DeltaS, &Pred, this);
1480       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1481         return true;
1482     }
1483   }
1484 
1485   return false;
1486 }
1487 
1488 // Finds an integer D for an expression (C + x + y + ...) such that the top
1489 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1490 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1491 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1492 // the (C + x + y + ...) expression is \p WholeAddExpr.
1493 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1494                                             const SCEVConstant *ConstantTerm,
1495                                             const SCEVAddExpr *WholeAddExpr) {
1496   const APInt &C = ConstantTerm->getAPInt();
1497   const unsigned BitWidth = C.getBitWidth();
1498   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1499   uint32_t TZ = BitWidth;
1500   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1501     TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1502   if (TZ) {
1503     // Set D to be as many least significant bits of C as possible while still
1504     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1505     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1506   }
1507   return APInt(BitWidth, 0);
1508 }
1509 
1510 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1511 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1512 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1513 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1514 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1515                                             const APInt &ConstantStart,
1516                                             const SCEV *Step) {
1517   const unsigned BitWidth = ConstantStart.getBitWidth();
1518   const uint32_t TZ = SE.getMinTrailingZeros(Step);
1519   if (TZ)
1520     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1521                          : ConstantStart;
1522   return APInt(BitWidth, 0);
1523 }
1524 
1525 static void insertFoldCacheEntry(
1526     const ScalarEvolution::FoldID &ID, const SCEV *S,
1527     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1528     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1529         &FoldCacheUser) {
1530   auto I = FoldCache.insert({ID, S});
1531   if (!I.second) {
1532     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1533     // entry.
1534     auto &UserIDs = FoldCacheUser[I.first->second];
1535     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1536     for (unsigned I = 0; I != UserIDs.size(); ++I)
1537       if (UserIDs[I] == ID) {
1538         std::swap(UserIDs[I], UserIDs.back());
1539         break;
1540       }
1541     UserIDs.pop_back();
1542     I.first->second = S;
1543   }
1544   auto R = FoldCacheUser.insert({S, {}});
1545   R.first->second.push_back(ID);
1546 }
1547 
1548 const SCEV *
1549 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1550   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1551          "This is not an extending conversion!");
1552   assert(isSCEVable(Ty) &&
1553          "This is not a conversion to a SCEVable type!");
1554   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1555   Ty = getEffectiveSCEVType(Ty);
1556 
1557   FoldID ID(scZeroExtend, Op, Ty);
1558   auto Iter = FoldCache.find(ID);
1559   if (Iter != FoldCache.end())
1560     return Iter->second;
1561 
1562   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1563   if (!isa<SCEVZeroExtendExpr>(S))
1564     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1565   return S;
1566 }
1567 
1568 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1569                                                    unsigned Depth) {
1570   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1571          "This is not an extending conversion!");
1572   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1573   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1574 
1575   // Fold if the operand is constant.
1576   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1577     return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty)));
1578 
1579   // zext(zext(x)) --> zext(x)
1580   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1581     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1582 
1583   // Before doing any expensive analysis, check to see if we've already
1584   // computed a SCEV for this Op and Ty.
1585   FoldingSetNodeID ID;
1586   ID.AddInteger(scZeroExtend);
1587   ID.AddPointer(Op);
1588   ID.AddPointer(Ty);
1589   void *IP = nullptr;
1590   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1591   if (Depth > MaxCastDepth) {
1592     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1593                                                      Op, Ty);
1594     UniqueSCEVs.InsertNode(S, IP);
1595     registerUser(S, Op);
1596     return S;
1597   }
1598 
1599   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1600   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1601     // It's possible the bits taken off by the truncate were all zero bits. If
1602     // so, we should be able to simplify this further.
1603     const SCEV *X = ST->getOperand();
1604     ConstantRange CR = getUnsignedRange(X);
1605     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1606     unsigned NewBits = getTypeSizeInBits(Ty);
1607     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1608             CR.zextOrTrunc(NewBits)))
1609       return getTruncateOrZeroExtend(X, Ty, Depth);
1610   }
1611 
1612   // If the input value is a chrec scev, and we can prove that the value
1613   // did not overflow the old, smaller, value, we can zero extend all of the
1614   // operands (often constants).  This allows analysis of something like
1615   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1616   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1617     if (AR->isAffine()) {
1618       const SCEV *Start = AR->getStart();
1619       const SCEV *Step = AR->getStepRecurrence(*this);
1620       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1621       const Loop *L = AR->getLoop();
1622 
1623       // If we have special knowledge that this addrec won't overflow,
1624       // we don't need to do any further analysis.
1625       if (AR->hasNoUnsignedWrap()) {
1626         Start =
1627             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1628         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1629         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1630       }
1631 
1632       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1633       // Note that this serves two purposes: It filters out loops that are
1634       // simply not analyzable, and it covers the case where this code is
1635       // being called from within backedge-taken count analysis, such that
1636       // attempting to ask for the backedge-taken count would likely result
1637       // in infinite recursion. In the later case, the analysis code will
1638       // cope with a conservative value, and it will take care to purge
1639       // that value once it has finished.
1640       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1641       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1642         // Manually compute the final value for AR, checking for overflow.
1643 
1644         // Check whether the backedge-taken count can be losslessly casted to
1645         // the addrec's type. The count is always unsigned.
1646         const SCEV *CastedMaxBECount =
1647             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1648         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1649             CastedMaxBECount, MaxBECount->getType(), Depth);
1650         if (MaxBECount == RecastedMaxBECount) {
1651           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1652           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1653           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1654                                         SCEV::FlagAnyWrap, Depth + 1);
1655           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1656                                                           SCEV::FlagAnyWrap,
1657                                                           Depth + 1),
1658                                                WideTy, Depth + 1);
1659           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1660           const SCEV *WideMaxBECount =
1661             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1662           const SCEV *OperandExtendedAdd =
1663             getAddExpr(WideStart,
1664                        getMulExpr(WideMaxBECount,
1665                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1666                                   SCEV::FlagAnyWrap, Depth + 1),
1667                        SCEV::FlagAnyWrap, Depth + 1);
1668           if (ZAdd == OperandExtendedAdd) {
1669             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1670             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1671             // Return the expression with the addrec on the outside.
1672             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1673                                                              Depth + 1);
1674             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1675             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1676           }
1677           // Similar to above, only this time treat the step value as signed.
1678           // This covers loops that count down.
1679           OperandExtendedAdd =
1680             getAddExpr(WideStart,
1681                        getMulExpr(WideMaxBECount,
1682                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1683                                   SCEV::FlagAnyWrap, Depth + 1),
1684                        SCEV::FlagAnyWrap, Depth + 1);
1685           if (ZAdd == OperandExtendedAdd) {
1686             // Cache knowledge of AR NW, which is propagated to this AddRec.
1687             // Negative step causes unsigned wrap, but it still can't self-wrap.
1688             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1689             // Return the expression with the addrec on the outside.
1690             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1691                                                              Depth + 1);
1692             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1693             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1694           }
1695         }
1696       }
1697 
1698       // Normally, in the cases we can prove no-overflow via a
1699       // backedge guarding condition, we can also compute a backedge
1700       // taken count for the loop.  The exceptions are assumptions and
1701       // guards present in the loop -- SCEV is not great at exploiting
1702       // these to compute max backedge taken counts, but can still use
1703       // these to prove lack of overflow.  Use this fact to avoid
1704       // doing extra work that may not pay off.
1705       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1706           !AC.assumptions().empty()) {
1707 
1708         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1709         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1710         if (AR->hasNoUnsignedWrap()) {
1711           // Same as nuw case above - duplicated here to avoid a compile time
1712           // issue.  It's not clear that the order of checks does matter, but
1713           // it's one of two issue possible causes for a change which was
1714           // reverted.  Be conservative for the moment.
1715           Start =
1716               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1717           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1718           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1719         }
1720 
1721         // For a negative step, we can extend the operands iff doing so only
1722         // traverses values in the range zext([0,UINT_MAX]).
1723         if (isKnownNegative(Step)) {
1724           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1725                                       getSignedRangeMin(Step));
1726           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1727               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1728             // Cache knowledge of AR NW, which is propagated to this
1729             // AddRec.  Negative step causes unsigned wrap, but it
1730             // still can't self-wrap.
1731             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1732             // Return the expression with the addrec on the outside.
1733             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1734                                                              Depth + 1);
1735             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1736             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1737           }
1738         }
1739       }
1740 
1741       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1742       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1743       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1744       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1745         const APInt &C = SC->getAPInt();
1746         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1747         if (D != 0) {
1748           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1749           const SCEV *SResidual =
1750               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1751           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1752           return getAddExpr(SZExtD, SZExtR,
1753                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1754                             Depth + 1);
1755         }
1756       }
1757 
1758       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1759         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1760         Start =
1761             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1762         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1763         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1764       }
1765     }
1766 
1767   // zext(A % B) --> zext(A) % zext(B)
1768   {
1769     const SCEV *LHS;
1770     const SCEV *RHS;
1771     if (matchURem(Op, LHS, RHS))
1772       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1773                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1774   }
1775 
1776   // zext(A / B) --> zext(A) / zext(B).
1777   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1778     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1779                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1780 
1781   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1782     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1783     if (SA->hasNoUnsignedWrap()) {
1784       // If the addition does not unsign overflow then we can, by definition,
1785       // commute the zero extension with the addition operation.
1786       SmallVector<const SCEV *, 4> Ops;
1787       for (const auto *Op : SA->operands())
1788         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1789       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1790     }
1791 
1792     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1793     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1794     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1795     //
1796     // Often address arithmetics contain expressions like
1797     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1798     // This transformation is useful while proving that such expressions are
1799     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1800     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1801       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1802       if (D != 0) {
1803         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1804         const SCEV *SResidual =
1805             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1806         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1807         return getAddExpr(SZExtD, SZExtR,
1808                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1809                           Depth + 1);
1810       }
1811     }
1812   }
1813 
1814   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1815     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1816     if (SM->hasNoUnsignedWrap()) {
1817       // If the multiply does not unsign overflow then we can, by definition,
1818       // commute the zero extension with the multiply operation.
1819       SmallVector<const SCEV *, 4> Ops;
1820       for (const auto *Op : SM->operands())
1821         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1822       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1823     }
1824 
1825     // zext(2^K * (trunc X to iN)) to iM ->
1826     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1827     //
1828     // Proof:
1829     //
1830     //     zext(2^K * (trunc X to iN)) to iM
1831     //   = zext((trunc X to iN) << K) to iM
1832     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1833     //     (because shl removes the top K bits)
1834     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1835     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1836     //
1837     if (SM->getNumOperands() == 2)
1838       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1839         if (MulLHS->getAPInt().isPowerOf2())
1840           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1841             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1842                                MulLHS->getAPInt().logBase2();
1843             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1844             return getMulExpr(
1845                 getZeroExtendExpr(MulLHS, Ty),
1846                 getZeroExtendExpr(
1847                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1848                 SCEV::FlagNUW, Depth + 1);
1849           }
1850   }
1851 
1852   // zext(umin(x, y)) -> umin(zext(x), zext(y))
1853   // zext(umax(x, y)) -> umax(zext(x), zext(y))
1854   if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1855     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1856     SmallVector<const SCEV *, 4> Operands;
1857     for (auto *Operand : MinMax->operands())
1858       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1859     if (isa<SCEVUMinExpr>(MinMax))
1860       return getUMinExpr(Operands);
1861     return getUMaxExpr(Operands);
1862   }
1863 
1864   // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1865   if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1866     assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1867     SmallVector<const SCEV *, 4> Operands;
1868     for (auto *Operand : MinMax->operands())
1869       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1870     return getUMinExpr(Operands, /*Sequential*/ true);
1871   }
1872 
1873   // The cast wasn't folded; create an explicit cast node.
1874   // Recompute the insert position, as it may have been invalidated.
1875   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1876   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1877                                                    Op, Ty);
1878   UniqueSCEVs.InsertNode(S, IP);
1879   registerUser(S, Op);
1880   return S;
1881 }
1882 
1883 const SCEV *
1884 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1885   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1886          "This is not an extending conversion!");
1887   assert(isSCEVable(Ty) &&
1888          "This is not a conversion to a SCEVable type!");
1889   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1890   Ty = getEffectiveSCEVType(Ty);
1891 
1892   FoldID ID(scSignExtend, Op, Ty);
1893   auto Iter = FoldCache.find(ID);
1894   if (Iter != FoldCache.end())
1895     return Iter->second;
1896 
1897   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1898   if (!isa<SCEVSignExtendExpr>(S))
1899     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1900   return S;
1901 }
1902 
1903 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1904                                                    unsigned Depth) {
1905   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1906          "This is not an extending conversion!");
1907   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1908   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1909   Ty = getEffectiveSCEVType(Ty);
1910 
1911   // Fold if the operand is constant.
1912   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1913     return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty)));
1914 
1915   // sext(sext(x)) --> sext(x)
1916   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1917     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1918 
1919   // sext(zext(x)) --> zext(x)
1920   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1921     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1922 
1923   // Before doing any expensive analysis, check to see if we've already
1924   // computed a SCEV for this Op and Ty.
1925   FoldingSetNodeID ID;
1926   ID.AddInteger(scSignExtend);
1927   ID.AddPointer(Op);
1928   ID.AddPointer(Ty);
1929   void *IP = nullptr;
1930   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1931   // Limit recursion depth.
1932   if (Depth > MaxCastDepth) {
1933     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1934                                                      Op, Ty);
1935     UniqueSCEVs.InsertNode(S, IP);
1936     registerUser(S, Op);
1937     return S;
1938   }
1939 
1940   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1941   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1942     // It's possible the bits taken off by the truncate were all sign bits. If
1943     // so, we should be able to simplify this further.
1944     const SCEV *X = ST->getOperand();
1945     ConstantRange CR = getSignedRange(X);
1946     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1947     unsigned NewBits = getTypeSizeInBits(Ty);
1948     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1949             CR.sextOrTrunc(NewBits)))
1950       return getTruncateOrSignExtend(X, Ty, Depth);
1951   }
1952 
1953   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1954     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1955     if (SA->hasNoSignedWrap()) {
1956       // If the addition does not sign overflow then we can, by definition,
1957       // commute the sign extension with the addition operation.
1958       SmallVector<const SCEV *, 4> Ops;
1959       for (const auto *Op : SA->operands())
1960         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1961       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1962     }
1963 
1964     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1965     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1966     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1967     //
1968     // For instance, this will bring two seemingly different expressions:
1969     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1970     //         sext(6 + 20 * %x + 24 * %y)
1971     // to the same form:
1972     //     2 + sext(4 + 20 * %x + 24 * %y)
1973     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1974       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1975       if (D != 0) {
1976         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1977         const SCEV *SResidual =
1978             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1979         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1980         return getAddExpr(SSExtD, SSExtR,
1981                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1982                           Depth + 1);
1983       }
1984     }
1985   }
1986   // If the input value is a chrec scev, and we can prove that the value
1987   // did not overflow the old, smaller, value, we can sign extend all of the
1988   // operands (often constants).  This allows analysis of something like
1989   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1990   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1991     if (AR->isAffine()) {
1992       const SCEV *Start = AR->getStart();
1993       const SCEV *Step = AR->getStepRecurrence(*this);
1994       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1995       const Loop *L = AR->getLoop();
1996 
1997       // If we have special knowledge that this addrec won't overflow,
1998       // we don't need to do any further analysis.
1999       if (AR->hasNoSignedWrap()) {
2000         Start =
2001             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2002         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2003         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2004       }
2005 
2006       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2007       // Note that this serves two purposes: It filters out loops that are
2008       // simply not analyzable, and it covers the case where this code is
2009       // being called from within backedge-taken count analysis, such that
2010       // attempting to ask for the backedge-taken count would likely result
2011       // in infinite recursion. In the later case, the analysis code will
2012       // cope with a conservative value, and it will take care to purge
2013       // that value once it has finished.
2014       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2015       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2016         // Manually compute the final value for AR, checking for
2017         // overflow.
2018 
2019         // Check whether the backedge-taken count can be losslessly casted to
2020         // the addrec's type. The count is always unsigned.
2021         const SCEV *CastedMaxBECount =
2022             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2023         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2024             CastedMaxBECount, MaxBECount->getType(), Depth);
2025         if (MaxBECount == RecastedMaxBECount) {
2026           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2027           // Check whether Start+Step*MaxBECount has no signed overflow.
2028           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2029                                         SCEV::FlagAnyWrap, Depth + 1);
2030           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2031                                                           SCEV::FlagAnyWrap,
2032                                                           Depth + 1),
2033                                                WideTy, Depth + 1);
2034           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2035           const SCEV *WideMaxBECount =
2036             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2037           const SCEV *OperandExtendedAdd =
2038             getAddExpr(WideStart,
2039                        getMulExpr(WideMaxBECount,
2040                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2041                                   SCEV::FlagAnyWrap, Depth + 1),
2042                        SCEV::FlagAnyWrap, Depth + 1);
2043           if (SAdd == OperandExtendedAdd) {
2044             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2045             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2046             // Return the expression with the addrec on the outside.
2047             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2048                                                              Depth + 1);
2049             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2050             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2051           }
2052           // Similar to above, only this time treat the step value as unsigned.
2053           // This covers loops that count up with an unsigned step.
2054           OperandExtendedAdd =
2055             getAddExpr(WideStart,
2056                        getMulExpr(WideMaxBECount,
2057                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2058                                   SCEV::FlagAnyWrap, Depth + 1),
2059                        SCEV::FlagAnyWrap, Depth + 1);
2060           if (SAdd == OperandExtendedAdd) {
2061             // If AR wraps around then
2062             //
2063             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2064             // => SAdd != OperandExtendedAdd
2065             //
2066             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2067             // (SAdd == OperandExtendedAdd => AR is NW)
2068 
2069             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2070 
2071             // Return the expression with the addrec on the outside.
2072             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2073                                                              Depth + 1);
2074             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2075             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2076           }
2077         }
2078       }
2079 
2080       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2081       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2082       if (AR->hasNoSignedWrap()) {
2083         // Same as nsw case above - duplicated here to avoid a compile time
2084         // issue.  It's not clear that the order of checks does matter, but
2085         // it's one of two issue possible causes for a change which was
2086         // reverted.  Be conservative for the moment.
2087         Start =
2088             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2089         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2090         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2091       }
2092 
2093       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2094       // if D + (C - D + Step * n) could be proven to not signed wrap
2095       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2096       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2097         const APInt &C = SC->getAPInt();
2098         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2099         if (D != 0) {
2100           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2101           const SCEV *SResidual =
2102               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2103           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2104           return getAddExpr(SSExtD, SSExtR,
2105                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2106                             Depth + 1);
2107         }
2108       }
2109 
2110       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2111         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2112         Start =
2113             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2114         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2115         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2116       }
2117     }
2118 
2119   // If the input value is provably positive and we could not simplify
2120   // away the sext build a zext instead.
2121   if (isKnownNonNegative(Op))
2122     return getZeroExtendExpr(Op, Ty, Depth + 1);
2123 
2124   // sext(smin(x, y)) -> smin(sext(x), sext(y))
2125   // sext(smax(x, y)) -> smax(sext(x), sext(y))
2126   if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2127     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2128     SmallVector<const SCEV *, 4> Operands;
2129     for (auto *Operand : MinMax->operands())
2130       Operands.push_back(getSignExtendExpr(Operand, Ty));
2131     if (isa<SCEVSMinExpr>(MinMax))
2132       return getSMinExpr(Operands);
2133     return getSMaxExpr(Operands);
2134   }
2135 
2136   // The cast wasn't folded; create an explicit cast node.
2137   // Recompute the insert position, as it may have been invalidated.
2138   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2139   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2140                                                    Op, Ty);
2141   UniqueSCEVs.InsertNode(S, IP);
2142   registerUser(S, { Op });
2143   return S;
2144 }
2145 
2146 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2147                                          Type *Ty) {
2148   switch (Kind) {
2149   case scTruncate:
2150     return getTruncateExpr(Op, Ty);
2151   case scZeroExtend:
2152     return getZeroExtendExpr(Op, Ty);
2153   case scSignExtend:
2154     return getSignExtendExpr(Op, Ty);
2155   case scPtrToInt:
2156     return getPtrToIntExpr(Op, Ty);
2157   default:
2158     llvm_unreachable("Not a SCEV cast expression!");
2159   }
2160 }
2161 
2162 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2163 /// unspecified bits out to the given type.
2164 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2165                                               Type *Ty) {
2166   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2167          "This is not an extending conversion!");
2168   assert(isSCEVable(Ty) &&
2169          "This is not a conversion to a SCEVable type!");
2170   Ty = getEffectiveSCEVType(Ty);
2171 
2172   // Sign-extend negative constants.
2173   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2174     if (SC->getAPInt().isNegative())
2175       return getSignExtendExpr(Op, Ty);
2176 
2177   // Peel off a truncate cast.
2178   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2179     const SCEV *NewOp = T->getOperand();
2180     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2181       return getAnyExtendExpr(NewOp, Ty);
2182     return getTruncateOrNoop(NewOp, Ty);
2183   }
2184 
2185   // Next try a zext cast. If the cast is folded, use it.
2186   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2187   if (!isa<SCEVZeroExtendExpr>(ZExt))
2188     return ZExt;
2189 
2190   // Next try a sext cast. If the cast is folded, use it.
2191   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2192   if (!isa<SCEVSignExtendExpr>(SExt))
2193     return SExt;
2194 
2195   // Force the cast to be folded into the operands of an addrec.
2196   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2197     SmallVector<const SCEV *, 4> Ops;
2198     for (const SCEV *Op : AR->operands())
2199       Ops.push_back(getAnyExtendExpr(Op, Ty));
2200     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2201   }
2202 
2203   // If the expression is obviously signed, use the sext cast value.
2204   if (isa<SCEVSMaxExpr>(Op))
2205     return SExt;
2206 
2207   // Absent any other information, use the zext cast value.
2208   return ZExt;
2209 }
2210 
2211 /// Process the given Ops list, which is a list of operands to be added under
2212 /// the given scale, update the given map. This is a helper function for
2213 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2214 /// that would form an add expression like this:
2215 ///
2216 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2217 ///
2218 /// where A and B are constants, update the map with these values:
2219 ///
2220 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2221 ///
2222 /// and add 13 + A*B*29 to AccumulatedConstant.
2223 /// This will allow getAddRecExpr to produce this:
2224 ///
2225 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2226 ///
2227 /// This form often exposes folding opportunities that are hidden in
2228 /// the original operand list.
2229 ///
2230 /// Return true iff it appears that any interesting folding opportunities
2231 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2232 /// the common case where no interesting opportunities are present, and
2233 /// is also used as a check to avoid infinite recursion.
2234 static bool
2235 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2236                              SmallVectorImpl<const SCEV *> &NewOps,
2237                              APInt &AccumulatedConstant,
2238                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2239                              ScalarEvolution &SE) {
2240   bool Interesting = false;
2241 
2242   // Iterate over the add operands. They are sorted, with constants first.
2243   unsigned i = 0;
2244   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2245     ++i;
2246     // Pull a buried constant out to the outside.
2247     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2248       Interesting = true;
2249     AccumulatedConstant += Scale * C->getAPInt();
2250   }
2251 
2252   // Next comes everything else. We're especially interested in multiplies
2253   // here, but they're in the middle, so just visit the rest with one loop.
2254   for (; i != Ops.size(); ++i) {
2255     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2256     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2257       APInt NewScale =
2258           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2259       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2260         // A multiplication of a constant with another add; recurse.
2261         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2262         Interesting |=
2263           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2264                                        Add->operands(), NewScale, SE);
2265       } else {
2266         // A multiplication of a constant with some other value. Update
2267         // the map.
2268         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2269         const SCEV *Key = SE.getMulExpr(MulOps);
2270         auto Pair = M.insert({Key, NewScale});
2271         if (Pair.second) {
2272           NewOps.push_back(Pair.first->first);
2273         } else {
2274           Pair.first->second += NewScale;
2275           // The map already had an entry for this value, which may indicate
2276           // a folding opportunity.
2277           Interesting = true;
2278         }
2279       }
2280     } else {
2281       // An ordinary operand. Update the map.
2282       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2283           M.insert({Ops[i], Scale});
2284       if (Pair.second) {
2285         NewOps.push_back(Pair.first->first);
2286       } else {
2287         Pair.first->second += Scale;
2288         // The map already had an entry for this value, which may indicate
2289         // a folding opportunity.
2290         Interesting = true;
2291       }
2292     }
2293   }
2294 
2295   return Interesting;
2296 }
2297 
2298 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2299                                       const SCEV *LHS, const SCEV *RHS,
2300                                       const Instruction *CtxI) {
2301   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2302                                             SCEV::NoWrapFlags, unsigned);
2303   switch (BinOp) {
2304   default:
2305     llvm_unreachable("Unsupported binary op");
2306   case Instruction::Add:
2307     Operation = &ScalarEvolution::getAddExpr;
2308     break;
2309   case Instruction::Sub:
2310     Operation = &ScalarEvolution::getMinusSCEV;
2311     break;
2312   case Instruction::Mul:
2313     Operation = &ScalarEvolution::getMulExpr;
2314     break;
2315   }
2316 
2317   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2318       Signed ? &ScalarEvolution::getSignExtendExpr
2319              : &ScalarEvolution::getZeroExtendExpr;
2320 
2321   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2322   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2323   auto *WideTy =
2324       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2325 
2326   const SCEV *A = (this->*Extension)(
2327       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2328   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2329   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2330   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2331   if (A == B)
2332     return true;
2333   // Can we use context to prove the fact we need?
2334   if (!CtxI)
2335     return false;
2336   // TODO: Support mul.
2337   if (BinOp == Instruction::Mul)
2338     return false;
2339   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2340   // TODO: Lift this limitation.
2341   if (!RHSC)
2342     return false;
2343   APInt C = RHSC->getAPInt();
2344   unsigned NumBits = C.getBitWidth();
2345   bool IsSub = (BinOp == Instruction::Sub);
2346   bool IsNegativeConst = (Signed && C.isNegative());
2347   // Compute the direction and magnitude by which we need to check overflow.
2348   bool OverflowDown = IsSub ^ IsNegativeConst;
2349   APInt Magnitude = C;
2350   if (IsNegativeConst) {
2351     if (C == APInt::getSignedMinValue(NumBits))
2352       // TODO: SINT_MIN on inversion gives the same negative value, we don't
2353       // want to deal with that.
2354       return false;
2355     Magnitude = -C;
2356   }
2357 
2358   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2359   if (OverflowDown) {
2360     // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2361     APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2362                        : APInt::getMinValue(NumBits);
2363     APInt Limit = Min + Magnitude;
2364     return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2365   } else {
2366     // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2367     APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2368                        : APInt::getMaxValue(NumBits);
2369     APInt Limit = Max - Magnitude;
2370     return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2371   }
2372 }
2373 
2374 std::optional<SCEV::NoWrapFlags>
2375 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2376     const OverflowingBinaryOperator *OBO) {
2377   // It cannot be done any better.
2378   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2379     return std::nullopt;
2380 
2381   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2382 
2383   if (OBO->hasNoUnsignedWrap())
2384     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2385   if (OBO->hasNoSignedWrap())
2386     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2387 
2388   bool Deduced = false;
2389 
2390   if (OBO->getOpcode() != Instruction::Add &&
2391       OBO->getOpcode() != Instruction::Sub &&
2392       OBO->getOpcode() != Instruction::Mul)
2393     return std::nullopt;
2394 
2395   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2396   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2397 
2398   const Instruction *CtxI =
2399       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2400   if (!OBO->hasNoUnsignedWrap() &&
2401       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2402                       /* Signed */ false, LHS, RHS, CtxI)) {
2403     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2404     Deduced = true;
2405   }
2406 
2407   if (!OBO->hasNoSignedWrap() &&
2408       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2409                       /* Signed */ true, LHS, RHS, CtxI)) {
2410     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2411     Deduced = true;
2412   }
2413 
2414   if (Deduced)
2415     return Flags;
2416   return std::nullopt;
2417 }
2418 
2419 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2420 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2421 // can't-overflow flags for the operation if possible.
2422 static SCEV::NoWrapFlags
2423 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2424                       const ArrayRef<const SCEV *> Ops,
2425                       SCEV::NoWrapFlags Flags) {
2426   using namespace std::placeholders;
2427 
2428   using OBO = OverflowingBinaryOperator;
2429 
2430   bool CanAnalyze =
2431       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2432   (void)CanAnalyze;
2433   assert(CanAnalyze && "don't call from other places!");
2434 
2435   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2436   SCEV::NoWrapFlags SignOrUnsignWrap =
2437       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2438 
2439   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2440   auto IsKnownNonNegative = [&](const SCEV *S) {
2441     return SE->isKnownNonNegative(S);
2442   };
2443 
2444   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2445     Flags =
2446         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2447 
2448   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2449 
2450   if (SignOrUnsignWrap != SignOrUnsignMask &&
2451       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2452       isa<SCEVConstant>(Ops[0])) {
2453 
2454     auto Opcode = [&] {
2455       switch (Type) {
2456       case scAddExpr:
2457         return Instruction::Add;
2458       case scMulExpr:
2459         return Instruction::Mul;
2460       default:
2461         llvm_unreachable("Unexpected SCEV op.");
2462       }
2463     }();
2464 
2465     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2466 
2467     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2468     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2469       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2470           Opcode, C, OBO::NoSignedWrap);
2471       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2472         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2473     }
2474 
2475     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2476     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2477       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2478           Opcode, C, OBO::NoUnsignedWrap);
2479       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2480         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2481     }
2482   }
2483 
2484   // <0,+,nonnegative><nw> is also nuw
2485   // TODO: Add corresponding nsw case
2486   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2487       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2488       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2489     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2490 
2491   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2492   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2493       Ops.size() == 2) {
2494     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2495       if (UDiv->getOperand(1) == Ops[1])
2496         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2497     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2498       if (UDiv->getOperand(1) == Ops[0])
2499         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2500   }
2501 
2502   return Flags;
2503 }
2504 
2505 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2506   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2507 }
2508 
2509 /// Get a canonical add expression, or something simpler if possible.
2510 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2511                                         SCEV::NoWrapFlags OrigFlags,
2512                                         unsigned Depth) {
2513   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2514          "only nuw or nsw allowed");
2515   assert(!Ops.empty() && "Cannot get empty add!");
2516   if (Ops.size() == 1) return Ops[0];
2517 #ifndef NDEBUG
2518   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2519   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2520     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2521            "SCEVAddExpr operand types don't match!");
2522   unsigned NumPtrs = count_if(
2523       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2524   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2525 #endif
2526 
2527   // Sort by complexity, this groups all similar expression types together.
2528   GroupByComplexity(Ops, &LI, DT);
2529 
2530   // If there are any constants, fold them together.
2531   unsigned Idx = 0;
2532   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2533     ++Idx;
2534     assert(Idx < Ops.size());
2535     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2536       // We found two constants, fold them together!
2537       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2538       if (Ops.size() == 2) return Ops[0];
2539       Ops.erase(Ops.begin()+1);  // Erase the folded element
2540       LHSC = cast<SCEVConstant>(Ops[0]);
2541     }
2542 
2543     // If we are left with a constant zero being added, strip it off.
2544     if (LHSC->getValue()->isZero()) {
2545       Ops.erase(Ops.begin());
2546       --Idx;
2547     }
2548 
2549     if (Ops.size() == 1) return Ops[0];
2550   }
2551 
2552   // Delay expensive flag strengthening until necessary.
2553   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2554     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2555   };
2556 
2557   // Limit recursion calls depth.
2558   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2559     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2560 
2561   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2562     // Don't strengthen flags if we have no new information.
2563     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2564     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2565       Add->setNoWrapFlags(ComputeFlags(Ops));
2566     return S;
2567   }
2568 
2569   // Okay, check to see if the same value occurs in the operand list more than
2570   // once.  If so, merge them together into an multiply expression.  Since we
2571   // sorted the list, these values are required to be adjacent.
2572   Type *Ty = Ops[0]->getType();
2573   bool FoundMatch = false;
2574   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2575     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2576       // Scan ahead to count how many equal operands there are.
2577       unsigned Count = 2;
2578       while (i+Count != e && Ops[i+Count] == Ops[i])
2579         ++Count;
2580       // Merge the values into a multiply.
2581       const SCEV *Scale = getConstant(Ty, Count);
2582       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2583       if (Ops.size() == Count)
2584         return Mul;
2585       Ops[i] = Mul;
2586       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2587       --i; e -= Count - 1;
2588       FoundMatch = true;
2589     }
2590   if (FoundMatch)
2591     return getAddExpr(Ops, OrigFlags, Depth + 1);
2592 
2593   // Check for truncates. If all the operands are truncated from the same
2594   // type, see if factoring out the truncate would permit the result to be
2595   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2596   // if the contents of the resulting outer trunc fold to something simple.
2597   auto FindTruncSrcType = [&]() -> Type * {
2598     // We're ultimately looking to fold an addrec of truncs and muls of only
2599     // constants and truncs, so if we find any other types of SCEV
2600     // as operands of the addrec then we bail and return nullptr here.
2601     // Otherwise, we return the type of the operand of a trunc that we find.
2602     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2603       return T->getOperand()->getType();
2604     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2605       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2606       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2607         return T->getOperand()->getType();
2608     }
2609     return nullptr;
2610   };
2611   if (auto *SrcType = FindTruncSrcType()) {
2612     SmallVector<const SCEV *, 8> LargeOps;
2613     bool Ok = true;
2614     // Check all the operands to see if they can be represented in the
2615     // source type of the truncate.
2616     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2617       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2618         if (T->getOperand()->getType() != SrcType) {
2619           Ok = false;
2620           break;
2621         }
2622         LargeOps.push_back(T->getOperand());
2623       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2624         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2625       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2626         SmallVector<const SCEV *, 8> LargeMulOps;
2627         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2628           if (const SCEVTruncateExpr *T =
2629                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2630             if (T->getOperand()->getType() != SrcType) {
2631               Ok = false;
2632               break;
2633             }
2634             LargeMulOps.push_back(T->getOperand());
2635           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2636             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2637           } else {
2638             Ok = false;
2639             break;
2640           }
2641         }
2642         if (Ok)
2643           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2644       } else {
2645         Ok = false;
2646         break;
2647       }
2648     }
2649     if (Ok) {
2650       // Evaluate the expression in the larger type.
2651       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2652       // If it folds to something simple, use it. Otherwise, don't.
2653       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2654         return getTruncateExpr(Fold, Ty);
2655     }
2656   }
2657 
2658   if (Ops.size() == 2) {
2659     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2660     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2661     // C1).
2662     const SCEV *A = Ops[0];
2663     const SCEV *B = Ops[1];
2664     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2665     auto *C = dyn_cast<SCEVConstant>(A);
2666     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2667       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2668       auto C2 = C->getAPInt();
2669       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2670 
2671       APInt ConstAdd = C1 + C2;
2672       auto AddFlags = AddExpr->getNoWrapFlags();
2673       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2674       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2675           ConstAdd.ule(C1)) {
2676         PreservedFlags =
2677             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2678       }
2679 
2680       // Adding a constant with the same sign and small magnitude is NSW, if the
2681       // original AddExpr was NSW.
2682       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2683           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2684           ConstAdd.abs().ule(C1.abs())) {
2685         PreservedFlags =
2686             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2687       }
2688 
2689       if (PreservedFlags != SCEV::FlagAnyWrap) {
2690         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2691         NewOps[0] = getConstant(ConstAdd);
2692         return getAddExpr(NewOps, PreservedFlags);
2693       }
2694     }
2695   }
2696 
2697   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2698   if (Ops.size() == 2) {
2699     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2700     if (Mul && Mul->getNumOperands() == 2 &&
2701         Mul->getOperand(0)->isAllOnesValue()) {
2702       const SCEV *X;
2703       const SCEV *Y;
2704       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2705         return getMulExpr(Y, getUDivExpr(X, Y));
2706       }
2707     }
2708   }
2709 
2710   // Skip past any other cast SCEVs.
2711   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2712     ++Idx;
2713 
2714   // If there are add operands they would be next.
2715   if (Idx < Ops.size()) {
2716     bool DeletedAdd = false;
2717     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2718     // common NUW flag for expression after inlining. Other flags cannot be
2719     // preserved, because they may depend on the original order of operations.
2720     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2721     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2722       if (Ops.size() > AddOpsInlineThreshold ||
2723           Add->getNumOperands() > AddOpsInlineThreshold)
2724         break;
2725       // If we have an add, expand the add operands onto the end of the operands
2726       // list.
2727       Ops.erase(Ops.begin()+Idx);
2728       append_range(Ops, Add->operands());
2729       DeletedAdd = true;
2730       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2731     }
2732 
2733     // If we deleted at least one add, we added operands to the end of the list,
2734     // and they are not necessarily sorted.  Recurse to resort and resimplify
2735     // any operands we just acquired.
2736     if (DeletedAdd)
2737       return getAddExpr(Ops, CommonFlags, Depth + 1);
2738   }
2739 
2740   // Skip over the add expression until we get to a multiply.
2741   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2742     ++Idx;
2743 
2744   // Check to see if there are any folding opportunities present with
2745   // operands multiplied by constant values.
2746   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2747     uint64_t BitWidth = getTypeSizeInBits(Ty);
2748     DenseMap<const SCEV *, APInt> M;
2749     SmallVector<const SCEV *, 8> NewOps;
2750     APInt AccumulatedConstant(BitWidth, 0);
2751     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2752                                      Ops, APInt(BitWidth, 1), *this)) {
2753       struct APIntCompare {
2754         bool operator()(const APInt &LHS, const APInt &RHS) const {
2755           return LHS.ult(RHS);
2756         }
2757       };
2758 
2759       // Some interesting folding opportunity is present, so its worthwhile to
2760       // re-generate the operands list. Group the operands by constant scale,
2761       // to avoid multiplying by the same constant scale multiple times.
2762       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2763       for (const SCEV *NewOp : NewOps)
2764         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2765       // Re-generate the operands list.
2766       Ops.clear();
2767       if (AccumulatedConstant != 0)
2768         Ops.push_back(getConstant(AccumulatedConstant));
2769       for (auto &MulOp : MulOpLists) {
2770         if (MulOp.first == 1) {
2771           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2772         } else if (MulOp.first != 0) {
2773           Ops.push_back(getMulExpr(
2774               getConstant(MulOp.first),
2775               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2776               SCEV::FlagAnyWrap, Depth + 1));
2777         }
2778       }
2779       if (Ops.empty())
2780         return getZero(Ty);
2781       if (Ops.size() == 1)
2782         return Ops[0];
2783       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2784     }
2785   }
2786 
2787   // If we are adding something to a multiply expression, make sure the
2788   // something is not already an operand of the multiply.  If so, merge it into
2789   // the multiply.
2790   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2791     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2792     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2793       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2794       if (isa<SCEVConstant>(MulOpSCEV))
2795         continue;
2796       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2797         if (MulOpSCEV == Ops[AddOp]) {
2798           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2799           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2800           if (Mul->getNumOperands() != 2) {
2801             // If the multiply has more than two operands, we must get the
2802             // Y*Z term.
2803             SmallVector<const SCEV *, 4> MulOps(
2804                 Mul->operands().take_front(MulOp));
2805             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2806             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2807           }
2808           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2809           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2810           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2811                                             SCEV::FlagAnyWrap, Depth + 1);
2812           if (Ops.size() == 2) return OuterMul;
2813           if (AddOp < Idx) {
2814             Ops.erase(Ops.begin()+AddOp);
2815             Ops.erase(Ops.begin()+Idx-1);
2816           } else {
2817             Ops.erase(Ops.begin()+Idx);
2818             Ops.erase(Ops.begin()+AddOp-1);
2819           }
2820           Ops.push_back(OuterMul);
2821           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2822         }
2823 
2824       // Check this multiply against other multiplies being added together.
2825       for (unsigned OtherMulIdx = Idx+1;
2826            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2827            ++OtherMulIdx) {
2828         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2829         // If MulOp occurs in OtherMul, we can fold the two multiplies
2830         // together.
2831         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2832              OMulOp != e; ++OMulOp)
2833           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2834             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2835             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2836             if (Mul->getNumOperands() != 2) {
2837               SmallVector<const SCEV *, 4> MulOps(
2838                   Mul->operands().take_front(MulOp));
2839               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2840               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2841             }
2842             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2843             if (OtherMul->getNumOperands() != 2) {
2844               SmallVector<const SCEV *, 4> MulOps(
2845                   OtherMul->operands().take_front(OMulOp));
2846               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2847               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2848             }
2849             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2850             const SCEV *InnerMulSum =
2851                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2852             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2853                                               SCEV::FlagAnyWrap, Depth + 1);
2854             if (Ops.size() == 2) return OuterMul;
2855             Ops.erase(Ops.begin()+Idx);
2856             Ops.erase(Ops.begin()+OtherMulIdx-1);
2857             Ops.push_back(OuterMul);
2858             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2859           }
2860       }
2861     }
2862   }
2863 
2864   // If there are any add recurrences in the operands list, see if any other
2865   // added values are loop invariant.  If so, we can fold them into the
2866   // recurrence.
2867   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2868     ++Idx;
2869 
2870   // Scan over all recurrences, trying to fold loop invariants into them.
2871   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2872     // Scan all of the other operands to this add and add them to the vector if
2873     // they are loop invariant w.r.t. the recurrence.
2874     SmallVector<const SCEV *, 8> LIOps;
2875     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2876     const Loop *AddRecLoop = AddRec->getLoop();
2877     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2878       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2879         LIOps.push_back(Ops[i]);
2880         Ops.erase(Ops.begin()+i);
2881         --i; --e;
2882       }
2883 
2884     // If we found some loop invariants, fold them into the recurrence.
2885     if (!LIOps.empty()) {
2886       // Compute nowrap flags for the addition of the loop-invariant ops and
2887       // the addrec. Temporarily push it as an operand for that purpose. These
2888       // flags are valid in the scope of the addrec only.
2889       LIOps.push_back(AddRec);
2890       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2891       LIOps.pop_back();
2892 
2893       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2894       LIOps.push_back(AddRec->getStart());
2895 
2896       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2897 
2898       // It is not in general safe to propagate flags valid on an add within
2899       // the addrec scope to one outside it.  We must prove that the inner
2900       // scope is guaranteed to execute if the outer one does to be able to
2901       // safely propagate.  We know the program is undefined if poison is
2902       // produced on the inner scoped addrec.  We also know that *for this use*
2903       // the outer scoped add can't overflow (because of the flags we just
2904       // computed for the inner scoped add) without the program being undefined.
2905       // Proving that entry to the outer scope neccesitates entry to the inner
2906       // scope, thus proves the program undefined if the flags would be violated
2907       // in the outer scope.
2908       SCEV::NoWrapFlags AddFlags = Flags;
2909       if (AddFlags != SCEV::FlagAnyWrap) {
2910         auto *DefI = getDefiningScopeBound(LIOps);
2911         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2912         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2913           AddFlags = SCEV::FlagAnyWrap;
2914       }
2915       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2916 
2917       // Build the new addrec. Propagate the NUW and NSW flags if both the
2918       // outer add and the inner addrec are guaranteed to have no overflow.
2919       // Always propagate NW.
2920       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2921       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2922 
2923       // If all of the other operands were loop invariant, we are done.
2924       if (Ops.size() == 1) return NewRec;
2925 
2926       // Otherwise, add the folded AddRec by the non-invariant parts.
2927       for (unsigned i = 0;; ++i)
2928         if (Ops[i] == AddRec) {
2929           Ops[i] = NewRec;
2930           break;
2931         }
2932       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2933     }
2934 
2935     // Okay, if there weren't any loop invariants to be folded, check to see if
2936     // there are multiple AddRec's with the same loop induction variable being
2937     // added together.  If so, we can fold them.
2938     for (unsigned OtherIdx = Idx+1;
2939          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2940          ++OtherIdx) {
2941       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2942       // so that the 1st found AddRecExpr is dominated by all others.
2943       assert(DT.dominates(
2944            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2945            AddRec->getLoop()->getHeader()) &&
2946         "AddRecExprs are not sorted in reverse dominance order?");
2947       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2948         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2949         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2950         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2951              ++OtherIdx) {
2952           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2953           if (OtherAddRec->getLoop() == AddRecLoop) {
2954             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2955                  i != e; ++i) {
2956               if (i >= AddRecOps.size()) {
2957                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2958                 break;
2959               }
2960               SmallVector<const SCEV *, 2> TwoOps = {
2961                   AddRecOps[i], OtherAddRec->getOperand(i)};
2962               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2963             }
2964             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2965           }
2966         }
2967         // Step size has changed, so we cannot guarantee no self-wraparound.
2968         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2969         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2970       }
2971     }
2972 
2973     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2974     // next one.
2975   }
2976 
2977   // Okay, it looks like we really DO need an add expr.  Check to see if we
2978   // already have one, otherwise create a new one.
2979   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2980 }
2981 
2982 const SCEV *
2983 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2984                                     SCEV::NoWrapFlags Flags) {
2985   FoldingSetNodeID ID;
2986   ID.AddInteger(scAddExpr);
2987   for (const SCEV *Op : Ops)
2988     ID.AddPointer(Op);
2989   void *IP = nullptr;
2990   SCEVAddExpr *S =
2991       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2992   if (!S) {
2993     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2994     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2995     S = new (SCEVAllocator)
2996         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2997     UniqueSCEVs.InsertNode(S, IP);
2998     registerUser(S, Ops);
2999   }
3000   S->setNoWrapFlags(Flags);
3001   return S;
3002 }
3003 
3004 const SCEV *
3005 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3006                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3007   FoldingSetNodeID ID;
3008   ID.AddInteger(scAddRecExpr);
3009   for (const SCEV *Op : Ops)
3010     ID.AddPointer(Op);
3011   ID.AddPointer(L);
3012   void *IP = nullptr;
3013   SCEVAddRecExpr *S =
3014       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3015   if (!S) {
3016     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3017     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3018     S = new (SCEVAllocator)
3019         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3020     UniqueSCEVs.InsertNode(S, IP);
3021     LoopUsers[L].push_back(S);
3022     registerUser(S, Ops);
3023   }
3024   setNoWrapFlags(S, Flags);
3025   return S;
3026 }
3027 
3028 const SCEV *
3029 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3030                                     SCEV::NoWrapFlags Flags) {
3031   FoldingSetNodeID ID;
3032   ID.AddInteger(scMulExpr);
3033   for (const SCEV *Op : Ops)
3034     ID.AddPointer(Op);
3035   void *IP = nullptr;
3036   SCEVMulExpr *S =
3037     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3038   if (!S) {
3039     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3040     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3041     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3042                                         O, Ops.size());
3043     UniqueSCEVs.InsertNode(S, IP);
3044     registerUser(S, Ops);
3045   }
3046   S->setNoWrapFlags(Flags);
3047   return S;
3048 }
3049 
3050 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3051   uint64_t k = i*j;
3052   if (j > 1 && k / j != i) Overflow = true;
3053   return k;
3054 }
3055 
3056 /// Compute the result of "n choose k", the binomial coefficient.  If an
3057 /// intermediate computation overflows, Overflow will be set and the return will
3058 /// be garbage. Overflow is not cleared on absence of overflow.
3059 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3060   // We use the multiplicative formula:
3061   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3062   // At each iteration, we take the n-th term of the numeral and divide by the
3063   // (k-n)th term of the denominator.  This division will always produce an
3064   // integral result, and helps reduce the chance of overflow in the
3065   // intermediate computations. However, we can still overflow even when the
3066   // final result would fit.
3067 
3068   if (n == 0 || n == k) return 1;
3069   if (k > n) return 0;
3070 
3071   if (k > n/2)
3072     k = n-k;
3073 
3074   uint64_t r = 1;
3075   for (uint64_t i = 1; i <= k; ++i) {
3076     r = umul_ov(r, n-(i-1), Overflow);
3077     r /= i;
3078   }
3079   return r;
3080 }
3081 
3082 /// Determine if any of the operands in this SCEV are a constant or if
3083 /// any of the add or multiply expressions in this SCEV contain a constant.
3084 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3085   struct FindConstantInAddMulChain {
3086     bool FoundConstant = false;
3087 
3088     bool follow(const SCEV *S) {
3089       FoundConstant |= isa<SCEVConstant>(S);
3090       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3091     }
3092 
3093     bool isDone() const {
3094       return FoundConstant;
3095     }
3096   };
3097 
3098   FindConstantInAddMulChain F;
3099   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3100   ST.visitAll(StartExpr);
3101   return F.FoundConstant;
3102 }
3103 
3104 /// Get a canonical multiply expression, or something simpler if possible.
3105 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3106                                         SCEV::NoWrapFlags OrigFlags,
3107                                         unsigned Depth) {
3108   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3109          "only nuw or nsw allowed");
3110   assert(!Ops.empty() && "Cannot get empty mul!");
3111   if (Ops.size() == 1) return Ops[0];
3112 #ifndef NDEBUG
3113   Type *ETy = Ops[0]->getType();
3114   assert(!ETy->isPointerTy());
3115   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3116     assert(Ops[i]->getType() == ETy &&
3117            "SCEVMulExpr operand types don't match!");
3118 #endif
3119 
3120   // Sort by complexity, this groups all similar expression types together.
3121   GroupByComplexity(Ops, &LI, DT);
3122 
3123   // If there are any constants, fold them together.
3124   unsigned Idx = 0;
3125   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3126     ++Idx;
3127     assert(Idx < Ops.size());
3128     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3129       // We found two constants, fold them together!
3130       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3131       if (Ops.size() == 2) return Ops[0];
3132       Ops.erase(Ops.begin()+1);  // Erase the folded element
3133       LHSC = cast<SCEVConstant>(Ops[0]);
3134     }
3135 
3136     // If we have a multiply of zero, it will always be zero.
3137     if (LHSC->getValue()->isZero())
3138       return LHSC;
3139 
3140     // If we are left with a constant one being multiplied, strip it off.
3141     if (LHSC->getValue()->isOne()) {
3142       Ops.erase(Ops.begin());
3143       --Idx;
3144     }
3145 
3146     if (Ops.size() == 1)
3147       return Ops[0];
3148   }
3149 
3150   // Delay expensive flag strengthening until necessary.
3151   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3152     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3153   };
3154 
3155   // Limit recursion calls depth.
3156   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3157     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3158 
3159   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3160     // Don't strengthen flags if we have no new information.
3161     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3162     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3163       Mul->setNoWrapFlags(ComputeFlags(Ops));
3164     return S;
3165   }
3166 
3167   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3168     if (Ops.size() == 2) {
3169       // C1*(C2+V) -> C1*C2 + C1*V
3170       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3171         // If any of Add's ops are Adds or Muls with a constant, apply this
3172         // transformation as well.
3173         //
3174         // TODO: There are some cases where this transformation is not
3175         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3176         // this transformation should be narrowed down.
3177         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3178           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3179                                        SCEV::FlagAnyWrap, Depth + 1);
3180           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3181                                        SCEV::FlagAnyWrap, Depth + 1);
3182           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3183         }
3184 
3185       if (Ops[0]->isAllOnesValue()) {
3186         // If we have a mul by -1 of an add, try distributing the -1 among the
3187         // add operands.
3188         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3189           SmallVector<const SCEV *, 4> NewOps;
3190           bool AnyFolded = false;
3191           for (const SCEV *AddOp : Add->operands()) {
3192             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3193                                          Depth + 1);
3194             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3195             NewOps.push_back(Mul);
3196           }
3197           if (AnyFolded)
3198             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3199         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3200           // Negation preserves a recurrence's no self-wrap property.
3201           SmallVector<const SCEV *, 4> Operands;
3202           for (const SCEV *AddRecOp : AddRec->operands())
3203             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3204                                           Depth + 1));
3205           // Let M be the minimum representable signed value. AddRec with nsw
3206           // multiplied by -1 can have signed overflow if and only if it takes a
3207           // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3208           // maximum signed value. In all other cases signed overflow is
3209           // impossible.
3210           auto FlagsMask = SCEV::FlagNW;
3211           if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3212             auto MinInt =
3213                 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3214             if (getSignedRangeMin(AddRec) != MinInt)
3215               FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3216           }
3217           return getAddRecExpr(Operands, AddRec->getLoop(),
3218                                AddRec->getNoWrapFlags(FlagsMask));
3219         }
3220       }
3221     }
3222   }
3223 
3224   // Skip over the add expression until we get to a multiply.
3225   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3226     ++Idx;
3227 
3228   // If there are mul operands inline them all into this expression.
3229   if (Idx < Ops.size()) {
3230     bool DeletedMul = false;
3231     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3232       if (Ops.size() > MulOpsInlineThreshold)
3233         break;
3234       // If we have an mul, expand the mul operands onto the end of the
3235       // operands list.
3236       Ops.erase(Ops.begin()+Idx);
3237       append_range(Ops, Mul->operands());
3238       DeletedMul = true;
3239     }
3240 
3241     // If we deleted at least one mul, we added operands to the end of the
3242     // list, and they are not necessarily sorted.  Recurse to resort and
3243     // resimplify any operands we just acquired.
3244     if (DeletedMul)
3245       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3246   }
3247 
3248   // If there are any add recurrences in the operands list, see if any other
3249   // added values are loop invariant.  If so, we can fold them into the
3250   // recurrence.
3251   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3252     ++Idx;
3253 
3254   // Scan over all recurrences, trying to fold loop invariants into them.
3255   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3256     // Scan all of the other operands to this mul and add them to the vector
3257     // if they are loop invariant w.r.t. the recurrence.
3258     SmallVector<const SCEV *, 8> LIOps;
3259     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3260     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3261       if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3262         LIOps.push_back(Ops[i]);
3263         Ops.erase(Ops.begin()+i);
3264         --i; --e;
3265       }
3266 
3267     // If we found some loop invariants, fold them into the recurrence.
3268     if (!LIOps.empty()) {
3269       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3270       SmallVector<const SCEV *, 4> NewOps;
3271       NewOps.reserve(AddRec->getNumOperands());
3272       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3273 
3274       // If both the mul and addrec are nuw, we can preserve nuw.
