1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::ZeroOrMore, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 //===----------------------------------------------------------------------===// 235 // SCEV class definitions 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // Implementation of the SCEV class. 240 // 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 LLVM_DUMP_METHOD void SCEV::dump() const { 244 print(dbgs()); 245 dbgs() << '\n'; 246 } 247 #endif 248 249 void SCEV::print(raw_ostream &OS) const { 250 switch (getSCEVType()) { 251 case scConstant: 252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 253 return; 254 case scPtrToInt: { 255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 256 const SCEV *Op = PtrToInt->getOperand(); 257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 258 << *PtrToInt->getType() << ")"; 259 return; 260 } 261 case scTruncate: { 262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 263 const SCEV *Op = Trunc->getOperand(); 264 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 265 << *Trunc->getType() << ")"; 266 return; 267 } 268 case scZeroExtend: { 269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 270 const SCEV *Op = ZExt->getOperand(); 271 OS << "(zext " << *Op->getType() << " " << *Op << " to " 272 << *ZExt->getType() << ")"; 273 return; 274 } 275 case scSignExtend: { 276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 277 const SCEV *Op = SExt->getOperand(); 278 OS << "(sext " << *Op->getType() << " " << *Op << " to " 279 << *SExt->getType() << ")"; 280 return; 281 } 282 case scAddRecExpr: { 283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 284 OS << "{" << *AR->getOperand(0); 285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 286 OS << ",+," << *AR->getOperand(i); 287 OS << "}<"; 288 if (AR->hasNoUnsignedWrap()) 289 OS << "nuw><"; 290 if (AR->hasNoSignedWrap()) 291 OS << "nsw><"; 292 if (AR->hasNoSelfWrap() && 293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 294 OS << "nw><"; 295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 296 OS << ">"; 297 return; 298 } 299 case scAddExpr: 300 case scMulExpr: 301 case scUMaxExpr: 302 case scSMaxExpr: 303 case scUMinExpr: 304 case scSMinExpr: { 305 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 306 const char *OpStr = nullptr; 307 switch (NAry->getSCEVType()) { 308 case scAddExpr: OpStr = " + "; break; 309 case scMulExpr: OpStr = " * "; break; 310 case scUMaxExpr: OpStr = " umax "; break; 311 case scSMaxExpr: OpStr = " smax "; break; 312 case scUMinExpr: 313 OpStr = " umin "; 314 break; 315 case scSMinExpr: 316 OpStr = " smin "; 317 break; 318 default: 319 llvm_unreachable("There are no other nary expression types."); 320 } 321 OS << "("; 322 ListSeparator LS(OpStr); 323 for (const SCEV *Op : NAry->operands()) 324 OS << LS << *Op; 325 OS << ")"; 326 switch (NAry->getSCEVType()) { 327 case scAddExpr: 328 case scMulExpr: 329 if (NAry->hasNoUnsignedWrap()) 330 OS << "<nuw>"; 331 if (NAry->hasNoSignedWrap()) 332 OS << "<nsw>"; 333 break; 334 default: 335 // Nothing to print for other nary expressions. 336 break; 337 } 338 return; 339 } 340 case scUDivExpr: { 341 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 342 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 343 return; 344 } 345 case scUnknown: { 346 const SCEVUnknown *U = cast<SCEVUnknown>(this); 347 Type *AllocTy; 348 if (U->isSizeOf(AllocTy)) { 349 OS << "sizeof(" << *AllocTy << ")"; 350 return; 351 } 352 if (U->isAlignOf(AllocTy)) { 353 OS << "alignof(" << *AllocTy << ")"; 354 return; 355 } 356 357 Type *CTy; 358 Constant *FieldNo; 359 if (U->isOffsetOf(CTy, FieldNo)) { 360 OS << "offsetof(" << *CTy << ", "; 361 FieldNo->printAsOperand(OS, false); 362 OS << ")"; 363 return; 364 } 365 366 // Otherwise just print it normally. 367 U->getValue()->printAsOperand(OS, false); 368 return; 369 } 370 case scCouldNotCompute: 371 OS << "***COULDNOTCOMPUTE***"; 372 return; 373 } 374 llvm_unreachable("Unknown SCEV kind!"); 375 } 376 377 Type *SCEV::getType() const { 378 switch (getSCEVType()) { 379 case scConstant: 380 return cast<SCEVConstant>(this)->getType(); 381 case scPtrToInt: 382 case scTruncate: 383 case scZeroExtend: 384 case scSignExtend: 385 return cast<SCEVCastExpr>(this)->getType(); 386 case scAddRecExpr: 387 return cast<SCEVAddRecExpr>(this)->getType(); 388 case scMulExpr: 389 return cast<SCEVMulExpr>(this)->getType(); 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVMinMaxExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 535 return true; 536 } 537 538 return false; 539 } 540 541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 542 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 543 if (VCE->getOpcode() == Instruction::PtrToInt) 544 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 545 if (CE->getOpcode() == Instruction::GetElementPtr && 546 CE->getOperand(0)->isNullValue()) { 547 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 548 if (StructType *STy = dyn_cast<StructType>(Ty)) 549 if (!STy->isPacked() && 550 CE->getNumOperands() == 3 && 551 CE->getOperand(1)->isNullValue()) { 552 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 553 if (CI->isOne() && 554 STy->getNumElements() == 2 && 555 STy->getElementType(0)->isIntegerTy(1)) { 556 AllocTy = STy->getElementType(1); 557 return true; 558 } 559 } 560 } 561 562 return false; 563 } 564 565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 566 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 567 if (VCE->getOpcode() == Instruction::PtrToInt) 568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 569 if (CE->getOpcode() == Instruction::GetElementPtr && 570 CE->getNumOperands() == 3 && 571 CE->getOperand(0)->isNullValue() && 572 CE->getOperand(1)->isNullValue()) { 573 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 574 // Ignore vector types here so that ScalarEvolutionExpander doesn't 575 // emit getelementptrs that index into vectors. 576 if (Ty->isStructTy() || Ty->isArrayTy()) { 577 CTy = Ty; 578 FieldNo = CE->getOperand(2); 579 return true; 580 } 581 } 582 583 return false; 584 } 585 586 //===----------------------------------------------------------------------===// 587 // SCEV Utilities 588 //===----------------------------------------------------------------------===// 589 590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 592 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 593 /// have been previously deemed to be "equally complex" by this routine. It is 594 /// intended to avoid exponential time complexity in cases like: 595 /// 596 /// %a = f(%x, %y) 597 /// %b = f(%a, %a) 598 /// %c = f(%b, %b) 599 /// 600 /// %d = f(%x, %y) 601 /// %e = f(%d, %d) 602 /// %f = f(%e, %e) 603 /// 604 /// CompareValueComplexity(%f, %c) 605 /// 606 /// Since we do not continue running this routine on expression trees once we 607 /// have seen unequal values, there is no need to track them in the cache. 608 static int 609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 610 const LoopInfo *const LI, Value *LV, Value *RV, 611 unsigned Depth) { 612 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 613 return 0; 614 615 // Order pointer values after integer values. This helps SCEVExpander form 616 // GEPs. 617 bool LIsPointer = LV->getType()->isPointerTy(), 618 RIsPointer = RV->getType()->isPointerTy(); 619 if (LIsPointer != RIsPointer) 620 return (int)LIsPointer - (int)RIsPointer; 621 622 // Compare getValueID values. 623 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 624 if (LID != RID) 625 return (int)LID - (int)RID; 626 627 // Sort arguments by their position. 628 if (const auto *LA = dyn_cast<Argument>(LV)) { 629 const auto *RA = cast<Argument>(RV); 630 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 631 return (int)LArgNo - (int)RArgNo; 632 } 633 634 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 635 const auto *RGV = cast<GlobalValue>(RV); 636 637 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 638 auto LT = GV->getLinkage(); 639 return !(GlobalValue::isPrivateLinkage(LT) || 640 GlobalValue::isInternalLinkage(LT)); 641 }; 642 643 // Use the names to distinguish the two values, but only if the 644 // names are semantically important. 645 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 646 return LGV->getName().compare(RGV->getName()); 647 } 648 649 // For instructions, compare their loop depth, and their operand count. This 650 // is pretty loose. 651 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 652 const auto *RInst = cast<Instruction>(RV); 653 654 // Compare loop depths. 655 const BasicBlock *LParent = LInst->getParent(), 656 *RParent = RInst->getParent(); 657 if (LParent != RParent) { 658 unsigned LDepth = LI->getLoopDepth(LParent), 659 RDepth = LI->getLoopDepth(RParent); 660 if (LDepth != RDepth) 661 return (int)LDepth - (int)RDepth; 662 } 663 664 // Compare the number of operands. 665 unsigned LNumOps = LInst->getNumOperands(), 666 RNumOps = RInst->getNumOperands(); 667 if (LNumOps != RNumOps) 668 return (int)LNumOps - (int)RNumOps; 669 670 for (unsigned Idx : seq(0u, LNumOps)) { 671 int Result = 672 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 673 RInst->getOperand(Idx), Depth + 1); 674 if (Result != 0) 675 return Result; 676 } 677 } 678 679 EqCacheValue.unionSets(LV, RV); 680 return 0; 681 } 682 683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 684 // than RHS, respectively. A three-way result allows recursive comparisons to be 685 // more efficient. 686 // If the max analysis depth was reached, return None, assuming we do not know 687 // if they are equivalent for sure. 688 static Optional<int> 689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 690 EquivalenceClasses<const Value *> &EqCacheValue, 691 const LoopInfo *const LI, const SCEV *LHS, 692 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 693 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 694 if (LHS == RHS) 695 return 0; 696 697 // Primarily, sort the SCEVs by their getSCEVType(). 698 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 699 if (LType != RType) 700 return (int)LType - (int)RType; 701 702 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 703 return 0; 704 705 if (Depth > MaxSCEVCompareDepth) 706 return None; 707 708 // Aside from the getSCEVType() ordering, the particular ordering 709 // isn't very important except that it's beneficial to be consistent, 710 // so that (a + b) and (b + a) don't end up as different expressions. 711 switch (LType) { 712 case scUnknown: { 713 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 714 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 715 716 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 717 RU->getValue(), Depth + 1); 718 if (X == 0) 719 EqCacheSCEV.unionSets(LHS, RHS); 720 return X; 721 } 722 723 case scConstant: { 724 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 725 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 726 727 // Compare constant values. 728 const APInt &LA = LC->getAPInt(); 729 const APInt &RA = RC->getAPInt(); 730 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 731 if (LBitWidth != RBitWidth) 732 return (int)LBitWidth - (int)RBitWidth; 733 return LA.ult(RA) ? -1 : 1; 734 } 735 736 case scAddRecExpr: { 737 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 738 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 739 740 // There is always a dominance between two recs that are used by one SCEV, 741 // so we can safely sort recs by loop header dominance. We require such 742 // order in getAddExpr. 743 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 744 if (LLoop != RLoop) { 745 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 746 assert(LHead != RHead && "Two loops share the same header?"); 747 if (DT.dominates(LHead, RHead)) 748 return 1; 749 else 750 assert(DT.dominates(RHead, LHead) && 751 "No dominance between recurrences used by one SCEV?"); 752 return -1; 753 } 754 755 // Addrec complexity grows with operand count. 756 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 757 if (LNumOps != RNumOps) 758 return (int)LNumOps - (int)RNumOps; 759 760 // Lexicographically compare. 761 for (unsigned i = 0; i != LNumOps; ++i) { 762 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 763 LA->getOperand(i), RA->getOperand(i), DT, 764 Depth + 1); 765 if (X != 0) 766 return X; 767 } 768 EqCacheSCEV.unionSets(LHS, RHS); 769 return 0; 770 } 771 772 case scAddExpr: 773 case scMulExpr: 774 case scSMaxExpr: 775 case scUMaxExpr: 776 case scSMinExpr: 777 case scUMinExpr: { 778 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 779 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 780 781 // Lexicographically compare n-ary expressions. 782 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 783 if (LNumOps != RNumOps) 784 return (int)LNumOps - (int)RNumOps; 785 786 for (unsigned i = 0; i != LNumOps; ++i) { 787 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 788 LC->getOperand(i), RC->getOperand(i), DT, 789 Depth + 1); 790 if (X != 0) 791 return X; 792 } 793 EqCacheSCEV.unionSets(LHS, RHS); 794 return 0; 795 } 796 797 case scUDivExpr: { 798 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 799 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 800 801 // Lexicographically compare udiv expressions. 802 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 803 RC->getLHS(), DT, Depth + 1); 804 if (X != 0) 805 return X; 806 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 807 RC->getRHS(), DT, Depth + 1); 808 if (X == 0) 809 EqCacheSCEV.unionSets(LHS, RHS); 810 return X; 811 } 812 813 case scPtrToInt: 814 case scTruncate: 815 case scZeroExtend: 816 case scSignExtend: { 817 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 818 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 819 820 // Compare cast expressions by operand. 821 auto X = 822 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 823 RC->getOperand(), DT, Depth + 1); 824 if (X == 0) 825 EqCacheSCEV.unionSets(LHS, RHS); 826 return X; 827 } 828 829 case scCouldNotCompute: 830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 831 } 832 llvm_unreachable("Unknown SCEV kind!"); 833 } 834 835 /// Given a list of SCEV objects, order them by their complexity, and group 836 /// objects of the same complexity together by value. When this routine is 837 /// finished, we know that any duplicates in the vector are consecutive and that 838 /// complexity is monotonically increasing. 839 /// 840 /// Note that we go take special precautions to ensure that we get deterministic 841 /// results from this routine. In other words, we don't want the results of 842 /// this to depend on where the addresses of various SCEV objects happened to 843 /// land in memory. 844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 845 LoopInfo *LI, DominatorTree &DT) { 846 if (Ops.size() < 2) return; // Noop 847 848 EquivalenceClasses<const SCEV *> EqCacheSCEV; 849 EquivalenceClasses<const Value *> EqCacheValue; 850 851 // Whether LHS has provably less complexity than RHS. 852 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 853 auto Complexity = 854 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 855 return Complexity && *Complexity < 0; 856 }; 857 if (Ops.size() == 2) { 858 // This is the common case, which also happens to be trivially simple. 859 // Special case it. 860 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 861 if (IsLessComplex(RHS, LHS)) 862 std::swap(LHS, RHS); 863 return; 864 } 865 866 // Do the rough sort by complexity. 867 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 868 return IsLessComplex(LHS, RHS); 869 }); 870 871 // Now that we are sorted by complexity, group elements of the same 872 // complexity. Note that this is, at worst, N^2, but the vector is likely to 873 // be extremely short in practice. Note that we take this approach because we 874 // do not want to depend on the addresses of the objects we are grouping. 875 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 876 const SCEV *S = Ops[i]; 877 unsigned Complexity = S->getSCEVType(); 878 879 // If there are any objects of the same complexity and same value as this 880 // one, group them. 881 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 882 if (Ops[j] == S) { // Found a duplicate. 883 // Move it to immediately after i'th element. 884 std::swap(Ops[i+1], Ops[j]); 885 ++i; // no need to rescan it. 886 if (i == e-2) return; // Done! 887 } 888 } 889 } 890 } 891 892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 893 /// least HugeExprThreshold nodes). 894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 895 return any_of(Ops, [](const SCEV *S) { 896 return S->getExpressionSize() >= HugeExprThreshold; 897 }); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Simple SCEV method implementations 902 //===----------------------------------------------------------------------===// 903 904 /// Compute BC(It, K). The result has width W. Assume, K > 0. 905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 906 ScalarEvolution &SE, 907 Type *ResultTy) { 908 // Handle the simplest case efficiently. 909 if (K == 1) 910 return SE.getTruncateOrZeroExtend(It, ResultTy); 911 912 // We are using the following formula for BC(It, K): 913 // 914 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 915 // 916 // Suppose, W is the bitwidth of the return value. We must be prepared for 917 // overflow. Hence, we must assure that the result of our computation is 918 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 919 // safe in modular arithmetic. 920 // 921 // However, this code doesn't use exactly that formula; the formula it uses 922 // is something like the following, where T is the number of factors of 2 in 923 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 924 // exponentiation: 925 // 926 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 927 // 928 // This formula is trivially equivalent to the previous formula. However, 929 // this formula can be implemented much more efficiently. The trick is that 930 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 931 // arithmetic. To do exact division in modular arithmetic, all we have 932 // to do is multiply by the inverse. Therefore, this step can be done at 933 // width W. 934 // 935 // The next issue is how to safely do the division by 2^T. The way this 936 // is done is by doing the multiplication step at a width of at least W + T 937 // bits. This way, the bottom W+T bits of the product are accurate. Then, 938 // when we perform the division by 2^T (which is equivalent to a right shift 939 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 940 // truncated out after the division by 2^T. 941 // 942 // In comparison to just directly using the first formula, this technique 943 // is much more efficient; using the first formula requires W * K bits, 944 // but this formula less than W + K bits. Also, the first formula requires 945 // a division step, whereas this formula only requires multiplies and shifts. 946 // 947 // It doesn't matter whether the subtraction step is done in the calculation 948 // width or the input iteration count's width; if the subtraction overflows, 949 // the result must be zero anyway. We prefer here to do it in the width of 950 // the induction variable because it helps a lot for certain cases; CodeGen 951 // isn't smart enough to ignore the overflow, which leads to much less 952 // efficient code if the width of the subtraction is wider than the native 953 // register width. 954 // 955 // (It's possible to not widen at all by pulling out factors of 2 before 956 // the multiplication; for example, K=2 can be calculated as 957 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 958 // extra arithmetic, so it's not an obvious win, and it gets 959 // much more complicated for K > 3.) 960 961 // Protection from insane SCEVs; this bound is conservative, 962 // but it probably doesn't matter. 963 if (K > 1000) 964 return SE.getCouldNotCompute(); 965 966 unsigned W = SE.getTypeSizeInBits(ResultTy); 967 968 // Calculate K! / 2^T and T; we divide out the factors of two before 969 // multiplying for calculating K! / 2^T to avoid overflow. 970 // Other overflow doesn't matter because we only care about the bottom 971 // W bits of the result. 972 APInt OddFactorial(W, 1); 973 unsigned T = 1; 974 for (unsigned i = 3; i <= K; ++i) { 975 APInt Mult(W, i); 976 unsigned TwoFactors = Mult.countTrailingZeros(); 977 T += TwoFactors; 978 Mult.lshrInPlace(TwoFactors); 979 OddFactorial *= Mult; 980 } 981 982 // We need at least W + T bits for the multiplication step 983 unsigned CalculationBits = W + T; 984 985 // Calculate 2^T, at width T+W. 986 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 987 988 // Calculate the multiplicative inverse of K! / 2^T; 989 // this multiplication factor will perform the exact division by 990 // K! / 2^T. 991 APInt Mod = APInt::getSignedMinValue(W+1); 992 APInt MultiplyFactor = OddFactorial.zext(W+1); 993 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 994 MultiplyFactor = MultiplyFactor.trunc(W); 995 996 // Calculate the product, at width T+W 997 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 998 CalculationBits); 999 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1000 for (unsigned i = 1; i != K; ++i) { 1001 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1002 Dividend = SE.getMulExpr(Dividend, 1003 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1004 } 1005 1006 // Divide by 2^T 1007 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1008 1009 // Truncate the result, and divide by K! / 2^T. 1010 1011 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1012 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1013 } 1014 1015 /// Return the value of this chain of recurrences at the specified iteration 1016 /// number. We can evaluate this recurrence by multiplying each element in the 1017 /// chain by the binomial coefficient corresponding to it. In other words, we 1018 /// can evaluate {A,+,B,+,C,+,D} as: 1019 /// 1020 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1021 /// 1022 /// where BC(It, k) stands for binomial coefficient. 1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1024 ScalarEvolution &SE) const { 1025 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1026 } 1027 1028 const SCEV * 1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1030 const SCEV *It, ScalarEvolution &SE) { 1031 assert(Operands.size() > 0); 1032 const SCEV *Result = Operands[0]; 1033 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1034 // The computation is correct in the face of overflow provided that the 1035 // multiplication is performed _after_ the evaluation of the binomial 1036 // coefficient. 1037 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1038 if (isa<SCEVCouldNotCompute>(Coeff)) 1039 return Coeff; 1040 1041 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1042 } 1043 return Result; 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // SCEV Expression folder implementations 1048 //===----------------------------------------------------------------------===// 1049 1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1051 unsigned Depth) { 1052 assert(Depth <= 1 && 1053 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1054 1055 // We could be called with an integer-typed operands during SCEV rewrites. 1056 // Since the operand is an integer already, just perform zext/trunc/self cast. 1057 if (!Op->getType()->isPointerTy()) 1058 return Op; 1059 1060 // What would be an ID for such a SCEV cast expression? 1061 FoldingSetNodeID ID; 1062 ID.AddInteger(scPtrToInt); 1063 ID.AddPointer(Op); 1064 1065 void *IP = nullptr; 1066 1067 // Is there already an expression for such a cast? 1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1069 return S; 1070 1071 // It isn't legal for optimizations to construct new ptrtoint expressions 1072 // for non-integral pointers. 1073 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1074 return getCouldNotCompute(); 1075 1076 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1077 1078 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1079 // is sufficiently wide to represent all possible pointer values. 1080 // We could theoretically teach SCEV to truncate wider pointers, but 1081 // that isn't implemented for now. 1082 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1083 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1084 return getCouldNotCompute(); 1085 1086 // If not, is this expression something we can't reduce any further? 1087 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1088 // Perform some basic constant folding. If the operand of the ptr2int cast 1089 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1090 // left as-is), but produce a zero constant. 1091 // NOTE: We could handle a more general case, but lack motivational cases. 1092 if (isa<ConstantPointerNull>(U->getValue())) 1093 return getZero(IntPtrTy); 1094 1095 // Create an explicit cast node. 1096 // We can reuse the existing insert position since if we get here, 1097 // we won't have made any changes which would invalidate it. 1098 SCEV *S = new (SCEVAllocator) 1099 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1100 UniqueSCEVs.InsertNode(S, IP); 1101 registerUser(S, Op); 1102 return S; 1103 } 1104 1105 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1106 "non-SCEVUnknown's."); 1107 1108 // Otherwise, we've got some expression that is more complex than just a 1109 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1110 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1111 // only, and the expressions must otherwise be integer-typed. 1112 // So sink the cast down to the SCEVUnknown's. 1113 1114 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1115 /// which computes a pointer-typed value, and rewrites the whole expression 1116 /// tree so that *all* the computations are done on integers, and the only 1117 /// pointer-typed operands in the expression are SCEVUnknown. 1118 class SCEVPtrToIntSinkingRewriter 1119 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1120 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1121 1122 public: 1123 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1124 1125 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1126 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1127 return Rewriter.visit(Scev); 1128 } 1129 1130 const SCEV *visit(const SCEV *S) { 1131 Type *STy = S->getType(); 1132 // If the expression is not pointer-typed, just keep it as-is. 1133 if (!STy->isPointerTy()) 1134 return S; 1135 // Else, recursively sink the cast down into it. 1136 return Base::visit(S); 1137 } 1138 1139 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1140 SmallVector<const SCEV *, 2> Operands; 1141 bool Changed = false; 1142 for (auto *Op : Expr->operands()) { 1143 Operands.push_back(visit(Op)); 1144 Changed |= Op != Operands.back(); 1145 } 1146 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1147 } 1148 1149 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1150 SmallVector<const SCEV *, 2> Operands; 1151 bool Changed = false; 1152 for (auto *Op : Expr->operands()) { 1153 Operands.push_back(visit(Op)); 1154 Changed |= Op != Operands.back(); 1155 } 1156 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1157 } 1158 1159 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1160 assert(Expr->getType()->isPointerTy() && 1161 "Should only reach pointer-typed SCEVUnknown's."); 1162 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1163 } 1164 }; 1165 1166 // And actually perform the cast sinking. 1167 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1168 assert(IntOp->getType()->isIntegerTy() && 1169 "We must have succeeded in sinking the cast, " 1170 "and ending up with an integer-typed expression!"); 1171 return IntOp; 1172 } 1173 1174 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1175 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1176 1177 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1178 if (isa<SCEVCouldNotCompute>(IntOp)) 1179 return IntOp; 1180 1181 return getTruncateOrZeroExtend(IntOp, Ty); 1182 } 1183 1184 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1185 unsigned Depth) { 1186 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1187 "This is not a truncating conversion!"); 1188 assert(isSCEVable(Ty) && 1189 "This is not a conversion to a SCEVable type!"); 1190 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1191 Ty = getEffectiveSCEVType(Ty); 1192 1193 FoldingSetNodeID ID; 1194 ID.AddInteger(scTruncate); 1195 ID.AddPointer(Op); 1196 ID.AddPointer(Ty); 1197 void *IP = nullptr; 1198 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1199 1200 // Fold if the operand is constant. 1201 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1202 return getConstant( 1203 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1204 1205 // trunc(trunc(x)) --> trunc(x) 1206 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1207 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1208 1209 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1210 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1211 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1212 1213 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1214 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1215 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1216 1217 if (Depth > MaxCastDepth) { 1218 SCEV *S = 1219 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1220 UniqueSCEVs.InsertNode(S, IP); 1221 registerUser(S, Op); 1222 return S; 1223 } 1224 1225 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1226 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1227 // if after transforming we have at most one truncate, not counting truncates 1228 // that replace other casts. 1229 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1230 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1231 SmallVector<const SCEV *, 4> Operands; 1232 unsigned numTruncs = 0; 1233 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1234 ++i) { 1235 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1236 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1237 isa<SCEVTruncateExpr>(S)) 1238 numTruncs++; 1239 Operands.push_back(S); 1240 } 1241 if (numTruncs < 2) { 1242 if (isa<SCEVAddExpr>(Op)) 1243 return getAddExpr(Operands); 1244 else if (isa<SCEVMulExpr>(Op)) 1245 return getMulExpr(Operands); 1246 else 1247 llvm_unreachable("Unexpected SCEV type for Op."); 1248 } 1249 // Although we checked in the beginning that ID is not in the cache, it is 1250 // possible that during recursion and different modification ID was inserted 1251 // into the cache. So if we find it, just return it. 1252 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1253 return S; 1254 } 1255 1256 // If the input value is a chrec scev, truncate the chrec's operands. 1257 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1258 SmallVector<const SCEV *, 4> Operands; 1259 for (const SCEV *Op : AddRec->operands()) 1260 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1261 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1262 } 1263 1264 // Return zero if truncating to known zeros. 1265 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1266 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1267 return getZero(Ty); 1268 1269 // The cast wasn't folded; create an explicit cast node. We can reuse 1270 // the existing insert position since if we get here, we won't have 1271 // made any changes which would invalidate it. 1272 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1273 Op, Ty); 1274 UniqueSCEVs.InsertNode(S, IP); 1275 registerUser(S, Op); 1276 return S; 1277 } 1278 1279 // Get the limit of a recurrence such that incrementing by Step cannot cause 1280 // signed overflow as long as the value of the recurrence within the 1281 // loop does not exceed this limit before incrementing. 1282 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1283 ICmpInst::Predicate *Pred, 1284 ScalarEvolution *SE) { 1285 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1286 if (SE->isKnownPositive(Step)) { 1287 *Pred = ICmpInst::ICMP_SLT; 1288 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1289 SE->getSignedRangeMax(Step)); 1290 } 1291 if (SE->isKnownNegative(Step)) { 1292 *Pred = ICmpInst::ICMP_SGT; 1293 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1294 SE->getSignedRangeMin(Step)); 1295 } 1296 return nullptr; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // unsigned overflow as long as the value of the recurrence within the loop does 1301 // not exceed this limit before incrementing. 1302 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 *Pred = ICmpInst::ICMP_ULT; 1307 1308 return SE->getConstant(APInt::getMinValue(BitWidth) - 1309 SE->getUnsignedRangeMax(Step)); 1310 } 1311 1312 namespace { 1313 1314 struct ExtendOpTraitsBase { 1315 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1316 unsigned); 1317 }; 1318 1319 // Used to make code generic over signed and unsigned overflow. 1320 template <typename ExtendOp> struct ExtendOpTraits { 1321 // Members present: 1322 // 1323 // static const SCEV::NoWrapFlags WrapType; 1324 // 1325 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1326 // 1327 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1328 // ICmpInst::Predicate *Pred, 1329 // ScalarEvolution *SE); 1330 }; 1331 1332 template <> 1333 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1334 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1335 1336 static const GetExtendExprTy GetExtendExpr; 1337 1338 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1339 ICmpInst::Predicate *Pred, 1340 ScalarEvolution *SE) { 1341 return getSignedOverflowLimitForStep(Step, Pred, SE); 1342 } 1343 }; 1344 1345 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1346 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1347 1348 template <> 1349 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1350 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1351 1352 static const GetExtendExprTy GetExtendExpr; 1353 1354 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1355 ICmpInst::Predicate *Pred, 1356 ScalarEvolution *SE) { 1357 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1358 } 1359 }; 1360 1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1362 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1363 1364 } // end anonymous namespace 1365 1366 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1367 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1368 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1369 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1370 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1371 // expression "Step + sext/zext(PreIncAR)" is congruent with 1372 // "sext/zext(PostIncAR)" 1373 template <typename ExtendOpTy> 1374 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1375 ScalarEvolution *SE, unsigned Depth) { 1376 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1377 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1378 1379 const Loop *L = AR->getLoop(); 1380 const SCEV *Start = AR->getStart(); 1381 const SCEV *Step = AR->getStepRecurrence(*SE); 1382 1383 // Check for a simple looking step prior to loop entry. 1384 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1385 if (!SA) 1386 return nullptr; 1387 1388 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1389 // subtraction is expensive. For this purpose, perform a quick and dirty 1390 // difference, by checking for Step in the operand list. 1391 SmallVector<const SCEV *, 4> DiffOps; 1392 for (const SCEV *Op : SA->operands()) 1393 if (Op != Step) 1394 DiffOps.push_back(Op); 1395 1396 if (DiffOps.size() == SA->getNumOperands()) 1397 return nullptr; 1398 1399 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1400 // `Step`: 1401 1402 // 1. NSW/NUW flags on the step increment. 1403 auto PreStartFlags = 1404 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1405 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1406 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1407 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1408 1409 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1410 // "S+X does not sign/unsign-overflow". 1411 // 1412 1413 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1414 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1415 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1416 return PreStart; 1417 1418 // 2. Direct overflow check on the step operation's expression. 1419 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1420 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1421 const SCEV *OperandExtendedStart = 1422 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1423 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1424 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1425 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1426 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1427 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1428 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1429 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1430 } 1431 return PreStart; 1432 } 1433 1434 // 3. Loop precondition. 1435 ICmpInst::Predicate Pred; 1436 const SCEV *OverflowLimit = 1437 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1438 1439 if (OverflowLimit && 1440 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1441 return PreStart; 1442 1443 return nullptr; 1444 } 1445 1446 // Get the normalized zero or sign extended expression for this AddRec's Start. 1447 template <typename ExtendOpTy> 1448 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1449 ScalarEvolution *SE, 1450 unsigned Depth) { 1451 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1452 1453 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1454 if (!PreStart) 1455 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1456 1457 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1458 Depth), 1459 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1460 } 1461 1462 // Try to prove away overflow by looking at "nearby" add recurrences. A 1463 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1464 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1465 // 1466 // Formally: 1467 // 1468 // {S,+,X} == {S-T,+,X} + T 1469 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1470 // 1471 // If ({S-T,+,X} + T) does not overflow ... (1) 1472 // 1473 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1474 // 1475 // If {S-T,+,X} does not overflow ... (2) 1476 // 1477 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1478 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1479 // 1480 // If (S-T)+T does not overflow ... (3) 1481 // 1482 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1483 // == {Ext(S),+,Ext(X)} == LHS 1484 // 1485 // Thus, if (1), (2) and (3) are true for some T, then 1486 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1487 // 1488 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1489 // does not overflow" restricted to the 0th iteration. Therefore we only need 1490 // to check for (1) and (2). 1491 // 1492 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1493 // is `Delta` (defined below). 1494 template <typename ExtendOpTy> 1495 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1496 const SCEV *Step, 1497 const Loop *L) { 1498 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1499 1500 // We restrict `Start` to a constant to prevent SCEV from spending too much 1501 // time here. It is correct (but more expensive) to continue with a 1502 // non-constant `Start` and do a general SCEV subtraction to compute 1503 // `PreStart` below. 1504 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1505 if (!StartC) 1506 return false; 1507 1508 APInt StartAI = StartC->getAPInt(); 1509 1510 for (unsigned Delta : {-2, -1, 1, 2}) { 1511 const SCEV *PreStart = getConstant(StartAI - Delta); 1512 1513 FoldingSetNodeID ID; 1514 ID.AddInteger(scAddRecExpr); 1515 ID.AddPointer(PreStart); 1516 ID.AddPointer(Step); 1517 ID.AddPointer(L); 1518 void *IP = nullptr; 1519 const auto *PreAR = 1520 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1521 1522 // Give up if we don't already have the add recurrence we need because 1523 // actually constructing an add recurrence is relatively expensive. 1524 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1525 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1526 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1527 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1528 DeltaS, &Pred, this); 1529 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1530 return true; 1531 } 1532 } 1533 1534 return false; 1535 } 1536 1537 // Finds an integer D for an expression (C + x + y + ...) such that the top 1538 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1539 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1540 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1541 // the (C + x + y + ...) expression is \p WholeAddExpr. 1542 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1543 const SCEVConstant *ConstantTerm, 1544 const SCEVAddExpr *WholeAddExpr) { 1545 const APInt &C = ConstantTerm->getAPInt(); 1546 const unsigned BitWidth = C.getBitWidth(); 1547 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1548 uint32_t TZ = BitWidth; 1549 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1550 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1551 if (TZ) { 1552 // Set D to be as many least significant bits of C as possible while still 1553 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1554 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1555 } 1556 return APInt(BitWidth, 0); 1557 } 1558 1559 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1560 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1561 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1562 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1563 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1564 const APInt &ConstantStart, 1565 const SCEV *Step) { 1566 const unsigned BitWidth = ConstantStart.getBitWidth(); 1567 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1568 if (TZ) 1569 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1570 : ConstantStart; 1571 return APInt(BitWidth, 0); 1572 } 1573 1574 const SCEV * 1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1576 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1577 "This is not an extending conversion!"); 1578 assert(isSCEVable(Ty) && 1579 "This is not a conversion to a SCEVable type!"); 1580 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1581 Ty = getEffectiveSCEVType(Ty); 1582 1583 // Fold if the operand is constant. 1584 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1585 return getConstant( 1586 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1587 1588 // zext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scZeroExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 if (Depth > MaxCastDepth) { 1601 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1602 Op, Ty); 1603 UniqueSCEVs.InsertNode(S, IP); 1604 registerUser(S, Op); 1605 return S; 1606 } 1607 1608 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1609 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1610 // It's possible the bits taken off by the truncate were all zero bits. If 1611 // so, we should be able to simplify this further. 1612 const SCEV *X = ST->getOperand(); 1613 ConstantRange CR = getUnsignedRange(X); 1614 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1615 unsigned NewBits = getTypeSizeInBits(Ty); 1616 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1617 CR.zextOrTrunc(NewBits))) 1618 return getTruncateOrZeroExtend(X, Ty, Depth); 1619 } 1620 1621 // If the input value is a chrec scev, and we can prove that the value 1622 // did not overflow the old, smaller, value, we can zero extend all of the 1623 // operands (often constants). This allows analysis of something like 1624 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1626 if (AR->isAffine()) { 1627 const SCEV *Start = AR->getStart(); 1628 const SCEV *Step = AR->getStepRecurrence(*this); 1629 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1630 const Loop *L = AR->getLoop(); 1631 1632 if (!AR->hasNoUnsignedWrap()) { 1633 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1634 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1635 } 1636 1637 // If we have special knowledge that this addrec won't overflow, 1638 // we don't need to do any further analysis. 1639 if (AR->hasNoUnsignedWrap()) 1640 return getAddRecExpr( 1641 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1642 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1643 1644 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1645 // Note that this serves two purposes: It filters out loops that are 1646 // simply not analyzable, and it covers the case where this code is 1647 // being called from within backedge-taken count analysis, such that 1648 // attempting to ask for the backedge-taken count would likely result 1649 // in infinite recursion. In the later case, the analysis code will 1650 // cope with a conservative value, and it will take care to purge 1651 // that value once it has finished. 1652 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1653 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1654 // Manually compute the final value for AR, checking for overflow. 1655 1656 // Check whether the backedge-taken count can be losslessly casted to 1657 // the addrec's type. The count is always unsigned. 1658 const SCEV *CastedMaxBECount = 1659 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1660 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1661 CastedMaxBECount, MaxBECount->getType(), Depth); 1662 if (MaxBECount == RecastedMaxBECount) { 1663 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1664 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1665 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1666 SCEV::FlagAnyWrap, Depth + 1); 1667 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1668 SCEV::FlagAnyWrap, 1669 Depth + 1), 1670 WideTy, Depth + 1); 1671 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1672 const SCEV *WideMaxBECount = 1673 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1674 const SCEV *OperandExtendedAdd = 1675 getAddExpr(WideStart, 1676 getMulExpr(WideMaxBECount, 1677 getZeroExtendExpr(Step, WideTy, Depth + 1), 1678 SCEV::FlagAnyWrap, Depth + 1), 1679 SCEV::FlagAnyWrap, Depth + 1); 1680 if (ZAdd == OperandExtendedAdd) { 1681 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1682 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1683 // Return the expression with the addrec on the outside. 1684 return getAddRecExpr( 1685 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1686 Depth + 1), 1687 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1688 AR->getNoWrapFlags()); 1689 } 1690 // Similar to above, only this time treat the step value as signed. 1691 // This covers loops that count down. 1692 OperandExtendedAdd = 1693 getAddExpr(WideStart, 1694 getMulExpr(WideMaxBECount, 1695 getSignExtendExpr(Step, WideTy, Depth + 1), 1696 SCEV::FlagAnyWrap, Depth + 1), 1697 SCEV::FlagAnyWrap, Depth + 1); 1698 if (ZAdd == OperandExtendedAdd) { 1699 // Cache knowledge of AR NW, which is propagated to this AddRec. 1700 // Negative step causes unsigned wrap, but it still can't self-wrap. 1701 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1702 // Return the expression with the addrec on the outside. 1703 return getAddRecExpr( 1704 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1705 Depth + 1), 1706 getSignExtendExpr(Step, Ty, Depth + 1), L, 1707 AR->getNoWrapFlags()); 1708 } 1709 } 1710 } 1711 1712 // Normally, in the cases we can prove no-overflow via a 1713 // backedge guarding condition, we can also compute a backedge 1714 // taken count for the loop. The exceptions are assumptions and 1715 // guards present in the loop -- SCEV is not great at exploiting 1716 // these to compute max backedge taken counts, but can still use 1717 // these to prove lack of overflow. Use this fact to avoid 1718 // doing extra work that may not pay off. 1719 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1720 !AC.assumptions().empty()) { 1721 1722 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1723 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1724 if (AR->hasNoUnsignedWrap()) { 1725 // Same as nuw case above - duplicated here to avoid a compile time 1726 // issue. It's not clear that the order of checks does matter, but 1727 // it's one of two issue possible causes for a change which was 1728 // reverted. Be conservative for the moment. 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1731 Depth + 1), 1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1733 AR->getNoWrapFlags()); 1734 } 1735 1736 // For a negative step, we can extend the operands iff doing so only 1737 // traverses values in the range zext([0,UINT_MAX]). 1738 if (isKnownNegative(Step)) { 1739 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1740 getSignedRangeMin(Step)); 1741 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1742 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1743 // Cache knowledge of AR NW, which is propagated to this 1744 // AddRec. Negative step causes unsigned wrap, but it 1745 // still can't self-wrap. 1746 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1747 // Return the expression with the addrec on the outside. 1748 return getAddRecExpr( 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1750 Depth + 1), 1751 getSignExtendExpr(Step, Ty, Depth + 1), L, 1752 AR->getNoWrapFlags()); 1753 } 1754 } 1755 } 1756 1757 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1758 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1759 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1760 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1761 const APInt &C = SC->getAPInt(); 1762 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1763 if (D != 0) { 1764 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1765 const SCEV *SResidual = 1766 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1767 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1768 return getAddExpr(SZExtD, SZExtR, 1769 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1770 Depth + 1); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1775 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1778 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // zext(A % B) --> zext(A) % zext(B) 1783 { 1784 const SCEV *LHS; 1785 const SCEV *RHS; 1786 if (matchURem(Op, LHS, RHS)) 1787 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1788 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1789 } 1790 1791 // zext(A / B) --> zext(A) / zext(B). 