3275       // If both the mul and addrec are nsw, we can only preserve nsw if either
3276       // a) they are also nuw, or
3277       // b) all multiplications of addrec operands with scale are nsw.
3278       SCEV::NoWrapFlags Flags =
3279           AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec}));
3280 
3281       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3282         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3283                                     SCEV::FlagAnyWrap, Depth + 1));
3284 
3285         if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) {
3286           ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3287               Instruction::Mul, getSignedRange(Scale),
3288               OverflowingBinaryOperator::NoSignedWrap);
3289           if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i))))
3290             Flags = clearFlags(Flags, SCEV::FlagNSW);
3291         }
3292       }
3293 
3294       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags);
3295 
3296       // If all of the other operands were loop invariant, we are done.
3297       if (Ops.size() == 1) return NewRec;
3298 
3299       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3300       for (unsigned i = 0;; ++i)
3301         if (Ops[i] == AddRec) {
3302           Ops[i] = NewRec;
3303           break;
3304         }
3305       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3306     }
3307 
3308     // Okay, if there weren't any loop invariants to be folded, check to see
3309     // if there are multiple AddRec's with the same loop induction variable
3310     // being multiplied together.  If so, we can fold them.
3311 
3312     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3313     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3314     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3315     //   ]]],+,...up to x=2n}.
3316     // Note that the arguments to choose() are always integers with values
3317     // known at compile time, never SCEV objects.
3318     //
3319     // The implementation avoids pointless extra computations when the two
3320     // addrec's are of different length (mathematically, it's equivalent to
3321     // an infinite stream of zeros on the right).
3322     bool OpsModified = false;
3323     for (unsigned OtherIdx = Idx+1;
3324          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3325          ++OtherIdx) {
3326       const SCEVAddRecExpr *OtherAddRec =
3327         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3328       if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3329         continue;
3330 
3331       // Limit max number of arguments to avoid creation of unreasonably big
3332       // SCEVAddRecs with very complex operands.
3333       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3334           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3335         continue;
3336 
3337       bool Overflow = false;
3338       Type *Ty = AddRec->getType();
3339       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3340       SmallVector<const SCEV*, 7> AddRecOps;
3341       for (int x = 0, xe = AddRec->getNumOperands() +
3342              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3343         SmallVector <const SCEV *, 7> SumOps;
3344         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3345           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3346           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3347                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3348                z < ze && !Overflow; ++z) {
3349             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3350             uint64_t Coeff;
3351             if (LargerThan64Bits)
3352               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3353             else
3354               Coeff = Coeff1*Coeff2;
3355             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3356             const SCEV *Term1 = AddRec->getOperand(y-z);
3357             const SCEV *Term2 = OtherAddRec->getOperand(z);
3358             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3359                                         SCEV::FlagAnyWrap, Depth + 1));
3360           }
3361         }
3362         if (SumOps.empty())
3363           SumOps.push_back(getZero(Ty));
3364         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3365       }
3366       if (!Overflow) {
3367         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3368                                               SCEV::FlagAnyWrap);
3369         if (Ops.size() == 2) return NewAddRec;
3370         Ops[Idx] = NewAddRec;
3371         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3372         OpsModified = true;
3373         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3374         if (!AddRec)
3375           break;
3376       }
3377     }
3378     if (OpsModified)
3379       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3380 
3381     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3382     // next one.
3383   }
3384 
3385   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3386   // already have one, otherwise create a new one.
3387   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3388 }
3389 
3390 /// Represents an unsigned remainder expression based on unsigned division.
3391 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3392                                          const SCEV *RHS) {
3393   assert(getEffectiveSCEVType(LHS->getType()) ==
3394          getEffectiveSCEVType(RHS->getType()) &&
3395          "SCEVURemExpr operand types don't match!");
3396 
3397   // Short-circuit easy cases
3398   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3399     // If constant is one, the result is trivial
3400     if (RHSC->getValue()->isOne())
3401       return getZero(LHS->getType()); // X urem 1 --> 0
3402 
3403     // If constant is a power of two, fold into a zext(trunc(LHS)).
3404     if (RHSC->getAPInt().isPowerOf2()) {
3405       Type *FullTy = LHS->getType();
3406       Type *TruncTy =
3407           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3408       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3409     }
3410   }
3411 
3412   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3413   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3414   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3415   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3416 }
3417 
3418 /// Get a canonical unsigned division expression, or something simpler if
3419 /// possible.
3420 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3421                                          const SCEV *RHS) {
3422   assert(!LHS->getType()->isPointerTy() &&
3423          "SCEVUDivExpr operand can't be pointer!");
3424   assert(LHS->getType() == RHS->getType() &&
3425          "SCEVUDivExpr operand types don't match!");
3426 
3427   FoldingSetNodeID ID;
3428   ID.AddInteger(scUDivExpr);
3429   ID.AddPointer(LHS);
3430   ID.AddPointer(RHS);
3431   void *IP = nullptr;
3432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3433     return S;
3434 
3435   // 0 udiv Y == 0
3436   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3437     if (LHSC->getValue()->isZero())
3438       return LHS;
3439 
3440   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3441     if (RHSC->getValue()->isOne())
3442       return LHS;                               // X udiv 1 --> x
3443     // If the denominator is zero, the result of the udiv is undefined. Don't
3444     // try to analyze it, because the resolution chosen here may differ from
3445     // the resolution chosen in other parts of the compiler.
3446     if (!RHSC->getValue()->isZero()) {
3447       // Determine if the division can be folded into the operands of
3448       // its operands.
3449       // TODO: Generalize this to non-constants by using known-bits information.
3450       Type *Ty = LHS->getType();
3451       unsigned LZ = RHSC->getAPInt().countl_zero();
3452       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3453       // For non-power-of-two values, effectively round the value up to the
3454       // nearest power of two.
3455       if (!RHSC->getAPInt().isPowerOf2())
3456         ++MaxShiftAmt;
3457       IntegerType *ExtTy =
3458         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3459       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3460         if (const SCEVConstant *Step =
3461             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3462           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3463           const APInt &StepInt = Step->getAPInt();
3464           const APInt &DivInt = RHSC->getAPInt();
3465           if (!StepInt.urem(DivInt) &&
3466               getZeroExtendExpr(AR, ExtTy) ==
3467               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3468                             getZeroExtendExpr(Step, ExtTy),
3469                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3470             SmallVector<const SCEV *, 4> Operands;
3471             for (const SCEV *Op : AR->operands())
3472               Operands.push_back(getUDivExpr(Op, RHS));
3473             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3474           }
3475           /// Get a canonical UDivExpr for a recurrence.
3476           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3477           // We can currently only fold X%N if X is constant.
3478           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3479           if (StartC && !DivInt.urem(StepInt) &&
3480               getZeroExtendExpr(AR, ExtTy) ==
3481               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3482                             getZeroExtendExpr(Step, ExtTy),
3483                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3484             const APInt &StartInt = StartC->getAPInt();
3485             const APInt &StartRem = StartInt.urem(StepInt);
3486             if (StartRem != 0) {
3487               const SCEV *NewLHS =
3488                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3489                                 AR->getLoop(), SCEV::FlagNW);
3490               if (LHS != NewLHS) {
3491                 LHS = NewLHS;
3492 
3493                 // Reset the ID to include the new LHS, and check if it is
3494                 // already cached.
3495                 ID.clear();
3496                 ID.AddInteger(scUDivExpr);
3497                 ID.AddPointer(LHS);
3498                 ID.AddPointer(RHS);
3499                 IP = nullptr;
3500                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3501                   return S;
3502               }
3503             }
3504           }
3505         }
3506       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3507       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3508         SmallVector<const SCEV *, 4> Operands;
3509         for (const SCEV *Op : M->operands())
3510           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3511         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3512           // Find an operand that's safely divisible.
3513           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3514             const SCEV *Op = M->getOperand(i);
3515             const SCEV *Div = getUDivExpr(Op, RHSC);
3516             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3517               Operands = SmallVector<const SCEV *, 4>(M->operands());
3518               Operands[i] = Div;
3519               return getMulExpr(Operands);
3520             }
3521           }
3522       }
3523 
3524       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3525       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3526         if (auto *DivisorConstant =
3527                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3528           bool Overflow = false;
3529           APInt NewRHS =
3530               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3531           if (Overflow) {
3532             return getConstant(RHSC->getType(), 0, false);
3533           }
3534           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3535         }
3536       }
3537 
3538       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3539       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3540         SmallVector<const SCEV *, 4> Operands;
3541         for (const SCEV *Op : A->operands())
3542           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3543         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3544           Operands.clear();
3545           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3546             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3547             if (isa<SCEVUDivExpr>(Op) ||
3548                 getMulExpr(Op, RHS) != A->getOperand(i))
3549               break;
3550             Operands.push_back(Op);
3551           }
3552           if (Operands.size() == A->getNumOperands())
3553             return getAddExpr(Operands);
3554         }
3555       }
3556 
3557       // Fold if both operands are constant.
3558       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3559         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3560     }
3561   }
3562 
3563   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3564   // changes). Make sure we get a new one.
3565   IP = nullptr;
3566   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3567   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3568                                              LHS, RHS);
3569   UniqueSCEVs.InsertNode(S, IP);
3570   registerUser(S, {LHS, RHS});
3571   return S;
3572 }
3573 
3574 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3575   APInt A = C1->getAPInt().abs();
3576   APInt B = C2->getAPInt().abs();
3577   uint32_t ABW = A.getBitWidth();
3578   uint32_t BBW = B.getBitWidth();
3579 
3580   if (ABW > BBW)
3581     B = B.zext(ABW);
3582   else if (ABW < BBW)
3583     A = A.zext(BBW);
3584 
3585   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3586 }
3587 
3588 /// Get a canonical unsigned division expression, or something simpler if
3589 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3590 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3591 /// it's not exact because the udiv may be clearing bits.
3592 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3593                                               const SCEV *RHS) {
3594   // TODO: we could try to find factors in all sorts of things, but for now we
3595   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3596   // end of this file for inspiration.
3597 
3598   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3599   if (!Mul || !Mul->hasNoUnsignedWrap())
3600     return getUDivExpr(LHS, RHS);
3601 
3602   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3603     // If the mulexpr multiplies by a constant, then that constant must be the
3604     // first element of the mulexpr.
3605     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3606       if (LHSCst == RHSCst) {
3607         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3608         return getMulExpr(Operands);
3609       }
3610 
3611       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3612       // that there's a factor provided by one of the other terms. We need to
3613       // check.
3614       APInt Factor = gcd(LHSCst, RHSCst);
3615       if (!Factor.isIntN(1)) {
3616         LHSCst =
3617             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3618         RHSCst =
3619             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3620         SmallVector<const SCEV *, 2> Operands;
3621         Operands.push_back(LHSCst);
3622         append_range(Operands, Mul->operands().drop_front());
3623         LHS = getMulExpr(Operands);
3624         RHS = RHSCst;
3625         Mul = dyn_cast<SCEVMulExpr>(LHS);
3626         if (!Mul)
3627           return getUDivExactExpr(LHS, RHS);
3628       }
3629     }
3630   }
3631 
3632   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3633     if (Mul->getOperand(i) == RHS) {
3634       SmallVector<const SCEV *, 2> Operands;
3635       append_range(Operands, Mul->operands().take_front(i));
3636       append_range(Operands, Mul->operands().drop_front(i + 1));
3637       return getMulExpr(Operands);
3638     }
3639   }
3640 
3641   return getUDivExpr(LHS, RHS);
3642 }
3643 
3644 /// Get an add recurrence expression for the specified loop.  Simplify the
3645 /// expression as much as possible.
3646 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3647                                            const Loop *L,
3648                                            SCEV::NoWrapFlags Flags) {
3649   SmallVector<const SCEV *, 4> Operands;
3650   Operands.push_back(Start);
3651   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3652     if (StepChrec->getLoop() == L) {
3653       append_range(Operands, StepChrec->operands());
3654       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3655     }
3656 
3657   Operands.push_back(Step);
3658   return getAddRecExpr(Operands, L, Flags);
3659 }
3660 
3661 /// Get an add recurrence expression for the specified loop.  Simplify the
3662 /// expression as much as possible.
3663 const SCEV *
3664 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3665                                const Loop *L, SCEV::NoWrapFlags Flags) {
3666   if (Operands.size() == 1) return Operands[0];
3667 #ifndef NDEBUG
3668   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3669   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3670     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3671            "SCEVAddRecExpr operand types don't match!");
3672     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3673   }
3674   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3675     assert(isAvailableAtLoopEntry(Operands[i], L) &&
3676            "SCEVAddRecExpr operand is not available at loop entry!");
3677 #endif
3678 
3679   if (Operands.back()->isZero()) {
3680     Operands.pop_back();
3681     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3682   }
3683 
3684   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3685   // use that information to infer NUW and NSW flags. However, computing a
3686   // BE count requires calling getAddRecExpr, so we may not yet have a
3687   // meaningful BE count at this point (and if we don't, we'd be stuck
3688   // with a SCEVCouldNotCompute as the cached BE count).
3689 
3690   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3691 
3692   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3693   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3694     const Loop *NestedLoop = NestedAR->getLoop();
3695     if (L->contains(NestedLoop)
3696             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3697             : (!NestedLoop->contains(L) &&
3698                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3699       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3700       Operands[0] = NestedAR->getStart();
3701       // AddRecs require their operands be loop-invariant with respect to their
3702       // loops. Don't perform this transformation if it would break this
3703       // requirement.
3704       bool AllInvariant = all_of(
3705           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3706 
3707       if (AllInvariant) {
3708         // Create a recurrence for the outer loop with the same step size.
3709         //
3710         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3711         // inner recurrence has the same property.
3712         SCEV::NoWrapFlags OuterFlags =
3713           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3714 
3715         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3716         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3717           return isLoopInvariant(Op, NestedLoop);
3718         });
3719 
3720         if (AllInvariant) {
3721           // Ok, both add recurrences are valid after the transformation.
3722           //
3723           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3724           // the outer recurrence has the same property.
3725           SCEV::NoWrapFlags InnerFlags =
3726             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3727           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3728         }
3729       }
3730       // Reset Operands to its original state.
3731       Operands[0] = NestedAR;
3732     }
3733   }
3734 
3735   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3736   // already have one, otherwise create a new one.
3737   return getOrCreateAddRecExpr(Operands, L, Flags);
3738 }
3739 
3740 const SCEV *
3741 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3742                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3743   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3744   // getSCEV(Base)->getType() has the same address space as Base->getType()
3745   // because SCEV::getType() preserves the address space.
3746   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3747   const bool AssumeInBoundsFlags = [&]() {
3748     if (!GEP->isInBounds())
3749       return false;
3750 
3751     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752     // but to do that, we have to ensure that said flag is valid in the entire
3753     // defined scope of the SCEV.
3754     auto *GEPI = dyn_cast<Instruction>(GEP);
3755     // TODO: non-instructions have global scope.  We might be able to prove
3756     // some global scope cases
3757     return GEPI && isSCEVExprNeverPoison(GEPI);
3758   }();
3759 
3760   SCEV::NoWrapFlags OffsetWrap =
3761     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3762 
3763   Type *CurTy = GEP->getType();
3764   bool FirstIter = true;
3765   SmallVector<const SCEV *, 4> Offsets;
3766   for (const SCEV *IndexExpr : IndexExprs) {
3767     // Compute the (potentially symbolic) offset in bytes for this index.
3768     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3769       // For a struct, add the member offset.
3770       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3771       unsigned FieldNo = Index->getZExtValue();
3772       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3773       Offsets.push_back(FieldOffset);
3774 
3775       // Update CurTy to the type of the field at Index.
3776       CurTy = STy->getTypeAtIndex(Index);
3777     } else {
3778       // Update CurTy to its element type.
3779       if (FirstIter) {
3780         assert(isa<PointerType>(CurTy) &&
3781                "The first index of a GEP indexes a pointer");
3782         CurTy = GEP->getSourceElementType();
3783         FirstIter = false;
3784       } else {
3785         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3786       }
3787       // For an array, add the element offset, explicitly scaled.
3788       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3789       // Getelementptr indices are signed.
3790       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3791 
3792       // Multiply the index by the element size to compute the element offset.
3793       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3794       Offsets.push_back(LocalOffset);
3795     }
3796   }
3797 
3798   // Handle degenerate case of GEP without offsets.
3799   if (Offsets.empty())
3800     return BaseExpr;
3801 
3802   // Add the offsets together, assuming nsw if inbounds.
3803   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3804   // Add the base address and the offset. We cannot use the nsw flag, as the
3805   // base address is unsigned. However, if we know that the offset is
3806   // non-negative, we can use nuw.
3807   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3808                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3809   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3810   assert(BaseExpr->getType() == GEPExpr->getType() &&
3811          "GEP should not change type mid-flight.");
3812   return GEPExpr;
3813 }
3814 
3815 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3816                                                ArrayRef<const SCEV *> Ops) {
3817   FoldingSetNodeID ID;
3818   ID.AddInteger(SCEVType);
3819   for (const SCEV *Op : Ops)
3820     ID.AddPointer(Op);
3821   void *IP = nullptr;
3822   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3823 }
3824 
3825 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3826   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3827   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3828 }
3829 
3830 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3831                                            SmallVectorImpl<const SCEV *> &Ops) {
3832   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3833   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3834   if (Ops.size() == 1) return Ops[0];
3835 #ifndef NDEBUG
3836   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3837   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3838     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3839            "Operand types don't match!");
3840     assert(Ops[0]->getType()->isPointerTy() ==
3841                Ops[i]->getType()->isPointerTy() &&
3842            "min/max should be consistently pointerish");
3843   }
3844 #endif
3845 
3846   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3847   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3848 
3849   // Sort by complexity, this groups all similar expression types together.
3850   GroupByComplexity(Ops, &LI, DT);
3851 
3852   // Check if we have created the same expression before.
3853   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3854     return S;
3855   }
3856 
3857   // If there are any constants, fold them together.
3858   unsigned Idx = 0;
3859   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3860     ++Idx;
3861     assert(Idx < Ops.size());
3862     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3863       switch (Kind) {
3864       case scSMaxExpr:
3865         return APIntOps::smax(LHS, RHS);
3866       case scSMinExpr:
3867         return APIntOps::smin(LHS, RHS);
3868       case scUMaxExpr:
3869         return APIntOps::umax(LHS, RHS);
3870       case scUMinExpr:
3871         return APIntOps::umin(LHS, RHS);
3872       default:
3873         llvm_unreachable("Unknown SCEV min/max opcode");
3874       }
3875     };
3876 
3877     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3878       // We found two constants, fold them together!
3879       ConstantInt *Fold = ConstantInt::get(
3880           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3881       Ops[0] = getConstant(Fold);
3882       Ops.erase(Ops.begin()+1);  // Erase the folded element
3883       if (Ops.size() == 1) return Ops[0];
3884       LHSC = cast<SCEVConstant>(Ops[0]);
3885     }
3886 
3887     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3888     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3889 
3890     if (IsMax ? IsMinV : IsMaxV) {
3891       // If we are left with a constant minimum(/maximum)-int, strip it off.
3892       Ops.erase(Ops.begin());
3893       --Idx;
3894     } else if (IsMax ? IsMaxV : IsMinV) {
3895       // If we have a max(/min) with a constant maximum(/minimum)-int,
3896       // it will always be the extremum.
3897       return LHSC;
3898     }
3899 
3900     if (Ops.size() == 1) return Ops[0];
3901   }
3902 
3903   // Find the first operation of the same kind
3904   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3905     ++Idx;
3906 
3907   // Check to see if one of the operands is of the same kind. If so, expand its
3908   // operands onto our operand list, and recurse to simplify.
3909   if (Idx < Ops.size()) {
3910     bool DeletedAny = false;
3911     while (Ops[Idx]->getSCEVType() == Kind) {
3912       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3913       Ops.erase(Ops.begin()+Idx);
3914       append_range(Ops, SMME->operands());
3915       DeletedAny = true;
3916     }
3917 
3918     if (DeletedAny)
3919       return getMinMaxExpr(Kind, Ops);
3920   }
3921 
3922   // Okay, check to see if the same value occurs in the operand list twice.  If
3923   // so, delete one.  Since we sorted the list, these values are required to
3924   // be adjacent.
3925   llvm::CmpInst::Predicate GEPred =
3926       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3927   llvm::CmpInst::Predicate LEPred =
3928       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3929   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3930   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3931   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3932     if (Ops[i] == Ops[i + 1] ||
3933         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3934       //  X op Y op Y  -->  X op Y
3935       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3936       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3937       --i;
3938       --e;
3939     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3940                                                Ops[i + 1])) {
3941       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3942       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3943       --i;
3944       --e;
3945     }
3946   }
3947 
3948   if (Ops.size() == 1) return Ops[0];
3949 
3950   assert(!Ops.empty() && "Reduced smax down to nothing!");
3951 
3952   // Okay, it looks like we really DO need an expr.  Check to see if we
3953   // already have one, otherwise create a new one.
3954   FoldingSetNodeID ID;
3955   ID.AddInteger(Kind);
3956   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3957     ID.AddPointer(Ops[i]);
3958   void *IP = nullptr;
3959   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3960   if (ExistingSCEV)
3961     return ExistingSCEV;
3962   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3963   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3964   SCEV *S = new (SCEVAllocator)
3965       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3966 
3967   UniqueSCEVs.InsertNode(S, IP);
3968   registerUser(S, Ops);
3969   return S;
3970 }
3971 
3972 namespace {
3973 
3974 class SCEVSequentialMinMaxDeduplicatingVisitor final
3975     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3976                          std::optional<const SCEV *>> {
3977   using RetVal = std::optional<const SCEV *>;
3978   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3979 
3980   ScalarEvolution &SE;
3981   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3982   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3983   SmallPtrSet<const SCEV *, 16> SeenOps;
3984 
3985   bool canRecurseInto(SCEVTypes Kind) const {
3986     // We can only recurse into the SCEV expression of the same effective type
3987     // as the type of our root SCEV expression.
3988     return RootKind == Kind || NonSequentialRootKind == Kind;
3989   };
3990 
3991   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3992     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3993            "Only for min/max expressions.");
3994     SCEVTypes Kind = S->getSCEVType();
3995 
3996     if (!canRecurseInto(Kind))
3997       return S;
3998 
3999     auto *NAry = cast<SCEVNAryExpr>(S);
4000     SmallVector<const SCEV *> NewOps;
4001     bool Changed = visit(Kind, NAry->operands(), NewOps);
4002 
4003     if (!Changed)
4004       return S;
4005     if (NewOps.empty())
4006       return std::nullopt;
4007 
4008     return isa<SCEVSequentialMinMaxExpr>(S)
4009                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
4010                : SE.getMinMaxExpr(Kind, NewOps);
4011   }
4012 
4013   RetVal visit(const SCEV *S) {
4014     // Has the whole operand been seen already?
4015     if (!SeenOps.insert(S).second)
4016       return std::nullopt;
4017     return Base::visit(S);
4018   }
4019 
4020 public:
4021   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4022                                            SCEVTypes RootKind)
4023       : SE(SE), RootKind(RootKind),
4024         NonSequentialRootKind(
4025             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4026                 RootKind)) {}
4027 
4028   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4029                          SmallVectorImpl<const SCEV *> &NewOps) {
4030     bool Changed = false;
4031     SmallVector<const SCEV *> Ops;
4032     Ops.reserve(OrigOps.size());
4033 
4034     for (const SCEV *Op : OrigOps) {
4035       RetVal NewOp = visit(Op);
4036       if (NewOp != Op)
4037         Changed = true;
4038       if (NewOp)
4039         Ops.emplace_back(*NewOp);
4040     }
4041 
4042     if (Changed)
4043       NewOps = std::move(Ops);
4044     return Changed;
4045   }
4046 
4047   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4048 
4049   RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4050 
4051   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4052 
4053   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4054 
4055   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4056 
4057   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4058 
4059   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4060 
4061   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4062 
4063   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4064 
4065   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4066 
4067   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4068     return visitAnyMinMaxExpr(Expr);
4069   }
4070 
4071   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4072     return visitAnyMinMaxExpr(Expr);
4073   }
4074 
4075   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4076     return visitAnyMinMaxExpr(Expr);
4077   }
4078 
4079   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4080     return visitAnyMinMaxExpr(Expr);
4081   }
4082 
4083   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4084     return visitAnyMinMaxExpr(Expr);
4085   }
4086 
4087   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4088 
4089   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4090 };
4091 
4092 } // namespace
4093 
4094 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4095   switch (Kind) {
4096   case scConstant:
4097   case scVScale:
4098   case scTruncate:
4099   case scZeroExtend:
4100   case scSignExtend:
4101   case scPtrToInt:
4102   case scAddExpr:
4103   case scMulExpr:
4104   case scUDivExpr:
4105   case scAddRecExpr:
4106   case scUMaxExpr:
4107   case scSMaxExpr:
4108   case scUMinExpr:
4109   case scSMinExpr:
4110   case scUnknown:
4111     // If any operand is poison, the whole expression is poison.
4112     return true;
4113   case scSequentialUMinExpr:
4114     // FIXME: if the *first* operand is poison, the whole expression is poison.
4115     return false; // Pessimistically, say that it does not propagate poison.
4116   case scCouldNotCompute:
4117     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4118   }
4119   llvm_unreachable("Unknown SCEV kind!");
4120 }
4121 
4122 namespace {
4123 // The only way poison may be introduced in a SCEV expression is from a
4124 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4125 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4126 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4127 //
4128 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4129 // with the notable exception of umin_seq, where only poison from the first
4130 // operand is (unconditionally) propagated.
4131 struct SCEVPoisonCollector {
4132   bool LookThroughMaybePoisonBlocking;
4133   SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4134   SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4135       : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4136 
4137   bool follow(const SCEV *S) {
4138     if (!LookThroughMaybePoisonBlocking &&
4139         !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4140       return false;
4141 
4142     if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4143       if (!isGuaranteedNotToBePoison(SU->getValue()))
4144         MaybePoison.insert(SU);
4145     }
4146     return true;
4147   }
4148   bool isDone() const { return false; }
4149 };
4150 } // namespace
4151 
4152 /// Return true if V is poison given that AssumedPoison is already poison.
4153 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4154   // First collect all SCEVs that might result in AssumedPoison to be poison.
4155   // We need to look through potentially poison-blocking operations here,
4156   // because we want to find all SCEVs that *might* result in poison, not only
4157   // those that are *required* to.
4158   SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4159   visitAll(AssumedPoison, PC1);
4160 
4161   // AssumedPoison is never poison. As the assumption is false, the implication
4162   // is true. Don't bother walking the other SCEV in this case.
4163   if (PC1.MaybePoison.empty())
4164     return true;
4165 
4166   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4167   // as well. We cannot look through potentially poison-blocking operations
4168   // here, as their arguments only *may* make the result poison.
4169   SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4170   visitAll(S, PC2);
4171 
4172   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4173   // it will also make S poison by being part of PC2.MaybePoison.
4174   return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) {
4175     return PC2.MaybePoison.contains(S);
4176   });
4177 }
4178 
4179 void ScalarEvolution::getPoisonGeneratingValues(
4180     SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4181   SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4182   visitAll(S, PC);
4183   for (const SCEVUnknown *SU : PC.MaybePoison)
4184     Result.insert(SU->getValue());
4185 }
4186 
4187 bool ScalarEvolution::canReuseInstruction(
4188     const SCEV *S, Instruction *I,
4189     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
4190   // If the instruction cannot be poison, it's always safe to reuse.
4191   if (programUndefinedIfPoison(I))
4192     return true;
4193 
4194   // Otherwise, it is possible that I is more poisonous that S. Collect the
4195   // poison-contributors of S, and then check whether I has any additional
4196   // poison-contributors. Poison that is contributed through poison-generating
4197   // flags is handled by dropping those flags instead.
4198   SmallPtrSet<const Value *, 8> PoisonVals;
4199   getPoisonGeneratingValues(PoisonVals, S);
4200 
4201   SmallVector<Value *> Worklist;
4202   SmallPtrSet<Value *, 8> Visited;
4203   Worklist.push_back(I);
4204   while (!Worklist.empty()) {
4205     Value *V = Worklist.pop_back_val();
4206     if (!Visited.insert(V).second)
4207       continue;
4208 
4209     // Avoid walking large instruction graphs.
4210     if (Visited.size() > 16)
4211       return false;
4212 
4213     // Either the value can't be poison, or the S would also be poison if it
4214     // is.
4215     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
4216       continue;
4217 
4218     auto *I = dyn_cast<Instruction>(V);
4219     if (!I)
4220       return false;
4221 
4222     // Disjoint or instructions are interpreted as adds by SCEV. However, we
4223     // can't replace an arbitrary add with disjoint or, even if we drop the
4224     // flag. We would need to convert the or into an add.
4225     if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
4226       if (PDI->isDisjoint())
4227         return false;
4228 
4229     // FIXME: Ignore vscale, even though it technically could be poison. Do this
4230     // because SCEV currently assumes it can't be poison. Remove this special
4231     // case once we proper model when vscale can be poison.
4232     if (auto *II = dyn_cast<IntrinsicInst>(I);
4233         II && II->getIntrinsicID() == Intrinsic::vscale)
4234       continue;
4235 
4236     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
4237       return false;
4238 
4239     // If the instruction can't create poison, we can recurse to its operands.
4240     if (I->hasPoisonGeneratingFlagsOrMetadata())
4241       DropPoisonGeneratingInsts.push_back(I);
4242 
4243     for (Value *Op : I->operands())
4244       Worklist.push_back(Op);
4245   }
4246   return true;
4247 }
4248 
4249 const SCEV *
4250 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4251                                          SmallVectorImpl<const SCEV *> &Ops) {
4252   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4253          "Not a SCEVSequentialMinMaxExpr!");
4254   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4255   if (Ops.size() == 1)
4256     return Ops[0];
4257 #ifndef NDEBUG
4258   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4259   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4260     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4261            "Operand types don't match!");
4262     assert(Ops[0]->getType()->isPointerTy() ==
4263                Ops[i]->getType()->isPointerTy() &&
4264            "min/max should be consistently pointerish");
4265   }
4266 #endif
4267 
4268   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4269   // so we can *NOT* do any kind of sorting of the expressions!
4270 
4271   // Check if we have created the same expression before.
4272   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4273     return S;
4274 
4275   // FIXME: there are *some* simplifications that we can do here.
4276 
4277   // Keep only the first instance of an operand.
4278   {
4279     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4280     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4281     if (Changed)
4282       return getSequentialMinMaxExpr(Kind, Ops);
4283   }
4284 
4285   // Check to see if one of the operands is of the same kind. If so, expand its
4286   // operands onto our operand list, and recurse to simplify.
4287   {
4288     unsigned Idx = 0;
4289     bool DeletedAny = false;
4290     while (Idx < Ops.size()) {
4291       if (Ops[Idx]->getSCEVType() != Kind) {
4292         ++Idx;
4293         continue;
4294       }
4295       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4296       Ops.erase(Ops.begin() + Idx);
4297       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4298                  SMME->operands().end());
4299       DeletedAny = true;
4300     }
4301 
4302     if (DeletedAny)
4303       return getSequentialMinMaxExpr(Kind, Ops);
4304   }
4305 
4306   const SCEV *SaturationPoint;
4307   ICmpInst::Predicate Pred;
4308   switch (Kind) {
4309   case scSequentialUMinExpr:
4310     SaturationPoint = getZero(Ops[0]->getType());
4311     Pred = ICmpInst::ICMP_ULE;
4312     break;
4313   default:
4314     llvm_unreachable("Not a sequential min/max type.");
4315   }
4316 
4317   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4318     // We can replace %x umin_seq %y with %x umin %y if either:
4319     //  * %y being poison implies %x is also poison.
4320     //  * %x cannot be the saturating value (e.g. zero for umin).
4321     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4322         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4323                                         SaturationPoint)) {
4324       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4325       Ops[i - 1] = getMinMaxExpr(
4326           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4327           SeqOps);
4328       Ops.erase(Ops.begin() + i);
4329       return getSequentialMinMaxExpr(Kind, Ops);
4330     }
4331     // Fold %x umin_seq %y to %x if %x ule %y.
4332     // TODO: We might be able to prove the predicate for a later operand.
4333     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4334       Ops.erase(Ops.begin() + i);
4335       return getSequentialMinMaxExpr(Kind, Ops);
4336     }
4337   }
4338 
4339   // Okay, it looks like we really DO need an expr.  Check to see if we
4340   // already have one, otherwise create a new one.
4341   FoldingSetNodeID ID;
4342   ID.AddInteger(Kind);
4343   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4344     ID.AddPointer(Ops[i]);
4345   void *IP = nullptr;
4346   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4347   if (ExistingSCEV)
4348     return ExistingSCEV;
4349 
4350   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4351   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4352   SCEV *S = new (SCEVAllocator)
4353       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4354 
4355   UniqueSCEVs.InsertNode(S, IP);
4356   registerUser(S, Ops);
4357   return S;
4358 }
4359 
4360 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4361   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4362   return getSMaxExpr(Ops);
4363 }
4364 
4365 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4366   return getMinMaxExpr(scSMaxExpr, Ops);
4367 }
4368 
4369 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4370   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4371   return getUMaxExpr(Ops);
4372 }
4373 
4374 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4375   return getMinMaxExpr(scUMaxExpr, Ops);
4376 }
4377 
4378 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4379                                          const SCEV *RHS) {
4380   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4381   return getSMinExpr(Ops);
4382 }
4383 
4384 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4385   return getMinMaxExpr(scSMinExpr, Ops);
4386 }
4387 
4388 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4389                                          bool Sequential) {
4390   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4391   return getUMinExpr(Ops, Sequential);
4392 }
4393 
4394 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4395                                          bool Sequential) {
4396   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4397                     : getMinMaxExpr(scUMinExpr, Ops);
4398 }
4399 
4400 const SCEV *
4401 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4402   const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4403   if (Size.isScalable())
4404     Res = getMulExpr(Res, getVScale(IntTy));
4405   return Res;
4406 }
4407 
4408 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4409   return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4410 }
4411 
4412 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4413   return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4414 }
4415 
4416 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4417                                              StructType *STy,
4418                                              unsigned FieldNo) {
4419   // We can bypass creating a target-independent constant expression and then
4420   // folding it back into a ConstantInt. This is just a compile-time
4421   // optimization.
4422   const StructLayout *SL = getDataLayout().getStructLayout(STy);
4423   assert(!SL->getSizeInBits().isScalable() &&
4424          "Cannot get offset for structure containing scalable vector types");
4425   return getConstant(IntTy, SL->getElementOffset(FieldNo));
4426 }
4427 
4428 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4429   // Don't attempt to do anything other than create a SCEVUnknown object
4430   // here.  createSCEV only calls getUnknown after checking for all other
4431   // interesting possibilities, and any other code that calls getUnknown
4432   // is doing so in order to hide a value from SCEV canonicalization.
4433 
4434   FoldingSetNodeID ID;
4435   ID.AddInteger(scUnknown);
4436   ID.AddPointer(V);
4437   void *IP = nullptr;
4438   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4439     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4440            "Stale SCEVUnknown in uniquing map!");
4441     return S;
4442   }
4443   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4444                                             FirstUnknown);
4445   FirstUnknown = cast<SCEVUnknown>(S);
4446   UniqueSCEVs.InsertNode(S, IP);
4447   return S;
4448 }
4449 
4450 //===----------------------------------------------------------------------===//
4451 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4452 //
4453 
4454 /// Test if values of the given type are analyzable within the SCEV
4455 /// framework. This primarily includes integer types, and it can optionally
4456 /// include pointer types if the ScalarEvolution class has access to
4457 /// target-specific information.
4458 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4459   // Integers and pointers are always SCEVable.
4460   return Ty->isIntOrPtrTy();
4461 }
4462 
4463 /// Return the size in bits of the specified type, for which isSCEVable must
4464 /// return true.
4465 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4466   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4467   if (Ty->isPointerTy())
4468     return getDataLayout().getIndexTypeSizeInBits(Ty);
4469   return getDataLayout().getTypeSizeInBits(Ty);
4470 }
4471 
4472 /// Return a type with the same bitwidth as the given type and which represents
4473 /// how SCEV will treat the given type, for which isSCEVable must return
4474 /// true. For pointer types, this is the pointer index sized integer type.
4475 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4476   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4477 
4478   if (Ty->isIntegerTy())
4479     return Ty;
4480 
4481   // The only other support type is pointer.
4482   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4483   return getDataLayout().getIndexType(Ty);
4484 }
4485 
4486 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4487   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4488 }
4489 
4490 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4491                                                         const SCEV *B) {
4492   /// For a valid use point to exist, the defining scope of one operand
4493   /// must dominate the other.
4494   bool PreciseA, PreciseB;
4495   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4496   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4497   if (!PreciseA || !PreciseB)
4498     // Can't tell.
4499     return false;
4500   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4501     DT.dominates(ScopeB, ScopeA);
4502 }
4503 
4504 const SCEV *ScalarEvolution::getCouldNotCompute() {
4505   return CouldNotCompute.get();
4506 }
4507 
4508 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4509   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4510     auto *SU = dyn_cast<SCEVUnknown>(S);
4511     return SU && SU->getValue() == nullptr;
4512   });
4513 
4514   return !ContainsNulls;
4515 }
4516 
4517 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4518   HasRecMapType::iterator I = HasRecMap.find(S);
4519   if (I != HasRecMap.end())
4520     return I->second;
4521 
4522   bool FoundAddRec =
4523       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4524   HasRecMap.insert({S, FoundAddRec});
4525   return FoundAddRec;
4526 }
4527 
4528 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4529 /// by the value and offset from any ValueOffsetPair in the set.
4530 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4531   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4532   if (SI == ExprValueMap.end())
4533     return std::nullopt;
4534   return SI->second.getArrayRef();
4535 }
4536 
4537 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4538 /// cannot be used separately. eraseValueFromMap should be used to remove
4539 /// V from ValueExprMap and ExprValueMap at the same time.
4540 void ScalarEvolution::eraseValueFromMap(Value *V) {
4541   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4542   if (I != ValueExprMap.end()) {
4543     auto EVIt = ExprValueMap.find(I->second);
4544     bool Removed = EVIt->second.remove(V);
4545     (void) Removed;
4546     assert(Removed && "Value not in ExprValueMap?");
4547     ValueExprMap.erase(I);
4548   }
4549 }
4550 
4551 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4552   // A recursive query may have already computed the SCEV. It should be
4553   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4554   // inferred nowrap flags.
4555   auto It = ValueExprMap.find_as(V);
4556   if (It == ValueExprMap.end()) {
4557     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4558     ExprValueMap[S].insert(V);
4559   }
4560 }
4561 
4562 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4563 /// create a new one.
4564 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4565   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4566 
4567   if (const SCEV *S = getExistingSCEV(V))
4568     return S;
4569   return createSCEVIter(V);
4570 }
4571 
4572 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4573   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4574 
4575   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4576   if (I != ValueExprMap.end()) {
4577     const SCEV *S = I->second;
4578     assert(checkValidity(S) &&
4579            "existing SCEV has not been properly invalidated");
4580     return S;
4581   }
4582   return nullptr;
4583 }
4584 
4585 /// Return a SCEV corresponding to -V = -1*V
4586 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4587                                              SCEV::NoWrapFlags Flags) {
4588   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4589     return getConstant(
4590                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4591 
4592   Type *Ty = V->getType();
4593   Ty = getEffectiveSCEVType(Ty);
4594   return getMulExpr(V, getMinusOne(Ty), Flags);
4595 }
4596 
4597 /// If Expr computes ~A, return A else return nullptr
4598 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4599   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4600   if (!Add || Add->getNumOperands() != 2 ||
4601       !Add->getOperand(0)->isAllOnesValue())
4602     return nullptr;
4603 
4604   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4605   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4606       !AddRHS->getOperand(0)->isAllOnesValue())
4607     return nullptr;
4608 
4609   return AddRHS->getOperand(1);
4610 }
4611 
4612 /// Return a SCEV corresponding to ~V = -1-V
4613 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4614   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4615 
4616   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4617     return getConstant(
4618                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4619 
4620   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4621   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4622     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4623       SmallVector<const SCEV *, 2> MatchedOperands;
4624       for (const SCEV *Operand : MME->operands()) {
4625         const SCEV *Matched = MatchNotExpr(Operand);
4626         if (!Matched)
4627           return (const SCEV *)nullptr;
4628         MatchedOperands.push_back(Matched);
4629       }
4630       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4631                            MatchedOperands);
4632     };
4633     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4634       return Replaced;
4635   }
4636 
4637   Type *Ty = V->getType();
4638   Ty = getEffectiveSCEVType(Ty);
4639   return getMinusSCEV(getMinusOne(Ty), V);
4640 }
4641 
4642 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4643   assert(P->getType()->isPointerTy());
4644 
4645   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4646     // The base of an AddRec is the first operand.
4647     SmallVector<const SCEV *> Ops{AddRec->operands()};
4648     Ops[0] = removePointerBase(Ops[0]);
4649     // Don't try to transfer nowrap flags for now. We could in some cases
4650     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4651     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4652   }
4653   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4654     // The base of an Add is the pointer operand.
4655     SmallVector<const SCEV *> Ops{Add->operands()};
4656     const SCEV **PtrOp = nullptr;
4657     for (const SCEV *&AddOp : Ops) {
4658       if (AddOp->getType()->isPointerTy()) {
4659         assert(!PtrOp && "Cannot have multiple pointer ops");
4660         PtrOp = &AddOp;
4661       }
4662     }
4663     *PtrOp = removePointerBase(*PtrOp);
4664     // Don't try to transfer nowrap flags for now. We could in some cases
4665     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4666     return getAddExpr(Ops);
4667   }
4668   // Any other expression must be a pointer base.
4669   return getZero(P->getType());
4670 }
4671 
4672 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4673                                           SCEV::NoWrapFlags Flags,
4674                                           unsigned Depth) {
4675   // Fast path: X - X --> 0.
4676   if (LHS == RHS)
4677     return getZero(LHS->getType());
4678 
4679   // If we subtract two pointers with different pointer bases, bail.
4680   // Eventually, we're going to add an assertion to getMulExpr that we
4681   // can't multiply by a pointer.
4682   if (RHS->getType()->isPointerTy()) {
4683     if (!LHS->getType()->isPointerTy() ||
4684         getPointerBase(LHS) != getPointerBase(RHS))
4685       return getCouldNotCompute();
4686     LHS = removePointerBase(LHS);
4687     RHS = removePointerBase(RHS);
4688   }
4689 
4690   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4691   // makes it so that we cannot make much use of NUW.
4692   auto AddFlags = SCEV::FlagAnyWrap;
4693   const bool RHSIsNotMinSigned =
4694       !getSignedRangeMin(RHS).isMinSignedValue();
4695   if (hasFlags(Flags, SCEV::FlagNSW)) {
4696     // Let M be the minimum representable signed value. Then (-1)*RHS
4697     // signed-wraps if and only if RHS is M. That can happen even for
4698     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4699     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4700     // (-1)*RHS, we need to prove that RHS != M.
4701     //
4702     // If LHS is non-negative and we know that LHS - RHS does not
4703     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4704     // either by proving that RHS > M or that LHS >= 0.
4705     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4706       AddFlags = SCEV::FlagNSW;
4707     }
4708   }
4709 
4710   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4711   // RHS is NSW and LHS >= 0.
4712   //
4713   // The difficulty here is that the NSW flag may have been proven
4714   // relative to a loop that is to be found in a recurrence in LHS and
4715   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4716   // larger scope than intended.
4717   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4718 
4719   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4720 }
4721 
4722 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4723                                                      unsigned Depth) {
4724   Type *SrcTy = V->getType();
4725   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4726          "Cannot truncate or zero extend with non-integer arguments!");
4727   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4728     return V;  // No conversion
4729   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4730     return getTruncateExpr(V, Ty, Depth);
4731   return getZeroExtendExpr(V, Ty, Depth);
4732 }
4733 
4734 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4735                                                      unsigned Depth) {
4736   Type *SrcTy = V->getType();
4737   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4738          "Cannot truncate or zero extend with non-integer arguments!");
4739   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4740     return V;  // No conversion
4741   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4742     return getTruncateExpr(V, Ty, Depth);
4743   return getSignExtendExpr(V, Ty, Depth);
4744 }
4745 
4746 const SCEV *
4747 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4748   Type *SrcTy = V->getType();
4749   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4750          "Cannot noop or zero extend with non-integer arguments!");
4751   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4752          "getNoopOrZeroExtend cannot truncate!");
4753   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4754     return V;  // No conversion
4755   return getZeroExtendExpr(V, Ty);
4756 }
4757 
4758 const SCEV *
4759 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4760   Type *SrcTy = V->getType();
4761   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4762          "Cannot noop or sign extend with non-integer arguments!");
4763   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4764          "getNoopOrSignExtend cannot truncate!");
4765   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4766     return V;  // No conversion
4767   return getSignExtendExpr(V, Ty);
4768 }
4769 
4770 const SCEV *
4771 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4772   Type *SrcTy = V->getType();
4773   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4774          "Cannot noop or any extend with non-integer arguments!");
4775   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4776          "getNoopOrAnyExtend cannot truncate!");
4777   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4778     return V;  // No conversion
4779   return getAnyExtendExpr(V, Ty);
4780 }
4781 
4782 const SCEV *
4783 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4784   Type *SrcTy = V->getType();
4785   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4786          "Cannot truncate or noop with non-integer arguments!");
4787   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4788          "getTruncateOrNoop cannot extend!");
4789   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4790     return V;  // No conversion
4791   return getTruncateExpr(V, Ty);
4792 }
4793 
4794 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4795                                                         const SCEV *RHS) {
4796   const SCEV *PromotedLHS = LHS;
4797   const SCEV *PromotedRHS = RHS;
4798 
4799   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4800     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4801   else
4802     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4803 
4804   return getUMaxExpr(PromotedLHS, PromotedRHS);
4805 }
4806 
4807 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4808                                                         const SCEV *RHS,
4809                                                         bool Sequential) {
4810   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4811   return getUMinFromMismatchedTypes(Ops, Sequential);
4812 }
4813 
4814 const SCEV *
4815 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4816                                             bool Sequential) {
4817   assert(!Ops.empty() && "At least one operand must be!");
4818   // Trivial case.
4819   if (Ops.size() == 1)
4820     return Ops[0];
4821 
4822   // Find the max type first.
4823   Type *MaxType = nullptr;
4824   for (const auto *S : Ops)
4825     if (MaxType)
4826       MaxType = getWiderType(MaxType, S->getType());
4827     else
4828       MaxType = S->getType();
4829   assert(MaxType && "Failed to find maximum type!");
4830 
4831   // Extend all ops to max type.
4832   SmallVector<const SCEV *, 2> PromotedOps;
4833   for (const auto *S : Ops)
4834     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4835 
4836   // Generate umin.
4837   return getUMinExpr(PromotedOps, Sequential);
4838 }
4839 
4840 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4841   // A pointer operand may evaluate to a nonpointer expression, such as null.
4842   if (!V->getType()->isPointerTy())
4843     return V;
4844 
4845   while (true) {
4846     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4847       V = AddRec->getStart();
4848     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4849       const SCEV *PtrOp = nullptr;
4850       for (const SCEV *AddOp : Add->operands()) {
4851         if (AddOp->getType()->isPointerTy()) {
4852           assert(!PtrOp && "Cannot have multiple pointer ops");
4853           PtrOp = AddOp;
4854         }
4855       }
4856       assert(PtrOp && "Must have pointer op");
4857       V = PtrOp;
4858     } else // Not something we can look further into.
4859       return V;
4860   }
4861 }
4862 
4863 /// Push users of the given Instruction onto the given Worklist.
4864 static void PushDefUseChildren(Instruction *I,
4865                                SmallVectorImpl<Instruction *> &Worklist,
4866                                SmallPtrSetImpl<Instruction *> &Visited) {
4867   // Push the def-use children onto the Worklist stack.
4868   for (User *U : I->users()) {
4869     auto *UserInsn = cast<Instruction>(U);
4870     if (Visited.insert(UserInsn).second)
4871       Worklist.push_back(UserInsn);
4872   }
4873 }
4874 
4875 namespace {
4876 
4877 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4878 /// expression in case its Loop is L. If it is not L then
4879 /// if IgnoreOtherLoops is true then use AddRec itself
4880 /// otherwise rewrite cannot be done.
4881 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4882 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4883 public:
4884   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4885                              bool IgnoreOtherLoops = true) {
4886     SCEVInitRewriter Rewriter(L, SE);
4887     const SCEV *Result = Rewriter.visit(S);
4888     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4889       return SE.getCouldNotCompute();
4890     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4891                ? SE.getCouldNotCompute()
4892                : Result;
4893   }
4894 
4895   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4896     if (!SE.isLoopInvariant(Expr, L))
4897       SeenLoopVariantSCEVUnknown = true;
4898     return Expr;
4899   }
4900 
4901   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4902     // Only re-write AddRecExprs for this loop.
4903     if (Expr->getLoop() == L)
4904       return Expr->getStart();
4905     SeenOtherLoops = true;
4906     return Expr;
4907   }
4908 
4909   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4910 
4911   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4912 
4913 private:
4914   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4915       : SCEVRewriteVisitor(SE), L(L) {}
4916 
4917   const Loop *L;
4918   bool SeenLoopVariantSCEVUnknown = false;
4919   bool SeenOtherLoops = false;
4920 };
4921 
4922 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4923 /// increment expression in case its Loop is L. If it is not L then
4924 /// use AddRec itself.
4925 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4926 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4927 public:
4928   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4929     SCEVPostIncRewriter Rewriter(L, SE);
4930     const SCEV *Result = Rewriter.visit(S);
4931     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4932         ? SE.getCouldNotCompute()
4933         : Result;
4934   }
4935 
4936   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4937     if (!SE.isLoopInvariant(Expr, L))
4938       SeenLoopVariantSCEVUnknown = true;
4939     return Expr;
4940   }
4941 
4942   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4943     // Only re-write AddRecExprs for this loop.
4944     if (Expr->getLoop() == L)
4945       return Expr->getPostIncExpr(SE);
4946     SeenOtherLoops = true;
4947     return Expr;
4948   }
4949 
4950   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4951 
4952   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4953 
4954 private:
4955   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4956       : SCEVRewriteVisitor(SE), L(L) {}
4957 
4958   const Loop *L;
4959   bool SeenLoopVariantSCEVUnknown = false;
4960   bool SeenOtherLoops = false;
4961 };
4962 
4963 /// This class evaluates the compare condition by matching it against the
4964 /// condition of loop latch. If there is a match we assume a true value
4965 /// for the condition while building SCEV nodes.
4966 class SCEVBackedgeConditionFolder
4967     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4968 public:
4969   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4970                              ScalarEvolution &SE) {
4971     bool IsPosBECond = false;
4972     Value *BECond = nullptr;
4973     if (BasicBlock *Latch = L->getLoopLatch()) {
4974       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4975       if (BI && BI->isConditional()) {
4976         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4977                "Both outgoing branches should not target same header!");
4978         BECond = BI->getCondition();
4979         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4980       } else {
4981         return S;
4982       }
4983     }
4984     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4985     return Rewriter.visit(S);
4986   }
4987 
4988   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4989     const SCEV *Result = Expr;
4990     bool InvariantF = SE.isLoopInvariant(Expr, L);
4991 
4992     if (!InvariantF) {
4993       Instruction *I = cast<Instruction>(Expr->getValue());
4994       switch (I->getOpcode()) {
4995       case Instruction::Select: {
4996         SelectInst *SI = cast<SelectInst>(I);
4997         std::optional<const SCEV *> Res =
4998             compareWithBackedgeCondition(SI->getCondition());
4999         if (Res) {
5000           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
5001           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
5002         }
5003         break;
5004       }
5005       default: {
5006         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
5007         if (Res)
5008           Result = *Res;
5009         break;
5010       }
5011       }
5012     }
5013     return Result;
5014   }
5015 
5016 private:
5017   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
5018                                        bool IsPosBECond, ScalarEvolution &SE)
5019       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
5020         IsPositiveBECond(IsPosBECond) {}
5021 
5022   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
5023 
5024   const Loop *L;
5025   /// Loop back condition.
5026   Value *BackedgeCond = nullptr;
5027   /// Set to true if loop back is on positive branch condition.
5028   bool IsPositiveBECond;
5029 };
5030 
5031 std::optional<const SCEV *>
5032 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5033 
5034   // If value matches the backedge condition for loop latch,
5035   // then return a constant evolution node based on loopback
5036   // branch taken.
5037   if (BackedgeCond == IC)
5038     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
5039                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
5040   return std::nullopt;
5041 }
5042 
5043 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5044 public:
5045   static const SCEV *rewrite(const SCEV *S, const Loop *L,
5046                              ScalarEvolution &SE) {
5047     SCEVShiftRewriter Rewriter(L, SE);
5048     const SCEV *Result = Rewriter.visit(S);
5049     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5050   }
5051 
5052   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5053     // Only allow AddRecExprs for this loop.
5054     if (!SE.isLoopInvariant(Expr, L))
5055       Valid = false;
5056     return Expr;
5057   }
5058 
5059   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5060     if (Expr->getLoop() == L && Expr->isAffine())
5061       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5062     Valid = false;
5063     return Expr;
5064   }
5065 
5066   bool isValid() { return Valid; }
5067 
5068 private:
5069   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5070       : SCEVRewriteVisitor(SE), L(L) {}
5071 
5072   const Loop *L;
5073   bool Valid = true;
5074 };
5075 
5076 } // end anonymous namespace
5077 
5078 SCEV::NoWrapFlags
5079 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5080   if (!AR->isAffine())
5081     return SCEV::FlagAnyWrap;
5082 
5083   using OBO = OverflowingBinaryOperator;
5084 
5085   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5086 
5087   if (!AR->hasNoSelfWrap()) {
5088     const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5089     if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5090       ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5091       const APInt &BECountAP = BECountMax->getAPInt();
5092       unsigned NoOverflowBitWidth =
5093         BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5094       if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5095         Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5096     }
5097   }
5098 
5099   if (!AR->hasNoSignedWrap()) {
5100     ConstantRange AddRecRange = getSignedRange(AR);
5101     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5102 
5103     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5104         Instruction::Add, IncRange, OBO::NoSignedWrap);
5105     if (NSWRegion.contains(AddRecRange))
5106       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5107   }
5108 
5109   if (!AR->hasNoUnsignedWrap()) {
5110     ConstantRange AddRecRange = getUnsignedRange(AR);
5111     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5112 
5113     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5114         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5115     if (NUWRegion.contains(AddRecRange))
5116       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5117   }
5118 
5119   return Result;
5120 }
5121 
5122 SCEV::NoWrapFlags
5123 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5124   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5125 
5126   if (AR->hasNoSignedWrap())
5127     return Result;
5128 
5129   if (!AR->isAffine())
5130     return Result;
5131 
5132   // This function can be expensive, only try to prove NSW once per AddRec.
5133   if (!SignedWrapViaInductionTried.insert(AR).second)
5134     return Result;
5135 
5136   const SCEV *Step = AR->getStepRecurrence(*this);
5137   const Loop *L = AR->getLoop();
5138 
5139   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5140   // Note that this serves two purposes: It filters out loops that are
5141   // simply not analyzable, and it covers the case where this code is
5142   // being called from within backedge-taken count analysis, such that
5143   // attempting to ask for the backedge-taken count would likely result
5144   // in infinite recursion. In the later case, the analysis code will
5145   // cope with a conservative value, and it will take care to purge
5146   // that value once it has finished.
5147   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5148 
5149   // Normally, in the cases we can prove no-overflow via a
5150   // backedge guarding condition, we can also compute a backedge
5151   // taken count for the loop.  The exceptions are assumptions and
5152   // guards present in the loop -- SCEV is not great at exploiting
5153   // these to compute max backedge taken counts, but can still use
5154   // these to prove lack of overflow.  Use this fact to avoid
5155   // doing extra work that may not pay off.
5156 
5157   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5158       AC.assumptions().empty())
5159     return Result;
5160 
5161   // If the backedge is guarded by a comparison with the pre-inc  value the
5162   // addrec is safe. Also, if the entry is guarded by a comparison with the
5163   // start value and the backedge is guarded by a comparison with the post-inc
5164   // value, the addrec is safe.
5165   ICmpInst::Predicate Pred;
5166   const SCEV *OverflowLimit =
5167     getSignedOverflowLimitForStep(Step, &Pred, this);
5168   if (OverflowLimit &&
5169       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5170        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5171     Result = setFlags(Result, SCEV::FlagNSW);
5172   }
5173   return Result;
5174 }
5175 SCEV::NoWrapFlags
5176 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5177   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5178 
5179   if (AR->hasNoUnsignedWrap())
5180     return Result;
5181 
5182   if (!AR->isAffine())
5183     return Result;
5184 
5185   // This function can be expensive, only try to prove NUW once per AddRec.
5186   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5187     return Result;
5188 
5189   const SCEV *Step = AR->getStepRecurrence(*this);
5190   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5191   const Loop *L = AR->getLoop();
5192 
5193   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5194   // Note that this serves two purposes: It filters out loops that are
5195   // simply not analyzable, and it covers the case where this code is
5196   // being called from within backedge-taken count analysis, such that
5197   // attempting to ask for the backedge-taken count would likely result
5198   // in infinite recursion. In the later case, the analysis code will
5199   // cope with a conservative value, and it will take care to purge
5200   // that value once it has finished.
5201   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5202 
5203   // Normally, in the cases we can prove no-overflow via a
5204   // backedge guarding condition, we can also compute a backedge
5205   // taken count for the loop.  The exceptions are assumptions and
5206   // guards present in the loop -- SCEV is not great at exploiting
5207   // these to compute max backedge taken counts, but can still use
5208   // these to prove lack of overflow.  Use this fact to avoid
5209   // doing extra work that may not pay off.
5210 
5211   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5212       AC.assumptions().empty())
5213     return Result;
5214 
5215   // If the backedge is guarded by a comparison with the pre-inc  value the
5216   // addrec is safe. Also, if the entry is guarded by a comparison with the
5217   // start value and the backedge is guarded by a comparison with the post-inc
5218   // value, the addrec is safe.
5219   if (isKnownPositive(Step)) {
5220     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5221                                 getUnsignedRangeMax(Step));
5222     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5223         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5224       Result = setFlags(Result, SCEV::FlagNUW);
5225     }
5226   }
5227 
5228   return Result;
5229 }
5230 
5231 namespace {
5232 
5233 /// Represents an abstract binary operation.  This may exist as a
5234 /// normal instruction or constant expression, or may have been
5235 /// derived from an expression tree.
5236 struct BinaryOp {
5237   unsigned Opcode;
5238   Value *LHS;
5239   Value *RHS;
5240   bool IsNSW = false;
5241   bool IsNUW = false;
5242 
5243   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5244   /// constant expression.
5245   Operator *Op = nullptr;
5246 
5247   explicit BinaryOp(Operator *Op)
5248       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5249         Op(Op) {
5250     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5251       IsNSW = OBO->hasNoSignedWrap();
5252       IsNUW = OBO->hasNoUnsignedWrap();
5253     }
5254   }
5255 
5256   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5257                     bool IsNUW = false)
5258       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5259 };
5260 
5261 } // end anonymous namespace
5262 
5263 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5264 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5265                                              AssumptionCache &AC,
5266                                              const DominatorTree &DT,
5267                                              const Instruction *CxtI) {
5268   auto *Op = dyn_cast<Operator>(V);
5269   if (!Op)
5270     return std::nullopt;
5271 
5272   // Implementation detail: all the cleverness here should happen without
5273   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5274   // SCEV expressions when possible, and we should not break that.
5275 
5276   switch (Op->getOpcode()) {
5277   case Instruction::Add:
5278   case Instruction::Sub:
5279   case Instruction::Mul:
5280   case Instruction::UDiv:
5281   case Instruction::URem:
5282   case Instruction::And:
5283   case Instruction::AShr:
5284   case Instruction::Shl:
5285     return BinaryOp(Op);
5286 
5287   case Instruction::Or: {
5288     // Convert or disjoint into add nuw nsw.
5289     if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
5290       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5291                       /*IsNSW=*/true, /*IsNUW=*/true);
5292     return BinaryOp(Op);
5293   }
5294 
5295   case Instruction::Xor:
5296     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5297       // If the RHS of the xor is a signmask, then this is just an add.
5298       // Instcombine turns add of signmask into xor as a strength reduction step.
5299       if (RHSC->getValue().isSignMask())
5300         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5301     // Binary `xor` is a bit-wise `add`.
5302     if (V->getType()->isIntegerTy(1))
5303       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5304     return BinaryOp(Op);
5305 
5306   case Instruction::LShr:
5307     // Turn logical shift right of a constant into a unsigned divide.
5308     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5309       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5310 
5311       // If the shift count is not less than the bitwidth, the result of
5312       // the shift is undefined. Don't try to analyze it, because the
5313       // resolution chosen here may differ from the resolution chosen in
5314       // other parts of the compiler.
5315       if (SA->getValue().ult(BitWidth)) {
5316         Constant *X =
5317             ConstantInt::get(SA->getContext(),
5318                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5319         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5320       }
5321     }
5322     return BinaryOp(Op);
5323 
5324   case Instruction::ExtractValue: {
5325     auto *EVI = cast<ExtractValueInst>(Op);
5326     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5327       break;
5328 
5329     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5330     if (!WO)
5331       break;
5332 
5333     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5334     bool Signed = WO->isSigned();
5335     // TODO: Should add nuw/nsw flags for mul as well.
5336     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5337       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5338 
5339     // Now that we know that all uses of the arithmetic-result component of
5340     // CI are guarded by the overflow check, we can go ahead and pretend
5341     // that the arithmetic is non-overflowing.
5342     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5343                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5344   }
5345 
5346   default:
5347     break;
5348   }
5349 
5350   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5351   // semantics as a Sub, return a binary sub expression.
5352   if (auto *II = dyn_cast<IntrinsicInst>(V))
5353     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5354       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5355 
5356   return std::nullopt;
5357 }
5358 
5359 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5360 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5361 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5362 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5363 /// follows one of the following patterns:
5364 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5365 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5366 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5367 /// we return the type of the truncation operation, and indicate whether the
5368 /// truncated type should be treated as signed/unsigned by setting
5369 /// \p Signed to true/false, respectively.
5370 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5371                                bool &Signed, ScalarEvolution &SE) {
5372   // The case where Op == SymbolicPHI (that is, with no type conversions on
5373   // the way) is handled by the regular add recurrence creating logic and
5374   // would have already been triggered in createAddRecForPHI. Reaching it here
5375   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5376   // because one of the other operands of the SCEVAddExpr updating this PHI is
5377   // not invariant).
5378   //
5379   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5380   // this case predicates that allow us to prove that Op == SymbolicPHI will
5381   // be added.
5382   if (Op == SymbolicPHI)
5383     return nullptr;
5384 
5385   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5386   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5387   if (SourceBits != NewBits)
5388     return nullptr;
5389 
5390   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5391   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5392   if (!SExt && !ZExt)
5393     return nullptr;
5394   const SCEVTruncateExpr *Trunc =
5395       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5396            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5397   if (!Trunc)
5398     return nullptr;
5399   const SCEV *X = Trunc->getOperand();
5400   if (X != SymbolicPHI)
5401     return nullptr;
5402   Signed = SExt != nullptr;
5403   return Trunc->getType();
5404 }
5405 
5406 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5407   if (!PN->getType()->isIntegerTy())
5408     return nullptr;
5409   const Loop *L = LI.getLoopFor(PN->getParent());
5410   if (!L || L->getHeader() != PN->getParent())
5411     return nullptr;
5412   return L;
5413 }
5414 
5415 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5416 // computation that updates the phi follows the following pattern:
5417 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5418 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5419 // If so, try to see if it can be rewritten as an AddRecExpr under some
5420 // Predicates. If successful, return them as a pair. Also cache the results
5421 // of the analysis.
5422 //
5423 // Example usage scenario:
5424 //    Say the Rewriter is called for the following SCEV:
5425 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5426 //    where:
5427 //         %X = phi i64 (%Start, %BEValue)
5428 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5429 //    and call this function with %SymbolicPHI = %X.
5430 //
5431 //    The analysis will find that the value coming around the backedge has
5432 //    the following SCEV:
5433 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5434 //    Upon concluding that this matches the desired pattern, the function
5435 //    will return the pair {NewAddRec, SmallPredsVec} where:
5436 //         NewAddRec = {%Start,+,%Step}
5437 //         SmallPredsVec = {P1, P2, P3} as follows:
5438 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5439 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5440 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5441 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5442 //    under the predicates {P1,P2,P3}.
5443 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5444 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5445 //
5446 // TODO's:
5447 //
5448 // 1) Extend the Induction descriptor to also support inductions that involve
5449 //    casts: When needed (namely, when we are called in the context of the
5450 //    vectorizer induction analysis), a Set of cast instructions will be
5451 //    populated by this method, and provided back to isInductionPHI. This is
5452 //    needed to allow the vectorizer to properly record them to be ignored by
5453 //    the cost model and to avoid vectorizing them (otherwise these casts,
5454 //    which are redundant under the runtime overflow checks, will be
5455 //    vectorized, which can be costly).
5456 //
5457 // 2) Support additional induction/PHISCEV patterns: We also want to support
5458 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5459 //    after the induction update operation (the induction increment):
5460 //
5461 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5462 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5463 //
5464 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5465 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5466 //
5467 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5468 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5469 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5470   SmallVector<const SCEVPredicate *, 3> Predicates;
5471 
5472   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5473   // return an AddRec expression under some predicate.
5474 
5475   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5476   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5477   assert(L && "Expecting an integer loop header phi");
5478 
5479   // The loop may have multiple entrances or multiple exits; we can analyze
5480   // this phi as an addrec if it has a unique entry value and a unique
5481   // backedge value.
5482   Value *BEValueV = nullptr, *StartValueV = nullptr;
5483   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5484     Value *V = PN->getIncomingValue(i);
5485     if (L->contains(PN->getIncomingBlock(i))) {
5486       if (!BEValueV) {
5487         BEValueV = V;
5488       } else if (BEValueV != V) {
5489         BEValueV = nullptr;
5490         break;
5491       }
5492     } else if (!StartValueV) {
5493       StartValueV = V;
5494     } else if (StartValueV != V) {
5495       StartValueV = nullptr;
5496       break;
5497     }
5498   }
5499   if (!BEValueV || !StartValueV)
5500     return std::nullopt;
5501 
5502   const SCEV *BEValue = getSCEV(BEValueV);
5503 
5504   // If the value coming around the backedge is an add with the symbolic
5505   // value we just inserted, possibly with casts that we can ignore under
5506   // an appropriate runtime guard, then we found a simple induction variable!
5507   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5508   if (!Add)
5509     return std::nullopt;
5510 
5511   // If there is a single occurrence of the symbolic value, possibly
5512   // casted, replace it with a recurrence.
5513   unsigned FoundIndex = Add->getNumOperands();
5514   Type *TruncTy = nullptr;
5515   bool Signed;
5516   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5517     if ((TruncTy =
5518              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5519       if (FoundIndex == e) {
5520         FoundIndex = i;
5521         break;
5522       }
5523 
5524   if (FoundIndex == Add->getNumOperands())
5525     return std::nullopt;
5526 
5527   // Create an add with everything but the specified operand.
5528   SmallVector<const SCEV *, 8> Ops;
5529   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5530     if (i != FoundIndex)
5531       Ops.push_back(Add->getOperand(i));
5532   const SCEV *Accum = getAddExpr(Ops);
5533 
5534   // The runtime checks will not be valid if the step amount is
5535   // varying inside the loop.
5536   if (!isLoopInvariant(Accum, L))
5537     return std::nullopt;
5538 
5539   // *** Part2: Create the predicates
5540 
5541   // Analysis was successful: we have a phi-with-cast pattern for which we
5542   // can return an AddRec expression under the following predicates:
5543   //
5544   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5545   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5546   // P2: An Equal predicate that guarantees that
5547   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5548   // P3: An Equal predicate that guarantees that
5549   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5550   //
5551   // As we next prove, the above predicates guarantee that:
5552   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5553   //
5554   //
5555   // More formally, we want to prove that:
5556   //     Expr(i+1) = Start + (i+1) * Accum
5557   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5558   //
5559   // Given that:
5560   // 1) Expr(0) = Start
5561   // 2) Expr(1) = Start + Accum
5562   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5563   // 3) Induction hypothesis (step i):
5564   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5565   //
5566   // Proof:
5567   //  Expr(i+1) =
5568   //   = Start + (i+1)*Accum
5569   //   = (Start + i*Accum) + Accum
5570   //   = Expr(i) + Accum
5571   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5572   //                                                             :: from step i
5573   //
5574   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5575   //
5576   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5577   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5578   //     + Accum                                                     :: from P3
5579   //
5580   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5581   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5582   //
5583   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5584   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5585   //
5586   // By induction, the same applies to all iterations 1<=i<n:
5587   //
5588 
5589   // Create a truncated addrec for which we will add a no overflow check (P1).
5590   const SCEV *StartVal = getSCEV(StartValueV);
5591   const SCEV *PHISCEV =
5592       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5593                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5594 
5595   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5596   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5597   // will be constant.
5598   //
5599   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5600   // add P1.
5601   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5602     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5603         Signed ? SCEVWrapPredicate::IncrementNSSW
5604                : SCEVWrapPredicate::IncrementNUSW;
5605     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5606     Predicates.push_back(AddRecPred);
5607   }
5608 
5609   // Create the Equal Predicates P2,P3:
5610 
5611   // It is possible that the predicates P2 and/or P3 are computable at
5612   // compile time due to StartVal and/or Accum being constants.
5613   // If either one is, then we can check that now and escape if either P2
5614   // or P3 is false.
5615 
5616   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5617   // for each of StartVal and Accum
5618   auto getExtendedExpr = [&](const SCEV *Expr,
5619                              bool CreateSignExtend) -> const SCEV * {
5620     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5621     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5622     const SCEV *ExtendedExpr =
5623         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5624                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5625     return ExtendedExpr;
5626   };
5627 
5628   // Given:
5629   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5630   //               = getExtendedExpr(Expr)
5631   // Determine whether the predicate P: Expr == ExtendedExpr
5632   // is known to be false at compile time
5633   auto PredIsKnownFalse = [&](const SCEV *Expr,
5634                               const SCEV *ExtendedExpr) -> bool {
5635     return Expr != ExtendedExpr &&
5636            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5637   };
5638 
5639   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5640   if (PredIsKnownFalse(StartVal, StartExtended)) {
5641     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5642     return std::nullopt;
5643   }
5644 
5645   // The Step is always Signed (because the overflow checks are either
5646   // NSSW or NUSW)
5647   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5648   if (PredIsKnownFalse(Accum, AccumExtended)) {
5649     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5650     return std::nullopt;
5651   }
5652 
5653   auto AppendPredicate = [&](const SCEV *Expr,
5654                              const SCEV *ExtendedExpr) -> void {
5655     if (Expr != ExtendedExpr &&
5656         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5657       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5658       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5659       Predicates.push_back(Pred);
5660     }
5661   };
5662 
5663   AppendPredicate(StartVal, StartExtended);
5664   AppendPredicate(Accum, AccumExtended);
5665 
5666   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5667   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5668   // into NewAR if it will also add the runtime overflow checks specified in
5669   // Predicates.
5670   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5671 
5672   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5673       std::make_pair(NewAR, Predicates);
5674   // Remember the result of the analysis for this SCEV at this locayyytion.
5675   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5676   return PredRewrite;
5677 }
5678 
5679 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5680 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5681   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5682   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5683   if (!L)
5684     return std::nullopt;
5685 
5686   // Check to see if we already analyzed this PHI.
5687   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5688   if (I != PredicatedSCEVRewrites.end()) {
5689     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5690         I->second;
5691     // Analysis was done before and failed to create an AddRec:
5692     if (Rewrite.first == SymbolicPHI)
5693       return std::nullopt;
5694     // Analysis was done before and succeeded to create an AddRec under
5695     // a predicate:
5696     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5697     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5698     return Rewrite;
5699   }
5700 
5701   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5702     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5703 
5704   // Record in the cache that the analysis failed
5705   if (!Rewrite) {
5706     SmallVector<const SCEVPredicate *, 3> Predicates;
5707     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5708     return std::nullopt;
5709   }
5710 
5711   return Rewrite;
5712 }
5713 
5714 // FIXME: This utility is currently required because the Rewriter currently
5715 // does not rewrite this expression:
5716 // {0, +, (sext ix (trunc iy to ix) to iy)}
5717 // into {0, +, %step},
5718 // even when the following Equal predicate exists:
5719 // "%step == (sext ix (trunc iy to ix) to iy)".
5720 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5721     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5722   if (AR1 == AR2)
5723     return true;
5724 
5725   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5726     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5727         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5728       return false;
5729     return true;
5730   };
5731 
5732   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5733       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5734     return false;
5735   return true;
5736 }
5737 
5738 /// A helper function for createAddRecFromPHI to handle simple cases.
5739 ///
5740 /// This function tries to find an AddRec expression for the simplest (yet most
5741 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5742 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5743 /// technique for finding the AddRec expression.
5744 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5745                                                       Value *BEValueV,
5746                                                       Value *StartValueV) {
5747   const Loop *L = LI.getLoopFor(PN->getParent());
5748   assert(L && L->getHeader() == PN->getParent());
5749   assert(BEValueV && StartValueV);
5750 
5751   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5752   if (!BO)
5753     return nullptr;
5754 
5755   if (BO->Opcode != Instruction::Add)
5756     return nullptr;
5757 
5758   const SCEV *Accum = nullptr;
5759   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5760     Accum = getSCEV(BO->RHS);
5761   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5762     Accum = getSCEV(BO->LHS);
5763 
5764   if (!Accum)
5765     return nullptr;
5766 
5767   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5768   if (BO->IsNUW)
5769     Flags = setFlags(Flags, SCEV::FlagNUW);
5770   if (BO->IsNSW)
5771     Flags = setFlags(Flags, SCEV::FlagNSW);
5772 
5773   const SCEV *StartVal = getSCEV(StartValueV);
5774   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5775   insertValueToMap(PN, PHISCEV);
5776 
5777   if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5778     setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5779                    (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5780                                        proveNoWrapViaConstantRanges(AR)));
5781   }
5782 
5783   // We can add Flags to the post-inc expression only if we
5784   // know that it is *undefined behavior* for BEValueV to
5785   // overflow.
5786   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5787     assert(isLoopInvariant(Accum, L) &&
5788            "Accum is defined outside L, but is not invariant?");
5789     if (isAddRecNeverPoison(BEInst, L))
5790       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5791   }
5792 
5793   return PHISCEV;
5794 }
5795 
5796 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5797   const Loop *L = LI.getLoopFor(PN->getParent());
5798   if (!L || L->getHeader() != PN->getParent())
5799     return nullptr;
5800 
5801   // The loop may have multiple entrances or multiple exits; we can analyze
5802   // this phi as an addrec if it has a unique entry value and a unique
5803   // backedge value.
5804   Value *BEValueV = nullptr, *StartValueV = nullptr;
5805   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5806     Value *V = PN->getIncomingValue(i);
5807     if (L->contains(PN->getIncomingBlock(i))) {
5808       if (!BEValueV) {
5809         BEValueV = V;
5810       } else if (BEValueV != V) {
5811         BEValueV = nullptr;
5812         break;
5813       }
5814     } else if (!StartValueV) {
5815       StartValueV = V;
5816     } else if (StartValueV != V) {
5817       StartValueV = nullptr;
5818       break;
5819     }
5820   }
5821   if (!BEValueV || !StartValueV)
5822     return nullptr;
5823 
5824   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5825          "PHI node already processed?");
5826 
5827   // First, try to find AddRec expression without creating a fictituos symbolic
5828   // value for PN.
5829   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5830     return S;
5831 
5832   // Handle PHI node value symbolically.
5833   const SCEV *SymbolicName = getUnknown(PN);
5834   insertValueToMap(PN, SymbolicName);
5835 
5836   // Using this symbolic name for the PHI, analyze the value coming around
5837   // the back-edge.
5838   const SCEV *BEValue = getSCEV(BEValueV);
5839 
5840   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5841   // has a special value for the first iteration of the loop.
5842 
5843   // If the value coming around the backedge is an add with the symbolic
5844   // value we just inserted, then we found a simple induction variable!
5845   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5846     // If there is a single occurrence of the symbolic value, replace it
5847     // with a recurrence.
5848     unsigned FoundIndex = Add->getNumOperands();
5849     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5850       if (Add->getOperand(i) == SymbolicName)
5851         if (FoundIndex == e) {
5852           FoundIndex = i;
5853           break;
5854         }
5855 
5856     if (FoundIndex != Add->getNumOperands()) {
5857       // Create an add with everything but the specified operand.
5858       SmallVector<const SCEV *, 8> Ops;
5859       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5860         if (i != FoundIndex)
5861           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5862                                                              L, *this));
5863       const SCEV *Accum = getAddExpr(Ops);
5864 
5865       // This is not a valid addrec if the step amount is varying each
5866       // loop iteration, but is not itself an addrec in this loop.
5867       if (isLoopInvariant(Accum, L) ||
5868           (isa<SCEVAddRecExpr>(Accum) &&
5869            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5870         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5871 
5872         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5873           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5874             if (BO->IsNUW)
5875               Flags = setFlags(Flags, SCEV::FlagNUW);
5876             if (BO->IsNSW)
5877               Flags = setFlags(Flags, SCEV::FlagNSW);
5878           }
5879         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5880           // If the increment is an inbounds GEP, then we know the address
5881           // space cannot be wrapped around. We cannot make any guarantee
5882           // about signed or unsigned overflow because pointers are
5883           // unsigned but we may have a negative index from the base
5884           // pointer. We can guarantee that no unsigned wrap occurs if the
5885           // indices form a positive value.
5886           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5887             Flags = setFlags(Flags, SCEV::FlagNW);
5888             if (isKnownPositive(Accum))
5889               Flags = setFlags(Flags, SCEV::FlagNUW);
5890           }
5891 
5892           // We cannot transfer nuw and nsw flags from subtraction
5893           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5894           // for instance.
5895         }
5896 
5897         const SCEV *StartVal = getSCEV(StartValueV);
5898         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5899 
5900         // Okay, for the entire analysis of this edge we assumed the PHI
5901         // to be symbolic.  We now need to go back and purge all of the
5902         // entries for the scalars that use the symbolic expression.
5903         forgetMemoizedResults(SymbolicName);
5904         insertValueToMap(PN, PHISCEV);
5905 
5906         if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5907           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5908                          (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5909                                              proveNoWrapViaConstantRanges(AR)));
5910         }
5911 
5912         // We can add Flags to the post-inc expression only if we
5913         // know that it is *undefined behavior* for BEValueV to
5914         // overflow.
5915         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5916           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5917             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5918 
5919         return PHISCEV;
5920       }
5921     }
5922   } else {
5923     // Otherwise, this could be a loop like this:
5924     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5925     // In this case, j = {1,+,1}  and BEValue is j.
5926     // Because the other in-value of i (0) fits the evolution of BEValue
5927     // i really is an addrec evolution.
5928     //
5929     // We can generalize this saying that i is the shifted value of BEValue
5930     // by one iteration:
5931     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5932     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5933     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5934     if (Shifted != getCouldNotCompute() &&
5935         Start != getCouldNotCompute()) {
5936       const SCEV *StartVal = getSCEV(StartValueV);
5937       if (Start == StartVal) {
5938         // Okay, for the entire analysis of this edge we assumed the PHI
5939         // to be symbolic.  We now need to go back and purge all of the
5940         // entries for the scalars that use the symbolic expression.
5941         forgetMemoizedResults(SymbolicName);
5942         insertValueToMap(PN, Shifted);
5943         return Shifted;
5944       }
5945     }
5946   }
5947 
5948   // Remove the temporary PHI node SCEV that has been inserted while intending
5949   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5950   // as it will prevent later (possibly simpler) SCEV expressions to be added
5951   // to the ValueExprMap.
5952   eraseValueFromMap(PN);
5953 
5954   return nullptr;
5955 }
5956 
5957 // Try to match a control flow sequence that branches out at BI and merges back
5958 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5959 // match.
5960 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5961                           Value *&C, Value *&LHS, Value *&RHS) {
5962   C = BI->getCondition();
5963 
5964   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5965   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5966 
5967   if (!LeftEdge.isSingleEdge())
5968     return false;
5969 
5970   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5971 
5972   Use &LeftUse = Merge->getOperandUse(0);
5973   Use &RightUse = Merge->getOperandUse(1);
5974 
5975   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5976     LHS = LeftUse;
5977     RHS = RightUse;
5978     return true;
5979   }
5980 
5981   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5982     LHS = RightUse;
5983     RHS = LeftUse;
5984     return true;
5985   }
5986 
5987   return false;
5988 }
5989 
5990 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5991   auto IsReachable =
5992       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5993   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5994     // Try to match
5995     //
5996     //  br %cond, label %left, label %right
5997     // left:
5998     //  br label %merge
5999     // right:
6000     //  br label %merge
6001     // merge:
6002     //  V = phi [ %x, %left ], [ %y, %right ]
6003     //
6004     // as "select %cond, %x, %y"
6005 
6006     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
6007     assert(IDom && "At least the entry block should dominate PN");
6008 
6009     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
6010     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
6011 
6012     if (BI && BI->isConditional() &&
6013         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
6014         properlyDominates(getSCEV(LHS), PN->getParent()) &&
6015         properlyDominates(getSCEV(RHS), PN->getParent()))
6016       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
6017   }
6018 
6019   return nullptr;
6020 }
6021 
6022 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6023   if (const SCEV *S = createAddRecFromPHI(PN))
6024     return S;
6025 
6026   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
6027     return getSCEV(V);
6028 
6029   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6030     return S;
6031 
6032   // If it's not a loop phi, we can't handle it yet.
6033   return getUnknown(PN);
6034 }
6035 
6036 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6037                             SCEVTypes RootKind) {
6038   struct FindClosure {
6039     const SCEV *OperandToFind;
6040     const SCEVTypes RootKind; // Must be a sequential min/max expression.
6041     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6042 
6043     bool Found = false;
6044 
6045     bool canRecurseInto(SCEVTypes Kind) const {
6046       // We can only recurse into the SCEV expression of the same effective type
6047       // as the type of our root SCEV expression, and into zero-extensions.
6048       return RootKind == Kind || NonSequentialRootKind == Kind ||
6049              scZeroExtend == Kind;
6050     };
6051 
6052     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6053         : OperandToFind(OperandToFind), RootKind(RootKind),
6054           NonSequentialRootKind(
6055               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6056                   RootKind)) {}
6057 
6058     bool follow(const SCEV *S) {
6059       Found = S == OperandToFind;
6060 
6061       return !isDone() && canRecurseInto(S->getSCEVType());
6062     }
6063 
6064     bool isDone() const { return Found; }
6065   };
6066 
6067   FindClosure FC(OperandToFind, RootKind);
6068   visitAll(Root, FC);
6069   return FC.Found;
6070 }
6071 
6072 std::optional<const SCEV *>
6073 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6074                                                               ICmpInst *Cond,
6075                                                               Value *TrueVal,
6076                                                               Value *FalseVal) {
6077   // Try to match some simple smax or umax patterns.
6078   auto *ICI = Cond;
6079 
6080   Value *LHS = ICI->getOperand(0);
6081   Value *RHS = ICI->getOperand(1);
6082 
6083   switch (ICI->getPredicate()) {
6084   case ICmpInst::ICMP_SLT:
6085   case ICmpInst::ICMP_SLE:
6086   case ICmpInst::ICMP_ULT:
6087   case ICmpInst::ICMP_ULE:
6088     std::swap(LHS, RHS);
6089     [[fallthrough]];
6090   case ICmpInst::ICMP_SGT:
6091   case ICmpInst::ICMP_SGE:
6092   case ICmpInst::ICMP_UGT:
6093   case ICmpInst::ICMP_UGE:
6094     // a > b ? a+x : b+x  ->  max(a, b)+x
6095     // a > b ? b+x : a+x  ->  min(a, b)+x
6096     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6097       bool Signed = ICI->isSigned();
6098       const SCEV *LA = getSCEV(TrueVal);
6099       const SCEV *RA = getSCEV(FalseVal);
6100       const SCEV *LS = getSCEV(LHS);
6101       const SCEV *RS = getSCEV(RHS);
6102       if (LA->getType()->isPointerTy()) {
6103         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6104         // Need to make sure we can't produce weird expressions involving
6105         // negated pointers.
6106         if (LA == LS && RA == RS)
6107           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6108         if (LA == RS && RA == LS)
6109           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6110       }
6111       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6112         if (Op->getType()->isPointerTy()) {
6113           Op = getLosslessPtrToIntExpr(Op);
6114           if (isa<SCEVCouldNotCompute>(Op))
6115             return Op;
6116         }
6117         if (Signed)
6118           Op = getNoopOrSignExtend(Op, Ty);
6119         else
6120           Op = getNoopOrZeroExtend(Op, Ty);
6121         return Op;
6122       };
6123       LS = CoerceOperand(LS);
6124       RS = CoerceOperand(RS);
6125       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6126         break;
6127       const SCEV *LDiff = getMinusSCEV(LA, LS);
6128       const SCEV *RDiff = getMinusSCEV(RA, RS);
6129       if (LDiff == RDiff)
6130         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6131                           LDiff);
6132       LDiff = getMinusSCEV(LA, RS);
6133       RDiff = getMinusSCEV(RA, LS);
6134       if (LDiff == RDiff)
6135         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6136                           LDiff);
6137     }
6138     break;
6139   case ICmpInst::ICMP_NE:
6140     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6141     std::swap(TrueVal, FalseVal);
6142     [[fallthrough]];
6143   case ICmpInst::ICMP_EQ:
6144     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6145     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6146         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6147       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6148       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6149       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6150       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6151       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6152       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6153         return getAddExpr(getUMaxExpr(X, C), Y);
6154     }
6155     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6156     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6157     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6158     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6159     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6160         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6161       const SCEV *X = getSCEV(LHS);
6162       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6163         X = ZExt->getOperand();
6164       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6165         const SCEV *FalseValExpr = getSCEV(FalseVal);
6166         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6167           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6168                              /*Sequential=*/true);
6169       }
6170     }
6171     break;
6172   default:
6173     break;
6174   }
6175 
6176   return std::nullopt;
6177 }
6178 
6179 static std::optional<const SCEV *>
6180 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6181                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6182   assert(CondExpr->getType()->isIntegerTy(1) &&
6183          TrueExpr->getType() == FalseExpr->getType() &&
6184          TrueExpr->getType()->isIntegerTy(1) &&
6185          "Unexpected operands of a select.");
6186 
6187   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6188   //                        -->  C + (umin_seq  cond, x - C)
6189   //
6190   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6191   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6192   //                        -->  C + (umin_seq ~cond, x - C)
6193 
6194   // FIXME: while we can't legally model the case where both of the hands
6195   // are fully variable, we only require that the *difference* is constant.
6196   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6197     return std::nullopt;
6198 
6199   const SCEV *X, *C;
6200   if (isa<SCEVConstant>(TrueExpr)) {
6201     CondExpr = SE->getNotSCEV(CondExpr);
6202     X = FalseExpr;
6203     C = TrueExpr;
6204   } else {
6205     X = TrueExpr;
6206     C = FalseExpr;
6207   }
6208   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6209                                            /*Sequential=*/true));
6210 }
6211 
6212 static std::optional<const SCEV *>
6213 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6214                               Value *FalseVal) {
6215   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6216     return std::nullopt;
6217 
6218   const auto *SECond = SE->getSCEV(Cond);
6219   const auto *SETrue = SE->getSCEV(TrueVal);
6220   const auto *SEFalse = SE->getSCEV(FalseVal);
6221   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6222 }
6223 
6224 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6225     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6226   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6227   assert(TrueVal->getType() == FalseVal->getType() &&
6228          V->getType() == TrueVal->getType() &&
6229          "Types of select hands and of the result must match.");
6230 
6231   // For now, only deal with i1-typed `select`s.
6232   if (!V->getType()->isIntegerTy(1))
6233     return getUnknown(V);
6234 
6235   if (std::optional<const SCEV *> S =
6236           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6237     return *S;
6238 
6239   return getUnknown(V);
6240 }
6241 
6242 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6243                                                       Value *TrueVal,
6244                                                       Value *FalseVal) {
6245   // Handle "constant" branch or select. This can occur for instance when a
6246   // loop pass transforms an inner loop and moves on to process the outer loop.
6247   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6248     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6249 
6250   if (auto *I = dyn_cast<Instruction>(V)) {
6251     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6252       if (std::optional<const SCEV *> S =
6253               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6254                                                            TrueVal, FalseVal))
6255         return *S;
6256     }
6257   }
6258 
6259   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6260 }
6261 
6262 /// Expand GEP instructions into add and multiply operations. This allows them
6263 /// to be analyzed by regular SCEV code.
6264 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6265   assert(GEP->getSourceElementType()->isSized() &&
6266          "GEP source element type must be sized");
6267 
6268   SmallVector<const SCEV *, 4> IndexExprs;
6269   for (Value *Index : GEP->indices())
6270     IndexExprs.push_back(getSCEV(Index));
6271   return getGEPExpr(GEP, IndexExprs);
6272 }
6273 
6274 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6275   uint64_t BitWidth = getTypeSizeInBits(S->getType());
6276   auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6277     return TrailingZeros >= BitWidth
6278                ? APInt::getZero(BitWidth)
6279                : APInt::getOneBitSet(BitWidth, TrailingZeros);
6280   };
6281   auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6282     // The result is GCD of all operands results.
6283     APInt Res = getConstantMultiple(N->getOperand(0));
6284     for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6285       Res = APIntOps::GreatestCommonDivisor(
6286           Res, getConstantMultiple(N->getOperand(I)));
6287     return Res;
6288   };
6289 
6290   switch (S->getSCEVType()) {
6291   case scConstant:
6292     return cast<SCEVConstant>(S)->getAPInt();
6293   case scPtrToInt:
6294     return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6295   case scUDivExpr:
6296   case scVScale:
6297     return APInt(BitWidth, 1);
6298   case scTruncate: {
6299     // Only multiples that are a power of 2 will hold after truncation.
6300     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6301     uint32_t TZ = getMinTrailingZeros(T->getOperand());
6302     return GetShiftedByZeros(TZ);
6303   }
6304   case scZeroExtend: {
6305     const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6306     return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6307   }
6308   case scSignExtend: {
6309     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6310     return getConstantMultiple(E->getOperand()).sext(BitWidth);
6311   }
6312   case scMulExpr: {
6313     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6314     if (M->hasNoUnsignedWrap()) {
6315       // The result is the product of all operand results.
6316       APInt Res = getConstantMultiple(M->getOperand(0));
6317       for (const SCEV *Operand : M->operands().drop_front())
6318         Res = Res * getConstantMultiple(Operand);
6319       return Res;
6320     }
6321 
6322     // If there are no wrap guarentees, find the trailing zeros, which is the
6323     // sum of trailing zeros for all its operands.
6324     uint32_t TZ = 0;
6325     for (const SCEV *Operand : M->operands())
6326       TZ += getMinTrailingZeros(Operand);
6327     return GetShiftedByZeros(TZ);
6328   }
6329   case scAddExpr:
6330   case scAddRecExpr: {
6331     const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6332     if (N->hasNoUnsignedWrap())
6333         return GetGCDMultiple(N);
6334     // Find the trailing bits, which is the minimum of its operands.
6335     uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6336     for (const SCEV *Operand : N->operands().drop_front())
6337       TZ = std::min(TZ, getMinTrailingZeros(Operand));
6338     return GetShiftedByZeros(TZ);
6339   }
6340   case scUMaxExpr:
6341   case scSMaxExpr:
6342   case scUMinExpr:
6343   case scSMinExpr:
6344   case scSequentialUMinExpr:
6345     return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6346   case scUnknown: {
6347     // ask ValueTracking for known bits
6348     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6349     unsigned Known =
6350         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6351             .countMinTrailingZeros();
6352     return GetShiftedByZeros(Known);
6353   }
6354   case scCouldNotCompute:
6355     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6356   }
6357   llvm_unreachable("Unknown SCEV kind!");
6358 }
6359 
6360 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6361   auto I = ConstantMultipleCache.find(S);
6362   if (I != ConstantMultipleCache.end())
6363     return I->second;
6364 
6365   APInt Result = getConstantMultipleImpl(S);
6366   auto InsertPair = ConstantMultipleCache.insert({S, Result});
6367   assert(InsertPair.second && "Should insert a new key");
6368   return InsertPair.first->second;
6369 }
6370 
6371 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6372   APInt Multiple = getConstantMultiple(S);
6373   return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6374 }
6375 
6376 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6377   return std::min(getConstantMultiple(S).countTrailingZeros(),
6378                   (unsigned)getTypeSizeInBits(S->getType()));
6379 }
6380 
6381 /// Helper method to assign a range to V from metadata present in the IR.
6382 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6383   if (Instruction *I = dyn_cast<Instruction>(V))
6384     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6385       return getConstantRangeFromMetadata(*MD);
6386 
6387   return std::nullopt;
6388 }
6389 
6390 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6391                                      SCEV::NoWrapFlags Flags) {
6392   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6393     AddRec->setNoWrapFlags(Flags);
6394     UnsignedRanges.erase(AddRec);
6395     SignedRanges.erase(AddRec);
6396     ConstantMultipleCache.erase(AddRec);
6397   }
6398 }
6399 
6400 ConstantRange ScalarEvolution::
6401 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6402   const DataLayout &DL = getDataLayout();
6403 
6404   unsigned BitWidth = getTypeSizeInBits(U->getType());
6405   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6406 
6407   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6408   // use information about the trip count to improve our available range.  Note
6409   // that the trip count independent cases are already handled by known bits.
6410   // WARNING: The definition of recurrence used here is subtly different than
6411   // the one used by AddRec (and thus most of this file).  Step is allowed to
6412   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6413   // and other addrecs in the same loop (for non-affine addrecs).  The code
6414   // below intentionally handles the case where step is not loop invariant.
6415   auto *P = dyn_cast<PHINode>(U->getValue());
6416   if (!P)
6417     return FullSet;
6418 
6419   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6420   // even the values that are not available in these blocks may come from them,
6421   // and this leads to false-positive recurrence test.
6422   for (auto *Pred : predecessors(P->getParent()))
6423     if (!DT.isReachableFromEntry(Pred))
6424       return FullSet;
6425 
6426   BinaryOperator *BO;
6427   Value *Start, *Step;
6428   if (!matchSimpleRecurrence(P, BO, Start, Step))
6429     return FullSet;
6430 
6431   // If we found a recurrence in reachable code, we must be in a loop. Note
6432   // that BO might be in some subloop of L, and that's completely okay.
6433   auto *L = LI.getLoopFor(P->getParent());
6434   assert(L && L->getHeader() == P->getParent());
6435   if (!L->contains(BO->getParent()))
6436     // NOTE: This bailout should be an assert instead.  However, asserting
6437     // the condition here exposes a case where LoopFusion is querying SCEV
6438     // with malformed loop information during the midst of the transform.
6439     // There doesn't appear to be an obvious fix, so for the moment bailout
6440     // until the caller issue can be fixed.  PR49566 tracks the bug.
6441     return FullSet;
6442 
6443   // TODO: Extend to other opcodes such as mul, and div
6444   switch (BO->getOpcode()) {
6445   default:
6446     return FullSet;
6447   case Instruction::AShr:
6448   case Instruction::LShr:
6449   case Instruction::Shl:
6450     break;
6451   };
6452 
6453   if (BO->getOperand(0) != P)
6454     // TODO: Handle the power function forms some day.
6455     return FullSet;
6456 
6457   unsigned TC = getSmallConstantMaxTripCount(L);
6458   if (!TC || TC >= BitWidth)
6459     return FullSet;
6460 
6461   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6462   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6463   assert(KnownStart.getBitWidth() == BitWidth &&
6464          KnownStep.getBitWidth() == BitWidth);
6465 
6466   // Compute total shift amount, being careful of overflow and bitwidths.
6467   auto MaxShiftAmt = KnownStep.getMaxValue();
6468   APInt TCAP(BitWidth, TC-1);
6469   bool Overflow = false;
6470   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6471   if (Overflow)
6472     return FullSet;
6473 
6474   switch (BO->getOpcode()) {
6475   default:
6476     llvm_unreachable("filtered out above");
6477   case Instruction::AShr: {
6478     // For each ashr, three cases:
6479     //   shift = 0 => unchanged value
6480     //   saturation => 0 or -1
6481     //   other => a value closer to zero (of the same sign)
6482     // Thus, the end value is closer to zero than the start.
6483     auto KnownEnd = KnownBits::ashr(KnownStart,
6484                                     KnownBits::makeConstant(TotalShift));
6485     if (KnownStart.isNonNegative())
6486       // Analogous to lshr (simply not yet canonicalized)
6487       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6488                                         KnownStart.getMaxValue() + 1);
6489     if (KnownStart.isNegative())
6490       // End >=u Start && End <=s Start
6491       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6492                                         KnownEnd.getMaxValue() + 1);
6493     break;
6494   }
6495   case Instruction::LShr: {
6496     // For each lshr, three cases:
6497     //   shift = 0 => unchanged value
6498     //   saturation => 0
6499     //   other => a smaller positive number
6500     // Thus, the low end of the unsigned range is the last value produced.
6501     auto KnownEnd = KnownBits::lshr(KnownStart,
6502                                     KnownBits::makeConstant(TotalShift));
6503     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6504                                       KnownStart.getMaxValue() + 1);
6505   }
6506   case Instruction::Shl: {
6507     // Iff no bits are shifted out, value increases on every shift.
6508     auto KnownEnd = KnownBits::shl(KnownStart,
6509                                    KnownBits::makeConstant(TotalShift));
6510     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6511       return ConstantRange(KnownStart.getMinValue(),
6512                            KnownEnd.getMaxValue() + 1);
6513     break;
6514   }
6515   };
6516   return FullSet;
6517 }
6518 
6519 const ConstantRange &
6520 ScalarEvolution::getRangeRefIter(const SCEV *S,
6521                                  ScalarEvolution::RangeSignHint SignHint) {
6522   DenseMap<const SCEV *, ConstantRange> &Cache =
6523       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6524                                                        : SignedRanges;
6525   SmallVector<const SCEV *> WorkList;
6526   SmallPtrSet<const SCEV *, 8> Seen;
6527 
6528   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6529   // SCEVUnknown PHI node.
6530   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6531     if (!Seen.insert(Expr).second)
6532       return;
6533     if (Cache.contains(Expr))
6534       return;
6535     switch (Expr->getSCEVType()) {
6536     case scUnknown:
6537       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6538         break;
6539       [[fallthrough]];
6540     case scConstant:
6541     case scVScale:
6542     case scTruncate:
6543     case scZeroExtend:
6544     case scSignExtend:
6545     case scPtrToInt:
6546     case scAddExpr:
6547     case scMulExpr:
6548     case scUDivExpr:
6549     case scAddRecExpr:
6550     case scUMaxExpr:
6551     case scSMaxExpr:
6552     case scUMinExpr:
6553     case scSMinExpr:
6554     case scSequentialUMinExpr:
6555       WorkList.push_back(Expr);
6556       break;
6557     case scCouldNotCompute:
6558       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6559     }
6560   };
6561   AddToWorklist(S);
6562 
6563   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6564   for (unsigned I = 0; I != WorkList.size(); ++I) {
6565     const SCEV *P = WorkList[I];
6566     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6567     // If it is not a `SCEVUnknown`, just recurse into operands.
6568     if (!UnknownS) {
6569       for (const SCEV *Op : P->operands())
6570         AddToWorklist(Op);
6571       continue;
6572     }
6573     // `SCEVUnknown`'s require special treatment.
6574     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6575       if (!PendingPhiRangesIter.insert(P).second)
6576         continue;
6577       for (auto &Op : reverse(P->operands()))
6578         AddToWorklist(getSCEV(Op));
6579     }
6580   }
6581 
6582   if (!WorkList.empty()) {
6583     // Use getRangeRef to compute ranges for items in the worklist in reverse
6584     // order. This will force ranges for earlier operands to be computed before
6585     // their users in most cases.
6586     for (const SCEV *P : reverse(drop_begin(WorkList))) {
6587       getRangeRef(P, SignHint);
6588 
6589       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6590         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6591           PendingPhiRangesIter.erase(P);
6592     }
6593   }
6594 
6595   return getRangeRef(S, SignHint, 0);
6596 }
6597 
6598 /// Determine the range for a particular SCEV.  If SignHint is
6599 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6600 /// with a "cleaner" unsigned (resp. signed) representation.
6601 const ConstantRange &ScalarEvolution::getRangeRef(
6602     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6603   DenseMap<const SCEV *, ConstantRange> &Cache =
6604       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6605                                                        : SignedRanges;
6606   ConstantRange::PreferredRangeType RangeType =
6607       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6608                                                        : ConstantRange::Signed;
6609 
6610   // See if we've computed this range already.
6611   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6612   if (I != Cache.end())
6613     return I->second;
6614 
6615   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6616     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6617 
6618   // Switch to iteratively computing the range for S, if it is part of a deeply
6619   // nested expression.
6620   if (Depth > RangeIterThreshold)
6621     return getRangeRefIter(S, SignHint);
6622 
6623   unsigned BitWidth = getTypeSizeInBits(S->getType());
6624   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6625   using OBO = OverflowingBinaryOperator;
6626 
6627   // If the value has known zeros, the maximum value will have those known zeros
6628   // as well.
6629   if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6630     APInt Multiple = getNonZeroConstantMultiple(S);
6631     APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6632     if (!Remainder.isZero())
6633       ConservativeResult =
6634           ConstantRange(APInt::getMinValue(BitWidth),
6635                         APInt::getMaxValue(BitWidth) - Remainder + 1);
6636   }
6637   else {
6638     uint32_t TZ = getMinTrailingZeros(S);
6639     if (TZ != 0) {
6640       ConservativeResult = ConstantRange(
6641           APInt::getSignedMinValue(BitWidth),
6642           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6643     }
6644   }
6645 
6646   switch (S->getSCEVType()) {
6647   case scConstant:
6648     llvm_unreachable("Already handled above.");
6649   case scVScale:
6650     return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6651   case scTruncate: {
6652     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6653     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6654     return setRange(
6655         Trunc, SignHint,
6656         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6657   }
6658   case scZeroExtend: {
6659     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6660     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6661     return setRange(
6662         ZExt, SignHint,
6663         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6664   }
6665   case scSignExtend: {
6666     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6667     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6668     return setRange(
6669         SExt, SignHint,
6670         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6671   }
6672   case scPtrToInt: {
6673     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6674     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6675     return setRange(PtrToInt, SignHint, X);
6676   }
6677   case scAddExpr: {
6678     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6679     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6680     unsigned WrapType = OBO::AnyWrap;
6681     if (Add->hasNoSignedWrap())
6682       WrapType |= OBO::NoSignedWrap;
6683     if (Add->hasNoUnsignedWrap())
6684       WrapType |= OBO::NoUnsignedWrap;
6685     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6686       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6687                           WrapType, RangeType);
6688     return setRange(Add, SignHint,
6689                     ConservativeResult.intersectWith(X, RangeType));
6690   }
6691   case scMulExpr: {
6692     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6693     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6694     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6695       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6696     return setRange(Mul, SignHint,
6697                     ConservativeResult.intersectWith(X, RangeType));
6698   }
6699   case scUDivExpr: {
6700     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6701     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6702     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6703     return setRange(UDiv, SignHint,
6704                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6705   }
6706   case scAddRecExpr: {
6707     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6708     // If there's no unsigned wrap, the value will never be less than its
6709     // initial value.
6710     if (AddRec->hasNoUnsignedWrap()) {
6711       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6712       if (!UnsignedMinValue.isZero())
6713         ConservativeResult = ConservativeResult.intersectWith(
6714             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6715     }
6716 
6717     // If there's no signed wrap, and all the operands except initial value have
6718     // the same sign or zero, the value won't ever be:
6719     // 1: smaller than initial value if operands are non negative,
6720     // 2: bigger than initial value if operands are non positive.
6721     // For both cases, value can not cross signed min/max boundary.
6722     if (AddRec->hasNoSignedWrap()) {
6723       bool AllNonNeg = true;
6724       bool AllNonPos = true;
6725       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6726         if (!isKnownNonNegative(AddRec->getOperand(i)))
6727           AllNonNeg = false;
6728         if (!isKnownNonPositive(AddRec->getOperand(i)))
6729           AllNonPos = false;
6730       }
6731       if (AllNonNeg)
6732         ConservativeResult = ConservativeResult.intersectWith(
6733             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6734                                        APInt::getSignedMinValue(BitWidth)),
6735             RangeType);
6736       else if (AllNonPos)
6737         ConservativeResult = ConservativeResult.intersectWith(
6738             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6739                                        getSignedRangeMax(AddRec->getStart()) +
6740                                            1),
6741             RangeType);
6742     }
6743 
6744     // TODO: non-affine addrec
6745     if (AddRec->isAffine()) {
6746       const SCEV *MaxBEScev =
6747           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6748       if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6749         APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6750 
6751         // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6752         // MaxBECount's active bits are all <= AddRec's bit width.
6753         if (MaxBECount.getBitWidth() > BitWidth &&
6754             MaxBECount.getActiveBits() <= BitWidth)
6755           MaxBECount = MaxBECount.trunc(BitWidth);
6756         else if (MaxBECount.getBitWidth() < BitWidth)
6757           MaxBECount = MaxBECount.zext(BitWidth);
6758 
6759         if (MaxBECount.getBitWidth() == BitWidth) {
6760           auto RangeFromAffine = getRangeForAffineAR(
6761               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6762           ConservativeResult =
6763               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6764 
6765           auto RangeFromFactoring = getRangeViaFactoring(
6766               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6767           ConservativeResult =
6768               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6769         }
6770       }
6771 
6772       // Now try symbolic BE count and more powerful methods.
6773       if (UseExpensiveRangeSharpening) {
6774         const SCEV *SymbolicMaxBECount =
6775             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6776         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6777             getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6778             AddRec->hasNoSelfWrap()) {
6779           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6780               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6781           ConservativeResult =
6782               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6783         }
6784       }
6785     }
6786 
6787     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6788   }
6789   case scUMaxExpr:
6790   case scSMaxExpr:
6791   case scUMinExpr:
6792   case scSMinExpr:
6793   case scSequentialUMinExpr: {
6794     Intrinsic::ID ID;
6795     switch (S->getSCEVType()) {
6796     case scUMaxExpr:
6797       ID = Intrinsic::umax;
6798       break;
6799     case scSMaxExpr:
6800       ID = Intrinsic::smax;
6801       break;
6802     case scUMinExpr:
6803     case scSequentialUMinExpr:
6804       ID = Intrinsic::umin;
6805       break;
6806     case scSMinExpr:
6807       ID = Intrinsic::smin;
6808       break;
6809     default:
6810       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6811     }
6812 
6813     const auto *NAry = cast<SCEVNAryExpr>(S);
6814     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6815     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6816       X = X.intrinsic(
6817           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6818     return setRange(S, SignHint,
6819                     ConservativeResult.intersectWith(X, RangeType));
6820   }
6821   case scUnknown: {
6822     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6823     Value *V = U->getValue();
6824 
6825     // Check if the IR explicitly contains !range metadata.
6826     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6827     if (MDRange)
6828       ConservativeResult =
6829           ConservativeResult.intersectWith(*MDRange, RangeType);
6830 
6831     // Use facts about recurrences in the underlying IR.  Note that add
6832     // recurrences are AddRecExprs and thus don't hit this path.  This
6833     // primarily handles shift recurrences.