1792 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1793 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1794 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1795 1796 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1797 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1798 if (SA->hasNoUnsignedWrap()) { 1799 // If the addition does not unsign overflow then we can, by definition, 1800 // commute the zero extension with the addition operation. 1801 SmallVector<const SCEV *, 4> Ops; 1802 for (const auto *Op : SA->operands()) 1803 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1804 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1805 } 1806 1807 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1808 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1809 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1810 // 1811 // Often address arithmetics contain expressions like 1812 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1813 // This transformation is useful while proving that such expressions are 1814 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1815 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1816 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1817 if (D != 0) { 1818 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1819 const SCEV *SResidual = 1820 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1821 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1822 return getAddExpr(SZExtD, SZExtR, 1823 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1824 Depth + 1); 1825 } 1826 } 1827 } 1828 1829 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1830 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1831 if (SM->hasNoUnsignedWrap()) { 1832 // If the multiply does not unsign overflow then we can, by definition, 1833 // commute the zero extension with the multiply operation. 1834 SmallVector<const SCEV *, 4> Ops; 1835 for (const auto *Op : SM->operands()) 1836 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1837 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1838 } 1839 1840 // zext(2^K * (trunc X to iN)) to iM -> 1841 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1842 // 1843 // Proof: 1844 // 1845 // zext(2^K * (trunc X to iN)) to iM 1846 // = zext((trunc X to iN) << K) to iM 1847 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1848 // (because shl removes the top K bits) 1849 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1850 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1851 // 1852 if (SM->getNumOperands() == 2) 1853 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1854 if (MulLHS->getAPInt().isPowerOf2()) 1855 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1856 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1857 MulLHS->getAPInt().logBase2(); 1858 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1859 return getMulExpr( 1860 getZeroExtendExpr(MulLHS, Ty), 1861 getZeroExtendExpr( 1862 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1863 SCEV::FlagNUW, Depth + 1); 1864 } 1865 } 1866 1867 // The cast wasn't folded; create an explicit cast node. 1868 // Recompute the insert position, as it may have been invalidated. 1869 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1870 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1871 Op, Ty); 1872 UniqueSCEVs.InsertNode(S, IP); 1873 registerUser(S, Op); 1874 return S; 1875 } 1876 1877 const SCEV * 1878 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1879 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1880 "This is not an extending conversion!"); 1881 assert(isSCEVable(Ty) && 1882 "This is not a conversion to a SCEVable type!"); 1883 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1884 Ty = getEffectiveSCEVType(Ty); 1885 1886 // Fold if the operand is constant. 1887 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1888 return getConstant( 1889 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1890 1891 // sext(sext(x)) --> sext(x) 1892 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1893 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1894 1895 // sext(zext(x)) --> zext(x) 1896 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1897 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1898 1899 // Before doing any expensive analysis, check to see if we've already 1900 // computed a SCEV for this Op and Ty. 1901 FoldingSetNodeID ID; 1902 ID.AddInteger(scSignExtend); 1903 ID.AddPointer(Op); 1904 ID.AddPointer(Ty); 1905 void *IP = nullptr; 1906 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1907 // Limit recursion depth. 1908 if (Depth > MaxCastDepth) { 1909 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1910 Op, Ty); 1911 UniqueSCEVs.InsertNode(S, IP); 1912 registerUser(S, Op); 1913 return S; 1914 } 1915 1916 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1918 // It's possible the bits taken off by the truncate were all sign bits. If 1919 // so, we should be able to simplify this further. 1920 const SCEV *X = ST->getOperand(); 1921 ConstantRange CR = getSignedRange(X); 1922 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1923 unsigned NewBits = getTypeSizeInBits(Ty); 1924 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1925 CR.sextOrTrunc(NewBits))) 1926 return getTruncateOrSignExtend(X, Ty, Depth); 1927 } 1928 1929 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1930 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1931 if (SA->hasNoSignedWrap()) { 1932 // If the addition does not sign overflow then we can, by definition, 1933 // commute the sign extension with the addition operation. 1934 SmallVector<const SCEV *, 4> Ops; 1935 for (const auto *Op : SA->operands()) 1936 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1937 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1938 } 1939 1940 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1941 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1942 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1943 // 1944 // For instance, this will bring two seemingly different expressions: 1945 // 1 + sext(5 + 20 * %x + 24 * %y) and 1946 // sext(6 + 20 * %x + 24 * %y) 1947 // to the same form: 1948 // 2 + sext(4 + 20 * %x + 24 * %y) 1949 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1950 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1951 if (D != 0) { 1952 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1953 const SCEV *SResidual = 1954 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1955 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1956 return getAddExpr(SSExtD, SSExtR, 1957 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1958 Depth + 1); 1959 } 1960 } 1961 } 1962 // If the input value is a chrec scev, and we can prove that the value 1963 // did not overflow the old, smaller, value, we can sign extend all of the 1964 // operands (often constants). This allows analysis of something like 1965 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1966 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1967 if (AR->isAffine()) { 1968 const SCEV *Start = AR->getStart(); 1969 const SCEV *Step = AR->getStepRecurrence(*this); 1970 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1971 const Loop *L = AR->getLoop(); 1972 1973 if (!AR->hasNoSignedWrap()) { 1974 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1975 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1976 } 1977 1978 // If we have special knowledge that this addrec won't overflow, 1979 // we don't need to do any further analysis. 1980 if (AR->hasNoSignedWrap()) 1981 return getAddRecExpr( 1982 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1983 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1984 1985 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1986 // Note that this serves two purposes: It filters out loops that are 1987 // simply not analyzable, and it covers the case where this code is 1988 // being called from within backedge-taken count analysis, such that 1989 // attempting to ask for the backedge-taken count would likely result 1990 // in infinite recursion. In the later case, the analysis code will 1991 // cope with a conservative value, and it will take care to purge 1992 // that value once it has finished. 1993 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1995 // Manually compute the final value for AR, checking for 1996 // overflow. 1997 1998 // Check whether the backedge-taken count can be losslessly casted to 1999 // the addrec's type. The count is always unsigned. 2000 const SCEV *CastedMaxBECount = 2001 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2002 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2003 CastedMaxBECount, MaxBECount->getType(), Depth); 2004 if (MaxBECount == RecastedMaxBECount) { 2005 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2006 // Check whether Start+Step*MaxBECount has no signed overflow. 2007 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2008 SCEV::FlagAnyWrap, Depth + 1); 2009 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2010 SCEV::FlagAnyWrap, 2011 Depth + 1), 2012 WideTy, Depth + 1); 2013 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2014 const SCEV *WideMaxBECount = 2015 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2016 const SCEV *OperandExtendedAdd = 2017 getAddExpr(WideStart, 2018 getMulExpr(WideMaxBECount, 2019 getSignExtendExpr(Step, WideTy, Depth + 1), 2020 SCEV::FlagAnyWrap, Depth + 1), 2021 SCEV::FlagAnyWrap, Depth + 1); 2022 if (SAdd == OperandExtendedAdd) { 2023 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2024 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2025 // Return the expression with the addrec on the outside. 2026 return getAddRecExpr( 2027 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2028 Depth + 1), 2029 getSignExtendExpr(Step, Ty, Depth + 1), L, 2030 AR->getNoWrapFlags()); 2031 } 2032 // Similar to above, only this time treat the step value as unsigned. 2033 // This covers loops that count up with an unsigned step. 2034 OperandExtendedAdd = 2035 getAddExpr(WideStart, 2036 getMulExpr(WideMaxBECount, 2037 getZeroExtendExpr(Step, WideTy, Depth + 1), 2038 SCEV::FlagAnyWrap, Depth + 1), 2039 SCEV::FlagAnyWrap, Depth + 1); 2040 if (SAdd == OperandExtendedAdd) { 2041 // If AR wraps around then 2042 // 2043 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2044 // => SAdd != OperandExtendedAdd 2045 // 2046 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2047 // (SAdd == OperandExtendedAdd => AR is NW) 2048 2049 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2050 2051 // Return the expression with the addrec on the outside. 2052 return getAddRecExpr( 2053 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2054 Depth + 1), 2055 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2056 AR->getNoWrapFlags()); 2057 } 2058 } 2059 } 2060 2061 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2062 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2063 if (AR->hasNoSignedWrap()) { 2064 // Same as nsw case above - duplicated here to avoid a compile time 2065 // issue. It's not clear that the order of checks does matter, but 2066 // it's one of two issue possible causes for a change which was 2067 // reverted. Be conservative for the moment. 2068 return getAddRecExpr( 2069 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2070 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2071 } 2072 2073 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2074 // if D + (C - D + Step * n) could be proven to not signed wrap 2075 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2076 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2077 const APInt &C = SC->getAPInt(); 2078 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2079 if (D != 0) { 2080 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2081 const SCEV *SResidual = 2082 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2083 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2084 return getAddExpr(SSExtD, SSExtR, 2085 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2086 Depth + 1); 2087 } 2088 } 2089 2090 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2091 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2092 return getAddRecExpr( 2093 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2094 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2095 } 2096 } 2097 2098 // If the input value is provably positive and we could not simplify 2099 // away the sext build a zext instead. 2100 if (isKnownNonNegative(Op)) 2101 return getZeroExtendExpr(Op, Ty, Depth + 1); 2102 2103 // The cast wasn't folded; create an explicit cast node. 2104 // Recompute the insert position, as it may have been invalidated. 2105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2107 Op, Ty); 2108 UniqueSCEVs.InsertNode(S, IP); 2109 registerUser(S, { Op }); 2110 return S; 2111 } 2112 2113 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2114 /// unspecified bits out to the given type. 2115 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2116 Type *Ty) { 2117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2118 "This is not an extending conversion!"); 2119 assert(isSCEVable(Ty) && 2120 "This is not a conversion to a SCEVable type!"); 2121 Ty = getEffectiveSCEVType(Ty); 2122 2123 // Sign-extend negative constants. 2124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2125 if (SC->getAPInt().isNegative()) 2126 return getSignExtendExpr(Op, Ty); 2127 2128 // Peel off a truncate cast. 2129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2130 const SCEV *NewOp = T->getOperand(); 2131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2132 return getAnyExtendExpr(NewOp, Ty); 2133 return getTruncateOrNoop(NewOp, Ty); 2134 } 2135 2136 // Next try a zext cast. If the cast is folded, use it. 2137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2138 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2139 return ZExt; 2140 2141 // Next try a sext cast. If the cast is folded, use it. 2142 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2143 if (!isa<SCEVSignExtendExpr>(SExt)) 2144 return SExt; 2145 2146 // Force the cast to be folded into the operands of an addrec. 2147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2148 SmallVector<const SCEV *, 4> Ops; 2149 for (const SCEV *Op : AR->operands()) 2150 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2151 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2152 } 2153 2154 // If the expression is obviously signed, use the sext cast value. 2155 if (isa<SCEVSMaxExpr>(Op)) 2156 return SExt; 2157 2158 // Absent any other information, use the zext cast value. 2159 return ZExt; 2160 } 2161 2162 /// Process the given Ops list, which is a list of operands to be added under 2163 /// the given scale, update the given map. This is a helper function for 2164 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2165 /// that would form an add expression like this: 2166 /// 2167 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2168 /// 2169 /// where A and B are constants, update the map with these values: 2170 /// 2171 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2172 /// 2173 /// and add 13 + A*B*29 to AccumulatedConstant. 2174 /// This will allow getAddRecExpr to produce this: 2175 /// 2176 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2177 /// 2178 /// This form often exposes folding opportunities that are hidden in 2179 /// the original operand list. 2180 /// 2181 /// Return true iff it appears that any interesting folding opportunities 2182 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2183 /// the common case where no interesting opportunities are present, and 2184 /// is also used as a check to avoid infinite recursion. 2185 static bool 2186 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2187 SmallVectorImpl<const SCEV *> &NewOps, 2188 APInt &AccumulatedConstant, 2189 const SCEV *const *Ops, size_t NumOperands, 2190 const APInt &Scale, 2191 ScalarEvolution &SE) { 2192 bool Interesting = false; 2193 2194 // Iterate over the add operands. They are sorted, with constants first. 2195 unsigned i = 0; 2196 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2197 ++i; 2198 // Pull a buried constant out to the outside. 2199 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2200 Interesting = true; 2201 AccumulatedConstant += Scale * C->getAPInt(); 2202 } 2203 2204 // Next comes everything else. We're especially interested in multiplies 2205 // here, but they're in the middle, so just visit the rest with one loop. 2206 for (; i != NumOperands; ++i) { 2207 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2208 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2209 APInt NewScale = 2210 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2211 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2212 // A multiplication of a constant with another add; recurse. 2213 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2214 Interesting |= 2215 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2216 Add->op_begin(), Add->getNumOperands(), 2217 NewScale, SE); 2218 } else { 2219 // A multiplication of a constant with some other value. Update 2220 // the map. 2221 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2222 const SCEV *Key = SE.getMulExpr(MulOps); 2223 auto Pair = M.insert({Key, NewScale}); 2224 if (Pair.second) { 2225 NewOps.push_back(Pair.first->first); 2226 } else { 2227 Pair.first->second += NewScale; 2228 // The map already had an entry for this value, which may indicate 2229 // a folding opportunity. 2230 Interesting = true; 2231 } 2232 } 2233 } else { 2234 // An ordinary operand. Update the map. 2235 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2236 M.insert({Ops[i], Scale}); 2237 if (Pair.second) { 2238 NewOps.push_back(Pair.first->first); 2239 } else { 2240 Pair.first->second += Scale; 2241 // The map already had an entry for this value, which may indicate 2242 // a folding opportunity. 2243 Interesting = true; 2244 } 2245 } 2246 } 2247 2248 return Interesting; 2249 } 2250 2251 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2252 const SCEV *LHS, const SCEV *RHS) { 2253 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2254 SCEV::NoWrapFlags, unsigned); 2255 switch (BinOp) { 2256 default: 2257 llvm_unreachable("Unsupported binary op"); 2258 case Instruction::Add: 2259 Operation = &ScalarEvolution::getAddExpr; 2260 break; 2261 case Instruction::Sub: 2262 Operation = &ScalarEvolution::getMinusSCEV; 2263 break; 2264 case Instruction::Mul: 2265 Operation = &ScalarEvolution::getMulExpr; 2266 break; 2267 } 2268 2269 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2270 Signed ? &ScalarEvolution::getSignExtendExpr 2271 : &ScalarEvolution::getZeroExtendExpr; 2272 2273 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2274 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2275 auto *WideTy = 2276 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2277 2278 const SCEV *A = (this->*Extension)( 2279 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2280 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2281 (this->*Extension)(RHS, WideTy, 0), 2282 SCEV::FlagAnyWrap, 0); 2283 return A == B; 2284 } 2285 2286 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2287 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2288 const OverflowingBinaryOperator *OBO) { 2289 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2290 2291 if (OBO->hasNoUnsignedWrap()) 2292 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2293 if (OBO->hasNoSignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2295 2296 bool Deduced = false; 2297 2298 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2299 return {Flags, Deduced}; 2300 2301 if (OBO->getOpcode() != Instruction::Add && 2302 OBO->getOpcode() != Instruction::Sub && 2303 OBO->getOpcode() != Instruction::Mul) 2304 return {Flags, Deduced}; 2305 2306 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2307 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2308 2309 if (!OBO->hasNoUnsignedWrap() && 2310 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2311 /* Signed */ false, LHS, RHS)) { 2312 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2313 Deduced = true; 2314 } 2315 2316 if (!OBO->hasNoSignedWrap() && 2317 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2318 /* Signed */ true, LHS, RHS)) { 2319 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2320 Deduced = true; 2321 } 2322 2323 return {Flags, Deduced}; 2324 } 2325 2326 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2327 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2328 // can't-overflow flags for the operation if possible. 2329 static SCEV::NoWrapFlags 2330 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2331 const ArrayRef<const SCEV *> Ops, 2332 SCEV::NoWrapFlags Flags) { 2333 using namespace std::placeholders; 2334 2335 using OBO = OverflowingBinaryOperator; 2336 2337 bool CanAnalyze = 2338 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2339 (void)CanAnalyze; 2340 assert(CanAnalyze && "don't call from other places!"); 2341 2342 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2343 SCEV::NoWrapFlags SignOrUnsignWrap = 2344 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2345 2346 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2347 auto IsKnownNonNegative = [&](const SCEV *S) { 2348 return SE->isKnownNonNegative(S); 2349 }; 2350 2351 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2352 Flags = 2353 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2354 2355 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2356 2357 if (SignOrUnsignWrap != SignOrUnsignMask && 2358 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2359 isa<SCEVConstant>(Ops[0])) { 2360 2361 auto Opcode = [&] { 2362 switch (Type) { 2363 case scAddExpr: 2364 return Instruction::Add; 2365 case scMulExpr: 2366 return Instruction::Mul; 2367 default: 2368 llvm_unreachable("Unexpected SCEV op."); 2369 } 2370 }(); 2371 2372 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2373 2374 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2375 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2376 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2377 Opcode, C, OBO::NoSignedWrap); 2378 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2379 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2380 } 2381 2382 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2383 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2384 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2385 Opcode, C, OBO::NoUnsignedWrap); 2386 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2387 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2388 } 2389 } 2390 2391 // <0,+,nonnegative><nw> is also nuw 2392 // TODO: Add corresponding nsw case 2393 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2394 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2395 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2396 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2397 2398 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2399 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2400 Ops.size() == 2) { 2401 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2402 if (UDiv->getOperand(1) == Ops[1]) 2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2404 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2405 if (UDiv->getOperand(1) == Ops[0]) 2406 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2407 } 2408 2409 return Flags; 2410 } 2411 2412 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2413 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2414 } 2415 2416 /// Get a canonical add expression, or something simpler if possible. 2417 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2418 SCEV::NoWrapFlags OrigFlags, 2419 unsigned Depth) { 2420 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2421 "only nuw or nsw allowed"); 2422 assert(!Ops.empty() && "Cannot get empty add!"); 2423 if (Ops.size() == 1) return Ops[0]; 2424 #ifndef NDEBUG 2425 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2426 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2427 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2428 "SCEVAddExpr operand types don't match!"); 2429 unsigned NumPtrs = count_if( 2430 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2431 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2432 #endif 2433 2434 // Sort by complexity, this groups all similar expression types together. 2435 GroupByComplexity(Ops, &LI, DT); 2436 2437 // If there are any constants, fold them together. 2438 unsigned Idx = 0; 2439 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2440 ++Idx; 2441 assert(Idx < Ops.size()); 2442 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2443 // We found two constants, fold them together! 2444 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2445 if (Ops.size() == 2) return Ops[0]; 2446 Ops.erase(Ops.begin()+1); // Erase the folded element 2447 LHSC = cast<SCEVConstant>(Ops[0]); 2448 } 2449 2450 // If we are left with a constant zero being added, strip it off. 2451 if (LHSC->getValue()->isZero()) { 2452 Ops.erase(Ops.begin()); 2453 --Idx; 2454 } 2455 2456 if (Ops.size() == 1) return Ops[0]; 2457 } 2458 2459 // Delay expensive flag strengthening until necessary. 2460 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2461 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2462 }; 2463 2464 // Limit recursion calls depth. 2465 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2466 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2467 2468 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2469 // Don't strengthen flags if we have no new information. 2470 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2471 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2472 Add->setNoWrapFlags(ComputeFlags(Ops)); 2473 return S; 2474 } 2475 2476 // Okay, check to see if the same value occurs in the operand list more than 2477 // once. If so, merge them together into an multiply expression. Since we 2478 // sorted the list, these values are required to be adjacent. 2479 Type *Ty = Ops[0]->getType(); 2480 bool FoundMatch = false; 2481 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2482 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2483 // Scan ahead to count how many equal operands there are. 2484 unsigned Count = 2; 2485 while (i+Count != e && Ops[i+Count] == Ops[i]) 2486 ++Count; 2487 // Merge the values into a multiply. 2488 const SCEV *Scale = getConstant(Ty, Count); 2489 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2490 if (Ops.size() == Count) 2491 return Mul; 2492 Ops[i] = Mul; 2493 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2494 --i; e -= Count - 1; 2495 FoundMatch = true; 2496 } 2497 if (FoundMatch) 2498 return getAddExpr(Ops, OrigFlags, Depth + 1); 2499 2500 // Check for truncates. If all the operands are truncated from the same 2501 // type, see if factoring out the truncate would permit the result to be 2502 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2503 // if the contents of the resulting outer trunc fold to something simple. 2504 auto FindTruncSrcType = [&]() -> Type * { 2505 // We're ultimately looking to fold an addrec of truncs and muls of only 2506 // constants and truncs, so if we find any other types of SCEV 2507 // as operands of the addrec then we bail and return nullptr here. 2508 // Otherwise, we return the type of the operand of a trunc that we find. 2509 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2510 return T->getOperand()->getType(); 2511 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2512 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2513 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2514 return T->getOperand()->getType(); 2515 } 2516 return nullptr; 2517 }; 2518 if (auto *SrcType = FindTruncSrcType()) { 2519 SmallVector<const SCEV *, 8> LargeOps; 2520 bool Ok = true; 2521 // Check all the operands to see if they can be represented in the 2522 // source type of the truncate. 2523 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2524 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2525 if (T->getOperand()->getType() != SrcType) { 2526 Ok = false; 2527 break; 2528 } 2529 LargeOps.push_back(T->getOperand()); 2530 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2531 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2532 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2533 SmallVector<const SCEV *, 8> LargeMulOps; 2534 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2535 if (const SCEVTruncateExpr *T = 2536 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2537 if (T->getOperand()->getType() != SrcType) { 2538 Ok = false; 2539 break; 2540 } 2541 LargeMulOps.push_back(T->getOperand()); 2542 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2543 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2544 } else { 2545 Ok = false; 2546 break; 2547 } 2548 } 2549 if (Ok) 2550 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2551 } else { 2552 Ok = false; 2553 break; 2554 } 2555 } 2556 if (Ok) { 2557 // Evaluate the expression in the larger type. 2558 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2559 // If it folds to something simple, use it. Otherwise, don't. 2560 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2561 return getTruncateExpr(Fold, Ty); 2562 } 2563 } 2564 2565 if (Ops.size() == 2) { 2566 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2567 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2568 // C1). 2569 const SCEV *A = Ops[0]; 2570 const SCEV *B = Ops[1]; 2571 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2572 auto *C = dyn_cast<SCEVConstant>(A); 2573 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2574 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2575 auto C2 = C->getAPInt(); 2576 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2577 2578 APInt ConstAdd = C1 + C2; 2579 auto AddFlags = AddExpr->getNoWrapFlags(); 2580 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2581 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2582 ConstAdd.ule(C1)) { 2583 PreservedFlags = 2584 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2585 } 2586 2587 // Adding a constant with the same sign and small magnitude is NSW, if the 2588 // original AddExpr was NSW. 2589 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2590 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2591 ConstAdd.abs().ule(C1.abs())) { 2592 PreservedFlags = 2593 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2594 } 2595 2596 if (PreservedFlags != SCEV::FlagAnyWrap) { 2597 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2598 NewOps[0] = getConstant(ConstAdd); 2599 return getAddExpr(NewOps, PreservedFlags); 2600 } 2601 } 2602 } 2603 2604 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2605 if (Ops.size() == 2) { 2606 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2607 if (Mul && Mul->getNumOperands() == 2 && 2608 Mul->getOperand(0)->isAllOnesValue()) { 2609 const SCEV *X; 2610 const SCEV *Y; 2611 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2612 return getMulExpr(Y, getUDivExpr(X, Y)); 2613 } 2614 } 2615 } 2616 2617 // Skip past any other cast SCEVs. 2618 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2619 ++Idx; 2620 2621 // If there are add operands they would be next. 2622 if (Idx < Ops.size()) { 2623 bool DeletedAdd = false; 2624 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2625 // common NUW flag for expression after inlining. Other flags cannot be 2626 // preserved, because they may depend on the original order of operations. 2627 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2628 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2629 if (Ops.size() > AddOpsInlineThreshold || 2630 Add->getNumOperands() > AddOpsInlineThreshold) 2631 break; 2632 // If we have an add, expand the add operands onto the end of the operands 2633 // list. 2634 Ops.erase(Ops.begin()+Idx); 2635 Ops.append(Add->op_begin(), Add->op_end()); 2636 DeletedAdd = true; 2637 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2638 } 2639 2640 // If we deleted at least one add, we added operands to the end of the list, 2641 // and they are not necessarily sorted. Recurse to resort and resimplify 2642 // any operands we just acquired. 2643 if (DeletedAdd) 2644 return getAddExpr(Ops, CommonFlags, Depth + 1); 2645 } 2646 2647 // Skip over the add expression until we get to a multiply. 2648 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2649 ++Idx; 2650 2651 // Check to see if there are any folding opportunities present with 2652 // operands multiplied by constant values. 2653 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2654 uint64_t BitWidth = getTypeSizeInBits(Ty); 2655 DenseMap<const SCEV *, APInt> M; 2656 SmallVector<const SCEV *, 8> NewOps; 2657 APInt AccumulatedConstant(BitWidth, 0); 2658 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2659 Ops.data(), Ops.size(), 2660 APInt(BitWidth, 1), *this)) { 2661 struct APIntCompare { 2662 bool operator()(const APInt &LHS, const APInt &RHS) const { 2663 return LHS.ult(RHS); 2664 } 2665 }; 2666 2667 // Some interesting folding opportunity is present, so its worthwhile to 2668 // re-generate the operands list. Group the operands by constant scale, 2669 // to avoid multiplying by the same constant scale multiple times. 2670 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2671 for (const SCEV *NewOp : NewOps) 2672 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2673 // Re-generate the operands list. 2674 Ops.clear(); 2675 if (AccumulatedConstant != 0) 2676 Ops.push_back(getConstant(AccumulatedConstant)); 2677 for (auto &MulOp : MulOpLists) { 2678 if (MulOp.first == 1) { 2679 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2680 } else if (MulOp.first != 0) { 2681 Ops.push_back(getMulExpr( 2682 getConstant(MulOp.first), 2683 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2684 SCEV::FlagAnyWrap, Depth + 1)); 2685 } 2686 } 2687 if (Ops.empty()) 2688 return getZero(Ty); 2689 if (Ops.size() == 1) 2690 return Ops[0]; 2691 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2692 } 2693 } 2694 2695 // If we are adding something to a multiply expression, make sure the 2696 // something is not already an operand of the multiply. If so, merge it into 2697 // the multiply. 2698 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2699 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2700 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2701 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2702 if (isa<SCEVConstant>(MulOpSCEV)) 2703 continue; 2704 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2705 if (MulOpSCEV == Ops[AddOp]) { 2706 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2707 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2708 if (Mul->getNumOperands() != 2) { 2709 // If the multiply has more than two operands, we must get the 2710 // Y*Z term. 2711 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2712 Mul->op_begin()+MulOp); 2713 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2714 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2715 } 2716 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2717 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2718 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2719 SCEV::FlagAnyWrap, Depth + 1); 2720 if (Ops.size() == 2) return OuterMul; 2721 if (AddOp < Idx) { 2722 Ops.erase(Ops.begin()+AddOp); 2723 Ops.erase(Ops.begin()+Idx-1); 2724 } else { 2725 Ops.erase(Ops.begin()+Idx); 2726 Ops.erase(Ops.begin()+AddOp-1); 2727 } 2728 Ops.push_back(OuterMul); 2729 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2730 } 2731 2732 // Check this multiply against other multiplies being added together. 2733 for (unsigned OtherMulIdx = Idx+1; 2734 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2735 ++OtherMulIdx) { 2736 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2737 // If MulOp occurs in OtherMul, we can fold the two multiplies 2738 // together. 2739 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2740 OMulOp != e; ++OMulOp) 2741 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2742 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2743 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2746 Mul->op_begin()+MulOp); 2747 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2748 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2749 } 2750 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2751 if (OtherMul->getNumOperands() != 2) { 2752 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2753 OtherMul->op_begin()+OMulOp); 2754 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2755 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2758 const SCEV *InnerMulSum = 2759 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2760 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2761 SCEV::FlagAnyWrap, Depth + 1); 2762 if (Ops.size() == 2) return OuterMul; 2763 Ops.erase(Ops.begin()+Idx); 2764 Ops.erase(Ops.begin()+OtherMulIdx-1); 2765 Ops.push_back(OuterMul); 2766 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2767 } 2768 } 2769 } 2770 } 2771 2772 // If there are any add recurrences in the operands list, see if any other 2773 // added values are loop invariant. If so, we can fold them into the 2774 // recurrence. 2775 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2776 ++Idx; 2777 2778 // Scan over all recurrences, trying to fold loop invariants into them. 2779 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2780 // Scan all of the other operands to this add and add them to the vector if 2781 // they are loop invariant w.r.t. the recurrence. 2782 SmallVector<const SCEV *, 8> LIOps; 2783 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2784 const Loop *AddRecLoop = AddRec->getLoop(); 2785 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2786 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2787 LIOps.push_back(Ops[i]); 2788 Ops.erase(Ops.begin()+i); 2789 --i; --e; 2790 } 2791 2792 // If we found some loop invariants, fold them into the recurrence. 2793 if (!LIOps.empty()) { 2794 // Compute nowrap flags for the addition of the loop-invariant ops and 2795 // the addrec. Temporarily push it as an operand for that purpose. These 2796 // flags are valid in the scope of the addrec only. 2797 LIOps.push_back(AddRec); 2798 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2799 LIOps.pop_back(); 2800 2801 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2802 LIOps.push_back(AddRec->getStart()); 2803 2804 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2805 2806 // It is not in general safe to propagate flags valid on an add within 2807 // the addrec scope to one outside it. We must prove that the inner 2808 // scope is guaranteed to execute if the outer one does to be able to 2809 // safely propagate. We know the program is undefined if poison is 2810 // produced on the inner scoped addrec. We also know that *for this use* 2811 // the outer scoped add can't overflow (because of the flags we just 2812 // computed for the inner scoped add) without the program being undefined. 2813 // Proving that entry to the outer scope neccesitates entry to the inner 2814 // scope, thus proves the program undefined if the flags would be violated 2815 // in the outer scope. 2816 SCEV::NoWrapFlags AddFlags = Flags; 2817 if (AddFlags != SCEV::FlagAnyWrap) { 2818 auto *DefI = getDefiningScopeBound(LIOps); 2819 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2820 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2821 AddFlags = SCEV::FlagAnyWrap; 2822 } 2823 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2824 2825 // Build the new addrec. Propagate the NUW and NSW flags if both the 2826 // outer add and the inner addrec are guaranteed to have no overflow. 2827 // Always propagate NW. 2828 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2829 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2830 2831 // If all of the other operands were loop invariant, we are done. 2832 if (Ops.size() == 1) return NewRec; 2833 2834 // Otherwise, add the folded AddRec by the non-invariant parts. 2835 for (unsigned i = 0;; ++i) 2836 if (Ops[i] == AddRec) { 2837 Ops[i] = NewRec; 2838 break; 2839 } 2840 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2841 } 2842 2843 // Okay, if there weren't any loop invariants to be folded, check to see if 2844 // there are multiple AddRec's with the same loop induction variable being 2845 // added together. If so, we can fold them. 2846 for (unsigned OtherIdx = Idx+1; 2847 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2848 ++OtherIdx) { 2849 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2850 // so that the 1st found AddRecExpr is dominated by all others. 2851 assert(DT.dominates( 2852 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2853 AddRec->getLoop()->getHeader()) && 2854 "AddRecExprs are not sorted in reverse dominance order?"); 2855 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2856 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2857 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2858 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2859 ++OtherIdx) { 2860 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2861 if (OtherAddRec->getLoop() == AddRecLoop) { 2862 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2863 i != e; ++i) { 2864 if (i >= AddRecOps.size()) { 2865 AddRecOps.append(OtherAddRec->op_begin()+i, 2866 OtherAddRec->op_end()); 2867 break; 2868 } 2869 SmallVector<const SCEV *, 2> TwoOps = { 2870 AddRecOps[i], OtherAddRec->getOperand(i)}; 2871 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2872 } 2873 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2874 } 2875 } 2876 // Step size has changed, so we cannot guarantee no self-wraparound. 2877 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2878 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2879 } 2880 } 2881 2882 // Otherwise couldn't fold anything into this recurrence. Move onto the 2883 // next one. 2884 } 2885 2886 // Okay, it looks like we really DO need an add expr. Check to see if we 2887 // already have one, otherwise create a new one. 2888 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2889 } 2890 2891 const SCEV * 2892 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2893 SCEV::NoWrapFlags Flags) { 2894 FoldingSetNodeID ID; 2895 ID.AddInteger(scAddExpr); 2896 for (const SCEV *Op : Ops) 2897 ID.AddPointer(Op); 2898 void *IP = nullptr; 2899 SCEVAddExpr *S = 2900 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2901 if (!S) { 2902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2903 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2904 S = new (SCEVAllocator) 2905 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2906 UniqueSCEVs.InsertNode(S, IP); 2907 registerUser(S, Ops); 2908 } 2909 S->setNoWrapFlags(Flags); 2910 return S; 2911 } 2912 2913 const SCEV * 2914 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2915 const Loop *L, SCEV::NoWrapFlags Flags) { 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2919 ID.AddPointer(Ops[i]); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2926 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2927 S = new (SCEVAllocator) 2928 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 LoopUsers[L].push_back(S); 2931 registerUser(S, Ops); 2932 } 2933 setNoWrapFlags(S, Flags); 2934 return S; 2935 } 2936 2937 const SCEV * 2938 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2939 SCEV::NoWrapFlags Flags) { 2940 FoldingSetNodeID ID; 2941 ID.AddInteger(scMulExpr); 2942 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2943 ID.AddPointer(Ops[i]); 2944 void *IP = nullptr; 2945 SCEVMulExpr *S = 2946 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2947 if (!S) { 2948 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2949 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2950 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2951 O, Ops.size()); 2952 UniqueSCEVs.InsertNode(S, IP); 2953 registerUser(S, Ops); 2954 } 2955 S->setNoWrapFlags(Flags); 2956 return S; 2957 } 2958 2959 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2960 uint64_t k = i*j; 2961 if (j > 1 && k / j != i) Overflow = true; 2962 return k; 2963 } 2964 2965 /// Compute the result of "n choose k", the binomial coefficient. If an 2966 /// intermediate computation overflows, Overflow will be set and the return will 2967 /// be garbage. Overflow is not cleared on absence of overflow. 2968 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2969 // We use the multiplicative formula: 2970 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2971 // At each iteration, we take the n-th term of the numeral and divide by the 2972 // (k-n)th term of the denominator. This division will always produce an 2973 // integral result, and helps reduce the chance of overflow in the 2974 // intermediate computations. However, we can still overflow even when the 2975 // final result would fit. 2976 2977 if (n == 0 || n == k) return 1; 2978 if (k > n) return 0; 2979 2980 if (k > n/2) 2981 k = n-k; 2982 2983 uint64_t r = 1; 2984 for (uint64_t i = 1; i <= k; ++i) { 2985 r = umul_ov(r, n-(i-1), Overflow); 2986 r /= i; 2987 } 2988 return r; 2989 } 2990 2991 /// Determine if any of the operands in this SCEV are a constant or if 2992 /// any of the add or multiply expressions in this SCEV contain a constant. 2993 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2994 struct FindConstantInAddMulChain { 2995 bool FoundConstant = false; 2996 2997 bool follow(const SCEV *S) { 2998 FoundConstant |= isa<SCEVConstant>(S); 2999 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3000 } 3001 3002 bool isDone() const { 3003 return FoundConstant; 3004 } 3005 }; 3006 3007 FindConstantInAddMulChain F; 3008 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3009 ST.visitAll(StartExpr); 3010 return F.FoundConstant; 3011 } 3012 3013 /// Get a canonical multiply expression, or something simpler if possible. 3014 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3015 SCEV::NoWrapFlags OrigFlags, 3016 unsigned Depth) { 3017 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3018 "only nuw or nsw allowed"); 3019 assert(!Ops.empty() && "Cannot get empty mul!"); 3020 if (Ops.size() == 1) return Ops[0]; 3021 #ifndef NDEBUG 3022 Type *ETy = Ops[0]->getType(); 3023 assert(!ETy->isPointerTy()); 3024 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3025 assert(Ops[i]->getType() == ETy && 3026 "SCEVMulExpr operand types don't match!"); 3027 #endif 3028 3029 // Sort by complexity, this groups all similar expression types together. 3030 GroupByComplexity(Ops, &LI, DT); 3031 3032 // If there are any constants, fold them together. 3033 unsigned Idx = 0; 3034 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3035 ++Idx; 3036 assert(Idx < Ops.size()); 3037 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3038 // We found two constants, fold them together! 3039 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3040 if (Ops.size() == 2) return Ops[0]; 3041 Ops.erase(Ops.begin()+1); // Erase the folded element 3042 LHSC = cast<SCEVConstant>(Ops[0]); 3043 } 3044 3045 // If we have a multiply of zero, it will always be zero. 3046 if (LHSC->getValue()->isZero()) 3047 return LHSC; 3048 3049 // If we are left with a constant one being multiplied, strip it off. 3050 if (LHSC->getValue()->isOne()) { 3051 Ops.erase(Ops.begin()); 3052 --Idx; 3053 } 3054 3055 if (Ops.size() == 1) 3056 return Ops[0]; 3057 } 3058 3059 // Delay expensive flag strengthening until necessary. 3060 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3061 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3062 }; 3063 3064 // Limit recursion calls depth. 3065 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3066 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3067 3068 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3069 // Don't strengthen flags if we have no new information. 3070 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3071 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3072 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3073 return S; 3074 } 3075 3076 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3077 if (Ops.size() == 2) { 3078 // C1*(C2+V) -> C1*C2 + C1*V 3079 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3080 // If any of Add's ops are Adds or Muls with a constant, apply this 3081 // transformation as well. 3082 // 3083 // TODO: There are some cases where this transformation is not 3084 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3085 // this transformation should be narrowed down. 3086 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3087 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3088 SCEV::FlagAnyWrap, Depth + 1), 3089 getMulExpr(LHSC, Add->getOperand(1), 3090 SCEV::FlagAnyWrap, Depth + 1), 3091 SCEV::FlagAnyWrap, Depth + 1); 3092 3093 if (Ops[0]->isAllOnesValue()) { 3094 // If we have a mul by -1 of an add, try distributing the -1 among the 3095 // add operands. 3096 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3097 SmallVector<const SCEV *, 4> NewOps; 3098 bool AnyFolded = false; 3099 for (const SCEV *AddOp : Add->operands()) { 3100 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3101 Depth + 1); 3102 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3103 NewOps.push_back(Mul); 3104 } 3105 if (AnyFolded) 3106 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3107 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3108 // Negation preserves a recurrence's no self-wrap property. 3109 SmallVector<const SCEV *, 4> Operands; 3110 for (const SCEV *AddRecOp : AddRec->operands()) 3111 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3112 Depth + 1)); 3113 3114 return getAddRecExpr(Operands, AddRec->getLoop(), 3115 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3116 } 3117 } 3118 } 3119 } 3120 3121 // Skip over the add expression until we get to a multiply. 3122 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3123 ++Idx; 3124 3125 // If there are mul operands inline them all into this expression. 3126 if (Idx < Ops.size()) { 3127 bool DeletedMul = false; 3128 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3129 if (Ops.size() > MulOpsInlineThreshold) 3130 break; 3131 // If we have an mul, expand the mul operands onto the end of the 3132 // operands list. 3133 Ops.erase(Ops.begin()+Idx); 3134 Ops.append(Mul->op_begin(), Mul->op_end()); 3135 DeletedMul = true; 3136 } 3137 3138 // If we deleted at least one mul, we added operands to the end of the 3139 // list, and they are not necessarily sorted. Recurse to resort and 3140 // resimplify any operands we just acquired. 