6834     auto CR = getRangeForUnknownRecurrence(U);
6835     ConservativeResult = ConservativeResult.intersectWith(CR);
6836 
6837     // See if ValueTracking can give us a useful range.
6838     const DataLayout &DL = getDataLayout();
6839     KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6840     if (Known.getBitWidth() != BitWidth)
6841       Known = Known.zextOrTrunc(BitWidth);
6842 
6843     // ValueTracking may be able to compute a tighter result for the number of
6844     // sign bits than for the value of those sign bits.
6845     unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6846     if (U->getType()->isPointerTy()) {
6847       // If the pointer size is larger than the index size type, this can cause
6848       // NS to be larger than BitWidth. So compensate for this.
6849       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6850       int ptrIdxDiff = ptrSize - BitWidth;
6851       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6852         NS -= ptrIdxDiff;
6853     }
6854 
6855     if (NS > 1) {
6856       // If we know any of the sign bits, we know all of the sign bits.
6857       if (!Known.Zero.getHiBits(NS).isZero())
6858         Known.Zero.setHighBits(NS);
6859       if (!Known.One.getHiBits(NS).isZero())
6860         Known.One.setHighBits(NS);
6861     }
6862 
6863     if (Known.getMinValue() != Known.getMaxValue() + 1)
6864       ConservativeResult = ConservativeResult.intersectWith(
6865           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6866           RangeType);
6867     if (NS > 1)
6868       ConservativeResult = ConservativeResult.intersectWith(
6869           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6870                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6871           RangeType);
6872 
6873     if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6874       // Strengthen the range if the underlying IR value is a
6875       // global/alloca/heap allocation using the size of the object.
6876       ObjectSizeOpts Opts;
6877       Opts.RoundToAlign = false;
6878       Opts.NullIsUnknownSize = true;
6879       uint64_t ObjSize;
6880       if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) ||
6881            isAllocationFn(V, &TLI)) &&
6882           getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) {
6883         // The highest address the object can start is ObjSize bytes before the
6884         // end (unsigned max value). If this value is not a multiple of the
6885         // alignment, the last possible start value is the next lowest multiple
6886         // of the alignment. Note: The computations below cannot overflow,
6887         // because if they would there's no possible start address for the
6888         // object.
6889         APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize);
6890         uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6891         uint64_t Rem = MaxVal.urem(Align);
6892         MaxVal -= APInt(BitWidth, Rem);
6893         APInt MinVal = APInt::getZero(BitWidth);
6894         if (llvm::isKnownNonZero(V, DL))
6895           MinVal = Align;
6896         ConservativeResult = ConservativeResult.intersectWith(
6897             ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6898       }
6899     }
6900 
6901     // A range of Phi is a subset of union of all ranges of its input.
6902     if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6903       // Make sure that we do not run over cycled Phis.
6904       if (PendingPhiRanges.insert(Phi).second) {
6905         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6906 
6907         for (const auto &Op : Phi->operands()) {
6908           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6909           RangeFromOps = RangeFromOps.unionWith(OpRange);
6910           // No point to continue if we already have a full set.
6911           if (RangeFromOps.isFullSet())
6912             break;
6913         }
6914         ConservativeResult =
6915             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6916         bool Erased = PendingPhiRanges.erase(Phi);
6917         assert(Erased && "Failed to erase Phi properly?");
6918         (void)Erased;
6919       }
6920     }
6921 
6922     // vscale can't be equal to zero
6923     if (const auto *II = dyn_cast<IntrinsicInst>(V))
6924       if (II->getIntrinsicID() == Intrinsic::vscale) {
6925         ConstantRange Disallowed = APInt::getZero(BitWidth);
6926         ConservativeResult = ConservativeResult.difference(Disallowed);
6927       }
6928 
6929     return setRange(U, SignHint, std::move(ConservativeResult));
6930   }
6931   case scCouldNotCompute:
6932     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6933   }
6934 
6935   return setRange(S, SignHint, std::move(ConservativeResult));
6936 }
6937 
6938 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6939 // values that the expression can take. Initially, the expression has a value
6940 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6941 // argument defines if we treat Step as signed or unsigned.
6942 static ConstantRange getRangeForAffineARHelper(APInt Step,
6943                                                const ConstantRange &StartRange,
6944                                                const APInt &MaxBECount,
6945                                                bool Signed) {
6946   unsigned BitWidth = Step.getBitWidth();
6947   assert(BitWidth == StartRange.getBitWidth() &&
6948          BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6949   // If either Step or MaxBECount is 0, then the expression won't change, and we
6950   // just need to return the initial range.
6951   if (Step == 0 || MaxBECount == 0)
6952     return StartRange;
6953 
6954   // If we don't know anything about the initial value (i.e. StartRange is
6955   // FullRange), then we don't know anything about the final range either.
6956   // Return FullRange.
6957   if (StartRange.isFullSet())
6958     return ConstantRange::getFull(BitWidth);
6959 
6960   // If Step is signed and negative, then we use its absolute value, but we also
6961   // note that we're moving in the opposite direction.
6962   bool Descending = Signed && Step.isNegative();
6963 
6964   if (Signed)
6965     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6966     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6967     // This equations hold true due to the well-defined wrap-around behavior of
6968     // APInt.
6969     Step = Step.abs();
6970 
6971   // Check if Offset is more than full span of BitWidth. If it is, the
6972   // expression is guaranteed to overflow.
6973   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6974     return ConstantRange::getFull(BitWidth);
6975 
6976   // Offset is by how much the expression can change. Checks above guarantee no
6977   // overflow here.
6978   APInt Offset = Step * MaxBECount;
6979 
6980   // Minimum value of the final range will match the minimal value of StartRange
6981   // if the expression is increasing and will be decreased by Offset otherwise.
6982   // Maximum value of the final range will match the maximal value of StartRange
6983   // if the expression is decreasing and will be increased by Offset otherwise.
6984   APInt StartLower = StartRange.getLower();
6985   APInt StartUpper = StartRange.getUpper() - 1;
6986   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6987                                    : (StartUpper + std::move(Offset));
6988 
6989   // It's possible that the new minimum/maximum value will fall into the initial
6990   // range (due to wrap around). This means that the expression can take any
6991   // value in this bitwidth, and we have to return full range.
6992   if (StartRange.contains(MovedBoundary))
6993     return ConstantRange::getFull(BitWidth);
6994 
6995   APInt NewLower =
6996       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6997   APInt NewUpper =
6998       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6999   NewUpper += 1;
7000 
7001   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7002   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
7003 }
7004 
7005 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
7006                                                    const SCEV *Step,
7007                                                    const APInt &MaxBECount) {
7008   assert(getTypeSizeInBits(Start->getType()) ==
7009              getTypeSizeInBits(Step->getType()) &&
7010          getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
7011          "mismatched bit widths");
7012 
7013   // First, consider step signed.
7014   ConstantRange StartSRange = getSignedRange(Start);
7015   ConstantRange StepSRange = getSignedRange(Step);
7016 
7017   // If Step can be both positive and negative, we need to find ranges for the
7018   // maximum absolute step values in both directions and union them.
7019   ConstantRange SR = getRangeForAffineARHelper(
7020       StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
7021   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
7022                                               StartSRange, MaxBECount,
7023                                               /* Signed = */ true));
7024 
7025   // Next, consider step unsigned.
7026   ConstantRange UR = getRangeForAffineARHelper(
7027       getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
7028       /* Signed = */ false);
7029 
7030   // Finally, intersect signed and unsigned ranges.
7031   return SR.intersectWith(UR, ConstantRange::Smallest);
7032 }
7033 
7034 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7035     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
7036     ScalarEvolution::RangeSignHint SignHint) {
7037   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7038   assert(AddRec->hasNoSelfWrap() &&
7039          "This only works for non-self-wrapping AddRecs!");
7040   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7041   const SCEV *Step = AddRec->getStepRecurrence(*this);
7042   // Only deal with constant step to save compile time.
7043   if (!isa<SCEVConstant>(Step))
7044     return ConstantRange::getFull(BitWidth);
7045   // Let's make sure that we can prove that we do not self-wrap during
7046   // MaxBECount iterations. We need this because MaxBECount is a maximum
7047   // iteration count estimate, and we might infer nw from some exit for which we
7048   // do not know max exit count (or any other side reasoning).
7049   // TODO: Turn into assert at some point.
7050   if (getTypeSizeInBits(MaxBECount->getType()) >
7051       getTypeSizeInBits(AddRec->getType()))
7052     return ConstantRange::getFull(BitWidth);
7053   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
7054   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
7055   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
7056   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
7057   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
7058                                          MaxItersWithoutWrap))
7059     return ConstantRange::getFull(BitWidth);
7060 
7061   ICmpInst::Predicate LEPred =
7062       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7063   ICmpInst::Predicate GEPred =
7064       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7065   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7066 
7067   // We know that there is no self-wrap. Let's take Start and End values and
7068   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7069   // the iteration. They either lie inside the range [Min(Start, End),
7070   // Max(Start, End)] or outside it:
7071   //
7072   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7073   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7074   //
7075   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7076   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7077   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7078   // Start <= End and step is positive, or Start >= End and step is negative.
7079   const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7080   ConstantRange StartRange = getRangeRef(Start, SignHint);
7081   ConstantRange EndRange = getRangeRef(End, SignHint);
7082   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7083   // If they already cover full iteration space, we will know nothing useful
7084   // even if we prove what we want to prove.
7085   if (RangeBetween.isFullSet())
7086     return RangeBetween;
7087   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7088   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7089                                : RangeBetween.isWrappedSet();
7090   if (IsWrappedSet)
7091     return ConstantRange::getFull(BitWidth);
7092 
7093   if (isKnownPositive(Step) &&
7094       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7095     return RangeBetween;
7096   if (isKnownNegative(Step) &&
7097            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7098     return RangeBetween;
7099   return ConstantRange::getFull(BitWidth);
7100 }
7101 
7102 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7103                                                     const SCEV *Step,
7104                                                     const APInt &MaxBECount) {
7105   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7106   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7107 
7108   unsigned BitWidth = MaxBECount.getBitWidth();
7109   assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7110          getTypeSizeInBits(Step->getType()) == BitWidth &&
7111          "mismatched bit widths");
7112 
7113   struct SelectPattern {
7114     Value *Condition = nullptr;
7115     APInt TrueValue;
7116     APInt FalseValue;
7117 
7118     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7119                            const SCEV *S) {
7120       std::optional<unsigned> CastOp;
7121       APInt Offset(BitWidth, 0);
7122 
7123       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7124              "Should be!");
7125 
7126       // Peel off a constant offset:
7127       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7128         // In the future we could consider being smarter here and handle
7129         // {Start+Step,+,Step} too.
7130         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7131           return;
7132 
7133         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7134         S = SA->getOperand(1);
7135       }
7136 
7137       // Peel off a cast operation
7138       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7139         CastOp = SCast->getSCEVType();
7140         S = SCast->getOperand();
7141       }
7142 
7143       using namespace llvm::PatternMatch;
7144 
7145       auto *SU = dyn_cast<SCEVUnknown>(S);
7146       const APInt *TrueVal, *FalseVal;
7147       if (!SU ||
7148           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7149                                           m_APInt(FalseVal)))) {
7150         Condition = nullptr;
7151         return;
7152       }
7153 
7154       TrueValue = *TrueVal;
7155       FalseValue = *FalseVal;
7156 
7157       // Re-apply the cast we peeled off earlier
7158       if (CastOp)
7159         switch (*CastOp) {
7160         default:
7161           llvm_unreachable("Unknown SCEV cast type!");
7162 
7163         case scTruncate:
7164           TrueValue = TrueValue.trunc(BitWidth);
7165           FalseValue = FalseValue.trunc(BitWidth);
7166           break;
7167         case scZeroExtend:
7168           TrueValue = TrueValue.zext(BitWidth);
7169           FalseValue = FalseValue.zext(BitWidth);
7170           break;
7171         case scSignExtend:
7172           TrueValue = TrueValue.sext(BitWidth);
7173           FalseValue = FalseValue.sext(BitWidth);
7174           break;
7175         }
7176 
7177       // Re-apply the constant offset we peeled off earlier
7178       TrueValue += Offset;
7179       FalseValue += Offset;
7180     }
7181 
7182     bool isRecognized() { return Condition != nullptr; }
7183   };
7184 
7185   SelectPattern StartPattern(*this, BitWidth, Start);
7186   if (!StartPattern.isRecognized())
7187     return ConstantRange::getFull(BitWidth);
7188 
7189   SelectPattern StepPattern(*this, BitWidth, Step);
7190   if (!StepPattern.isRecognized())
7191     return ConstantRange::getFull(BitWidth);
7192 
7193   if (StartPattern.Condition != StepPattern.Condition) {
7194     // We don't handle this case today; but we could, by considering four
7195     // possibilities below instead of two. I'm not sure if there are cases where
7196     // that will help over what getRange already does, though.
7197     return ConstantRange::getFull(BitWidth);
7198   }
7199 
7200   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7201   // construct arbitrary general SCEV expressions here.  This function is called
7202   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7203   // say) can end up caching a suboptimal value.
7204 
7205   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7206   // C2352 and C2512 (otherwise it isn't needed).
7207 
7208   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7209   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7210   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7211   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7212 
7213   ConstantRange TrueRange =
7214       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7215   ConstantRange FalseRange =
7216       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7217 
7218   return TrueRange.unionWith(FalseRange);
7219 }
7220 
7221 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7222   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7223   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7224 
7225   // Return early if there are no flags to propagate to the SCEV.
7226   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7227   if (BinOp->hasNoUnsignedWrap())
7228     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7229   if (BinOp->hasNoSignedWrap())
7230     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7231   if (Flags == SCEV::FlagAnyWrap)
7232     return SCEV::FlagAnyWrap;
7233 
7234   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7235 }
7236 
7237 const Instruction *
7238 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7239   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7240     return &*AddRec->getLoop()->getHeader()->begin();
7241   if (auto *U = dyn_cast<SCEVUnknown>(S))
7242     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7243       return I;
7244   return nullptr;
7245 }
7246 
7247 const Instruction *
7248 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7249                                        bool &Precise) {
7250   Precise = true;
7251   // Do a bounded search of the def relation of the requested SCEVs.
7252   SmallSet<const SCEV *, 16> Visited;
7253   SmallVector<const SCEV *> Worklist;
7254   auto pushOp = [&](const SCEV *S) {
7255     if (!Visited.insert(S).second)
7256       return;
7257     // Threshold of 30 here is arbitrary.
7258     if (Visited.size() > 30) {
7259       Precise = false;
7260       return;
7261     }
7262     Worklist.push_back(S);
7263   };
7264 
7265   for (const auto *S : Ops)
7266     pushOp(S);
7267 
7268   const Instruction *Bound = nullptr;
7269   while (!Worklist.empty()) {
7270     auto *S = Worklist.pop_back_val();
7271     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7272       if (!Bound || DT.dominates(Bound, DefI))
7273         Bound = DefI;
7274     } else {
7275       for (const auto *Op : S->operands())
7276         pushOp(Op);
7277     }
7278   }
7279   return Bound ? Bound : &*F.getEntryBlock().begin();
7280 }
7281 
7282 const Instruction *
7283 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7284   bool Discard;
7285   return getDefiningScopeBound(Ops, Discard);
7286 }
7287 
7288 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7289                                                         const Instruction *B) {
7290   if (A->getParent() == B->getParent() &&
7291       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7292                                                  B->getIterator()))
7293     return true;
7294 
7295   auto *BLoop = LI.getLoopFor(B->getParent());
7296   if (BLoop && BLoop->getHeader() == B->getParent() &&
7297       BLoop->getLoopPreheader() == A->getParent() &&
7298       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7299                                                  A->getParent()->end()) &&
7300       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7301                                                  B->getIterator()))
7302     return true;
7303   return false;
7304 }
7305 
7306 
7307 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7308   // Only proceed if we can prove that I does not yield poison.
7309   if (!programUndefinedIfPoison(I))
7310     return false;
7311 
7312   // At this point we know that if I is executed, then it does not wrap
7313   // according to at least one of NSW or NUW. If I is not executed, then we do
7314   // not know if the calculation that I represents would wrap. Multiple
7315   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7316   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7317   // derived from other instructions that map to the same SCEV. We cannot make
7318   // that guarantee for cases where I is not executed. So we need to find a
7319   // upper bound on the defining scope for the SCEV, and prove that I is
7320   // executed every time we enter that scope.  When the bounding scope is a
7321   // loop (the common case), this is equivalent to proving I executes on every
7322   // iteration of that loop.
7323   SmallVector<const SCEV *> SCEVOps;
7324   for (const Use &Op : I->operands()) {
7325     // I could be an extractvalue from a call to an overflow intrinsic.
7326     // TODO: We can do better here in some cases.
7327     if (isSCEVable(Op->getType()))
7328       SCEVOps.push_back(getSCEV(Op));
7329   }
7330   auto *DefI = getDefiningScopeBound(SCEVOps);
7331   return isGuaranteedToTransferExecutionTo(DefI, I);
7332 }
7333 
7334 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7335   // If we know that \c I can never be poison period, then that's enough.
7336   if (isSCEVExprNeverPoison(I))
7337     return true;
7338 
7339   // If the loop only has one exit, then we know that, if the loop is entered,
7340   // any instruction dominating that exit will be executed. If any such
7341   // instruction would result in UB, the addrec cannot be poison.
7342   //
7343   // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7344   // also handles uses outside the loop header (they just need to dominate the
7345   // single exit).
7346 
7347   auto *ExitingBB = L->getExitingBlock();
7348   if (!ExitingBB || !loopHasNoAbnormalExits(L))
7349     return false;
7350 
7351   SmallPtrSet<const Value *, 16> KnownPoison;
7352   SmallVector<const Instruction *, 8> Worklist;
7353 
7354   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7355   // things that are known to be poison under that assumption go on the
7356   // Worklist.
7357   KnownPoison.insert(I);
7358   Worklist.push_back(I);
7359 
7360   while (!Worklist.empty()) {
7361     const Instruction *Poison = Worklist.pop_back_val();
7362 
7363     for (const Use &U : Poison->uses()) {
7364       const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7365       if (mustTriggerUB(PoisonUser, KnownPoison) &&
7366           DT.dominates(PoisonUser->getParent(), ExitingBB))
7367         return true;
7368 
7369       if (propagatesPoison(U) && L->contains(PoisonUser))
7370         if (KnownPoison.insert(PoisonUser).second)
7371           Worklist.push_back(PoisonUser);
7372     }
7373   }
7374 
7375   return false;
7376 }
7377 
7378 ScalarEvolution::LoopProperties
7379 ScalarEvolution::getLoopProperties(const Loop *L) {
7380   using LoopProperties = ScalarEvolution::LoopProperties;
7381 
7382   auto Itr = LoopPropertiesCache.find(L);
7383   if (Itr == LoopPropertiesCache.end()) {
7384     auto HasSideEffects = [](Instruction *I) {
7385       if (auto *SI = dyn_cast<StoreInst>(I))
7386         return !SI->isSimple();
7387 
7388       return I->mayThrow() || I->mayWriteToMemory();
7389     };
7390 
7391     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7392                          /*HasNoSideEffects*/ true};
7393 
7394     for (auto *BB : L->getBlocks())
7395       for (auto &I : *BB) {
7396         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7397           LP.HasNoAbnormalExits = false;
7398         if (HasSideEffects(&I))
7399           LP.HasNoSideEffects = false;
7400         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7401           break; // We're already as pessimistic as we can get.
7402       }
7403 
7404     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7405     assert(InsertPair.second && "We just checked!");
7406     Itr = InsertPair.first;
7407   }
7408 
7409   return Itr->second;
7410 }
7411 
7412 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7413   // A mustprogress loop without side effects must be finite.
7414   // TODO: The check used here is very conservative.  It's only *specific*
7415   // side effects which are well defined in infinite loops.
7416   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7417 }
7418 
7419 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7420   // Worklist item with a Value and a bool indicating whether all operands have
7421   // been visited already.
7422   using PointerTy = PointerIntPair<Value *, 1, bool>;
7423   SmallVector<PointerTy> Stack;
7424 
7425   Stack.emplace_back(V, true);
7426   Stack.emplace_back(V, false);
7427   while (!Stack.empty()) {
7428     auto E = Stack.pop_back_val();
7429     Value *CurV = E.getPointer();
7430 
7431     if (getExistingSCEV(CurV))
7432       continue;
7433 
7434     SmallVector<Value *> Ops;
7435     const SCEV *CreatedSCEV = nullptr;
7436     // If all operands have been visited already, create the SCEV.
7437     if (E.getInt()) {
7438       CreatedSCEV = createSCEV(CurV);
7439     } else {
7440       // Otherwise get the operands we need to create SCEV's for before creating
7441       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7442       // just use it.
7443       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7444     }
7445 
7446     if (CreatedSCEV) {
7447       insertValueToMap(CurV, CreatedSCEV);
7448     } else {
7449       // Queue CurV for SCEV creation, followed by its's operands which need to
7450       // be constructed first.
7451       Stack.emplace_back(CurV, true);
7452       for (Value *Op : Ops)
7453         Stack.emplace_back(Op, false);
7454     }
7455   }
7456 
7457   return getExistingSCEV(V);
7458 }
7459 
7460 const SCEV *
7461 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7462   if (!isSCEVable(V->getType()))
7463     return getUnknown(V);
7464 
7465   if (Instruction *I = dyn_cast<Instruction>(V)) {
7466     // Don't attempt to analyze instructions in blocks that aren't
7467     // reachable. Such instructions don't matter, and they aren't required
7468     // to obey basic rules for definitions dominating uses which this
7469     // analysis depends on.
7470     if (!DT.isReachableFromEntry(I->getParent()))
7471       return getUnknown(PoisonValue::get(V->getType()));
7472   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7473     return getConstant(CI);
7474   else if (isa<GlobalAlias>(V))
7475     return getUnknown(V);
7476   else if (!isa<ConstantExpr>(V))
7477     return getUnknown(V);
7478 
7479   Operator *U = cast<Operator>(V);
7480   if (auto BO =
7481           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7482     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7483     switch (BO->Opcode) {
7484     case Instruction::Add:
7485     case Instruction::Mul: {
7486       // For additions and multiplications, traverse add/mul chains for which we
7487       // can potentially create a single SCEV, to reduce the number of
7488       // get{Add,Mul}Expr calls.
7489       do {
7490         if (BO->Op) {
7491           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7492             Ops.push_back(BO->Op);
7493             break;
7494           }
7495         }
7496         Ops.push_back(BO->RHS);
7497         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7498                                    dyn_cast<Instruction>(V));
7499         if (!NewBO ||
7500             (BO->Opcode == Instruction::Add &&
7501              (NewBO->Opcode != Instruction::Add &&
7502               NewBO->Opcode != Instruction::Sub)) ||
7503             (BO->Opcode == Instruction::Mul &&
7504              NewBO->Opcode != Instruction::Mul)) {
7505           Ops.push_back(BO->LHS);
7506           break;
7507         }
7508         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7509         // requires a SCEV for the LHS.
7510         if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7511           auto *I = dyn_cast<Instruction>(BO->Op);
7512           if (I && programUndefinedIfPoison(I)) {
7513             Ops.push_back(BO->LHS);
7514             break;
7515           }
7516         }
7517         BO = NewBO;
7518       } while (true);
7519       return nullptr;
7520     }
7521     case Instruction::Sub:
7522     case Instruction::UDiv:
7523     case Instruction::URem:
7524       break;
7525     case Instruction::AShr:
7526     case Instruction::Shl:
7527     case Instruction::Xor:
7528       if (!IsConstArg)
7529         return nullptr;
7530       break;
7531     case Instruction::And:
7532     case Instruction::Or:
7533       if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7534         return nullptr;
7535       break;
7536     case Instruction::LShr:
7537       return getUnknown(V);
7538     default:
7539       llvm_unreachable("Unhandled binop");
7540       break;
7541     }
7542 
7543     Ops.push_back(BO->LHS);
7544     Ops.push_back(BO->RHS);
7545     return nullptr;
7546   }
7547 
7548   switch (U->getOpcode()) {
7549   case Instruction::Trunc:
7550   case Instruction::ZExt:
7551   case Instruction::SExt:
7552   case Instruction::PtrToInt:
7553     Ops.push_back(U->getOperand(0));
7554     return nullptr;
7555 
7556   case Instruction::BitCast:
7557     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7558       Ops.push_back(U->getOperand(0));
7559       return nullptr;
7560     }
7561     return getUnknown(V);
7562 
7563   case Instruction::SDiv:
7564   case Instruction::SRem:
7565     Ops.push_back(U->getOperand(0));
7566     Ops.push_back(U->getOperand(1));
7567     return nullptr;
7568 
7569   case Instruction::GetElementPtr:
7570     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7571            "GEP source element type must be sized");
7572     for (Value *Index : U->operands())
7573       Ops.push_back(Index);
7574     return nullptr;
7575 
7576   case Instruction::IntToPtr:
7577     return getUnknown(V);
7578 
7579   case Instruction::PHI:
7580     // Keep constructing SCEVs' for phis recursively for now.
7581     return nullptr;
7582 
7583   case Instruction::Select: {
7584     // Check if U is a select that can be simplified to a SCEVUnknown.
7585     auto CanSimplifyToUnknown = [this, U]() {
7586       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7587         return false;
7588 
7589       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7590       if (!ICI)
7591         return false;
7592       Value *LHS = ICI->getOperand(0);
7593       Value *RHS = ICI->getOperand(1);
7594       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7595           ICI->getPredicate() == CmpInst::ICMP_NE) {
7596         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7597           return true;
7598       } else if (getTypeSizeInBits(LHS->getType()) >
7599                  getTypeSizeInBits(U->getType()))
7600         return true;
7601       return false;
7602     };
7603     if (CanSimplifyToUnknown())
7604       return getUnknown(U);
7605 
7606     for (Value *Inc : U->operands())
7607       Ops.push_back(Inc);
7608     return nullptr;
7609     break;
7610   }
7611   case Instruction::Call:
7612   case Instruction::Invoke:
7613     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7614       Ops.push_back(RV);
7615       return nullptr;
7616     }
7617 
7618     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7619       switch (II->getIntrinsicID()) {
7620       case Intrinsic::abs:
7621         Ops.push_back(II->getArgOperand(0));
7622         return nullptr;
7623       case Intrinsic::umax:
7624       case Intrinsic::umin:
7625       case Intrinsic::smax:
7626       case Intrinsic::smin:
7627       case Intrinsic::usub_sat:
7628       case Intrinsic::uadd_sat:
7629         Ops.push_back(II->getArgOperand(0));
7630         Ops.push_back(II->getArgOperand(1));
7631         return nullptr;
7632       case Intrinsic::start_loop_iterations:
7633       case Intrinsic::annotation:
7634       case Intrinsic::ptr_annotation:
7635         Ops.push_back(II->getArgOperand(0));
7636         return nullptr;
7637       default:
7638         break;
7639       }
7640     }
7641     break;
7642   }
7643 
7644   return nullptr;
7645 }
7646 
7647 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7648   if (!isSCEVable(V->getType()))
7649     return getUnknown(V);
7650 
7651   if (Instruction *I = dyn_cast<Instruction>(V)) {
7652     // Don't attempt to analyze instructions in blocks that aren't
7653     // reachable. Such instructions don't matter, and they aren't required
7654     // to obey basic rules for definitions dominating uses which this
7655     // analysis depends on.
7656     if (!DT.isReachableFromEntry(I->getParent()))
7657       return getUnknown(PoisonValue::get(V->getType()));
7658   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7659     return getConstant(CI);
7660   else if (isa<GlobalAlias>(V))
7661     return getUnknown(V);
7662   else if (!isa<ConstantExpr>(V))
7663     return getUnknown(V);
7664 
7665   const SCEV *LHS;
7666   const SCEV *RHS;
7667 
7668   Operator *U = cast<Operator>(V);
7669   if (auto BO =
7670           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7671     switch (BO->Opcode) {
7672     case Instruction::Add: {
7673       // The simple thing to do would be to just call getSCEV on both operands
7674       // and call getAddExpr with the result. However if we're looking at a
7675       // bunch of things all added together, this can be quite inefficient,
7676       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7677       // Instead, gather up all the operands and make a single getAddExpr call.
7678       // LLVM IR canonical form means we need only traverse the left operands.
7679       SmallVector<const SCEV *, 4> AddOps;
7680       do {
7681         if (BO->Op) {
7682           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7683             AddOps.push_back(OpSCEV);
7684             break;
7685           }
7686 
7687           // If a NUW or NSW flag can be applied to the SCEV for this
7688           // addition, then compute the SCEV for this addition by itself
7689           // with a separate call to getAddExpr. We need to do that
7690           // instead of pushing the operands of the addition onto AddOps,
7691           // since the flags are only known to apply to this particular
7692           // addition - they may not apply to other additions that can be
7693           // formed with operands from AddOps.
7694           const SCEV *RHS = getSCEV(BO->RHS);
7695           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7696           if (Flags != SCEV::FlagAnyWrap) {
7697             const SCEV *LHS = getSCEV(BO->LHS);
7698             if (BO->Opcode == Instruction::Sub)
7699               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7700             else
7701               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7702             break;
7703           }
7704         }
7705 
7706         if (BO->Opcode == Instruction::Sub)
7707           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7708         else
7709           AddOps.push_back(getSCEV(BO->RHS));
7710 
7711         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7712                                    dyn_cast<Instruction>(V));
7713         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7714                        NewBO->Opcode != Instruction::Sub)) {
7715           AddOps.push_back(getSCEV(BO->LHS));
7716           break;
7717         }
7718         BO = NewBO;
7719       } while (true);
7720 
7721       return getAddExpr(AddOps);
7722     }
7723 
7724     case Instruction::Mul: {
7725       SmallVector<const SCEV *, 4> MulOps;
7726       do {
7727         if (BO->Op) {
7728           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7729             MulOps.push_back(OpSCEV);
7730             break;
7731           }
7732 
7733           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7734           if (Flags != SCEV::FlagAnyWrap) {
7735             LHS = getSCEV(BO->LHS);
7736             RHS = getSCEV(BO->RHS);
7737             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7738             break;
7739           }
7740         }
7741 
7742         MulOps.push_back(getSCEV(BO->RHS));
7743         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7744                                    dyn_cast<Instruction>(V));
7745         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7746           MulOps.push_back(getSCEV(BO->LHS));
7747           break;
7748         }
7749         BO = NewBO;
7750       } while (true);
7751 
7752       return getMulExpr(MulOps);
7753     }
7754     case Instruction::UDiv:
7755       LHS = getSCEV(BO->LHS);
7756       RHS = getSCEV(BO->RHS);
7757       return getUDivExpr(LHS, RHS);
7758     case Instruction::URem:
7759       LHS = getSCEV(BO->LHS);
7760       RHS = getSCEV(BO->RHS);
7761       return getURemExpr(LHS, RHS);
7762     case Instruction::Sub: {
7763       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7764       if (BO->Op)
7765         Flags = getNoWrapFlagsFromUB(BO->Op);
7766       LHS = getSCEV(BO->LHS);
7767       RHS = getSCEV(BO->RHS);
7768       return getMinusSCEV(LHS, RHS, Flags);
7769     }
7770     case Instruction::And:
7771       // For an expression like x&255 that merely masks off the high bits,
7772       // use zext(trunc(x)) as the SCEV expression.
7773       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7774         if (CI->isZero())
7775           return getSCEV(BO->RHS);
7776         if (CI->isMinusOne())
7777           return getSCEV(BO->LHS);
7778         const APInt &A = CI->getValue();
7779 
7780         // Instcombine's ShrinkDemandedConstant may strip bits out of
7781         // constants, obscuring what would otherwise be a low-bits mask.
7782         // Use computeKnownBits to compute what ShrinkDemandedConstant
7783         // knew about to reconstruct a low-bits mask value.
7784         unsigned LZ = A.countl_zero();
7785         unsigned TZ = A.countr_zero();
7786         unsigned BitWidth = A.getBitWidth();
7787         KnownBits Known(BitWidth);
7788         computeKnownBits(BO->LHS, Known, getDataLayout(),
7789                          0, &AC, nullptr, &DT);
7790 
7791         APInt EffectiveMask =
7792             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7793         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7794           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7795           const SCEV *LHS = getSCEV(BO->LHS);
7796           const SCEV *ShiftedLHS = nullptr;
7797           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7798             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7799               // For an expression like (x * 8) & 8, simplify the multiply.
7800               unsigned MulZeros = OpC->getAPInt().countr_zero();
7801               unsigned GCD = std::min(MulZeros, TZ);
7802               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7803               SmallVector<const SCEV*, 4> MulOps;
7804               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7805               append_range(MulOps, LHSMul->operands().drop_front());
7806               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7807               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7808             }
7809           }
7810           if (!ShiftedLHS)
7811             ShiftedLHS = getUDivExpr(LHS, MulCount);
7812           return getMulExpr(
7813               getZeroExtendExpr(
7814                   getTruncateExpr(ShiftedLHS,
7815                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7816                   BO->LHS->getType()),
7817               MulCount);
7818         }
7819       }
7820       // Binary `and` is a bit-wise `umin`.
7821       if (BO->LHS->getType()->isIntegerTy(1)) {
7822         LHS = getSCEV(BO->LHS);
7823         RHS = getSCEV(BO->RHS);
7824         return getUMinExpr(LHS, RHS);
7825       }
7826       break;
7827 
7828     case Instruction::Or:
7829       // Binary `or` is a bit-wise `umax`.
7830       if (BO->LHS->getType()->isIntegerTy(1)) {
7831         LHS = getSCEV(BO->LHS);
7832         RHS = getSCEV(BO->RHS);
7833         return getUMaxExpr(LHS, RHS);
7834       }
7835       break;
7836 
7837     case Instruction::Xor:
7838       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7839         // If the RHS of xor is -1, then this is a not operation.
7840         if (CI->isMinusOne())
7841           return getNotSCEV(getSCEV(BO->LHS));
7842 
7843         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7844         // This is a variant of the check for xor with -1, and it handles
7845         // the case where instcombine has trimmed non-demanded bits out
7846         // of an xor with -1.
7847         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7848           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7849             if (LBO->getOpcode() == Instruction::And &&
7850                 LCI->getValue() == CI->getValue())
7851               if (const SCEVZeroExtendExpr *Z =
7852                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7853                 Type *UTy = BO->LHS->getType();
7854                 const SCEV *Z0 = Z->getOperand();
7855                 Type *Z0Ty = Z0->getType();
7856                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7857 
7858                 // If C is a low-bits mask, the zero extend is serving to
7859                 // mask off the high bits. Complement the operand and
7860                 // re-apply the zext.
7861                 if (CI->getValue().isMask(Z0TySize))
7862                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7863 
7864                 // If C is a single bit, it may be in the sign-bit position
7865                 // before the zero-extend. In this case, represent the xor
7866                 // using an add, which is equivalent, and re-apply the zext.
7867                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7868                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7869                     Trunc.isSignMask())
7870                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7871                                            UTy);
7872               }
7873       }
7874       break;
7875 
7876     case Instruction::Shl:
7877       // Turn shift left of a constant amount into a multiply.
7878       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7879         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7880 
7881         // If the shift count is not less than the bitwidth, the result of
7882         // the shift is undefined. Don't try to analyze it, because the
7883         // resolution chosen here may differ from the resolution chosen in
7884         // other parts of the compiler.
7885         if (SA->getValue().uge(BitWidth))
7886           break;
7887 
7888         // We can safely preserve the nuw flag in all cases. It's also safe to
7889         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7890         // requires special handling. It can be preserved as long as we're not
7891         // left shifting by bitwidth - 1.
7892         auto Flags = SCEV::FlagAnyWrap;
7893         if (BO->Op) {
7894           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7895           if ((MulFlags & SCEV::FlagNSW) &&
7896               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7897             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7898           if (MulFlags & SCEV::FlagNUW)
7899             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7900         }
7901 
7902         ConstantInt *X = ConstantInt::get(
7903             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7904         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7905       }
7906       break;
7907 
7908     case Instruction::AShr:
7909       // AShr X, C, where C is a constant.
7910       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7911       if (!CI)
7912         break;
7913 
7914       Type *OuterTy = BO->LHS->getType();
7915       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7916       // If the shift count is not less than the bitwidth, the result of
7917       // the shift is undefined. Don't try to analyze it, because the
7918       // resolution chosen here may differ from the resolution chosen in
7919       // other parts of the compiler.
7920       if (CI->getValue().uge(BitWidth))
7921         break;
7922 
7923       if (CI->isZero())
7924         return getSCEV(BO->LHS); // shift by zero --> noop
7925 
7926       uint64_t AShrAmt = CI->getZExtValue();
7927       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7928 
7929       Operator *L = dyn_cast<Operator>(BO->LHS);
7930       const SCEV *AddTruncateExpr = nullptr;
7931       ConstantInt *ShlAmtCI = nullptr;
7932       const SCEV *AddConstant = nullptr;
7933 
7934       if (L && L->getOpcode() == Instruction::Add) {
7935         // X = Shl A, n
7936         // Y = Add X, c
7937         // Z = AShr Y, m
7938         // n, c and m are constants.
7939 
7940         Operator *LShift = dyn_cast<Operator>(L->getOperand(0));
7941         ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1));
7942         if (LShift && LShift->getOpcode() == Instruction::Shl) {
7943           if (AddOperandCI) {
7944             const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0));
7945             ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1));
7946             // since we truncate to TruncTy, the AddConstant should be of the
7947             // same type, so create a new Constant with type same as TruncTy.
7948             // Also, the Add constant should be shifted right by AShr amount.
7949             APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt);
7950             AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt));
7951             // we model the expression as sext(add(trunc(A), c << n)), since the
7952             // sext(trunc) part is already handled below, we create a
7953             // AddExpr(TruncExp) which will be used later.
7954             AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7955           }
7956         }
7957       } else if (L && L->getOpcode() == Instruction::Shl) {
7958         // X = Shl A, n
7959         // Y = AShr X, m
7960         // Both n and m are constant.
7961 
7962         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7963         ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7964         AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7965       }
7966 
7967       if (AddTruncateExpr && ShlAmtCI) {
7968         // We can merge the two given cases into a single SCEV statement,
7969         // incase n = m, the mul expression will be 2^0, so it gets resolved to
7970         // a simpler case. The following code handles the two cases:
7971         //
7972         // 1) For a two-shift sext-inreg, i.e. n = m,
7973         //    use sext(trunc(x)) as the SCEV expression.
7974         //
7975         // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7976         //    expression. We already checked that ShlAmt < BitWidth, so
7977         //    the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7978         //    ShlAmt - AShrAmt < Amt.
7979         const APInt &ShlAmt = ShlAmtCI->getValue();
7980         if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) {
7981           APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7982                                           ShlAmtCI->getZExtValue() - AShrAmt);
7983           const SCEV *CompositeExpr =
7984               getMulExpr(AddTruncateExpr, getConstant(Mul));
7985           if (L->getOpcode() != Instruction::Shl)
7986             CompositeExpr = getAddExpr(CompositeExpr, AddConstant);
7987 
7988           return getSignExtendExpr(CompositeExpr, OuterTy);
7989         }
7990       }
7991       break;
7992     }
7993   }
7994 
7995   switch (U->getOpcode()) {
7996   case Instruction::Trunc:
7997     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7998 
7999   case Instruction::ZExt:
8000     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8001 
8002   case Instruction::SExt:
8003     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
8004                                 dyn_cast<Instruction>(V))) {
8005       // The NSW flag of a subtract does not always survive the conversion to
8006       // A + (-1)*B.  By pushing sign extension onto its operands we are much
8007       // more likely to preserve NSW and allow later AddRec optimisations.
8008       //
8009       // NOTE: This is effectively duplicating this logic from getSignExtend:
8010       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8011       // but by that point the NSW information has potentially been lost.
8012       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8013         Type *Ty = U->getType();
8014         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
8015         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
8016         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
8017       }
8018     }
8019     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8020 
8021   case Instruction::BitCast:
8022     // BitCasts are no-op casts so we just eliminate the cast.
8023     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
8024       return getSCEV(U->getOperand(0));
8025     break;
8026 
8027   case Instruction::PtrToInt: {
8028     // Pointer to integer cast is straight-forward, so do model it.
8029     const SCEV *Op = getSCEV(U->getOperand(0));
8030     Type *DstIntTy = U->getType();
8031     // But only if effective SCEV (integer) type is wide enough to represent
8032     // all possible pointer values.
8033     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
8034     if (isa<SCEVCouldNotCompute>(IntOp))
8035       return getUnknown(V);
8036     return IntOp;
8037   }
8038   case Instruction::IntToPtr:
8039     // Just don't deal with inttoptr casts.
8040     return getUnknown(V);
8041 
8042   case Instruction::SDiv:
8043     // If both operands are non-negative, this is just an udiv.
8044     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8045         isKnownNonNegative(getSCEV(U->getOperand(1))))
8046       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8047     break;
8048 
8049   case Instruction::SRem:
8050     // If both operands are non-negative, this is just an urem.
8051     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8052         isKnownNonNegative(getSCEV(U->getOperand(1))))
8053       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8054     break;
8055 
8056   case Instruction::GetElementPtr:
8057     return createNodeForGEP(cast<GEPOperator>(U));
8058 
8059   case Instruction::PHI:
8060     return createNodeForPHI(cast<PHINode>(U));
8061 
8062   case Instruction::Select:
8063     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8064                                     U->getOperand(2));
8065 
8066   case Instruction::Call:
8067   case Instruction::Invoke:
8068     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8069       return getSCEV(RV);
8070 
8071     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8072       switch (II->getIntrinsicID()) {
8073       case Intrinsic::abs:
8074         return getAbsExpr(
8075             getSCEV(II->getArgOperand(0)),
8076             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8077       case Intrinsic::umax:
8078         LHS = getSCEV(II->getArgOperand(0));
8079         RHS = getSCEV(II->getArgOperand(1));
8080         return getUMaxExpr(LHS, RHS);
8081       case Intrinsic::umin:
8082         LHS = getSCEV(II->getArgOperand(0));
8083         RHS = getSCEV(II->getArgOperand(1));
8084         return getUMinExpr(LHS, RHS);
8085       case Intrinsic::smax:
8086         LHS = getSCEV(II->getArgOperand(0));
8087         RHS = getSCEV(II->getArgOperand(1));
8088         return getSMaxExpr(LHS, RHS);
8089       case Intrinsic::smin:
8090         LHS = getSCEV(II->getArgOperand(0));
8091         RHS = getSCEV(II->getArgOperand(1));
8092         return getSMinExpr(LHS, RHS);
8093       case Intrinsic::usub_sat: {
8094         const SCEV *X = getSCEV(II->getArgOperand(0));
8095         const SCEV *Y = getSCEV(II->getArgOperand(1));
8096         const SCEV *ClampedY = getUMinExpr(X, Y);
8097         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8098       }
8099       case Intrinsic::uadd_sat: {
8100         const SCEV *X = getSCEV(II->getArgOperand(0));
8101         const SCEV *Y = getSCEV(II->getArgOperand(1));
8102         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8103         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8104       }
8105       case Intrinsic::start_loop_iterations:
8106       case Intrinsic::annotation:
8107       case Intrinsic::ptr_annotation:
8108         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8109         // just eqivalent to the first operand for SCEV purposes.
8110         return getSCEV(II->getArgOperand(0));
8111       case Intrinsic::vscale:
8112         return getVScale(II->getType());
8113       default:
8114         break;
8115       }
8116     }
8117     break;
8118   }
8119 
8120   return getUnknown(V);
8121 }
8122 
8123 //===----------------------------------------------------------------------===//
8124 //                   Iteration Count Computation Code
8125 //
8126 
8127 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8128   if (isa<SCEVCouldNotCompute>(ExitCount))
8129     return getCouldNotCompute();
8130 
8131   auto *ExitCountType = ExitCount->getType();
8132   assert(ExitCountType->isIntegerTy());
8133   auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8134                                  1 + ExitCountType->getScalarSizeInBits());
8135   return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8136 }
8137 
8138 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8139                                                        Type *EvalTy,
8140                                                        const Loop *L) {
8141   if (isa<SCEVCouldNotCompute>(ExitCount))
8142     return getCouldNotCompute();
8143 
8144   unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8145   unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8146 
8147   auto CanAddOneWithoutOverflow = [&]() {
8148     ConstantRange ExitCountRange =
8149       getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8150     if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8151       return true;
8152 
8153     return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8154                                          getMinusOne(ExitCount->getType()));
8155   };
8156 
8157   // If we need to zero extend the backedge count, check if we can add one to
8158   // it prior to zero extending without overflow. Provided this is safe, it
8159   // allows better simplification of the +1.
8160   if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8161     return getZeroExtendExpr(
8162         getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8163 
8164   // Get the total trip count from the count by adding 1.  This may wrap.
8165   return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8166 }
8167 
8168 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8169   if (!ExitCount)
8170     return 0;
8171 
8172   ConstantInt *ExitConst = ExitCount->getValue();
8173 
8174   // Guard against huge trip counts.
8175   if (ExitConst->getValue().getActiveBits() > 32)
8176     return 0;
8177 
8178   // In case of integer overflow, this returns 0, which is correct.
8179   return ((unsigned)ExitConst->getZExtValue()) + 1;
8180 }
8181 
8182 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8183   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8184   return getConstantTripCount(ExitCount);
8185 }
8186 
8187 unsigned
8188 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8189                                            const BasicBlock *ExitingBlock) {
8190   assert(ExitingBlock && "Must pass a non-null exiting block!");
8191   assert(L->isLoopExiting(ExitingBlock) &&
8192          "Exiting block must actually branch out of the loop!");
8193   const SCEVConstant *ExitCount =
8194       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8195   return getConstantTripCount(ExitCount);
8196 }
8197 
8198 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8199   const auto *MaxExitCount =
8200       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8201   return getConstantTripCount(MaxExitCount);
8202 }
8203 
8204 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8205   SmallVector<BasicBlock *, 8> ExitingBlocks;
8206   L->getExitingBlocks(ExitingBlocks);
8207 
8208   std::optional<unsigned> Res;
8209   for (auto *ExitingBB : ExitingBlocks) {
8210     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8211     if (!Res)
8212       Res = Multiple;
8213     Res = (unsigned)std::gcd(*Res, Multiple);
8214   }
8215   return Res.value_or(1);
8216 }
8217 
8218 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8219                                                        const SCEV *ExitCount) {
8220   if (ExitCount == getCouldNotCompute())
8221     return 1;
8222 
8223   // Get the trip count
8224   const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8225 
8226   APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8227   // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8228   // the greatest power of 2 divisor less than 2^32.
8229   return Multiple.getActiveBits() > 32
8230              ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8231              : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8232 }
8233 
8234 /// Returns the largest constant divisor of the trip count of this loop as a
8235 /// normal unsigned value, if possible. This means that the actual trip count is
8236 /// always a multiple of the returned value (don't forget the trip count could
8237 /// very well be zero as well!).
8238 ///
8239 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8240 /// multiple of a constant (which is also the case if the trip count is simply
8241 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8242 /// if the trip count is very large (>= 2^32).
8243 ///
8244 /// As explained in the comments for getSmallConstantTripCount, this assumes
8245 /// that control exits the loop via ExitingBlock.
8246 unsigned
8247 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8248                                               const BasicBlock *ExitingBlock) {
8249   assert(ExitingBlock && "Must pass a non-null exiting block!");
8250   assert(L->isLoopExiting(ExitingBlock) &&
8251          "Exiting block must actually branch out of the loop!");
8252   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8253   return getSmallConstantTripMultiple(L, ExitCount);
8254 }
8255 
8256 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8257                                           const BasicBlock *ExitingBlock,
8258                                           ExitCountKind Kind) {
8259   switch (Kind) {
8260   case Exact:
8261     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8262   case SymbolicMaximum:
8263     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8264   case ConstantMaximum:
8265     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8266   };
8267   llvm_unreachable("Invalid ExitCountKind!");
8268 }
8269 
8270 const SCEV *
8271 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8272                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8273   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8274 }
8275 
8276 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8277                                                    ExitCountKind Kind) {
8278   switch (Kind) {
8279   case Exact:
8280     return getBackedgeTakenInfo(L).getExact(L, this);
8281   case ConstantMaximum:
8282     return getBackedgeTakenInfo(L).getConstantMax(this);
8283   case SymbolicMaximum:
8284     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8285   };
8286   llvm_unreachable("Invalid ExitCountKind!");
8287 }
8288 
8289 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8290   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8291 }
8292 
8293 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8294 static void PushLoopPHIs(const Loop *L,
8295                          SmallVectorImpl<Instruction *> &Worklist,
8296                          SmallPtrSetImpl<Instruction *> &Visited) {
8297   BasicBlock *Header = L->getHeader();
8298 
8299   // Push all Loop-header PHIs onto the Worklist stack.
8300   for (PHINode &PN : Header->phis())
8301     if (Visited.insert(&PN).second)
8302       Worklist.push_back(&PN);
8303 }
8304 
8305 const ScalarEvolution::BackedgeTakenInfo &
8306 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8307   auto &BTI = getBackedgeTakenInfo(L);
8308   if (BTI.hasFullInfo())
8309     return BTI;
8310 
8311   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8312 
8313   if (!Pair.second)
8314     return Pair.first->second;
8315 
8316   BackedgeTakenInfo Result =
8317       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8318 
8319   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8320 }
8321 
8322 ScalarEvolution::BackedgeTakenInfo &
8323 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8324   // Initially insert an invalid entry for this loop. If the insertion
8325   // succeeds, proceed to actually compute a backedge-taken count and
8326   // update the value. The temporary CouldNotCompute value tells SCEV
8327   // code elsewhere that it shouldn't attempt to request a new
8328   // backedge-taken count, which could result in infinite recursion.
8329   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8330       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8331   if (!Pair.second)
8332     return Pair.first->second;
8333 
8334   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8335   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8336   // must be cleared in this scope.
8337   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8338 
8339   // Now that we know more about the trip count for this loop, forget any
8340   // existing SCEV values for PHI nodes in this loop since they are only
8341   // conservative estimates made without the benefit of trip count
8342   // information. This invalidation is not necessary for correctness, and is
8343   // only done to produce more precise results.
8344   if (Result.hasAnyInfo()) {
8345     // Invalidate any expression using an addrec in this loop.
8346     SmallVector<const SCEV *, 8> ToForget;
8347     auto LoopUsersIt = LoopUsers.find(L);
8348     if (LoopUsersIt != LoopUsers.end())
8349       append_range(ToForget, LoopUsersIt->second);
8350     forgetMemoizedResults(ToForget);
8351 
8352     // Invalidate constant-evolved loop header phis.
8353     for (PHINode &PN : L->getHeader()->phis())
8354       ConstantEvolutionLoopExitValue.erase(&PN);
8355   }
8356 
8357   // Re-lookup the insert position, since the call to
8358   // computeBackedgeTakenCount above could result in a
8359   // recusive call to getBackedgeTakenInfo (on a different
8360   // loop), which would invalidate the iterator computed
8361   // earlier.
8362   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8363 }
8364 
8365 void ScalarEvolution::forgetAllLoops() {
8366   // This method is intended to forget all info about loops. It should
8367   // invalidate caches as if the following happened:
8368   // - The trip counts of all loops have changed arbitrarily
8369   // - Every llvm::Value has been updated in place to produce a different
8370   // result.
8371   BackedgeTakenCounts.clear();
8372   PredicatedBackedgeTakenCounts.clear();
8373   BECountUsers.clear();
8374   LoopPropertiesCache.clear();
8375   ConstantEvolutionLoopExitValue.clear();
8376   ValueExprMap.clear();
8377   ValuesAtScopes.clear();
8378   ValuesAtScopesUsers.clear();
8379   LoopDispositions.clear();
8380   BlockDispositions.clear();
8381   UnsignedRanges.clear();
8382   SignedRanges.clear();
8383   ExprValueMap.clear();
8384   HasRecMap.clear();
8385   ConstantMultipleCache.clear();
8386   PredicatedSCEVRewrites.clear();
8387   FoldCache.clear();
8388   FoldCacheUser.clear();
8389 }
8390 void ScalarEvolution::visitAndClearUsers(
8391     SmallVectorImpl<Instruction *> &Worklist,
8392     SmallPtrSetImpl<Instruction *> &Visited,
8393     SmallVectorImpl<const SCEV *> &ToForget) {
8394   while (!Worklist.empty()) {
8395     Instruction *I = Worklist.pop_back_val();
8396     if (!isSCEVable(I->getType()))
8397       continue;
8398 
8399     ValueExprMapType::iterator It =
8400         ValueExprMap.find_as(static_cast<Value *>(I));
8401     if (It != ValueExprMap.end()) {
8402       eraseValueFromMap(It->first);
8403       ToForget.push_back(It->second);
8404       if (PHINode *PN = dyn_cast<PHINode>(I))
8405         ConstantEvolutionLoopExitValue.erase(PN);
8406     }
8407 
8408     PushDefUseChildren(I, Worklist, Visited);
8409   }
8410 }
8411 
8412 void ScalarEvolution::forgetLoop(const Loop *L) {
8413   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8414   SmallVector<Instruction *, 32> Worklist;
8415   SmallPtrSet<Instruction *, 16> Visited;
8416   SmallVector<const SCEV *, 16> ToForget;
8417 
8418   // Iterate over all the loops and sub-loops to drop SCEV information.
8419   while (!LoopWorklist.empty()) {
8420     auto *CurrL = LoopWorklist.pop_back_val();
8421 
8422     // Drop any stored trip count value.
8423     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8424     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8425 
8426     // Drop information about predicated SCEV rewrites for this loop.
8427     for (auto I = PredicatedSCEVRewrites.begin();
8428          I != PredicatedSCEVRewrites.end();) {
8429       std::pair<const SCEV *, const Loop *> Entry = I->first;
8430       if (Entry.second == CurrL)
8431         PredicatedSCEVRewrites.erase(I++);
8432       else
8433         ++I;
8434     }
8435 
8436     auto LoopUsersItr = LoopUsers.find(CurrL);
8437     if (LoopUsersItr != LoopUsers.end()) {
8438       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8439                 LoopUsersItr->second.end());
8440     }
8441 
8442     // Drop information about expressions based on loop-header PHIs.
8443     PushLoopPHIs(CurrL, Worklist, Visited);
8444     visitAndClearUsers(Worklist, Visited, ToForget);
8445 
8446     LoopPropertiesCache.erase(CurrL);
8447     // Forget all contained loops too, to avoid dangling entries in the
8448     // ValuesAtScopes map.
8449     LoopWorklist.append(CurrL->begin(), CurrL->end());
8450   }
8451   forgetMemoizedResults(ToForget);
8452 }
8453 
8454 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8455   forgetLoop(L->getOutermostLoop());
8456 }
8457 
8458 void ScalarEvolution::forgetValue(Value *V) {
8459   Instruction *I = dyn_cast<Instruction>(V);
8460   if (!I) return;
8461 
8462   // Drop information about expressions based on loop-header PHIs.
8463   SmallVector<Instruction *, 16> Worklist;
8464   SmallPtrSet<Instruction *, 8> Visited;
8465   SmallVector<const SCEV *, 8> ToForget;
8466   Worklist.push_back(I);
8467   Visited.insert(I);
8468   visitAndClearUsers(Worklist, Visited, ToForget);
8469 
8470   forgetMemoizedResults(ToForget);
8471 }
8472 
8473 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8474   if (!isSCEVable(V->getType()))
8475     return;
8476 
8477   // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8478   // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8479   // extra predecessor is added, this is no longer valid. Find all Unknowns and
8480   // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8481   if (const SCEV *S = getExistingSCEV(V)) {
8482     struct InvalidationRootCollector {
8483       Loop *L;
8484       SmallVector<const SCEV *, 8> Roots;
8485 
8486       InvalidationRootCollector(Loop *L) : L(L) {}
8487 
8488       bool follow(const SCEV *S) {
8489         if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
8490           if (auto *I = dyn_cast<Instruction>(SU->getValue()))
8491             if (L->contains(I))
8492               Roots.push_back(S);
8493         } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
8494           if (L->contains(AddRec->getLoop()))
8495             Roots.push_back(S);
8496         }
8497         return true;
8498       }
8499       bool isDone() const { return false; }
8500     };
8501 
8502     InvalidationRootCollector C(L);
8503     visitAll(S, C);
8504     forgetMemoizedResults(C.Roots);
8505   }
8506 
8507   // Also perform the normal invalidation.
8508   forgetValue(V);
8509 }
8510 
8511 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8512 
8513 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8514   // Unless a specific value is passed to invalidation, completely clear both
8515   // caches.
8516   if (!V) {
8517     BlockDispositions.clear();
8518     LoopDispositions.clear();
8519     return;
8520   }
8521 
8522   if (!isSCEVable(V->getType()))
8523     return;
8524 
8525   const SCEV *S = getExistingSCEV(V);
8526   if (!S)
8527     return;
8528 
8529   // Invalidate the block and loop dispositions cached for S. Dispositions of
8530   // S's users may change if S's disposition changes (i.e. a user may change to
8531   // loop-invariant, if S changes to loop invariant), so also invalidate
8532   // dispositions of S's users recursively.
8533   SmallVector<const SCEV *, 8> Worklist = {S};
8534   SmallPtrSet<const SCEV *, 8> Seen = {S};
8535   while (!Worklist.empty()) {
8536     const SCEV *Curr = Worklist.pop_back_val();
8537     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8538     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8539     if (!LoopDispoRemoved && !BlockDispoRemoved)
8540       continue;
8541     auto Users = SCEVUsers.find(Curr);
8542     if (Users != SCEVUsers.end())
8543       for (const auto *User : Users->second)
8544         if (Seen.insert(User).second)
8545           Worklist.push_back(User);
8546   }
8547 }
8548 
8549 /// Get the exact loop backedge taken count considering all loop exits. A
8550 /// computable result can only be returned for loops with all exiting blocks
8551 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8552 /// is never skipped. This is a valid assumption as long as the loop exits via
8553 /// that test. For precise results, it is the caller's responsibility to specify
8554 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8555 const SCEV *
8556 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8557                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8558   // If any exits were not computable, the loop is not computable.
8559   if (!isComplete() || ExitNotTaken.empty())
8560     return SE->getCouldNotCompute();
8561 
8562   const BasicBlock *Latch = L->getLoopLatch();
8563   // All exiting blocks we have collected must dominate the only backedge.
8564   if (!Latch)
8565     return SE->getCouldNotCompute();
8566 
8567   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8568   // count is simply a minimum out of all these calculated exit counts.
8569   SmallVector<const SCEV *, 2> Ops;
8570   for (const auto &ENT : ExitNotTaken) {
8571     const SCEV *BECount = ENT.ExactNotTaken;
8572     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8573     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8574            "We should only have known counts for exiting blocks that dominate "
8575            "latch!");
8576 
8577     Ops.push_back(BECount);
8578 
8579     if (Preds)
8580       for (const auto *P : ENT.Predicates)
8581         Preds->push_back(P);
8582 
8583     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8584            "Predicate should be always true!");
8585   }
8586 
8587   // If an earlier exit exits on the first iteration (exit count zero), then
8588   // a later poison exit count should not propagate into the result. This are
8589   // exactly the semantics provided by umin_seq.
8590   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8591 }
8592 
8593 /// Get the exact not taken count for this loop exit.
8594 const SCEV *
8595 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8596                                              ScalarEvolution *SE) const {
8597   for (const auto &ENT : ExitNotTaken)
8598     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8599       return ENT.ExactNotTaken;
8600 
8601   return SE->getCouldNotCompute();
8602 }
8603 
8604 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8605     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8606   for (const auto &ENT : ExitNotTaken)
8607     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8608       return ENT.ConstantMaxNotTaken;
8609 
8610   return SE->getCouldNotCompute();
8611 }
8612 
8613 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8614     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8615   for (const auto &ENT : ExitNotTaken)
8616     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8617       return ENT.SymbolicMaxNotTaken;
8618 
8619   return SE->getCouldNotCompute();
8620 }
8621 
8622 /// getConstantMax - Get the constant max backedge taken count for the loop.
8623 const SCEV *
8624 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8625   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8626     return !ENT.hasAlwaysTruePredicate();
8627   };
8628 
8629   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8630     return SE->getCouldNotCompute();
8631 
8632   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8633           isa<SCEVConstant>(getConstantMax())) &&
8634          "No point in having a non-constant max backedge taken count!");
8635   return getConstantMax();
8636 }
8637 
8638 const SCEV *
8639 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8640                                                    ScalarEvolution *SE) {
8641   if (!SymbolicMax)
8642     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8643   return SymbolicMax;
8644 }
8645 
8646 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8647     ScalarEvolution *SE) const {
8648   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8649     return !ENT.hasAlwaysTruePredicate();
8650   };
8651   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8652 }
8653 
8654 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8655     : ExitLimit(E, E, E, false, std::nullopt) {}
8656 
8657 ScalarEvolution::ExitLimit::ExitLimit(
8658     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8659     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8660     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8661     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8662       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8663   // If we prove the max count is zero, so is the symbolic bound.  This happens
8664   // in practice due to differences in a) how context sensitive we've chosen
8665   // to be and b) how we reason about bounds implied by UB.
8666   if (ConstantMaxNotTaken->isZero()) {
8667     this->ExactNotTaken = E = ConstantMaxNotTaken;
8668     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8669   }
8670 
8671   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8672           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8673          "Exact is not allowed to be less precise than Constant Max");
8674   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8675           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8676          "Exact is not allowed to be less precise than Symbolic Max");
8677   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8678           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8679          "Symbolic Max is not allowed to be less precise than Constant Max");
8680   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8681           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8682          "No point in having a non-constant max backedge taken count!");
8683   for (const auto *PredSet : PredSetList)
8684     for (const auto *P : *PredSet)
8685       addPredicate(P);
8686   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8687          "Backedge count should be int");
8688   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8689           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8690          "Max backedge count should be int");
8691 }
8692 
8693 ScalarEvolution::ExitLimit::ExitLimit(
8694     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8695     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8696     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8697     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8698                 { &PredSet }) {}
8699 
8700 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8701 /// computable exit into a persistent ExitNotTakenInfo array.
8702 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8703     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8704     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8705     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8706   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8707 
8708   ExitNotTaken.reserve(ExitCounts.size());
8709   std::transform(ExitCounts.begin(), ExitCounts.end(),
8710                  std::back_inserter(ExitNotTaken),
8711                  [&](const EdgeExitInfo &EEI) {
8712         BasicBlock *ExitBB = EEI.first;
8713         const ExitLimit &EL = EEI.second;
8714         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8715                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8716                                 EL.Predicates);
8717   });
8718   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8719           isa<SCEVConstant>(ConstantMax)) &&
8720          "No point in having a non-constant max backedge taken count!");
8721 }
8722 
8723 /// Compute the number of times the backedge of the specified loop will execute.
8724 ScalarEvolution::BackedgeTakenInfo
8725 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8726                                            bool AllowPredicates) {
8727   SmallVector<BasicBlock *, 8> ExitingBlocks;
8728   L->getExitingBlocks(ExitingBlocks);
8729 
8730   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8731 
8732   SmallVector<EdgeExitInfo, 4> ExitCounts;
8733   bool CouldComputeBECount = true;
8734   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8735   const SCEV *MustExitMaxBECount = nullptr;
8736   const SCEV *MayExitMaxBECount = nullptr;
8737   bool MustExitMaxOrZero = false;
8738 
8739   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8740   // and compute maxBECount.
8741   // Do a union of all the predicates here.
8742   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8743     BasicBlock *ExitBB = ExitingBlocks[i];
8744 
8745     // We canonicalize untaken exits to br (constant), ignore them so that
8746     // proving an exit untaken doesn't negatively impact our ability to reason
8747     // about the loop as whole.
8748     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8749       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8750         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8751         if (ExitIfTrue == CI->isZero())
8752           continue;
8753       }
8754 
8755     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8756 
8757     assert((AllowPredicates || EL.Predicates.empty()) &&
8758            "Predicated exit limit when predicates are not allowed!");
8759 
8760     // 1. For each exit that can be computed, add an entry to ExitCounts.
8761     // CouldComputeBECount is true only if all exits can be computed.
8762     if (EL.ExactNotTaken != getCouldNotCompute())
8763       ++NumExitCountsComputed;
8764     else
8765       // We couldn't compute an exact value for this exit, so
8766       // we won't be able to compute an exact value for the loop.
8767       CouldComputeBECount = false;
8768     // Remember exit count if either exact or symbolic is known. Because
8769     // Exact always implies symbolic, only check symbolic.
8770     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8771       ExitCounts.emplace_back(ExitBB, EL);
8772     else {
8773       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8774              "Exact is known but symbolic isn't?");
8775       ++NumExitCountsNotComputed;
8776     }
8777 
8778     // 2. Derive the loop's MaxBECount from each exit's max number of
8779     // non-exiting iterations. Partition the loop exits into two kinds:
8780     // LoopMustExits and LoopMayExits.
8781     //
8782     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8783     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8784     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8785     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8786     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8787     // any
8788     // computable EL.ConstantMaxNotTaken.
8789     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8790         DT.dominates(ExitBB, Latch)) {
8791       if (!MustExitMaxBECount) {
8792         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8793         MustExitMaxOrZero = EL.MaxOrZero;
8794       } else {
8795         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8796                                                         EL.ConstantMaxNotTaken);
8797       }
8798     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8799       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8800         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8801       else {
8802         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8803                                                        EL.ConstantMaxNotTaken);
8804       }
8805     }
8806   }
8807   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8808     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8809   // The loop backedge will be taken the maximum or zero times if there's
8810   // a single exit that must be taken the maximum or zero times.
8811   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8812 
8813   // Remember which SCEVs are used in exit limits for invalidation purposes.
8814   // We only care about non-constant SCEVs here, so we can ignore
8815   // EL.ConstantMaxNotTaken
8816   // and MaxBECount, which must be SCEVConstant.
8817   for (const auto &Pair : ExitCounts) {
8818     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8819       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8820     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8821       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8822           {L, AllowPredicates});
8823   }
8824   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8825                            MaxBECount, MaxOrZero);
8826 }
8827 
8828 ScalarEvolution::ExitLimit
8829 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8830                                       bool AllowPredicates) {
8831   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8832   // If our exiting block does not dominate the latch, then its connection with
8833   // loop's exit limit may be far from trivial.
8834   const BasicBlock *Latch = L->getLoopLatch();
8835   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8836     return getCouldNotCompute();
8837 
8838   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8839   Instruction *Term = ExitingBlock->getTerminator();
8840   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8841     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8842     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8843     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8844            "It should have one successor in loop and one exit block!");
8845     // Proceed to the next level to examine the exit condition expression.
8846     return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8847                                     /*ControlsOnlyExit=*/IsOnlyExit,
8848                                     AllowPredicates);
8849   }
8850 
8851   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8852     // For switch, make sure that there is a single exit from the loop.
8853     BasicBlock *Exit = nullptr;
8854     for (auto *SBB : successors(ExitingBlock))
8855       if (!L->contains(SBB)) {
8856         if (Exit) // Multiple exit successors.
8857           return getCouldNotCompute();
8858         Exit = SBB;
8859       }
8860     assert(Exit && "Exiting block must have at least one exit");
8861     return computeExitLimitFromSingleExitSwitch(
8862         L, SI, Exit,
8863         /*ControlsOnlyExit=*/IsOnlyExit);
8864   }
8865 
8866   return getCouldNotCompute();
8867 }
8868 
8869 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8870     const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8871     bool AllowPredicates) {
8872   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8873   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8874                                         ControlsOnlyExit, AllowPredicates);
8875 }
8876 
8877 std::optional<ScalarEvolution::ExitLimit>
8878 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8879                                       bool ExitIfTrue, bool ControlsOnlyExit,
8880                                       bool AllowPredicates) {
8881   (void)this->L;
8882   (void)this->ExitIfTrue;
8883   (void)this->AllowPredicates;
8884 
8885   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8886          this->AllowPredicates == AllowPredicates &&
8887          "Variance in assumed invariant key components!");
8888   auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8889   if (Itr == TripCountMap.end())
8890     return std::nullopt;
8891   return Itr->second;
8892 }
8893 
8894 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8895                                              bool ExitIfTrue,
8896                                              bool ControlsOnlyExit,
8897                                              bool AllowPredicates,
8898                                              const ExitLimit &EL) {
8899   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8900          this->AllowPredicates == AllowPredicates &&
8901          "Variance in assumed invariant key components!");
8902 
8903   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
8904   assert(InsertResult.second && "Expected successful insertion!");
8905   (void)InsertResult;
8906   (void)ExitIfTrue;
8907 }
8908 
8909 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8910     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8911     bool ControlsOnlyExit, bool AllowPredicates) {
8912 
8913   if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8914                                 AllowPredicates))
8915     return *MaybeEL;
8916 
8917   ExitLimit EL = computeExitLimitFromCondImpl(
8918       Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8919   Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8920   return EL;
8921 }
8922 
8923 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8924     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8925     bool ControlsOnlyExit, bool AllowPredicates) {
8926   // Handle BinOp conditions (And, Or).
8927   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8928           Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8929     return *LimitFromBinOp;
8930 
8931   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8932   // Proceed to the next level to examine the icmp.
8933   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8934     ExitLimit EL =
8935         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
8936     if (EL.hasFullInfo() || !AllowPredicates)
8937       return EL;
8938 
8939     // Try again, but use SCEV predicates this time.
8940     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
8941                                     ControlsOnlyExit,
8942                                     /*AllowPredicates=*/true);
8943   }
8944 
8945   // Check for a constant condition. These are normally stripped out by
8946   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8947   // preserve the CFG and is temporarily leaving constant conditions
8948   // in place.
8949   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8950     if (ExitIfTrue == !CI->getZExtValue())
8951       // The backedge is always taken.
8952       return getCouldNotCompute();
8953     // The backedge is never taken.
8954     return getZero(CI->getType());
8955   }
8956 
8957   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8958   // with a constant step, we can form an equivalent icmp predicate and figure
8959   // out how many iterations will be taken before we exit.
8960   const WithOverflowInst *WO;
8961   const APInt *C;
8962   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8963       match(WO->getRHS(), m_APInt(C))) {
8964     ConstantRange NWR =
8965       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8966                                            WO->getNoWrapKind());
8967     CmpInst::Predicate Pred;
8968     APInt NewRHSC, Offset;
8969     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8970     if (!ExitIfTrue)
8971       Pred = ICmpInst::getInversePredicate(Pred);
8972     auto *LHS = getSCEV(WO->getLHS());
8973     if (Offset != 0)
8974       LHS = getAddExpr(LHS, getConstant(Offset));
8975     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8976                                        ControlsOnlyExit, AllowPredicates);
8977     if (EL.hasAnyInfo())
8978       return EL;
8979   }
8980 
8981   // If it's not an integer or pointer comparison then compute it the hard way.
8982   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8983 }
8984 
8985 std::optional<ScalarEvolution::ExitLimit>
8986 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8987     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8988     bool ControlsOnlyExit, bool AllowPredicates) {
8989   // Check if the controlling expression for this loop is an And or Or.
8990   Value *Op0, *Op1;
8991   bool IsAnd = false;
8992   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8993     IsAnd = true;
8994   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8995     IsAnd = false;
8996   else
8997     return std::nullopt;
8998 
8999   // EitherMayExit is true in these two cases:
9000   //   br (and Op0 Op1), loop, exit
9001   //   br (or  Op0 Op1), exit, loop
9002   bool EitherMayExit = IsAnd ^ ExitIfTrue;
9003   ExitLimit EL0 = computeExitLimitFromCondCached(
9004       Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9005       AllowPredicates);
9006   ExitLimit EL1 = computeExitLimitFromCondCached(
9007       Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9008       AllowPredicates);
9009 
9010   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9011   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
9012   if (isa<ConstantInt>(Op1))
9013     return Op1 == NeutralElement ? EL0 : EL1;
9014   if (isa<ConstantInt>(Op0))
9015     return Op0 == NeutralElement ? EL1 : EL0;
9016 
9017   const SCEV *BECount = getCouldNotCompute();
9018   const SCEV *ConstantMaxBECount = getCouldNotCompute();
9019   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9020   if (EitherMayExit) {
9021     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
9022     // Both conditions must be same for the loop to continue executing.
9023     // Choose the less conservative count.
9024     if (EL0.ExactNotTaken != getCouldNotCompute() &&
9025         EL1.ExactNotTaken != getCouldNotCompute()) {
9026       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
9027                                            UseSequentialUMin);
9028     }
9029     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9030       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9031     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9032       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9033     else
9034       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
9035                                                       EL1.ConstantMaxNotTaken);
9036     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9037       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9038     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9039       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9040     else
9041       SymbolicMaxBECount = getUMinFromMismatchedTypes(
9042           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9043   } else {
9044     // Both conditions must be same at the same time for the loop to exit.
9045     // For now, be conservative.
9046     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9047       BECount = EL0.ExactNotTaken;
9048   }
9049 
9050   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9051   // to be more aggressive when computing BECount than when computing
9052   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
9053   // and
9054   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9055   // EL1.ConstantMaxNotTaken to not.
9056   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
9057       !isa<SCEVCouldNotCompute>(BECount))
9058     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
9059   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
9060     SymbolicMaxBECount =
9061         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9062   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9063                    { &EL0.Predicates, &EL1.Predicates });
9064 }
9065 
9066 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9067     const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9068     bool AllowPredicates) {
9069   // If the condition was exit on true, convert the condition to exit on false
9070   ICmpInst::Predicate Pred;
9071   if (!ExitIfTrue)
9072     Pred = ExitCond->getPredicate();
9073   else
9074     Pred = ExitCond->getInversePredicate();
9075   const ICmpInst::Predicate OriginalPred = Pred;
9076 
9077   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9078   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9079 
9080   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
9081                                           AllowPredicates);
9082   if (EL.hasAnyInfo())
9083     return EL;
9084 
9085   auto *ExhaustiveCount =
9086       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9087 
9088   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9089     return ExhaustiveCount;
9090 
9091   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9092                                       ExitCond->getOperand(1), L, OriginalPred);
9093 }
9094 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9095     const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9096     bool ControlsOnlyExit, bool AllowPredicates) {
9097 
9098   // Try to evaluate any dependencies out of the loop.
9099   LHS = getSCEVAtScope(LHS, L);
9100   RHS = getSCEVAtScope(RHS, L);
9101 
9102   // At this point, we would like to compute how many iterations of the
9103   // loop the predicate will return true for these inputs.
9104   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9105     // If there is a loop-invariant, force it into the RHS.
9106     std::swap(LHS, RHS);
9107     Pred = ICmpInst::getSwappedPredicate(Pred);
9108   }
9109 
9110   bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9111                                loopIsFiniteByAssumption(L);
9112   // Simplify the operands before analyzing them.
9113   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9114 
9115   // If we have a comparison of a chrec against a constant, try to use value
9116   // ranges to answer this query.
9117   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9118     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9119       if (AddRec->getLoop() == L) {
9120         // Form the constant range.
9121         ConstantRange CompRange =
9122             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9123 
9124         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9125         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9126       }
9127 
9128   // If this loop must exit based on this condition (or execute undefined
9129   // behaviour), and we can prove the test sequence produced must repeat
9130   // the same values on self-wrap of the IV, then we can infer that IV
9131   // doesn't self wrap because if it did, we'd have an infinite (undefined)
9132   // loop.
9133   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9134     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9135     // invariant terms are effectively constants for our purposes here.
9136     auto *InnerLHS = LHS;
9137     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9138       InnerLHS = ZExt->getOperand();
9139     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9140       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9141       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9142           StrideC && StrideC->getAPInt().isPowerOf2()) {
9143         auto Flags = AR->getNoWrapFlags();
9144         Flags = setFlags(Flags, SCEV::FlagNW);
9145         SmallVector<const SCEV*> Operands{AR->operands()};
9146         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9147         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9148       }
9149     }
9150   }
9151 
9152   switch (Pred) {
9153   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9154     // Convert to: while (X-Y != 0)
9155     if (LHS->getType()->isPointerTy()) {
9156       LHS = getLosslessPtrToIntExpr(LHS);
9157       if (isa<SCEVCouldNotCompute>(LHS))
9158         return LHS;
9159     }
9160     if (RHS->getType()->isPointerTy()) {
9161       RHS = getLosslessPtrToIntExpr(RHS);
9162       if (isa<SCEVCouldNotCompute>(RHS))
9163         return RHS;
9164     }
9165     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9166                                 AllowPredicates);
9167     if (EL.hasAnyInfo())
9168       return EL;
9169     break;
9170   }
9171   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9172     // Convert to: while (X-Y == 0)
9173     if (LHS->getType()->isPointerTy()) {
9174       LHS = getLosslessPtrToIntExpr(LHS);
9175       if (isa<SCEVCouldNotCompute>(LHS))
9176         return LHS;
9177     }
9178     if (RHS->getType()->isPointerTy()) {
9179       RHS = getLosslessPtrToIntExpr(RHS);
9180       if (isa<SCEVCouldNotCompute>(RHS))
9181         return RHS;
9182     }
9183     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9184     if (EL.hasAnyInfo()) return EL;
9185     break;
9186   }
9187   case ICmpInst::ICMP_SLE:
9188   case ICmpInst::ICMP_ULE:
9189     // Since the loop is finite, an invariant RHS cannot include the boundary
9190     // value, otherwise it would loop forever.
9191     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9192         !isLoopInvariant(RHS, L))
9193       break;
9194     RHS = getAddExpr(getOne(RHS->getType()), RHS);
9195     [[fallthrough]];
9196   case ICmpInst::ICMP_SLT:
9197   case ICmpInst::ICMP_ULT: { // while (X < Y)
9198     bool IsSigned = ICmpInst::isSigned(Pred);
9199     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9200                                     AllowPredicates);
9201     if (EL.hasAnyInfo())
9202       return EL;
9203     break;
9204   }
9205   case ICmpInst::ICMP_SGE:
9206   case ICmpInst::ICMP_UGE:
9207     // Since the loop is finite, an invariant RHS cannot include the boundary
9208     // value, otherwise it would loop forever.
9209     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9210         !isLoopInvariant(RHS, L))
9211       break;
9212     RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9213     [[fallthrough]];
9214   case ICmpInst::ICMP_SGT:
9215   case ICmpInst::ICMP_UGT: { // while (X > Y)
9216     bool IsSigned = ICmpInst::isSigned(Pred);
9217     ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9218                                        AllowPredicates);
9219     if (EL.hasAnyInfo())
9220       return EL;
9221     break;
9222   }
9223   default:
9224     break;
9225   }
9226 
9227   return getCouldNotCompute();
9228 }
9229 
9230 ScalarEvolution::ExitLimit
9231 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9232                                                       SwitchInst *Switch,
9233                                                       BasicBlock *ExitingBlock,
9234                                                       bool ControlsOnlyExit) {
9235   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9236 
9237   // Give up if the exit is the default dest of a switch.
9238   if (Switch->getDefaultDest() == ExitingBlock)
9239     return getCouldNotCompute();
9240 
9241   assert(L->contains(Switch->getDefaultDest()) &&
9242          "Default case must not exit the loop!");
9243   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9244   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9245 
9246   // while (X != Y) --> while (X-Y != 0)
9247   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9248   if (EL.hasAnyInfo())
9249     return EL;
9250 
9251   return getCouldNotCompute();
9252 }
9253 
9254 static ConstantInt *
9255 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9256                                 ScalarEvolution &SE) {
9257   const SCEV *InVal = SE.getConstant(C);
9258   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9259   assert(isa<SCEVConstant>(Val) &&
9260          "Evaluation of SCEV at constant didn't fold correctly?");
9261   return cast<SCEVConstant>(Val)->getValue();
9262 }
9263 
9264 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9265     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9266   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9267   if (!RHS)
9268     return getCouldNotCompute();
9269 
9270   const BasicBlock *Latch = L->getLoopLatch();
9271   if (!Latch)
9272     return getCouldNotCompute();
9273 
9274   const BasicBlock *Predecessor = L->getLoopPredecessor();
9275   if (!Predecessor)
9276     return getCouldNotCompute();
9277 
9278   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9279   // Return LHS in OutLHS and shift_opt in OutOpCode.
9280   auto MatchPositiveShift =
9281       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9282 
9283     using namespace PatternMatch;
9284 
9285     ConstantInt *ShiftAmt;
9286     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9287       OutOpCode = Instruction::LShr;
9288     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9289       OutOpCode = Instruction::AShr;
9290     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9291       OutOpCode = Instruction::Shl;
9292     else
9293       return false;
9294 
9295     return ShiftAmt->getValue().isStrictlyPositive();
9296   };
9297 
9298   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9299   //
9300   // loop:
9301   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9302   //   %iv.shifted = lshr i32 %iv, <positive constant>
9303   //
9304   // Return true on a successful match.  Return the corresponding PHI node (%iv
9305   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9306   auto MatchShiftRecurrence =
9307       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9308     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9309 
9310     {
9311       Instruction::BinaryOps OpC;
9312       Value *V;
9313 
9314       // If we encounter a shift instruction, "peel off" the shift operation,
9315       // and remember that we did so.  Later when we inspect %iv's backedge
9316       // value, we will make sure that the backedge value uses the same
9317       // operation.
9318       //
9319       // Note: the peeled shift operation does not have to be the same
9320       // instruction as the one feeding into the PHI's backedge value.  We only
9321       // really care about it being the same *kind* of shift instruction --
9322       // that's all that is required for our later inferences to hold.
9323       if (MatchPositiveShift(LHS, V, OpC)) {
9324         PostShiftOpCode = OpC;
9325         LHS = V;
9326       }
9327     }
9328 
9329     PNOut = dyn_cast<PHINode>(LHS);
9330     if (!PNOut || PNOut->getParent() != L->getHeader())
9331       return false;
9332 
9333     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9334     Value *OpLHS;
9335 
9336     return
9337         // The backedge value for the PHI node must be a shift by a positive
9338         // amount
9339         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9340 
9341         // of the PHI node itself
9342         OpLHS == PNOut &&
9343 
9344         // and the kind of shift should be match the kind of shift we peeled
9345         // off, if any.
9346         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9347   };
9348 
9349   PHINode *PN;
9350   Instruction::BinaryOps OpCode;
9351   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9352     return getCouldNotCompute();
9353 
9354   const DataLayout &DL = getDataLayout();
9355 
9356   // The key rationale for this optimization is that for some kinds of shift
9357   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9358   // within a finite number of iterations.  If the condition guarding the
9359   // backedge (in the sense that the backedge is taken if the condition is true)
9360   // is false for the value the shift recurrence stabilizes to, then we know
9361   // that the backedge is taken only a finite number of times.
9362 
9363   ConstantInt *StableValue = nullptr;
9364   switch (OpCode) {
9365   default:
9366     llvm_unreachable("Impossible case!");
9367 
9368   case Instruction::AShr: {
9369     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9370     // bitwidth(K) iterations.
9371     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9372     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9373                                        Predecessor->getTerminator(), &DT);
9374     auto *Ty = cast<IntegerType>(RHS->getType());
9375     if (Known.isNonNegative())
9376       StableValue = ConstantInt::get(Ty, 0);
9377     else if (Known.isNegative())
9378       StableValue = ConstantInt::get(Ty, -1, true);
9379     else
9380       return getCouldNotCompute();
9381 
9382     break;
9383   }
9384   case Instruction::LShr:
9385   case Instruction::Shl:
9386     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9387     // stabilize to 0 in at most bitwidth(K) iterations.
9388     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9389     break;
9390   }
9391 
9392   auto *Result =
9393       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9394   assert(Result->getType()->isIntegerTy(1) &&
9395          "Otherwise cannot be an operand to a branch instruction");
9396 
9397   if (Result->isZeroValue()) {
9398     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9399     const SCEV *UpperBound =
9400         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9401     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9402   }
9403 
9404   return getCouldNotCompute();
9405 }
9406 
9407 /// Return true if we can constant fold an instruction of the specified type,
9408 /// assuming that all operands were constants.
9409 static bool CanConstantFold(const Instruction *I) {
9410   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9411       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9412       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9413     return true;
9414 
9415   if (const CallInst *CI = dyn_cast<CallInst>(I))
9416     if (const Function *F = CI->getCalledFunction())
9417       return canConstantFoldCallTo(CI, F);
9418   return false;
9419 }
9420 
9421 /// Determine whether this instruction can constant evolve within this loop
9422 /// assuming its operands can all constant evolve.
9423 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9424   // An instruction outside of the loop can't be derived from a loop PHI.
9425   if (!L->contains(I)) return false;
9426 
9427   if (isa<PHINode>(I)) {
9428     // We don't currently keep track of the control flow needed to evaluate
9429     // PHIs, so we cannot handle PHIs inside of loops.
9430     return L->getHeader() == I->getParent();
9431   }
9432 
9433   // If we won't be able to constant fold this expression even if the operands
9434   // are constants, bail early.
9435   return CanConstantFold(I);
9436 }
9437 
9438 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9439 /// recursing through each instruction operand until reaching a loop header phi.
9440 static PHINode *
9441 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9442                                DenseMap<Instruction *, PHINode *> &PHIMap,
9443                                unsigned Depth) {
9444   if (Depth > MaxConstantEvolvingDepth)
9445     return nullptr;
9446 
9447   // Otherwise, we can evaluate this instruction if all of its operands are
9448   // constant or derived from a PHI node themselves.
9449   PHINode *PHI = nullptr;
9450   for (Value *Op : UseInst->operands()) {
9451     if (isa<Constant>(Op)) continue;
9452 
9453     Instruction *OpInst = dyn_cast<Instruction>(Op);
9454     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9455 
9456     PHINode *P = dyn_cast<PHINode>(OpInst);
9457     if (!P)
9458       // If this operand is already visited, reuse the prior result.
9459       // We may have P != PHI if this is the deepest point at which the
9460       // inconsistent paths meet.
9461       P = PHIMap.lookup(OpInst);
9462     if (!P) {
9463       // Recurse and memoize the results, whether a phi is found or not.
9464       // This recursive call invalidates pointers into PHIMap.
9465       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9466       PHIMap[OpInst] = P;
9467     }
9468     if (!P)
9469       return nullptr;  // Not evolving from PHI
9470     if (PHI && PHI != P)
9471       return nullptr;  // Evolving from multiple different PHIs.
9472     PHI = P;
9473   }
9474   // This is a expression evolving from a constant PHI!
9475   return PHI;
9476 }
9477 
9478 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9479 /// in the loop that V is derived from.  We allow arbitrary operations along the
9480 /// way, but the operands of an operation must either be constants or a value
9481 /// derived from a constant PHI.  If this expression does not fit with these
9482 /// constraints, return null.
9483 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9484   Instruction *I = dyn_cast<Instruction>(V);
9485   if (!I || !canConstantEvolve(I, L)) return nullptr;
9486 
9487   if (PHINode *PN = dyn_cast<PHINode>(I))
9488     return PN;
9489 
9490   // Record non-constant instructions contained by the loop.
9491   DenseMap<Instruction *, PHINode *> PHIMap;
9492   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9493 }
9494 
9495 /// EvaluateExpression - Given an expression that passes the
9496 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9497 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9498 /// reason, return null.
9499 static Constant *EvaluateExpression(Value *V, const Loop *L,
9500                                     DenseMap<Instruction *, Constant *> &Vals,
9501                                     const DataLayout &DL,
9502                                     const TargetLibraryInfo *TLI) {
9503   // Convenient constant check, but redundant for recursive calls.
9504   if (Constant *C = dyn_cast<Constant>(V)) return C;
9505   Instruction *I = dyn_cast<Instruction>(V);
9506   if (!I) return nullptr;
9507 
9508   if (Constant *C = Vals.lookup(I)) return C;
9509 
9510   // An instruction inside the loop depends on a value outside the loop that we
9511   // weren't given a mapping for, or a value such as a call inside the loop.
9512   if (!canConstantEvolve(I, L)) return nullptr;
9513 
9514   // An unmapped PHI can be due to a branch or another loop inside this loop,
9515   // or due to this not being the initial iteration through a loop where we
9516   // couldn't compute the evolution of this particular PHI last time.
9517   if (isa<PHINode>(I)) return nullptr;
9518 
9519   std::vector<Constant*> Operands(I->getNumOperands());
9520 
9521   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9522     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9523     if (!Operand) {
9524       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9525       if (!Operands[i]) return nullptr;
9526       continue;
9527     }
9528     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9529     Vals[Operand] = C;
9530     if (!C) return nullptr;
9531     Operands[i] = C;
9532   }
9533 
9534   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9535 }
9536 
9537 
9538 // If every incoming value to PN except the one for BB is a specific Constant,
9539 // return that, else return nullptr.
9540 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9541   Constant *IncomingVal = nullptr;
9542 
9543   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9544     if (PN->getIncomingBlock(i) == BB)
9545       continue;
9546 
9547     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9548     if (!CurrentVal)
9549       return nullptr;
9550 
9551     if (IncomingVal != CurrentVal) {
9552       if (IncomingVal)
9553         return nullptr;
9554       IncomingVal = CurrentVal;
9555     }
9556   }
9557 
9558   return IncomingVal;
9559 }
9560 
9561 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9562 /// in the header of its containing loop, we know the loop executes a
9563 /// constant number of times, and the PHI node is just a recurrence
9564 /// involving constants, fold it.
9565 Constant *
9566 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9567                                                    const APInt &BEs,
9568                                                    const Loop *L) {
9569   auto I = ConstantEvolutionLoopExitValue.find(PN);
9570   if (I != ConstantEvolutionLoopExitValue.end())
9571     return I->second;
9572 
9573   if (BEs.ugt(MaxBruteForceIterations))
9574     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9575 
9576   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9577 
9578   DenseMap<Instruction *, Constant *> CurrentIterVals;
9579   BasicBlock *Header = L->getHeader();
9580   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9581 
9582   BasicBlock *Latch = L->getLoopLatch();
9583   if (!Latch)
9584     return nullptr;
9585 
9586   for (PHINode &PHI : Header->phis()) {
9587     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9588       CurrentIterVals[&PHI] = StartCST;
9589   }
9590   if (!CurrentIterVals.count(PN))
9591     return RetVal = nullptr;
9592 
9593   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9594 
9595   // Execute the loop symbolically to determine the exit value.
9596   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9597          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9598 
9599   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9600   unsigned IterationNum = 0;
9601   const DataLayout &DL = getDataLayout();
9602   for (; ; ++IterationNum) {
9603     if (IterationNum == NumIterations)
9604       return RetVal = CurrentIterVals[PN];  // Got exit value!
9605 
9606     // Compute the value of the PHIs for the next iteration.
9607     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9608     DenseMap<Instruction *, Constant *> NextIterVals;
9609     Constant *NextPHI =
9610         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9611     if (!NextPHI)
9612       return nullptr;        // Couldn't evaluate!
9613     NextIterVals[PN] = NextPHI;
9614 
9615     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9616 
9617     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9618     // cease to be able to evaluate one of them or if they stop evolving,
9619     // because that doesn't necessarily prevent us from computing PN.
9620     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9621     for (const auto &I : CurrentIterVals) {
9622       PHINode *PHI = dyn_cast<PHINode>(I.first);
9623       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9624       PHIsToCompute.emplace_back(PHI, I.second);
9625     }
9626     // We use two distinct loops because EvaluateExpression may invalidate any
9627     // iterators into CurrentIterVals.
9628     for (const auto &I : PHIsToCompute) {
9629       PHINode *PHI = I.first;
9630       Constant *&NextPHI = NextIterVals[PHI];
9631       if (!NextPHI) {   // Not already computed.
9632         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9633         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9634       }
9635       if (NextPHI != I.second)
9636         StoppedEvolving = false;
9637     }
9638 
9639     // If all entries in CurrentIterVals == NextIterVals then we can stop
9640     // iterating, the loop can't continue to change.
9641     if (StoppedEvolving)
9642       return RetVal = CurrentIterVals[PN];
9643 
9644     CurrentIterVals.swap(NextIterVals);
9645   }
9646 }
9647 
9648 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9649                                                           Value *Cond,
9650                                                           bool ExitWhen) {
9651   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9652   if (!PN) return getCouldNotCompute();
9653 
9654   // If the loop is canonicalized, the PHI will have exactly two entries.
9655   // That's the only form we support here.
9656   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9657 
9658   DenseMap<Instruction *, Constant *> CurrentIterVals;
9659   BasicBlock *Header = L->getHeader();
9660   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9661 
9662   BasicBlock *Latch = L->getLoopLatch();
9663   assert(Latch && "Should follow from NumIncomingValues == 2!");
9664 
9665   for (PHINode &PHI : Header->phis()) {
9666     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9667       CurrentIterVals[&PHI] = StartCST;
9668   }
9669   if (!CurrentIterVals.count(PN))
9670     return getCouldNotCompute();
9671 
9672   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9673   // the loop symbolically to determine when the condition gets a value of
9674   // "ExitWhen".
9675   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9676   const DataLayout &DL = getDataLayout();
9677   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9678     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9679         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9680 
9681     // Couldn't symbolically evaluate.
9682     if (!CondVal) return getCouldNotCompute();
9683 
9684     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9685       ++NumBruteForceTripCountsComputed;
9686       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9687     }
9688 
9689     // Update all the PHI nodes for the next iteration.
9690     DenseMap<Instruction *, Constant *> NextIterVals;
9691 
9692     // Create a list of which PHIs we need to compute. We want to do this before
9693     // calling EvaluateExpression on them because that may invalidate iterators
9694     // into CurrentIterVals.
9695     SmallVector<PHINode *, 8> PHIsToCompute;
9696     for (const auto &I : CurrentIterVals) {
9697       PHINode *PHI = dyn_cast<PHINode>(I.first);
9698       if (!PHI || PHI->getParent() != Header) continue;
9699       PHIsToCompute.push_back(PHI);
9700     }
9701     for (PHINode *PHI : PHIsToCompute) {
9702       Constant *&NextPHI = NextIterVals[PHI];
9703       if (NextPHI) continue;    // Already computed!
9704 
9705       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9706       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9707     }
9708     CurrentIterVals.swap(NextIterVals);
9709   }
9710 
9711   // Too many iterations were needed to evaluate.
9712   return getCouldNotCompute();
9713 }
9714 
9715 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9716   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9717       ValuesAtScopes[V];
9718   // Check to see if we've folded this expression at this loop before.
9719   for (auto &LS : Values)
9720     if (LS.first == L)
9721       return LS.second ? LS.second : V;
9722 
9723   Values.emplace_back(L, nullptr);
9724 
9725   // Otherwise compute it.
9726   const SCEV *C = computeSCEVAtScope(V, L);
9727   for (auto &LS : reverse(ValuesAtScopes[V]))
9728     if (LS.first == L) {
9729       LS.second = C;
9730       if (!isa<SCEVConstant>(C))
9731         ValuesAtScopesUsers[C].push_back({L, V});
9732       break;
9733     }
9734   return C;
9735 }
9736 
9737 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9738 /// will return Constants for objects which aren't represented by a
9739 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9740 /// Returns NULL if the SCEV isn't representable as a Constant.
9741 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9742   switch (V->getSCEVType()) {
9743   case scCouldNotCompute:
9744   case scAddRecExpr:
9745   case scVScale:
9746     return nullptr;
9747   case scConstant:
9748     return cast<SCEVConstant>(V)->getValue();
9749   case scUnknown:
9750     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9751   case scPtrToInt: {
9752     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9753     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9754       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9755 
9756     return nullptr;
9757   }
9758   case scTruncate: {
9759     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9760     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9761       return ConstantExpr::getTrunc(CastOp, ST->getType());
9762     return nullptr;
9763   }
9764   case scAddExpr: {
9765     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9766     Constant *C = nullptr;
9767     for (const SCEV *Op : SA->operands()) {
9768       Constant *OpC = BuildConstantFromSCEV(Op);
9769       if (!OpC)
9770         return nullptr;
9771       if (!C) {
9772         C = OpC;
9773         continue;
9774       }
9775       assert(!C->getType()->isPointerTy() &&
9776              "Can only have one pointer, and it must be last");
9777       if (OpC->getType()->isPointerTy()) {
9778         // The offsets have been converted to bytes.  We can add bytes using
9779         // an i8 GEP.
9780         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9781                                            OpC, C);
9782       } else {
9783         C = ConstantExpr::getAdd(C, OpC);
9784       }
9785     }
9786     return C;
9787   }
9788   case scMulExpr:
9789   case scSignExtend:
9790   case scZeroExtend:
9791   case scUDivExpr:
9792   case scSMaxExpr:
9793   case scUMaxExpr:
9794   case scSMinExpr:
9795   case scUMinExpr:
9796   case scSequentialUMinExpr:
9797     return nullptr;
9798   }
9799   llvm_unreachable("Unknown SCEV kind!");
9800 }
9801 
9802 const SCEV *
9803 ScalarEvolution::getWithOperands(const SCEV *S,
9804                                  SmallVectorImpl<const SCEV *> &NewOps) {
9805   switch (S->getSCEVType()) {
9806   case scTruncate:
9807   case scZeroExtend:
9808   case scSignExtend:
9809   case scPtrToInt:
9810     return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9811   case scAddRecExpr: {
9812     auto *AddRec = cast<SCEVAddRecExpr>(S);
9813     return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9814   }
9815   case scAddExpr:
9816     return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9817   case scMulExpr:
9818     return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9819   case scUDivExpr:
9820     return getUDivExpr(NewOps[0], NewOps[1]);
9821   case scUMaxExpr:
9822   case scSMaxExpr:
9823   case scUMinExpr:
9824   case scSMinExpr:
9825     return getMinMaxExpr(S->getSCEVType(), NewOps);
9826   case scSequentialUMinExpr:
9827     return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9828   case scConstant:
9829   case scVScale:
9830   case scUnknown:
9831     return S;
9832   case scCouldNotCompute:
9833     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9834   }
9835   llvm_unreachable("Unknown SCEV kind!");
9836 }
9837 
9838 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9839   switch (V->getSCEVType()) {
9840   case scConstant:
9841   case scVScale:
9842     return V;
9843   case scAddRecExpr: {
9844     // If this is a loop recurrence for a loop that does not contain L, then we
9845     // are dealing with the final value computed by the loop.
9846     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9847     // First, attempt to evaluate each operand.
9848     // Avoid performing the look-up in the common case where the specified
9849     // expression has no loop-variant portions.
9850     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9851       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9852       if (OpAtScope == AddRec->getOperand(i))
9853         continue;
9854 
9855       // Okay, at least one of these operands is loop variant but might be
9856       // foldable.  Build a new instance of the folded commutative expression.
9857       SmallVector<const SCEV *, 8> NewOps;
9858       NewOps.reserve(AddRec->getNumOperands());
9859       append_range(NewOps, AddRec->operands().take_front(i));
9860       NewOps.push_back(OpAtScope);
9861       for (++i; i != e; ++i)
9862         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9863 
9864       const SCEV *FoldedRec = getAddRecExpr(
9865           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9866       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9867       // The addrec may be folded to a nonrecurrence, for example, if the
9868       // induction variable is multiplied by zero after constant folding. Go
9869       // ahead and return the folded value.
9870       if (!AddRec)
9871         return FoldedRec;
9872       break;
9873     }
9874 
9875     // If the scope is outside the addrec's loop, evaluate it by using the
9876     // loop exit value of the addrec.
9877     if (!AddRec->getLoop()->contains(L)) {
9878       // To evaluate this recurrence, we need to know how many times the AddRec
9879       // loop iterates.  Compute this now.
9880       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9881       if (BackedgeTakenCount == getCouldNotCompute())
9882         return AddRec;
9883 
9884       // Then, evaluate the AddRec.
9885       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9886     }
9887 
9888     return AddRec;
9889   }
9890   case scTruncate:
9891   case scZeroExtend:
9892   case scSignExtend:
9893   case scPtrToInt:
9894   case scAddExpr:
9895   case scMulExpr:
9896   case scUDivExpr:
9897   case scUMaxExpr:
9898   case scSMaxExpr:
9899   case scUMinExpr:
9900   case scSMinExpr:
9901   case scSequentialUMinExpr: {
9902     ArrayRef<const SCEV *> Ops = V->operands();
9903     // Avoid performing the look-up in the common case where the specified
9904     // expression has no loop-variant portions.
9905     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9906       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9907       if (OpAtScope != Ops[i]) {
9908         // Okay, at least one of these operands is loop variant but might be
9909         // foldable.  Build a new instance of the folded commutative expression.
9910         SmallVector<const SCEV *, 8> NewOps;
9911         NewOps.reserve(Ops.size());
9912         append_range(NewOps, Ops.take_front(i));
9913         NewOps.push_back(OpAtScope);
9914 
9915         for (++i; i != e; ++i) {
9916           OpAtScope = getSCEVAtScope(Ops[i], L);
9917           NewOps.push_back(OpAtScope);
9918         }
9919 
9920         return getWithOperands(V, NewOps);
9921       }
9922     }
9923     // If we got here, all operands are loop invariant.
9924     return V;
9925   }
9926   case scUnknown: {
9927     // If this instruction is evolved from a constant-evolving PHI, compute the
9928     // exit value from the loop without using SCEVs.
9929     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9930     Instruction *I = dyn_cast<Instruction>(SU->getValue());
9931     if (!I)
9932       return V; // This is some other type of SCEVUnknown, just return it.
9933 
9934     if (PHINode *PN = dyn_cast<PHINode>(I)) {
9935       const Loop *CurrLoop = this->LI[I->getParent()];
9936       // Looking for loop exit value.
9937       if (CurrLoop && CurrLoop->getParentLoop() == L &&
9938           PN->getParent() == CurrLoop->getHeader()) {
9939         // Okay, there is no closed form solution for the PHI node.  Check
9940         // to see if the loop that contains it has a known backedge-taken
9941         // count.  If so, we may be able to force computation of the exit
9942         // value.
9943         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9944         // This trivial case can show up in some degenerate cases where
9945         // the incoming IR has not yet been fully simplified.
9946         if (BackedgeTakenCount->isZero()) {
9947           Value *InitValue = nullptr;
9948           bool MultipleInitValues = false;
9949           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9950             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9951               if (!InitValue)
9952                 InitValue = PN->getIncomingValue(i);
9953               else if (InitValue != PN->getIncomingValue(i)) {
9954                 MultipleInitValues = true;
9955                 break;
9956               }
9957             }
9958           }
9959           if (!MultipleInitValues && InitValue)
9960             return getSCEV(InitValue);
9961         }
9962         // Do we have a loop invariant value flowing around the backedge
9963         // for a loop which must execute the backedge?
9964         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9965             isKnownNonZero(BackedgeTakenCount) &&
9966             PN->getNumIncomingValues() == 2) {
9967 
9968           unsigned InLoopPred =
9969               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9970           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9971           if (CurrLoop->isLoopInvariant(BackedgeVal))
9972             return getSCEV(BackedgeVal);
9973         }
9974         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9975           // Okay, we know how many times the containing loop executes.  If
9976           // this is a constant evolving PHI node, get the final value at
9977           // the specified iteration number.
9978           Constant *RV =
9979               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
9980           if (RV)
9981             return getSCEV(RV);
9982         }
9983       }
9984     }
9985 
9986     // Okay, this is an expression that we cannot symbolically evaluate
9987     // into a SCEV.  Check to see if it's possible to symbolically evaluate
9988     // the arguments into constants, and if so, try to constant propagate the
9989     // result.  This is particularly useful for computing loop exit values.
9990     if (!CanConstantFold(I))
9991       return V; // This is some other type of SCEVUnknown, just return it.
9992 
9993     SmallVector<Constant *, 4> Operands;
9994     Operands.reserve(I->getNumOperands());
9995     bool MadeImprovement = false;
9996     for (Value *Op : I->operands()) {
9997       if (Constant *C = dyn_cast<Constant>(Op)) {
9998         Operands.push_back(C);
9999         continue;
10000       }
10001 
10002       // If any of the operands is non-constant and if they are
10003       // non-integer and non-pointer, don't even try to analyze them
10004       // with scev techniques.
10005       if (!isSCEVable(Op->getType()))
10006         return V;
10007 
10008       const SCEV *OrigV = getSCEV(Op);
10009       const SCEV *OpV = getSCEVAtScope(OrigV, L);
10010       MadeImprovement |= OrigV != OpV;
10011 
10012       Constant *C = BuildConstantFromSCEV(OpV);
10013       if (!C)
10014         return V;
10015       assert(C->getType() == Op->getType() && "Type mismatch");
10016       Operands.push_back(C);
10017     }
10018 
10019     // Check to see if getSCEVAtScope actually made an improvement.
10020     if (!MadeImprovement)
10021       return V; // This is some other type of SCEVUnknown, just return it.
10022 
10023     Constant *C = nullptr;
10024     const DataLayout &DL = getDataLayout();
10025     C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
10026     if (!C)
10027       return V;
10028     return getSCEV(C);
10029   }
10030   case scCouldNotCompute:
10031     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10032   }
10033   llvm_unreachable("Unknown SCEV type!");
10034 }
10035 
10036 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10037   return getSCEVAtScope(getSCEV(V), L);
10038 }
10039 
10040 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10041   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
10042     return stripInjectiveFunctions(ZExt->getOperand());
10043   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10044     return stripInjectiveFunctions(SExt->getOperand());
10045   return S;
10046 }
10047 
10048 /// Finds the minimum unsigned root of the following equation:
10049 ///
10050 ///     A * X = B (mod N)
10051 ///
10052 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10053 /// A and B isn't important.
10054 ///
10055 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10056 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10057                                                ScalarEvolution &SE) {
10058   uint32_t BW = A.getBitWidth();
10059   assert(BW == SE.getTypeSizeInBits(B->getType()));
10060   assert(A != 0 && "A must be non-zero.");
10061 
10062   // 1. D = gcd(A, N)
10063   //
10064   // The gcd of A and N may have only one prime factor: 2. The number of
10065   // trailing zeros in A is its multiplicity
10066   uint32_t Mult2 = A.countr_zero();
10067   // D = 2^Mult2
10068 
10069   // 2. Check if B is divisible by D.
10070   //
10071   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10072   // is not less than multiplicity of this prime factor for D.
10073   if (SE.getMinTrailingZeros(B) < Mult2)
10074     return SE.getCouldNotCompute();
10075 
10076   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10077   // modulo (N / D).
10078   //
10079   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10080   // (N / D) in general. The inverse itself always fits into BW bits, though,
10081   // so we immediately truncate it.
10082   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
10083   APInt Mod(BW + 1, 0);
10084   Mod.setBit(BW - Mult2);  // Mod = N / D
10085   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
10086 
10087   // 4. Compute the minimum unsigned root of the equation:
10088   // I * (B / D) mod (N / D)
10089   // To simplify the computation, we factor out the divide by D:
10090   // (I * B mod N) / D
10091   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10092   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10093 }
10094 
10095 /// For a given quadratic addrec, generate coefficients of the corresponding
10096 /// quadratic equation, multiplied by a common value to ensure that they are
10097 /// integers.
10098 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10099 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10100 /// were multiplied by, and BitWidth is the bit width of the original addrec
10101 /// coefficients.
10102 /// This function returns std::nullopt if the addrec coefficients are not
10103 /// compile- time constants.
10104 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10105 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10106   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10107   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10108   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10109   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10110   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10111                     << *AddRec << '\n');
10112 
10113   // We currently can only solve this if the coefficients are constants.
10114   if (!LC || !MC || !NC) {
10115     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10116     return std::nullopt;
10117   }
10118 
10119   APInt L = LC->getAPInt();
10120   APInt M = MC->getAPInt();
10121   APInt N = NC->getAPInt();
10122   assert(!N.isZero() && "This is not a quadratic addrec");
10123 
10124   unsigned BitWidth = LC->getAPInt().getBitWidth();
10125   unsigned NewWidth = BitWidth + 1;
10126   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10127                     << BitWidth << '\n');
10128   // The sign-extension (as opposed to a zero-extension) here matches the
10129   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10130   N = N.sext(NewWidth);
10131   M = M.sext(NewWidth);
10132   L = L.sext(NewWidth);
10133 
10134   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10135   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10136   //   L+M, L+2M+N, L+3M+3N, ...