3141 if (DeletedMul) 3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3143 } 3144 3145 // If there are any add recurrences in the operands list, see if any other 3146 // added values are loop invariant. If so, we can fold them into the 3147 // recurrence. 3148 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3149 ++Idx; 3150 3151 // Scan over all recurrences, trying to fold loop invariants into them. 3152 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3153 // Scan all of the other operands to this mul and add them to the vector 3154 // if they are loop invariant w.r.t. the recurrence. 3155 SmallVector<const SCEV *, 8> LIOps; 3156 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3157 const Loop *AddRecLoop = AddRec->getLoop(); 3158 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3159 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3160 LIOps.push_back(Ops[i]); 3161 Ops.erase(Ops.begin()+i); 3162 --i; --e; 3163 } 3164 3165 // If we found some loop invariants, fold them into the recurrence. 3166 if (!LIOps.empty()) { 3167 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3168 SmallVector<const SCEV *, 4> NewOps; 3169 NewOps.reserve(AddRec->getNumOperands()); 3170 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3171 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3172 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3173 SCEV::FlagAnyWrap, Depth + 1)); 3174 3175 // Build the new addrec. Propagate the NUW and NSW flags if both the 3176 // outer mul and the inner addrec are guaranteed to have no overflow. 3177 // 3178 // No self-wrap cannot be guaranteed after changing the step size, but 3179 // will be inferred if either NUW or NSW is true. 3180 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3181 const SCEV *NewRec = getAddRecExpr( 3182 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3183 3184 // If all of the other operands were loop invariant, we are done. 3185 if (Ops.size() == 1) return NewRec; 3186 3187 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3188 for (unsigned i = 0;; ++i) 3189 if (Ops[i] == AddRec) { 3190 Ops[i] = NewRec; 3191 break; 3192 } 3193 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3194 } 3195 3196 // Okay, if there weren't any loop invariants to be folded, check to see 3197 // if there are multiple AddRec's with the same loop induction variable 3198 // being multiplied together. If so, we can fold them. 3199 3200 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3201 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3202 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3203 // ]]],+,...up to x=2n}. 3204 // Note that the arguments to choose() are always integers with values 3205 // known at compile time, never SCEV objects. 3206 // 3207 // The implementation avoids pointless extra computations when the two 3208 // addrec's are of different length (mathematically, it's equivalent to 3209 // an infinite stream of zeros on the right). 3210 bool OpsModified = false; 3211 for (unsigned OtherIdx = Idx+1; 3212 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3213 ++OtherIdx) { 3214 const SCEVAddRecExpr *OtherAddRec = 3215 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3216 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3217 continue; 3218 3219 // Limit max number of arguments to avoid creation of unreasonably big 3220 // SCEVAddRecs with very complex operands. 3221 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3222 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3223 continue; 3224 3225 bool Overflow = false; 3226 Type *Ty = AddRec->getType(); 3227 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3228 SmallVector<const SCEV*, 7> AddRecOps; 3229 for (int x = 0, xe = AddRec->getNumOperands() + 3230 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3231 SmallVector <const SCEV *, 7> SumOps; 3232 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3233 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3234 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3235 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3236 z < ze && !Overflow; ++z) { 3237 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3238 uint64_t Coeff; 3239 if (LargerThan64Bits) 3240 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3241 else 3242 Coeff = Coeff1*Coeff2; 3243 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3244 const SCEV *Term1 = AddRec->getOperand(y-z); 3245 const SCEV *Term2 = OtherAddRec->getOperand(z); 3246 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3247 SCEV::FlagAnyWrap, Depth + 1)); 3248 } 3249 } 3250 if (SumOps.empty()) 3251 SumOps.push_back(getZero(Ty)); 3252 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3253 } 3254 if (!Overflow) { 3255 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3256 SCEV::FlagAnyWrap); 3257 if (Ops.size() == 2) return NewAddRec; 3258 Ops[Idx] = NewAddRec; 3259 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3260 OpsModified = true; 3261 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3262 if (!AddRec) 3263 break; 3264 } 3265 } 3266 if (OpsModified) 3267 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3268 3269 // Otherwise couldn't fold anything into this recurrence. Move onto the 3270 // next one. 3271 } 3272 3273 // Okay, it looks like we really DO need an mul expr. Check to see if we 3274 // already have one, otherwise create a new one. 3275 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3276 } 3277 3278 /// Represents an unsigned remainder expression based on unsigned division. 3279 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3280 const SCEV *RHS) { 3281 assert(getEffectiveSCEVType(LHS->getType()) == 3282 getEffectiveSCEVType(RHS->getType()) && 3283 "SCEVURemExpr operand types don't match!"); 3284 3285 // Short-circuit easy cases 3286 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3287 // If constant is one, the result is trivial 3288 if (RHSC->getValue()->isOne()) 3289 return getZero(LHS->getType()); // X urem 1 --> 0 3290 3291 // If constant is a power of two, fold into a zext(trunc(LHS)). 3292 if (RHSC->getAPInt().isPowerOf2()) { 3293 Type *FullTy = LHS->getType(); 3294 Type *TruncTy = 3295 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3296 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3297 } 3298 } 3299 3300 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3301 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3302 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3303 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3304 } 3305 3306 /// Get a canonical unsigned division expression, or something simpler if 3307 /// possible. 3308 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3309 const SCEV *RHS) { 3310 assert(!LHS->getType()->isPointerTy() && 3311 "SCEVUDivExpr operand can't be pointer!"); 3312 assert(LHS->getType() == RHS->getType() && 3313 "SCEVUDivExpr operand types don't match!"); 3314 3315 FoldingSetNodeID ID; 3316 ID.AddInteger(scUDivExpr); 3317 ID.AddPointer(LHS); 3318 ID.AddPointer(RHS); 3319 void *IP = nullptr; 3320 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3321 return S; 3322 3323 // 0 udiv Y == 0 3324 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3325 if (LHSC->getValue()->isZero()) 3326 return LHS; 3327 3328 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3329 if (RHSC->getValue()->isOne()) 3330 return LHS; // X udiv 1 --> x 3331 // If the denominator is zero, the result of the udiv is undefined. Don't 3332 // try to analyze it, because the resolution chosen here may differ from 3333 // the resolution chosen in other parts of the compiler. 3334 if (!RHSC->getValue()->isZero()) { 3335 // Determine if the division can be folded into the operands of 3336 // its operands. 3337 // TODO: Generalize this to non-constants by using known-bits information. 3338 Type *Ty = LHS->getType(); 3339 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3340 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3341 // For non-power-of-two values, effectively round the value up to the 3342 // nearest power of two. 3343 if (!RHSC->getAPInt().isPowerOf2()) 3344 ++MaxShiftAmt; 3345 IntegerType *ExtTy = 3346 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3347 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3348 if (const SCEVConstant *Step = 3349 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3350 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3351 const APInt &StepInt = Step->getAPInt(); 3352 const APInt &DivInt = RHSC->getAPInt(); 3353 if (!StepInt.urem(DivInt) && 3354 getZeroExtendExpr(AR, ExtTy) == 3355 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3356 getZeroExtendExpr(Step, ExtTy), 3357 AR->getLoop(), SCEV::FlagAnyWrap)) { 3358 SmallVector<const SCEV *, 4> Operands; 3359 for (const SCEV *Op : AR->operands()) 3360 Operands.push_back(getUDivExpr(Op, RHS)); 3361 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3362 } 3363 /// Get a canonical UDivExpr for a recurrence. 3364 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3365 // We can currently only fold X%N if X is constant. 3366 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3367 if (StartC && !DivInt.urem(StepInt) && 3368 getZeroExtendExpr(AR, ExtTy) == 3369 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3370 getZeroExtendExpr(Step, ExtTy), 3371 AR->getLoop(), SCEV::FlagAnyWrap)) { 3372 const APInt &StartInt = StartC->getAPInt(); 3373 const APInt &StartRem = StartInt.urem(StepInt); 3374 if (StartRem != 0) { 3375 const SCEV *NewLHS = 3376 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3377 AR->getLoop(), SCEV::FlagNW); 3378 if (LHS != NewLHS) { 3379 LHS = NewLHS; 3380 3381 // Reset the ID to include the new LHS, and check if it is 3382 // already cached. 3383 ID.clear(); 3384 ID.AddInteger(scUDivExpr); 3385 ID.AddPointer(LHS); 3386 ID.AddPointer(RHS); 3387 IP = nullptr; 3388 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3389 return S; 3390 } 3391 } 3392 } 3393 } 3394 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3395 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3396 SmallVector<const SCEV *, 4> Operands; 3397 for (const SCEV *Op : M->operands()) 3398 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3399 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3400 // Find an operand that's safely divisible. 3401 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3402 const SCEV *Op = M->getOperand(i); 3403 const SCEV *Div = getUDivExpr(Op, RHSC); 3404 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3405 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3406 Operands[i] = Div; 3407 return getMulExpr(Operands); 3408 } 3409 } 3410 } 3411 3412 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3413 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3414 if (auto *DivisorConstant = 3415 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3416 bool Overflow = false; 3417 APInt NewRHS = 3418 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3419 if (Overflow) { 3420 return getConstant(RHSC->getType(), 0, false); 3421 } 3422 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3423 } 3424 } 3425 3426 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3427 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3428 SmallVector<const SCEV *, 4> Operands; 3429 for (const SCEV *Op : A->operands()) 3430 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3431 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3432 Operands.clear(); 3433 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3434 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3435 if (isa<SCEVUDivExpr>(Op) || 3436 getMulExpr(Op, RHS) != A->getOperand(i)) 3437 break; 3438 Operands.push_back(Op); 3439 } 3440 if (Operands.size() == A->getNumOperands()) 3441 return getAddExpr(Operands); 3442 } 3443 } 3444 3445 // Fold if both operands are constant. 3446 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3447 Constant *LHSCV = LHSC->getValue(); 3448 Constant *RHSCV = RHSC->getValue(); 3449 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3450 RHSCV))); 3451 } 3452 } 3453 } 3454 3455 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3456 // changes). Make sure we get a new one. 3457 IP = nullptr; 3458 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3459 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3460 LHS, RHS); 3461 UniqueSCEVs.InsertNode(S, IP); 3462 registerUser(S, {LHS, RHS}); 3463 return S; 3464 } 3465 3466 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3467 APInt A = C1->getAPInt().abs(); 3468 APInt B = C2->getAPInt().abs(); 3469 uint32_t ABW = A.getBitWidth(); 3470 uint32_t BBW = B.getBitWidth(); 3471 3472 if (ABW > BBW) 3473 B = B.zext(ABW); 3474 else if (ABW < BBW) 3475 A = A.zext(BBW); 3476 3477 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3478 } 3479 3480 /// Get a canonical unsigned division expression, or something simpler if 3481 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3482 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3483 /// it's not exact because the udiv may be clearing bits. 3484 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3485 const SCEV *RHS) { 3486 // TODO: we could try to find factors in all sorts of things, but for now we 3487 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3488 // end of this file for inspiration. 3489 3490 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3491 if (!Mul || !Mul->hasNoUnsignedWrap()) 3492 return getUDivExpr(LHS, RHS); 3493 3494 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3495 // If the mulexpr multiplies by a constant, then that constant must be the 3496 // first element of the mulexpr. 3497 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3498 if (LHSCst == RHSCst) { 3499 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3500 return getMulExpr(Operands); 3501 } 3502 3503 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3504 // that there's a factor provided by one of the other terms. We need to 3505 // check. 3506 APInt Factor = gcd(LHSCst, RHSCst); 3507 if (!Factor.isIntN(1)) { 3508 LHSCst = 3509 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3510 RHSCst = 3511 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3512 SmallVector<const SCEV *, 2> Operands; 3513 Operands.push_back(LHSCst); 3514 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3515 LHS = getMulExpr(Operands); 3516 RHS = RHSCst; 3517 Mul = dyn_cast<SCEVMulExpr>(LHS); 3518 if (!Mul) 3519 return getUDivExactExpr(LHS, RHS); 3520 } 3521 } 3522 } 3523 3524 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3525 if (Mul->getOperand(i) == RHS) { 3526 SmallVector<const SCEV *, 2> Operands; 3527 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3528 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3529 return getMulExpr(Operands); 3530 } 3531 } 3532 3533 return getUDivExpr(LHS, RHS); 3534 } 3535 3536 /// Get an add recurrence expression for the specified loop. Simplify the 3537 /// expression as much as possible. 3538 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3539 const Loop *L, 3540 SCEV::NoWrapFlags Flags) { 3541 SmallVector<const SCEV *, 4> Operands; 3542 Operands.push_back(Start); 3543 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3544 if (StepChrec->getLoop() == L) { 3545 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3546 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3547 } 3548 3549 Operands.push_back(Step); 3550 return getAddRecExpr(Operands, L, Flags); 3551 } 3552 3553 /// Get an add recurrence expression for the specified loop. Simplify the 3554 /// expression as much as possible. 3555 const SCEV * 3556 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3557 const Loop *L, SCEV::NoWrapFlags Flags) { 3558 if (Operands.size() == 1) return Operands[0]; 3559 #ifndef NDEBUG 3560 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3561 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3562 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3563 "SCEVAddRecExpr operand types don't match!"); 3564 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3565 } 3566 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3567 assert(isLoopInvariant(Operands[i], L) && 3568 "SCEVAddRecExpr operand is not loop-invariant!"); 3569 #endif 3570 3571 if (Operands.back()->isZero()) { 3572 Operands.pop_back(); 3573 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3574 } 3575 3576 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3577 // use that information to infer NUW and NSW flags. However, computing a 3578 // BE count requires calling getAddRecExpr, so we may not yet have a 3579 // meaningful BE count at this point (and if we don't, we'd be stuck 3580 // with a SCEVCouldNotCompute as the cached BE count). 3581 3582 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3583 3584 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3585 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3586 const Loop *NestedLoop = NestedAR->getLoop(); 3587 if (L->contains(NestedLoop) 3588 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3589 : (!NestedLoop->contains(L) && 3590 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3591 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3592 Operands[0] = NestedAR->getStart(); 3593 // AddRecs require their operands be loop-invariant with respect to their 3594 // loops. Don't perform this transformation if it would break this 3595 // requirement. 3596 bool AllInvariant = all_of( 3597 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3598 3599 if (AllInvariant) { 3600 // Create a recurrence for the outer loop with the same step size. 3601 // 3602 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3603 // inner recurrence has the same property. 3604 SCEV::NoWrapFlags OuterFlags = 3605 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3606 3607 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3608 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3609 return isLoopInvariant(Op, NestedLoop); 3610 }); 3611 3612 if (AllInvariant) { 3613 // Ok, both add recurrences are valid after the transformation. 3614 // 3615 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3616 // the outer recurrence has the same property. 3617 SCEV::NoWrapFlags InnerFlags = 3618 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3619 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3620 } 3621 } 3622 // Reset Operands to its original state. 3623 Operands[0] = NestedAR; 3624 } 3625 } 3626 3627 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3628 // already have one, otherwise create a new one. 3629 return getOrCreateAddRecExpr(Operands, L, Flags); 3630 } 3631 3632 const SCEV * 3633 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3634 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3635 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3636 // getSCEV(Base)->getType() has the same address space as Base->getType() 3637 // because SCEV::getType() preserves the address space. 3638 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3639 const bool AssumeInBoundsFlags = [&]() { 3640 if (!GEP->isInBounds()) 3641 return false; 3642 3643 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3644 // but to do that, we have to ensure that said flag is valid in the entire 3645 // defined scope of the SCEV. 3646 auto *GEPI = dyn_cast<Instruction>(GEP); 3647 // TODO: non-instructions have global scope. We might be able to prove 3648 // some global scope cases 3649 return GEPI && isSCEVExprNeverPoison(GEPI); 3650 }(); 3651 3652 SCEV::NoWrapFlags OffsetWrap = 3653 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3654 3655 Type *CurTy = GEP->getType(); 3656 bool FirstIter = true; 3657 SmallVector<const SCEV *, 4> Offsets; 3658 for (const SCEV *IndexExpr : IndexExprs) { 3659 // Compute the (potentially symbolic) offset in bytes for this index. 3660 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3661 // For a struct, add the member offset. 3662 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3663 unsigned FieldNo = Index->getZExtValue(); 3664 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3665 Offsets.push_back(FieldOffset); 3666 3667 // Update CurTy to the type of the field at Index. 3668 CurTy = STy->getTypeAtIndex(Index); 3669 } else { 3670 // Update CurTy to its element type. 3671 if (FirstIter) { 3672 assert(isa<PointerType>(CurTy) && 3673 "The first index of a GEP indexes a pointer"); 3674 CurTy = GEP->getSourceElementType(); 3675 FirstIter = false; 3676 } else { 3677 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3678 } 3679 // For an array, add the element offset, explicitly scaled. 3680 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3681 // Getelementptr indices are signed. 3682 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3683 3684 // Multiply the index by the element size to compute the element offset. 3685 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3686 Offsets.push_back(LocalOffset); 3687 } 3688 } 3689 3690 // Handle degenerate case of GEP without offsets. 3691 if (Offsets.empty()) 3692 return BaseExpr; 3693 3694 // Add the offsets together, assuming nsw if inbounds. 3695 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3696 // Add the base address and the offset. We cannot use the nsw flag, as the 3697 // base address is unsigned. However, if we know that the offset is 3698 // non-negative, we can use nuw. 3699 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3700 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3701 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3702 assert(BaseExpr->getType() == GEPExpr->getType() && 3703 "GEP should not change type mid-flight."); 3704 return GEPExpr; 3705 } 3706 3707 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3708 ArrayRef<const SCEV *> Ops) { 3709 FoldingSetNodeID ID; 3710 ID.AddInteger(SCEVType); 3711 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3712 ID.AddPointer(Ops[i]); 3713 void *IP = nullptr; 3714 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3715 } 3716 3717 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3718 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3719 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3720 } 3721 3722 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3723 SmallVectorImpl<const SCEV *> &Ops) { 3724 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3725 if (Ops.size() == 1) return Ops[0]; 3726 #ifndef NDEBUG 3727 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3728 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3729 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3730 "Operand types don't match!"); 3731 assert(Ops[0]->getType()->isPointerTy() == 3732 Ops[i]->getType()->isPointerTy() && 3733 "min/max should be consistently pointerish"); 3734 } 3735 #endif 3736 3737 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3738 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3739 3740 // Sort by complexity, this groups all similar expression types together. 3741 GroupByComplexity(Ops, &LI, DT); 3742 3743 // Check if we have created the same expression before. 3744 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3745 return S; 3746 } 3747 3748 // If there are any constants, fold them together. 3749 unsigned Idx = 0; 3750 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3751 ++Idx; 3752 assert(Idx < Ops.size()); 3753 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3754 if (Kind == scSMaxExpr) 3755 return APIntOps::smax(LHS, RHS); 3756 else if (Kind == scSMinExpr) 3757 return APIntOps::smin(LHS, RHS); 3758 else if (Kind == scUMaxExpr) 3759 return APIntOps::umax(LHS, RHS); 3760 else if (Kind == scUMinExpr) 3761 return APIntOps::umin(LHS, RHS); 3762 llvm_unreachable("Unknown SCEV min/max opcode"); 3763 }; 3764 3765 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3766 // We found two constants, fold them together! 3767 ConstantInt *Fold = ConstantInt::get( 3768 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3769 Ops[0] = getConstant(Fold); 3770 Ops.erase(Ops.begin()+1); // Erase the folded element 3771 if (Ops.size() == 1) return Ops[0]; 3772 LHSC = cast<SCEVConstant>(Ops[0]); 3773 } 3774 3775 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3776 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3777 3778 if (IsMax ? IsMinV : IsMaxV) { 3779 // If we are left with a constant minimum(/maximum)-int, strip it off. 3780 Ops.erase(Ops.begin()); 3781 --Idx; 3782 } else if (IsMax ? IsMaxV : IsMinV) { 3783 // If we have a max(/min) with a constant maximum(/minimum)-int, 3784 // it will always be the extremum. 3785 return LHSC; 3786 } 3787 3788 if (Ops.size() == 1) return Ops[0]; 3789 } 3790 3791 // Find the first operation of the same kind 3792 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3793 ++Idx; 3794 3795 // Check to see if one of the operands is of the same kind. If so, expand its 3796 // operands onto our operand list, and recurse to simplify. 3797 if (Idx < Ops.size()) { 3798 bool DeletedAny = false; 3799 while (Ops[Idx]->getSCEVType() == Kind) { 3800 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3801 Ops.erase(Ops.begin()+Idx); 3802 Ops.append(SMME->op_begin(), SMME->op_end()); 3803 DeletedAny = true; 3804 } 3805 3806 if (DeletedAny) 3807 return getMinMaxExpr(Kind, Ops); 3808 } 3809 3810 // Okay, check to see if the same value occurs in the operand list twice. If 3811 // so, delete one. Since we sorted the list, these values are required to 3812 // be adjacent. 3813 llvm::CmpInst::Predicate GEPred = 3814 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3815 llvm::CmpInst::Predicate LEPred = 3816 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3817 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3818 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3819 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3820 if (Ops[i] == Ops[i + 1] || 3821 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3822 // X op Y op Y --> X op Y 3823 // X op Y --> X, if we know X, Y are ordered appropriately 3824 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3825 --i; 3826 --e; 3827 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3828 Ops[i + 1])) { 3829 // X op Y --> Y, if we know X, Y are ordered appropriately 3830 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3831 --i; 3832 --e; 3833 } 3834 } 3835 3836 if (Ops.size() == 1) return Ops[0]; 3837 3838 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3839 3840 // Okay, it looks like we really DO need an expr. Check to see if we 3841 // already have one, otherwise create a new one. 3842 FoldingSetNodeID ID; 3843 ID.AddInteger(Kind); 3844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3845 ID.AddPointer(Ops[i]); 3846 void *IP = nullptr; 3847 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3848 if (ExistingSCEV) 3849 return ExistingSCEV; 3850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3852 SCEV *S = new (SCEVAllocator) 3853 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3854 3855 UniqueSCEVs.InsertNode(S, IP); 3856 registerUser(S, Ops); 3857 return S; 3858 } 3859 3860 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3861 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3862 return getSMaxExpr(Ops); 3863 } 3864 3865 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3866 return getMinMaxExpr(scSMaxExpr, Ops); 3867 } 3868 3869 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3870 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3871 return getUMaxExpr(Ops); 3872 } 3873 3874 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3875 return getMinMaxExpr(scUMaxExpr, Ops); 3876 } 3877 3878 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3879 const SCEV *RHS) { 3880 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3881 return getSMinExpr(Ops); 3882 } 3883 3884 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3885 return getMinMaxExpr(scSMinExpr, Ops); 3886 } 3887 3888 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3889 const SCEV *RHS) { 3890 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3891 return getUMinExpr(Ops); 3892 } 3893 3894 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3895 return getMinMaxExpr(scUMinExpr, Ops); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3900 ScalableVectorType *ScalableTy) { 3901 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3902 Constant *One = ConstantInt::get(IntTy, 1); 3903 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3904 // Note that the expression we created is the final expression, we don't 3905 // want to simplify it any further Also, if we call a normal getSCEV(), 3906 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3907 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3908 } 3909 3910 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3911 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3912 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3913 // We can bypass creating a target-independent constant expression and then 3914 // folding it back into a ConstantInt. This is just a compile-time 3915 // optimization. 3916 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3917 } 3918 3919 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3920 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3921 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3922 // We can bypass creating a target-independent constant expression and then 3923 // folding it back into a ConstantInt. This is just a compile-time 3924 // optimization. 3925 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3926 } 3927 3928 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3929 StructType *STy, 3930 unsigned FieldNo) { 3931 // We can bypass creating a target-independent constant expression and then 3932 // folding it back into a ConstantInt. This is just a compile-time 3933 // optimization. 3934 return getConstant( 3935 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3936 } 3937 3938 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3939 // Don't attempt to do anything other than create a SCEVUnknown object 3940 // here. createSCEV only calls getUnknown after checking for all other 3941 // interesting possibilities, and any other code that calls getUnknown 3942 // is doing so in order to hide a value from SCEV canonicalization. 3943 3944 FoldingSetNodeID ID; 3945 ID.AddInteger(scUnknown); 3946 ID.AddPointer(V); 3947 void *IP = nullptr; 3948 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3949 assert(cast<SCEVUnknown>(S)->getValue() == V && 3950 "Stale SCEVUnknown in uniquing map!"); 3951 return S; 3952 } 3953 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3954 FirstUnknown); 3955 FirstUnknown = cast<SCEVUnknown>(S); 3956 UniqueSCEVs.InsertNode(S, IP); 3957 return S; 3958 } 3959 3960 //===----------------------------------------------------------------------===// 3961 // Basic SCEV Analysis and PHI Idiom Recognition Code 3962 // 3963 3964 /// Test if values of the given type are analyzable within the SCEV 3965 /// framework. This primarily includes integer types, and it can optionally 3966 /// include pointer types if the ScalarEvolution class has access to 3967 /// target-specific information. 3968 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3969 // Integers and pointers are always SCEVable. 3970 return Ty->isIntOrPtrTy(); 3971 } 3972 3973 /// Return the size in bits of the specified type, for which isSCEVable must 3974 /// return true. 3975 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3976 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3977 if (Ty->isPointerTy()) 3978 return getDataLayout().getIndexTypeSizeInBits(Ty); 3979 return getDataLayout().getTypeSizeInBits(Ty); 3980 } 3981 3982 /// Return a type with the same bitwidth as the given type and which represents 3983 /// how SCEV will treat the given type, for which isSCEVable must return 3984 /// true. For pointer types, this is the pointer index sized integer type. 3985 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3986 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3987 3988 if (Ty->isIntegerTy()) 3989 return Ty; 3990 3991 // The only other support type is pointer. 3992 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3993 return getDataLayout().getIndexType(Ty); 3994 } 3995 3996 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3997 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3998 } 3999 4000 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4001 const SCEV *B) { 4002 /// For a valid use point to exist, the defining scope of one operand 4003 /// must dominate the other. 4004 bool PreciseA, PreciseB; 4005 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4006 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4007 if (!PreciseA || !PreciseB) 4008 // Can't tell. 4009 return false; 4010 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4011 DT.dominates(ScopeB, ScopeA); 4012 } 4013 4014 4015 const SCEV *ScalarEvolution::getCouldNotCompute() { 4016 return CouldNotCompute.get(); 4017 } 4018 4019 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4020 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4021 auto *SU = dyn_cast<SCEVUnknown>(S); 4022 return SU && SU->getValue() == nullptr; 4023 }); 4024 4025 return !ContainsNulls; 4026 } 4027 4028 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4029 HasRecMapType::iterator I = HasRecMap.find(S); 4030 if (I != HasRecMap.end()) 4031 return I->second; 4032 4033 bool FoundAddRec = 4034 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4035 HasRecMap.insert({S, FoundAddRec}); 4036 return FoundAddRec; 4037 } 4038 4039 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4040 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4041 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4042 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4043 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4044 if (!Add) 4045 return {S, nullptr}; 4046 4047 if (Add->getNumOperands() != 2) 4048 return {S, nullptr}; 4049 4050 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4051 if (!ConstOp) 4052 return {S, nullptr}; 4053 4054 return {Add->getOperand(1), ConstOp->getValue()}; 4055 } 4056 4057 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4058 /// by the value and offset from any ValueOffsetPair in the set. 4059 ScalarEvolution::ValueOffsetPairSetVector * 4060 ScalarEvolution::getSCEVValues(const SCEV *S) { 4061 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4062 if (SI == ExprValueMap.end()) 4063 return nullptr; 4064 #ifndef NDEBUG 4065 if (VerifySCEVMap) { 4066 // Check there is no dangling Value in the set returned. 4067 for (const auto &VE : SI->second) 4068 assert(ValueExprMap.count(VE.first)); 4069 } 4070 #endif 4071 return &SI->second; 4072 } 4073 4074 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4075 /// cannot be used separately. eraseValueFromMap should be used to remove 4076 /// V from ValueExprMap and ExprValueMap at the same time. 4077 void ScalarEvolution::eraseValueFromMap(Value *V) { 4078 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4079 if (I != ValueExprMap.end()) { 4080 const SCEV *S = I->second; 4081 // Remove {V, 0} from the set of ExprValueMap[S] 4082 if (auto *SV = getSCEVValues(S)) 4083 SV->remove({V, nullptr}); 4084 4085 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4086 const SCEV *Stripped; 4087 ConstantInt *Offset; 4088 std::tie(Stripped, Offset) = splitAddExpr(S); 4089 if (Offset != nullptr) { 4090 if (auto *SV = getSCEVValues(Stripped)) 4091 SV->remove({V, Offset}); 4092 } 4093 ValueExprMap.erase(V); 4094 } 4095 } 4096 4097 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4098 /// create a new one. 4099 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4100 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4101 4102 const SCEV *S = getExistingSCEV(V); 4103 if (S == nullptr) { 4104 S = createSCEV(V); 4105 // During PHI resolution, it is possible to create two SCEVs for the same 4106 // V, so it is needed to double check whether V->S is inserted into 4107 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4108 std::pair<ValueExprMapType::iterator, bool> Pair = 4109 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4110 if (Pair.second) { 4111 ExprValueMap[S].insert({V, nullptr}); 4112 4113 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4114 // ExprValueMap. 4115 const SCEV *Stripped = S; 4116 ConstantInt *Offset = nullptr; 4117 std::tie(Stripped, Offset) = splitAddExpr(S); 4118 // If stripped is SCEVUnknown, don't bother to save 4119 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4120 // increase the complexity of the expansion code. 4121 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4122 // because it may generate add/sub instead of GEP in SCEV expansion. 4123 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4124 !isa<GetElementPtrInst>(V)) 4125 ExprValueMap[Stripped].insert({V, Offset}); 4126 } 4127 } 4128 return S; 4129 } 4130 4131 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4132 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4133 4134 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4135 if (I != ValueExprMap.end()) { 4136 const SCEV *S = I->second; 4137 if (checkValidity(S)) 4138 return S; 4139 eraseValueFromMap(V); 4140 forgetMemoizedResults(S); 4141 } 4142 return nullptr; 4143 } 4144 4145 /// Return a SCEV corresponding to -V = -1*V 4146 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4147 SCEV::NoWrapFlags Flags) { 4148 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4149 return getConstant( 4150 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4151 4152 Type *Ty = V->getType(); 4153 Ty = getEffectiveSCEVType(Ty); 4154 return getMulExpr(V, getMinusOne(Ty), Flags); 4155 } 4156 4157 /// If Expr computes ~A, return A else return nullptr 4158 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4159 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4160 if (!Add || Add->getNumOperands() != 2 || 4161 !Add->getOperand(0)->isAllOnesValue()) 4162 return nullptr; 4163 4164 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4165 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4166 !AddRHS->getOperand(0)->isAllOnesValue()) 4167 return nullptr; 4168 4169 return AddRHS->getOperand(1); 4170 } 4171 4172 /// Return a SCEV corresponding to ~V = -1-V 4173 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4174 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4175 4176 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4177 return getConstant( 4178 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4179 4180 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4181 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4182 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4183 SmallVector<const SCEV *, 2> MatchedOperands; 4184 for (const SCEV *Operand : MME->operands()) { 4185 const SCEV *Matched = MatchNotExpr(Operand); 4186 if (!Matched) 4187 return (const SCEV *)nullptr; 4188 MatchedOperands.push_back(Matched); 4189 } 4190 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4191 MatchedOperands); 4192 }; 4193 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4194 return Replaced; 4195 } 4196 4197 Type *Ty = V->getType(); 4198 Ty = getEffectiveSCEVType(Ty); 4199 return getMinusSCEV(getMinusOne(Ty), V); 4200 } 4201 4202 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4203 assert(P->getType()->isPointerTy()); 4204 4205 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4206 // The base of an AddRec is the first operand. 4207 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4208 Ops[0] = removePointerBase(Ops[0]); 4209 // Don't try to transfer nowrap flags for now. We could in some cases 4210 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4211 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4212 } 4213 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4214 // The base of an Add is the pointer operand. 4215 SmallVector<const SCEV *> Ops{Add->operands()}; 4216 const SCEV **PtrOp = nullptr; 4217 for (const SCEV *&AddOp : Ops) { 4218 if (AddOp->getType()->isPointerTy()) { 4219 assert(!PtrOp && "Cannot have multiple pointer ops"); 4220 PtrOp = &AddOp; 4221 } 4222 } 4223 *PtrOp = removePointerBase(*PtrOp); 4224 // Don't try to transfer nowrap flags for now. We could in some cases 4225 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4226 return getAddExpr(Ops); 4227 } 4228 // Any other expression must be a pointer base. 4229 return getZero(P->getType()); 4230 } 4231 4232 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4233 SCEV::NoWrapFlags Flags, 4234 unsigned Depth) { 4235 // Fast path: X - X --> 0. 4236 if (LHS == RHS) 4237 return getZero(LHS->getType()); 4238 4239 // If we subtract two pointers with different pointer bases, bail. 4240 // Eventually, we're going to add an assertion to getMulExpr that we 4241 // can't multiply by a pointer. 4242 if (RHS->getType()->isPointerTy()) { 4243 if (!LHS->getType()->isPointerTy() || 4244 getPointerBase(LHS) != getPointerBase(RHS)) 4245 return getCouldNotCompute(); 4246 LHS = removePointerBase(LHS); 4247 RHS = removePointerBase(RHS); 4248 } 4249 4250 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4251 // makes it so that we cannot make much use of NUW. 4252 auto AddFlags = SCEV::FlagAnyWrap; 4253 const bool RHSIsNotMinSigned = 4254 !getSignedRangeMin(RHS).isMinSignedValue(); 4255 if (hasFlags(Flags, SCEV::FlagNSW)) { 4256 // Let M be the minimum representable signed value. Then (-1)*RHS 4257 // signed-wraps if and only if RHS is M. That can happen even for 4258 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4259 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4260 // (-1)*RHS, we need to prove that RHS != M. 4261 // 4262 // If LHS is non-negative and we know that LHS - RHS does not 4263 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4264 // either by proving that RHS > M or that LHS >= 0. 4265 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4266 AddFlags = SCEV::FlagNSW; 4267 } 4268 } 4269 4270 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4271 // RHS is NSW and LHS >= 0. 4272 // 4273 // The difficulty here is that the NSW flag may have been proven 4274 // relative to a loop that is to be found in a recurrence in LHS and 4275 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4276 // larger scope than intended. 4277 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4278 4279 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4280 } 4281 4282 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4283 unsigned Depth) { 4284 Type *SrcTy = V->getType(); 4285 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4286 "Cannot truncate or zero extend with non-integer arguments!"); 4287 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4288 return V; // No conversion 4289 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4290 return getTruncateExpr(V, Ty, Depth); 4291 return getZeroExtendExpr(V, Ty, Depth); 4292 } 4293 4294 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4295 unsigned Depth) { 4296 Type *SrcTy = V->getType(); 4297 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4298 "Cannot truncate or zero extend with non-integer arguments!"); 4299 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4300 return V; // No conversion 4301 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4302 return getTruncateExpr(V, Ty, Depth); 4303 return getSignExtendExpr(V, Ty, Depth); 4304 } 4305 4306 const SCEV * 4307 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4308 Type *SrcTy = V->getType(); 4309 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4310 "Cannot noop or zero extend with non-integer arguments!"); 4311 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4312 "getNoopOrZeroExtend cannot truncate!"); 4313 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4314 return V; // No conversion 4315 return getZeroExtendExpr(V, Ty); 4316 } 4317 4318 const SCEV * 4319 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4320 Type *SrcTy = V->getType(); 4321 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4322 "Cannot noop or sign extend with non-integer arguments!"); 4323 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4324 "getNoopOrSignExtend cannot truncate!"); 4325 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4326 return V; // No conversion 4327 return getSignExtendExpr(V, Ty); 4328 } 4329 4330 const SCEV * 4331 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4332 Type *SrcTy = V->getType(); 4333 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4334 "Cannot noop or any extend with non-integer arguments!"); 4335 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4336 "getNoopOrAnyExtend cannot truncate!"); 4337 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4338 return V; // No conversion 4339 return getAnyExtendExpr(V, Ty); 4340 } 4341 4342 const SCEV * 4343 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4344 Type *SrcTy = V->getType(); 4345 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4346 "Cannot truncate or noop with non-integer arguments!"); 4347 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4348 "getTruncateOrNoop cannot extend!"); 4349 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4350 return V; // No conversion 4351 return getTruncateExpr(V, Ty); 4352 } 4353 4354 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4355 const SCEV *RHS) { 4356 const SCEV *PromotedLHS = LHS; 4357 const SCEV *PromotedRHS = RHS; 4358 4359 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4360 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4361 else 4362 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4363 4364 return getUMaxExpr(PromotedLHS, PromotedRHS); 4365 } 4366 4367 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4368 const SCEV *RHS) { 4369 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4370 return getUMinFromMismatchedTypes(Ops); 4371 } 4372 4373 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4374 SmallVectorImpl<const SCEV *> &Ops) { 4375 assert(!Ops.empty() && "At least one operand must be!"); 4376 // Trivial case. 4377 if (Ops.size() == 1) 4378 return Ops[0]; 4379 4380 // Find the max type first. 4381 Type *MaxType = nullptr; 4382 for (auto *S : Ops) 4383 if (MaxType) 4384 MaxType = getWiderType(MaxType, S->getType()); 4385 else 4386 MaxType = S->getType(); 4387 assert(MaxType && "Failed to find maximum type!"); 4388 4389 // Extend all ops to max type. 4390 SmallVector<const SCEV *, 2> PromotedOps; 4391 for (auto *S : Ops) 4392 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4393 4394 // Generate umin. 4395 return getUMinExpr(PromotedOps); 4396 } 4397 4398 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4399 // A pointer operand may evaluate to a nonpointer expression, such as null. 4400 if (!V->getType()->isPointerTy()) 4401 return V; 4402 4403 while (true) { 4404 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4405 V = AddRec->getStart(); 4406 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4407 const SCEV *PtrOp = nullptr; 4408 for (const SCEV *AddOp : Add->operands()) { 4409 if (AddOp->getType()->isPointerTy()) { 4410 assert(!PtrOp && "Cannot have multiple pointer ops"); 4411 PtrOp = AddOp; 4412 } 4413 } 4414 assert(PtrOp && "Must have pointer op"); 4415 V = PtrOp; 4416 } else // Not something we can look further into. 4417 return V; 4418 } 4419 } 4420 4421 /// Push users of the given Instruction onto the given Worklist. 4422 static void PushDefUseChildren(Instruction *I, 4423 SmallVectorImpl<Instruction *> &Worklist, 4424 SmallPtrSetImpl<Instruction *> &Visited) { 4425 // Push the def-use children onto the Worklist stack. 4426 for (User *U : I->users()) { 4427 auto *UserInsn = cast<Instruction>(U); 4428 if (Visited.insert(UserInsn).second) 4429 Worklist.push_back(UserInsn); 4430 } 4431 } 4432 4433 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4434 SmallVector<Instruction *, 16> Worklist; 4435 SmallPtrSet<Instruction *, 8> Visited; 4436 SmallVector<const SCEV *, 8> ToForget; 4437 Visited.insert(PN); 4438 Worklist.push_back(PN); 4439 while (!Worklist.empty()) { 4440 Instruction *I = Worklist.pop_back_val(); 4441 4442 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4443 if (It != ValueExprMap.end()) { 4444 const SCEV *Old = It->second; 4445 4446 // Short-circuit the def-use traversal if the symbolic name 4447 // ceases to appear in expressions. 4448 if (Old != SymName && !hasOperand(Old, SymName)) 4449 continue; 4450 4451 // SCEVUnknown for a PHI either means that it has an unrecognized 4452 // structure, it's a PHI that's in the progress of being computed 4453 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4454 // additional loop trip count information isn't going to change anything. 4455 // In the second case, createNodeForPHI will perform the necessary 4456 // updates on its own when it gets to that point. In the third, we do 4457 // want to forget the SCEVUnknown. 4458 if (!isa<PHINode>(I) || 4459 !isa<SCEVUnknown>(Old) || 4460 (I != PN && Old == SymName)) { 4461 eraseValueFromMap(It->first); 4462 ToForget.push_back(Old); 4463 } 4464 } 4465 4466 PushDefUseChildren(I, Worklist, Visited); 4467 } 4468 forgetMemoizedResults(ToForget); 4469 } 4470 4471 namespace { 4472 4473 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4474 /// expression in case its Loop is L. If it is not L then 4475 /// if IgnoreOtherLoops is true then use AddRec itself 4476 /// otherwise rewrite cannot be done. 4477 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4478 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4479 public: 4480 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4481 bool IgnoreOtherLoops = true) { 4482 SCEVInitRewriter Rewriter(L, SE); 4483 const SCEV *Result = Rewriter.visit(S); 4484 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4485 return SE.getCouldNotCompute(); 4486 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4487 ? SE.getCouldNotCompute() 4488 : Result; 4489 } 4490 4491 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4492 if (!SE.isLoopInvariant(Expr, L)) 4493 SeenLoopVariantSCEVUnknown = true; 4494 return Expr; 4495 } 4496 4497 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4498 // Only re-write AddRecExprs for this loop. 4499 if (Expr->getLoop() == L) 4500 return Expr->getStart(); 4501 SeenOtherLoops = true; 4502 return Expr; 4503 } 4504 4505 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4506 4507 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4508 4509 private: 4510 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4511 : SCEVRewriteVisitor(SE), L(L) {} 4512 4513 const Loop *L; 4514 bool SeenLoopVariantSCEVUnknown = false; 4515 bool SeenOtherLoops = false; 4516 }; 4517 4518 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4519 /// increment expression in case its Loop is L. If it is not L then 4520 /// use AddRec itself. 