10137   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10138   //
10139   // The equation Acc = 0 is then
10140   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10141   // In a quadratic form it becomes:
10142   //   N n^2 + (2M-N) n + 2L = 0.
10143 
10144   APInt A = N;
10145   APInt B = 2 * M - A;
10146   APInt C = 2 * L;
10147   APInt T = APInt(NewWidth, 2);
10148   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10149                     << "x + " << C << ", coeff bw: " << NewWidth
10150                     << ", multiplied by " << T << '\n');
10151   return std::make_tuple(A, B, C, T, BitWidth);
10152 }
10153 
10154 /// Helper function to compare optional APInts:
10155 /// (a) if X and Y both exist, return min(X, Y),
10156 /// (b) if neither X nor Y exist, return std::nullopt,
10157 /// (c) if exactly one of X and Y exists, return that value.
10158 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10159                                         std::optional<APInt> Y) {
10160   if (X && Y) {
10161     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10162     APInt XW = X->sext(W);
10163     APInt YW = Y->sext(W);
10164     return XW.slt(YW) ? *X : *Y;
10165   }
10166   if (!X && !Y)
10167     return std::nullopt;
10168   return X ? *X : *Y;
10169 }
10170 
10171 /// Helper function to truncate an optional APInt to a given BitWidth.
10172 /// When solving addrec-related equations, it is preferable to return a value
10173 /// that has the same bit width as the original addrec's coefficients. If the
10174 /// solution fits in the original bit width, truncate it (except for i1).
10175 /// Returning a value of a different bit width may inhibit some optimizations.
10176 ///
10177 /// In general, a solution to a quadratic equation generated from an addrec
10178 /// may require BW+1 bits, where BW is the bit width of the addrec's
10179 /// coefficients. The reason is that the coefficients of the quadratic
10180 /// equation are BW+1 bits wide (to avoid truncation when converting from
10181 /// the addrec to the equation).
10182 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10183                                             unsigned BitWidth) {
10184   if (!X)
10185     return std::nullopt;
10186   unsigned W = X->getBitWidth();
10187   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10188     return X->trunc(BitWidth);
10189   return X;
10190 }
10191 
10192 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10193 /// iterations. The values L, M, N are assumed to be signed, and they
10194 /// should all have the same bit widths.
10195 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10196 /// where BW is the bit width of the addrec's coefficients.
10197 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10198 /// returned as such, otherwise the bit width of the returned value may
10199 /// be greater than BW.
10200 ///
10201 /// This function returns std::nullopt if
10202 /// (a) the addrec coefficients are not constant, or
10203 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10204 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10205 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10206 static std::optional<APInt>
10207 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10208   APInt A, B, C, M;
10209   unsigned BitWidth;
10210   auto T = GetQuadraticEquation(AddRec);
10211   if (!T)
10212     return std::nullopt;
10213 
10214   std::tie(A, B, C, M, BitWidth) = *T;
10215   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10216   std::optional<APInt> X =
10217       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10218   if (!X)
10219     return std::nullopt;
10220 
10221   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10222   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10223   if (!V->isZero())
10224     return std::nullopt;
10225 
10226   return TruncIfPossible(X, BitWidth);
10227 }
10228 
10229 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10230 /// iterations. The values M, N are assumed to be signed, and they
10231 /// should all have the same bit widths.
10232 /// Find the least n such that c(n) does not belong to the given range,
10233 /// while c(n-1) does.
10234 ///
10235 /// This function returns std::nullopt if
10236 /// (a) the addrec coefficients are not constant, or
10237 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10238 ///     bounds of the range.
10239 static std::optional<APInt>
10240 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10241                           const ConstantRange &Range, ScalarEvolution &SE) {
10242   assert(AddRec->getOperand(0)->isZero() &&
10243          "Starting value of addrec should be 0");
10244   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10245                     << Range << ", addrec " << *AddRec << '\n');
10246   // This case is handled in getNumIterationsInRange. Here we can assume that
10247   // we start in the range.
10248   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10249          "Addrec's initial value should be in range");
10250 
10251   APInt A, B, C, M;
10252   unsigned BitWidth;
10253   auto T = GetQuadraticEquation(AddRec);
10254   if (!T)
10255     return std::nullopt;
10256 
10257   // Be careful about the return value: there can be two reasons for not
10258   // returning an actual number. First, if no solutions to the equations
10259   // were found, and second, if the solutions don't leave the given range.
10260   // The first case means that the actual solution is "unknown", the second
10261   // means that it's known, but not valid. If the solution is unknown, we
10262   // cannot make any conclusions.
10263   // Return a pair: the optional solution and a flag indicating if the
10264   // solution was found.
10265   auto SolveForBoundary =
10266       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10267     // Solve for signed overflow and unsigned overflow, pick the lower
10268     // solution.
10269     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10270                       << Bound << " (before multiplying by " << M << ")\n");
10271     Bound *= M; // The quadratic equation multiplier.
10272 
10273     std::optional<APInt> SO;
10274     if (BitWidth > 1) {
10275       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10276                            "signed overflow\n");
10277       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10278     }
10279     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10280                          "unsigned overflow\n");
10281     std::optional<APInt> UO =
10282         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10283 
10284     auto LeavesRange = [&] (const APInt &X) {
10285       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10286       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10287       if (Range.contains(V0->getValue()))
10288         return false;
10289       // X should be at least 1, so X-1 is non-negative.
10290       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10291       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10292       if (Range.contains(V1->getValue()))
10293         return true;
10294       return false;
10295     };
10296 
10297     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10298     // can be a solution, but the function failed to find it. We cannot treat it
10299     // as "no solution".
10300     if (!SO || !UO)
10301       return {std::nullopt, false};
10302 
10303     // Check the smaller value first to see if it leaves the range.
10304     // At this point, both SO and UO must have values.
10305     std::optional<APInt> Min = MinOptional(SO, UO);
10306     if (LeavesRange(*Min))
10307       return { Min, true };
10308     std::optional<APInt> Max = Min == SO ? UO : SO;
10309     if (LeavesRange(*Max))
10310       return { Max, true };
10311 
10312     // Solutions were found, but were eliminated, hence the "true".
10313     return {std::nullopt, true};
10314   };
10315 
10316   std::tie(A, B, C, M, BitWidth) = *T;
10317   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10318   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10319   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10320   auto SL = SolveForBoundary(Lower);
10321   auto SU = SolveForBoundary(Upper);
10322   // If any of the solutions was unknown, no meaninigful conclusions can
10323   // be made.
10324   if (!SL.second || !SU.second)
10325     return std::nullopt;
10326 
10327   // Claim: The correct solution is not some value between Min and Max.
10328   //
10329   // Justification: Assuming that Min and Max are different values, one of
10330   // them is when the first signed overflow happens, the other is when the
10331   // first unsigned overflow happens. Crossing the range boundary is only
10332   // possible via an overflow (treating 0 as a special case of it, modeling
10333   // an overflow as crossing k*2^W for some k).
10334   //
10335   // The interesting case here is when Min was eliminated as an invalid
10336   // solution, but Max was not. The argument is that if there was another
10337   // overflow between Min and Max, it would also have been eliminated if
10338   // it was considered.
10339   //
10340   // For a given boundary, it is possible to have two overflows of the same
10341   // type (signed/unsigned) without having the other type in between: this
10342   // can happen when the vertex of the parabola is between the iterations
10343   // corresponding to the overflows. This is only possible when the two
10344   // overflows cross k*2^W for the same k. In such case, if the second one
10345   // left the range (and was the first one to do so), the first overflow
10346   // would have to enter the range, which would mean that either we had left
10347   // the range before or that we started outside of it. Both of these cases
10348   // are contradictions.
10349   //
10350   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10351   // solution is not some value between the Max for this boundary and the
10352   // Min of the other boundary.
10353   //
10354   // Justification: Assume that we had such Max_A and Min_B corresponding
10355   // to range boundaries A and B and such that Max_A < Min_B. If there was
10356   // a solution between Max_A and Min_B, it would have to be caused by an
10357   // overflow corresponding to either A or B. It cannot correspond to B,
10358   // since Min_B is the first occurrence of such an overflow. If it
10359   // corresponded to A, it would have to be either a signed or an unsigned
10360   // overflow that is larger than both eliminated overflows for A. But
10361   // between the eliminated overflows and this overflow, the values would
10362   // cover the entire value space, thus crossing the other boundary, which
10363   // is a contradiction.
10364 
10365   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10366 }
10367 
10368 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10369                                                          const Loop *L,
10370                                                          bool ControlsOnlyExit,
10371                                                          bool AllowPredicates) {
10372 
10373   // This is only used for loops with a "x != y" exit test. The exit condition
10374   // is now expressed as a single expression, V = x-y. So the exit test is
10375   // effectively V != 0.  We know and take advantage of the fact that this
10376   // expression only being used in a comparison by zero context.
10377 
10378   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10379   // If the value is a constant
10380   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10381     // If the value is already zero, the branch will execute zero times.
10382     if (C->getValue()->isZero()) return C;
10383     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10384   }
10385 
10386   const SCEVAddRecExpr *AddRec =
10387       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10388 
10389   if (!AddRec && AllowPredicates)
10390     // Try to make this an AddRec using runtime tests, in the first X
10391     // iterations of this loop, where X is the SCEV expression found by the
10392     // algorithm below.
10393     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10394 
10395   if (!AddRec || AddRec->getLoop() != L)
10396     return getCouldNotCompute();
10397 
10398   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10399   // the quadratic equation to solve it.
10400   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10401     // We can only use this value if the chrec ends up with an exact zero
10402     // value at this index.  When solving for "X*X != 5", for example, we
10403     // should not accept a root of 2.
10404     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10405       const auto *R = cast<SCEVConstant>(getConstant(*S));
10406       return ExitLimit(R, R, R, false, Predicates);
10407     }
10408     return getCouldNotCompute();
10409   }
10410 
10411   // Otherwise we can only handle this if it is affine.
10412   if (!AddRec->isAffine())
10413     return getCouldNotCompute();
10414 
10415   // If this is an affine expression, the execution count of this branch is
10416   // the minimum unsigned root of the following equation:
10417   //
10418   //     Start + Step*N = 0 (mod 2^BW)
10419   //
10420   // equivalent to:
10421   //
10422   //             Step*N = -Start (mod 2^BW)
10423   //
10424   // where BW is the common bit width of Start and Step.
10425 
10426   // Get the initial value for the loop.
10427   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10428   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10429 
10430   // For now we handle only constant steps.
10431   //
10432   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10433   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10434   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10435   // We have not yet seen any such cases.
10436   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10437   if (!StepC || StepC->getValue()->isZero())
10438     return getCouldNotCompute();
10439 
10440   // For positive steps (counting up until unsigned overflow):
10441   //   N = -Start/Step (as unsigned)
10442   // For negative steps (counting down to zero):
10443   //   N = Start/-Step
10444   // First compute the unsigned distance from zero in the direction of Step.
10445   bool CountDown = StepC->getAPInt().isNegative();
10446   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10447 
10448   // Handle unitary steps, which cannot wraparound.
10449   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10450   //   N = Distance (as unsigned)
10451   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10452     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10453     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10454 
10455     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10456     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10457     // case, and see if we can improve the bound.
10458     //
10459     // Explicitly handling this here is necessary because getUnsignedRange
10460     // isn't context-sensitive; it doesn't know that we only care about the
10461     // range inside the loop.
10462     const SCEV *Zero = getZero(Distance->getType());
10463     const SCEV *One = getOne(Distance->getType());
10464     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10465     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10466       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10467       // as "unsigned_max(Distance + 1) - 1".
10468       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10469       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10470     }
10471     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10472                      Predicates);
10473   }
10474 
10475   // If the condition controls loop exit (the loop exits only if the expression
10476   // is true) and the addition is no-wrap we can use unsigned divide to
10477   // compute the backedge count.  In this case, the step may not divide the
10478   // distance, but we don't care because if the condition is "missed" the loop
10479   // will have undefined behavior due to wrapping.
10480   if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10481       loopHasNoAbnormalExits(AddRec->getLoop())) {
10482     const SCEV *Exact =
10483         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10484     const SCEV *ConstantMax = getCouldNotCompute();
10485     if (Exact != getCouldNotCompute()) {
10486       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10487       ConstantMax =
10488           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10489     }
10490     const SCEV *SymbolicMax =
10491         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10492     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10493   }
10494 
10495   // Solve the general equation.
10496   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10497                                                getNegativeSCEV(Start), *this);
10498 
10499   const SCEV *M = E;
10500   if (E != getCouldNotCompute()) {
10501     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10502     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10503   }
10504   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10505   return ExitLimit(E, M, S, false, Predicates);
10506 }
10507 
10508 ScalarEvolution::ExitLimit
10509 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10510   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10511   // handle them yet except for the trivial case.  This could be expanded in the
10512   // future as needed.
10513 
10514   // If the value is a constant, check to see if it is known to be non-zero
10515   // already.  If so, the backedge will execute zero times.
10516   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10517     if (!C->getValue()->isZero())
10518       return getZero(C->getType());
10519     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10520   }
10521 
10522   // We could implement others, but I really doubt anyone writes loops like
10523   // this, and if they did, they would already be constant folded.
10524   return getCouldNotCompute();
10525 }
10526 
10527 std::pair<const BasicBlock *, const BasicBlock *>
10528 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10529     const {
10530   // If the block has a unique predecessor, then there is no path from the
10531   // predecessor to the block that does not go through the direct edge
10532   // from the predecessor to the block.
10533   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10534     return {Pred, BB};
10535 
10536   // A loop's header is defined to be a block that dominates the loop.
10537   // If the header has a unique predecessor outside the loop, it must be
10538   // a block that has exactly one successor that can reach the loop.
10539   if (const Loop *L = LI.getLoopFor(BB))
10540     return {L->getLoopPredecessor(), L->getHeader()};
10541 
10542   return {nullptr, nullptr};
10543 }
10544 
10545 /// SCEV structural equivalence is usually sufficient for testing whether two
10546 /// expressions are equal, however for the purposes of looking for a condition
10547 /// guarding a loop, it can be useful to be a little more general, since a
10548 /// front-end may have replicated the controlling expression.
10549 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10550   // Quick check to see if they are the same SCEV.
10551   if (A == B) return true;
10552 
10553   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10554     // Not all instructions that are "identical" compute the same value.  For
10555     // instance, two distinct alloca instructions allocating the same type are
10556     // identical and do not read memory; but compute distinct values.
10557     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10558   };
10559 
10560   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10561   // two different instructions with the same value. Check for this case.
10562   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10563     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10564       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10565         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10566           if (ComputesEqualValues(AI, BI))
10567             return true;
10568 
10569   // Otherwise assume they may have a different value.
10570   return false;
10571 }
10572 
10573 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10574                                            const SCEV *&LHS, const SCEV *&RHS,
10575                                            unsigned Depth) {
10576   bool Changed = false;
10577   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10578   // '0 != 0'.
10579   auto TrivialCase = [&](bool TriviallyTrue) {
10580     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10581     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10582     return true;
10583   };
10584   // If we hit the max recursion limit bail out.
10585   if (Depth >= 3)
10586     return false;
10587 
10588   // Canonicalize a constant to the right side.
10589   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10590     // Check for both operands constant.
10591     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10592       if (ConstantExpr::getICmp(Pred,
10593                                 LHSC->getValue(),
10594                                 RHSC->getValue())->isNullValue())
10595         return TrivialCase(false);
10596       return TrivialCase(true);
10597     }
10598     // Otherwise swap the operands to put the constant on the right.
10599     std::swap(LHS, RHS);
10600     Pred = ICmpInst::getSwappedPredicate(Pred);
10601     Changed = true;
10602   }
10603 
10604   // If we're comparing an addrec with a value which is loop-invariant in the
10605   // addrec's loop, put the addrec on the left. Also make a dominance check,
10606   // as both operands could be addrecs loop-invariant in each other's loop.
10607   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10608     const Loop *L = AR->getLoop();
10609     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10610       std::swap(LHS, RHS);
10611       Pred = ICmpInst::getSwappedPredicate(Pred);
10612       Changed = true;
10613     }
10614   }
10615 
10616   // If there's a constant operand, canonicalize comparisons with boundary
10617   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10618   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10619     const APInt &RA = RC->getAPInt();
10620 
10621     bool SimplifiedByConstantRange = false;
10622 
10623     if (!ICmpInst::isEquality(Pred)) {
10624       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10625       if (ExactCR.isFullSet())
10626         return TrivialCase(true);
10627       if (ExactCR.isEmptySet())
10628         return TrivialCase(false);
10629 
10630       APInt NewRHS;
10631       CmpInst::Predicate NewPred;
10632       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10633           ICmpInst::isEquality(NewPred)) {
10634         // We were able to convert an inequality to an equality.
10635         Pred = NewPred;
10636         RHS = getConstant(NewRHS);
10637         Changed = SimplifiedByConstantRange = true;
10638       }
10639     }
10640 
10641     if (!SimplifiedByConstantRange) {
10642       switch (Pred) {
10643       default:
10644         break;
10645       case ICmpInst::ICMP_EQ:
10646       case ICmpInst::ICMP_NE:
10647         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10648         if (!RA)
10649           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10650             if (const SCEVMulExpr *ME =
10651                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10652               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10653                   ME->getOperand(0)->isAllOnesValue()) {
10654                 RHS = AE->getOperand(1);
10655                 LHS = ME->getOperand(1);
10656                 Changed = true;
10657               }
10658         break;
10659 
10660 
10661         // The "Should have been caught earlier!" messages refer to the fact
10662         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10663         // should have fired on the corresponding cases, and canonicalized the
10664         // check to trivial case.
10665 
10666       case ICmpInst::ICMP_UGE:
10667         assert(!RA.isMinValue() && "Should have been caught earlier!");
10668         Pred = ICmpInst::ICMP_UGT;
10669         RHS = getConstant(RA - 1);
10670         Changed = true;
10671         break;
10672       case ICmpInst::ICMP_ULE:
10673         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10674         Pred = ICmpInst::ICMP_ULT;
10675         RHS = getConstant(RA + 1);
10676         Changed = true;
10677         break;
10678       case ICmpInst::ICMP_SGE:
10679         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10680         Pred = ICmpInst::ICMP_SGT;
10681         RHS = getConstant(RA - 1);
10682         Changed = true;
10683         break;
10684       case ICmpInst::ICMP_SLE:
10685         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10686         Pred = ICmpInst::ICMP_SLT;
10687         RHS = getConstant(RA + 1);
10688         Changed = true;
10689         break;
10690       }
10691     }
10692   }
10693 
10694   // Check for obvious equality.
10695   if (HasSameValue(LHS, RHS)) {
10696     if (ICmpInst::isTrueWhenEqual(Pred))
10697       return TrivialCase(true);
10698     if (ICmpInst::isFalseWhenEqual(Pred))
10699       return TrivialCase(false);
10700   }
10701 
10702   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10703   // adding or subtracting 1 from one of the operands.
10704   switch (Pred) {
10705   case ICmpInst::ICMP_SLE:
10706     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10707       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10708                        SCEV::FlagNSW);
10709       Pred = ICmpInst::ICMP_SLT;
10710       Changed = true;
10711     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10712       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10713                        SCEV::FlagNSW);
10714       Pred = ICmpInst::ICMP_SLT;
10715       Changed = true;
10716     }
10717     break;
10718   case ICmpInst::ICMP_SGE:
10719     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10720       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10721                        SCEV::FlagNSW);
10722       Pred = ICmpInst::ICMP_SGT;
10723       Changed = true;
10724     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10725       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10726                        SCEV::FlagNSW);
10727       Pred = ICmpInst::ICMP_SGT;
10728       Changed = true;
10729     }
10730     break;
10731   case ICmpInst::ICMP_ULE:
10732     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10733       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10734                        SCEV::FlagNUW);
10735       Pred = ICmpInst::ICMP_ULT;
10736       Changed = true;
10737     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10738       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10739       Pred = ICmpInst::ICMP_ULT;
10740       Changed = true;
10741     }
10742     break;
10743   case ICmpInst::ICMP_UGE:
10744     if (!getUnsignedRangeMin(RHS).isMinValue()) {
10745       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10746       Pred = ICmpInst::ICMP_UGT;
10747       Changed = true;
10748     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10749       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10750                        SCEV::FlagNUW);
10751       Pred = ICmpInst::ICMP_UGT;
10752       Changed = true;
10753     }
10754     break;
10755   default:
10756     break;
10757   }
10758 
10759   // TODO: More simplifications are possible here.
10760 
10761   // Recursively simplify until we either hit a recursion limit or nothing
10762   // changes.
10763   if (Changed)
10764     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10765 
10766   return Changed;
10767 }
10768 
10769 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10770   return getSignedRangeMax(S).isNegative();
10771 }
10772 
10773 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10774   return getSignedRangeMin(S).isStrictlyPositive();
10775 }
10776 
10777 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10778   return !getSignedRangeMin(S).isNegative();
10779 }
10780 
10781 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10782   return !getSignedRangeMax(S).isStrictlyPositive();
10783 }
10784 
10785 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10786   // Query push down for cases where the unsigned range is
10787   // less than sufficient.
10788   if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10789     return isKnownNonZero(SExt->getOperand(0));
10790   return getUnsignedRangeMin(S) != 0;
10791 }
10792 
10793 std::pair<const SCEV *, const SCEV *>
10794 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10795   // Compute SCEV on entry of loop L.
10796   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10797   if (Start == getCouldNotCompute())
10798     return { Start, Start };
10799   // Compute post increment SCEV for loop L.
10800   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10801   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10802   return { Start, PostInc };
10803 }
10804 
10805 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10806                                           const SCEV *LHS, const SCEV *RHS) {
10807   // First collect all loops.
10808   SmallPtrSet<const Loop *, 8> LoopsUsed;
10809   getUsedLoops(LHS, LoopsUsed);
10810   getUsedLoops(RHS, LoopsUsed);
10811 
10812   if (LoopsUsed.empty())
10813     return false;
10814 
10815   // Domination relationship must be a linear order on collected loops.
10816 #ifndef NDEBUG
10817   for (const auto *L1 : LoopsUsed)
10818     for (const auto *L2 : LoopsUsed)
10819       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10820               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10821              "Domination relationship is not a linear order");
10822 #endif
10823 
10824   const Loop *MDL =
10825       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10826                         [&](const Loop *L1, const Loop *L2) {
10827          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10828        });
10829 
10830   // Get init and post increment value for LHS.
10831   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10832   // if LHS contains unknown non-invariant SCEV then bail out.
10833   if (SplitLHS.first == getCouldNotCompute())
10834     return false;
10835   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10836   // Get init and post increment value for RHS.
10837   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10838   // if RHS contains unknown non-invariant SCEV then bail out.
10839   if (SplitRHS.first == getCouldNotCompute())
10840     return false;
10841   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10842   // It is possible that init SCEV contains an invariant load but it does
10843   // not dominate MDL and is not available at MDL loop entry, so we should
10844   // check it here.
10845   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10846       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10847     return false;
10848 
10849   // It seems backedge guard check is faster than entry one so in some cases
10850   // it can speed up whole estimation by short circuit
10851   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10852                                      SplitRHS.second) &&
10853          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10854 }
10855 
10856 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10857                                        const SCEV *LHS, const SCEV *RHS) {
10858   // Canonicalize the inputs first.
10859   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10860 
10861   if (isKnownViaInduction(Pred, LHS, RHS))
10862     return true;
10863 
10864   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10865     return true;
10866 
10867   // Otherwise see what can be done with some simple reasoning.
10868   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10869 }
10870 
10871 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10872                                                        const SCEV *LHS,
10873                                                        const SCEV *RHS) {
10874   if (isKnownPredicate(Pred, LHS, RHS))
10875     return true;
10876   if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10877     return false;
10878   return std::nullopt;
10879 }
10880 
10881 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10882                                          const SCEV *LHS, const SCEV *RHS,
10883                                          const Instruction *CtxI) {
10884   // TODO: Analyze guards and assumes from Context's block.
10885   return isKnownPredicate(Pred, LHS, RHS) ||
10886          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10887 }
10888 
10889 std::optional<bool>
10890 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10891                                      const SCEV *RHS, const Instruction *CtxI) {
10892   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10893   if (KnownWithoutContext)
10894     return KnownWithoutContext;
10895 
10896   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10897     return true;
10898   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10899                                           ICmpInst::getInversePredicate(Pred),
10900                                           LHS, RHS))
10901     return false;
10902   return std::nullopt;
10903 }
10904 
10905 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10906                                               const SCEVAddRecExpr *LHS,
10907                                               const SCEV *RHS) {
10908   const Loop *L = LHS->getLoop();
10909   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10910          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10911 }
10912 
10913 std::optional<ScalarEvolution::MonotonicPredicateType>
10914 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10915                                            ICmpInst::Predicate Pred) {
10916   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10917 
10918 #ifndef NDEBUG
10919   // Verify an invariant: inverting the predicate should turn a monotonically
10920   // increasing change to a monotonically decreasing one, and vice versa.
10921   if (Result) {
10922     auto ResultSwapped =
10923         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10924 
10925     assert(*ResultSwapped != *Result &&
10926            "monotonicity should flip as we flip the predicate");
10927   }
10928 #endif
10929 
10930   return Result;
10931 }
10932 
10933 std::optional<ScalarEvolution::MonotonicPredicateType>
10934 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10935                                                ICmpInst::Predicate Pred) {
10936   // A zero step value for LHS means the induction variable is essentially a
10937   // loop invariant value. We don't really depend on the predicate actually
10938   // flipping from false to true (for increasing predicates, and the other way
10939   // around for decreasing predicates), all we care about is that *if* the
10940   // predicate changes then it only changes from false to true.
10941   //
10942   // A zero step value in itself is not very useful, but there may be places
10943   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10944   // as general as possible.
10945 
10946   // Only handle LE/LT/GE/GT predicates.
10947   if (!ICmpInst::isRelational(Pred))
10948     return std::nullopt;
10949 
10950   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10951   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10952          "Should be greater or less!");
10953 
10954   // Check that AR does not wrap.
10955   if (ICmpInst::isUnsigned(Pred)) {
10956     if (!LHS->hasNoUnsignedWrap())
10957       return std::nullopt;
10958     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10959   }
10960   assert(ICmpInst::isSigned(Pred) &&
10961          "Relational predicate is either signed or unsigned!");
10962   if (!LHS->hasNoSignedWrap())
10963     return std::nullopt;
10964 
10965   const SCEV *Step = LHS->getStepRecurrence(*this);
10966 
10967   if (isKnownNonNegative(Step))
10968     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10969 
10970   if (isKnownNonPositive(Step))
10971     return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10972 
10973   return std::nullopt;
10974 }
10975 
10976 std::optional<ScalarEvolution::LoopInvariantPredicate>
10977 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10978                                            const SCEV *LHS, const SCEV *RHS,
10979                                            const Loop *L,
10980                                            const Instruction *CtxI) {
10981   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10982   if (!isLoopInvariant(RHS, L)) {
10983     if (!isLoopInvariant(LHS, L))
10984       return std::nullopt;
10985 
10986     std::swap(LHS, RHS);
10987     Pred = ICmpInst::getSwappedPredicate(Pred);
10988   }
10989 
10990   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10991   if (!ArLHS || ArLHS->getLoop() != L)
10992     return std::nullopt;
10993 
10994   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10995   if (!MonotonicType)
10996     return std::nullopt;
10997   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10998   // true as the loop iterates, and the backedge is control dependent on
10999   // "ArLHS `Pred` RHS" == true then we can reason as follows:
11000   //
11001   //   * if the predicate was false in the first iteration then the predicate
11002   //     is never evaluated again, since the loop exits without taking the
11003   //     backedge.
11004   //   * if the predicate was true in the first iteration then it will
11005   //     continue to be true for all future iterations since it is
11006   //     monotonically increasing.
11007   //
11008   // For both the above possibilities, we can replace the loop varying
11009   // predicate with its value on the first iteration of the loop (which is
11010   // loop invariant).
11011   //
11012   // A similar reasoning applies for a monotonically decreasing predicate, by
11013   // replacing true with false and false with true in the above two bullets.
11014   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11015   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
11016 
11017   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
11018     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11019                                                    RHS);
11020 
11021   if (!CtxI)
11022     return std::nullopt;
11023   // Try to prove via context.
11024   // TODO: Support other cases.
11025   switch (Pred) {
11026   default:
11027     break;
11028   case ICmpInst::ICMP_ULE:
11029   case ICmpInst::ICMP_ULT: {
11030     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11031     // Given preconditions
11032     // (1) ArLHS does not cross the border of positive and negative parts of
11033     //     range because of:
11034     //     - Positive step; (TODO: lift this limitation)
11035     //     - nuw - does not cross zero boundary;
11036     //     - nsw - does not cross SINT_MAX boundary;
11037     // (2) ArLHS <s RHS
11038     // (3) RHS >=s 0
11039     // we can replace the loop variant ArLHS <u RHS condition with loop
11040     // invariant Start(ArLHS) <u RHS.
11041     //
11042     // Because of (1) there are two options:
11043     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11044     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11045     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
11046     //   Because of (2) ArLHS <u RHS is trivially true.
11047     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11048     // We can strengthen this to Start(ArLHS) <u RHS.
11049     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
11050     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11051         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
11052         isKnownNonNegative(RHS) &&
11053         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
11054       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11055                                                      RHS);
11056   }
11057   }
11058 
11059   return std::nullopt;
11060 }
11061 
11062 std::optional<ScalarEvolution::LoopInvariantPredicate>
11063 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11064     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11065     const Instruction *CtxI, const SCEV *MaxIter) {
11066   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11067           Pred, LHS, RHS, L, CtxI, MaxIter))
11068     return LIP;
11069   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11070     // Number of iterations expressed as UMIN isn't always great for expressing
11071     // the value on the last iteration. If the straightforward approach didn't
11072     // work, try the following trick: if the a predicate is invariant for X, it
11073     // is also invariant for umin(X, ...). So try to find something that works
11074     // among subexpressions of MaxIter expressed as umin.
11075     for (auto *Op : UMin->operands())
11076       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11077               Pred, LHS, RHS, L, CtxI, Op))
11078         return LIP;
11079   return std::nullopt;
11080 }
11081 
11082 std::optional<ScalarEvolution::LoopInvariantPredicate>
11083 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11084     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11085     const Instruction *CtxI, const SCEV *MaxIter) {
11086   // Try to prove the following set of facts:
11087   // - The predicate is monotonic in the iteration space.
11088   // - If the check does not fail on the 1st iteration:
11089   //   - No overflow will happen during first MaxIter iterations;
11090   //   - It will not fail on the MaxIter'th iteration.
11091   // If the check does fail on the 1st iteration, we leave the loop and no
11092   // other checks matter.
11093 
11094   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11095   if (!isLoopInvariant(RHS, L)) {
11096     if (!isLoopInvariant(LHS, L))
11097       return std::nullopt;
11098 
11099     std::swap(LHS, RHS);
11100     Pred = ICmpInst::getSwappedPredicate(Pred);
11101   }
11102 
11103   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11104   if (!AR || AR->getLoop() != L)
11105     return std::nullopt;
11106 
11107   // The predicate must be relational (i.e. <, <=, >=, >).
11108   if (!ICmpInst::isRelational(Pred))
11109     return std::nullopt;
11110 
11111   // TODO: Support steps other than +/- 1.
11112   const SCEV *Step = AR->getStepRecurrence(*this);
11113   auto *One = getOne(Step->getType());
11114   auto *MinusOne = getNegativeSCEV(One);
11115   if (Step != One && Step != MinusOne)
11116     return std::nullopt;
11117 
11118   // Type mismatch here means that MaxIter is potentially larger than max
11119   // unsigned value in start type, which mean we cannot prove no wrap for the
11120   // indvar.
11121   if (AR->getType() != MaxIter->getType())
11122     return std::nullopt;
11123 
11124   // Value of IV on suggested last iteration.
11125   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11126   // Does it still meet the requirement?
11127   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11128     return std::nullopt;
11129   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11130   // not exceed max unsigned value of this type), this effectively proves
11131   // that there is no wrap during the iteration. To prove that there is no
11132   // signed/unsigned wrap, we need to check that
11133   // Start <= Last for step = 1 or Start >= Last for step = -1.
11134   ICmpInst::Predicate NoOverflowPred =
11135       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11136   if (Step == MinusOne)
11137     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11138   const SCEV *Start = AR->getStart();
11139   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11140     return std::nullopt;
11141 
11142   // Everything is fine.
11143   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11144 }
11145 
11146 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11147     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11148   if (HasSameValue(LHS, RHS))
11149     return ICmpInst::isTrueWhenEqual(Pred);
11150 
11151   // This code is split out from isKnownPredicate because it is called from
11152   // within isLoopEntryGuardedByCond.
11153 
11154   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11155                          const ConstantRange &RangeRHS) {
11156     return RangeLHS.icmp(Pred, RangeRHS);
11157   };
11158 
11159   // The check at the top of the function catches the case where the values are
11160   // known to be equal.
11161   if (Pred == CmpInst::ICMP_EQ)
11162     return false;
11163 
11164   if (Pred == CmpInst::ICMP_NE) {
11165     auto SL = getSignedRange(LHS);
11166     auto SR = getSignedRange(RHS);
11167     if (CheckRanges(SL, SR))
11168       return true;
11169     auto UL = getUnsignedRange(LHS);
11170     auto UR = getUnsignedRange(RHS);
11171     if (CheckRanges(UL, UR))
11172       return true;
11173     auto *Diff = getMinusSCEV(LHS, RHS);
11174     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11175   }
11176 
11177   if (CmpInst::isSigned(Pred)) {
11178     auto SL = getSignedRange(LHS);
11179     auto SR = getSignedRange(RHS);
11180     return CheckRanges(SL, SR);
11181   }
11182 
11183   auto UL = getUnsignedRange(LHS);
11184   auto UR = getUnsignedRange(RHS);
11185   return CheckRanges(UL, UR);
11186 }
11187 
11188 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11189                                                     const SCEV *LHS,
11190                                                     const SCEV *RHS) {
11191   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11192   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11193   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11194   // OutC1 and OutC2.
11195   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11196                                       APInt &OutC1, APInt &OutC2,
11197                                       SCEV::NoWrapFlags ExpectedFlags) {
11198     const SCEV *XNonConstOp, *XConstOp;
11199     const SCEV *YNonConstOp, *YConstOp;
11200     SCEV::NoWrapFlags XFlagsPresent;
11201     SCEV::NoWrapFlags YFlagsPresent;
11202 
11203     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11204       XConstOp = getZero(X->getType());
11205       XNonConstOp = X;
11206       XFlagsPresent = ExpectedFlags;
11207     }
11208     if (!isa<SCEVConstant>(XConstOp) ||
11209         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11210       return false;
11211 
11212     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11213       YConstOp = getZero(Y->getType());
11214       YNonConstOp = Y;
11215       YFlagsPresent = ExpectedFlags;
11216     }
11217 
11218     if (!isa<SCEVConstant>(YConstOp) ||
11219         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11220       return false;
11221 
11222     if (YNonConstOp != XNonConstOp)
11223       return false;
11224 
11225     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11226     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11227 
11228     return true;
11229   };
11230 
11231   APInt C1;
11232   APInt C2;
11233 
11234   switch (Pred) {
11235   default:
11236     break;
11237 
11238   case ICmpInst::ICMP_SGE:
11239     std::swap(LHS, RHS);
11240     [[fallthrough]];
11241   case ICmpInst::ICMP_SLE:
11242     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11243     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11244       return true;
11245 
11246     break;
11247 
11248   case ICmpInst::ICMP_SGT:
11249     std::swap(LHS, RHS);
11250     [[fallthrough]];
11251   case ICmpInst::ICMP_SLT:
11252     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11253     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11254       return true;
11255 
11256     break;
11257 
11258   case ICmpInst::ICMP_UGE:
11259     std::swap(LHS, RHS);
11260     [[fallthrough]];
11261   case ICmpInst::ICMP_ULE:
11262     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11263     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
11264       return true;
11265 
11266     break;
11267 
11268   case ICmpInst::ICMP_UGT:
11269     std::swap(LHS, RHS);
11270     [[fallthrough]];
11271   case ICmpInst::ICMP_ULT:
11272     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11273     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
11274       return true;
11275     break;
11276   }
11277 
11278   return false;
11279 }
11280 
11281 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11282                                                    const SCEV *LHS,
11283                                                    const SCEV *RHS) {
11284   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11285     return false;
11286 
11287   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11288   // the stack can result in exponential time complexity.
11289   SaveAndRestore Restore(ProvingSplitPredicate, true);
11290 
11291   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11292   //
11293   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11294   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11295   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11296   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11297   // use isKnownPredicate later if needed.
11298   return isKnownNonNegative(RHS) &&
11299          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11300          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11301 }
11302 
11303 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11304                                         ICmpInst::Predicate Pred,
11305                                         const SCEV *LHS, const SCEV *RHS) {
11306   // No need to even try if we know the module has no guards.
11307   if (!HasGuards)
11308     return false;
11309 
11310   return any_of(*BB, [&](const Instruction &I) {
11311     using namespace llvm::PatternMatch;
11312 
11313     Value *Condition;
11314     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11315                          m_Value(Condition))) &&
11316            isImpliedCond(Pred, LHS, RHS, Condition, false);
11317   });
11318 }
11319 
11320 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11321 /// protected by a conditional between LHS and RHS.  This is used to
11322 /// to eliminate casts.
11323 bool
11324 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11325                                              ICmpInst::Predicate Pred,
11326                                              const SCEV *LHS, const SCEV *RHS) {
11327   // Interpret a null as meaning no loop, where there is obviously no guard
11328   // (interprocedural conditions notwithstanding). Do not bother about
11329   // unreachable loops.
11330   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11331     return true;
11332 
11333   if (VerifyIR)
11334     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11335            "This cannot be done on broken IR!");
11336 
11337 
11338   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11339     return true;
11340 
11341   BasicBlock *Latch = L->getLoopLatch();
11342   if (!Latch)
11343     return false;
11344 
11345   BranchInst *LoopContinuePredicate =
11346     dyn_cast<BranchInst>(Latch->getTerminator());
11347   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11348       isImpliedCond(Pred, LHS, RHS,
11349                     LoopContinuePredicate->getCondition(),
11350                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11351     return true;
11352 
11353   // We don't want more than one activation of the following loops on the stack
11354   // -- that can lead to O(n!) time complexity.
11355   if (WalkingBEDominatingConds)
11356     return false;
11357 
11358   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11359 
11360   // See if we can exploit a trip count to prove the predicate.
11361   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11362   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11363   if (LatchBECount != getCouldNotCompute()) {
11364     // We know that Latch branches back to the loop header exactly
11365     // LatchBECount times.  This means the backdege condition at Latch is
11366     // equivalent to  "{0,+,1} u< LatchBECount".
11367     Type *Ty = LatchBECount->getType();
11368     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11369     const SCEV *LoopCounter =
11370       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11371     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11372                       LatchBECount))
11373       return true;
11374   }
11375 
11376   // Check conditions due to any @llvm.assume intrinsics.
11377   for (auto &AssumeVH : AC.assumptions()) {
11378     if (!AssumeVH)
11379       continue;
11380     auto *CI = cast<CallInst>(AssumeVH);
11381     if (!DT.dominates(CI, Latch->getTerminator()))
11382       continue;
11383 
11384     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11385       return true;
11386   }
11387 
11388   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11389     return true;
11390 
11391   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11392        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11393     assert(DTN && "should reach the loop header before reaching the root!");
11394 
11395     BasicBlock *BB = DTN->getBlock();
11396     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11397       return true;
11398 
11399     BasicBlock *PBB = BB->getSinglePredecessor();
11400     if (!PBB)
11401       continue;
11402 
11403     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11404     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11405       continue;
11406 
11407     Value *Condition = ContinuePredicate->getCondition();
11408 
11409     // If we have an edge `E` within the loop body that dominates the only
11410     // latch, the condition guarding `E` also guards the backedge.  This
11411     // reasoning works only for loops with a single latch.
11412 
11413     BasicBlockEdge DominatingEdge(PBB, BB);
11414     if (DominatingEdge.isSingleEdge()) {
11415       // We're constructively (and conservatively) enumerating edges within the
11416       // loop body that dominate the latch.  The dominator tree better agree
11417       // with us on this:
11418       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11419 
11420       if (isImpliedCond(Pred, LHS, RHS, Condition,
11421                         BB != ContinuePredicate->getSuccessor(0)))
11422         return true;
11423     }
11424   }
11425 
11426   return false;
11427 }
11428 
11429 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11430                                                      ICmpInst::Predicate Pred,
11431                                                      const SCEV *LHS,
11432                                                      const SCEV *RHS) {
11433   // Do not bother proving facts for unreachable code.
11434   if (!DT.isReachableFromEntry(BB))
11435     return true;
11436   if (VerifyIR)
11437     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11438            "This cannot be done on broken IR!");
11439 
11440   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11441   // the facts (a >= b && a != b) separately. A typical situation is when the
11442   // non-strict comparison is known from ranges and non-equality is known from
11443   // dominating predicates. If we are proving strict comparison, we always try
11444   // to prove non-equality and non-strict comparison separately.
11445   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11446   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11447   bool ProvedNonStrictComparison = false;
11448   bool ProvedNonEquality = false;
11449 
11450   auto SplitAndProve =
11451     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11452     if (!ProvedNonStrictComparison)
11453       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11454     if (!ProvedNonEquality)
11455       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11456     if (ProvedNonStrictComparison && ProvedNonEquality)
11457       return true;
11458     return false;
11459   };
11460 
11461   if (ProvingStrictComparison) {
11462     auto ProofFn = [&](ICmpInst::Predicate P) {
11463       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11464     };
11465     if (SplitAndProve(ProofFn))
11466       return true;
11467   }
11468 
11469   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11470   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11471     const Instruction *CtxI = &BB->front();
11472     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11473       return true;
11474     if (ProvingStrictComparison) {
11475       auto ProofFn = [&](ICmpInst::Predicate P) {
11476         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11477       };
11478       if (SplitAndProve(ProofFn))
11479         return true;
11480     }
11481     return false;
11482   };
11483 
11484   // Starting at the block's predecessor, climb up the predecessor chain, as long
11485   // as there are predecessors that can be found that have unique successors
11486   // leading to the original block.
11487   const Loop *ContainingLoop = LI.getLoopFor(BB);
11488   const BasicBlock *PredBB;
11489   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11490     PredBB = ContainingLoop->getLoopPredecessor();
11491   else
11492     PredBB = BB->getSinglePredecessor();
11493   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11494        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11495     const BranchInst *BlockEntryPredicate =
11496         dyn_cast<BranchInst>(Pair.first->getTerminator());
11497     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11498       continue;
11499 
11500     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11501                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11502       return true;
11503   }
11504 
11505   // Check conditions due to any @llvm.assume intrinsics.
11506   for (auto &AssumeVH : AC.assumptions()) {
11507     if (!AssumeVH)
11508       continue;
11509     auto *CI = cast<CallInst>(AssumeVH);
11510     if (!DT.dominates(CI, BB))
11511       continue;
11512 
11513     if (ProveViaCond(CI->getArgOperand(0), false))
11514       return true;
11515   }
11516 
11517   // Check conditions due to any @llvm.experimental.guard intrinsics.
11518   auto *GuardDecl = F.getParent()->getFunction(
11519       Intrinsic::getName(Intrinsic::experimental_guard));
11520   if (GuardDecl)
11521     for (const auto *GU : GuardDecl->users())
11522       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11523         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11524           if (ProveViaCond(Guard->getArgOperand(0), false))
11525             return true;
11526   return false;
11527 }
11528 
11529 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11530                                                ICmpInst::Predicate Pred,
11531                                                const SCEV *LHS,
11532                                                const SCEV *RHS) {
11533   // Interpret a null as meaning no loop, where there is obviously no guard
11534   // (interprocedural conditions notwithstanding).
11535   if (!L)
11536     return false;
11537 
11538   // Both LHS and RHS must be available at loop entry.
11539   assert(isAvailableAtLoopEntry(LHS, L) &&
11540          "LHS is not available at Loop Entry");
11541   assert(isAvailableAtLoopEntry(RHS, L) &&
11542          "RHS is not available at Loop Entry");
11543 
11544   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11545     return true;
11546 
11547   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11548 }
11549 
11550 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11551                                     const SCEV *RHS,
11552                                     const Value *FoundCondValue, bool Inverse,
11553                                     const Instruction *CtxI) {
11554   // False conditions implies anything. Do not bother analyzing it further.
11555   if (FoundCondValue ==
11556       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11557     return true;
11558 
11559   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11560     return false;
11561 
11562   auto ClearOnExit =
11563       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11564 
11565   // Recursively handle And and Or conditions.
11566   const Value *Op0, *Op1;
11567   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11568     if (!Inverse)
11569       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11570              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11571   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11572     if (Inverse)
11573       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11574              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11575   }
11576 
11577   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11578   if (!ICI) return false;
11579 
11580   // Now that we found a conditional branch that dominates the loop or controls
11581   // the loop latch. Check to see if it is the comparison we are looking for.
11582   ICmpInst::Predicate FoundPred;
11583   if (Inverse)
11584     FoundPred = ICI->getInversePredicate();
11585   else
11586     FoundPred = ICI->getPredicate();
11587 
11588   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11589   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11590 
11591   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11592 }
11593 
11594 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11595                                     const SCEV *RHS,
11596                                     ICmpInst::Predicate FoundPred,
11597                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11598                                     const Instruction *CtxI) {
11599   // Balance the types.
11600   if (getTypeSizeInBits(LHS->getType()) <
11601       getTypeSizeInBits(FoundLHS->getType())) {
11602     // For unsigned and equality predicates, try to prove that both found
11603     // operands fit into narrow unsigned range. If so, try to prove facts in
11604     // narrow types.
11605     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11606         !FoundRHS->getType()->isPointerTy()) {
11607       auto *NarrowType = LHS->getType();
11608       auto *WideType = FoundLHS->getType();
11609       auto BitWidth = getTypeSizeInBits(NarrowType);
11610       const SCEV *MaxValue = getZeroExtendExpr(
11611           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11612       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11613                                           MaxValue) &&
11614           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11615                                           MaxValue)) {
11616         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11617         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11618         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11619                                        TruncFoundRHS, CtxI))
11620           return true;
11621       }
11622     }
11623 
11624     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11625       return false;
11626     if (CmpInst::isSigned(Pred)) {
11627       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11628       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11629     } else {
11630       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11631       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11632     }
11633   } else if (getTypeSizeInBits(LHS->getType()) >
11634       getTypeSizeInBits(FoundLHS->getType())) {
11635     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11636       return false;
11637     if (CmpInst::isSigned(FoundPred)) {
11638       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11639       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11640     } else {
11641       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11642       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11643     }
11644   }
11645   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11646                                     FoundRHS, CtxI);
11647 }
11648 
11649 bool ScalarEvolution::isImpliedCondBalancedTypes(
11650     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11651     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11652     const Instruction *CtxI) {
11653   assert(getTypeSizeInBits(LHS->getType()) ==
11654              getTypeSizeInBits(FoundLHS->getType()) &&
11655          "Types should be balanced!");
11656   // Canonicalize the query to match the way instcombine will have
11657   // canonicalized the comparison.
11658   if (SimplifyICmpOperands(Pred, LHS, RHS))
11659     if (LHS == RHS)
11660       return CmpInst::isTrueWhenEqual(Pred);
11661   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11662     if (FoundLHS == FoundRHS)
11663       return CmpInst::isFalseWhenEqual(FoundPred);
11664 
11665   // Check to see if we can make the LHS or RHS match.
11666   if (LHS == FoundRHS || RHS == FoundLHS) {
11667     if (isa<SCEVConstant>(RHS)) {
11668       std::swap(FoundLHS, FoundRHS);
11669       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11670     } else {
11671       std::swap(LHS, RHS);
11672       Pred = ICmpInst::getSwappedPredicate(Pred);
11673     }
11674   }
11675 
11676   // Check whether the found predicate is the same as the desired predicate.
11677   if (FoundPred == Pred)
11678     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11679 
11680   // Check whether swapping the found predicate makes it the same as the
11681   // desired predicate.
11682   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11683     // We can write the implication
11684     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11685     // using one of the following ways:
11686     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11687     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11688     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11689     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11690     // Forms 1. and 2. require swapping the operands of one condition. Don't
11691     // do this if it would break canonical constant/addrec ordering.
11692     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11693       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11694                                    CtxI);
11695     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11696       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11697 
11698     // There's no clear preference between forms 3. and 4., try both.  Avoid
11699     // forming getNotSCEV of pointer values as the resulting subtract is
11700     // not legal.
11701     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11702         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11703                               FoundLHS, FoundRHS, CtxI))
11704       return true;
11705 
11706     if (!FoundLHS->getType()->isPointerTy() &&
11707         !FoundRHS->getType()->isPointerTy() &&
11708         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11709                               getNotSCEV(FoundRHS), CtxI))
11710       return true;
11711 
11712     return false;
11713   }
11714 
11715   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11716                                    CmpInst::Predicate P2) {
11717     assert(P1 != P2 && "Handled earlier!");
11718     return CmpInst::isRelational(P2) &&
11719            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11720   };
11721   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11722     // Unsigned comparison is the same as signed comparison when both the
11723     // operands are non-negative or negative.
11724     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11725         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11726       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11727     // Create local copies that we can freely swap and canonicalize our
11728     // conditions to "le/lt".
11729     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11730     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11731                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11732     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11733       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11734       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11735       std::swap(CanonicalLHS, CanonicalRHS);
11736       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11737     }
11738     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11739            "Must be!");
11740     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11741             ICmpInst::isLE(CanonicalFoundPred)) &&
11742            "Must be!");
11743     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11744       // Use implication:
11745       // x <u y && y >=s 0 --> x <s y.
11746       // If we can prove the left part, the right part is also proven.
11747       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11748                                    CanonicalRHS, CanonicalFoundLHS,
11749                                    CanonicalFoundRHS);
11750     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11751       // Use implication:
11752       // x <s y && y <s 0 --> x <u y.
11753       // If we can prove the left part, the right part is also proven.
11754       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11755                                    CanonicalRHS, CanonicalFoundLHS,
11756                                    CanonicalFoundRHS);
11757   }
11758 
11759   // Check if we can make progress by sharpening ranges.
11760   if (FoundPred == ICmpInst::ICMP_NE &&
11761       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11762 
11763     const SCEVConstant *C = nullptr;
11764     const SCEV *V = nullptr;
11765 
11766     if (isa<SCEVConstant>(FoundLHS)) {
11767       C = cast<SCEVConstant>(FoundLHS);
11768       V = FoundRHS;
11769     } else {
11770       C = cast<SCEVConstant>(FoundRHS);
11771       V = FoundLHS;
11772     }
11773 
11774     // The guarding predicate tells us that C != V. If the known range
11775     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11776     // range we consider has to correspond to same signedness as the
11777     // predicate we're interested in folding.
11778 
11779     APInt Min = ICmpInst::isSigned(Pred) ?
11780         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11781 
11782     if (Min == C->getAPInt()) {
11783       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11784       // This is true even if (Min + 1) wraps around -- in case of
11785       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11786 
11787       APInt SharperMin = Min + 1;
11788 
11789       switch (Pred) {
11790         case ICmpInst::ICMP_SGE:
11791         case ICmpInst::ICMP_UGE:
11792           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11793           // RHS, we're done.
11794           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11795                                     CtxI))
11796             return true;
11797           [[fallthrough]];
11798 
11799         case ICmpInst::ICMP_SGT:
11800         case ICmpInst::ICMP_UGT:
11801           // We know from the range information that (V `Pred` Min ||
11802           // V == Min).  We know from the guarding condition that !(V
11803           // == Min).  This gives us
11804           //
11805           //       V `Pred` Min || V == Min && !(V == Min)
11806           //   =>  V `Pred` Min
11807           //
11808           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11809 
11810           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11811             return true;
11812           break;
11813 
11814         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11815         case ICmpInst::ICMP_SLE:
11816         case ICmpInst::ICMP_ULE:
11817           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11818                                     LHS, V, getConstant(SharperMin), CtxI))
11819             return true;
11820           [[fallthrough]];
11821 
11822         case ICmpInst::ICMP_SLT:
11823         case ICmpInst::ICMP_ULT:
11824           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11825                                     LHS, V, getConstant(Min), CtxI))
11826             return true;
11827           break;
11828 
11829         default:
11830           // No change
11831           break;
11832       }
11833     }
11834   }
11835 
11836   // Check whether the actual condition is beyond sufficient.
11837   if (FoundPred == ICmpInst::ICMP_EQ)
11838     if (ICmpInst::isTrueWhenEqual(Pred))
11839       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11840         return true;
11841   if (Pred == ICmpInst::ICMP_NE)
11842     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11843       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11844         return true;
11845 
11846   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
11847     return true;
11848 
11849   // Otherwise assume the worst.
11850   return false;
11851 }
11852 
11853 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11854                                      const SCEV *&L, const SCEV *&R,
11855                                      SCEV::NoWrapFlags &Flags) {
11856   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11857   if (!AE || AE->getNumOperands() != 2)
11858     return false;
11859 
11860   L = AE->getOperand(0);
11861   R = AE->getOperand(1);
11862   Flags = AE->getNoWrapFlags();
11863   return true;
11864 }
11865 
11866 std::optional<APInt>
11867 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11868   // We avoid subtracting expressions here because this function is usually
11869   // fairly deep in the call stack (i.e. is called many times).
11870 
11871   // X - X = 0.
11872   if (More == Less)
11873     return APInt(getTypeSizeInBits(More->getType()), 0);
11874 
11875   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11876     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11877     const auto *MAR = cast<SCEVAddRecExpr>(More);
11878 
11879     if (LAR->getLoop() != MAR->getLoop())
11880       return std::nullopt;
11881 
11882     // We look at affine expressions only; not for correctness but to keep
11883     // getStepRecurrence cheap.
11884     if (!LAR->isAffine() || !MAR->isAffine())
11885       return std::nullopt;
11886 
11887     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11888       return std::nullopt;
11889 
11890     Less = LAR->getStart();
11891     More = MAR->getStart();
11892 
11893     // fall through
11894   }
11895 
11896   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11897     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11898     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11899     return M - L;
11900   }
11901 
11902   SCEV::NoWrapFlags Flags;
11903   const SCEV *LLess = nullptr, *RLess = nullptr;
11904   const SCEV *LMore = nullptr, *RMore = nullptr;
11905   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11906   // Compare (X + C1) vs X.
11907   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11908     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11909       if (RLess == More)
11910         return -(C1->getAPInt());
11911 
11912   // Compare X vs (X + C2).
11913   if (splitBinaryAdd(More, LMore, RMore, Flags))
11914     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11915       if (RMore == Less)
11916         return C2->getAPInt();
11917 
11918   // Compare (X + C1) vs (X + C2).
11919   if (C1 && C2 && RLess == RMore)
11920     return C2->getAPInt() - C1->getAPInt();
11921 
11922   return std::nullopt;
11923 }
11924 
11925 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11926     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11927     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11928   // Try to recognize the following pattern:
11929   //
11930   //   FoundRHS = ...
11931   // ...
11932   // loop:
11933   //   FoundLHS = {Start,+,W}
11934   // context_bb: // Basic block from the same loop
11935   //   known(Pred, FoundLHS, FoundRHS)
11936   //
11937   // If some predicate is known in the context of a loop, it is also known on
11938   // each iteration of this loop, including the first iteration. Therefore, in
11939   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11940   // prove the original pred using this fact.
11941   if (!CtxI)
11942     return false;
11943   const BasicBlock *ContextBB = CtxI->getParent();
11944   // Make sure AR varies in the context block.
11945   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11946     const Loop *L = AR->getLoop();
11947     // Make sure that context belongs to the loop and executes on 1st iteration
11948     // (if it ever executes at all).
11949     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11950       return false;
11951     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11952       return false;
11953     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11954   }
11955 
11956   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11957     const Loop *L = AR->getLoop();
11958     // Make sure that context belongs to the loop and executes on 1st iteration
11959     // (if it ever executes at all).
11960     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11961       return false;
11962     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11963       return false;
11964     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11965   }
11966 
11967   return false;
11968 }
11969 
11970 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11971     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11972     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11973   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11974     return false;
11975 
11976   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11977   if (!AddRecLHS)
11978     return false;
11979 
11980   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11981   if (!AddRecFoundLHS)
11982     return false;
11983 
11984   // We'd like to let SCEV reason about control dependencies, so we constrain
11985   // both the inequalities to be about add recurrences on the same loop.  This
11986   // way we can use isLoopEntryGuardedByCond later.
11987 
11988   const Loop *L = AddRecFoundLHS->getLoop();
11989   if (L != AddRecLHS->getLoop())
11990     return false;
11991 
11992   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11993   //
11994   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11995   //                                                                  ... (2)
11996   //
11997   // Informal proof for (2), assuming (1) [*]:
11998   //
11999   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12000   //
12001   // Then
12002   //
12003   //       FoundLHS s< FoundRHS s< INT_MIN - C
12004   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
12005   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12006   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
12007   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12008   // <=>  FoundLHS + C s< FoundRHS + C
12009   //
12010   // [*]: (1) can be proved by ruling out overflow.
12011   //
12012   // [**]: This can be proved by analyzing all the four possibilities:
12013   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12014   //    (A s>= 0, B s>= 0).
12015   //
12016   // Note:
12017   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12018   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
12019   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
12020   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
12021   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12022   // C)".
12023 
12024   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
12025   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
12026   if (!LDiff || !RDiff || *LDiff != *RDiff)
12027     return false;
12028 
12029   if (LDiff->isMinValue())
12030     return true;
12031 
12032   APInt FoundRHSLimit;
12033 
12034   if (Pred == CmpInst::ICMP_ULT) {
12035     FoundRHSLimit = -(*RDiff);
12036   } else {
12037     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12038     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
12039   }
12040 
12041   // Try to prove (1) or (2), as needed.
12042   return isAvailableAtLoopEntry(FoundRHS, L) &&
12043          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
12044                                   getConstant(FoundRHSLimit));
12045 }
12046 
12047 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
12048                                         const SCEV *LHS, const SCEV *RHS,
12049                                         const SCEV *FoundLHS,
12050                                         const SCEV *FoundRHS, unsigned Depth) {
12051   const PHINode *LPhi = nullptr, *RPhi = nullptr;
12052 
12053   auto ClearOnExit = make_scope_exit([&]() {
12054     if (LPhi) {
12055       bool Erased = PendingMerges.erase(LPhi);
12056       assert(Erased && "Failed to erase LPhi!");
12057       (void)Erased;
12058     }
12059     if (RPhi) {
12060       bool Erased = PendingMerges.erase(RPhi);
12061       assert(Erased && "Failed to erase RPhi!");
12062       (void)Erased;
12063     }
12064   });
12065 
12066   // Find respective Phis and check that they are not being pending.
12067   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12068     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12069       if (!PendingMerges.insert(Phi).second)
12070         return false;
12071       LPhi = Phi;
12072     }
12073   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12074     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12075       // If we detect a loop of Phi nodes being processed by this method, for
12076       // example:
12077       //
12078       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12079       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12080       //
12081       // we don't want to deal with a case that complex, so return conservative
12082       // answer false.
12083       if (!PendingMerges.insert(Phi).second)
12084         return false;
12085       RPhi = Phi;
12086     }
12087 
12088   // If none of LHS, RHS is a Phi, nothing to do here.
12089   if (!LPhi && !RPhi)
12090     return false;
12091 
12092   // If there is a SCEVUnknown Phi we are interested in, make it left.
12093   if (!LPhi) {
12094     std::swap(LHS, RHS);
12095     std::swap(FoundLHS, FoundRHS);
12096     std::swap(LPhi, RPhi);
12097     Pred = ICmpInst::getSwappedPredicate(Pred);
12098   }
12099 
12100   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12101   const BasicBlock *LBB = LPhi->getParent();
12102   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12103 
12104   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12105     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12106            isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) ||
12107            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12108   };
12109 
12110   if (RPhi && RPhi->getParent() == LBB) {
12111     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12112     // If we compare two Phis from the same block, and for each entry block
12113     // the predicate is true for incoming values from this block, then the
12114     // predicate is also true for the Phis.
12115     for (const BasicBlock *IncBB : predecessors(LBB)) {
12116       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12117       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12118       if (!ProvedEasily(L, R))
12119         return false;
12120     }
12121   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12122     // Case two: RHS is also a Phi from the same basic block, and it is an
12123     // AddRec. It means that there is a loop which has both AddRec and Unknown
12124     // PHIs, for it we can compare incoming values of AddRec from above the loop
12125     // and latch with their respective incoming values of LPhi.
12126     // TODO: Generalize to handle loops with many inputs in a header.
12127     if (LPhi->getNumIncomingValues() != 2) return false;
12128 
12129     auto *RLoop = RAR->getLoop();
12130     auto *Predecessor = RLoop->getLoopPredecessor();
12131     assert(Predecessor && "Loop with AddRec with no predecessor?");
12132     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12133     if (!ProvedEasily(L1, RAR->getStart()))
12134       return false;
12135     auto *Latch = RLoop->getLoopLatch();
12136     assert(Latch && "Loop with AddRec with no latch?");
12137     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12138     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12139       return false;
12140   } else {
12141     // In all other cases go over inputs of LHS and compare each of them to RHS,
12142     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12143     // At this point RHS is either a non-Phi, or it is a Phi from some block
12144     // different from LBB.
12145     for (const BasicBlock *IncBB : predecessors(LBB)) {
12146       // Check that RHS is available in this block.
12147       if (!dominates(RHS, IncBB))
12148         return false;
12149       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12150       // Make sure L does not refer to a value from a potentially previous
12151       // iteration of a loop.
12152       if (!properlyDominates(L, LBB))
12153         return false;
12154       if (!ProvedEasily(L, RHS))
12155         return false;
12156     }
12157   }
12158   return true;
12159 }
12160 
12161 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12162                                                     const SCEV *LHS,
12163                                                     const SCEV *RHS,
12164                                                     const SCEV *FoundLHS,
12165                                                     const SCEV *FoundRHS) {
12166   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12167   // sure that we are dealing with same LHS.
12168   if (RHS == FoundRHS) {
12169     std::swap(LHS, RHS);
12170     std::swap(FoundLHS, FoundRHS);
12171     Pred = ICmpInst::getSwappedPredicate(Pred);
12172   }
12173   if (LHS != FoundLHS)
12174     return false;
12175 
12176   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12177   if (!SUFoundRHS)
12178     return false;
12179 
12180   Value *Shiftee, *ShiftValue;
12181 
12182   using namespace PatternMatch;
12183   if (match(SUFoundRHS->getValue(),
12184             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12185     auto *ShifteeS = getSCEV(Shiftee);
12186     // Prove one of the following:
12187     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12188     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12189     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12190     //   ---> LHS <s RHS
12191     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12192     //   ---> LHS <=s RHS
12193     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12194       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12195     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12196       if (isKnownNonNegative(ShifteeS))
12197         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12198   }
12199 
12200   return false;
12201 }
12202 
12203 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12204                                             const SCEV *LHS, const SCEV *RHS,
12205                                             const SCEV *FoundLHS,
12206                                             const SCEV *FoundRHS,
12207                                             const Instruction *CtxI) {
12208   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS))
12209     return true;
12210 
12211   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12212     return true;
12213 
12214   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12215     return true;
12216 
12217   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12218                                           CtxI))
12219     return true;
12220 
12221   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12222                                      FoundLHS, FoundRHS);
12223 }
12224 
12225 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12226 template <typename MinMaxExprType>
12227 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12228                                  const SCEV *Candidate) {
12229   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12230   if (!MinMaxExpr)
12231     return false;
12232 
12233   return is_contained(MinMaxExpr->operands(), Candidate);
12234 }
12235 
12236 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12237                                            ICmpInst::Predicate Pred,
12238                                            const SCEV *LHS, const SCEV *RHS) {
12239   // If both sides are affine addrecs for the same loop, with equal
12240   // steps, and we know the recurrences don't wrap, then we only
12241   // need to check the predicate on the starting values.
12242 
12243   if (!ICmpInst::isRelational(Pred))
12244     return false;
12245 
12246   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12247   if (!LAR)
12248     return false;
12249   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12250   if (!RAR)
12251     return false;
12252   if (LAR->getLoop() != RAR->getLoop())
12253     return false;
12254   if (!LAR->isAffine() || !RAR->isAffine())
12255     return false;
12256 
12257   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12258     return false;
12259 
12260   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12261                          SCEV::FlagNSW : SCEV::FlagNUW;
12262   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12263     return false;
12264 
12265   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12266 }
12267 
12268 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12269 /// expression?
12270 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12271                                         ICmpInst::Predicate Pred,
12272                                         const SCEV *LHS, const SCEV *RHS) {
12273   switch (Pred) {
12274   default:
12275     return false;
12276 
12277   case ICmpInst::ICMP_SGE:
12278     std::swap(LHS, RHS);
12279     [[fallthrough]];
12280   case ICmpInst::ICMP_SLE:
12281     return
12282         // min(A, ...) <= A
12283         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12284         // A <= max(A, ...)
12285         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12286 
12287   case ICmpInst::ICMP_UGE:
12288     std::swap(LHS, RHS);
12289     [[fallthrough]];
12290   case ICmpInst::ICMP_ULE:
12291     return
12292         // min(A, ...) <= A
12293         // FIXME: what about umin_seq?
12294         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12295         // A <= max(A, ...)
12296         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12297   }
12298 
12299   llvm_unreachable("covered switch fell through?!");
12300 }
12301 
12302 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12303                                              const SCEV *LHS, const SCEV *RHS,
12304                                              const SCEV *FoundLHS,
12305                                              const SCEV *FoundRHS,
12306                                              unsigned Depth) {
12307   assert(getTypeSizeInBits(LHS->getType()) ==
12308              getTypeSizeInBits(RHS->getType()) &&
12309          "LHS and RHS have different sizes?");
12310   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12311              getTypeSizeInBits(FoundRHS->getType()) &&
12312          "FoundLHS and FoundRHS have different sizes?");
12313   // We want to avoid hurting the compile time with analysis of too big trees.
12314   if (Depth > MaxSCEVOperationsImplicationDepth)
12315     return false;
12316 
12317   // We only want to work with GT comparison so far.
12318   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12319     Pred = CmpInst::getSwappedPredicate(Pred);
12320     std::swap(LHS, RHS);
12321     std::swap(FoundLHS, FoundRHS);
12322   }
12323 
12324   // For unsigned, try to reduce it to corresponding signed comparison.
12325   if (Pred == ICmpInst::ICMP_UGT)
12326     // We can replace unsigned predicate with its signed counterpart if all
12327     // involved values are non-negative.
12328     // TODO: We could have better support for unsigned.
12329     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12330       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12331       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12332       // use this fact to prove that LHS and RHS are non-negative.
12333       const SCEV *MinusOne = getMinusOne(LHS->getType());
12334       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12335                                 FoundRHS) &&
12336           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12337                                 FoundRHS))
12338         Pred = ICmpInst::ICMP_SGT;
12339     }
12340 
12341   if (Pred != ICmpInst::ICMP_SGT)
12342     return false;
12343 
12344   auto GetOpFromSExt = [&](const SCEV *S) {
12345     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12346       return Ext->getOperand();
12347     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12348     // the constant in some cases.
12349     return S;
12350   };
12351 
12352   // Acquire values from extensions.
12353   auto *OrigLHS = LHS;
12354   auto *OrigFoundLHS = FoundLHS;
12355   LHS = GetOpFromSExt(LHS);
12356   FoundLHS = GetOpFromSExt(FoundLHS);
12357 
12358   // Is the SGT predicate can be proved trivially or using the found context.
12359   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12360     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12361            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12362                                   FoundRHS, Depth + 1);
12363   };
12364 
12365   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12366     // We want to avoid creation of any new non-constant SCEV. Since we are
12367     // going to compare the operands to RHS, we should be certain that we don't
12368     // need any size extensions for this. So let's decline all cases when the
12369     // sizes of types of LHS and RHS do not match.
12370     // TODO: Maybe try to get RHS from sext to catch more cases?
12371     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12372       return false;
12373 
12374     // Should not overflow.
12375     if (!LHSAddExpr->hasNoSignedWrap())
12376       return false;
12377 
12378     auto *LL = LHSAddExpr->getOperand(0);
12379     auto *LR = LHSAddExpr->getOperand(1);
12380     auto *MinusOne = getMinusOne(RHS->getType());
12381 
12382     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12383     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12384       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12385     };
12386     // Try to prove the following rule:
12387     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12388     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12389     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12390       return true;
12391   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12392     Value *LL, *LR;
12393     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12394 
12395     using namespace llvm::PatternMatch;
12396 
12397     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12398       // Rules for division.
12399       // We are going to perform some comparisons with Denominator and its
12400       // derivative expressions. In general case, creating a SCEV for it may
12401       // lead to a complex analysis of the entire graph, and in particular it
12402       // can request trip count recalculation for the same loop. This would
12403       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12404       // this, we only want to create SCEVs that are constants in this section.
12405       // So we bail if Denominator is not a constant.
12406       if (!isa<ConstantInt>(LR))
12407         return false;
12408 
12409       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12410 
12411       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12412       // then a SCEV for the numerator already exists and matches with FoundLHS.
12413       auto *Numerator = getExistingSCEV(LL);
12414       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12415         return false;
12416 
12417       // Make sure that the numerator matches with FoundLHS and the denominator
12418       // is positive.
12419       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12420         return false;
12421 
12422       auto *DTy = Denominator->getType();
12423       auto *FRHSTy = FoundRHS->getType();
12424       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12425         // One of types is a pointer and another one is not. We cannot extend
12426         // them properly to a wider type, so let us just reject this case.
12427         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12428         // to avoid this check.
12429         return false;
12430 
12431       // Given that:
12432       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12433       auto *WTy = getWiderType(DTy, FRHSTy);
12434       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12435       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12436 
12437       // Try to prove the following rule:
12438       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12439       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12440       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12441       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12442       if (isKnownNonPositive(RHS) &&
12443           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12444         return true;
12445 
12446       // Try to prove the following rule:
12447       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12448       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12449       // If we divide it by Denominator > 2, then:
12450       // 1. If FoundLHS is negative, then the result is 0.
12451       // 2. If FoundLHS is non-negative, then the result is non-negative.
12452       // Anyways, the result is non-negative.
12453       auto *MinusOne = getMinusOne(WTy);
12454       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12455       if (isKnownNegative(RHS) &&
12456           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12457         return true;
12458     }
12459   }
12460 
12461   // If our expression contained SCEVUnknown Phis, and we split it down and now
12462   // need to prove something for them, try to prove the predicate for every
12463   // possible incoming values of those Phis.
12464   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12465     return true;
12466 
12467   return false;
12468 }
12469 
12470 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12471                                         const SCEV *LHS, const SCEV *RHS) {
12472   // zext x u<= sext x, sext x s<= zext x
12473   switch (Pred) {
12474   case ICmpInst::ICMP_SGE:
12475     std::swap(LHS, RHS);
12476     [[fallthrough]];
12477   case ICmpInst::ICMP_SLE: {
12478     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12479     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12480     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12481     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12482       return true;
12483     break;
12484   }
12485   case ICmpInst::ICMP_UGE:
12486     std::swap(LHS, RHS);
12487     [[fallthrough]];
12488   case ICmpInst::ICMP_ULE: {
12489     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12490     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12491     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12492     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12493       return true;
12494     break;
12495   }
12496   default:
12497     break;
12498   };
12499   return false;
12500 }
12501 
12502 bool
12503 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12504                                            const SCEV *LHS, const SCEV *RHS) {
12505   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12506          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12507          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12508          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12509          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12510 }
12511 
12512 bool
12513 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12514                                              const SCEV *LHS, const SCEV *RHS,
12515                                              const SCEV *FoundLHS,
12516                                              const SCEV *FoundRHS) {
12517   switch (Pred) {
12518   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12519   case ICmpInst::ICMP_EQ:
12520   case ICmpInst::ICMP_NE:
12521     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12522       return true;
12523     break;
12524   case ICmpInst::ICMP_SLT:
12525   case ICmpInst::ICMP_SLE:
12526     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12527         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12528       return true;
12529     break;
12530   case ICmpInst::ICMP_SGT:
12531   case ICmpInst::ICMP_SGE:
12532     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12533         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12534       return true;
12535     break;
12536   case ICmpInst::ICMP_ULT:
12537   case ICmpInst::ICMP_ULE:
12538     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12539         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12540       return true;
12541     break;
12542   case ICmpInst::ICMP_UGT:
12543   case ICmpInst::ICMP_UGE:
12544     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12545         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12546       return true;
12547     break;
12548   }
12549 
12550   // Maybe it can be proved via operations?
12551   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12552     return true;
12553 
12554   return false;
12555 }
12556 
12557 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12558                                                      const SCEV *LHS,
12559                                                      const SCEV *RHS,
12560                                                      ICmpInst::Predicate FoundPred,
12561                                                      const SCEV *FoundLHS,
12562                                                      const SCEV *FoundRHS) {
12563   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12564     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12565     // reduce the compile time impact of this optimization.
12566     return false;
12567 
12568   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12569   if (!Addend)
12570     return false;
12571 
12572   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12573 
12574   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12575   // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12576   ConstantRange FoundLHSRange =
12577       ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS);
12578 
12579   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12580   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12581 
12582   // We can also compute the range of values for `LHS` that satisfy the
12583   // consequent, "`LHS` `Pred` `RHS`":
12584   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12585   // The antecedent implies the consequent if every value of `LHS` that
12586   // satisfies the antecedent also satisfies the consequent.
12587   return LHSRange.icmp(Pred, ConstRHS);
12588 }
12589 
12590 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12591                                         bool IsSigned) {
12592   assert(isKnownPositive(Stride) && "Positive stride expected!");
12593 
12594   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12595   const SCEV *One = getOne(Stride->getType());
12596 
12597   if (IsSigned) {
12598     APInt MaxRHS = getSignedRangeMax(RHS);
12599     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12600     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12601 
12602     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12603     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12604   }
12605 
12606   APInt MaxRHS = getUnsignedRangeMax(RHS);
12607   APInt MaxValue = APInt::getMaxValue(BitWidth);
12608   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12609 
12610   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12611   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12612 }
12613 
12614 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12615                                         bool IsSigned) {
12616 
12617   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12618   const SCEV *One = getOne(Stride->getType());
12619 
12620   if (IsSigned) {
12621     APInt MinRHS = getSignedRangeMin(RHS);
12622     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12623     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12624 
12625     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12626     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12627   }
12628 
12629   APInt MinRHS = getUnsignedRangeMin(RHS);
12630   APInt MinValue = APInt::getMinValue(BitWidth);
12631   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12632 
12633   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12634   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12635 }
12636 
12637 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12638   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12639   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12640   // expression fixes the case of N=0.
12641   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12642   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12643   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12644 }
12645 
12646 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12647                                                     const SCEV *Stride,
12648                                                     const SCEV *End,
12649                                                     unsigned BitWidth,
12650                                                     bool IsSigned) {
12651   // The logic in this function assumes we can represent a positive stride.
12652   // If we can't, the backedge-taken count must be zero.
12653   if (IsSigned && BitWidth == 1)
12654     return getZero(Stride->getType());
12655 
12656   // This code below only been closely audited for negative strides in the
12657   // unsigned comparison case, it may be correct for signed comparison, but
12658   // that needs to be established.
12659   if (IsSigned && isKnownNegative(Stride))
12660     return getCouldNotCompute();
12661 
12662   // Calculate the maximum backedge count based on the range of values
12663   // permitted by Start, End, and Stride.
12664   APInt MinStart =
12665       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12666 
12667   APInt MinStride =
12668       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12669 
12670   // We assume either the stride is positive, or the backedge-taken count
12671   // is zero. So force StrideForMaxBECount to be at least one.
12672   APInt One(BitWidth, 1);
12673   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12674                                        : APIntOps::umax(One, MinStride);
12675 
12676   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12677                             : APInt::getMaxValue(BitWidth);
12678   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12679 
12680   // Although End can be a MAX expression we estimate MaxEnd considering only
12681   // the case End = RHS of the loop termination condition. This is safe because
12682   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12683   // taken count.
12684   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12685                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12686 
12687   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12688   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12689                     : APIntOps::umax(MaxEnd, MinStart);
12690 
12691   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12692                          getConstant(StrideForMaxBECount) /* Step */);
12693 }
12694 
12695 ScalarEvolution::ExitLimit
12696 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12697                                   const Loop *L, bool IsSigned,
12698                                   bool ControlsOnlyExit, bool AllowPredicates) {
12699   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12700 
12701   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12702   bool PredicatedIV = false;
12703 
12704   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12705     // Can we prove this loop *must* be UB if overflow of IV occurs?
12706     // Reasoning goes as follows:
12707     // * Suppose the IV did self wrap.
12708     // * If Stride evenly divides the iteration space, then once wrap
12709     //   occurs, the loop must revisit the same values.
12710     // * We know that RHS is invariant, and that none of those values
12711     //   caused this exit to be taken previously.  Thus, this exit is
12712     //   dynamically dead.
12713     // * If this is the sole exit, then a dead exit implies the loop
12714     //   must be infinite if there are no abnormal exits.
12715     // * If the loop were infinite, then it must either not be mustprogress
12716     //   or have side effects. Otherwise, it must be UB.
12717     // * It can't (by assumption), be UB so we have contradicted our
12718     //   premise and can conclude the IV did not in fact self-wrap.
12719     if (!isLoopInvariant(RHS, L))
12720       return false;
12721 
12722     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12723     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12724       return false;
12725 
12726     if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12727       return false;
12728 
12729     return loopIsFiniteByAssumption(L);
12730   };
12731 
12732   if (!IV) {
12733     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12734       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12735       if (AR && AR->getLoop() == L && AR->isAffine()) {
12736         auto canProveNUW = [&]() {
12737           // We can use the comparison to infer no-wrap flags only if it fully
12738           // controls the loop exit.
12739           if (!ControlsOnlyExit)
12740             return false;
12741 
12742           if (!isLoopInvariant(RHS, L))
12743             return false;
12744 
12745           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12746             // We need the sequence defined by AR to strictly increase in the
12747             // unsigned integer domain for the logic below to hold.
12748             return false;
12749 
12750           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12751           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12752           // If RHS <=u Limit, then there must exist a value V in the sequence
12753           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12754           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12755           // overflow occurs.  This limit also implies that a signed comparison
12756           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12757           // the high bits on both sides must be zero.
12758           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12759           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12760           Limit = Limit.zext(OuterBitWidth);
12761           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12762         };
12763         auto Flags = AR->getNoWrapFlags();
12764         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12765           Flags = setFlags(Flags, SCEV::FlagNUW);
12766 
12767         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12768         if (AR->hasNoUnsignedWrap()) {
12769           // Emulate what getZeroExtendExpr would have done during construction
12770           // if we'd been able to infer the fact just above at that time.
12771           const SCEV *Step = AR->getStepRecurrence(*this);
12772           Type *Ty = ZExt->getType();
12773           auto *S = getAddRecExpr(
12774             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12775             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12776           IV = dyn_cast<SCEVAddRecExpr>(S);
12777         }
12778       }
12779     }
12780   }
12781 
12782 
12783   if (!IV && AllowPredicates) {
12784     // Try to make this an AddRec using runtime tests, in the first X
12785     // iterations of this loop, where X is the SCEV expression found by the
12786     // algorithm below.
12787     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12788     PredicatedIV = true;
12789   }
12790 
12791   // Avoid weird loops
12792   if (!IV || IV->getLoop() != L || !IV->isAffine())
12793     return getCouldNotCompute();
12794 
12795   // A precondition of this method is that the condition being analyzed
12796   // reaches an exiting branch which dominates the latch.  Given that, we can
12797   // assume that an increment which violates the nowrap specification and
12798   // produces poison must cause undefined behavior when the resulting poison
12799   // value is branched upon and thus we can conclude that the backedge is
12800   // taken no more often than would be required to produce that poison value.
12801   // Note that a well defined loop can exit on the iteration which violates
12802   // the nowrap specification if there is another exit (either explicit or
12803   // implicit/exceptional) which causes the loop to execute before the
12804   // exiting instruction we're analyzing would trigger UB.
12805   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12806   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
12807   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12808 
12809   const SCEV *Stride = IV->getStepRecurrence(*this);
12810 
12811   bool PositiveStride = isKnownPositive(Stride);
12812 
12813   // Avoid negative or zero stride values.
12814   if (!PositiveStride) {
12815     // We can compute the correct backedge taken count for loops with unknown
12816     // strides if we can prove that the loop is not an infinite loop with side
12817     // effects. Here's the loop structure we are trying to handle -
12818     //
12819     // i = start
12820     // do {
12821     //   A[i] = i;
12822     //   i += s;
12823     // } while (i < end);
12824     //
12825     // The backedge taken count for such loops is evaluated as -
12826     // (max(end, start + stride) - start - 1) /u stride
12827     //
12828     // The additional preconditions that we need to check to prove correctness
12829     // of the above formula is as follows -
12830     //
12831     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12832     //    NoWrap flag).
12833     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12834     //    no side effects within the loop)
12835     // c) loop has a single static exit (with no abnormal exits)
12836     //
12837     // Precondition a) implies that if the stride is negative, this is a single
12838     // trip loop. The backedge taken count formula reduces to zero in this case.
12839     //
12840     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12841     // then a zero stride means the backedge can't be taken without executing
12842     // undefined behavior.
12843     //
12844     // The positive stride case is the same as isKnownPositive(Stride) returning
12845     // true (original behavior of the function).
12846     //
12847     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12848         !loopHasNoAbnormalExits(L))
12849       return getCouldNotCompute();
12850 
12851     if (!isKnownNonZero(Stride)) {
12852       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12853       // if it might eventually be greater than start and if so, on which
12854       // iteration.  We can't even produce a useful upper bound.
12855       if (!isLoopInvariant(RHS, L))
12856         return getCouldNotCompute();
12857 
12858       // We allow a potentially zero stride, but we need to divide by stride
12859       // below.  Since the loop can't be infinite and this check must control
12860       // the sole exit, we can infer the exit must be taken on the first
12861       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12862       // we know the numerator in the divides below must be zero, so we can
12863       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12864       // and produce the right result.
12865       // FIXME: Handle the case where Stride is poison?
12866       auto wouldZeroStrideBeUB = [&]() {
12867         // Proof by contradiction.  Suppose the stride were zero.  If we can
12868         // prove that the backedge *is* taken on the first iteration, then since
12869         // we know this condition controls the sole exit, we must have an
12870         // infinite loop.  We can't have a (well defined) infinite loop per
12871         // check just above.
12872         // Note: The (Start - Stride) term is used to get the start' term from
12873         // (start' + stride,+,stride). Remember that we only care about the
12874         // result of this expression when stride == 0 at runtime.
12875         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12876         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12877       };
12878       if (!wouldZeroStrideBeUB()) {
12879         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12880       }
12881     }
12882   } else if (!Stride->isOne() && !NoWrap) {
12883     auto isUBOnWrap = [&]() {
12884       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12885       // follows trivially from the fact that every (un)signed-wrapped, but
12886       // not self-wrapped value must be LT than the last value before
12887       // (un)signed wrap.  Since we know that last value didn't exit, nor
12888       // will any smaller one.
12889       return canAssumeNoSelfWrap(IV);
12890     };
12891 
12892     // Avoid proven overflow cases: this will ensure that the backedge taken
12893     // count will not generate any unsigned overflow. Relaxed no-overflow
12894     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12895     // undefined behaviors like the case of C language.
12896     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12897       return getCouldNotCompute();
12898   }
12899 
12900   // On all paths just preceeding, we established the following invariant:
12901   //   IV can be assumed not to overflow up to and including the exiting
12902   //   iteration.  We proved this in one of two ways:
12903   //   1) We can show overflow doesn't occur before the exiting iteration
12904   //      1a) canIVOverflowOnLT, and b) step of one
12905   //   2) We can show that if overflow occurs, the loop must execute UB
12906   //      before any possible exit.
12907   // Note that we have not yet proved RHS invariant (in general).
12908 
12909   const SCEV *Start = IV->getStart();
12910 
12911   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12912   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12913   // Use integer-typed versions for actual computation; we can't subtract
12914   // pointers in general.
12915   const SCEV *OrigStart = Start;
12916   const SCEV *OrigRHS = RHS;
12917   if (Start->getType()->isPointerTy()) {
12918     Start = getLosslessPtrToIntExpr(Start);
12919     if (isa<SCEVCouldNotCompute>(Start))
12920       return Start;
12921   }
12922   if (RHS->getType()->isPointerTy()) {
12923     RHS = getLosslessPtrToIntExpr(RHS);
12924     if (isa<SCEVCouldNotCompute>(RHS))
12925       return RHS;
12926   }
12927 
12928   // When the RHS is not invariant, we do not know the end bound of the loop and
12929   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12930   // calculate the MaxBECount, given the start, stride and max value for the end
12931   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12932   // checked above).
12933   if (!isLoopInvariant(RHS, L)) {
12934     const SCEV *MaxBECount = computeMaxBECountForLT(
12935         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12936     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12937                      MaxBECount, false /*MaxOrZero*/, Predicates);
12938   }
12939 
12940   // We use the expression (max(End,Start)-Start)/Stride to describe the
12941   // backedge count, as if the backedge is taken at least once max(End,Start)
12942   // is End and so the result is as above, and if not max(End,Start) is Start
12943   // so we get a backedge count of zero.
12944   const SCEV *BECount = nullptr;
12945   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12946   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12947   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12948   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12949   // Can we prove (max(RHS,Start) > Start - Stride?
12950   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12951       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12952     // In this case, we can use a refined formula for computing backedge taken
12953     // count.  The general formula remains:
12954     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12955     // We want to use the alternate formula:
12956     //   "((End - 1) - (Start - Stride)) /u Stride"
12957     // Let's do a quick case analysis to show these are equivalent under
12958     // our precondition that max(RHS,Start) > Start - Stride.
12959     // * For RHS <= Start, the backedge-taken count must be zero.
12960     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12961     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12962     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12963     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12964     //     this to the stride of 1 case.
12965     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12966     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12967     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12968     //   "((RHS - (Start - Stride) - 1) /u Stride".
12969     //   Our preconditions trivially imply no overflow in that form.
12970     const SCEV *MinusOne = getMinusOne(Stride->getType());
12971     const SCEV *Numerator =
12972         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12973     BECount = getUDivExpr(Numerator, Stride);
12974   }
12975 
12976   const SCEV *BECountIfBackedgeTaken = nullptr;
12977   if (!BECount) {
12978     auto canProveRHSGreaterThanEqualStart = [&]() {
12979       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12980       const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
12981       const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
12982 
12983       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
12984           isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
12985         return true;
12986 
12987       // (RHS > Start - 1) implies RHS >= Start.
12988       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12989       //   "Start - 1" doesn't overflow.
12990       // * For signed comparison, if Start - 1 does overflow, it's equal
12991       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12992       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12993       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12994       //
12995       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12996       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12997       auto *StartMinusOne = getAddExpr(OrigStart,
12998                                        getMinusOne(OrigStart->getType()));
12999       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
13000     };
13001 
13002     // If we know that RHS >= Start in the context of loop, then we know that
13003     // max(RHS, Start) = RHS at this point.
13004     const SCEV *End;
13005     if (canProveRHSGreaterThanEqualStart()) {
13006       End = RHS;
13007     } else {
13008       // If RHS < Start, the backedge will be taken zero times.  So in
13009       // general, we can write the backedge-taken count as:
13010       //
13011       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
13012       //
13013       // We convert it to the following to make it more convenient for SCEV:
13014       //
13015       //     ceil(max(RHS, Start) - Start) / Stride
13016       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
13017 
13018       // See what would happen if we assume the backedge is taken. This is
13019       // used to compute MaxBECount.
13020       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
13021     }
13022 
13023     // At this point, we know:
13024     //
13025     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13026     // 2. The index variable doesn't overflow.
13027     //
13028     // Therefore, we know N exists such that
13029     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13030     // doesn't overflow.
13031     //
13032     // Using this information, try to prove whether the addition in
13033     // "(Start - End) + (Stride - 1)" has unsigned overflow.
13034     const SCEV *One = getOne(Stride->getType());
13035     bool MayAddOverflow = [&] {
13036       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
13037         if (StrideC->getAPInt().isPowerOf2()) {
13038           // Suppose Stride is a power of two, and Start/End are unsigned
13039           // integers.  Let UMAX be the largest representable unsigned
13040           // integer.
13041           //
13042           // By the preconditions of this function, we know
13043           // "(Start + Stride * N) >= End", and this doesn't overflow.
13044           // As a formula:
13045           //
13046           //   End <= (Start + Stride * N) <= UMAX
13047           //
13048           // Subtracting Start from all the terms:
13049           //
13050           //   End - Start <= Stride * N <= UMAX - Start
13051           //
13052           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
13053           //
13054           //   End - Start <= Stride * N <= UMAX
13055           //
13056           // Stride * N is a multiple of Stride. Therefore,
13057           //
13058           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13059           //
13060           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
13061           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
13062           //
13063           //   End - Start <= Stride * N <= UMAX - Stride - 1
13064           //
13065           // Dropping the middle term:
13066           //
13067           //   End - Start <= UMAX - Stride - 1
13068           //
13069           // Adding Stride - 1 to both sides:
13070           //
13071           //   (End - Start) + (Stride - 1) <= UMAX
13072           //
13073           // In other words, the addition doesn't have unsigned overflow.
13074           //
13075           // A similar proof works if we treat Start/End as signed values.
13076           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
13077           // use signed max instead of unsigned max. Note that we're trying
13078           // to prove a lack of unsigned overflow in either case.
13079           return false;
13080         }
13081       }
13082       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13083         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
13084         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
13085         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
13086         //
13087         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
13088         return false;
13089       }
13090       return true;
13091     }();
13092 
13093     const SCEV *Delta = getMinusSCEV(End, Start);
13094     if (!MayAddOverflow) {
13095       // floor((D + (S - 1)) / S)
13096       // We prefer this formulation if it's legal because it's fewer operations.
13097       BECount =
13098           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13099     } else {
13100       BECount = getUDivCeilSCEV(Delta, Stride);
13101     }
13102   }
13103 
13104   const SCEV *ConstantMaxBECount;
13105   bool MaxOrZero = false;
13106   if (isa<SCEVConstant>(BECount)) {
13107     ConstantMaxBECount = BECount;
13108   } else if (BECountIfBackedgeTaken &&
13109              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13110     // If we know exactly how many times the backedge will be taken if it's
13111     // taken at least once, then the backedge count will either be that or
13112     // zero.
13113     ConstantMaxBECount = BECountIfBackedgeTaken;
13114     MaxOrZero = true;
13115   } else {
13116     ConstantMaxBECount = computeMaxBECountForLT(
13117         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13118   }
13119 
13120   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13121       !isa<SCEVCouldNotCompute>(BECount))
13122     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13123 
13124   const SCEV *SymbolicMaxBECount =
13125       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13126   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13127                    Predicates);
13128 }
13129 
13130 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13131     const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13132     bool ControlsOnlyExit, bool AllowPredicates) {
13133   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13134   // We handle only IV > Invariant
13135   if (!isLoopInvariant(RHS, L))
13136     return getCouldNotCompute();
13137 
13138   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13139   if (!IV && AllowPredicates)
13140     // Try to make this an AddRec using runtime tests, in the first X
13141     // iterations of this loop, where X is the SCEV expression found by the
13142     // algorithm below.
13143     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13144 
13145   // Avoid weird loops
13146   if (!IV || IV->getLoop() != L || !IV->isAffine())
13147     return getCouldNotCompute();
13148 
13149   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13150   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13151   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13152 
13153   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13154 
13155   // Avoid negative or zero stride values
13156   if (!isKnownPositive(Stride))
13157     return getCouldNotCompute();
13158 
13159   // Avoid proven overflow cases: this will ensure that the backedge taken count
13160   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13161   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13162   // behaviors like the case of C language.
13163   if (!Stride->isOne() && !NoWrap)
13164     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13165       return getCouldNotCompute();
13166 
13167   const SCEV *Start = IV->getStart();
13168   const SCEV *End = RHS;
13169   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13170     // If we know that Start >= RHS in the context of loop, then we know that
13171     // min(RHS, Start) = RHS at this point.
13172     if (isLoopEntryGuardedByCond(
13173             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13174       End = RHS;
13175     else
13176       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13177   }
13178 
13179   if (Start->getType()->isPointerTy()) {
13180     Start = getLosslessPtrToIntExpr(Start);
13181     if (isa<SCEVCouldNotCompute>(Start))
13182       return Start;
13183   }
13184   if (End->getType()->isPointerTy()) {
13185     End = getLosslessPtrToIntExpr(End);
13186     if (isa<SCEVCouldNotCompute>(End))
13187       return End;
13188   }
13189 
13190   // Compute ((Start - End) + (Stride - 1)) / Stride.
13191   // FIXME: This can overflow. Holding off on fixing this for now;
13192   // howManyGreaterThans will hopefully be gone soon.
13193   const SCEV *One = getOne(Stride->getType());
13194   const SCEV *BECount = getUDivExpr(
13195       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13196 
13197   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13198                             : getUnsignedRangeMax(Start);
13199 
13200   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13201                              : getUnsignedRangeMin(Stride);
13202 
13203   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13204   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13205                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13206 
13207   // Although End can be a MIN expression we estimate MinEnd considering only
13208   // the case End = RHS. This is safe because in the other case (Start - End)
13209   // is zero, leading to a zero maximum backedge taken count.
13210   APInt MinEnd =
13211     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13212              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13213 
13214   const SCEV *ConstantMaxBECount =
13215       isa<SCEVConstant>(BECount)
13216           ? BECount
13217           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13218                             getConstant(MinStride));
13219 
13220   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13221     ConstantMaxBECount = BECount;
13222   const SCEV *SymbolicMaxBECount =
13223       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13224 
13225   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13226                    Predicates);
13227 }
13228 
13229 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13230                                                     ScalarEvolution &SE) const {
13231   if (Range.isFullSet())  // Infinite loop.
13232     return SE.getCouldNotCompute();
13233 
13234   // If the start is a non-zero constant, shift the range to simplify things.
13235   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13236     if (!SC->getValue()->isZero()) {
13237       SmallVector<const SCEV *, 4> Operands(operands());
13238       Operands[0] = SE.getZero(SC->getType());
13239       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13240                                              getNoWrapFlags(FlagNW));
13241       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13242         return ShiftedAddRec->getNumIterationsInRange(
13243             Range.subtract(SC->getAPInt()), SE);
13244       // This is strange and shouldn't happen.
13245       return SE.getCouldNotCompute();
13246     }
13247 
13248   // The only time we can solve this is when we have all constant indices.
13249   // Otherwise, we cannot determine the overflow conditions.
13250   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13251     return SE.getCouldNotCompute();
13252 
13253   // Okay at this point we know that all elements of the chrec are constants and
13254   // that the start element is zero.
13255 
13256   // First check to see if the range contains zero.  If not, the first
13257   // iteration exits.
13258   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13259   if (!Range.contains(APInt(BitWidth, 0)))
13260     return SE.getZero(getType());
13261 
13262   if (isAffine()) {
13263     // If this is an affine expression then we have this situation:
13264     //   Solve {0,+,A} in Range  ===  Ax in Range
13265 
13266     // We know that zero is in the range.  If A is positive then we know that
13267     // the upper value of the range must be the first possible exit value.
13268     // If A is negative then the lower of the range is the last possible loop
13269     // value.  Also note that we already checked for a full range.
13270     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13271     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13272 
13273     // The exit value should be (End+A)/A.
13274     APInt ExitVal = (End + A).udiv(A);
13275     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13276 
13277     // Evaluate at the exit value.  If we really did fall out of the valid
13278     // range, then we computed our trip count, otherwise wrap around or other
13279     // things must have happened.
13280     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13281     if (Range.contains(Val->getValue()))
13282       return SE.getCouldNotCompute();  // Something strange happened
13283 
13284     // Ensure that the previous value is in the range.
13285     assert(Range.contains(
13286            EvaluateConstantChrecAtConstant(this,
13287            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13288            "Linear scev computation is off in a bad way!");
13289     return SE.getConstant(ExitValue);
13290   }
13291 
13292   if (isQuadratic()) {
13293     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13294       return SE.getConstant(*S);
13295   }
13296 
13297   return SE.getCouldNotCompute();
13298 }
13299 
13300 const SCEVAddRecExpr *
13301 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13302   assert(getNumOperands() > 1 && "AddRec with zero step?");
13303   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13304   // but in this case we cannot guarantee that the value returned will be an
13305   // AddRec because SCEV does not have a fixed point where it stops
13306   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13307   // may happen if we reach arithmetic depth limit while simplifying. So we
13308   // construct the returned value explicitly.
13309   SmallVector<const SCEV *, 3> Ops;
13310   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13311   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13312   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13313     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13314   // We know that the last operand is not a constant zero (otherwise it would
13315   // have been popped out earlier). This guarantees us that if the result has
13316   // the same last operand, then it will also not be popped out, meaning that
13317   // the returned value will be an AddRec.
13318   const SCEV *Last = getOperand(getNumOperands() - 1);
13319   assert(!Last->isZero() && "Recurrency with zero step?");
13320   Ops.push_back(Last);
13321   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13322                                                SCEV::FlagAnyWrap));
13323 }
13324 
13325 // Return true when S contains at least an undef value.
13326 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13327   return SCEVExprContains(S, [](const SCEV *S) {
13328     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13329       return isa<UndefValue>(SU->getValue());
13330     return false;
13331   });
13332 }
13333 
13334 // Return true when S contains a value that is a nullptr.
13335 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13336   return SCEVExprContains(S, [](const SCEV *S) {
13337     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13338       return SU->getValue() == nullptr;
13339     return false;
13340   });
13341 }
13342 
13343 /// Return the size of an element read or written by Inst.
13344 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13345   Type *Ty;
13346   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13347     Ty = Store->getValueOperand()->getType();
13348   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13349     Ty = Load->getType();
13350   else
13351     return nullptr;
13352 
13353   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13354   return getSizeOfExpr(ETy, Ty);
13355 }
13356 
13357 //===----------------------------------------------------------------------===//
13358 //                   SCEVCallbackVH Class Implementation
13359 //===----------------------------------------------------------------------===//
13360 
13361 void ScalarEvolution::SCEVCallbackVH::deleted() {
13362   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13363   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13364     SE->ConstantEvolutionLoopExitValue.erase(PN);
13365   SE->eraseValueFromMap(getValPtr());
13366   // this now dangles!
13367 }
13368 
13369 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13370   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13371 
13372   // Forget all the expressions associated with users of the old value,
13373   // so that future queries will recompute the expressions using the new
13374   // value.
13375   SE->forgetValue(getValPtr());
13376   // this now dangles!
13377 }
13378 
13379 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13380   : CallbackVH(V), SE(se) {}
13381 
13382 //===----------------------------------------------------------------------===//
13383 //                   ScalarEvolution Class Implementation
13384 //===----------------------------------------------------------------------===//
13385 
13386 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13387                                  AssumptionCache &AC, DominatorTree &DT,
13388                                  LoopInfo &LI)
13389     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13390       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13391       LoopDispositions(64), BlockDispositions(64) {
13392   // To use guards for proving predicates, we need to scan every instruction in
13393   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13394   // time if the IR does not actually contain any calls to
13395   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13396   //
13397   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13398   // to _add_ guards to the module when there weren't any before, and wants
13399   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13400   // efficient in lieu of being smart in that rather obscure case.
13401 
13402   auto *GuardDecl = F.getParent()->getFunction(
13403       Intrinsic::getName(Intrinsic::experimental_guard));
13404   HasGuards = GuardDecl && !GuardDecl->use_empty();
13405 }
13406 
13407 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13408     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
13409       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13410       ValueExprMap(std::move(Arg.ValueExprMap)),
13411       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13412       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13413       PendingMerges(std::move(Arg.PendingMerges)),
13414       ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13415       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13416       PredicatedBackedgeTakenCounts(
13417           std::move(Arg.PredicatedBackedgeTakenCounts)),
13418       BECountUsers(std::move(Arg.BECountUsers)),
13419       ConstantEvolutionLoopExitValue(
13420           std::move(Arg.ConstantEvolutionLoopExitValue)),
13421       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13422       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13423       LoopDispositions(std::move(Arg.LoopDispositions)),
13424       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13425       BlockDispositions(std::move(Arg.BlockDispositions)),
13426       SCEVUsers(std::move(Arg.SCEVUsers)),
13427       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13428       SignedRanges(std::move(Arg.SignedRanges)),
13429       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13430       UniquePreds(std::move(Arg.UniquePreds)),
13431       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13432       LoopUsers(std::move(Arg.LoopUsers)),
13433       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13434       FirstUnknown(Arg.FirstUnknown) {
13435   Arg.FirstUnknown = nullptr;
13436 }
13437 
13438 ScalarEvolution::~ScalarEvolution() {
13439   // Iterate through all the SCEVUnknown instances and call their
13440   // destructors, so that they release their references to their values.
13441   for (SCEVUnknown *U = FirstUnknown; U;) {
13442     SCEVUnknown *Tmp = U;
13443     U = U->Next;
13444     Tmp->~SCEVUnknown();
13445   }
13446   FirstUnknown = nullptr;
13447 
13448   ExprValueMap.clear();
13449   ValueExprMap.clear();
13450   HasRecMap.clear();
13451   BackedgeTakenCounts.clear();
13452   PredicatedBackedgeTakenCounts.clear();
13453 
13454   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13455   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13456   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13457   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13458   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13459 }
13460 
13461 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13462   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13463 }
13464 
13465 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13466                           const Loop *L) {
13467   // Print all inner loops first
13468   for (Loop *I : *L)
13469     PrintLoopInfo(OS, SE, I);
13470 
13471   OS << "Loop ";
13472   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13473   OS << ": ";
13474 
13475   SmallVector<BasicBlock *, 8> ExitingBlocks;
13476   L->getExitingBlocks(ExitingBlocks);
13477   if (ExitingBlocks.size() != 1)
13478     OS << "<multiple exits> ";
13479 
13480   if (SE->hasLoopInvariantBackedgeTakenCount(L))
13481     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13482   else
13483     OS << "Unpredictable backedge-taken count.\n";
13484 
13485   if (ExitingBlocks.size() > 1)
13486     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13487       OS << "  exit count for " << ExitingBlock->getName() << ": "
13488          << *SE->getExitCount(L, ExitingBlock) << "\n";
13489     }
13490 
13491   OS << "Loop ";
13492   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13493   OS << ": ";
13494 
13495   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13496   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13497     OS << "constant max backedge-taken count is " << *ConstantBTC;
13498     if (SE->isBackedgeTakenCountMaxOrZero(L))
13499       OS << ", actual taken count either this or zero.";
13500   } else {
13501     OS << "Unpredictable constant max backedge-taken count. ";
13502   }
13503 
13504   OS << "\n"
13505         "Loop ";
13506   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13507   OS << ": ";
13508 
13509   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13510   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13511     OS << "symbolic max backedge-taken count is " << *SymbolicBTC;
13512     if (SE->isBackedgeTakenCountMaxOrZero(L))
13513       OS << ", actual taken count either this or zero.";
13514   } else {
13515     OS << "Unpredictable symbolic max backedge-taken count. ";
13516   }
13517 
13518   OS << "\n";
13519   if (ExitingBlocks.size() > 1)
13520     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13521       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": "
13522          << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum)
13523          << "\n";
13524     }
13525 
13526   OS << "Loop ";
13527   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13528   OS << ": ";
13529 
13530   SmallVector<const SCEVPredicate *, 4> Preds;
13531   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13532   if (!isa<SCEVCouldNotCompute>(PBT)) {
13533     OS << "Predicated backedge-taken count is " << *PBT << "\n";
13534     OS << " Predicates:\n";
13535     for (const auto *P : Preds)
13536       P->print(OS, 4);
13537   } else {
13538     OS << "Unpredictable predicated backedge-taken count.\n";
13539   }
13540 
13541   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13542     OS << "Loop ";
13543     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13544     OS << ": ";
13545     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13546   }
13547 }
13548 
13549 namespace llvm {
13550 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13551   switch (LD) {
13552   case ScalarEvolution::LoopVariant:
13553     OS << "Variant";
13554     break;
13555   case ScalarEvolution::LoopInvariant:
13556     OS << "Invariant";
13557     break;
13558   case ScalarEvolution::LoopComputable:
13559     OS << "Computable";
13560     break;
13561   }
13562   return OS;
13563 }
13564 
13565 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13566   switch (BD) {
13567   case ScalarEvolution::DoesNotDominateBlock:
13568     OS << "DoesNotDominate";
13569     break;
13570   case ScalarEvolution::DominatesBlock:
13571     OS << "Dominates";
13572     break;
13573   case ScalarEvolution::ProperlyDominatesBlock:
13574     OS << "ProperlyDominates";
13575     break;
13576   }
13577   return OS;
13578 }
13579 }
13580 
13581 void ScalarEvolution::print(raw_ostream &OS) const {
13582   // ScalarEvolution's implementation of the print method is to print
13583   // out SCEV values of all instructions that are interesting. Doing
13584   // this potentially causes it to create new SCEV objects though,
13585   // which technically conflicts with the const qualifier. This isn't
13586   // observable from outside the class though, so casting away the
13587   // const isn't dangerous.
13588   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13589 
13590   if (ClassifyExpressions) {
13591     OS << "Classifying expressions for: ";
13592     F.printAsOperand(OS, /*PrintType=*/false);
13593     OS << "\n";
13594     for (Instruction &I : instructions(F))
13595       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13596         OS << I << '\n';
13597         OS << "  -->  ";
13598         const SCEV *SV = SE.getSCEV(&I);
13599         SV->print(OS);
13600         if (!isa<SCEVCouldNotCompute>(SV)) {
13601           OS << " U: ";
13602           SE.getUnsignedRange(SV).print(OS);
13603           OS << " S: ";
13604           SE.getSignedRange(SV).print(OS);
13605         }
13606 
13607         const Loop *L = LI.getLoopFor(I.getParent());
13608 
13609         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13610         if (AtUse != SV) {
13611           OS << "  -->  ";
13612           AtUse->print(OS);
13613           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13614             OS << " U: ";
13615             SE.getUnsignedRange(AtUse).print(OS);
13616             OS << " S: ";
13617             SE.getSignedRange(AtUse).print(OS);
13618           }
13619         }
13620 
13621         if (L) {
13622           OS << "\t\t" "Exits: ";
13623           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13624           if (!SE.isLoopInvariant(ExitValue, L)) {
13625             OS << "<<Unknown>>";
13626           } else {
13627             OS << *ExitValue;
13628           }
13629 
13630           bool First = true;
13631           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13632             if (First) {
13633               OS << "\t\t" "LoopDispositions: { ";
13634               First = false;
13635             } else {
13636               OS << ", ";
13637             }
13638 
13639             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13640             OS << ": " << SE.getLoopDisposition(SV, Iter);
13641           }
13642 
13643           for (const auto *InnerL : depth_first(L)) {
13644             if (InnerL == L)
13645               continue;
13646             if (First) {
13647               OS << "\t\t" "LoopDispositions: { ";
13648               First = false;
13649             } else {
13650               OS << ", ";
13651             }
13652 
13653             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13654             OS << ": " << SE.getLoopDisposition(SV, InnerL);
13655           }
13656 
13657           OS << " }";
13658         }
13659 
13660         OS << "\n";
13661       }
13662   }
13663 
13664   OS << "Determining loop execution counts for: ";
13665   F.printAsOperand(OS, /*PrintType=*/false);
13666   OS << "\n";
13667   for (Loop *I : LI)
13668     PrintLoopInfo(OS, &SE, I);
13669 }
13670 
13671 ScalarEvolution::LoopDisposition
13672 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13673   auto &Values = LoopDispositions[S];
13674   for (auto &V : Values) {
13675     if (V.getPointer() == L)
13676       return V.getInt();
13677   }
13678   Values.emplace_back(L, LoopVariant);
13679   LoopDisposition D = computeLoopDisposition(S, L);
13680   auto &Values2 = LoopDispositions[S];
13681   for (auto &V : llvm::reverse(Values2)) {
13682     if (V.getPointer() == L) {
13683       V.setInt(D);
13684       break;
13685     }
13686   }
13687   return D;
13688 }
13689 
13690 ScalarEvolution::LoopDisposition
13691 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13692   switch (S->getSCEVType()) {
13693   case scConstant:
13694   case scVScale:
13695     return LoopInvariant;
13696   case scAddRecExpr: {
13697     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13698 
13699     // If L is the addrec's loop, it's computable.