4521 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4522 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4523 public: 4524 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4525 SCEVPostIncRewriter Rewriter(L, SE); 4526 const SCEV *Result = Rewriter.visit(S); 4527 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4528 ? SE.getCouldNotCompute() 4529 : Result; 4530 } 4531 4532 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4533 if (!SE.isLoopInvariant(Expr, L)) 4534 SeenLoopVariantSCEVUnknown = true; 4535 return Expr; 4536 } 4537 4538 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4539 // Only re-write AddRecExprs for this loop. 4540 if (Expr->getLoop() == L) 4541 return Expr->getPostIncExpr(SE); 4542 SeenOtherLoops = true; 4543 return Expr; 4544 } 4545 4546 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4547 4548 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4549 4550 private: 4551 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4552 : SCEVRewriteVisitor(SE), L(L) {} 4553 4554 const Loop *L; 4555 bool SeenLoopVariantSCEVUnknown = false; 4556 bool SeenOtherLoops = false; 4557 }; 4558 4559 /// This class evaluates the compare condition by matching it against the 4560 /// condition of loop latch. If there is a match we assume a true value 4561 /// for the condition while building SCEV nodes. 4562 class SCEVBackedgeConditionFolder 4563 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4564 public: 4565 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4566 ScalarEvolution &SE) { 4567 bool IsPosBECond = false; 4568 Value *BECond = nullptr; 4569 if (BasicBlock *Latch = L->getLoopLatch()) { 4570 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4571 if (BI && BI->isConditional()) { 4572 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4573 "Both outgoing branches should not target same header!"); 4574 BECond = BI->getCondition(); 4575 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4576 } else { 4577 return S; 4578 } 4579 } 4580 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4581 return Rewriter.visit(S); 4582 } 4583 4584 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4585 const SCEV *Result = Expr; 4586 bool InvariantF = SE.isLoopInvariant(Expr, L); 4587 4588 if (!InvariantF) { 4589 Instruction *I = cast<Instruction>(Expr->getValue()); 4590 switch (I->getOpcode()) { 4591 case Instruction::Select: { 4592 SelectInst *SI = cast<SelectInst>(I); 4593 Optional<const SCEV *> Res = 4594 compareWithBackedgeCondition(SI->getCondition()); 4595 if (Res.hasValue()) { 4596 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4597 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4598 } 4599 break; 4600 } 4601 default: { 4602 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4603 if (Res.hasValue()) 4604 Result = Res.getValue(); 4605 break; 4606 } 4607 } 4608 } 4609 return Result; 4610 } 4611 4612 private: 4613 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4614 bool IsPosBECond, ScalarEvolution &SE) 4615 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4616 IsPositiveBECond(IsPosBECond) {} 4617 4618 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4619 4620 const Loop *L; 4621 /// Loop back condition. 4622 Value *BackedgeCond = nullptr; 4623 /// Set to true if loop back is on positive branch condition. 4624 bool IsPositiveBECond; 4625 }; 4626 4627 Optional<const SCEV *> 4628 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4629 4630 // If value matches the backedge condition for loop latch, 4631 // then return a constant evolution node based on loopback 4632 // branch taken. 4633 if (BackedgeCond == IC) 4634 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4635 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4636 return None; 4637 } 4638 4639 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4640 public: 4641 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4642 ScalarEvolution &SE) { 4643 SCEVShiftRewriter Rewriter(L, SE); 4644 const SCEV *Result = Rewriter.visit(S); 4645 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4646 } 4647 4648 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4649 // Only allow AddRecExprs for this loop. 4650 if (!SE.isLoopInvariant(Expr, L)) 4651 Valid = false; 4652 return Expr; 4653 } 4654 4655 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4656 if (Expr->getLoop() == L && Expr->isAffine()) 4657 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4658 Valid = false; 4659 return Expr; 4660 } 4661 4662 bool isValid() { return Valid; } 4663 4664 private: 4665 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4666 : SCEVRewriteVisitor(SE), L(L) {} 4667 4668 const Loop *L; 4669 bool Valid = true; 4670 }; 4671 4672 } // end anonymous namespace 4673 4674 SCEV::NoWrapFlags 4675 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4676 if (!AR->isAffine()) 4677 return SCEV::FlagAnyWrap; 4678 4679 using OBO = OverflowingBinaryOperator; 4680 4681 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4682 4683 if (!AR->hasNoSignedWrap()) { 4684 ConstantRange AddRecRange = getSignedRange(AR); 4685 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4686 4687 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4688 Instruction::Add, IncRange, OBO::NoSignedWrap); 4689 if (NSWRegion.contains(AddRecRange)) 4690 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4691 } 4692 4693 if (!AR->hasNoUnsignedWrap()) { 4694 ConstantRange AddRecRange = getUnsignedRange(AR); 4695 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4696 4697 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4698 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4699 if (NUWRegion.contains(AddRecRange)) 4700 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4701 } 4702 4703 return Result; 4704 } 4705 4706 SCEV::NoWrapFlags 4707 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4708 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4709 4710 if (AR->hasNoSignedWrap()) 4711 return Result; 4712 4713 if (!AR->isAffine()) 4714 return Result; 4715 4716 const SCEV *Step = AR->getStepRecurrence(*this); 4717 const Loop *L = AR->getLoop(); 4718 4719 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4720 // Note that this serves two purposes: It filters out loops that are 4721 // simply not analyzable, and it covers the case where this code is 4722 // being called from within backedge-taken count analysis, such that 4723 // attempting to ask for the backedge-taken count would likely result 4724 // in infinite recursion. In the later case, the analysis code will 4725 // cope with a conservative value, and it will take care to purge 4726 // that value once it has finished. 4727 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4728 4729 // Normally, in the cases we can prove no-overflow via a 4730 // backedge guarding condition, we can also compute a backedge 4731 // taken count for the loop. The exceptions are assumptions and 4732 // guards present in the loop -- SCEV is not great at exploiting 4733 // these to compute max backedge taken counts, but can still use 4734 // these to prove lack of overflow. Use this fact to avoid 4735 // doing extra work that may not pay off. 4736 4737 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4738 AC.assumptions().empty()) 4739 return Result; 4740 4741 // If the backedge is guarded by a comparison with the pre-inc value the 4742 // addrec is safe. Also, if the entry is guarded by a comparison with the 4743 // start value and the backedge is guarded by a comparison with the post-inc 4744 // value, the addrec is safe. 4745 ICmpInst::Predicate Pred; 4746 const SCEV *OverflowLimit = 4747 getSignedOverflowLimitForStep(Step, &Pred, this); 4748 if (OverflowLimit && 4749 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4750 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4751 Result = setFlags(Result, SCEV::FlagNSW); 4752 } 4753 return Result; 4754 } 4755 SCEV::NoWrapFlags 4756 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4757 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4758 4759 if (AR->hasNoUnsignedWrap()) 4760 return Result; 4761 4762 if (!AR->isAffine()) 4763 return Result; 4764 4765 const SCEV *Step = AR->getStepRecurrence(*this); 4766 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4767 const Loop *L = AR->getLoop(); 4768 4769 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4770 // Note that this serves two purposes: It filters out loops that are 4771 // simply not analyzable, and it covers the case where this code is 4772 // being called from within backedge-taken count analysis, such that 4773 // attempting to ask for the backedge-taken count would likely result 4774 // in infinite recursion. In the later case, the analysis code will 4775 // cope with a conservative value, and it will take care to purge 4776 // that value once it has finished. 4777 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4778 4779 // Normally, in the cases we can prove no-overflow via a 4780 // backedge guarding condition, we can also compute a backedge 4781 // taken count for the loop. The exceptions are assumptions and 4782 // guards present in the loop -- SCEV is not great at exploiting 4783 // these to compute max backedge taken counts, but can still use 4784 // these to prove lack of overflow. Use this fact to avoid 4785 // doing extra work that may not pay off. 4786 4787 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4788 AC.assumptions().empty()) 4789 return Result; 4790 4791 // If the backedge is guarded by a comparison with the pre-inc value the 4792 // addrec is safe. Also, if the entry is guarded by a comparison with the 4793 // start value and the backedge is guarded by a comparison with the post-inc 4794 // value, the addrec is safe. 4795 if (isKnownPositive(Step)) { 4796 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4797 getUnsignedRangeMax(Step)); 4798 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4799 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4800 Result = setFlags(Result, SCEV::FlagNUW); 4801 } 4802 } 4803 4804 return Result; 4805 } 4806 4807 namespace { 4808 4809 /// Represents an abstract binary operation. This may exist as a 4810 /// normal instruction or constant expression, or may have been 4811 /// derived from an expression tree. 4812 struct BinaryOp { 4813 unsigned Opcode; 4814 Value *LHS; 4815 Value *RHS; 4816 bool IsNSW = false; 4817 bool IsNUW = false; 4818 4819 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4820 /// constant expression. 4821 Operator *Op = nullptr; 4822 4823 explicit BinaryOp(Operator *Op) 4824 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4825 Op(Op) { 4826 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4827 IsNSW = OBO->hasNoSignedWrap(); 4828 IsNUW = OBO->hasNoUnsignedWrap(); 4829 } 4830 } 4831 4832 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4833 bool IsNUW = false) 4834 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4835 }; 4836 4837 } // end anonymous namespace 4838 4839 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4840 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4841 auto *Op = dyn_cast<Operator>(V); 4842 if (!Op) 4843 return None; 4844 4845 // Implementation detail: all the cleverness here should happen without 4846 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4847 // SCEV expressions when possible, and we should not break that. 4848 4849 switch (Op->getOpcode()) { 4850 case Instruction::Add: 4851 case Instruction::Sub: 4852 case Instruction::Mul: 4853 case Instruction::UDiv: 4854 case Instruction::URem: 4855 case Instruction::And: 4856 case Instruction::Or: 4857 case Instruction::AShr: 4858 case Instruction::Shl: 4859 return BinaryOp(Op); 4860 4861 case Instruction::Xor: 4862 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4863 // If the RHS of the xor is a signmask, then this is just an add. 4864 // Instcombine turns add of signmask into xor as a strength reduction step. 4865 if (RHSC->getValue().isSignMask()) 4866 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4867 return BinaryOp(Op); 4868 4869 case Instruction::LShr: 4870 // Turn logical shift right of a constant into a unsigned divide. 4871 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4872 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4873 4874 // If the shift count is not less than the bitwidth, the result of 4875 // the shift is undefined. Don't try to analyze it, because the 4876 // resolution chosen here may differ from the resolution chosen in 4877 // other parts of the compiler. 4878 if (SA->getValue().ult(BitWidth)) { 4879 Constant *X = 4880 ConstantInt::get(SA->getContext(), 4881 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4882 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4883 } 4884 } 4885 return BinaryOp(Op); 4886 4887 case Instruction::ExtractValue: { 4888 auto *EVI = cast<ExtractValueInst>(Op); 4889 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4890 break; 4891 4892 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4893 if (!WO) 4894 break; 4895 4896 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4897 bool Signed = WO->isSigned(); 4898 // TODO: Should add nuw/nsw flags for mul as well. 4899 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4900 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4901 4902 // Now that we know that all uses of the arithmetic-result component of 4903 // CI are guarded by the overflow check, we can go ahead and pretend 4904 // that the arithmetic is non-overflowing. 4905 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4906 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4907 } 4908 4909 default: 4910 break; 4911 } 4912 4913 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4914 // semantics as a Sub, return a binary sub expression. 4915 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4916 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4917 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4918 4919 return None; 4920 } 4921 4922 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4923 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4924 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4925 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4926 /// follows one of the following patterns: 4927 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4928 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4929 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4930 /// we return the type of the truncation operation, and indicate whether the 4931 /// truncated type should be treated as signed/unsigned by setting 4932 /// \p Signed to true/false, respectively. 4933 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4934 bool &Signed, ScalarEvolution &SE) { 4935 // The case where Op == SymbolicPHI (that is, with no type conversions on 4936 // the way) is handled by the regular add recurrence creating logic and 4937 // would have already been triggered in createAddRecForPHI. Reaching it here 4938 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4939 // because one of the other operands of the SCEVAddExpr updating this PHI is 4940 // not invariant). 4941 // 4942 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4943 // this case predicates that allow us to prove that Op == SymbolicPHI will 4944 // be added. 4945 if (Op == SymbolicPHI) 4946 return nullptr; 4947 4948 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4949 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4950 if (SourceBits != NewBits) 4951 return nullptr; 4952 4953 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4954 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4955 if (!SExt && !ZExt) 4956 return nullptr; 4957 const SCEVTruncateExpr *Trunc = 4958 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4959 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4960 if (!Trunc) 4961 return nullptr; 4962 const SCEV *X = Trunc->getOperand(); 4963 if (X != SymbolicPHI) 4964 return nullptr; 4965 Signed = SExt != nullptr; 4966 return Trunc->getType(); 4967 } 4968 4969 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4970 if (!PN->getType()->isIntegerTy()) 4971 return nullptr; 4972 const Loop *L = LI.getLoopFor(PN->getParent()); 4973 if (!L || L->getHeader() != PN->getParent()) 4974 return nullptr; 4975 return L; 4976 } 4977 4978 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4979 // computation that updates the phi follows the following pattern: 4980 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4981 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4982 // If so, try to see if it can be rewritten as an AddRecExpr under some 4983 // Predicates. If successful, return them as a pair. Also cache the results 4984 // of the analysis. 4985 // 4986 // Example usage scenario: 4987 // Say the Rewriter is called for the following SCEV: 4988 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4989 // where: 4990 // %X = phi i64 (%Start, %BEValue) 4991 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4992 // and call this function with %SymbolicPHI = %X. 4993 // 4994 // The analysis will find that the value coming around the backedge has 4995 // the following SCEV: 4996 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4997 // Upon concluding that this matches the desired pattern, the function 4998 // will return the pair {NewAddRec, SmallPredsVec} where: 4999 // NewAddRec = {%Start,+,%Step} 5000 // SmallPredsVec = {P1, P2, P3} as follows: 5001 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5002 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5003 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5004 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5005 // under the predicates {P1,P2,P3}. 5006 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5007 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5008 // 5009 // TODO's: 5010 // 5011 // 1) Extend the Induction descriptor to also support inductions that involve 5012 // casts: When needed (namely, when we are called in the context of the 5013 // vectorizer induction analysis), a Set of cast instructions will be 5014 // populated by this method, and provided back to isInductionPHI. This is 5015 // needed to allow the vectorizer to properly record them to be ignored by 5016 // the cost model and to avoid vectorizing them (otherwise these casts, 5017 // which are redundant under the runtime overflow checks, will be 5018 // vectorized, which can be costly). 5019 // 5020 // 2) Support additional induction/PHISCEV patterns: We also want to support 5021 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5022 // after the induction update operation (the induction increment): 5023 // 5024 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5025 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5026 // 5027 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5028 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5029 // 5030 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5031 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5032 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5033 SmallVector<const SCEVPredicate *, 3> Predicates; 5034 5035 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5036 // return an AddRec expression under some predicate. 5037 5038 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5039 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5040 assert(L && "Expecting an integer loop header phi"); 5041 5042 // The loop may have multiple entrances or multiple exits; we can analyze 5043 // this phi as an addrec if it has a unique entry value and a unique 5044 // backedge value. 5045 Value *BEValueV = nullptr, *StartValueV = nullptr; 5046 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5047 Value *V = PN->getIncomingValue(i); 5048 if (L->contains(PN->getIncomingBlock(i))) { 5049 if (!BEValueV) { 5050 BEValueV = V; 5051 } else if (BEValueV != V) { 5052 BEValueV = nullptr; 5053 break; 5054 } 5055 } else if (!StartValueV) { 5056 StartValueV = V; 5057 } else if (StartValueV != V) { 5058 StartValueV = nullptr; 5059 break; 5060 } 5061 } 5062 if (!BEValueV || !StartValueV) 5063 return None; 5064 5065 const SCEV *BEValue = getSCEV(BEValueV); 5066 5067 // If the value coming around the backedge is an add with the symbolic 5068 // value we just inserted, possibly with casts that we can ignore under 5069 // an appropriate runtime guard, then we found a simple induction variable! 5070 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5071 if (!Add) 5072 return None; 5073 5074 // If there is a single occurrence of the symbolic value, possibly 5075 // casted, replace it with a recurrence. 5076 unsigned FoundIndex = Add->getNumOperands(); 5077 Type *TruncTy = nullptr; 5078 bool Signed; 5079 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5080 if ((TruncTy = 5081 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5082 if (FoundIndex == e) { 5083 FoundIndex = i; 5084 break; 5085 } 5086 5087 if (FoundIndex == Add->getNumOperands()) 5088 return None; 5089 5090 // Create an add with everything but the specified operand. 5091 SmallVector<const SCEV *, 8> Ops; 5092 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5093 if (i != FoundIndex) 5094 Ops.push_back(Add->getOperand(i)); 5095 const SCEV *Accum = getAddExpr(Ops); 5096 5097 // The runtime checks will not be valid if the step amount is 5098 // varying inside the loop. 5099 if (!isLoopInvariant(Accum, L)) 5100 return None; 5101 5102 // *** Part2: Create the predicates 5103 5104 // Analysis was successful: we have a phi-with-cast pattern for which we 5105 // can return an AddRec expression under the following predicates: 5106 // 5107 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5108 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5109 // P2: An Equal predicate that guarantees that 5110 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5111 // P3: An Equal predicate that guarantees that 5112 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5113 // 5114 // As we next prove, the above predicates guarantee that: 5115 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5116 // 5117 // 5118 // More formally, we want to prove that: 5119 // Expr(i+1) = Start + (i+1) * Accum 5120 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5121 // 5122 // Given that: 5123 // 1) Expr(0) = Start 5124 // 2) Expr(1) = Start + Accum 5125 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5126 // 3) Induction hypothesis (step i): 5127 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5128 // 5129 // Proof: 5130 // Expr(i+1) = 5131 // = Start + (i+1)*Accum 5132 // = (Start + i*Accum) + Accum 5133 // = Expr(i) + Accum 5134 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5135 // :: from step i 5136 // 5137 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5138 // 5139 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5140 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5141 // + Accum :: from P3 5142 // 5143 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5144 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5145 // 5146 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5147 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5148 // 5149 // By induction, the same applies to all iterations 1<=i<n: 5150 // 5151 5152 // Create a truncated addrec for which we will add a no overflow check (P1). 5153 const SCEV *StartVal = getSCEV(StartValueV); 5154 const SCEV *PHISCEV = 5155 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5156 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5157 5158 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5159 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5160 // will be constant. 5161 // 5162 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5163 // add P1. 5164 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5165 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5166 Signed ? SCEVWrapPredicate::IncrementNSSW 5167 : SCEVWrapPredicate::IncrementNUSW; 5168 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5169 Predicates.push_back(AddRecPred); 5170 } 5171 5172 // Create the Equal Predicates P2,P3: 5173 5174 // It is possible that the predicates P2 and/or P3 are computable at 5175 // compile time due to StartVal and/or Accum being constants. 5176 // If either one is, then we can check that now and escape if either P2 5177 // or P3 is false. 5178 5179 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5180 // for each of StartVal and Accum 5181 auto getExtendedExpr = [&](const SCEV *Expr, 5182 bool CreateSignExtend) -> const SCEV * { 5183 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5184 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5185 const SCEV *ExtendedExpr = 5186 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5187 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5188 return ExtendedExpr; 5189 }; 5190 5191 // Given: 5192 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5193 // = getExtendedExpr(Expr) 5194 // Determine whether the predicate P: Expr == ExtendedExpr 5195 // is known to be false at compile time 5196 auto PredIsKnownFalse = [&](const SCEV *Expr, 5197 const SCEV *ExtendedExpr) -> bool { 5198 return Expr != ExtendedExpr && 5199 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5200 }; 5201 5202 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5203 if (PredIsKnownFalse(StartVal, StartExtended)) { 5204 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5205 return None; 5206 } 5207 5208 // The Step is always Signed (because the overflow checks are either 5209 // NSSW or NUSW) 5210 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5211 if (PredIsKnownFalse(Accum, AccumExtended)) { 5212 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5213 return None; 5214 } 5215 5216 auto AppendPredicate = [&](const SCEV *Expr, 5217 const SCEV *ExtendedExpr) -> void { 5218 if (Expr != ExtendedExpr && 5219 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5220 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5221 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5222 Predicates.push_back(Pred); 5223 } 5224 }; 5225 5226 AppendPredicate(StartVal, StartExtended); 5227 AppendPredicate(Accum, AccumExtended); 5228 5229 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5230 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5231 // into NewAR if it will also add the runtime overflow checks specified in 5232 // Predicates. 5233 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5234 5235 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5236 std::make_pair(NewAR, Predicates); 5237 // Remember the result of the analysis for this SCEV at this locayyytion. 5238 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5239 return PredRewrite; 5240 } 5241 5242 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5243 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5244 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5245 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5246 if (!L) 5247 return None; 5248 5249 // Check to see if we already analyzed this PHI. 5250 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5251 if (I != PredicatedSCEVRewrites.end()) { 5252 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5253 I->second; 5254 // Analysis was done before and failed to create an AddRec: 5255 if (Rewrite.first == SymbolicPHI) 5256 return None; 5257 // Analysis was done before and succeeded to create an AddRec under 5258 // a predicate: 5259 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5260 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5261 return Rewrite; 5262 } 5263 5264 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5265 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5266 5267 // Record in the cache that the analysis failed 5268 if (!Rewrite) { 5269 SmallVector<const SCEVPredicate *, 3> Predicates; 5270 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5271 return None; 5272 } 5273 5274 return Rewrite; 5275 } 5276 5277 // FIXME: This utility is currently required because the Rewriter currently 5278 // does not rewrite this expression: 5279 // {0, +, (sext ix (trunc iy to ix) to iy)} 5280 // into {0, +, %step}, 5281 // even when the following Equal predicate exists: 5282 // "%step == (sext ix (trunc iy to ix) to iy)". 5283 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5284 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5285 if (AR1 == AR2) 5286 return true; 5287 5288 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5289 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5290 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5291 return false; 5292 return true; 5293 }; 5294 5295 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5296 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5297 return false; 5298 return true; 5299 } 5300 5301 /// A helper function for createAddRecFromPHI to handle simple cases. 5302 /// 5303 /// This function tries to find an AddRec expression for the simplest (yet most 5304 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5305 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5306 /// technique for finding the AddRec expression. 5307 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5308 Value *BEValueV, 5309 Value *StartValueV) { 5310 const Loop *L = LI.getLoopFor(PN->getParent()); 5311 assert(L && L->getHeader() == PN->getParent()); 5312 assert(BEValueV && StartValueV); 5313 5314 auto BO = MatchBinaryOp(BEValueV, DT); 5315 if (!BO) 5316 return nullptr; 5317 5318 if (BO->Opcode != Instruction::Add) 5319 return nullptr; 5320 5321 const SCEV *Accum = nullptr; 5322 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5323 Accum = getSCEV(BO->RHS); 5324 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5325 Accum = getSCEV(BO->LHS); 5326 5327 if (!Accum) 5328 return nullptr; 5329 5330 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5331 if (BO->IsNUW) 5332 Flags = setFlags(Flags, SCEV::FlagNUW); 5333 if (BO->IsNSW) 5334 Flags = setFlags(Flags, SCEV::FlagNSW); 5335 5336 const SCEV *StartVal = getSCEV(StartValueV); 5337 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5338 5339 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5340 5341 // We can add Flags to the post-inc expression only if we 5342 // know that it is *undefined behavior* for BEValueV to 5343 // overflow. 5344 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5345 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5346 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5347 5348 return PHISCEV; 5349 } 5350 5351 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5352 const Loop *L = LI.getLoopFor(PN->getParent()); 5353 if (!L || L->getHeader() != PN->getParent()) 5354 return nullptr; 5355 5356 // The loop may have multiple entrances or multiple exits; we can analyze 5357 // this phi as an addrec if it has a unique entry value and a unique 5358 // backedge value. 5359 Value *BEValueV = nullptr, *StartValueV = nullptr; 5360 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5361 Value *V = PN->getIncomingValue(i); 5362 if (L->contains(PN->getIncomingBlock(i))) { 5363 if (!BEValueV) { 5364 BEValueV = V; 5365 } else if (BEValueV != V) { 5366 BEValueV = nullptr; 5367 break; 5368 } 5369 } else if (!StartValueV) { 5370 StartValueV = V; 5371 } else if (StartValueV != V) { 5372 StartValueV = nullptr; 5373 break; 5374 } 5375 } 5376 if (!BEValueV || !StartValueV) 5377 return nullptr; 5378 5379 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5380 "PHI node already processed?"); 5381 5382 // First, try to find AddRec expression without creating a fictituos symbolic 5383 // value for PN. 5384 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5385 return S; 5386 5387 // Handle PHI node value symbolically. 5388 const SCEV *SymbolicName = getUnknown(PN); 5389 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5390 5391 // Using this symbolic name for the PHI, analyze the value coming around 5392 // the back-edge. 5393 const SCEV *BEValue = getSCEV(BEValueV); 5394 5395 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5396 // has a special value for the first iteration of the loop. 5397 5398 // If the value coming around the backedge is an add with the symbolic 5399 // value we just inserted, then we found a simple induction variable! 5400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5401 // If there is a single occurrence of the symbolic value, replace it 5402 // with a recurrence. 5403 unsigned FoundIndex = Add->getNumOperands(); 5404 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5405 if (Add->getOperand(i) == SymbolicName) 5406 if (FoundIndex == e) { 5407 FoundIndex = i; 5408 break; 5409 } 5410 5411 if (FoundIndex != Add->getNumOperands()) { 5412 // Create an add with everything but the specified operand. 5413 SmallVector<const SCEV *, 8> Ops; 5414 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5415 if (i != FoundIndex) 5416 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5417 L, *this)); 5418 const SCEV *Accum = getAddExpr(Ops); 5419 5420 // This is not a valid addrec if the step amount is varying each 5421 // loop iteration, but is not itself an addrec in this loop. 5422 if (isLoopInvariant(Accum, L) || 5423 (isa<SCEVAddRecExpr>(Accum) && 5424 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5425 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5426 5427 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5428 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5429 if (BO->IsNUW) 5430 Flags = setFlags(Flags, SCEV::FlagNUW); 5431 if (BO->IsNSW) 5432 Flags = setFlags(Flags, SCEV::FlagNSW); 5433 } 5434 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5435 // If the increment is an inbounds GEP, then we know the address 5436 // space cannot be wrapped around. We cannot make any guarantee 5437 // about signed or unsigned overflow because pointers are 5438 // unsigned but we may have a negative index from the base 5439 // pointer. We can guarantee that no unsigned wrap occurs if the 5440 // indices form a positive value. 5441 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5442 Flags = setFlags(Flags, SCEV::FlagNW); 5443 5444 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5445 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5446 Flags = setFlags(Flags, SCEV::FlagNUW); 5447 } 5448 5449 // We cannot transfer nuw and nsw flags from subtraction 5450 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5451 // for instance. 5452 } 5453 5454 const SCEV *StartVal = getSCEV(StartValueV); 5455 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5456 5457 // Okay, for the entire analysis of this edge we assumed the PHI 5458 // to be symbolic. We now need to go back and purge all of the 5459 // entries for the scalars that use the symbolic expression. 5460 forgetSymbolicName(PN, SymbolicName); 5461 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5462 5463 // We can add Flags to the post-inc expression only if we 5464 // know that it is *undefined behavior* for BEValueV to 5465 // overflow. 5466 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5467 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5468 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5469 5470 return PHISCEV; 5471 } 5472 } 5473 } else { 5474 // Otherwise, this could be a loop like this: 5475 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5476 // In this case, j = {1,+,1} and BEValue is j. 5477 // Because the other in-value of i (0) fits the evolution of BEValue 5478 // i really is an addrec evolution. 5479 // 5480 // We can generalize this saying that i is the shifted value of BEValue 5481 // by one iteration: 5482 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5483 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5484 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5485 if (Shifted != getCouldNotCompute() && 5486 Start != getCouldNotCompute()) { 5487 const SCEV *StartVal = getSCEV(StartValueV); 5488 if (Start == StartVal) { 5489 // Okay, for the entire analysis of this edge we assumed the PHI 5490 // to be symbolic. We now need to go back and purge all of the 5491 // entries for the scalars that use the symbolic expression. 5492 forgetSymbolicName(PN, SymbolicName); 5493 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5494 return Shifted; 5495 } 5496 } 5497 } 5498 5499 // Remove the temporary PHI node SCEV that has been inserted while intending 5500 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5501 // as it will prevent later (possibly simpler) SCEV expressions to be added 5502 // to the ValueExprMap. 5503 eraseValueFromMap(PN); 5504 5505 return nullptr; 5506 } 5507 5508 // Checks if the SCEV S is available at BB. S is considered available at BB 5509 // if S can be materialized at BB without introducing a fault. 5510 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5511 BasicBlock *BB) { 5512 struct CheckAvailable { 5513 bool TraversalDone = false; 5514 bool Available = true; 5515 5516 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5517 BasicBlock *BB = nullptr; 5518 DominatorTree &DT; 5519 5520 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5521 : L(L), BB(BB), DT(DT) {} 5522 5523 bool setUnavailable() { 5524 TraversalDone = true; 5525 Available = false; 5526 return false; 5527 } 5528 5529 bool follow(const SCEV *S) { 5530 switch (S->getSCEVType()) { 5531 case scConstant: 5532 case scPtrToInt: 5533 case scTruncate: 5534 case scZeroExtend: 5535 case scSignExtend: 5536 case scAddExpr: 5537 case scMulExpr: 5538 case scUMaxExpr: 5539 case scSMaxExpr: 5540 case scUMinExpr: 5541 case scSMinExpr: 5542 // These expressions are available if their operand(s) is/are. 5543 return true; 5544 5545 case scAddRecExpr: { 5546 // We allow add recurrences that are on the loop BB is in, or some 5547 // outer loop. This guarantees availability because the value of the 5548 // add recurrence at BB is simply the "current" value of the induction 5549 // variable. We can relax this in the future; for instance an add 5550 // recurrence on a sibling dominating loop is also available at BB. 5551 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5552 if (L && (ARLoop == L || ARLoop->contains(L))) 5553 return true; 5554 5555 return setUnavailable(); 5556 } 5557 5558 case scUnknown: { 5559 // For SCEVUnknown, we check for simple dominance. 5560 const auto *SU = cast<SCEVUnknown>(S); 5561 Value *V = SU->getValue(); 5562 5563 if (isa<Argument>(V)) 5564 return false; 5565 5566 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5567 return false; 5568 5569 return setUnavailable(); 5570 } 5571 5572 case scUDivExpr: 5573 case scCouldNotCompute: 5574 // We do not try to smart about these at all. 5575 return setUnavailable(); 5576 } 5577 llvm_unreachable("Unknown SCEV kind!"); 5578 } 5579 5580 bool isDone() { return TraversalDone; } 5581 }; 5582 5583 CheckAvailable CA(L, BB, DT); 5584 SCEVTraversal<CheckAvailable> ST(CA); 5585 5586 ST.visitAll(S); 5587 return CA.Available; 5588 } 5589 5590 // Try to match a control flow sequence that branches out at BI and merges back 5591 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5592 // match. 5593 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5594 Value *&C, Value *&LHS, Value *&RHS) { 5595 C = BI->getCondition(); 5596 5597 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5598 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5599 5600 if (!LeftEdge.isSingleEdge()) 5601 return false; 5602 5603 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5604 5605 Use &LeftUse = Merge->getOperandUse(0); 5606 Use &RightUse = Merge->getOperandUse(1); 5607 5608 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5609 LHS = LeftUse; 5610 RHS = RightUse; 5611 return true; 5612 } 5613 5614 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5615 LHS = RightUse; 5616 RHS = LeftUse; 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5624 auto IsReachable = 5625 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5626 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5627 const Loop *L = LI.getLoopFor(PN->getParent()); 5628 5629 // We don't want to break LCSSA, even in a SCEV expression tree. 5630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5631 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5632 return nullptr; 5633 5634 // Try to match 5635 // 5636 // br %cond, label %left, label %right 5637 // left: 5638 // br label %merge 5639 // right: 5640 // br label %merge 5641 // merge: 5642 // V = phi [ %x, %left ], [ %y, %right ] 5643 // 5644 // as "select %cond, %x, %y" 5645 5646 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5647 assert(IDom && "At least the entry block should dominate PN"); 5648 5649 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5650 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5651 5652 if (BI && BI->isConditional() && 5653 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5654 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5655 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5656 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5657 } 5658 5659 return nullptr; 5660 } 5661 5662 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5663 if (const SCEV *S = createAddRecFromPHI(PN)) 5664 return S; 5665 5666 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5667 return S; 5668 5669 // If the PHI has a single incoming value, follow that value, unless the 5670 // PHI's incoming blocks are in a different loop, in which case doing so 5671 // risks breaking LCSSA form. Instcombine would normally zap these, but 5672 // it doesn't have DominatorTree information, so it may miss cases. 5673 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5674 if (LI.replacementPreservesLCSSAForm(PN, V)) 5675 return getSCEV(V); 5676 5677 // If it's not a loop phi, we can't handle it yet. 5678 return getUnknown(PN); 5679 } 5680 5681 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5682 Value *Cond, 5683 Value *TrueVal, 5684 Value *FalseVal) { 5685 // Handle "constant" branch or select. This can occur for instance when a 5686 // loop pass transforms an inner loop and moves on to process the outer loop. 5687 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5688 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5689 5690 // Try to match some simple smax or umax patterns. 5691 auto *ICI = dyn_cast<ICmpInst>(Cond); 5692 if (!ICI) 5693 return getUnknown(I); 5694 5695 Value *LHS = ICI->getOperand(0); 5696 Value *RHS = ICI->getOperand(1); 5697 5698 switch (ICI->getPredicate()) { 5699 case ICmpInst::ICMP_SLT: 5700 case ICmpInst::ICMP_SLE: 5701 case ICmpInst::ICMP_ULT: 5702 case ICmpInst::ICMP_ULE: 5703 std::swap(LHS, RHS); 5704 LLVM_FALLTHROUGH; 5705 case ICmpInst::ICMP_SGT: 5706 case ICmpInst::ICMP_SGE: 5707 case ICmpInst::ICMP_UGT: 5708 case ICmpInst::ICMP_UGE: 5709 // a > b ? a+x : b+x -> max(a, b)+x 5710 // a > b ? b+x : a+x -> min(a, b)+x 5711 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5712 bool Signed = ICI->isSigned(); 5713 const SCEV *LA = getSCEV(TrueVal); 5714 const SCEV *RA = getSCEV(FalseVal); 5715 const SCEV *LS = getSCEV(LHS); 5716 const SCEV *RS = getSCEV(RHS); 5717 if (LA->getType()->isPointerTy()) { 5718 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5719 // Need to make sure we can't produce weird expressions involving 5720 // negated pointers. 5721 if (LA == LS && RA == RS) 5722 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5723 if (LA == RS && RA == LS) 5724 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5725 } 5726 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5727 if (Op->getType()->isPointerTy()) { 5728 Op = getLosslessPtrToIntExpr(Op); 5729 if (isa<SCEVCouldNotCompute>(Op)) 5730 return Op; 5731 } 5732 if (Signed) 5733 Op = getNoopOrSignExtend(Op, I->getType()); 5734 else 5735 Op = getNoopOrZeroExtend(Op, I->getType()); 5736 return Op; 5737 }; 5738 LS = CoerceOperand(LS); 5739 RS = CoerceOperand(RS); 5740 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5741 break; 5742 const SCEV *LDiff = getMinusSCEV(LA, LS); 5743 const SCEV *RDiff = getMinusSCEV(RA, RS); 5744 if (LDiff == RDiff) 5745 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5746 LDiff); 5747 LDiff = getMinusSCEV(LA, RS); 5748 RDiff = getMinusSCEV(RA, LS); 5749 if (LDiff == RDiff) 5750 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5751 LDiff); 5752 } 5753 break; 5754 case ICmpInst::ICMP_NE: 5755 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5756 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5757 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5758 const SCEV *One = getOne(I->getType()); 5759 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5760 const SCEV *LA = getSCEV(TrueVal); 5761 const SCEV *RA = getSCEV(FalseVal); 5762 const SCEV *LDiff = getMinusSCEV(LA, LS); 5763 const SCEV *RDiff = getMinusSCEV(RA, One); 5764 if (LDiff == RDiff) 5765 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5766 } 5767 break; 5768 case ICmpInst::ICMP_EQ: 5769 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5770 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5771 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5772 const SCEV *One = getOne(I->getType()); 5773 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5774 const SCEV *LA = getSCEV(TrueVal); 5775 const SCEV *RA = getSCEV(FalseVal); 5776 const SCEV *LDiff = getMinusSCEV(LA, One); 5777 const SCEV *RDiff = getMinusSCEV(RA, LS); 5778 if (LDiff == RDiff) 5779 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5780 } 5781 break; 5782 default: 5783 break; 5784 } 5785 5786 return getUnknown(I); 5787 } 5788 5789 /// Expand GEP instructions into add and multiply operations. This allows them 5790 /// to be analyzed by regular SCEV code. 5791 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5792 // Don't attempt to analyze GEPs over unsized objects. 5793 if (!GEP->getSourceElementType()->isSized()) 5794 return getUnknown(GEP); 5795 5796 SmallVector<const SCEV *, 4> IndexExprs; 5797 for (Value *Index : GEP->indices()) 5798 IndexExprs.push_back(getSCEV(Index)); 5799 return getGEPExpr(GEP, IndexExprs); 5800 } 5801 5802 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5803 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5804 return C->getAPInt().countTrailingZeros(); 5805 5806 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5807 return GetMinTrailingZeros(I->getOperand()); 5808 5809 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5810 return std::min(GetMinTrailingZeros(T->getOperand()), 5811 (uint32_t)getTypeSizeInBits(T->getType())); 5812 5813 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5814 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5815 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5816 ? getTypeSizeInBits(E->getType()) 5817 : OpRes; 5818 } 5819 5820 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5821 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5822 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5823 ? getTypeSizeInBits(E->getType()) 5824 : OpRes; 5825 } 5826 5827 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5828 // The result is the min of all operands results. 5829 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5830 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5832 return MinOpRes; 5833 } 5834 5835 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5836 // The result is the sum of all operands results. 5837 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5838 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5839 for (unsigned i = 1, e = M->getNumOperands(); 5840 SumOpRes != BitWidth && i != e; ++i) 5841 SumOpRes = 5842 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5843 return SumOpRes; 5844 } 5845 5846 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5847 // The result is the min of all operands results. 5848 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5849 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5850 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5851 return MinOpRes; 5852 } 5853 5854 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5855 // The result is the min of all operands results. 5856 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5857 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5858 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5859 return MinOpRes; 5860 } 5861 5862 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5863 // The result is the min of all operands results. 5864 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5865 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5866 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5867 return MinOpRes; 5868 } 5869 5870 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5871 // For a SCEVUnknown, ask ValueTracking. 5872 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5873 return Known.countMinTrailingZeros(); 5874 } 5875 5876 // SCEVUDivExpr 5877 return 0; 5878 } 5879 5880 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5881 auto I = MinTrailingZerosCache.find(S); 5882 if (I != MinTrailingZerosCache.end()) 5883 return I->second; 5884 5885 uint32_t Result = GetMinTrailingZerosImpl(S); 5886 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5887 assert(InsertPair.second && "Should insert a new key"); 5888 return InsertPair.first->second; 5889 } 5890 5891 /// Helper method to assign a range to V from metadata present in the IR. 5892 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5893 if (Instruction *I = dyn_cast<Instruction>(V)) 5894 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5895 return getConstantRangeFromMetadata(*MD); 5896 5897 return None; 5898 } 5899 5900 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5901 SCEV::NoWrapFlags Flags) { 5902 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5903 AddRec->setNoWrapFlags(Flags); 5904 UnsignedRanges.erase(AddRec); 5905 SignedRanges.erase(AddRec); 5906 } 5907 } 5908 5909 ConstantRange ScalarEvolution:: 5910 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5911 const DataLayout &DL = getDataLayout(); 5912 5913 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5914 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5915 5916 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5917 // use information about the trip count to improve our available range. Note 5918 // that the trip count independent cases are already handled by known bits. 5919 // WARNING: The definition of recurrence used here is subtly different than 5920 // the one used by AddRec (and thus most of this file). Step is allowed to 5921 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5922 // and other addrecs in the same loop (for non-affine addrecs). The code 5923 // below intentionally handles the case where step is not loop invariant. 5924 auto *P = dyn_cast<PHINode>(U->getValue()); 5925 if (!P) 5926 return FullSet; 5927 5928 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5929 // even the values that are not available in these blocks may come from them, 5930 // and this leads to false-positive recurrence test. 5931 for (auto *Pred : predecessors(P->getParent())) 5932 if (!DT.isReachableFromEntry(Pred)) 5933 return FullSet; 5934 5935 BinaryOperator *BO; 5936 Value *Start, *Step; 5937 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5938 return FullSet; 5939 5940 // If we found a recurrence in reachable code, we must be in a loop. Note 5941 // that BO might be in some subloop of L, and that's completely okay. 5942 auto *L = LI.getLoopFor(P->getParent()); 5943 assert(L && L->getHeader() == P->getParent()); 5944 if (!L->contains(BO->getParent())) 5945 // NOTE: This bailout should be an assert instead. However, asserting 5946 // the condition here exposes a case where LoopFusion is querying SCEV 5947 // with malformed loop information during the midst of the transform. 5948 // There doesn't appear to be an obvious fix, so for the moment bailout 5949 // until the caller issue can be fixed. PR49566 tracks the bug. 5950 return FullSet; 5951 5952 // TODO: Extend to other opcodes such as mul, and div 5953 switch (BO->getOpcode()) { 5954 default: 5955 return FullSet; 5956 case Instruction::AShr: 5957 case Instruction::LShr: 5958 case Instruction::Shl: 5959 break; 5960 }; 5961 5962 if (BO->getOperand(0) != P) 5963 // TODO: Handle the power function forms some day. 5964 return FullSet; 5965 5966 unsigned TC = getSmallConstantMaxTripCount(L); 5967 if (!TC || TC >= BitWidth) 5968 return FullSet; 5969 5970 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5971 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5972 assert(KnownStart.getBitWidth() == BitWidth && 5973 KnownStep.getBitWidth() == BitWidth); 5974 5975 // Compute total shift amount, being careful of overflow and bitwidths. 5976 auto MaxShiftAmt = KnownStep.getMaxValue(); 5977 APInt TCAP(BitWidth, TC-1); 5978 bool Overflow = false; 5979 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5980 if (Overflow) 5981 return FullSet; 5982 5983 switch (BO->getOpcode()) { 5984 default: 5985 llvm_unreachable("filtered out above"); 5986 case Instruction::AShr: { 5987 // For each ashr, three cases: 5988 // shift = 0 => unchanged value 5989 // saturation => 0 or -1 5990 // other => a value closer to zero (of the same sign) 5991 // Thus, the end value is closer to zero than the start. 5992 auto KnownEnd = KnownBits::ashr(KnownStart, 5993 KnownBits::makeConstant(TotalShift)); 5994 if (KnownStart.isNonNegative()) 5995 // Analogous to lshr (simply not yet canonicalized) 5996 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5997 KnownStart.getMaxValue() + 1); 5998 if (KnownStart.isNegative()) 5999 // End >=u Start && End <=s Start 6000 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6001 KnownEnd.getMaxValue() + 1); 6002 break; 6003 } 6004 case Instruction::LShr: { 6005 // For each lshr, three cases: 6006 // shift = 0 => unchanged value 6007 // saturation => 0 6008 // other => a smaller positive number 6009 // Thus, the low end of the unsigned range is the last value produced. 6010 auto KnownEnd = KnownBits::lshr(KnownStart, 6011 KnownBits::makeConstant(TotalShift)); 6012 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6013 KnownStart.getMaxValue() + 1); 6014 } 6015 case Instruction::Shl: { 6016 // Iff no bits are shifted out, value increases on every shift. 6017 auto KnownEnd = KnownBits::shl(KnownStart, 6018 KnownBits::makeConstant(TotalShift)); 6019 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6020 return ConstantRange(KnownStart.getMinValue(), 6021 KnownEnd.getMaxValue() + 1); 6022 break; 6023 } 6024 }; 6025 return FullSet; 6026 } 6027 6028 /// Determine the range for a particular SCEV. If SignHint is 6029 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6030 /// with a "cleaner" unsigned (resp. signed) representation. 6031 const ConstantRange & 6032 ScalarEvolution::getRangeRef(const SCEV *S, 6033 ScalarEvolution::RangeSignHint SignHint) { 6034 DenseMap<const SCEV *, ConstantRange> &Cache = 6035 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6036 : SignedRanges; 6037 ConstantRange::PreferredRangeType RangeType = 6038 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6039 ? ConstantRange::Unsigned : ConstantRange::Signed; 6040 6041 // See if we've computed this range already. 6042 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6043 if (I != Cache.end()) 6044 return I->second; 6045 6046 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6047 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6048 6049 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6050 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6051 using OBO = OverflowingBinaryOperator; 6052 6053 // If the value has known zeros, the maximum value will have those known zeros 6054 // as well. 6055 uint32_t TZ = GetMinTrailingZeros(S); 6056 if (TZ != 0) { 6057 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6058 ConservativeResult = 6059 ConstantRange(APInt::getMinValue(BitWidth), 6060 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6061 else 6062 ConservativeResult = ConstantRange( 6063 APInt::getSignedMinValue(BitWidth), 6064 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6065 } 6066 6067 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6068 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6069 unsigned WrapType = OBO::AnyWrap; 6070 if (Add->hasNoSignedWrap()) 6071 WrapType |= OBO::NoSignedWrap; 6072 if (Add->hasNoUnsignedWrap()) 6073 WrapType |= OBO::NoUnsignedWrap; 6074 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6075 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6076 WrapType, RangeType); 6077 return setRange(Add, SignHint, 6078 ConservativeResult.intersectWith(X, RangeType)); 6079 } 6080 6081 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6082 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6083 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6084 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6085 return setRange(Mul, SignHint, 6086 ConservativeResult.intersectWith(X, RangeType)); 6087 } 6088 6089 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6090 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6091 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6092 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6093 return setRange(SMax, SignHint, 6094 ConservativeResult.intersectWith(X, RangeType)); 6095 } 6096 6097 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6098 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6099 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6100 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6101 return setRange(UMax, SignHint, 6102 ConservativeResult.intersectWith(X, RangeType)); 6103 } 6104 6105 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6106 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6107 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6108 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6109 return setRange(SMin, SignHint, 6110 ConservativeResult.intersectWith(X, RangeType)); 6111 } 6112 6113 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6114 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6115 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6116 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6117 return setRange(UMin, SignHint, 6118 ConservativeResult.intersectWith(X, RangeType)); 6119 } 6120 6121 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6122 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6123 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6124 return setRange(UDiv, SignHint, 6125 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6126 } 6127 6128 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6129 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6130 return setRange(ZExt, SignHint, 6131 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6132 RangeType)); 6133 } 6134 6135 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6136 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6137 return setRange(SExt, SignHint, 6138 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6139 RangeType)); 6140 } 6141 6142 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6143 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6144 return setRange(PtrToInt, SignHint, X); 6145 } 6146 6147 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6148 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6149 return setRange(Trunc, SignHint, 6150 ConservativeResult.intersectWith(X.truncate(BitWidth), 6151 RangeType)); 6152 } 6153 6154 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6155 // If there's no unsigned wrap, the value will never be less than its 6156 // initial value. 6157 if (AddRec->hasNoUnsignedWrap()) { 6158 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6159 if (!UnsignedMinValue.isZero()) 6160 ConservativeResult = ConservativeResult.intersectWith( 6161 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6162 } 6163 6164 // If there's no signed wrap, and all the operands except initial value have 6165 // the same sign or zero, the value won't ever be: 6166 // 1: smaller than initial value if operands are non negative, 6167 // 2: bigger than initial value if operands are non positive. 6168 // For both cases, value can not cross signed min/max boundary. 6169 if (AddRec->hasNoSignedWrap()) { 6170 bool AllNonNeg = true; 6171 bool AllNonPos = true; 6172 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6173 if (!isKnownNonNegative(AddRec->getOperand(i))) 6174 AllNonNeg = false; 6175 if (!isKnownNonPositive(AddRec->getOperand(i))) 6176 AllNonPos = false; 6177 } 6178 if (AllNonNeg) 6179 ConservativeResult = ConservativeResult.intersectWith( 6180 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6181 APInt::getSignedMinValue(BitWidth)), 6182 RangeType); 6183 else if (AllNonPos) 6184 ConservativeResult = ConservativeResult.intersectWith( 6185 ConstantRange::getNonEmpty( 6186 APInt::getSignedMinValue(BitWidth), 6187 getSignedRangeMax(AddRec->getStart()) + 1), 6188 RangeType); 6189 } 6190 6191 // TODO: non-affine addrec 6192 if (AddRec->isAffine()) { 6193 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6194 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6195 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6196 auto RangeFromAffine = getRangeForAffineAR( 6197 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6198 BitWidth); 6199 ConservativeResult = 6200 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6201 6202 auto RangeFromFactoring = getRangeViaFactoring( 6203 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6204 BitWidth); 6205 ConservativeResult = 6206 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6207 } 6208 6209 // Now try symbolic BE count and more powerful methods. 6210 if (UseExpensiveRangeSharpening) { 6211 const SCEV *SymbolicMaxBECount = 6212 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6213 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6214 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6215 AddRec->hasNoSelfWrap()) { 6216 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6217 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6218 ConservativeResult = 6219 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6220 } 6221 } 6222 } 6223 6224 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6225 } 6226 6227 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6228 6229 // Check if the IR explicitly contains !range metadata. 6230 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6231 if (MDRange.hasValue()) 6232 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6233 RangeType); 6234 6235 // Use facts about recurrences in the underlying IR. Note that add 6236 // recurrences are AddRecExprs and thus don't hit this path. This 6237 // primarily handles shift recurrences. 6238 auto CR = getRangeForUnknownRecurrence(U); 6239 ConservativeResult = ConservativeResult.intersectWith(CR); 6240 6241 // See if ValueTracking can give us a useful range. 6242 const DataLayout &DL = getDataLayout(); 6243 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6244 if (Known.getBitWidth() != BitWidth) 6245 Known = Known.zextOrTrunc(BitWidth); 6246 6247 // ValueTracking may be able to compute a tighter result for the number of 6248 // sign bits than for the value of those sign bits. 6249 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6250 if (U->getType()->isPointerTy()) { 6251 // If the pointer size is larger than the index size type, this can cause 6252 // NS to be larger than BitWidth. So compensate for this. 6253 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6254 int ptrIdxDiff = ptrSize - BitWidth; 6255 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6256 NS -= ptrIdxDiff; 6257 } 6258 6259 if (NS > 1) { 6260 // If we know any of the sign bits, we know all of the sign bits. 6261 if (!Known.Zero.getHiBits(NS).isZero()) 6262 Known.Zero.setHighBits(NS); 6263 if (!Known.One.getHiBits(NS).isZero()) 6264 Known.One.setHighBits(NS); 6265 } 6266 6267 if (Known.getMinValue() != Known.getMaxValue() + 1) 6268 ConservativeResult = ConservativeResult.intersectWith( 6269 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6270 RangeType); 6271 if (NS > 1) 6272 ConservativeResult = ConservativeResult.intersectWith( 6273 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6274 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6275 RangeType); 6276 6277 // A range of Phi is a subset of union of all ranges of its input. 6278 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6279 // Make sure that we do not run over cycled Phis. 6280 if (PendingPhiRanges.insert(Phi).second) { 6281 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6282 for (auto &Op : Phi->operands()) { 6283 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6284 RangeFromOps = RangeFromOps.unionWith(OpRange); 6285 // No point to continue if we already have a full set. 6286 if (RangeFromOps.isFullSet()) 6287 break; 6288 } 6289 ConservativeResult = 6290 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6291 bool Erased = PendingPhiRanges.erase(Phi); 6292 assert(Erased && "Failed to erase Phi properly?"); 6293 (void) Erased; 6294 } 6295 } 6296 6297 return setRange(U, SignHint, std::move(ConservativeResult)); 6298 } 6299 6300 return setRange(S, SignHint, std::move(ConservativeResult)); 6301 } 6302 6303 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6304 // values that the expression can take. Initially, the expression has a value 6305 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6306 // argument defines if we treat Step as signed or unsigned. 6307 static ConstantRange getRangeForAffineARHelper(APInt Step, 6308 const ConstantRange &StartRange, 6309 const APInt &MaxBECount, 6310 unsigned BitWidth, bool Signed) { 6311 // If either Step or MaxBECount is 0, then the expression won't change, and we 6312 // just need to return the initial range. 6313 if (Step == 0 || MaxBECount == 0) 6314 return StartRange; 6315 6316 // If we don't know anything about the initial value (i.e. StartRange is 6317 // FullRange), then we don't know anything about the final range either. 6318 // Return FullRange. 6319 if (StartRange.isFullSet()) 6320 return ConstantRange::getFull(BitWidth); 6321 6322 // If Step is signed and negative, then we use its absolute value, but we also 6323 // note that we're moving in the opposite direction. 6324 bool Descending = Signed && Step.isNegative(); 6325 6326 if (Signed) 6327 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6328 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6329 // This equations hold true due to the well-defined wrap-around behavior of 6330 // APInt. 6331 Step = Step.abs(); 6332 6333 // Check if Offset is more than full span of BitWidth. If it is, the 6334 // expression is guaranteed to overflow. 6335 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6336 return ConstantRange::getFull(BitWidth); 6337 6338 // Offset is by how much the expression can change. Checks above guarantee no 6339 // overflow here. 6340 APInt Offset = Step * MaxBECount; 6341 6342 // Minimum value of the final range will match the minimal value of StartRange 6343 // if the expression is increasing and will be decreased by Offset otherwise. 6344 // Maximum value of the final range will match the maximal value of StartRange 6345 // if the expression is decreasing and will be increased by Offset otherwise. 6346 APInt StartLower = StartRange.getLower(); 6347 APInt StartUpper = StartRange.getUpper() - 1; 6348 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6349 : (StartUpper + std::move(Offset)); 6350 6351 // It's possible that the new minimum/maximum value will fall into the initial 6352 // range (due to wrap around). This means that the expression can take any 6353 // value in this bitwidth, and we have to return full range. 6354 if (StartRange.contains(MovedBoundary)) 6355 return ConstantRange::getFull(BitWidth); 6356 6357 APInt NewLower = 6358 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6359 APInt NewUpper = 6360 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6361 NewUpper += 1; 6362 6363 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6364 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6365 } 6366 6367 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6368 const SCEV *Step, 6369 const SCEV *MaxBECount, 6370 unsigned BitWidth) { 6371 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6372 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6373 "Precondition!"); 6374 6375 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6376 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6377 6378 // First, consider step signed. 6379 ConstantRange StartSRange = getSignedRange(Start); 6380 ConstantRange StepSRange = getSignedRange(Step); 6381 6382 // If Step can be both positive and negative, we need to find ranges for the 6383 // maximum absolute step values in both directions and union them. 6384 ConstantRange SR = 6385 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6386 MaxBECountValue, BitWidth, /* Signed = */ true); 6387 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6388 StartSRange, MaxBECountValue, 6389 BitWidth, /* Signed = */ true)); 6390 6391 // Next, consider step unsigned. 6392 ConstantRange UR = getRangeForAffineARHelper( 6393 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6394 MaxBECountValue, BitWidth, /* Signed = */ false); 6395 6396 // Finally, intersect signed and unsigned ranges. 6397 return SR.intersectWith(UR, ConstantRange::Smallest); 6398 } 6399 6400 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6401 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6402 ScalarEvolution::RangeSignHint SignHint) { 6403 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6404 assert(AddRec->hasNoSelfWrap() && 6405 "This only works for non-self-wrapping AddRecs!"); 6406 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6407 const SCEV *Step = AddRec->getStepRecurrence(*this); 6408 // Only deal with constant step to save compile time. 6409 if (!isa<SCEVConstant>(Step)) 6410 return ConstantRange::getFull(BitWidth); 6411 // Let's make sure that we can prove that we do not self-wrap during 6412 // MaxBECount iterations. We need this because MaxBECount is a maximum 6413 // iteration count estimate, and we might infer nw from some exit for which we 6414 // do not know max exit count (or any other side reasoning). 6415 // TODO: Turn into assert at some point. 6416 if (getTypeSizeInBits(MaxBECount->getType()) > 6417 getTypeSizeInBits(AddRec->getType())) 6418 return ConstantRange::getFull(BitWidth); 6419 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6420 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6421 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6422 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6423 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6424 MaxItersWithoutWrap)) 6425 return ConstantRange::getFull(BitWidth); 6426 6427 ICmpInst::Predicate LEPred = 6428 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6429 ICmpInst::Predicate GEPred = 6430 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6431 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6432 6433 // We know that there is no self-wrap. Let's take Start and End values and 6434 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6435 // the iteration. They either lie inside the range [Min(Start, End), 6436 // Max(Start, End)] or outside it: 6437 // 6438 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6439 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6440 // 6441 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6442 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6443 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6444 // Start <= End and step is positive, or Start >= End and step is negative. 6445 const SCEV *Start = AddRec->getStart(); 6446 ConstantRange StartRange = getRangeRef(Start, SignHint); 6447 ConstantRange EndRange = getRangeRef(End, SignHint); 6448 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6449 // If they already cover full iteration space, we will know nothing useful 6450 // even if we prove what we want to prove. 6451 if (RangeBetween.isFullSet()) 6452 return RangeBetween; 6453 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6454 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6455 : RangeBetween.isWrappedSet(); 6456 if (IsWrappedSet) 6457 return ConstantRange::getFull(BitWidth); 6458 6459 if (isKnownPositive(Step) && 6460 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6461 return RangeBetween; 6462 else if (isKnownNegative(Step) && 6463 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6464 return RangeBetween; 6465 return ConstantRange::getFull(BitWidth); 6466 } 6467 6468 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6469 const SCEV *Step, 6470 const SCEV *MaxBECount, 6471 unsigned BitWidth) { 6472 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6473 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6474 6475 struct SelectPattern { 6476 Value *Condition = nullptr; 6477 APInt TrueValue; 6478 APInt FalseValue; 6479 6480 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6481 const SCEV *S) { 6482 Optional<unsigned> CastOp; 6483 APInt Offset(BitWidth, 0); 6484 6485 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6486 "Should be!"); 6487 6488 // Peel off a constant offset: 6489 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6490 // In the future we could consider being smarter here and handle 6491 // {Start+Step,+,Step} too. 6492 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6493 return; 6494 6495 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6496 S = SA->getOperand(1); 6497 } 6498 6499 // Peel off a cast operation 6500 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6501 CastOp = SCast->getSCEVType(); 6502 S = SCast->getOperand(); 6503 } 6504 6505 using namespace llvm::PatternMatch; 6506 6507 auto *SU = dyn_cast<SCEVUnknown>(S); 6508 const APInt *TrueVal, *FalseVal; 6509 if (!SU || 6510 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6511 m_APInt(FalseVal)))) { 6512 Condition = nullptr; 6513 return; 6514 } 6515 6516 TrueValue = *TrueVal; 6517 FalseValue = *FalseVal; 6518 6519 // Re-apply the cast we peeled off earlier 6520 if (CastOp.hasValue()) 6521 switch (*CastOp) { 6522 default: 6523 llvm_unreachable("Unknown SCEV cast type!"); 6524 6525 case scTruncate: 6526 TrueValue = TrueValue.trunc(BitWidth); 6527 FalseValue = FalseValue.trunc(BitWidth); 6528 break; 6529 case scZeroExtend: 6530 TrueValue = TrueValue.zext(BitWidth); 6531 FalseValue = FalseValue.zext(BitWidth); 6532 break; 6533 case scSignExtend: 6534 TrueValue = TrueValue.sext(BitWidth); 6535 FalseValue = FalseValue.sext(BitWidth); 6536 break; 6537 } 6538 6539 // Re-apply the constant offset we peeled off earlier 6540 TrueValue += Offset; 6541 FalseValue += Offset; 6542 } 6543 6544 bool isRecognized() { return Condition != nullptr; } 6545 }; 6546 6547 SelectPattern StartPattern(*this, BitWidth, Start); 6548 if (!StartPattern.isRecognized()) 6549 return ConstantRange::getFull(BitWidth); 6550 6551 SelectPattern StepPattern(*this, BitWidth, Step); 6552 if (!StepPattern.isRecognized()) 6553 return ConstantRange::getFull(BitWidth); 6554 6555 if (StartPattern.Condition != StepPattern.Condition) { 6556 // We don't handle this case today; but we could, by considering four 6557 // possibilities below instead of two. I'm not sure if there are cases where 6558 // that will help over what getRange already does, though. 6559 return ConstantRange::getFull(BitWidth); 6560 } 6561 6562 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6563 // construct arbitrary general SCEV expressions here. This function is called 6564 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6565 // say) can end up caching a suboptimal value. 6566 6567 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6568 // C2352 and C2512 (otherwise it isn't needed). 6569 6570 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6571 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6572 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6573 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6574 6575 ConstantRange TrueRange = 6576 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6577 ConstantRange FalseRange = 6578 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6579 6580 return TrueRange.unionWith(FalseRange); 6581 } 6582 6583 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6584 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6585 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6586 6587 // Return early if there are no flags to propagate to the SCEV. 6588 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6589 if (BinOp->hasNoUnsignedWrap()) 6590 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6591 if (BinOp->hasNoSignedWrap()) 6592 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6593 if (Flags == SCEV::FlagAnyWrap) 6594 return SCEV::FlagAnyWrap; 6595 6596 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6597 } 6598 6599 const Instruction * 6600 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6601 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6602 return &*AddRec->getLoop()->getHeader()->begin(); 6603 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6604 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6605 return I; 6606 return nullptr; 6607 } 6608 6609 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6610 /// \p Ops remains unmodified. 6611 static void collectUniqueOps(const SCEV *S, 6612 SmallVectorImpl<const SCEV *> &Ops) { 6613 SmallPtrSet<const SCEV *, 4> Unique; 6614 auto InsertUnique = [&](const SCEV *S) { 6615 if (Unique.insert(S).second) 6616 Ops.push_back(S); 6617 }; 6618 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6619 for (auto *Op : S2->operands()) 6620 InsertUnique(Op); 6621 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6622 for (auto *Op : S2->operands()) 6623 InsertUnique(Op); 6624 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6625 for (auto *Op : S2->operands()) 6626 InsertUnique(Op); 6627 } 6628 6629 const Instruction * 6630 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6631 bool &Precise) { 6632 Precise = true; 6633 // Do a bounded search of the def relation of the requested SCEVs. 6634 SmallSet<const SCEV *, 16> Visited; 6635 SmallVector<const SCEV *> Worklist; 6636 auto pushOp = [&](const SCEV *S) { 6637 if (!Visited.insert(S).second) 6638 return; 6639 // Threshold of 30 here is arbitrary. 6640 if (Visited.size() > 30) { 6641 Precise = false; 6642 return; 6643 } 6644 Worklist.push_back(S); 6645 }; 6646 6647 for (auto *S : Ops) 6648 pushOp(S); 6649 6650 const Instruction *Bound = nullptr; 6651 while (!Worklist.empty()) { 6652 auto *S = Worklist.pop_back_val(); 6653 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6654 if (!Bound || DT.dominates(Bound, DefI)) 6655 Bound = DefI; 6656 } else { 6657 SmallVector<const SCEV *, 4> Ops; 6658 collectUniqueOps(S, Ops); 6659 for (auto *Op : Ops) 6660 pushOp(Op); 6661 } 6662 } 6663 return Bound ? Bound : &*F.getEntryBlock().begin(); 6664 } 6665 6666 const Instruction * 6667 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6668 bool Discard; 6669 return getDefiningScopeBound(Ops, Discard); 6670 } 6671 6672 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6673 const Instruction *B) { 6674 if (A->getParent() == B->getParent() && 6675 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6676 B->getIterator())) 6677 return true; 6678 6679 auto *BLoop = LI.getLoopFor(B->getParent()); 6680 if (BLoop && BLoop->getHeader() == B->getParent() && 6681 BLoop->getLoopPreheader() == A->getParent() && 6682 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6683 A->getParent()->end()) && 6684 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6685 B->getIterator())) 6686 return true; 6687 return false; 6688 } 6689 6690 6691 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6692 // Only proceed if we can prove that I does not yield poison. 6693 if (!programUndefinedIfPoison(I)) 6694 return false; 6695 6696 // At this point we know that if I is executed, then it does not wrap 6697 // according to at least one of NSW or NUW. If I is not executed, then we do 6698 // not know if the calculation that I represents would wrap. Multiple 6699 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6700 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6701 // derived from other instructions that map to the same SCEV. We cannot make 6702 // that guarantee for cases where I is not executed. So we need to find a 6703 // upper bound on the defining scope for the SCEV, and prove that I is 6704 // executed every time we enter that scope. When the bounding scope is a 6705 // loop (the common case), this is equivalent to proving I executes on every 6706 // iteration of that loop. 6707 SmallVector<const SCEV *> SCEVOps; 6708 for (const Use &Op : I->operands()) { 6709 // I could be an extractvalue from a call to an overflow intrinsic. 6710 // TODO: We can do better here in some cases. 6711 if (isSCEVable(Op->getType())) 6712 SCEVOps.push_back(getSCEV(Op)); 6713 } 6714 auto *DefI = getDefiningScopeBound(SCEVOps); 6715 return isGuaranteedToTransferExecutionTo(DefI, I); 6716 } 6717 6718 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6719 // If we know that \c I can never be poison period, then that's enough. 6720 if (isSCEVExprNeverPoison(I)) 6721 return true; 6722 6723 // For an add recurrence specifically, we assume that infinite loops without 6724 // side effects are undefined behavior, and then reason as follows: 6725 // 6726 // If the add recurrence is poison in any iteration, it is poison on all 6727 // future iterations (since incrementing poison yields poison). If the result 6728 // of the add recurrence is fed into the loop latch condition and the loop 6729 // does not contain any throws or exiting blocks other than the latch, we now 6730 // have the ability to "choose" whether the backedge is taken or not (by 6731 // choosing a sufficiently evil value for the poison feeding into the branch) 6732 // for every iteration including and after the one in which \p I first became 6733 // poison. There are two possibilities (let's call the iteration in which \p 6734 // I first became poison as K): 6735 // 6736 // 1. In the set of iterations including and after K, the loop body executes 6737 // no side effects. In this case executing the backege an infinte number 6738 // of times will yield undefined behavior. 6739 // 6740 // 2. In the set of iterations including and after K, the loop body executes 6741 // at least one side effect. In this case, that specific instance of side 6742 // effect is control dependent on poison, which also yields undefined 6743 // behavior. 6744 6745 auto *ExitingBB = L->getExitingBlock(); 6746 auto *LatchBB = L->getLoopLatch(); 6747 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6748 return false; 6749 6750 SmallPtrSet<const Instruction *, 16> Pushed; 6751 SmallVector<const Instruction *, 8> PoisonStack; 6752 6753 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6754 // things that are known to be poison under that assumption go on the 6755 // PoisonStack. 6756 Pushed.insert(I); 6757 PoisonStack.push_back(I); 6758 6759 bool LatchControlDependentOnPoison = false; 6760 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6761 const Instruction *Poison = PoisonStack.pop_back_val(); 6762 6763 for (auto *PoisonUser : Poison->users()) { 6764 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6765 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6766 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6767 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6768 assert(BI->isConditional() && "Only possibility!"); 6769 if (BI->getParent() == LatchBB) { 6770 LatchControlDependentOnPoison = true; 6771 break; 6772 } 6773 } 6774 } 6775 } 6776 6777 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6778 } 6779 6780 ScalarEvolution::LoopProperties 6781 ScalarEvolution::getLoopProperties(const Loop *L) { 6782 using LoopProperties = ScalarEvolution::LoopProperties; 6783 6784 auto Itr = LoopPropertiesCache.find(L); 6785 if (Itr == LoopPropertiesCache.end()) { 6786 auto HasSideEffects = [](Instruction *I) { 6787 if (auto *SI = dyn_cast<StoreInst>(I)) 6788 return !SI->isSimple(); 6789 6790 return I->mayThrow() || I->mayWriteToMemory(); 6791 }; 6792 6793 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6794 /*HasNoSideEffects*/ true}; 6795 6796 for (auto *BB : L->getBlocks()) 6797 for (auto &I : *BB) { 6798 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6799 LP.HasNoAbnormalExits = false; 6800 if (HasSideEffects(&I)) 6801 LP.HasNoSideEffects = false; 6802 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6803 break; // We're already as pessimistic as we can get. 6804 } 6805 6806 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6807 assert(InsertPair.second && "We just checked!"); 6808 Itr = InsertPair.first; 6809 } 6810 6811 return Itr->second; 6812 } 6813 6814 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6815 // A mustprogress loop without side effects must be finite. 6816 // TODO: The check used here is very conservative. It's only *specific* 6817 // side effects which are well defined in infinite loops. 6818 return isMustProgress(L) && loopHasNoSideEffects(L); 6819 } 6820 6821 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6822 if (!isSCEVable(V->getType())) 6823 return getUnknown(V); 6824 6825 if (Instruction *I = dyn_cast<Instruction>(V)) { 6826 // Don't attempt to analyze instructions in blocks that aren't 6827 // reachable. Such instructions don't matter, and they aren't required 6828 // to obey basic rules for definitions dominating uses which this 6829 // analysis depends on. 6830 if (!DT.isReachableFromEntry(I->getParent())) 6831 return getUnknown(UndefValue::get(V->getType())); 6832 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6833 return getConstant(CI); 6834 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6835 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6836 else if (!isa<ConstantExpr>(V)) 6837 return getUnknown(V); 6838 6839 Operator *U = cast<Operator>(V); 6840 if (auto BO = MatchBinaryOp(U, DT)) { 6841 switch (BO->Opcode) { 6842 case Instruction::Add: { 6843 // The simple thing to do would be to just call getSCEV on both operands 6844 // and call getAddExpr with the result. However if we're looking at a 6845 // bunch of things all added together, this can be quite inefficient, 6846 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6847 // Instead, gather up all the operands and make a single getAddExpr call. 6848 // LLVM IR canonical form means we need only traverse the left operands. 6849 SmallVector<const SCEV *, 4> AddOps; 6850 do { 6851 if (BO->Op) { 6852 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6853 AddOps.push_back(OpSCEV); 6854 break; 6855 } 6856 6857 // If a NUW or NSW flag can be applied to the SCEV for this 6858 // addition, then compute the SCEV for this addition by itself 6859 // with a separate call to getAddExpr. We need to do that 6860 // instead of pushing the operands of the addition onto AddOps, 6861 // since the flags are only known to apply to this particular 6862 // addition - they may not apply to other additions that can be 6863 // formed with operands from AddOps. 6864 const SCEV *RHS = getSCEV(BO->RHS); 6865 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6866 if (Flags != SCEV::FlagAnyWrap) { 6867 const SCEV *LHS = getSCEV(BO->LHS); 6868 if (BO->Opcode == Instruction::Sub) 6869 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6870 else 6871 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6872 break; 6873 } 6874 } 6875 6876 if (BO->Opcode == Instruction::Sub) 6877 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6878 else 6879 AddOps.push_back(getSCEV(BO->RHS)); 6880 6881 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6882 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6883 NewBO->Opcode != Instruction::Sub)) { 6884 AddOps.push_back(getSCEV(BO->LHS)); 6885 break; 6886 } 6887 BO = NewBO; 6888 } while (true); 6889 6890 return getAddExpr(AddOps); 6891 } 6892 6893 case Instruction::Mul: { 6894 SmallVector<const SCEV *, 4> MulOps; 6895 do { 6896 if (BO->Op) { 6897 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6898 MulOps.push_back(OpSCEV); 6899 break; 6900 } 6901 6902 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6903 if (Flags != SCEV::FlagAnyWrap) { 6904 MulOps.push_back( 6905 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6906 break; 6907 } 6908 } 6909 6910 MulOps.push_back(getSCEV(BO->RHS)); 6911 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6912 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6913 MulOps.push_back(getSCEV(BO->LHS)); 6914 break; 6915 } 6916 BO = NewBO; 6917 } while (true); 6918 6919 return getMulExpr(MulOps); 6920 } 6921 case Instruction::UDiv: 6922 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6923 case Instruction::URem: 6924 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6925 case Instruction::Sub: { 6926 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6927 if (BO->Op) 6928 Flags = getNoWrapFlagsFromUB(BO->Op); 6929 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6930 } 6931 case Instruction::And: 6932 // For an expression like x&255 that merely masks off the high bits, 6933 // use zext(trunc(x)) as the SCEV expression. 6934 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6935 if (CI->isZero()) 6936 return getSCEV(BO->RHS); 6937 if (CI->isMinusOne()) 6938 return getSCEV(BO->LHS); 6939 const APInt &A = CI->getValue(); 6940 6941 // Instcombine's ShrinkDemandedConstant may strip bits out of 6942 // constants, obscuring what would otherwise be a low-bits mask. 6943 // Use computeKnownBits to compute what ShrinkDemandedConstant 6944 // knew about to reconstruct a low-bits mask value. 6945 unsigned LZ = A.countLeadingZeros(); 6946 unsigned TZ = A.countTrailingZeros(); 6947 unsigned BitWidth = A.getBitWidth(); 6948 KnownBits Known(BitWidth); 6949 computeKnownBits(BO->LHS, Known, getDataLayout(), 6950 0, &AC, nullptr, &DT); 6951 6952 APInt EffectiveMask = 6953 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6954 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6955 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6956 const SCEV *LHS = getSCEV(BO->LHS); 6957 const SCEV *ShiftedLHS = nullptr; 6958 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6959 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6960 // For an expression like (x * 8) & 8, simplify the multiply. 6961 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6962 unsigned GCD = std::min(MulZeros, TZ); 6963 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6964 SmallVector<const SCEV*, 4> MulOps; 6965 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6966 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6967 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6968 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6969 } 6970 } 6971 if (!ShiftedLHS) 6972 ShiftedLHS = getUDivExpr(LHS, MulCount); 6973 return getMulExpr( 6974 getZeroExtendExpr( 6975 getTruncateExpr(ShiftedLHS, 6976 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6977 BO->LHS->getType()), 6978 MulCount); 6979 } 6980 } 6981 break; 6982 6983 case Instruction::Or: 6984 // If the RHS of the Or is a constant, we may have something like: 6985 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6986 // optimizations will transparently handle this case. 6987 // 6988 // In order for this transformation to be safe, the LHS must be of the 6989 // form X*(2^n) and the Or constant must be less than 2^n. 6990 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6991 const SCEV *LHS = getSCEV(BO->LHS); 6992 const APInt &CIVal = CI->getValue(); 6993 if (GetMinTrailingZeros(LHS) >= 6994 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6995 // Build a plain add SCEV. 6996 return getAddExpr(LHS, getSCEV(CI), 6997 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6998 } 6999 } 7000 break; 7001 7002 case Instruction::Xor: 7003 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7004 // If the RHS of xor is -1, then this is a not operation. 7005 if (CI->isMinusOne()) 7006 return getNotSCEV(getSCEV(BO->LHS)); 7007 7008 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7009 // This is a variant of the check for xor with -1, and it handles 7010 // the case where instcombine has trimmed non-demanded bits out 7011 // of an xor with -1. 7012 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7013 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7014 if (LBO->getOpcode() == Instruction::And && 7015 LCI->getValue() == CI->getValue()) 7016 if (const SCEVZeroExtendExpr *Z = 7017 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7018 Type *UTy = BO->LHS->getType(); 7019 const SCEV *Z0 = Z->getOperand(); 7020 Type *Z0Ty = Z0->getType(); 7021 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7022 7023 // If C is a low-bits mask, the zero extend is serving to 7024 // mask off the high bits. Complement the operand and 7025 // re-apply the zext. 7026 if (CI->getValue().isMask(Z0TySize)) 7027 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7028 7029 // If C is a single bit, it may be in the sign-bit position 7030 // before the zero-extend. In this case, represent the xor 7031 // using an add, which is equivalent, and re-apply the zext. 7032 APInt Trunc = CI->getValue().trunc(Z0TySize); 7033 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7034 Trunc.isSignMask()) 7035 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7036 UTy); 7037 } 7038 } 7039 break; 7040 7041 case Instruction::Shl: 7042 // Turn shift left of a constant amount into a multiply. 7043 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7044 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7045 7046 // If the shift count is not less than the bitwidth, the result of 7047 // the shift is undefined. Don't try to analyze it, because the 7048 // resolution chosen here may differ from the resolution chosen in 7049 // other parts of the compiler. 7050 if (SA->getValue().uge(BitWidth)) 7051 break; 7052 7053 // We can safely preserve the nuw flag in all cases. It's also safe to 7054 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7055 // requires special handling. It can be preserved as long as we're not 7056 // left shifting by bitwidth - 1. 7057 auto Flags = SCEV::FlagAnyWrap; 7058 if (BO->Op) { 7059 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7060 if ((MulFlags & SCEV::FlagNSW) && 7061 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7062 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7063 if (MulFlags & SCEV::FlagNUW) 7064 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7065 } 7066 7067 Constant *X = ConstantInt::get( 7068 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7069 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7070 } 7071 break; 7072 7073 case Instruction::AShr: { 7074 // AShr X, C, where C is a constant. 7075 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7076 if (!CI) 7077 break; 7078 7079 Type *OuterTy = BO->LHS->getType(); 7080 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7081 // If the shift count is not less than the bitwidth, the result of 7082 // the shift is undefined. Don't try to analyze it, because the 7083 // resolution chosen here may differ from the resolution chosen in 7084 // other parts of the compiler. 7085 if (CI->getValue().uge(BitWidth)) 7086 break; 7087 7088 if (CI->isZero()) 7089 return getSCEV(BO->LHS); // shift by zero --> noop 7090 7091 uint64_t AShrAmt = CI->getZExtValue(); 7092 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7093 7094 Operator *L = dyn_cast<Operator>(BO->LHS); 7095 if (L && L->getOpcode() == Instruction::Shl) { 7096 // X = Shl A, n 7097 // Y = AShr X, m 7098 // Both n and m are constant. 7099 7100 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7101 if (L->getOperand(1) == BO->RHS) 7102 // For a two-shift sext-inreg, i.e. n = m, 7103 // use sext(trunc(x)) as the SCEV expression. 7104 return getSignExtendExpr( 7105 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7106 7107 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7108 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7109 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7110 if (ShlAmt > AShrAmt) { 7111 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7112 // expression. We already checked that ShlAmt < BitWidth, so 7113 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7114 // ShlAmt - AShrAmt < Amt. 7115 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7116 ShlAmt - AShrAmt); 7117 return getSignExtendExpr( 7118 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7119 getConstant(Mul)), OuterTy); 7120 } 7121 } 7122 } 7123 break; 7124 } 7125 } 7126 } 7127 7128 switch (U->getOpcode()) { 7129 case Instruction::Trunc: 7130 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7131 7132 case Instruction::ZExt: 7133 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7134 7135 case Instruction::SExt: 7136 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7137 // The NSW flag of a subtract does not always survive the conversion to 7138 // A + (-1)*B. By pushing sign extension onto its operands we are much 7139 // more likely to preserve NSW and allow later AddRec optimisations. 7140 // 7141 // NOTE: This is effectively duplicating this logic from getSignExtend: 7142 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7143 // but by that point the NSW information has potentially been lost. 7144 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7145 Type *Ty = U->getType(); 7146 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7147 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7148 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7149 } 7150 } 7151 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7152 7153 case Instruction::BitCast: 7154 // BitCasts are no-op casts so we just eliminate the cast. 7155 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7156 return getSCEV(U->getOperand(0)); 7157 break; 7158 7159 case Instruction::PtrToInt: { 7160 // Pointer to integer cast is straight-forward, so do model it. 7161 const SCEV *Op = getSCEV(U->getOperand(0)); 7162 Type *DstIntTy = U->getType(); 7163 // But only if effective SCEV (integer) type is wide enough to represent 7164 // all possible pointer values. 7165 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7166 if (isa<SCEVCouldNotCompute>(IntOp)) 7167 return getUnknown(V); 7168 return IntOp; 7169 } 7170 case Instruction::IntToPtr: 7171 // Just don't deal with inttoptr casts. 7172 return getUnknown(V); 7173 7174 case Instruction::SDiv: 7175 // If both operands are non-negative, this is just an udiv. 7176 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7177 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7178 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7179 break; 7180 7181 case Instruction::SRem: 7182 // If both operands are non-negative, this is just an urem. 7183 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7184 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7185 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7186 break; 7187 7188 case Instruction::GetElementPtr: 7189 return createNodeForGEP(cast<GEPOperator>(U)); 7190 7191 case Instruction::PHI: 7192 return createNodeForPHI(cast<PHINode>(U)); 7193 7194 case Instruction::Select: 7195 // U can also be a select constant expr, which let fall through. Since 7196 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7197 // constant expressions cannot have instructions as operands, we'd have 7198 // returned getUnknown for a select constant expressions anyway. 7199 if (isa<Instruction>(U)) 7200 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7201 U->getOperand(1), U->getOperand(2)); 7202 break; 7203 7204 case Instruction::Call: 7205 case Instruction::Invoke: 7206 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7207 return getSCEV(RV); 7208 7209 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7210 switch (II->getIntrinsicID()) { 7211 case Intrinsic::abs: 7212 return getAbsExpr( 7213 getSCEV(II->getArgOperand(0)), 7214 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7215 case Intrinsic::umax: 7216 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7217 getSCEV(II->getArgOperand(1))); 7218 case Intrinsic::umin: 7219 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7220 getSCEV(II->getArgOperand(1))); 7221 case Intrinsic::smax: 7222 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7223 getSCEV(II->getArgOperand(1))); 7224 case Intrinsic::smin: 7225 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7226 getSCEV(II->getArgOperand(1))); 7227 case Intrinsic::usub_sat: { 7228 const SCEV *X = getSCEV(II->getArgOperand(0)); 7229 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7230 const SCEV *ClampedY = getUMinExpr(X, Y); 7231 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7232 } 7233 case Intrinsic::uadd_sat: { 7234 const SCEV *X = getSCEV(II->getArgOperand(0)); 7235 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7236 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7237 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7238 } 7239 case Intrinsic::start_loop_iterations: 7240 // A start_loop_iterations is just equivalent to the first operand for 7241 // SCEV purposes. 