13700     if (AR->getLoop() == L)
13701       return LoopComputable;
13702 
13703     // Add recurrences are never invariant in the function-body (null loop).
13704     if (!L)
13705       return LoopVariant;
13706 
13707     // Everything that is not defined at loop entry is variant.
13708     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13709       return LoopVariant;
13710     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13711            " dominate the contained loop's header?");
13712 
13713     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13714     if (AR->getLoop()->contains(L))
13715       return LoopInvariant;
13716 
13717     // This recurrence is variant w.r.t. L if any of its operands
13718     // are variant.
13719     for (const auto *Op : AR->operands())
13720       if (!isLoopInvariant(Op, L))
13721         return LoopVariant;
13722 
13723     // Otherwise it's loop-invariant.
13724     return LoopInvariant;
13725   }
13726   case scTruncate:
13727   case scZeroExtend:
13728   case scSignExtend:
13729   case scPtrToInt:
13730   case scAddExpr:
13731   case scMulExpr:
13732   case scUDivExpr:
13733   case scUMaxExpr:
13734   case scSMaxExpr:
13735   case scUMinExpr:
13736   case scSMinExpr:
13737   case scSequentialUMinExpr: {
13738     bool HasVarying = false;
13739     for (const auto *Op : S->operands()) {
13740       LoopDisposition D = getLoopDisposition(Op, L);
13741       if (D == LoopVariant)
13742         return LoopVariant;
13743       if (D == LoopComputable)
13744         HasVarying = true;
13745     }
13746     return HasVarying ? LoopComputable : LoopInvariant;
13747   }
13748   case scUnknown:
13749     // All non-instruction values are loop invariant.  All instructions are loop
13750     // invariant if they are not contained in the specified loop.
13751     // Instructions are never considered invariant in the function body
13752     // (null loop) because they are defined within the "loop".
13753     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13754       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13755     return LoopInvariant;
13756   case scCouldNotCompute:
13757     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13758   }
13759   llvm_unreachable("Unknown SCEV kind!");
13760 }
13761 
13762 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13763   return getLoopDisposition(S, L) == LoopInvariant;
13764 }
13765 
13766 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13767   return getLoopDisposition(S, L) == LoopComputable;
13768 }
13769 
13770 ScalarEvolution::BlockDisposition
13771 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13772   auto &Values = BlockDispositions[S];
13773   for (auto &V : Values) {
13774     if (V.getPointer() == BB)
13775       return V.getInt();
13776   }
13777   Values.emplace_back(BB, DoesNotDominateBlock);
13778   BlockDisposition D = computeBlockDisposition(S, BB);
13779   auto &Values2 = BlockDispositions[S];
13780   for (auto &V : llvm::reverse(Values2)) {
13781     if (V.getPointer() == BB) {
13782       V.setInt(D);
13783       break;
13784     }
13785   }
13786   return D;
13787 }
13788 
13789 ScalarEvolution::BlockDisposition
13790 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13791   switch (S->getSCEVType()) {
13792   case scConstant:
13793   case scVScale:
13794     return ProperlyDominatesBlock;
13795   case scAddRecExpr: {
13796     // This uses a "dominates" query instead of "properly dominates" query
13797     // to test for proper dominance too, because the instruction which
13798     // produces the addrec's value is a PHI, and a PHI effectively properly
13799     // dominates its entire containing block.
13800     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13801     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13802       return DoesNotDominateBlock;
13803 
13804     // Fall through into SCEVNAryExpr handling.
13805     [[fallthrough]];
13806   }
13807   case scTruncate:
13808   case scZeroExtend:
13809   case scSignExtend:
13810   case scPtrToInt:
13811   case scAddExpr:
13812   case scMulExpr:
13813   case scUDivExpr:
13814   case scUMaxExpr:
13815   case scSMaxExpr:
13816   case scUMinExpr:
13817   case scSMinExpr:
13818   case scSequentialUMinExpr: {
13819     bool Proper = true;
13820     for (const SCEV *NAryOp : S->operands()) {
13821       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13822       if (D == DoesNotDominateBlock)
13823         return DoesNotDominateBlock;
13824       if (D == DominatesBlock)
13825         Proper = false;
13826     }
13827     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13828   }
13829   case scUnknown:
13830     if (Instruction *I =
13831           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13832       if (I->getParent() == BB)
13833         return DominatesBlock;
13834       if (DT.properlyDominates(I->getParent(), BB))
13835         return ProperlyDominatesBlock;
13836       return DoesNotDominateBlock;
13837     }
13838     return ProperlyDominatesBlock;
13839   case scCouldNotCompute:
13840     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13841   }
13842   llvm_unreachable("Unknown SCEV kind!");
13843 }
13844 
13845 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13846   return getBlockDisposition(S, BB) >= DominatesBlock;
13847 }
13848 
13849 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13850   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13851 }
13852 
13853 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13854   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13855 }
13856 
13857 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13858                                                 bool Predicated) {
13859   auto &BECounts =
13860       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13861   auto It = BECounts.find(L);
13862   if (It != BECounts.end()) {
13863     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13864       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
13865         if (!isa<SCEVConstant>(S)) {
13866           auto UserIt = BECountUsers.find(S);
13867           assert(UserIt != BECountUsers.end());
13868           UserIt->second.erase({L, Predicated});
13869         }
13870       }
13871     }
13872     BECounts.erase(It);
13873   }
13874 }
13875 
13876 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13877   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13878   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13879 
13880   while (!Worklist.empty()) {
13881     const SCEV *Curr = Worklist.pop_back_val();
13882     auto Users = SCEVUsers.find(Curr);
13883     if (Users != SCEVUsers.end())
13884       for (const auto *User : Users->second)
13885         if (ToForget.insert(User).second)
13886           Worklist.push_back(User);
13887   }
13888 
13889   for (const auto *S : ToForget)
13890     forgetMemoizedResultsImpl(S);
13891 
13892   for (auto I = PredicatedSCEVRewrites.begin();
13893        I != PredicatedSCEVRewrites.end();) {
13894     std::pair<const SCEV *, const Loop *> Entry = I->first;
13895     if (ToForget.count(Entry.first))
13896       PredicatedSCEVRewrites.erase(I++);
13897     else
13898       ++I;
13899   }
13900 }
13901 
13902 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13903   LoopDispositions.erase(S);
13904   BlockDispositions.erase(S);
13905   UnsignedRanges.erase(S);
13906   SignedRanges.erase(S);
13907   HasRecMap.erase(S);
13908   ConstantMultipleCache.erase(S);
13909 
13910   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
13911     UnsignedWrapViaInductionTried.erase(AR);
13912     SignedWrapViaInductionTried.erase(AR);
13913   }
13914 
13915   auto ExprIt = ExprValueMap.find(S);
13916   if (ExprIt != ExprValueMap.end()) {
13917     for (Value *V : ExprIt->second) {
13918       auto ValueIt = ValueExprMap.find_as(V);
13919       if (ValueIt != ValueExprMap.end())
13920         ValueExprMap.erase(ValueIt);
13921     }
13922     ExprValueMap.erase(ExprIt);
13923   }
13924 
13925   auto ScopeIt = ValuesAtScopes.find(S);
13926   if (ScopeIt != ValuesAtScopes.end()) {
13927     for (const auto &Pair : ScopeIt->second)
13928       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13929         llvm::erase(ValuesAtScopesUsers[Pair.second],
13930                     std::make_pair(Pair.first, S));
13931     ValuesAtScopes.erase(ScopeIt);
13932   }
13933 
13934   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13935   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13936     for (const auto &Pair : ScopeUserIt->second)
13937       llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13938     ValuesAtScopesUsers.erase(ScopeUserIt);
13939   }
13940 
13941   auto BEUsersIt = BECountUsers.find(S);
13942   if (BEUsersIt != BECountUsers.end()) {
13943     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13944     auto Copy = BEUsersIt->second;
13945     for (const auto &Pair : Copy)
13946       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13947     BECountUsers.erase(BEUsersIt);
13948   }
13949 
13950   auto FoldUser = FoldCacheUser.find(S);
13951   if (FoldUser != FoldCacheUser.end())
13952     for (auto &KV : FoldUser->second)
13953       FoldCache.erase(KV);
13954   FoldCacheUser.erase(S);
13955 }
13956 
13957 void
13958 ScalarEvolution::getUsedLoops(const SCEV *S,
13959                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13960   struct FindUsedLoops {
13961     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13962         : LoopsUsed(LoopsUsed) {}
13963     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13964     bool follow(const SCEV *S) {
13965       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13966         LoopsUsed.insert(AR->getLoop());
13967       return true;
13968     }
13969 
13970     bool isDone() const { return false; }
13971   };
13972 
13973   FindUsedLoops F(LoopsUsed);
13974   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13975 }
13976 
13977 void ScalarEvolution::getReachableBlocks(
13978     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13979   SmallVector<BasicBlock *> Worklist;
13980   Worklist.push_back(&F.getEntryBlock());
13981   while (!Worklist.empty()) {
13982     BasicBlock *BB = Worklist.pop_back_val();
13983     if (!Reachable.insert(BB).second)
13984       continue;
13985 
13986     Value *Cond;
13987     BasicBlock *TrueBB, *FalseBB;
13988     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
13989                                         m_BasicBlock(FalseBB)))) {
13990       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
13991         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
13992         continue;
13993       }
13994 
13995       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13996         const SCEV *L = getSCEV(Cmp->getOperand(0));
13997         const SCEV *R = getSCEV(Cmp->getOperand(1));
13998         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
13999           Worklist.push_back(TrueBB);
14000           continue;
14001         }
14002         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
14003                                               R)) {
14004           Worklist.push_back(FalseBB);
14005           continue;
14006         }
14007       }
14008     }
14009 
14010     append_range(Worklist, successors(BB));
14011   }
14012 }
14013 
14014 void ScalarEvolution::verify() const {
14015   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14016   ScalarEvolution SE2(F, TLI, AC, DT, LI);
14017 
14018   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14019 
14020   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14021   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14022     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14023 
14024     const SCEV *visitConstant(const SCEVConstant *Constant) {
14025       return SE.getConstant(Constant->getAPInt());
14026     }
14027 
14028     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14029       return SE.getUnknown(Expr->getValue());
14030     }
14031 
14032     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14033       return SE.getCouldNotCompute();
14034     }
14035   };
14036 
14037   SCEVMapper SCM(SE2);
14038   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14039   SE2.getReachableBlocks(ReachableBlocks, F);
14040 
14041   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14042     if (containsUndefs(Old) || containsUndefs(New)) {
14043       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14044       // not propagate undef aggressively).  This means we can (and do) fail
14045       // verification in cases where a transform makes a value go from "undef"
14046       // to "undef+1" (say).  The transform is fine, since in both cases the
14047       // result is "undef", but SCEV thinks the value increased by 1.
14048       return nullptr;
14049     }
14050 
14051     // Unless VerifySCEVStrict is set, we only compare constant deltas.
14052     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
14053     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
14054       return nullptr;
14055 
14056     return Delta;
14057   };
14058 
14059   while (!LoopStack.empty()) {
14060     auto *L = LoopStack.pop_back_val();
14061     llvm::append_range(LoopStack, *L);
14062 
14063     // Only verify BECounts in reachable loops. For an unreachable loop,
14064     // any BECount is legal.
14065     if (!ReachableBlocks.contains(L->getHeader()))
14066       continue;
14067 
14068     // Only verify cached BECounts. Computing new BECounts may change the
14069     // results of subsequent SCEV uses.
14070     auto It = BackedgeTakenCounts.find(L);
14071     if (It == BackedgeTakenCounts.end())
14072       continue;
14073 
14074     auto *CurBECount =
14075         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14076     auto *NewBECount = SE2.getBackedgeTakenCount(L);
14077 
14078     if (CurBECount == SE2.getCouldNotCompute() ||
14079         NewBECount == SE2.getCouldNotCompute()) {
14080       // NB! This situation is legal, but is very suspicious -- whatever pass
14081       // change the loop to make a trip count go from could not compute to
14082       // computable or vice-versa *should have* invalidated SCEV.  However, we
14083       // choose not to assert here (for now) since we don't want false
14084       // positives.
14085       continue;
14086     }
14087 
14088     if (SE.getTypeSizeInBits(CurBECount->getType()) >
14089         SE.getTypeSizeInBits(NewBECount->getType()))
14090       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14091     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14092              SE.getTypeSizeInBits(NewBECount->getType()))
14093       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14094 
14095     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14096     if (Delta && !Delta->isZero()) {
14097       dbgs() << "Trip Count for " << *L << " Changed!\n";
14098       dbgs() << "Old: " << *CurBECount << "\n";
14099       dbgs() << "New: " << *NewBECount << "\n";
14100       dbgs() << "Delta: " << *Delta << "\n";
14101       std::abort();
14102     }
14103   }
14104 
14105   // Collect all valid loops currently in LoopInfo.
14106   SmallPtrSet<Loop *, 32> ValidLoops;
14107   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14108   while (!Worklist.empty()) {
14109     Loop *L = Worklist.pop_back_val();
14110     if (ValidLoops.insert(L).second)
14111       Worklist.append(L->begin(), L->end());
14112   }
14113   for (const auto &KV : ValueExprMap) {
14114 #ifndef NDEBUG
14115     // Check for SCEV expressions referencing invalid/deleted loops.
14116     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14117       assert(ValidLoops.contains(AR->getLoop()) &&
14118              "AddRec references invalid loop");
14119     }
14120 #endif
14121 
14122     // Check that the value is also part of the reverse map.
14123     auto It = ExprValueMap.find(KV.second);
14124     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14125       dbgs() << "Value " << *KV.first
14126              << " is in ValueExprMap but not in ExprValueMap\n";
14127       std::abort();
14128     }
14129 
14130     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14131       if (!ReachableBlocks.contains(I->getParent()))
14132         continue;
14133       const SCEV *OldSCEV = SCM.visit(KV.second);
14134       const SCEV *NewSCEV = SE2.getSCEV(I);
14135       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14136       if (Delta && !Delta->isZero()) {
14137         dbgs() << "SCEV for value " << *I << " changed!\n"
14138                << "Old: " << *OldSCEV << "\n"
14139                << "New: " << *NewSCEV << "\n"
14140                << "Delta: " << *Delta << "\n";
14141         std::abort();
14142       }
14143     }
14144   }
14145 
14146   for (const auto &KV : ExprValueMap) {
14147     for (Value *V : KV.second) {
14148       auto It = ValueExprMap.find_as(V);
14149       if (It == ValueExprMap.end()) {
14150         dbgs() << "Value " << *V
14151                << " is in ExprValueMap but not in ValueExprMap\n";
14152         std::abort();
14153       }
14154       if (It->second != KV.first) {
14155         dbgs() << "Value " << *V << " mapped to " << *It->second
14156                << " rather than " << *KV.first << "\n";
14157         std::abort();
14158       }
14159     }
14160   }
14161 
14162   // Verify integrity of SCEV users.
14163   for (const auto &S : UniqueSCEVs) {
14164     for (const auto *Op : S.operands()) {
14165       // We do not store dependencies of constants.
14166       if (isa<SCEVConstant>(Op))
14167         continue;
14168       auto It = SCEVUsers.find(Op);
14169       if (It != SCEVUsers.end() && It->second.count(&S))
14170         continue;
14171       dbgs() << "Use of operand  " << *Op << " by user " << S
14172              << " is not being tracked!\n";
14173       std::abort();
14174     }
14175   }
14176 
14177   // Verify integrity of ValuesAtScopes users.
14178   for (const auto &ValueAndVec : ValuesAtScopes) {
14179     const SCEV *Value = ValueAndVec.first;
14180     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14181       const Loop *L = LoopAndValueAtScope.first;
14182       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14183       if (!isa<SCEVConstant>(ValueAtScope)) {
14184         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14185         if (It != ValuesAtScopesUsers.end() &&
14186             is_contained(It->second, std::make_pair(L, Value)))
14187           continue;
14188         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14189                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14190         std::abort();
14191       }
14192     }
14193   }
14194 
14195   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14196     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14197     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14198       const Loop *L = LoopAndValue.first;
14199       const SCEV *Value = LoopAndValue.second;
14200       assert(!isa<SCEVConstant>(Value));
14201       auto It = ValuesAtScopes.find(Value);
14202       if (It != ValuesAtScopes.end() &&
14203           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14204         continue;
14205       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14206              << *ValueAtScope << " missing in ValuesAtScopes\n";
14207       std::abort();
14208     }
14209   }
14210 
14211   // Verify integrity of BECountUsers.
14212   auto VerifyBECountUsers = [&](bool Predicated) {
14213     auto &BECounts =
14214         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14215     for (const auto &LoopAndBEInfo : BECounts) {
14216       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14217         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14218           if (!isa<SCEVConstant>(S)) {
14219             auto UserIt = BECountUsers.find(S);
14220             if (UserIt != BECountUsers.end() &&
14221                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14222               continue;
14223             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14224                    << " missing from BECountUsers\n";
14225             std::abort();
14226           }
14227         }
14228       }
14229     }
14230   };
14231   VerifyBECountUsers(/* Predicated */ false);
14232   VerifyBECountUsers(/* Predicated */ true);
14233 
14234   // Verify intergity of loop disposition cache.
14235   for (auto &[S, Values] : LoopDispositions) {
14236     for (auto [Loop, CachedDisposition] : Values) {
14237       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14238       if (CachedDisposition != RecomputedDisposition) {
14239         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14240                << " is incorrect: cached " << CachedDisposition << ", actual "
14241                << RecomputedDisposition << "\n";
14242         std::abort();
14243       }
14244     }
14245   }
14246 
14247   // Verify integrity of the block disposition cache.
14248   for (auto &[S, Values] : BlockDispositions) {
14249     for (auto [BB, CachedDisposition] : Values) {
14250       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14251       if (CachedDisposition != RecomputedDisposition) {
14252         dbgs() << "Cached disposition of " << *S << " for block %"
14253                << BB->getName() << " is incorrect: cached " << CachedDisposition
14254                << ", actual " << RecomputedDisposition << "\n";
14255         std::abort();
14256       }
14257     }
14258   }
14259 
14260   // Verify FoldCache/FoldCacheUser caches.
14261   for (auto [FoldID, Expr] : FoldCache) {
14262     auto I = FoldCacheUser.find(Expr);
14263     if (I == FoldCacheUser.end()) {
14264       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14265              << "!\n";
14266       std::abort();
14267     }
14268     if (!is_contained(I->second, FoldID)) {
14269       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14270       std::abort();
14271     }
14272   }
14273   for (auto [Expr, IDs] : FoldCacheUser) {
14274     for (auto &FoldID : IDs) {
14275       auto I = FoldCache.find(FoldID);
14276       if (I == FoldCache.end()) {
14277         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14278                << "!\n";
14279         std::abort();
14280       }
14281       if (I->second != Expr) {
14282         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14283                << *I->second << " != " << *Expr << "!\n";
14284         std::abort();
14285       }
14286     }
14287   }
14288 
14289   // Verify that ConstantMultipleCache computations are correct. We check that
14290   // cached multiples and recomputed multiples are multiples of each other to
14291   // verify correctness. It is possible that a recomputed multiple is different
14292   // from the cached multiple due to strengthened no wrap flags or changes in
14293   // KnownBits computations.
14294   for (auto [S, Multiple] : ConstantMultipleCache) {
14295     APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14296     if ((Multiple != 0 && RecomputedMultiple != 0 &&
14297          Multiple.urem(RecomputedMultiple) != 0 &&
14298          RecomputedMultiple.urem(Multiple) != 0)) {
14299       dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14300              << *S << " : Computed " << RecomputedMultiple
14301              << " but cache contains " << Multiple << "!\n";
14302       std::abort();
14303     }
14304   }
14305 }
14306 
14307 bool ScalarEvolution::invalidate(
14308     Function &F, const PreservedAnalyses &PA,
14309     FunctionAnalysisManager::Invalidator &Inv) {
14310   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14311   // of its dependencies is invalidated.
14312   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14313   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14314          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14315          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14316          Inv.invalidate<LoopAnalysis>(F, PA);
14317 }
14318 
14319 AnalysisKey ScalarEvolutionAnalysis::Key;
14320 
14321 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14322                                              FunctionAnalysisManager &AM) {
14323   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14324   auto &AC = AM.getResult<AssumptionAnalysis>(F);
14325   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14326   auto &LI = AM.getResult<LoopAnalysis>(F);
14327   return ScalarEvolution(F, TLI, AC, DT, LI);
14328 }
14329 
14330 PreservedAnalyses
14331 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14332   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14333   return PreservedAnalyses::all();
14334 }
14335 
14336 PreservedAnalyses
14337 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14338   // For compatibility with opt's -analyze feature under legacy pass manager
14339   // which was not ported to NPM. This keeps tests using
14340   // update_analyze_test_checks.py working.
14341   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14342      << F.getName() << "':\n";
14343   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14344   return PreservedAnalyses::all();
14345 }
14346 
14347 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14348                       "Scalar Evolution Analysis", false, true)
14349 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14350 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14352 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14353 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14354                     "Scalar Evolution Analysis", false, true)
14355 
14356 char ScalarEvolutionWrapperPass::ID = 0;
14357 
14358 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14359   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14360 }
14361 
14362 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14363   SE.reset(new ScalarEvolution(
14364       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14365       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14366       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14367       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14368   return false;
14369 }
14370 
14371 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14372 
14373 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14374   SE->print(OS);
14375 }
14376 
14377 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14378   if (!VerifySCEV)
14379     return;
14380 
14381   SE->verify();
14382 }
14383 
14384 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14385   AU.setPreservesAll();
14386   AU.addRequiredTransitive<AssumptionCacheTracker>();
14387   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14388   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14389   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14390 }
14391 
14392 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14393                                                         const SCEV *RHS) {
14394   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14395 }
14396 
14397 const SCEVPredicate *
14398 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14399                                      const SCEV *LHS, const SCEV *RHS) {
14400   FoldingSetNodeID ID;
14401   assert(LHS->getType() == RHS->getType() &&
14402          "Type mismatch between LHS and RHS");
14403   // Unique this node based on the arguments
14404   ID.AddInteger(SCEVPredicate::P_Compare);
14405   ID.AddInteger(Pred);
14406   ID.AddPointer(LHS);
14407   ID.AddPointer(RHS);
14408   void *IP = nullptr;
14409   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14410     return S;
14411   SCEVComparePredicate *Eq = new (SCEVAllocator)
14412     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14413   UniquePreds.InsertNode(Eq, IP);
14414   return Eq;
14415 }
14416 
14417 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14418     const SCEVAddRecExpr *AR,
14419     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14420   FoldingSetNodeID ID;
14421   // Unique this node based on the arguments
14422   ID.AddInteger(SCEVPredicate::P_Wrap);
14423   ID.AddPointer(AR);
14424   ID.AddInteger(AddedFlags);
14425   void *IP = nullptr;
14426   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14427     return S;
14428   auto *OF = new (SCEVAllocator)
14429       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14430   UniquePreds.InsertNode(OF, IP);
14431   return OF;
14432 }
14433 
14434 namespace {
14435 
14436 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14437 public:
14438 
14439   /// Rewrites \p S in the context of a loop L and the SCEV predication
14440   /// infrastructure.
14441   ///
14442   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14443   /// equivalences present in \p Pred.
14444   ///
14445   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14446   /// \p NewPreds such that the result will be an AddRecExpr.
14447   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14448                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14449                              const SCEVPredicate *Pred) {
14450     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14451     return Rewriter.visit(S);
14452   }
14453 
14454   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14455     if (Pred) {
14456       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14457         for (const auto *Pred : U->getPredicates())
14458           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14459             if (IPred->getLHS() == Expr &&
14460                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14461               return IPred->getRHS();
14462       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14463         if (IPred->getLHS() == Expr &&
14464             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14465           return IPred->getRHS();
14466       }
14467     }
14468     return convertToAddRecWithPreds(Expr);
14469   }
14470 
14471   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14472     const SCEV *Operand = visit(Expr->getOperand());
14473     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14474     if (AR && AR->getLoop() == L && AR->isAffine()) {
14475       // This couldn't be folded because the operand didn't have the nuw
14476       // flag. Add the nusw flag as an assumption that we could make.
14477       const SCEV *Step = AR->getStepRecurrence(SE);
14478       Type *Ty = Expr->getType();
14479       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14480         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14481                                 SE.getSignExtendExpr(Step, Ty), L,
14482                                 AR->getNoWrapFlags());
14483     }
14484     return SE.getZeroExtendExpr(Operand, Expr->getType());
14485   }
14486 
14487   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14488     const SCEV *Operand = visit(Expr->getOperand());
14489     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14490     if (AR && AR->getLoop() == L && AR->isAffine()) {
14491       // This couldn't be folded because the operand didn't have the nsw
14492       // flag. Add the nssw flag as an assumption that we could make.
14493       const SCEV *Step = AR->getStepRecurrence(SE);
14494       Type *Ty = Expr->getType();
14495       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14496         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14497                                 SE.getSignExtendExpr(Step, Ty), L,
14498                                 AR->getNoWrapFlags());
14499     }
14500     return SE.getSignExtendExpr(Operand, Expr->getType());
14501   }
14502 
14503 private:
14504   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14505                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14506                         const SCEVPredicate *Pred)
14507       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14508 
14509   bool addOverflowAssumption(const SCEVPredicate *P) {
14510     if (!NewPreds) {
14511       // Check if we've already made this assumption.
14512       return Pred && Pred->implies(P);
14513     }
14514     NewPreds->insert(P);
14515     return true;
14516   }
14517 
14518   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14519                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14520     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14521     return addOverflowAssumption(A);
14522   }
14523 
14524   // If \p Expr represents a PHINode, we try to see if it can be represented
14525   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14526   // to add this predicate as a runtime overflow check, we return the AddRec.
14527   // If \p Expr does not meet these conditions (is not a PHI node, or we
14528   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14529   // return \p Expr.
14530   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14531     if (!isa<PHINode>(Expr->getValue()))
14532       return Expr;
14533     std::optional<
14534         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14535         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14536     if (!PredicatedRewrite)
14537       return Expr;
14538     for (const auto *P : PredicatedRewrite->second){
14539       // Wrap predicates from outer loops are not supported.
14540       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14541         if (L != WP->getExpr()->getLoop())
14542           return Expr;
14543       }
14544       if (!addOverflowAssumption(P))
14545         return Expr;
14546     }
14547     return PredicatedRewrite->first;
14548   }
14549 
14550   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14551   const SCEVPredicate *Pred;
14552   const Loop *L;
14553 };
14554 
14555 } // end anonymous namespace
14556 
14557 const SCEV *
14558 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14559                                        const SCEVPredicate &Preds) {
14560   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14561 }
14562 
14563 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14564     const SCEV *S, const Loop *L,
14565     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14566   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14567   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14568   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14569 
14570   if (!AddRec)
14571     return nullptr;
14572 
14573   // Since the transformation was successful, we can now transfer the SCEV
14574   // predicates.
14575   for (const auto *P : TransformPreds)
14576     Preds.insert(P);
14577 
14578   return AddRec;
14579 }
14580 
14581 /// SCEV predicates
14582 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14583                              SCEVPredicateKind Kind)
14584     : FastID(ID), Kind(Kind) {}
14585 
14586 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14587                                    const ICmpInst::Predicate Pred,
14588                                    const SCEV *LHS, const SCEV *RHS)
14589   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14590   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14591   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14592 }
14593 
14594 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14595   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14596 
14597   if (!Op)
14598     return false;
14599 
14600   if (Pred != ICmpInst::ICMP_EQ)
14601     return false;
14602 
14603   return Op->LHS == LHS && Op->RHS == RHS;
14604 }
14605 
14606 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14607 
14608 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14609   if (Pred == ICmpInst::ICMP_EQ)
14610     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14611   else
14612     OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14613                      << *RHS << "\n";
14614 
14615 }
14616 
14617 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14618                                      const SCEVAddRecExpr *AR,
14619                                      IncrementWrapFlags Flags)
14620     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14621 
14622 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14623 
14624 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14625   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14626 
14627   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14628 }
14629 
14630 bool SCEVWrapPredicate::isAlwaysTrue() const {
14631   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14632   IncrementWrapFlags IFlags = Flags;
14633 
14634   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14635     IFlags = clearFlags(IFlags, IncrementNSSW);
14636 
14637   return IFlags == IncrementAnyWrap;
14638 }
14639 
14640 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14641   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14642   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14643     OS << "<nusw>";
14644   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14645     OS << "<nssw>";
14646   OS << "\n";
14647 }
14648 
14649 SCEVWrapPredicate::IncrementWrapFlags
14650 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14651                                    ScalarEvolution &SE) {
14652   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14653   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14654 
14655   // We can safely transfer the NSW flag as NSSW.
14656   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14657     ImpliedFlags = IncrementNSSW;
14658 
14659   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14660     // If the increment is positive, the SCEV NUW flag will also imply the
14661     // WrapPredicate NUSW flag.
14662     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14663       if (Step->getValue()->getValue().isNonNegative())
14664         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14665   }
14666 
14667   return ImpliedFlags;
14668 }
14669 
14670 /// Union predicates don't get cached so create a dummy set ID for it.
14671 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14672   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14673   for (const auto *P : Preds)
14674     add(P);
14675 }
14676 
14677 bool SCEVUnionPredicate::isAlwaysTrue() const {
14678   return all_of(Preds,
14679                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14680 }
14681 
14682 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14683   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14684     return all_of(Set->Preds,
14685                   [this](const SCEVPredicate *I) { return this->implies(I); });
14686 
14687   return any_of(Preds,
14688                 [N](const SCEVPredicate *I) { return I->implies(N); });
14689 }
14690 
14691 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14692   for (const auto *Pred : Preds)
14693     Pred->print(OS, Depth);
14694 }
14695 
14696 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14697   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14698     for (const auto *Pred : Set->Preds)
14699       add(Pred);
14700     return;
14701   }
14702 
14703   Preds.push_back(N);
14704 }
14705 
14706 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14707                                                      Loop &L)
14708     : SE(SE), L(L) {
14709   SmallVector<const SCEVPredicate*, 4> Empty;
14710   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14711 }
14712 
14713 void ScalarEvolution::registerUser(const SCEV *User,
14714                                    ArrayRef<const SCEV *> Ops) {
14715   for (const auto *Op : Ops)
14716     // We do not expect that forgetting cached data for SCEVConstants will ever
14717     // open any prospects for sharpening or introduce any correctness issues,
14718     // so we don't bother storing their dependencies.
14719     if (!isa<SCEVConstant>(Op))
14720       SCEVUsers[Op].insert(User);
14721 }
14722 
14723 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14724   const SCEV *Expr = SE.getSCEV(V);
14725   RewriteEntry &Entry = RewriteMap[Expr];
14726 
14727   // If we already have an entry and the version matches, return it.
14728   if (Entry.second && Generation == Entry.first)
14729     return Entry.second;
14730 
14731   // We found an entry but it's stale. Rewrite the stale entry
14732   // according to the current predicate.
14733   if (Entry.second)
14734     Expr = Entry.second;
14735 
14736   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14737   Entry = {Generation, NewSCEV};
14738 
14739   return NewSCEV;
14740 }
14741 
14742 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14743   if (!BackedgeCount) {
14744     SmallVector<const SCEVPredicate *, 4> Preds;
14745     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14746     for (const auto *P : Preds)
14747       addPredicate(*P);
14748   }
14749   return BackedgeCount;
14750 }
14751 
14752 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14753   if (Preds->implies(&Pred))
14754     return;
14755 
14756   auto &OldPreds = Preds->getPredicates();
14757   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14758   NewPreds.push_back(&Pred);
14759   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14760   updateGeneration();
14761 }
14762 
14763 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14764   return *Preds;
14765 }
14766 
14767 void PredicatedScalarEvolution::updateGeneration() {
14768   // If the generation number wrapped recompute everything.
14769   if (++Generation == 0) {
14770     for (auto &II : RewriteMap) {
14771       const SCEV *Rewritten = II.second.second;
14772       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14773     }
14774   }
14775 }
14776 
14777 void PredicatedScalarEvolution::setNoOverflow(
14778     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14779   const SCEV *Expr = getSCEV(V);
14780   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14781 
14782   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14783 
14784   // Clear the statically implied flags.
14785   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14786   addPredicate(*SE.getWrapPredicate(AR, Flags));
14787 
14788   auto II = FlagsMap.insert({V, Flags});
14789   if (!II.second)
14790     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14791 }
14792 
14793 bool PredicatedScalarEvolution::hasNoOverflow(
14794     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14795   const SCEV *Expr = getSCEV(V);
14796   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14797 
14798   Flags = SCEVWrapPredicate::clearFlags(
14799       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14800 
14801   auto II = FlagsMap.find(V);
14802 
14803   if (II != FlagsMap.end())
14804     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14805 
14806   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14807 }
14808 
14809 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14810   const SCEV *Expr = this->getSCEV(V);
14811   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14812   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14813 
14814   if (!New)
14815     return nullptr;
14816 
14817   for (const auto *P : NewPreds)
14818     addPredicate(*P);
14819 
14820   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14821   return New;
14822 }
14823 
14824 PredicatedScalarEvolution::PredicatedScalarEvolution(
14825     const PredicatedScalarEvolution &Init)
14826   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14827     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14828     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14829   for (auto I : Init.FlagsMap)
14830     FlagsMap.insert(I);
14831 }
14832 
14833 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14834   // For each block.
14835   for (auto *BB : L.getBlocks())
14836     for (auto &I : *BB) {
14837       if (!SE.isSCEVable(I.getType()))
14838         continue;
14839 
14840       auto *Expr = SE.getSCEV(&I);
14841       auto II = RewriteMap.find(Expr);
14842 
14843       if (II == RewriteMap.end())
14844         continue;
14845 
14846       // Don't print things that are not interesting.
14847       if (II->second.second == Expr)
14848         continue;
14849 
14850       OS.indent(Depth) << "[PSE]" << I << ":\n";
14851       OS.indent(Depth + 2) << *Expr << "\n";
14852       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14853     }
14854 }
14855 
14856 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14857 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14858 // for URem with constant power-of-2 second operands.
14859 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14860 // 4, A / B becomes X / 8).
14861 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14862                                 const SCEV *&RHS) {
14863   // Try to match 'zext (trunc A to iB) to iY', which is used
14864   // for URem with constant power-of-2 second operands. Make sure the size of
14865   // the operand A matches the size of the whole expressions.
14866   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14867     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14868       LHS = Trunc->getOperand();
14869       // Bail out if the type of the LHS is larger than the type of the
14870       // expression for now.
14871       if (getTypeSizeInBits(LHS->getType()) >
14872           getTypeSizeInBits(Expr->getType()))
14873         return false;
14874       if (LHS->getType() != Expr->getType())
14875         LHS = getZeroExtendExpr(LHS, Expr->getType());
14876       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14877                         << getTypeSizeInBits(Trunc->getType()));
14878       return true;
14879     }
14880   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14881   if (Add == nullptr || Add->getNumOperands() != 2)
14882     return false;
14883 
14884   const SCEV *A = Add->getOperand(1);
14885   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14886 
14887   if (Mul == nullptr)
14888     return false;
14889 
14890   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14891     // (SomeExpr + (-(SomeExpr / B) * B)).
14892     if (Expr == getURemExpr(A, B)) {
14893       LHS = A;
14894       RHS = B;
14895       return true;
14896     }
14897     return false;
14898   };
14899 
14900   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14901   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14902     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14903            MatchURemWithDivisor(Mul->getOperand(2));
14904 
14905   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14906   if (Mul->getNumOperands() == 2)
14907     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14908            MatchURemWithDivisor(Mul->getOperand(0)) ||
14909            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14910            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14911   return false;
14912 }
14913 
14914 const SCEV *
14915 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14916   SmallVector<BasicBlock*, 16> ExitingBlocks;
14917   L->getExitingBlocks(ExitingBlocks);
14918 
14919   // Form an expression for the maximum exit count possible for this loop. We
14920   // merge the max and exact information to approximate a version of
14921   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14922   SmallVector<const SCEV*, 4> ExitCounts;
14923   for (BasicBlock *ExitingBB : ExitingBlocks) {
14924     const SCEV *ExitCount =
14925         getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum);
14926     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14927       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14928              "We should only have known counts for exiting blocks that "
14929              "dominate latch!");
14930       ExitCounts.push_back(ExitCount);
14931     }
14932   }
14933   if (ExitCounts.empty())
14934     return getCouldNotCompute();
14935   return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
14936 }
14937 
14938 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14939 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14940 /// replacement is loop invariant in the loop of the AddRec.
14941 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14942   const DenseMap<const SCEV *, const SCEV *> &Map;
14943 
14944 public:
14945   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14946                         DenseMap<const SCEV *, const SCEV *> &M)
14947       : SCEVRewriteVisitor(SE), Map(M) {}
14948 
14949   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14950 
14951   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14952     auto I = Map.find(Expr);
14953     if (I == Map.end())
14954       return Expr;
14955     return I->second;
14956   }
14957 
14958   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14959     auto I = Map.find(Expr);
14960     if (I == Map.end()) {
14961       // If we didn't find the extact ZExt expr in the map, check if there's an
14962       // entry for a smaller ZExt we can use instead.
14963       Type *Ty = Expr->getType();
14964       const SCEV *Op = Expr->getOperand(0);
14965       unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
14966       while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
14967              Bitwidth > Op->getType()->getScalarSizeInBits()) {
14968         Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
14969         auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
14970         auto I = Map.find(NarrowExt);
14971         if (I != Map.end())
14972           return SE.getZeroExtendExpr(I->second, Ty);
14973         Bitwidth = Bitwidth / 2;
14974       }
14975 
14976       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14977           Expr);
14978     }
14979     return I->second;
14980   }
14981 
14982   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14983     auto I = Map.find(Expr);
14984     if (I == Map.end())
14985       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
14986           Expr);
14987     return I->second;
14988   }
14989 
14990   const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
14991     auto I = Map.find(Expr);
14992     if (I == Map.end())
14993       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
14994     return I->second;
14995   }
14996 
14997   const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
14998     auto I = Map.find(Expr);
14999     if (I == Map.end())
15000       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
15001     return I->second;
15002   }
15003 };
15004 
15005 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
15006   SmallVector<const SCEV *> ExprsToRewrite;
15007   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
15008                               const SCEV *RHS,
15009                               DenseMap<const SCEV *, const SCEV *>
15010                                   &RewriteMap) {
15011     // WARNING: It is generally unsound to apply any wrap flags to the proposed
15012     // replacement SCEV which isn't directly implied by the structure of that
15013     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
15014     // legal.  See the scoping rules for flags in the header to understand why.
15015 
15016     // If LHS is a constant, apply information to the other expression.
15017     if (isa<SCEVConstant>(LHS)) {
15018       std::swap(LHS, RHS);
15019       Predicate = CmpInst::getSwappedPredicate(Predicate);
15020     }
15021 
15022     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
15023     // create this form when combining two checks of the form (X u< C2 + C1) and
15024     // (X >=u C1).
15025     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
15026                                  &ExprsToRewrite]() {
15027       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
15028       if (!AddExpr || AddExpr->getNumOperands() != 2)
15029         return false;
15030 
15031       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
15032       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
15033       auto *C2 = dyn_cast<SCEVConstant>(RHS);
15034       if (!C1 || !C2 || !LHSUnknown)
15035         return false;
15036 
15037       auto ExactRegion =
15038           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
15039               .sub(C1->getAPInt());
15040 
15041       // Bail out, unless we have a non-wrapping, monotonic range.
15042       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15043         return false;
15044       auto I = RewriteMap.find(LHSUnknown);
15045       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15046       RewriteMap[LHSUnknown] = getUMaxExpr(
15047           getConstant(ExactRegion.getUnsignedMin()),
15048           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
15049       ExprsToRewrite.push_back(LHSUnknown);
15050       return true;
15051     };
15052     if (MatchRangeCheckIdiom())
15053       return;
15054 
15055     // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15056     // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15057     // the non-constant operand and in \p LHS the constant operand.
15058     auto IsMinMaxSCEVWithNonNegativeConstant =
15059         [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15060             const SCEV *&RHS) {
15061           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
15062             if (MinMax->getNumOperands() != 2)
15063               return false;
15064             if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
15065               if (C->getAPInt().isNegative())
15066                 return false;
15067               SCTy = MinMax->getSCEVType();
15068               LHS = MinMax->getOperand(0);
15069               RHS = MinMax->getOperand(1);
15070               return true;
15071             }
15072           }
15073           return false;
15074         };
15075 
15076     // Checks whether Expr is a non-negative constant, and Divisor is a positive
15077     // constant, and returns their APInt in ExprVal and in DivisorVal.
15078     auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15079                                           APInt &ExprVal, APInt &DivisorVal) {
15080       auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
15081       auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15082       if (!ConstExpr || !ConstDivisor)
15083         return false;
15084       ExprVal = ConstExpr->getAPInt();
15085       DivisorVal = ConstDivisor->getAPInt();
15086       return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15087     };
15088 
15089     // Return a new SCEV that modifies \p Expr to the closest number divides by
15090     // \p Divisor and greater or equal than Expr.
15091     // For now, only handle constant Expr and Divisor.
15092     auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15093                                            const SCEV *Divisor) {
15094       APInt ExprVal;
15095       APInt DivisorVal;
15096       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15097         return Expr;
15098       APInt Rem = ExprVal.urem(DivisorVal);
15099       if (!Rem.isZero())
15100         // return the SCEV: Expr + Divisor - Expr % Divisor
15101         return getConstant(ExprVal + DivisorVal - Rem);
15102       return Expr;
15103     };
15104 
15105     // Return a new SCEV that modifies \p Expr to the closest number divides by
15106     // \p Divisor and less or equal than Expr.
15107     // For now, only handle constant Expr and Divisor.
15108     auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15109                                                const SCEV *Divisor) {
15110       APInt ExprVal;
15111       APInt DivisorVal;
15112       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15113         return Expr;
15114       APInt Rem = ExprVal.urem(DivisorVal);
15115       // return the SCEV: Expr - Expr % Divisor
15116       return getConstant(ExprVal - Rem);
15117     };
15118 
15119     // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15120     // recursively. This is done by aligning up/down the constant value to the
15121     // Divisor.
15122     std::function<const SCEV *(const SCEV *, const SCEV *)>
15123         ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15124                                            const SCEV *Divisor) {
15125           const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15126           SCEVTypes SCTy;
15127           if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15128                                                    MinMaxRHS))
15129             return MinMaxExpr;
15130           auto IsMin =
15131               isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15132           assert(isKnownNonNegative(MinMaxLHS) &&
15133                  "Expected non-negative operand!");
15134           auto *DivisibleExpr =
15135               IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15136                     : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15137           SmallVector<const SCEV *> Ops = {
15138               ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15139           return getMinMaxExpr(SCTy, Ops);
15140         };
15141 
15142     // If we have LHS == 0, check if LHS is computing a property of some unknown
15143     // SCEV %v which we can rewrite %v to express explicitly.
15144     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15145     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15146         RHSC->getValue()->isNullValue()) {
15147       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15148       // explicitly express that.
15149       const SCEV *URemLHS = nullptr;
15150       const SCEV *URemRHS = nullptr;
15151       if (matchURem(LHS, URemLHS, URemRHS)) {
15152         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15153           auto I = RewriteMap.find(LHSUnknown);
15154           const SCEV *RewrittenLHS =
15155               I != RewriteMap.end() ? I->second : LHSUnknown;
15156           RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15157           const auto *Multiple =
15158               getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15159           RewriteMap[LHSUnknown] = Multiple;
15160           ExprsToRewrite.push_back(LHSUnknown);
15161           return;
15162         }
15163       }
15164     }
15165 
15166     // Do not apply information for constants or if RHS contains an AddRec.
15167     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
15168       return;
15169 
15170     // If RHS is SCEVUnknown, make sure the information is applied to it.
15171     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15172       std::swap(LHS, RHS);
15173       Predicate = CmpInst::getSwappedPredicate(Predicate);
15174     }
15175 
15176     // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15177     // and \p FromRewritten are the same (i.e. there has been no rewrite
15178     // registered for \p From), then puts this value in the list of rewritten
15179     // expressions.
15180     auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15181                           const SCEV *To) {
15182       if (From == FromRewritten)
15183         ExprsToRewrite.push_back(From);
15184       RewriteMap[From] = To;
15185     };
15186 
15187     // Checks whether \p S has already been rewritten. In that case returns the
15188     // existing rewrite because we want to chain further rewrites onto the
15189     // already rewritten value. Otherwise returns \p S.
15190     auto GetMaybeRewritten = [&](const SCEV *S) {
15191       auto I = RewriteMap.find(S);
15192       return I != RewriteMap.end() ? I->second : S;
15193     };
15194 
15195     // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15196     // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15197     // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15198     // /u B) * B was found, and return the divisor B in \p DividesBy. For
15199     // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15200     // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15201     // DividesBy.
15202     std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15203         [&](const SCEV *Expr, const SCEV *&DividesBy) {
15204           if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15205             if (Mul->getNumOperands() != 2)
15206               return false;
15207             auto *MulLHS = Mul->getOperand(0);
15208             auto *MulRHS = Mul->getOperand(1);
15209             if (isa<SCEVConstant>(MulLHS))
15210               std::swap(MulLHS, MulRHS);
15211             if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15212               if (Div->getOperand(1) == MulRHS) {
15213                 DividesBy = MulRHS;
15214                 return true;
15215               }
15216           }
15217           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15218             return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15219                    HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15220           return false;
15221         };
15222 
15223     // Return true if Expr known to divide by \p DividesBy.
15224     std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15225         [&](const SCEV *Expr, const SCEV *DividesBy) {
15226           if (getURemExpr(Expr, DividesBy)->isZero())
15227             return true;
15228           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15229             return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15230                    IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15231           return false;
15232         };
15233 
15234     const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15235     const SCEV *DividesBy = nullptr;
15236     if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15237       // Check that the whole expression is divided by DividesBy
15238       DividesBy =
15239           IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15240 
15241     // Collect rewrites for LHS and its transitive operands based on the
15242     // condition.
15243     // For min/max expressions, also apply the guard to its operands:
15244     //  'min(a, b) >= c'   ->   '(a >= c) and (b >= c)',
15245     //  'min(a, b) >  c'   ->   '(a >  c) and (b >  c)',
15246     //  'max(a, b) <= c'   ->   '(a <= c) and (b <= c)',
15247     //  'max(a, b) <  c'   ->   '(a <  c) and (b <  c)'.
15248 
15249     // We cannot express strict predicates in SCEV, so instead we replace them
15250     // with non-strict ones against plus or minus one of RHS depending on the
15251     // predicate.
15252     const SCEV *One = getOne(RHS->getType());
15253     switch (Predicate) {
15254       case CmpInst::ICMP_ULT:
15255         if (RHS->getType()->isPointerTy())
15256           return;
15257         RHS = getUMaxExpr(RHS, One);
15258         [[fallthrough]];
15259       case CmpInst::ICMP_SLT: {
15260         RHS = getMinusSCEV(RHS, One);
15261         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15262         break;
15263       }
15264       case CmpInst::ICMP_UGT:
15265       case CmpInst::ICMP_SGT:
15266         RHS = getAddExpr(RHS, One);
15267         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15268         break;
15269       case CmpInst::ICMP_ULE:
15270       case CmpInst::ICMP_SLE:
15271         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15272         break;
15273       case CmpInst::ICMP_UGE:
15274       case CmpInst::ICMP_SGE:
15275         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15276         break;
15277       default:
15278         break;
15279     }
15280 
15281     SmallVector<const SCEV *, 16> Worklist(1, LHS);
15282     SmallPtrSet<const SCEV *, 16> Visited;
15283 
15284     auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15285       append_range(Worklist, S->operands());
15286     };
15287 
15288     while (!Worklist.empty()) {
15289       const SCEV *From = Worklist.pop_back_val();
15290       if (isa<SCEVConstant>(From))
15291         continue;
15292       if (!Visited.insert(From).second)
15293         continue;
15294       const SCEV *FromRewritten = GetMaybeRewritten(From);
15295       const SCEV *To = nullptr;
15296 
15297       switch (Predicate) {
15298       case CmpInst::ICMP_ULT:
15299       case CmpInst::ICMP_ULE:
15300         To = getUMinExpr(FromRewritten, RHS);
15301         if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15302           EnqueueOperands(UMax);
15303         break;
15304       case CmpInst::ICMP_SLT:
15305       case CmpInst::ICMP_SLE:
15306         To = getSMinExpr(FromRewritten, RHS);
15307         if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15308           EnqueueOperands(SMax);
15309         break;
15310       case CmpInst::ICMP_UGT:
15311       case CmpInst::ICMP_UGE:
15312         To = getUMaxExpr(FromRewritten, RHS);
15313         if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15314           EnqueueOperands(UMin);
15315         break;
15316       case CmpInst::ICMP_SGT:
15317       case CmpInst::ICMP_SGE:
15318         To = getSMaxExpr(FromRewritten, RHS);
15319         if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15320           EnqueueOperands(SMin);
15321         break;
15322       case CmpInst::ICMP_EQ:
15323         if (isa<SCEVConstant>(RHS))
15324           To = RHS;
15325         break;
15326       case CmpInst::ICMP_NE:
15327         if (isa<SCEVConstant>(RHS) &&
15328             cast<SCEVConstant>(RHS)->getValue()->isNullValue()) {
15329           const SCEV *OneAlignedUp =
15330               DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15331           To = getUMaxExpr(FromRewritten, OneAlignedUp);
15332         }
15333         break;
15334       default:
15335         break;
15336       }
15337 
15338       if (To)
15339         AddRewrite(From, FromRewritten, To);
15340     }
15341   };
15342 
15343   BasicBlock *Header = L->getHeader();
15344   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15345   // First, collect information from assumptions dominating the loop.
15346   for (auto &AssumeVH : AC.assumptions()) {
15347     if (!AssumeVH)
15348       continue;
15349     auto *AssumeI = cast<CallInst>(AssumeVH);
15350     if (!DT.dominates(AssumeI, Header))
15351       continue;
15352     Terms.emplace_back(AssumeI->getOperand(0), true);
15353   }
15354 
15355   // Second, collect information from llvm.experimental.guards dominating the loop.
15356   auto *GuardDecl = F.getParent()->getFunction(
15357       Intrinsic::getName(Intrinsic::experimental_guard));
15358   if (GuardDecl)
15359     for (const auto *GU : GuardDecl->users())
15360       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15361         if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header))
15362           Terms.emplace_back(Guard->getArgOperand(0), true);
15363 
15364   // Third, collect conditions from dominating branches. Starting at the loop
15365   // predecessor, climb up the predecessor chain, as long as there are
15366   // predecessors that can be found that have unique successors leading to the
15367   // original header.
15368   // TODO: share this logic with isLoopEntryGuardedByCond.
15369   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15370            L->getLoopPredecessor(), Header);
15371        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15372 
15373     const BranchInst *LoopEntryPredicate =
15374         dyn_cast<BranchInst>(Pair.first->getTerminator());
15375     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15376       continue;
15377 
15378     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15379                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15380   }
15381 
15382   // Now apply the information from the collected conditions to RewriteMap.
15383   // Conditions are processed in reverse order, so the earliest conditions is
15384   // processed first. This ensures the SCEVs with the shortest dependency chains
15385   // are constructed first.
15386   DenseMap<const SCEV *, const SCEV *> RewriteMap;
15387   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15388     SmallVector<Value *, 8> Worklist;
15389     SmallPtrSet<Value *, 8> Visited;
15390     Worklist.push_back(Term);
15391     while (!Worklist.empty()) {
15392       Value *Cond = Worklist.pop_back_val();
15393       if (!Visited.insert(Cond).second)
15394         continue;
15395 
15396       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15397         auto Predicate =
15398             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15399         const auto *LHS = getSCEV(Cmp->getOperand(0));
15400         const auto *RHS = getSCEV(Cmp->getOperand(1));
15401         CollectCondition(Predicate, LHS, RHS, RewriteMap);
15402         continue;
15403       }
15404 
15405       Value *L, *R;
15406       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15407                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15408         Worklist.push_back(L);
15409         Worklist.push_back(R);
15410       }
15411     }
15412   }
15413 
15414   if (RewriteMap.empty())
15415     return Expr;
15416 
15417   // Now that all rewrite information is collect, rewrite the collected
15418   // expressions with the information in the map. This applies information to
15419   // sub-expressions.
15420   if (ExprsToRewrite.size() > 1) {
15421     for (const SCEV *Expr : ExprsToRewrite) {
15422       const SCEV *RewriteTo = RewriteMap[Expr];
15423       RewriteMap.erase(Expr);
15424       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15425       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
15426     }
15427   }
15428 
15429   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15430   return Rewriter.visit(Expr);
15431 }
15432