7242 return getSCEV(II->getArgOperand(0)); 7243 default: 7244 break; 7245 } 7246 } 7247 break; 7248 } 7249 7250 return getUnknown(V); 7251 } 7252 7253 //===----------------------------------------------------------------------===// 7254 // Iteration Count Computation Code 7255 // 7256 7257 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7258 bool Extend) { 7259 if (isa<SCEVCouldNotCompute>(ExitCount)) 7260 return getCouldNotCompute(); 7261 7262 auto *ExitCountType = ExitCount->getType(); 7263 assert(ExitCountType->isIntegerTy()); 7264 7265 if (!Extend) 7266 return getAddExpr(ExitCount, getOne(ExitCountType)); 7267 7268 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7269 1 + ExitCountType->getScalarSizeInBits()); 7270 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7271 getOne(WiderType)); 7272 } 7273 7274 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7275 if (!ExitCount) 7276 return 0; 7277 7278 ConstantInt *ExitConst = ExitCount->getValue(); 7279 7280 // Guard against huge trip counts. 7281 if (ExitConst->getValue().getActiveBits() > 32) 7282 return 0; 7283 7284 // In case of integer overflow, this returns 0, which is correct. 7285 return ((unsigned)ExitConst->getZExtValue()) + 1; 7286 } 7287 7288 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7289 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7290 return getConstantTripCount(ExitCount); 7291 } 7292 7293 unsigned 7294 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7295 const BasicBlock *ExitingBlock) { 7296 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7297 assert(L->isLoopExiting(ExitingBlock) && 7298 "Exiting block must actually branch out of the loop!"); 7299 const SCEVConstant *ExitCount = 7300 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7301 return getConstantTripCount(ExitCount); 7302 } 7303 7304 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7305 const auto *MaxExitCount = 7306 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7307 return getConstantTripCount(MaxExitCount); 7308 } 7309 7310 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7311 // We can't infer from Array in Irregular Loop. 7312 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7313 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7314 return getCouldNotCompute(); 7315 7316 // FIXME: To make the scene more typical, we only analysis loops that have 7317 // one exiting block and that block must be the latch. To make it easier to 7318 // capture loops that have memory access and memory access will be executed 7319 // in each iteration. 7320 const BasicBlock *LoopLatch = L->getLoopLatch(); 7321 assert(LoopLatch && "See defination of simplify form loop."); 7322 if (L->getExitingBlock() != LoopLatch) 7323 return getCouldNotCompute(); 7324 7325 const DataLayout &DL = getDataLayout(); 7326 SmallVector<const SCEV *> InferCountColl; 7327 for (auto *BB : L->getBlocks()) { 7328 // Go here, we can know that Loop is a single exiting and simplified form 7329 // loop. Make sure that infer from Memory Operation in those BBs must be 7330 // executed in loop. First step, we can make sure that max execution time 7331 // of MemAccessBB in loop represents latch max excution time. 7332 // If MemAccessBB does not dom Latch, skip. 7333 // Entry 7334 // │ 7335 // ┌─────▼─────┐ 7336 // │Loop Header◄─────┐ 7337 // └──┬──────┬─┘ │ 7338 // │ │ │ 7339 // ┌────────▼──┐ ┌─▼─────┐ │ 7340 // │MemAccessBB│ │OtherBB│ │ 7341 // └────────┬──┘ └─┬─────┘ │ 7342 // │ │ │ 7343 // ┌─▼──────▼─┐ │ 7344 // │Loop Latch├─────┘ 7345 // └────┬─────┘ 7346 // ▼ 7347 // Exit 7348 if (!DT.dominates(BB, LoopLatch)) 7349 continue; 7350 7351 for (Instruction &Inst : *BB) { 7352 // Find Memory Operation Instruction. 7353 auto *GEP = getLoadStorePointerOperand(&Inst); 7354 if (!GEP) 7355 continue; 7356 7357 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7358 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7359 if (!ElemSize) 7360 continue; 7361 7362 // Use a existing polynomial recurrence on the trip count. 7363 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7364 if (!AddRec) 7365 continue; 7366 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7367 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7368 if (!ArrBase || !Step) 7369 continue; 7370 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7371 7372 // Only handle { %array + step }, 7373 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7374 if (AddRec->getStart() != ArrBase) 7375 continue; 7376 7377 // Memory operation pattern which have gaps. 7378 // Or repeat memory opreation. 7379 // And index of GEP wraps arround. 7380 if (Step->getAPInt().getActiveBits() > 32 || 7381 Step->getAPInt().getZExtValue() != 7382 ElemSize->getAPInt().getZExtValue() || 7383 Step->isZero() || Step->getAPInt().isNegative()) 7384 continue; 7385 7386 // Only infer from stack array which has certain size. 7387 // Make sure alloca instruction is not excuted in loop. 7388 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7389 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7390 continue; 7391 7392 // Make sure only handle normal array. 7393 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7394 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7395 if (!Ty || !ArrSize || !ArrSize->isOne()) 7396 continue; 7397 // Also make sure step was increased the same with sizeof allocated 7398 // element type. 7399 const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType()); 7400 if (Ty->getElementType() != GEPT->getElementType()) 7401 continue; 7402 7403 // FIXME: Since gep indices are silently zext to the indexing type, 7404 // we will have a narrow gep index which wraps around rather than 7405 // increasing strictly, we shoule ensure that step is increasing 7406 // strictly by the loop iteration. 7407 // Now we can infer a max execution time by MemLength/StepLength. 7408 const SCEV *MemSize = 7409 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7410 auto *MaxExeCount = 7411 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7412 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7413 continue; 7414 7415 // If the loop reaches the maximum number of executions, we can not 7416 // access bytes starting outside the statically allocated size without 7417 // being immediate UB. But it is allowed to enter loop header one more 7418 // time. 7419 auto *InferCount = dyn_cast<SCEVConstant>( 7420 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7421 // Discard the maximum number of execution times under 32bits. 7422 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7423 continue; 7424 7425 InferCountColl.push_back(InferCount); 7426 } 7427 } 7428 7429 if (InferCountColl.size() == 0) 7430 return getCouldNotCompute(); 7431 7432 return getUMinFromMismatchedTypes(InferCountColl); 7433 } 7434 7435 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7436 SmallVector<BasicBlock *, 8> ExitingBlocks; 7437 L->getExitingBlocks(ExitingBlocks); 7438 7439 Optional<unsigned> Res = None; 7440 for (auto *ExitingBB : ExitingBlocks) { 7441 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7442 if (!Res) 7443 Res = Multiple; 7444 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7445 } 7446 return Res.getValueOr(1); 7447 } 7448 7449 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7450 const SCEV *ExitCount) { 7451 if (ExitCount == getCouldNotCompute()) 7452 return 1; 7453 7454 // Get the trip count 7455 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7456 7457 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7458 if (!TC) 7459 // Attempt to factor more general cases. Returns the greatest power of 7460 // two divisor. If overflow happens, the trip count expression is still 7461 // divisible by the greatest power of 2 divisor returned. 7462 return 1U << std::min((uint32_t)31, 7463 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7464 7465 ConstantInt *Result = TC->getValue(); 7466 7467 // Guard against huge trip counts (this requires checking 7468 // for zero to handle the case where the trip count == -1 and the 7469 // addition wraps). 7470 if (!Result || Result->getValue().getActiveBits() > 32 || 7471 Result->getValue().getActiveBits() == 0) 7472 return 1; 7473 7474 return (unsigned)Result->getZExtValue(); 7475 } 7476 7477 /// Returns the largest constant divisor of the trip count of this loop as a 7478 /// normal unsigned value, if possible. This means that the actual trip count is 7479 /// always a multiple of the returned value (don't forget the trip count could 7480 /// very well be zero as well!). 7481 /// 7482 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7483 /// multiple of a constant (which is also the case if the trip count is simply 7484 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7485 /// if the trip count is very large (>= 2^32). 7486 /// 7487 /// As explained in the comments for getSmallConstantTripCount, this assumes 7488 /// that control exits the loop via ExitingBlock. 7489 unsigned 7490 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7491 const BasicBlock *ExitingBlock) { 7492 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7493 assert(L->isLoopExiting(ExitingBlock) && 7494 "Exiting block must actually branch out of the loop!"); 7495 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7496 return getSmallConstantTripMultiple(L, ExitCount); 7497 } 7498 7499 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7500 const BasicBlock *ExitingBlock, 7501 ExitCountKind Kind) { 7502 switch (Kind) { 7503 case Exact: 7504 case SymbolicMaximum: 7505 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7506 case ConstantMaximum: 7507 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7508 }; 7509 llvm_unreachable("Invalid ExitCountKind!"); 7510 } 7511 7512 const SCEV * 7513 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7514 SCEVUnionPredicate &Preds) { 7515 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7516 } 7517 7518 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7519 ExitCountKind Kind) { 7520 switch (Kind) { 7521 case Exact: 7522 return getBackedgeTakenInfo(L).getExact(L, this); 7523 case ConstantMaximum: 7524 return getBackedgeTakenInfo(L).getConstantMax(this); 7525 case SymbolicMaximum: 7526 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7527 }; 7528 llvm_unreachable("Invalid ExitCountKind!"); 7529 } 7530 7531 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7532 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7533 } 7534 7535 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7536 static void PushLoopPHIs(const Loop *L, 7537 SmallVectorImpl<Instruction *> &Worklist, 7538 SmallPtrSetImpl<Instruction *> &Visited) { 7539 BasicBlock *Header = L->getHeader(); 7540 7541 // Push all Loop-header PHIs onto the Worklist stack. 7542 for (PHINode &PN : Header->phis()) 7543 if (Visited.insert(&PN).second) 7544 Worklist.push_back(&PN); 7545 } 7546 7547 const ScalarEvolution::BackedgeTakenInfo & 7548 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7549 auto &BTI = getBackedgeTakenInfo(L); 7550 if (BTI.hasFullInfo()) 7551 return BTI; 7552 7553 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7554 7555 if (!Pair.second) 7556 return Pair.first->second; 7557 7558 BackedgeTakenInfo Result = 7559 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7560 7561 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7562 } 7563 7564 ScalarEvolution::BackedgeTakenInfo & 7565 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7566 // Initially insert an invalid entry for this loop. If the insertion 7567 // succeeds, proceed to actually compute a backedge-taken count and 7568 // update the value. The temporary CouldNotCompute value tells SCEV 7569 // code elsewhere that it shouldn't attempt to request a new 7570 // backedge-taken count, which could result in infinite recursion. 7571 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7572 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7573 if (!Pair.second) 7574 return Pair.first->second; 7575 7576 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7577 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7578 // must be cleared in this scope. 7579 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7580 7581 // In product build, there are no usage of statistic. 7582 (void)NumTripCountsComputed; 7583 (void)NumTripCountsNotComputed; 7584 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7585 const SCEV *BEExact = Result.getExact(L, this); 7586 if (BEExact != getCouldNotCompute()) { 7587 assert(isLoopInvariant(BEExact, L) && 7588 isLoopInvariant(Result.getConstantMax(this), L) && 7589 "Computed backedge-taken count isn't loop invariant for loop!"); 7590 ++NumTripCountsComputed; 7591 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7592 isa<PHINode>(L->getHeader()->begin())) { 7593 // Only count loops that have phi nodes as not being computable. 7594 ++NumTripCountsNotComputed; 7595 } 7596 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7597 7598 // Now that we know more about the trip count for this loop, forget any 7599 // existing SCEV values for PHI nodes in this loop since they are only 7600 // conservative estimates made without the benefit of trip count 7601 // information. This is similar to the code in forgetLoop, except that 7602 // it handles SCEVUnknown PHI nodes specially. 7603 if (Result.hasAnyInfo()) { 7604 SmallVector<Instruction *, 16> Worklist; 7605 SmallPtrSet<Instruction *, 8> Discovered; 7606 SmallVector<const SCEV *, 8> ToForget; 7607 PushLoopPHIs(L, Worklist, Discovered); 7608 while (!Worklist.empty()) { 7609 Instruction *I = Worklist.pop_back_val(); 7610 7611 ValueExprMapType::iterator It = 7612 ValueExprMap.find_as(static_cast<Value *>(I)); 7613 if (It != ValueExprMap.end()) { 7614 const SCEV *Old = It->second; 7615 7616 // SCEVUnknown for a PHI either means that it has an unrecognized 7617 // structure, or it's a PHI that's in the progress of being computed 7618 // by createNodeForPHI. In the former case, additional loop trip 7619 // count information isn't going to change anything. In the later 7620 // case, createNodeForPHI will perform the necessary updates on its 7621 // own when it gets to that point. 7622 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7623 eraseValueFromMap(It->first); 7624 ToForget.push_back(Old); 7625 } 7626 if (PHINode *PN = dyn_cast<PHINode>(I)) 7627 ConstantEvolutionLoopExitValue.erase(PN); 7628 } 7629 7630 // Since we don't need to invalidate anything for correctness and we're 7631 // only invalidating to make SCEV's results more precise, we get to stop 7632 // early to avoid invalidating too much. This is especially important in 7633 // cases like: 7634 // 7635 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7636 // loop0: 7637 // %pn0 = phi 7638 // ... 7639 // loop1: 7640 // %pn1 = phi 7641 // ... 7642 // 7643 // where both loop0 and loop1's backedge taken count uses the SCEV 7644 // expression for %v. If we don't have the early stop below then in cases 7645 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7646 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7647 // count for loop1, effectively nullifying SCEV's trip count cache. 7648 for (auto *U : I->users()) 7649 if (auto *I = dyn_cast<Instruction>(U)) { 7650 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7651 if (LoopForUser && L->contains(LoopForUser) && 7652 Discovered.insert(I).second) 7653 Worklist.push_back(I); 7654 } 7655 } 7656 forgetMemoizedResults(ToForget); 7657 } 7658 7659 // Re-lookup the insert position, since the call to 7660 // computeBackedgeTakenCount above could result in a 7661 // recusive call to getBackedgeTakenInfo (on a different 7662 // loop), which would invalidate the iterator computed 7663 // earlier. 7664 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7665 } 7666 7667 void ScalarEvolution::forgetAllLoops() { 7668 // This method is intended to forget all info about loops. It should 7669 // invalidate caches as if the following happened: 7670 // - The trip counts of all loops have changed arbitrarily 7671 // - Every llvm::Value has been updated in place to produce a different 7672 // result. 7673 BackedgeTakenCounts.clear(); 7674 PredicatedBackedgeTakenCounts.clear(); 7675 LoopPropertiesCache.clear(); 7676 ConstantEvolutionLoopExitValue.clear(); 7677 ValueExprMap.clear(); 7678 ValuesAtScopes.clear(); 7679 LoopDispositions.clear(); 7680 BlockDispositions.clear(); 7681 UnsignedRanges.clear(); 7682 SignedRanges.clear(); 7683 ExprValueMap.clear(); 7684 HasRecMap.clear(); 7685 MinTrailingZerosCache.clear(); 7686 PredicatedSCEVRewrites.clear(); 7687 } 7688 7689 void ScalarEvolution::forgetLoop(const Loop *L) { 7690 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7691 SmallVector<Instruction *, 32> Worklist; 7692 SmallPtrSet<Instruction *, 16> Visited; 7693 SmallVector<const SCEV *, 16> ToForget; 7694 7695 // Iterate over all the loops and sub-loops to drop SCEV information. 7696 while (!LoopWorklist.empty()) { 7697 auto *CurrL = LoopWorklist.pop_back_val(); 7698 7699 // Drop any stored trip count value. 7700 BackedgeTakenCounts.erase(CurrL); 7701 PredicatedBackedgeTakenCounts.erase(CurrL); 7702 7703 // Drop information about predicated SCEV rewrites for this loop. 7704 for (auto I = PredicatedSCEVRewrites.begin(); 7705 I != PredicatedSCEVRewrites.end();) { 7706 std::pair<const SCEV *, const Loop *> Entry = I->first; 7707 if (Entry.second == CurrL) 7708 PredicatedSCEVRewrites.erase(I++); 7709 else 7710 ++I; 7711 } 7712 7713 auto LoopUsersItr = LoopUsers.find(CurrL); 7714 if (LoopUsersItr != LoopUsers.end()) { 7715 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7716 LoopUsersItr->second.end()); 7717 LoopUsers.erase(LoopUsersItr); 7718 } 7719 7720 // Drop information about expressions based on loop-header PHIs. 7721 PushLoopPHIs(CurrL, Worklist, Visited); 7722 7723 while (!Worklist.empty()) { 7724 Instruction *I = Worklist.pop_back_val(); 7725 7726 ValueExprMapType::iterator It = 7727 ValueExprMap.find_as(static_cast<Value *>(I)); 7728 if (It != ValueExprMap.end()) { 7729 eraseValueFromMap(It->first); 7730 ToForget.push_back(It->second); 7731 if (PHINode *PN = dyn_cast<PHINode>(I)) 7732 ConstantEvolutionLoopExitValue.erase(PN); 7733 } 7734 7735 PushDefUseChildren(I, Worklist, Visited); 7736 } 7737 7738 LoopPropertiesCache.erase(CurrL); 7739 // Forget all contained loops too, to avoid dangling entries in the 7740 // ValuesAtScopes map. 7741 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7742 } 7743 forgetMemoizedResults(ToForget); 7744 } 7745 7746 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7747 while (Loop *Parent = L->getParentLoop()) 7748 L = Parent; 7749 forgetLoop(L); 7750 } 7751 7752 void ScalarEvolution::forgetValue(Value *V) { 7753 Instruction *I = dyn_cast<Instruction>(V); 7754 if (!I) return; 7755 7756 // Drop information about expressions based on loop-header PHIs. 7757 SmallVector<Instruction *, 16> Worklist; 7758 SmallPtrSet<Instruction *, 8> Visited; 7759 SmallVector<const SCEV *, 8> ToForget; 7760 Worklist.push_back(I); 7761 Visited.insert(I); 7762 7763 while (!Worklist.empty()) { 7764 I = Worklist.pop_back_val(); 7765 ValueExprMapType::iterator It = 7766 ValueExprMap.find_as(static_cast<Value *>(I)); 7767 if (It != ValueExprMap.end()) { 7768 eraseValueFromMap(It->first); 7769 ToForget.push_back(It->second); 7770 if (PHINode *PN = dyn_cast<PHINode>(I)) 7771 ConstantEvolutionLoopExitValue.erase(PN); 7772 } 7773 7774 PushDefUseChildren(I, Worklist, Visited); 7775 } 7776 forgetMemoizedResults(ToForget); 7777 } 7778 7779 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7780 LoopDispositions.clear(); 7781 } 7782 7783 /// Get the exact loop backedge taken count considering all loop exits. A 7784 /// computable result can only be returned for loops with all exiting blocks 7785 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7786 /// is never skipped. This is a valid assumption as long as the loop exits via 7787 /// that test. For precise results, it is the caller's responsibility to specify 7788 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7789 const SCEV * 7790 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7791 SCEVUnionPredicate *Preds) const { 7792 // If any exits were not computable, the loop is not computable. 7793 if (!isComplete() || ExitNotTaken.empty()) 7794 return SE->getCouldNotCompute(); 7795 7796 const BasicBlock *Latch = L->getLoopLatch(); 7797 // All exiting blocks we have collected must dominate the only backedge. 7798 if (!Latch) 7799 return SE->getCouldNotCompute(); 7800 7801 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7802 // count is simply a minimum out of all these calculated exit counts. 7803 SmallVector<const SCEV *, 2> Ops; 7804 for (auto &ENT : ExitNotTaken) { 7805 const SCEV *BECount = ENT.ExactNotTaken; 7806 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7807 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7808 "We should only have known counts for exiting blocks that dominate " 7809 "latch!"); 7810 7811 Ops.push_back(BECount); 7812 7813 if (Preds && !ENT.hasAlwaysTruePredicate()) 7814 Preds->add(ENT.Predicate.get()); 7815 7816 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7817 "Predicate should be always true!"); 7818 } 7819 7820 return SE->getUMinFromMismatchedTypes(Ops); 7821 } 7822 7823 /// Get the exact not taken count for this loop exit. 7824 const SCEV * 7825 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7826 ScalarEvolution *SE) const { 7827 for (auto &ENT : ExitNotTaken) 7828 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7829 return ENT.ExactNotTaken; 7830 7831 return SE->getCouldNotCompute(); 7832 } 7833 7834 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7835 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7836 for (auto &ENT : ExitNotTaken) 7837 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7838 return ENT.MaxNotTaken; 7839 7840 return SE->getCouldNotCompute(); 7841 } 7842 7843 /// getConstantMax - Get the constant max backedge taken count for the loop. 7844 const SCEV * 7845 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7846 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7847 return !ENT.hasAlwaysTruePredicate(); 7848 }; 7849 7850 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 7851 return SE->getCouldNotCompute(); 7852 7853 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7854 isa<SCEVConstant>(getConstantMax())) && 7855 "No point in having a non-constant max backedge taken count!"); 7856 return getConstantMax(); 7857 } 7858 7859 const SCEV * 7860 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7861 ScalarEvolution *SE) { 7862 if (!SymbolicMax) 7863 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7864 return SymbolicMax; 7865 } 7866 7867 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7868 ScalarEvolution *SE) const { 7869 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7870 return !ENT.hasAlwaysTruePredicate(); 7871 }; 7872 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7873 } 7874 7875 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7876 return Operands.contains(S); 7877 } 7878 7879 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7880 : ExitLimit(E, E, false, None) { 7881 } 7882 7883 ScalarEvolution::ExitLimit::ExitLimit( 7884 const SCEV *E, const SCEV *M, bool MaxOrZero, 7885 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7886 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7887 // If we prove the max count is zero, so is the symbolic bound. This happens 7888 // in practice due to differences in a) how context sensitive we've chosen 7889 // to be and b) how we reason about bounds impied by UB. 7890 if (MaxNotTaken->isZero()) 7891 ExactNotTaken = MaxNotTaken; 7892 7893 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7894 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7895 "Exact is not allowed to be less precise than Max"); 7896 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7897 isa<SCEVConstant>(MaxNotTaken)) && 7898 "No point in having a non-constant max backedge taken count!"); 7899 for (auto *PredSet : PredSetList) 7900 for (auto *P : *PredSet) 7901 addPredicate(P); 7902 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7903 "Backedge count should be int"); 7904 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7905 "Max backedge count should be int"); 7906 } 7907 7908 ScalarEvolution::ExitLimit::ExitLimit( 7909 const SCEV *E, const SCEV *M, bool MaxOrZero, 7910 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7911 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7912 } 7913 7914 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7915 bool MaxOrZero) 7916 : ExitLimit(E, M, MaxOrZero, None) { 7917 } 7918 7919 class SCEVRecordOperands { 7920 SmallPtrSetImpl<const SCEV *> &Operands; 7921 7922 public: 7923 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7924 : Operands(Operands) {} 7925 bool follow(const SCEV *S) { 7926 Operands.insert(S); 7927 return true; 7928 } 7929 bool isDone() { return false; } 7930 }; 7931 7932 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7933 /// computable exit into a persistent ExitNotTakenInfo array. 7934 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7935 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7936 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7937 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7938 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7939 7940 ExitNotTaken.reserve(ExitCounts.size()); 7941 std::transform( 7942 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7943 [&](const EdgeExitInfo &EEI) { 7944 BasicBlock *ExitBB = EEI.first; 7945 const ExitLimit &EL = EEI.second; 7946 if (EL.Predicates.empty()) 7947 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7948 nullptr); 7949 7950 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7951 for (auto *Pred : EL.Predicates) 7952 Predicate->add(Pred); 7953 7954 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7955 std::move(Predicate)); 7956 }); 7957 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7958 isa<SCEVConstant>(ConstantMax)) && 7959 "No point in having a non-constant max backedge taken count!"); 7960 7961 SCEVRecordOperands RecordOperands(Operands); 7962 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7963 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7964 ST.visitAll(ConstantMax); 7965 for (auto &ENT : ExitNotTaken) 7966 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7967 ST.visitAll(ENT.ExactNotTaken); 7968 } 7969 7970 /// Compute the number of times the backedge of the specified loop will execute. 7971 ScalarEvolution::BackedgeTakenInfo 7972 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7973 bool AllowPredicates) { 7974 SmallVector<BasicBlock *, 8> ExitingBlocks; 7975 L->getExitingBlocks(ExitingBlocks); 7976 7977 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7978 7979 SmallVector<EdgeExitInfo, 4> ExitCounts; 7980 bool CouldComputeBECount = true; 7981 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7982 const SCEV *MustExitMaxBECount = nullptr; 7983 const SCEV *MayExitMaxBECount = nullptr; 7984 bool MustExitMaxOrZero = false; 7985 7986 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7987 // and compute maxBECount. 7988 // Do a union of all the predicates here. 7989 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7990 BasicBlock *ExitBB = ExitingBlocks[i]; 7991 7992 // We canonicalize untaken exits to br (constant), ignore them so that 7993 // proving an exit untaken doesn't negatively impact our ability to reason 7994 // about the loop as whole. 7995 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7996 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7997 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7998 if (ExitIfTrue == CI->isZero()) 7999 continue; 8000 } 8001 8002 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8003 8004 assert((AllowPredicates || EL.Predicates.empty()) && 8005 "Predicated exit limit when predicates are not allowed!"); 8006 8007 // 1. For each exit that can be computed, add an entry to ExitCounts. 8008 // CouldComputeBECount is true only if all exits can be computed. 8009 if (EL.ExactNotTaken == getCouldNotCompute()) 8010 // We couldn't compute an exact value for this exit, so 8011 // we won't be able to compute an exact value for the loop. 8012 CouldComputeBECount = false; 8013 else 8014 ExitCounts.emplace_back(ExitBB, EL); 8015 8016 // 2. Derive the loop's MaxBECount from each exit's max number of 8017 // non-exiting iterations. Partition the loop exits into two kinds: 8018 // LoopMustExits and LoopMayExits. 8019 // 8020 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8021 // is a LoopMayExit. If any computable LoopMustExit is found, then 8022 // MaxBECount is the minimum EL.MaxNotTaken of computable 8023 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8024 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8025 // computable EL.MaxNotTaken. 8026 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8027 DT.dominates(ExitBB, Latch)) { 8028 if (!MustExitMaxBECount) { 8029 MustExitMaxBECount = EL.MaxNotTaken; 8030 MustExitMaxOrZero = EL.MaxOrZero; 8031 } else { 8032 MustExitMaxBECount = 8033 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8034 } 8035 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8036 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8037 MayExitMaxBECount = EL.MaxNotTaken; 8038 else { 8039 MayExitMaxBECount = 8040 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8041 } 8042 } 8043 } 8044 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8045 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8046 // The loop backedge will be taken the maximum or zero times if there's 8047 // a single exit that must be taken the maximum or zero times. 8048 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8049 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8050 MaxBECount, MaxOrZero); 8051 } 8052 8053 ScalarEvolution::ExitLimit 8054 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8055 bool AllowPredicates) { 8056 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8057 // If our exiting block does not dominate the latch, then its connection with 8058 // loop's exit limit may be far from trivial. 8059 const BasicBlock *Latch = L->getLoopLatch(); 8060 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8061 return getCouldNotCompute(); 8062 8063 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8064 Instruction *Term = ExitingBlock->getTerminator(); 8065 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8066 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8067 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8068 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8069 "It should have one successor in loop and one exit block!"); 8070 // Proceed to the next level to examine the exit condition expression. 8071 return computeExitLimitFromCond( 8072 L, BI->getCondition(), ExitIfTrue, 8073 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8074 } 8075 8076 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8077 // For switch, make sure that there is a single exit from the loop. 8078 BasicBlock *Exit = nullptr; 8079 for (auto *SBB : successors(ExitingBlock)) 8080 if (!L->contains(SBB)) { 8081 if (Exit) // Multiple exit successors. 8082 return getCouldNotCompute(); 8083 Exit = SBB; 8084 } 8085 assert(Exit && "Exiting block must have at least one exit"); 8086 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8087 /*ControlsExit=*/IsOnlyExit); 8088 } 8089 8090 return getCouldNotCompute(); 8091 } 8092 8093 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8094 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8095 bool ControlsExit, bool AllowPredicates) { 8096 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8097 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8098 ControlsExit, AllowPredicates); 8099 } 8100 8101 Optional<ScalarEvolution::ExitLimit> 8102 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8103 bool ExitIfTrue, bool ControlsExit, 8104 bool AllowPredicates) { 8105 (void)this->L; 8106 (void)this->ExitIfTrue; 8107 (void)this->AllowPredicates; 8108 8109 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8110 this->AllowPredicates == AllowPredicates && 8111 "Variance in assumed invariant key components!"); 8112 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8113 if (Itr == TripCountMap.end()) 8114 return None; 8115 return Itr->second; 8116 } 8117 8118 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8119 bool ExitIfTrue, 8120 bool ControlsExit, 8121 bool AllowPredicates, 8122 const ExitLimit &EL) { 8123 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8124 this->AllowPredicates == AllowPredicates && 8125 "Variance in assumed invariant key components!"); 8126 8127 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8128 assert(InsertResult.second && "Expected successful insertion!"); 8129 (void)InsertResult; 8130 (void)ExitIfTrue; 8131 } 8132 8133 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8134 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8135 bool ControlsExit, bool AllowPredicates) { 8136 8137 if (auto MaybeEL = 8138 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8139 return *MaybeEL; 8140 8141 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8142 ControlsExit, AllowPredicates); 8143 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8144 return EL; 8145 } 8146 8147 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8148 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8149 bool ControlsExit, bool AllowPredicates) { 8150 // Handle BinOp conditions (And, Or). 8151 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8152 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8153 return *LimitFromBinOp; 8154 8155 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8156 // Proceed to the next level to examine the icmp. 8157 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8158 ExitLimit EL = 8159 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8160 if (EL.hasFullInfo() || !AllowPredicates) 8161 return EL; 8162 8163 // Try again, but use SCEV predicates this time. 8164 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8165 /*AllowPredicates=*/true); 8166 } 8167 8168 // Check for a constant condition. These are normally stripped out by 8169 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8170 // preserve the CFG and is temporarily leaving constant conditions 8171 // in place. 8172 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8173 if (ExitIfTrue == !CI->getZExtValue()) 8174 // The backedge is always taken. 8175 return getCouldNotCompute(); 8176 else 8177 // The backedge is never taken. 8178 return getZero(CI->getType()); 8179 } 8180 8181 // If it's not an integer or pointer comparison then compute it the hard way. 8182 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8183 } 8184 8185 Optional<ScalarEvolution::ExitLimit> 8186 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8187 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8188 bool ControlsExit, bool AllowPredicates) { 8189 // Check if the controlling expression for this loop is an And or Or. 8190 Value *Op0, *Op1; 8191 bool IsAnd = false; 8192 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8193 IsAnd = true; 8194 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8195 IsAnd = false; 8196 else 8197 return None; 8198 8199 // EitherMayExit is true in these two cases: 8200 // br (and Op0 Op1), loop, exit 8201 // br (or Op0 Op1), exit, loop 8202 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8203 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8204 ControlsExit && !EitherMayExit, 8205 AllowPredicates); 8206 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8207 ControlsExit && !EitherMayExit, 8208 AllowPredicates); 8209 8210 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8211 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8212 if (isa<ConstantInt>(Op1)) 8213 return Op1 == NeutralElement ? EL0 : EL1; 8214 if (isa<ConstantInt>(Op0)) 8215 return Op0 == NeutralElement ? EL1 : EL0; 8216 8217 const SCEV *BECount = getCouldNotCompute(); 8218 const SCEV *MaxBECount = getCouldNotCompute(); 8219 if (EitherMayExit) { 8220 // Both conditions must be same for the loop to continue executing. 8221 // Choose the less conservative count. 8222 // If ExitCond is a short-circuit form (select), using 8223 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 8224 // To see the detailed examples, please see 8225 // test/Analysis/ScalarEvolution/exit-count-select.ll 8226 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 8227 if (!PoisonSafe) 8228 // Even if ExitCond is select, we can safely derive BECount using both 8229 // EL0 and EL1 in these cases: 8230 // (1) EL0.ExactNotTaken is non-zero 8231 // (2) EL1.ExactNotTaken is non-poison 8232 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 8233 // it cannot be umin(0, ..)) 8234 // The PoisonSafe assignment below is simplified and the assertion after 8235 // BECount calculation fully guarantees the condition (3). 8236 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8237 isa<SCEVConstant>(EL1.ExactNotTaken); 8238 if (EL0.ExactNotTaken != getCouldNotCompute() && 8239 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 8240 BECount = 8241 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8242 8243 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8244 // it should have been simplified to zero (see the condition (3) above) 8245 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8246 BECount->isZero()); 8247 } 8248 if (EL0.MaxNotTaken == getCouldNotCompute()) 8249 MaxBECount = EL1.MaxNotTaken; 8250 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8251 MaxBECount = EL0.MaxNotTaken; 8252 else 8253 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8254 } else { 8255 // Both conditions must be same at the same time for the loop to exit. 8256 // For now, be conservative. 8257 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8258 BECount = EL0.ExactNotTaken; 8259 } 8260 8261 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8262 // to be more aggressive when computing BECount than when computing 8263 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8264 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8265 // to not. 8266 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8267 !isa<SCEVCouldNotCompute>(BECount)) 8268 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8269 8270 return ExitLimit(BECount, MaxBECount, false, 8271 { &EL0.Predicates, &EL1.Predicates }); 8272 } 8273 8274 ScalarEvolution::ExitLimit 8275 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8276 ICmpInst *ExitCond, 8277 bool ExitIfTrue, 8278 bool ControlsExit, 8279 bool AllowPredicates) { 8280 // If the condition was exit on true, convert the condition to exit on false 8281 ICmpInst::Predicate Pred; 8282 if (!ExitIfTrue) 8283 Pred = ExitCond->getPredicate(); 8284 else 8285 Pred = ExitCond->getInversePredicate(); 8286 const ICmpInst::Predicate OriginalPred = Pred; 8287 8288 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8289 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8290 8291 // Try to evaluate any dependencies out of the loop. 8292 LHS = getSCEVAtScope(LHS, L); 8293 RHS = getSCEVAtScope(RHS, L); 8294 8295 // At this point, we would like to compute how many iterations of the 8296 // loop the predicate will return true for these inputs. 8297 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8298 // If there is a loop-invariant, force it into the RHS. 8299 std::swap(LHS, RHS); 8300 Pred = ICmpInst::getSwappedPredicate(Pred); 8301 } 8302 8303 // Simplify the operands before analyzing them. 8304 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8305 8306 // If we have a comparison of a chrec against a constant, try to use value 8307 // ranges to answer this query. 8308 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8309 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8310 if (AddRec->getLoop() == L) { 8311 // Form the constant range. 8312 ConstantRange CompRange = 8313 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8314 8315 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8316 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8317 } 8318 8319 // If this loop must exit based on this condition (or execute undefined 8320 // behaviour), and we can prove the test sequence produced must repeat 8321 // the same values on self-wrap of the IV, then we can infer that IV 8322 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8323 // loop. 8324 if (ControlsExit && isLoopInvariant(RHS, L) && loopHasNoAbnormalExits(L) && 8325 loopIsFiniteByAssumption(L)) { 8326 8327 // TODO: We can peel off any functions which are invertible *in L*. Loop 8328 // invariant terms are effectively constants for our purposes here. 8329 auto *InnerLHS = LHS; 8330 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8331 InnerLHS = ZExt->getOperand(); 8332 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8333 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8334 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8335 StrideC && StrideC->getAPInt().isPowerOf2()) { 8336 auto Flags = AR->getNoWrapFlags(); 8337 Flags = setFlags(Flags, SCEV::FlagNW); 8338 SmallVector<const SCEV*> Operands{AR->operands()}; 8339 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8340 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8341 } 8342 } 8343 } 8344 8345 switch (Pred) { 8346 case ICmpInst::ICMP_NE: { // while (X != Y) 8347 // Convert to: while (X-Y != 0) 8348 if (LHS->getType()->isPointerTy()) { 8349 LHS = getLosslessPtrToIntExpr(LHS); 8350 if (isa<SCEVCouldNotCompute>(LHS)) 8351 return LHS; 8352 } 8353 if (RHS->getType()->isPointerTy()) { 8354 RHS = getLosslessPtrToIntExpr(RHS); 8355 if (isa<SCEVCouldNotCompute>(RHS)) 8356 return RHS; 8357 } 8358 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8359 AllowPredicates); 8360 if (EL.hasAnyInfo()) return EL; 8361 break; 8362 } 8363 case ICmpInst::ICMP_EQ: { // while (X == Y) 8364 // Convert to: while (X-Y == 0) 8365 if (LHS->getType()->isPointerTy()) { 8366 LHS = getLosslessPtrToIntExpr(LHS); 8367 if (isa<SCEVCouldNotCompute>(LHS)) 8368 return LHS; 8369 } 8370 if (RHS->getType()->isPointerTy()) { 8371 RHS = getLosslessPtrToIntExpr(RHS); 8372 if (isa<SCEVCouldNotCompute>(RHS)) 8373 return RHS; 8374 } 8375 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8376 if (EL.hasAnyInfo()) return EL; 8377 break; 8378 } 8379 case ICmpInst::ICMP_SLT: 8380 case ICmpInst::ICMP_ULT: { // while (X < Y) 8381 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8382 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8383 AllowPredicates); 8384 if (EL.hasAnyInfo()) return EL; 8385 break; 8386 } 8387 case ICmpInst::ICMP_SGT: 8388 case ICmpInst::ICMP_UGT: { // while (X > Y) 8389 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8390 ExitLimit EL = 8391 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8392 AllowPredicates); 8393 if (EL.hasAnyInfo()) return EL; 8394 break; 8395 } 8396 default: 8397 break; 8398 } 8399 8400 auto *ExhaustiveCount = 8401 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8402 8403 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8404 return ExhaustiveCount; 8405 8406 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8407 ExitCond->getOperand(1), L, OriginalPred); 8408 } 8409 8410 ScalarEvolution::ExitLimit 8411 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8412 SwitchInst *Switch, 8413 BasicBlock *ExitingBlock, 8414 bool ControlsExit) { 8415 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8416 8417 // Give up if the exit is the default dest of a switch. 8418 if (Switch->getDefaultDest() == ExitingBlock) 8419 return getCouldNotCompute(); 8420 8421 assert(L->contains(Switch->getDefaultDest()) && 8422 "Default case must not exit the loop!"); 8423 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8424 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8425 8426 // while (X != Y) --> while (X-Y != 0) 8427 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8428 if (EL.hasAnyInfo()) 8429 return EL; 8430 8431 return getCouldNotCompute(); 8432 } 8433 8434 static ConstantInt * 8435 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8436 ScalarEvolution &SE) { 8437 const SCEV *InVal = SE.getConstant(C); 8438 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8439 assert(isa<SCEVConstant>(Val) && 8440 "Evaluation of SCEV at constant didn't fold correctly?"); 8441 return cast<SCEVConstant>(Val)->getValue(); 8442 } 8443 8444 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8445 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8446 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8447 if (!RHS) 8448 return getCouldNotCompute(); 8449 8450 const BasicBlock *Latch = L->getLoopLatch(); 8451 if (!Latch) 8452 return getCouldNotCompute(); 8453 8454 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8455 if (!Predecessor) 8456 return getCouldNotCompute(); 8457 8458 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8459 // Return LHS in OutLHS and shift_opt in OutOpCode. 8460 auto MatchPositiveShift = 8461 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8462 8463 using namespace PatternMatch; 8464 8465 ConstantInt *ShiftAmt; 8466 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8467 OutOpCode = Instruction::LShr; 8468 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8469 OutOpCode = Instruction::AShr; 8470 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8471 OutOpCode = Instruction::Shl; 8472 else 8473 return false; 8474 8475 return ShiftAmt->getValue().isStrictlyPositive(); 8476 }; 8477 8478 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8479 // 8480 // loop: 8481 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8482 // %iv.shifted = lshr i32 %iv, <positive constant> 8483 // 8484 // Return true on a successful match. Return the corresponding PHI node (%iv 8485 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8486 auto MatchShiftRecurrence = 8487 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8488 Optional<Instruction::BinaryOps> PostShiftOpCode; 8489 8490 { 8491 Instruction::BinaryOps OpC; 8492 Value *V; 8493 8494 // If we encounter a shift instruction, "peel off" the shift operation, 8495 // and remember that we did so. Later when we inspect %iv's backedge 8496 // value, we will make sure that the backedge value uses the same 8497 // operation. 8498 // 8499 // Note: the peeled shift operation does not have to be the same 8500 // instruction as the one feeding into the PHI's backedge value. We only 8501 // really care about it being the same *kind* of shift instruction -- 8502 // that's all that is required for our later inferences to hold. 8503 if (MatchPositiveShift(LHS, V, OpC)) { 8504 PostShiftOpCode = OpC; 8505 LHS = V; 8506 } 8507 } 8508 8509 PNOut = dyn_cast<PHINode>(LHS); 8510 if (!PNOut || PNOut->getParent() != L->getHeader()) 8511 return false; 8512 8513 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8514 Value *OpLHS; 8515 8516 return 8517 // The backedge value for the PHI node must be a shift by a positive 8518 // amount 8519 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8520 8521 // of the PHI node itself 8522 OpLHS == PNOut && 8523 8524 // and the kind of shift should be match the kind of shift we peeled 8525 // off, if any. 8526 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8527 }; 8528 8529 PHINode *PN; 8530 Instruction::BinaryOps OpCode; 8531 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8532 return getCouldNotCompute(); 8533 8534 const DataLayout &DL = getDataLayout(); 8535 8536 // The key rationale for this optimization is that for some kinds of shift 8537 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8538 // within a finite number of iterations. If the condition guarding the 8539 // backedge (in the sense that the backedge is taken if the condition is true) 8540 // is false for the value the shift recurrence stabilizes to, then we know 8541 // that the backedge is taken only a finite number of times. 8542 8543 ConstantInt *StableValue = nullptr; 8544 switch (OpCode) { 8545 default: 8546 llvm_unreachable("Impossible case!"); 8547 8548 case Instruction::AShr: { 8549 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8550 // bitwidth(K) iterations. 8551 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8552 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8553 Predecessor->getTerminator(), &DT); 8554 auto *Ty = cast<IntegerType>(RHS->getType()); 8555 if (Known.isNonNegative()) 8556 StableValue = ConstantInt::get(Ty, 0); 8557 else if (Known.isNegative()) 8558 StableValue = ConstantInt::get(Ty, -1, true); 8559 else 8560 return getCouldNotCompute(); 8561 8562 break; 8563 } 8564 case Instruction::LShr: 8565 case Instruction::Shl: 8566 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8567 // stabilize to 0 in at most bitwidth(K) iterations. 8568 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8569 break; 8570 } 8571 8572 auto *Result = 8573 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8574 assert(Result->getType()->isIntegerTy(1) && 8575 "Otherwise cannot be an operand to a branch instruction"); 8576 8577 if (Result->isZeroValue()) { 8578 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8579 const SCEV *UpperBound = 8580 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8581 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8582 } 8583 8584 return getCouldNotCompute(); 8585 } 8586 8587 /// Return true if we can constant fold an instruction of the specified type, 8588 /// assuming that all operands were constants. 8589 static bool CanConstantFold(const Instruction *I) { 8590 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8591 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8592 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8593 return true; 8594 8595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8596 if (const Function *F = CI->getCalledFunction()) 8597 return canConstantFoldCallTo(CI, F); 8598 return false; 8599 } 8600 8601 /// Determine whether this instruction can constant evolve within this loop 8602 /// assuming its operands can all constant evolve. 8603 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8604 // An instruction outside of the loop can't be derived from a loop PHI. 8605 if (!L->contains(I)) return false; 8606 8607 if (isa<PHINode>(I)) { 8608 // We don't currently keep track of the control flow needed to evaluate 8609 // PHIs, so we cannot handle PHIs inside of loops. 8610 return L->getHeader() == I->getParent(); 8611 } 8612 8613 // If we won't be able to constant fold this expression even if the operands 8614 // are constants, bail early. 8615 return CanConstantFold(I); 8616 } 8617 8618 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8619 /// recursing through each instruction operand until reaching a loop header phi. 8620 static PHINode * 8621 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8622 DenseMap<Instruction *, PHINode *> &PHIMap, 8623 unsigned Depth) { 8624 if (Depth > MaxConstantEvolvingDepth) 8625 return nullptr; 8626 8627 // Otherwise, we can evaluate this instruction if all of its operands are 8628 // constant or derived from a PHI node themselves. 8629 PHINode *PHI = nullptr; 8630 for (Value *Op : UseInst->operands()) { 8631 if (isa<Constant>(Op)) continue; 8632 8633 Instruction *OpInst = dyn_cast<Instruction>(Op); 8634 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8635 8636 PHINode *P = dyn_cast<PHINode>(OpInst); 8637 if (!P) 8638 // If this operand is already visited, reuse the prior result. 8639 // We may have P != PHI if this is the deepest point at which the 8640 // inconsistent paths meet. 8641 P = PHIMap.lookup(OpInst); 8642 if (!P) { 8643 // Recurse and memoize the results, whether a phi is found or not. 8644 // This recursive call invalidates pointers into PHIMap. 8645 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8646 PHIMap[OpInst] = P; 8647 } 8648 if (!P) 8649 return nullptr; // Not evolving from PHI 8650 if (PHI && PHI != P) 8651 return nullptr; // Evolving from multiple different PHIs. 8652 PHI = P; 8653 } 8654 // This is a expression evolving from a constant PHI! 8655 return PHI; 8656 } 8657 8658 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8659 /// in the loop that V is derived from. We allow arbitrary operations along the 8660 /// way, but the operands of an operation must either be constants or a value 8661 /// derived from a constant PHI. If this expression does not fit with these 8662 /// constraints, return null. 8663 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8664 Instruction *I = dyn_cast<Instruction>(V); 8665 if (!I || !canConstantEvolve(I, L)) return nullptr; 8666 8667 if (PHINode *PN = dyn_cast<PHINode>(I)) 8668 return PN; 8669 8670 // Record non-constant instructions contained by the loop. 8671 DenseMap<Instruction *, PHINode *> PHIMap; 8672 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8673 } 8674 8675 /// EvaluateExpression - Given an expression that passes the 8676 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8677 /// in the loop has the value PHIVal. If we can't fold this expression for some 8678 /// reason, return null. 8679 static Constant *EvaluateExpression(Value *V, const Loop *L, 8680 DenseMap<Instruction *, Constant *> &Vals, 8681 const DataLayout &DL, 8682 const TargetLibraryInfo *TLI) { 8683 // Convenient constant check, but redundant for recursive calls. 8684 if (Constant *C = dyn_cast<Constant>(V)) return C; 8685 Instruction *I = dyn_cast<Instruction>(V); 8686 if (!I) return nullptr; 8687 8688 if (Constant *C = Vals.lookup(I)) return C; 8689 8690 // An instruction inside the loop depends on a value outside the loop that we 8691 // weren't given a mapping for, or a value such as a call inside the loop. 8692 if (!canConstantEvolve(I, L)) return nullptr; 8693 8694 // An unmapped PHI can be due to a branch or another loop inside this loop, 8695 // or due to this not being the initial iteration through a loop where we 8696 // couldn't compute the evolution of this particular PHI last time. 8697 if (isa<PHINode>(I)) return nullptr; 8698 8699 std::vector<Constant*> Operands(I->getNumOperands()); 8700 8701 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8702 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8703 if (!Operand) { 8704 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8705 if (!Operands[i]) return nullptr; 8706 continue; 8707 } 8708 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8709 Vals[Operand] = C; 8710 if (!C) return nullptr; 8711 Operands[i] = C; 8712 } 8713 8714 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8715 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8716 Operands[1], DL, TLI); 8717 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8718 if (!LI->isVolatile()) 8719 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8720 } 8721 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8722 } 8723 8724 8725 // If every incoming value to PN except the one for BB is a specific Constant, 8726 // return that, else return nullptr. 8727 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8728 Constant *IncomingVal = nullptr; 8729 8730 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8731 if (PN->getIncomingBlock(i) == BB) 8732 continue; 8733 8734 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8735 if (!CurrentVal) 8736 return nullptr; 8737 8738 if (IncomingVal != CurrentVal) { 8739 if (IncomingVal) 8740 return nullptr; 8741 IncomingVal = CurrentVal; 8742 } 8743 } 8744 8745 return IncomingVal; 8746 } 8747 8748 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8749 /// in the header of its containing loop, we know the loop executes a 8750 /// constant number of times, and the PHI node is just a recurrence 8751 /// involving constants, fold it. 8752 Constant * 8753 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8754 const APInt &BEs, 8755 const Loop *L) { 8756 auto I = ConstantEvolutionLoopExitValue.find(PN); 8757 if (I != ConstantEvolutionLoopExitValue.end()) 8758 return I->second; 8759 8760 if (BEs.ugt(MaxBruteForceIterations)) 8761 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8762 8763 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8764 8765 DenseMap<Instruction *, Constant *> CurrentIterVals; 8766 BasicBlock *Header = L->getHeader(); 8767 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8768 8769 BasicBlock *Latch = L->getLoopLatch(); 8770 if (!Latch) 8771 return nullptr; 8772 8773 for (PHINode &PHI : Header->phis()) { 8774 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8775 CurrentIterVals[&PHI] = StartCST; 8776 } 8777 if (!CurrentIterVals.count(PN)) 8778 return RetVal = nullptr; 8779 8780 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8781 8782 // Execute the loop symbolically to determine the exit value. 8783 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8784 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8785 8786 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8787 unsigned IterationNum = 0; 8788 const DataLayout &DL = getDataLayout(); 8789 for (; ; ++IterationNum) { 8790 if (IterationNum == NumIterations) 8791 return RetVal = CurrentIterVals[PN]; // Got exit value! 8792 8793 // Compute the value of the PHIs for the next iteration. 8794 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8795 DenseMap<Instruction *, Constant *> NextIterVals; 8796 Constant *NextPHI = 8797 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8798 if (!NextPHI) 8799 return nullptr; // Couldn't evaluate! 8800 NextIterVals[PN] = NextPHI; 8801 8802 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8803 8804 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8805 // cease to be able to evaluate one of them or if they stop evolving, 8806 // because that doesn't necessarily prevent us from computing PN. 8807 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8808 for (const auto &I : CurrentIterVals) { 8809 PHINode *PHI = dyn_cast<PHINode>(I.first); 8810 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8811 PHIsToCompute.emplace_back(PHI, I.second); 8812 } 8813 // We use two distinct loops because EvaluateExpression may invalidate any 8814 // iterators into CurrentIterVals. 8815 for (const auto &I : PHIsToCompute) { 8816 PHINode *PHI = I.first; 8817 Constant *&NextPHI = NextIterVals[PHI]; 8818 if (!NextPHI) { // Not already computed. 8819 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8820 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8821 } 8822 if (NextPHI != I.second) 8823 StoppedEvolving = false; 8824 } 8825 8826 // If all entries in CurrentIterVals == NextIterVals then we can stop 8827 // iterating, the loop can't continue to change. 8828 if (StoppedEvolving) 8829 return RetVal = CurrentIterVals[PN]; 8830 8831 CurrentIterVals.swap(NextIterVals); 8832 } 8833 } 8834 8835 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8836 Value *Cond, 8837 bool ExitWhen) { 8838 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8839 if (!PN) return getCouldNotCompute(); 8840 8841 // If the loop is canonicalized, the PHI will have exactly two entries. 8842 // That's the only form we support here. 8843 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8844 8845 DenseMap<Instruction *, Constant *> CurrentIterVals; 8846 BasicBlock *Header = L->getHeader(); 8847 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8848 8849 BasicBlock *Latch = L->getLoopLatch(); 8850 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8851 8852 for (PHINode &PHI : Header->phis()) { 8853 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8854 CurrentIterVals[&PHI] = StartCST; 8855 } 8856 if (!CurrentIterVals.count(PN)) 8857 return getCouldNotCompute(); 8858 8859 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8860 // the loop symbolically to determine when the condition gets a value of 8861 // "ExitWhen". 8862 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8863 const DataLayout &DL = getDataLayout(); 8864 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8865 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8866 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8867 8868 // Couldn't symbolically evaluate. 8869 if (!CondVal) return getCouldNotCompute(); 8870 8871 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8872 ++NumBruteForceTripCountsComputed; 8873 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8874 } 8875 8876 // Update all the PHI nodes for the next iteration. 8877 DenseMap<Instruction *, Constant *> NextIterVals; 8878 8879 // Create a list of which PHIs we need to compute. We want to do this before 8880 // calling EvaluateExpression on them because that may invalidate iterators 8881 // into CurrentIterVals. 8882 SmallVector<PHINode *, 8> PHIsToCompute; 8883 for (const auto &I : CurrentIterVals) { 8884 PHINode *PHI = dyn_cast<PHINode>(I.first); 8885 if (!PHI || PHI->getParent() != Header) continue; 8886 PHIsToCompute.push_back(PHI); 8887 } 8888 for (PHINode *PHI : PHIsToCompute) { 8889 Constant *&NextPHI = NextIterVals[PHI]; 8890 if (NextPHI) continue; // Already computed! 8891 8892 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8893 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8894 } 8895 CurrentIterVals.swap(NextIterVals); 8896 } 8897 8898 // Too many iterations were needed to evaluate. 8899 return getCouldNotCompute(); 8900 } 8901 8902 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8903 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8904 ValuesAtScopes[V]; 8905 // Check to see if we've folded this expression at this loop before. 8906 for (auto &LS : Values) 8907 if (LS.first == L) 8908 return LS.second ? LS.second : V; 8909 8910 Values.emplace_back(L, nullptr); 8911 8912 // Otherwise compute it. 8913 const SCEV *C = computeSCEVAtScope(V, L); 8914 for (auto &LS : reverse(ValuesAtScopes[V])) 8915 if (LS.first == L) { 8916 LS.second = C; 8917 break; 8918 } 8919 return C; 8920 } 8921 8922 /// This builds up a Constant using the ConstantExpr interface. That way, we 8923 /// will return Constants for objects which aren't represented by a 8924 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8925 /// Returns NULL if the SCEV isn't representable as a Constant. 8926 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8927 switch (V->getSCEVType()) { 8928 case scCouldNotCompute: 8929 case scAddRecExpr: 8930 return nullptr; 8931 case scConstant: 8932 return cast<SCEVConstant>(V)->getValue(); 8933 case scUnknown: 8934 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8935 case scSignExtend: { 8936 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8937 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8938 return ConstantExpr::getSExt(CastOp, SS->getType()); 8939 return nullptr; 8940 } 8941 case scZeroExtend: { 8942 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8943 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8944 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8945 return nullptr; 8946 } 8947 case scPtrToInt: { 8948 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8949 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8950 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8951 8952 return nullptr; 8953 } 8954 case scTruncate: { 8955 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8956 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8957 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8958 return nullptr; 8959 } 8960 case scAddExpr: { 8961 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8962 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8963 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8964 unsigned AS = PTy->getAddressSpace(); 8965 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8966 C = ConstantExpr::getBitCast(C, DestPtrTy); 8967 } 8968 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8969 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8970 if (!C2) 8971 return nullptr; 8972 8973 // First pointer! 8974 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8975 unsigned AS = C2->getType()->getPointerAddressSpace(); 8976 std::swap(C, C2); 8977 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8978 // The offsets have been converted to bytes. We can add bytes to an 8979 // i8* by GEP with the byte count in the first index. 8980 C = ConstantExpr::getBitCast(C, DestPtrTy); 8981 } 8982 8983 // Don't bother trying to sum two pointers. We probably can't 8984 // statically compute a load that results from it anyway. 8985 if (C2->getType()->isPointerTy()) 8986 return nullptr; 8987 8988 if (C->getType()->isPointerTy()) { 8989 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8990 C, C2); 8991 } else { 8992 C = ConstantExpr::getAdd(C, C2); 8993 } 8994 } 8995 return C; 8996 } 8997 return nullptr; 8998 } 8999 case scMulExpr: { 9000 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9001 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9002 // Don't bother with pointers at all. 9003 if (C->getType()->isPointerTy()) 9004 return nullptr; 9005 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9006 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9007 if (!C2 || C2->getType()->isPointerTy()) 9008 return nullptr; 9009 C = ConstantExpr::getMul(C, C2); 9010 } 9011 return C; 9012 } 9013 return nullptr; 9014 } 9015 case scUDivExpr: { 9016 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9017 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9018 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9019 if (LHS->getType() == RHS->getType()) 9020 return ConstantExpr::getUDiv(LHS, RHS); 9021 return nullptr; 9022 } 9023 case scSMaxExpr: 9024 case scUMaxExpr: 9025 case scSMinExpr: 9026 case scUMinExpr: 9027 return nullptr; // TODO: smax, umax, smin, umax. 9028 } 9029 llvm_unreachable("Unknown SCEV kind!"); 9030 } 9031 9032 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9033 if (isa<SCEVConstant>(V)) return V; 9034 9035 // If this instruction is evolved from a constant-evolving PHI, compute the 9036 // exit value from the loop without using SCEVs. 9037 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9038 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9039 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9040 const Loop *CurrLoop = this->LI[I->getParent()]; 9041 // Looking for loop exit value. 9042 if (CurrLoop && CurrLoop->getParentLoop() == L && 9043 PN->getParent() == CurrLoop->getHeader()) { 9044 // Okay, there is no closed form solution for the PHI node. Check 9045 // to see if the loop that contains it has a known backedge-taken 9046 // count. If so, we may be able to force computation of the exit 9047 // value. 9048 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9049 // This trivial case can show up in some degenerate cases where 9050 // the incoming IR has not yet been fully simplified. 9051 if (BackedgeTakenCount->isZero()) { 9052 Value *InitValue = nullptr; 9053 bool MultipleInitValues = false; 9054 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9055 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9056 if (!InitValue) 9057 InitValue = PN->getIncomingValue(i); 9058 else if (InitValue != PN->getIncomingValue(i)) { 9059 MultipleInitValues = true; 9060 break; 9061 } 9062 } 9063 } 9064 if (!MultipleInitValues && InitValue) 9065 return getSCEV(InitValue); 9066 } 9067 // Do we have a loop invariant value flowing around the backedge 9068 // for a loop which must execute the backedge? 9069 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9070 isKnownPositive(BackedgeTakenCount) && 9071 PN->getNumIncomingValues() == 2) { 9072 9073 unsigned InLoopPred = 9074 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9075 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9076 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9077 return getSCEV(BackedgeVal); 9078 } 9079 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9080 // Okay, we know how many times the containing loop executes. If 9081 // this is a constant evolving PHI node, get the final value at 9082 // the specified iteration number. 9083 Constant *RV = getConstantEvolutionLoopExitValue( 9084 PN, BTCC->getAPInt(), CurrLoop); 9085 if (RV) return getSCEV(RV); 9086 } 9087 } 9088 9089 // If there is a single-input Phi, evaluate it at our scope. If we can 9090 // prove that this replacement does not break LCSSA form, use new value. 9091 if (PN->getNumOperands() == 1) { 9092 const SCEV *Input = getSCEV(PN->getOperand(0)); 9093 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9094 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9095 // for the simplest case just support constants. 9096 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9097 } 9098 } 9099 9100 // Okay, this is an expression that we cannot symbolically evaluate 9101 // into a SCEV. Check to see if it's possible to symbolically evaluate 9102 // the arguments into constants, and if so, try to constant propagate the 9103 // result. This is particularly useful for computing loop exit values. 9104 if (CanConstantFold(I)) { 9105 SmallVector<Constant *, 4> Operands; 9106 bool MadeImprovement = false; 9107 for (Value *Op : I->operands()) { 9108 if (Constant *C = dyn_cast<Constant>(Op)) { 9109 Operands.push_back(C); 9110 continue; 9111 } 9112 9113 // If any of the operands is non-constant and if they are 9114 // non-integer and non-pointer, don't even try to analyze them 9115 // with scev techniques. 9116 if (!isSCEVable(Op->getType())) 9117 return V; 9118 9119 const SCEV *OrigV = getSCEV(Op); 9120 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9121 MadeImprovement |= OrigV != OpV; 9122 9123 Constant *C = BuildConstantFromSCEV(OpV); 9124 if (!C) return V; 9125 if (C->getType() != Op->getType()) 9126 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9127 Op->getType(), 9128 false), 9129 C, Op->getType()); 9130 Operands.push_back(C); 9131 } 9132 9133 // Check to see if getSCEVAtScope actually made an improvement. 9134 if (MadeImprovement) { 9135 Constant *C = nullptr; 9136 const DataLayout &DL = getDataLayout(); 9137 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9138 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9139 Operands[1], DL, &TLI); 9140 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9141 if (!Load->isVolatile()) 9142 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9143 DL); 9144 } else 9145 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9146 if (!C) return V; 9147 return getSCEV(C); 9148 } 9149 } 9150 } 9151 9152 // This is some other type of SCEVUnknown, just return it. 9153 return V; 9154 } 9155 9156 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 9157 // Avoid performing the look-up in the common case where the specified 9158 // expression has no loop-variant portions. 9159 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9160 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9161 if (OpAtScope != Comm->getOperand(i)) { 9162 // Okay, at least one of these operands is loop variant but might be 9163 // foldable. Build a new instance of the folded commutative expression. 9164 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9165 Comm->op_begin()+i); 9166 NewOps.push_back(OpAtScope); 9167 9168 for (++i; i != e; ++i) { 9169 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9170 NewOps.push_back(OpAtScope); 9171 } 9172 if (isa<SCEVAddExpr>(Comm)) 9173 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9174 if (isa<SCEVMulExpr>(Comm)) 9175 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9176 if (isa<SCEVMinMaxExpr>(Comm)) 9177 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9178 llvm_unreachable("Unknown commutative SCEV type!"); 9179 } 9180 } 9181 // If we got here, all operands are loop invariant. 9182 return Comm; 9183 } 9184 9185 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9186 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9187 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9188 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9189 return Div; // must be loop invariant 9190 return getUDivExpr(LHS, RHS); 9191 } 9192 9193 // If this is a loop recurrence for a loop that does not contain L, then we 9194 // are dealing with the final value computed by the loop. 9195 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9196 // First, attempt to evaluate each operand. 9197 // Avoid performing the look-up in the common case where the specified 9198 // expression has no loop-variant portions. 9199 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9200 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9201 if (OpAtScope == AddRec->getOperand(i)) 9202 continue; 9203 9204 // Okay, at least one of these operands is loop variant but might be 9205 // foldable. Build a new instance of the folded commutative expression. 9206 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9207 AddRec->op_begin()+i); 9208 NewOps.push_back(OpAtScope); 9209 for (++i; i != e; ++i) 9210 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9211 9212 const SCEV *FoldedRec = 9213 getAddRecExpr(NewOps, AddRec->getLoop(), 9214 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9215 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9216 // The addrec may be folded to a nonrecurrence, for example, if the 9217 // induction variable is multiplied by zero after constant folding. Go 9218 // ahead and return the folded value. 9219 if (!AddRec) 9220 return FoldedRec; 9221 break; 9222 } 9223 9224 // If the scope is outside the addrec's loop, evaluate it by using the 9225 // loop exit value of the addrec. 9226 if (!AddRec->getLoop()->contains(L)) { 9227 // To evaluate this recurrence, we need to know how many times the AddRec 9228 // loop iterates. Compute this now. 9229 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9230 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9231 9232 // Then, evaluate the AddRec. 9233 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9234 } 9235 9236 return AddRec; 9237 } 9238 9239 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9240 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9241 if (Op == Cast->getOperand()) 9242 return Cast; // must be loop invariant 9243 return getZeroExtendExpr(Op, Cast->getType()); 9244 } 9245 9246 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9247 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9248 if (Op == Cast->getOperand()) 9249 return Cast; // must be loop invariant 9250 return getSignExtendExpr(Op, Cast->getType()); 9251 } 9252 9253 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9254 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9255 if (Op == Cast->getOperand()) 9256 return Cast; // must be loop invariant 9257 return getTruncateExpr(Op, Cast->getType()); 9258 } 9259 9260 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9261 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9262 if (Op == Cast->getOperand()) 9263 return Cast; // must be loop invariant 9264 return getPtrToIntExpr(Op, Cast->getType()); 9265 } 9266 9267 llvm_unreachable("Unknown SCEV type!"); 9268 } 9269 9270 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9271 return getSCEVAtScope(getSCEV(V), L); 9272 } 9273 9274 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9275 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9276 return stripInjectiveFunctions(ZExt->getOperand()); 9277 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9278 return stripInjectiveFunctions(SExt->getOperand()); 9279 return S; 9280 } 9281 9282 /// Finds the minimum unsigned root of the following equation: 9283 /// 9284 /// A * X = B (mod N) 9285 /// 9286 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9287 /// A and B isn't important. 9288 /// 9289 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9290 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9291 ScalarEvolution &SE) { 9292 uint32_t BW = A.getBitWidth(); 9293 assert(BW == SE.getTypeSizeInBits(B->getType())); 9294 assert(A != 0 && "A must be non-zero."); 9295 9296 // 1. D = gcd(A, N) 9297 // 9298 // The gcd of A and N may have only one prime factor: 2. The number of 9299 // trailing zeros in A is its multiplicity 9300 uint32_t Mult2 = A.countTrailingZeros(); 9301 // D = 2^Mult2 9302 9303 // 2. Check if B is divisible by D. 9304 // 9305 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9306 // is not less than multiplicity of this prime factor for D. 9307 if (SE.GetMinTrailingZeros(B) < Mult2) 9308 return SE.getCouldNotCompute(); 9309 9310 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9311 // modulo (N / D). 9312 // 9313 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9314 // (N / D) in general. The inverse itself always fits into BW bits, though, 9315 // so we immediately truncate it. 9316 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9317 APInt Mod(BW + 1, 0); 9318 Mod.setBit(BW - Mult2); // Mod = N / D 9319 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9320 9321 // 4. Compute the minimum unsigned root of the equation: 9322 // I * (B / D) mod (N / D) 9323 // To simplify the computation, we factor out the divide by D: 9324 // (I * B mod N) / D 9325 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9326 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9327 } 9328 9329 /// For a given quadratic addrec, generate coefficients of the corresponding 9330 /// quadratic equation, multiplied by a common value to ensure that they are 9331 /// integers. 9332 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9333 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9334 /// were multiplied by, and BitWidth is the bit width of the original addrec 9335 /// coefficients. 9336 /// This function returns None if the addrec coefficients are not compile- 9337 /// time constants. 9338 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9339 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9340 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9341 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9342 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9343 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9344 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9345 << *AddRec << '\n'); 9346 9347 // We currently can only solve this if the coefficients are constants. 9348 if (!LC || !MC || !NC) { 9349 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9350 return None; 9351 } 9352 9353 APInt L = LC->getAPInt(); 9354 APInt M = MC->getAPInt(); 9355 APInt N = NC->getAPInt(); 9356 assert(!N.isZero() && "This is not a quadratic addrec"); 9357 9358 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9359 unsigned NewWidth = BitWidth + 1; 9360 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9361 << BitWidth << '\n'); 9362 // The sign-extension (as opposed to a zero-extension) here matches the 9363 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9364 N = N.sext(NewWidth); 9365 M = M.sext(NewWidth); 9366 L = L.sext(NewWidth); 9367 9368 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9369 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9370 // L+M, L+2M+N, L+3M+3N, ... 9371 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9372 // 9373 // The equation Acc = 0 is then 9374 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9375 // In a quadratic form it becomes: 9376 // N n^2 + (2M-N) n + 2L = 0. 9377 9378 APInt A = N; 9379 APInt B = 2 * M - A; 9380 APInt C = 2 * L; 9381 APInt T = APInt(NewWidth, 2); 9382 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9383 << "x + " << C << ", coeff bw: " << NewWidth 9384 << ", multiplied by " << T << '\n'); 9385 return std::make_tuple(A, B, C, T, BitWidth); 9386 } 9387 9388 /// Helper function to compare optional APInts: 9389 /// (a) if X and Y both exist, return min(X, Y), 9390 /// (b) if neither X nor Y exist, return None, 9391 /// (c) if exactly one of X and Y exists, return that value. 9392 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9393 if (X.hasValue() && Y.hasValue()) { 9394 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9395 APInt XW = X->sextOrSelf(W); 9396 APInt YW = Y->sextOrSelf(W); 9397 return XW.slt(YW) ? *X : *Y; 9398 } 9399 if (!X.hasValue() && !Y.hasValue()) 9400 return None; 9401 return X.hasValue() ? *X : *Y; 9402 } 9403 9404 /// Helper function to truncate an optional APInt to a given BitWidth. 9405 /// When solving addrec-related equations, it is preferable to return a value 9406 /// that has the same bit width as the original addrec's coefficients. If the 9407 /// solution fits in the original bit width, truncate it (except for i1). 9408 /// Returning a value of a different bit width may inhibit some optimizations. 9409 /// 9410 /// In general, a solution to a quadratic equation generated from an addrec 9411 /// may require BW+1 bits, where BW is the bit width of the addrec's 9412 /// coefficients. The reason is that the coefficients of the quadratic 9413 /// equation are BW+1 bits wide (to avoid truncation when converting from 9414 /// the addrec to the equation). 9415 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9416 if (!X.hasValue()) 9417 return None; 9418 unsigned W = X->getBitWidth(); 9419 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9420 return X->trunc(BitWidth); 9421 return X; 9422 } 9423 9424 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9425 /// iterations. The values L, M, N are assumed to be signed, and they 9426 /// should all have the same bit widths. 9427 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9428 /// where BW is the bit width of the addrec's coefficients. 9429 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9430 /// returned as such, otherwise the bit width of the returned value may 9431 /// be greater than BW. 9432 /// 9433 /// This function returns None if 9434 /// (a) the addrec coefficients are not constant, or 9435 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9436 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9437 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9438 static Optional<APInt> 9439 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9440 APInt A, B, C, M; 9441 unsigned BitWidth; 9442 auto T = GetQuadraticEquation(AddRec); 9443 if (!T.hasValue()) 9444 return None; 9445 9446 std::tie(A, B, C, M, BitWidth) = *T; 9447 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9448 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9449 if (!X.hasValue()) 9450 return None; 9451 9452 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9453 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9454 if (!V->isZero()) 9455 return None; 9456 9457 return TruncIfPossible(X, BitWidth); 9458 } 9459 9460 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9461 /// iterations. The values M, N are assumed to be signed, and they 9462 /// should all have the same bit widths. 9463 /// Find the least n such that c(n) does not belong to the given range, 9464 /// while c(n-1) does. 9465 /// 9466 /// This function returns None if 9467 /// (a) the addrec coefficients are not constant, or 9468 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9469 /// bounds of the range. 9470 static Optional<APInt> 9471 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9472 const ConstantRange &Range, ScalarEvolution &SE) { 9473 assert(AddRec->getOperand(0)->isZero() && 9474 "Starting value of addrec should be 0"); 9475 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9476 << Range << ", addrec " << *AddRec << '\n'); 9477 // This case is handled in getNumIterationsInRange. Here we can assume that 9478 // we start in the range. 9479 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9480 "Addrec's initial value should be in range"); 9481 9482 APInt A, B, C, M; 9483 unsigned BitWidth; 9484 auto T = GetQuadraticEquation(AddRec); 9485 if (!T.hasValue()) 9486 return None; 9487 9488 // Be careful about the return value: there can be two reasons for not 9489 // returning an actual number. First, if no solutions to the equations 9490 // were found, and second, if the solutions don't leave the given range. 9491 // The first case means that the actual solution is "unknown", the second 9492 // means that it's known, but not valid. If the solution is unknown, we 9493 // cannot make any conclusions. 9494 // Return a pair: the optional solution and a flag indicating if the 9495 // solution was found. 9496 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9497 // Solve for signed overflow and unsigned overflow, pick the lower 9498 // solution. 9499 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9500 << Bound << " (before multiplying by " << M << ")\n"); 9501 Bound *= M; // The quadratic equation multiplier. 9502 9503 Optional<APInt> SO = None; 9504 if (BitWidth > 1) { 9505 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9506 "signed overflow\n"); 9507 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9508 } 9509 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9510 "unsigned overflow\n"); 9511 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9512 BitWidth+1); 9513 9514 auto LeavesRange = [&] (const APInt &X) { 9515 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9516 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9517 if (Range.contains(V0->getValue())) 9518 return false; 9519 // X should be at least 1, so X-1 is non-negative. 9520 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9521 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9522 if (Range.contains(V1->getValue())) 9523 return true; 9524 return false; 9525 }; 9526 9527 // If SolveQuadraticEquationWrap returns None, it means that there can 9528 // be a solution, but the function failed to find it. We cannot treat it 9529 // as "no solution". 9530 if (!SO.hasValue() || !UO.hasValue()) 9531 return { None, false }; 9532 9533 // Check the smaller value first to see if it leaves the range. 9534 // At this point, both SO and UO must have values. 9535 Optional<APInt> Min = MinOptional(SO, UO); 9536 if (LeavesRange(*Min)) 9537 return { Min, true }; 9538 Optional<APInt> Max = Min == SO ? UO : SO; 9539 if (LeavesRange(*Max)) 9540 return { Max, true }; 9541 9542 // Solutions were found, but were eliminated, hence the "true". 9543 return { None, true }; 9544 }; 9545 9546 std::tie(A, B, C, M, BitWidth) = *T; 9547 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9548 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9549 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9550 auto SL = SolveForBoundary(Lower); 9551 auto SU = SolveForBoundary(Upper); 9552 // If any of the solutions was unknown, no meaninigful conclusions can 9553 // be made. 9554 if (!SL.second || !SU.second) 9555 return None; 9556 9557 // Claim: The correct solution is not some value between Min and Max. 9558 // 9559 // Justification: Assuming that Min and Max are different values, one of 9560 // them is when the first signed overflow happens, the other is when the 9561 // first unsigned overflow happens. Crossing the range boundary is only 9562 // possible via an overflow (treating 0 as a special case of it, modeling 9563 // an overflow as crossing k*2^W for some k). 9564 // 9565 // The interesting case here is when Min was eliminated as an invalid 9566 // solution, but Max was not. The argument is that if there was another 9567 // overflow between Min and Max, it would also have been eliminated if 9568 // it was considered. 9569 // 9570 // For a given boundary, it is possible to have two overflows of the same 9571 // type (signed/unsigned) without having the other type in between: this 9572 // can happen when the vertex of the parabola is between the iterations 9573 // corresponding to the overflows. This is only possible when the two 9574 // overflows cross k*2^W for the same k. In such case, if the second one 9575 // left the range (and was the first one to do so), the first overflow 9576 // would have to enter the range, which would mean that either we had left 9577 // the range before or that we started outside of it. Both of these cases 9578 // are contradictions. 9579 // 9580 // Claim: In the case where SolveForBoundary returns None, the correct 9581 // solution is not some value between the Max for this boundary and the 9582 // Min of the other boundary. 9583 // 9584 // Justification: Assume that we had such Max_A and Min_B corresponding 9585 // to range boundaries A and B and such that Max_A < Min_B. If there was 9586 // a solution between Max_A and Min_B, it would have to be caused by an 9587 // overflow corresponding to either A or B. It cannot correspond to B, 9588 // since Min_B is the first occurrence of such an overflow. If it 9589 // corresponded to A, it would have to be either a signed or an unsigned 9590 // overflow that is larger than both eliminated overflows for A. But 9591 // between the eliminated overflows and this overflow, the values would 9592 // cover the entire value space, thus crossing the other boundary, which 9593 // is a contradiction. 9594 9595 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9596 } 9597 9598 ScalarEvolution::ExitLimit 9599 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9600 bool AllowPredicates) { 9601 9602 // This is only used for loops with a "x != y" exit test. The exit condition 9603 // is now expressed as a single expression, V = x-y. So the exit test is 9604 // effectively V != 0. We know and take advantage of the fact that this 9605 // expression only being used in a comparison by zero context. 9606 9607 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9608 // If the value is a constant 9609 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9610 // If the value is already zero, the branch will execute zero times. 9611 if (C->getValue()->isZero()) return C; 9612 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9613 } 9614 9615 const SCEVAddRecExpr *AddRec = 9616 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9617 9618 if (!AddRec && AllowPredicates) 9619 // Try to make this an AddRec using runtime tests, in the first X 9620 // iterations of this loop, where X is the SCEV expression found by the 9621 // algorithm below. 9622 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9623 9624 if (!AddRec || AddRec->getLoop() != L) 9625 return getCouldNotCompute(); 9626 9627 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9628 // the quadratic equation to solve it. 9629 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9630 // We can only use this value if the chrec ends up with an exact zero 9631 // value at this index. When solving for "X*X != 5", for example, we 9632 // should not accept a root of 2. 9633 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9634 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9635 return ExitLimit(R, R, false, Predicates); 9636 } 9637 return getCouldNotCompute(); 9638 } 9639 9640 // Otherwise we can only handle this if it is affine. 9641 if (!AddRec->isAffine()) 9642 return getCouldNotCompute(); 9643 9644 // If this is an affine expression, the execution count of this branch is 9645 // the minimum unsigned root of the following equation: 9646 // 9647 // Start + Step*N = 0 (mod 2^BW) 9648 // 9649 // equivalent to: 9650 // 9651 // Step*N = -Start (mod 2^BW) 9652 // 9653 // where BW is the common bit width of Start and Step. 9654 9655 // Get the initial value for the loop. 9656 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9657 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9658 9659 // For now we handle only constant steps. 9660 // 9661 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9662 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9663 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9664 // We have not yet seen any such cases. 9665 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9666 if (!StepC || StepC->getValue()->isZero()) 9667 return getCouldNotCompute(); 9668 9669 // For positive steps (counting up until unsigned overflow): 9670 // N = -Start/Step (as unsigned) 9671 // For negative steps (counting down to zero): 9672 // N = Start/-Step 9673 // First compute the unsigned distance from zero in the direction of Step. 9674 bool CountDown = StepC->getAPInt().isNegative(); 9675 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9676 9677 // Handle unitary steps, which cannot wraparound. 9678 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9679 // N = Distance (as unsigned) 9680 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9681 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9682 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9683 9684 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9685 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9686 // case, and see if we can improve the bound. 9687 // 9688 // Explicitly handling this here is necessary because getUnsignedRange 9689 // isn't context-sensitive; it doesn't know that we only care about the 9690 // range inside the loop. 9691 const SCEV *Zero = getZero(Distance->getType()); 9692 const SCEV *One = getOne(Distance->getType()); 9693 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9694 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9695 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9696 // as "unsigned_max(Distance + 1) - 1". 9697 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9698 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9699 } 9700 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9701 } 9702 9703 // If the condition controls loop exit (the loop exits only if the expression 9704 // is true) and the addition is no-wrap we can use unsigned divide to 9705 // compute the backedge count. In this case, the step may not divide the 9706 // distance, but we don't care because if the condition is "missed" the loop 9707 // will have undefined behavior due to wrapping. 9708 if (ControlsExit && AddRec->hasNoSelfWrap() && 9709 loopHasNoAbnormalExits(AddRec->getLoop())) { 9710 const SCEV *Exact = 9711 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9712 const SCEV *Max = getCouldNotCompute(); 9713 if (Exact != getCouldNotCompute()) { 9714 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9715 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9716 } 9717 return ExitLimit(Exact, Max, false, Predicates); 9718 } 9719 9720 // Solve the general equation. 9721 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9722 getNegativeSCEV(Start), *this); 9723 9724 const SCEV *M = E; 9725 if (E != getCouldNotCompute()) { 9726 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 9727 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 9728 } 9729 return ExitLimit(E, M, false, Predicates); 9730 } 9731 9732 ScalarEvolution::ExitLimit 9733 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9734 // Loops that look like: while (X == 0) are very strange indeed. We don't 9735 // handle them yet except for the trivial case. This could be expanded in the 9736 // future as needed. 9737 9738 // If the value is a constant, check to see if it is known to be non-zero 9739 // already. If so, the backedge will execute zero times. 9740 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9741 if (!C->getValue()->isZero()) 9742 return getZero(C->getType()); 9743 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9744 } 9745 9746 // We could implement others, but I really doubt anyone writes loops like 9747 // this, and if they did, they would already be constant folded. 9748 return getCouldNotCompute(); 9749 } 9750 9751 std::pair<const BasicBlock *, const BasicBlock *> 9752 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9753 const { 9754 // If the block has a unique predecessor, then there is no path from the 9755 // predecessor to the block that does not go through the direct edge 9756 // from the predecessor to the block. 9757 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9758 return {Pred, BB}; 9759 9760 // A loop's header is defined to be a block that dominates the loop. 9761 // If the header has a unique predecessor outside the loop, it must be 9762 // a block that has exactly one successor that can reach the loop. 9763 if (const Loop *L = LI.getLoopFor(BB)) 9764 return {L->getLoopPredecessor(), L->getHeader()}; 9765 9766 return {nullptr, nullptr}; 9767 } 9768 9769 /// SCEV structural equivalence is usually sufficient for testing whether two 9770 /// expressions are equal, however for the purposes of looking for a condition 9771 /// guarding a loop, it can be useful to be a little more general, since a 9772 /// front-end may have replicated the controlling expression. 9773 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9774 // Quick check to see if they are the same SCEV. 9775 if (A == B) return true; 9776 9777 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9778 // Not all instructions that are "identical" compute the same value. For 9779 // instance, two distinct alloca instructions allocating the same type are 9780 // identical and do not read memory; but compute distinct values. 9781 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9782 }; 9783 9784 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9785 // two different instructions with the same value. Check for this case. 9786 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9787 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9788 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9789 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9790 if (ComputesEqualValues(AI, BI)) 9791 return true; 9792 9793 // Otherwise assume they may have a different value. 9794 return false; 9795 } 9796 9797 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9798 const SCEV *&LHS, const SCEV *&RHS, 9799 unsigned Depth) { 9800 bool Changed = false; 9801 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9802 // '0 != 0'. 9803 auto TrivialCase = [&](bool TriviallyTrue) { 9804 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9805 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9806 return true; 9807 }; 9808 // If we hit the max recursion limit bail out. 9809 if (Depth >= 3) 9810 return false; 9811 9812 // Canonicalize a constant to the right side. 9813 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9814 // Check for both operands constant. 9815 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9816 if (ConstantExpr::getICmp(Pred, 9817 LHSC->getValue(), 9818 RHSC->getValue())->isNullValue()) 9819 return TrivialCase(false); 9820 else 9821 return TrivialCase(true); 9822 } 9823 // Otherwise swap the operands to put the constant on the right. 9824 std::swap(LHS, RHS); 9825 Pred = ICmpInst::getSwappedPredicate(Pred); 9826 Changed = true; 9827 } 9828 9829 // If we're comparing an addrec with a value which is loop-invariant in the 9830 // addrec's loop, put the addrec on the left. Also make a dominance check, 9831 // as both operands could be addrecs loop-invariant in each other's loop. 9832 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9833 const Loop *L = AR->getLoop(); 9834 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9835 std::swap(LHS, RHS); 9836 Pred = ICmpInst::getSwappedPredicate(Pred); 9837 Changed = true; 9838 } 9839 } 9840 9841 // If there's a constant operand, canonicalize comparisons with boundary 9842 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9843 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9844 const APInt &RA = RC->getAPInt(); 9845 9846 bool SimplifiedByConstantRange = false; 9847 9848 if (!ICmpInst::isEquality(Pred)) { 9849 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9850 if (ExactCR.isFullSet()) 9851 return TrivialCase(true); 9852 else if (ExactCR.isEmptySet()) 9853 return TrivialCase(false); 9854 9855 APInt NewRHS; 9856 CmpInst::Predicate NewPred; 9857 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9858 ICmpInst::isEquality(NewPred)) { 9859 // We were able to convert an inequality to an equality. 9860 Pred = NewPred; 9861 RHS = getConstant(NewRHS); 9862 Changed = SimplifiedByConstantRange = true; 9863 } 9864 } 9865 9866 if (!SimplifiedByConstantRange) { 9867 switch (Pred) { 9868 default: 9869 break; 9870 case ICmpInst::ICMP_EQ: 9871 case ICmpInst::ICMP_NE: 9872 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9873 if (!RA) 9874 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9875 if (const SCEVMulExpr *ME = 9876 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9877 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9878 ME->getOperand(0)->isAllOnesValue()) { 9879 RHS = AE->getOperand(1); 9880 LHS = ME->getOperand(1); 9881 Changed = true; 9882 } 9883 break; 9884 9885 9886 // The "Should have been caught earlier!" messages refer to the fact 9887 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9888 // should have fired on the corresponding cases, and canonicalized the 9889 // check to trivial case. 9890 9891 case ICmpInst::ICMP_UGE: 9892 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9893 Pred = ICmpInst::ICMP_UGT; 9894 RHS = getConstant(RA - 1); 9895 Changed = true; 9896 break; 9897 case ICmpInst::ICMP_ULE: 9898 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9899 Pred = ICmpInst::ICMP_ULT; 9900 RHS = getConstant(RA + 1); 9901 Changed = true; 9902 break; 9903 case ICmpInst::ICMP_SGE: 9904 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9905 Pred = ICmpInst::ICMP_SGT; 9906 RHS = getConstant(RA - 1); 9907 Changed = true; 9908 break; 9909 case ICmpInst::ICMP_SLE: 9910 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9911 Pred = ICmpInst::ICMP_SLT; 9912 RHS = getConstant(RA + 1); 9913 Changed = true; 9914 break; 9915 } 9916 } 9917 } 9918 9919 // Check for obvious equality. 9920 if (HasSameValue(LHS, RHS)) { 9921 if (ICmpInst::isTrueWhenEqual(Pred)) 9922 return TrivialCase(true); 9923 if (ICmpInst::isFalseWhenEqual(Pred)) 9924 return TrivialCase(false); 9925 } 9926 9927 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9928 // adding or subtracting 1 from one of the operands. 9929 switch (Pred) { 9930 case ICmpInst::ICMP_SLE: 9931 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9932 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9933 SCEV::FlagNSW); 9934 Pred = ICmpInst::ICMP_SLT; 9935 Changed = true; 9936 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9937 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9938 SCEV::FlagNSW); 9939 Pred = ICmpInst::ICMP_SLT; 9940 Changed = true; 9941 } 9942 break; 9943 case ICmpInst::ICMP_SGE: 9944 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9945 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9946 SCEV::FlagNSW); 9947 Pred = ICmpInst::ICMP_SGT; 9948 Changed = true; 9949 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9950 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9951 SCEV::FlagNSW); 9952 Pred = ICmpInst::ICMP_SGT; 9953 Changed = true; 9954 } 9955 break; 9956 case ICmpInst::ICMP_ULE: 9957 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9958 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9959 SCEV::FlagNUW); 9960 Pred = ICmpInst::ICMP_ULT; 9961 Changed = true; 9962 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9963 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9964 Pred = ICmpInst::ICMP_ULT; 9965 Changed = true; 9966 } 9967 break; 9968 case ICmpInst::ICMP_UGE: 9969 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9970 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9971 Pred = ICmpInst::ICMP_UGT; 9972 Changed = true; 9973 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9974 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9975 SCEV::FlagNUW); 9976 Pred = ICmpInst::ICMP_UGT; 9977 Changed = true; 9978 } 9979 break; 9980 default: 9981 break; 9982 } 9983 9984 // TODO: More simplifications are possible here. 9985 9986 // Recursively simplify until we either hit a recursion limit or nothing 9987 // changes. 9988 if (Changed) 9989 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9990 9991 return Changed; 9992 } 9993 9994 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9995 return getSignedRangeMax(S).isNegative(); 9996 } 9997 9998 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9999 return getSignedRangeMin(S).isStrictlyPositive(); 10000 } 10001 10002 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10003 return !getSignedRangeMin(S).isNegative(); 10004 } 10005 10006 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10007 return !getSignedRangeMax(S).isStrictlyPositive(); 10008 } 10009 10010 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10011 return getUnsignedRangeMin(S) != 0; 10012 } 10013 10014 std::pair<const SCEV *, const SCEV *> 10015 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10016 // Compute SCEV on entry of loop L. 10017 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10018 if (Start == getCouldNotCompute()) 10019 return { Start, Start }; 10020 // Compute post increment SCEV for loop L. 10021 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10022 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10023 return { Start, PostInc }; 10024 } 10025 10026 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10027 const SCEV *LHS, const SCEV *RHS) { 10028 // First collect all loops. 10029 SmallPtrSet<const Loop *, 8> LoopsUsed; 10030 getUsedLoops(LHS, LoopsUsed); 10031 getUsedLoops(RHS, LoopsUsed); 10032 10033 if (LoopsUsed.empty()) 10034 return false; 10035 10036 // Domination relationship must be a linear order on collected loops. 10037 #ifndef NDEBUG 10038 for (auto *L1 : LoopsUsed) 10039 for (auto *L2 : LoopsUsed) 10040 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10041 DT.dominates(L2->getHeader(), L1->getHeader())) && 10042 "Domination relationship is not a linear order"); 10043 #endif 10044 10045 const Loop *MDL = 10046 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10047 [&](const Loop *L1, const Loop *L2) { 10048 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10049 }); 10050 10051 // Get init and post increment value for LHS. 10052 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10053 // if LHS contains unknown non-invariant SCEV then bail out. 10054 if (SplitLHS.first == getCouldNotCompute()) 10055 return false; 10056 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10057 // Get init and post increment value for RHS. 10058 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10059 // if RHS contains unknown non-invariant SCEV then bail out. 10060 if (SplitRHS.first == getCouldNotCompute()) 10061 return false; 10062 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10063 // It is possible that init SCEV contains an invariant load but it does 10064 // not dominate MDL and is not available at MDL loop entry, so we should 10065 // check it here. 10066 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10067 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10068 return false; 10069 10070 // It seems backedge guard check is faster than entry one so in some cases 10071 // it can speed up whole estimation by short circuit 10072 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10073 SplitRHS.second) && 10074 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10075 } 10076 10077 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10078 const SCEV *LHS, const SCEV *RHS) { 10079 // Canonicalize the inputs first. 10080 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10081 10082 if (isKnownViaInduction(Pred, LHS, RHS)) 10083 return true; 10084 10085 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10086 return true; 10087 10088 // Otherwise see what can be done with some simple reasoning. 10089 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10090 } 10091 10092 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10093 const SCEV *LHS, 10094 const SCEV *RHS) { 10095 if (isKnownPredicate(Pred, LHS, RHS)) 10096 return true; 10097 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10098 return false; 10099 return None; 10100 } 10101 10102 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10103 const SCEV *LHS, const SCEV *RHS, 10104 const Instruction *CtxI) { 10105 // TODO: Analyze guards and assumes from Context's block. 10106 return isKnownPredicate(Pred, LHS, RHS) || 10107 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10108 } 10109 10110 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10111 const SCEV *LHS, 10112 const SCEV *RHS, 10113 const Instruction *CtxI) { 10114 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10115 if (KnownWithoutContext) 10116 return KnownWithoutContext; 10117 10118 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10119 return true; 10120 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10121 ICmpInst::getInversePredicate(Pred), 10122 LHS, RHS)) 10123 return false; 10124 return None; 10125 } 10126 10127 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10128 const SCEVAddRecExpr *LHS, 10129 const SCEV *RHS) { 10130 const Loop *L = LHS->getLoop(); 10131 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10132 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10133 } 10134 10135 Optional<ScalarEvolution::MonotonicPredicateType> 10136 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10137 ICmpInst::Predicate Pred) { 10138 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10139 10140 #ifndef NDEBUG 10141 // Verify an invariant: inverting the predicate should turn a monotonically 10142 // increasing change to a monotonically decreasing one, and vice versa. 10143 if (Result) { 10144 auto ResultSwapped = 10145 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10146 10147 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10148 assert(ResultSwapped.getValue() != Result.getValue() && 10149 "monotonicity should flip as we flip the predicate"); 10150 } 10151 #endif 10152 10153 return Result; 10154 } 10155 10156 Optional<ScalarEvolution::MonotonicPredicateType> 10157 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10158 ICmpInst::Predicate Pred) { 10159 // A zero step value for LHS means the induction variable is essentially a 10160 // loop invariant value. We don't really depend on the predicate actually 10161 // flipping from false to true (for increasing predicates, and the other way 10162 // around for decreasing predicates), all we care about is that *if* the 10163 // predicate changes then it only changes from false to true. 10164 // 10165 // A zero step value in itself is not very useful, but there may be places 10166 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10167 // as general as possible. 10168 10169 // Only handle LE/LT/GE/GT predicates. 10170 if (!ICmpInst::isRelational(Pred)) 10171 return None; 10172 10173 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10174 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10175 "Should be greater or less!"); 10176 10177 // Check that AR does not wrap. 10178 if (ICmpInst::isUnsigned(Pred)) { 10179 if (!LHS->hasNoUnsignedWrap()) 10180 return None; 10181 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10182 } else { 10183 assert(ICmpInst::isSigned(Pred) && 10184 "Relational predicate is either signed or unsigned!"); 10185 if (!LHS->hasNoSignedWrap()) 10186 return None; 10187 10188 const SCEV *Step = LHS->getStepRecurrence(*this); 10189 10190 if (isKnownNonNegative(Step)) 10191 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10192 10193 if (isKnownNonPositive(Step)) 10194 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10195 10196 return None; 10197 } 10198 } 10199 10200 Optional<ScalarEvolution::LoopInvariantPredicate> 10201 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10202 const SCEV *LHS, const SCEV *RHS, 10203 const Loop *L) { 10204 10205 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10206 if (!isLoopInvariant(RHS, L)) { 10207 if (!isLoopInvariant(LHS, L)) 10208 return None; 10209 10210 std::swap(LHS, RHS); 10211 Pred = ICmpInst::getSwappedPredicate(Pred); 10212 } 10213 10214 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10215 if (!ArLHS || ArLHS->getLoop() != L) 10216 return None; 10217 10218 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10219 if (!MonotonicType) 10220 return None; 10221 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10222 // true as the loop iterates, and the backedge is control dependent on 10223 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10224 // 10225 // * if the predicate was false in the first iteration then the predicate 10226 // is never evaluated again, since the loop exits without taking the 10227 // backedge. 10228 // * if the predicate was true in the first iteration then it will 10229 // continue to be true for all future iterations since it is 10230 // monotonically increasing. 10231 // 10232 // For both the above possibilities, we can replace the loop varying 10233 // predicate with its value on the first iteration of the loop (which is 10234 // loop invariant). 10235 // 10236 // A similar reasoning applies for a monotonically decreasing predicate, by 10237 // replacing true with false and false with true in the above two bullets. 10238 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10239 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10240 10241 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10242 return None; 10243 10244 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10245 } 10246 10247 Optional<ScalarEvolution::LoopInvariantPredicate> 10248 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10249 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10250 const Instruction *CtxI, const SCEV *MaxIter) { 10251 // Try to prove the following set of facts: 10252 // - The predicate is monotonic in the iteration space. 10253 // - If the check does not fail on the 1st iteration: 10254 // - No overflow will happen during first MaxIter iterations; 10255 // - It will not fail on the MaxIter'th iteration. 10256 // If the check does fail on the 1st iteration, we leave the loop and no 10257 // other checks matter. 10258 10259 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10260 if (!isLoopInvariant(RHS, L)) { 10261 if (!isLoopInvariant(LHS, L)) 10262 return None; 10263 10264 std::swap(LHS, RHS); 10265 Pred = ICmpInst::getSwappedPredicate(Pred); 10266 } 10267 10268 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10269 if (!AR || AR->getLoop() != L) 10270 return None; 10271 10272 // The predicate must be relational (i.e. <, <=, >=, >). 10273 if (!ICmpInst::isRelational(Pred)) 10274 return None; 10275 10276 // TODO: Support steps other than +/- 1. 10277 const SCEV *Step = AR->getStepRecurrence(*this); 10278 auto *One = getOne(Step->getType()); 10279 auto *MinusOne = getNegativeSCEV(One); 10280 if (Step != One && Step != MinusOne) 10281 return None; 10282 10283 // Type mismatch here means that MaxIter is potentially larger than max 10284 // unsigned value in start type, which mean we cannot prove no wrap for the 10285 // indvar. 10286 if (AR->getType() != MaxIter->getType()) 10287 return None; 10288 10289 // Value of IV on suggested last iteration. 10290 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10291 // Does it still meet the requirement? 10292 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10293 return None; 10294 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10295 // not exceed max unsigned value of this type), this effectively proves 10296 // that there is no wrap during the iteration. To prove that there is no 10297 // signed/unsigned wrap, we need to check that 10298 // Start <= Last for step = 1 or Start >= Last for step = -1. 10299 ICmpInst::Predicate NoOverflowPred = 10300 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10301 if (Step == MinusOne) 10302 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10303 const SCEV *Start = AR->getStart(); 10304 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10305 return None; 10306 10307 // Everything is fine. 10308 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10309 } 10310 10311 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10312 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10313 if (HasSameValue(LHS, RHS)) 10314 return ICmpInst::isTrueWhenEqual(Pred); 10315 10316 // This code is split out from isKnownPredicate because it is called from 10317 // within isLoopEntryGuardedByCond. 10318 10319 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10320 const ConstantRange &RangeRHS) { 10321 return RangeLHS.icmp(Pred, RangeRHS); 10322 }; 10323 10324 // The check at the top of the function catches the case where the values are 10325 // known to be equal. 10326 if (Pred == CmpInst::ICMP_EQ) 10327 return false; 10328 10329 if (Pred == CmpInst::ICMP_NE) { 10330 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10331 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10332 return true; 10333 auto *Diff = getMinusSCEV(LHS, RHS); 10334 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10335 } 10336 10337 if (CmpInst::isSigned(Pred)) 10338 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10339 10340 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10341 } 10342 10343 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10344 const SCEV *LHS, 10345 const SCEV *RHS) { 10346 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10347 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10348 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10349 // OutC1 and OutC2. 10350 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10351 APInt &OutC1, APInt &OutC2, 10352 SCEV::NoWrapFlags ExpectedFlags) { 10353 const SCEV *XNonConstOp, *XConstOp; 10354 const SCEV *YNonConstOp, *YConstOp; 10355 SCEV::NoWrapFlags XFlagsPresent; 10356 SCEV::NoWrapFlags YFlagsPresent; 10357 10358 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10359 XConstOp = getZero(X->getType()); 10360 XNonConstOp = X; 10361 XFlagsPresent = ExpectedFlags; 10362 } 10363 if (!isa<SCEVConstant>(XConstOp) || 10364 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10365 return false; 10366 10367 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10368 YConstOp = getZero(Y->getType()); 10369 YNonConstOp = Y; 10370 YFlagsPresent = ExpectedFlags; 10371 } 10372 10373 if (!isa<SCEVConstant>(YConstOp) || 10374 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10375 return false; 10376 10377 if (YNonConstOp != XNonConstOp) 10378 return false; 10379 10380 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10381 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10382 10383 return true; 10384 }; 10385 10386 APInt C1; 10387 APInt C2; 10388 10389 switch (Pred) { 10390 default: 10391 break; 10392 10393 case ICmpInst::ICMP_SGE: 10394 std::swap(LHS, RHS); 10395 LLVM_FALLTHROUGH; 10396 case ICmpInst::ICMP_SLE: 10397 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10398 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10399 return true; 10400 10401 break; 10402 10403 case ICmpInst::ICMP_SGT: 10404 std::swap(LHS, RHS); 10405 LLVM_FALLTHROUGH; 10406 case ICmpInst::ICMP_SLT: 10407 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10408 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10409 return true; 10410 10411 break; 10412 10413 case ICmpInst::ICMP_UGE: 10414 std::swap(LHS, RHS); 10415 LLVM_FALLTHROUGH; 10416 case ICmpInst::ICMP_ULE: 10417 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10418 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10419 return true; 10420 10421 break; 10422 10423 case ICmpInst::ICMP_UGT: 10424 std::swap(LHS, RHS); 10425 LLVM_FALLTHROUGH; 10426 case ICmpInst::ICMP_ULT: 10427 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10428 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10429 return true; 10430 break; 10431 } 10432 10433 return false; 10434 } 10435 10436 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10437 const SCEV *LHS, 10438 const SCEV *RHS) { 10439 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10440 return false; 10441 10442 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10443 // the stack can result in exponential time complexity. 10444 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10445 10446 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10447 // 10448 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10449 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10450 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10451 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10452 // use isKnownPredicate later if needed. 10453 return isKnownNonNegative(RHS) && 10454 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10455 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10456 } 10457 10458 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10459 ICmpInst::Predicate Pred, 10460 const SCEV *LHS, const SCEV *RHS) { 10461 // No need to even try if we know the module has no guards. 10462 if (!HasGuards) 10463 return false; 10464 10465 return any_of(*BB, [&](const Instruction &I) { 10466 using namespace llvm::PatternMatch; 10467 10468 Value *Condition; 10469 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10470 m_Value(Condition))) && 10471 isImpliedCond(Pred, LHS, RHS, Condition, false); 10472 }); 10473 } 10474 10475 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10476 /// protected by a conditional between LHS and RHS. This is used to 10477 /// to eliminate casts. 10478 bool 10479 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10480 ICmpInst::Predicate Pred, 10481 const SCEV *LHS, const SCEV *RHS) { 10482 // Interpret a null as meaning no loop, where there is obviously no guard 10483 // (interprocedural conditions notwithstanding). 10484 if (!L) return true; 10485 10486 if (VerifyIR) 10487 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10488 "This cannot be done on broken IR!"); 10489 10490 10491 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10492 return true; 10493 10494 BasicBlock *Latch = L->getLoopLatch(); 10495 if (!Latch) 10496 return false; 10497 10498 BranchInst *LoopContinuePredicate = 10499 dyn_cast<BranchInst>(Latch->getTerminator()); 10500 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10501 isImpliedCond(Pred, LHS, RHS, 10502 LoopContinuePredicate->getCondition(), 10503 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10504 return true; 10505 10506 // We don't want more than one activation of the following loops on the stack 10507 // -- that can lead to O(n!) time complexity. 10508 if (WalkingBEDominatingConds) 10509 return false; 10510 10511 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10512 10513 // See if we can exploit a trip count to prove the predicate. 10514 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10515 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10516 if (LatchBECount != getCouldNotCompute()) { 10517 // We know that Latch branches back to the loop header exactly 10518 // LatchBECount times. This means the backdege condition at Latch is 10519 // equivalent to "{0,+,1} u< LatchBECount". 10520 Type *Ty = LatchBECount->getType(); 10521 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10522 const SCEV *LoopCounter = 10523 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10524 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10525 LatchBECount)) 10526 return true; 10527 } 10528 10529 // Check conditions due to any @llvm.assume intrinsics. 10530 for (auto &AssumeVH : AC.assumptions()) { 10531 if (!AssumeVH) 10532 continue; 10533 auto *CI = cast<CallInst>(AssumeVH); 10534 if (!DT.dominates(CI, Latch->getTerminator())) 10535 continue; 10536 10537 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10538 return true; 10539 } 10540 10541 // If the loop is not reachable from the entry block, we risk running into an 10542 // infinite loop as we walk up into the dom tree. These loops do not matter 10543 // anyway, so we just return a conservative answer when we see them. 10544 if (!DT.isReachableFromEntry(L->getHeader())) 10545 return false; 10546 10547 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10548 return true; 10549 10550 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10551 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10552 assert(DTN && "should reach the loop header before reaching the root!"); 10553 10554 BasicBlock *BB = DTN->getBlock(); 10555 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10556 return true; 10557 10558 BasicBlock *PBB = BB->getSinglePredecessor(); 10559 if (!PBB) 10560 continue; 10561 10562 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10563 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10564 continue; 10565 10566 Value *Condition = ContinuePredicate->getCondition(); 10567 10568 // If we have an edge `E` within the loop body that dominates the only 10569 // latch, the condition guarding `E` also guards the backedge. This 10570 // reasoning works only for loops with a single latch. 10571 10572 BasicBlockEdge DominatingEdge(PBB, BB); 10573 if (DominatingEdge.isSingleEdge()) { 10574 // We're constructively (and conservatively) enumerating edges within the 10575 // loop body that dominate the latch. The dominator tree better agree 10576 // with us on this: 10577 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10578 10579 if (isImpliedCond(Pred, LHS, RHS, Condition, 10580 BB != ContinuePredicate->getSuccessor(0))) 10581 return true; 10582 } 10583 } 10584 10585 return false; 10586 } 10587 10588 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10589 ICmpInst::Predicate Pred, 10590 const SCEV *LHS, 10591 const SCEV *RHS) { 10592 if (VerifyIR) 10593 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10594 "This cannot be done on broken IR!"); 10595 10596 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10597 // the facts (a >= b && a != b) separately. A typical situation is when the 10598 // non-strict comparison is known from ranges and non-equality is known from 10599 // dominating predicates. If we are proving strict comparison, we always try 10600 // to prove non-equality and non-strict comparison separately. 10601 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10602 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10603 bool ProvedNonStrictComparison = false; 10604 bool ProvedNonEquality = false; 10605 10606 auto SplitAndProve = 10607 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10608 if (!ProvedNonStrictComparison) 10609 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10610 if (!ProvedNonEquality) 10611 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10612 if (ProvedNonStrictComparison && ProvedNonEquality) 10613 return true; 10614 return false; 10615 }; 10616 10617 if (ProvingStrictComparison) { 10618 auto ProofFn = [&](ICmpInst::Predicate P) { 10619 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10620 }; 10621 if (SplitAndProve(ProofFn)) 10622 return true; 10623 } 10624 10625 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10626 auto ProveViaGuard = [&](const BasicBlock *Block) { 10627 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10628 return true; 10629 if (ProvingStrictComparison) { 10630 auto ProofFn = [&](ICmpInst::Predicate P) { 10631 return isImpliedViaGuard(Block, P, LHS, RHS); 10632 }; 10633 if (SplitAndProve(ProofFn)) 10634 return true; 10635 } 10636 return false; 10637 }; 10638 10639 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10640 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10641 const Instruction *CtxI = &BB->front(); 10642 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10643 return true; 10644 if (ProvingStrictComparison) { 10645 auto ProofFn = [&](ICmpInst::Predicate P) { 10646 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10647 }; 10648 if (SplitAndProve(ProofFn)) 10649 return true; 10650 } 10651 return false; 10652 }; 10653 10654 // Starting at the block's predecessor, climb up the predecessor chain, as long 10655 // as there are predecessors that can be found that have unique successors 10656 // leading to the original block. 10657 const Loop *ContainingLoop = LI.getLoopFor(BB); 10658 const BasicBlock *PredBB; 10659 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10660 PredBB = ContainingLoop->getLoopPredecessor(); 10661 else 10662 PredBB = BB->getSinglePredecessor(); 10663 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10664 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10665 if (ProveViaGuard(Pair.first)) 10666 return true; 10667 10668 const BranchInst *LoopEntryPredicate = 10669 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10670 if (!LoopEntryPredicate || 10671 LoopEntryPredicate->isUnconditional()) 10672 continue; 10673 10674 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10675 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10676 return true; 10677 } 10678 10679 // Check conditions due to any @llvm.assume intrinsics. 10680 for (auto &AssumeVH : AC.assumptions()) { 10681 if (!AssumeVH) 10682 continue; 10683 auto *CI = cast<CallInst>(AssumeVH); 10684 if (!DT.dominates(CI, BB)) 10685 continue; 10686 10687 if (ProveViaCond(CI->getArgOperand(0), false)) 10688 return true; 10689 } 10690 10691 return false; 10692 } 10693 10694 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10695 ICmpInst::Predicate Pred, 10696 const SCEV *LHS, 10697 const SCEV *RHS) { 10698 // Interpret a null as meaning no loop, where there is obviously no guard 10699 // (interprocedural conditions notwithstanding). 10700 if (!L) 10701 return false; 10702 10703 // Both LHS and RHS must be available at loop entry. 10704 assert(isAvailableAtLoopEntry(LHS, L) && 10705 "LHS is not available at Loop Entry"); 10706 assert(isAvailableAtLoopEntry(RHS, L) && 10707 "RHS is not available at Loop Entry"); 10708 10709 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10710 return true; 10711 10712 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10713 } 10714 10715 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10716 const SCEV *RHS, 10717 const Value *FoundCondValue, bool Inverse, 10718 const Instruction *CtxI) { 10719 // False conditions implies anything. Do not bother analyzing it further. 10720 if (FoundCondValue == 10721 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10722 return true; 10723 10724 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10725 return false; 10726 10727 auto ClearOnExit = 10728 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10729 10730 // Recursively handle And and Or conditions. 10731 const Value *Op0, *Op1; 10732 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10733 if (!Inverse) 10734 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10735 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10736 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10737 if (Inverse) 10738 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10739 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10740 } 10741 10742 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10743 if (!ICI) return false; 10744 10745 // Now that we found a conditional branch that dominates the loop or controls 10746 // the loop latch. Check to see if it is the comparison we are looking for. 10747 ICmpInst::Predicate FoundPred; 10748 if (Inverse) 10749 FoundPred = ICI->getInversePredicate(); 10750 else 10751 FoundPred = ICI->getPredicate(); 10752 10753 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10754 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10755 10756 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10757 } 10758 10759 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10760 const SCEV *RHS, 10761 ICmpInst::Predicate FoundPred, 10762 const SCEV *FoundLHS, const SCEV *FoundRHS, 10763 const Instruction *CtxI) { 10764 // Balance the types. 10765 if (getTypeSizeInBits(LHS->getType()) < 10766 getTypeSizeInBits(FoundLHS->getType())) { 10767 // For unsigned and equality predicates, try to prove that both found 10768 // operands fit into narrow unsigned range. If so, try to prove facts in 10769 // narrow types. 10770 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10771 auto *NarrowType = LHS->getType(); 10772 auto *WideType = FoundLHS->getType(); 10773 auto BitWidth = getTypeSizeInBits(NarrowType); 10774 const SCEV *MaxValue = getZeroExtendExpr( 10775 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10776 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10777 MaxValue) && 10778 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10779 MaxValue)) { 10780 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10781 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10782 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10783 TruncFoundRHS, CtxI)) 10784 return true; 10785 } 10786 } 10787 10788 if (LHS->getType()->isPointerTy()) 10789 return false; 10790 if (CmpInst::isSigned(Pred)) { 10791 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10792 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10793 } else { 10794 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10795 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10796 } 10797 } else if (getTypeSizeInBits(LHS->getType()) > 10798 getTypeSizeInBits(FoundLHS->getType())) { 10799 if (FoundLHS->getType()->isPointerTy()) 10800 return false; 10801 if (CmpInst::isSigned(FoundPred)) { 10802 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10803 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10804 } else { 10805 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10806 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10807 } 10808 } 10809 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10810 FoundRHS, CtxI); 10811 } 10812 10813 bool ScalarEvolution::isImpliedCondBalancedTypes( 10814 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10815 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10816 const Instruction *CtxI) { 10817 assert(getTypeSizeInBits(LHS->getType()) == 10818 getTypeSizeInBits(FoundLHS->getType()) && 10819 "Types should be balanced!"); 10820 // Canonicalize the query to match the way instcombine will have 10821 // canonicalized the comparison. 10822 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10823 if (LHS == RHS) 10824 return CmpInst::isTrueWhenEqual(Pred); 10825 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10826 if (FoundLHS == FoundRHS) 10827 return CmpInst::isFalseWhenEqual(FoundPred); 10828 10829 // Check to see if we can make the LHS or RHS match. 10830 if (LHS == FoundRHS || RHS == FoundLHS) { 10831 if (isa<SCEVConstant>(RHS)) { 10832 std::swap(FoundLHS, FoundRHS); 10833 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10834 } else { 10835 std::swap(LHS, RHS); 10836 Pred = ICmpInst::getSwappedPredicate(Pred); 10837 } 10838 } 10839 10840 // Check whether the found predicate is the same as the desired predicate. 10841 if (FoundPred == Pred) 10842 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10843 10844 // Check whether swapping the found predicate makes it the same as the 10845 // desired predicate. 10846 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10847 // We can write the implication 10848 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10849 // using one of the following ways: 10850 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10851 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10852 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10853 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10854 // Forms 1. and 2. require swapping the operands of one condition. Don't 10855 // do this if it would break canonical constant/addrec ordering. 10856 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10857 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10858 CtxI); 10859 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10860 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10861 10862 // There's no clear preference between forms 3. and 4., try both. Avoid 10863 // forming getNotSCEV of pointer values as the resulting subtract is 10864 // not legal. 10865 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10866 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10867 FoundLHS, FoundRHS, CtxI)) 10868 return true; 10869 10870 if (!FoundLHS->getType()->isPointerTy() && 10871 !FoundRHS->getType()->isPointerTy() && 10872 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10873 getNotSCEV(FoundRHS), CtxI)) 10874 return true; 10875 10876 return false; 10877 } 10878 10879 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10880 CmpInst::Predicate P2) { 10881 assert(P1 != P2 && "Handled earlier!"); 10882 return CmpInst::isRelational(P2) && 10883 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10884 }; 10885 if (IsSignFlippedPredicate(Pred, FoundPred)) { 10886 // Unsigned comparison is the same as signed comparison when both the 10887 // operands are non-negative or negative. 10888 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10889 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 10890 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10891 // Create local copies that we can freely swap and canonicalize our 10892 // conditions to "le/lt". 10893 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 10894 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 10895 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 10896 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 10897 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 10898 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 10899 std::swap(CanonicalLHS, CanonicalRHS); 10900 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 10901 } 10902 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 10903 "Must be!"); 10904 assert((ICmpInst::isLT(CanonicalFoundPred) || 10905 ICmpInst::isLE(CanonicalFoundPred)) && 10906 "Must be!"); 10907 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 10908 // Use implication: 10909 // x <u y && y >=s 0 --> x <s y. 10910 // If we can prove the left part, the right part is also proven. 10911 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10912 CanonicalRHS, CanonicalFoundLHS, 10913 CanonicalFoundRHS); 10914 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 10915 // Use implication: 10916 // x <s y && y <s 0 --> x <u y. 10917 // If we can prove the left part, the right part is also proven. 10918 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10919 CanonicalRHS, CanonicalFoundLHS, 10920 CanonicalFoundRHS); 10921 } 10922 10923 // Check if we can make progress by sharpening ranges. 10924 if (FoundPred == ICmpInst::ICMP_NE && 10925 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10926 10927 const SCEVConstant *C = nullptr; 10928 const SCEV *V = nullptr; 10929 10930 if (isa<SCEVConstant>(FoundLHS)) { 10931 C = cast<SCEVConstant>(FoundLHS); 10932 V = FoundRHS; 10933 } else { 10934 C = cast<SCEVConstant>(FoundRHS); 10935 V = FoundLHS; 10936 } 10937 10938 // The guarding predicate tells us that C != V. If the known range 10939 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10940 // range we consider has to correspond to same signedness as the 10941 // predicate we're interested in folding. 10942 10943 APInt Min = ICmpInst::isSigned(Pred) ? 10944 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10945 10946 if (Min == C->getAPInt()) { 10947 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10948 // This is true even if (Min + 1) wraps around -- in case of 10949 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10950 10951 APInt SharperMin = Min + 1; 10952 10953 switch (Pred) { 10954 case ICmpInst::ICMP_SGE: 10955 case ICmpInst::ICMP_UGE: 10956 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10957 // RHS, we're done. 10958 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10959 CtxI)) 10960 return true; 10961 LLVM_FALLTHROUGH; 10962 10963 case ICmpInst::ICMP_SGT: 10964 case ICmpInst::ICMP_UGT: 10965 // We know from the range information that (V `Pred` Min || 10966 // V == Min). We know from the guarding condition that !(V 10967 // == Min). This gives us 10968 // 10969 // V `Pred` Min || V == Min && !(V == Min) 10970 // => V `Pred` Min 10971 // 10972 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10973 10974 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10975 return true; 10976 break; 10977 10978 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10979 case ICmpInst::ICMP_SLE: 10980 case ICmpInst::ICMP_ULE: 10981 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10982 LHS, V, getConstant(SharperMin), CtxI)) 10983 return true; 10984 LLVM_FALLTHROUGH; 10985 10986 case ICmpInst::ICMP_SLT: 10987 case ICmpInst::ICMP_ULT: 10988 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10989 LHS, V, getConstant(Min), CtxI)) 10990 return true; 10991 break; 10992 10993 default: 10994 // No change 10995 break; 10996 } 10997 } 10998 } 10999 11000 // Check whether the actual condition is beyond sufficient. 11001 if (FoundPred == ICmpInst::ICMP_EQ) 11002 if (ICmpInst::isTrueWhenEqual(Pred)) 11003 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11004 return true; 11005 if (Pred == ICmpInst::ICMP_NE) 11006 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11007 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11008 return true; 11009 11010 // Otherwise assume the worst. 11011 return false; 11012 } 11013 11014 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11015 const SCEV *&L, const SCEV *&R, 11016 SCEV::NoWrapFlags &Flags) { 11017 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11018 if (!AE || AE->getNumOperands() != 2) 11019 return false; 11020 11021 L = AE->getOperand(0); 11022 R = AE->getOperand(1); 11023 Flags = AE->getNoWrapFlags(); 11024 return true; 11025 } 11026 11027 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11028 const SCEV *Less) { 11029 // We avoid subtracting expressions here because this function is usually 11030 // fairly deep in the call stack (i.e. is called many times). 11031 11032 // X - X = 0. 11033 if (More == Less) 11034 return APInt(getTypeSizeInBits(More->getType()), 0); 11035 11036 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11037 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11038 const auto *MAR = cast<SCEVAddRecExpr>(More); 11039 11040 if (LAR->getLoop() != MAR->getLoop()) 11041 return None; 11042 11043 // We look at affine expressions only; not for correctness but to keep 11044 // getStepRecurrence cheap. 11045 if (!LAR->isAffine() || !MAR->isAffine()) 11046 return None; 11047 11048 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11049 return None; 11050 11051 Less = LAR->getStart(); 11052 More = MAR->getStart(); 11053 11054 // fall through 11055 } 11056 11057 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11058 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11059 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11060 return M - L; 11061 } 11062 11063 SCEV::NoWrapFlags Flags; 11064 const SCEV *LLess = nullptr, *RLess = nullptr; 11065 const SCEV *LMore = nullptr, *RMore = nullptr; 11066 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11067 // Compare (X + C1) vs X. 11068 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11069 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11070 if (RLess == More) 11071 return -(C1->getAPInt()); 11072 11073 // Compare X vs (X + C2). 11074 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11075 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11076 if (RMore == Less) 11077 return C2->getAPInt(); 11078 11079 // Compare (X + C1) vs (X + C2). 11080 if (C1 && C2 && RLess == RMore) 11081 return C2->getAPInt() - C1->getAPInt(); 11082 11083 return None; 11084 } 11085 11086 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11087 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11088 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11089 // Try to recognize the following pattern: 11090 // 11091 // FoundRHS = ... 11092 // ... 11093 // loop: 11094 // FoundLHS = {Start,+,W} 11095 // context_bb: // Basic block from the same loop 11096 // known(Pred, FoundLHS, FoundRHS) 11097 // 11098 // If some predicate is known in the context of a loop, it is also known on 11099 // each iteration of this loop, including the first iteration. Therefore, in 11100 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11101 // prove the original pred using this fact. 11102 if (!CtxI) 11103 return false; 11104 const BasicBlock *ContextBB = CtxI->getParent(); 11105 // Make sure AR varies in the context block. 11106 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11107 const Loop *L = AR->getLoop(); 11108 // Make sure that context belongs to the loop and executes on 1st iteration 11109 // (if it ever executes at all). 11110 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11111 return false; 11112 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11113 return false; 11114 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11115 } 11116 11117 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11118 const Loop *L = AR->getLoop(); 11119 // Make sure that context belongs to the loop and executes on 1st iteration 11120 // (if it ever executes at all). 11121 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11122 return false; 11123 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11124 return false; 11125 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11126 } 11127 11128 return false; 11129 } 11130 11131 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11132 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11133 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11134 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11135 return false; 11136 11137 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11138 if (!AddRecLHS) 11139 return false; 11140 11141 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11142 if (!AddRecFoundLHS) 11143 return false; 11144 11145 // We'd like to let SCEV reason about control dependencies, so we constrain 11146 // both the inequalities to be about add recurrences on the same loop. This 11147 // way we can use isLoopEntryGuardedByCond later. 11148 11149 const Loop *L = AddRecFoundLHS->getLoop(); 11150 if (L != AddRecLHS->getLoop()) 11151 return false; 11152 11153 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11154 // 11155 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11156 // ... (2) 11157 // 11158 // Informal proof for (2), assuming (1) [*]: 11159 // 11160 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11161 // 11162 // Then 11163 // 11164 // FoundLHS s< FoundRHS s< INT_MIN - C 11165 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11166 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11167 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11168 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11169 // <=> FoundLHS + C s< FoundRHS + C 11170 // 11171 // [*]: (1) can be proved by ruling out overflow. 11172 // 11173 // [**]: This can be proved by analyzing all the four possibilities: 11174 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11175 // (A s>= 0, B s>= 0). 11176 // 11177 // Note: 11178 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11179 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11180 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11181 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11182 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11183 // C)". 11184 11185 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11186 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11187 if (!LDiff || !RDiff || *LDiff != *RDiff) 11188 return false; 11189 11190 if (LDiff->isMinValue()) 11191 return true; 11192 11193 APInt FoundRHSLimit; 11194 11195 if (Pred == CmpInst::ICMP_ULT) { 11196 FoundRHSLimit = -(*RDiff); 11197 } else { 11198 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11199 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11200 } 11201 11202 // Try to prove (1) or (2), as needed. 11203 return isAvailableAtLoopEntry(FoundRHS, L) && 11204 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11205 getConstant(FoundRHSLimit)); 11206 } 11207 11208 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11209 const SCEV *LHS, const SCEV *RHS, 11210 const SCEV *FoundLHS, 11211 const SCEV *FoundRHS, unsigned Depth) { 11212 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11213 11214 auto ClearOnExit = make_scope_exit([&]() { 11215 if (LPhi) { 11216 bool Erased = PendingMerges.erase(LPhi); 11217 assert(Erased && "Failed to erase LPhi!"); 11218 (void)Erased; 11219 } 11220 if (RPhi) { 11221 bool Erased = PendingMerges.erase(RPhi); 11222 assert(Erased && "Failed to erase RPhi!"); 11223 (void)Erased; 11224 } 11225 }); 11226 11227 // Find respective Phis and check that they are not being pending. 11228 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11229 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11230 if (!PendingMerges.insert(Phi).second) 11231 return false; 11232 LPhi = Phi; 11233 } 11234 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11235 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11236 // If we detect a loop of Phi nodes being processed by this method, for 11237 // example: 11238 // 11239 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11240 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11241 // 11242 // we don't want to deal with a case that complex, so return conservative 11243 // answer false. 11244 if (!PendingMerges.insert(Phi).second) 11245 return false; 11246 RPhi = Phi; 11247 } 11248 11249 // If none of LHS, RHS is a Phi, nothing to do here. 11250 if (!LPhi && !RPhi) 11251 return false; 11252 11253 // If there is a SCEVUnknown Phi we are interested in, make it left. 11254 if (!LPhi) { 11255 std::swap(LHS, RHS); 11256 std::swap(FoundLHS, FoundRHS); 11257 std::swap(LPhi, RPhi); 11258 Pred = ICmpInst::getSwappedPredicate(Pred); 11259 } 11260 11261 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11262 const BasicBlock *LBB = LPhi->getParent(); 11263 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11264 11265 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11266 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11267 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11268 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11269 }; 11270 11271 if (RPhi && RPhi->getParent() == LBB) { 11272 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11273 // If we compare two Phis from the same block, and for each entry block 11274 // the predicate is true for incoming values from this block, then the 11275 // predicate is also true for the Phis. 11276 for (const BasicBlock *IncBB : predecessors(LBB)) { 11277 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11278 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11279 if (!ProvedEasily(L, R)) 11280 return false; 11281 } 11282 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11283 // Case two: RHS is also a Phi from the same basic block, and it is an 11284 // AddRec. It means that there is a loop which has both AddRec and Unknown 11285 // PHIs, for it we can compare incoming values of AddRec from above the loop 11286 // and latch with their respective incoming values of LPhi. 11287 // TODO: Generalize to handle loops with many inputs in a header. 11288 if (LPhi->getNumIncomingValues() != 2) return false; 11289 11290 auto *RLoop = RAR->getLoop(); 11291 auto *Predecessor = RLoop->getLoopPredecessor(); 11292 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11293 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11294 if (!ProvedEasily(L1, RAR->getStart())) 11295 return false; 11296 auto *Latch = RLoop->getLoopLatch(); 11297 assert(Latch && "Loop with AddRec with no latch?"); 11298 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11299 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11300 return false; 11301 } else { 11302 // In all other cases go over inputs of LHS and compare each of them to RHS, 11303 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11304 // At this point RHS is either a non-Phi, or it is a Phi from some block 11305 // different from LBB. 11306 for (const BasicBlock *IncBB : predecessors(LBB)) { 11307 // Check that RHS is available in this block. 11308 if (!dominates(RHS, IncBB)) 11309 return false; 11310 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11311 // Make sure L does not refer to a value from a potentially previous 11312 // iteration of a loop. 11313 if (!properlyDominates(L, IncBB)) 11314 return false; 11315 if (!ProvedEasily(L, RHS)) 11316 return false; 11317 } 11318 } 11319 return true; 11320 } 11321 11322 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11323 const SCEV *LHS, const SCEV *RHS, 11324 const SCEV *FoundLHS, 11325 const SCEV *FoundRHS, 11326 const Instruction *CtxI) { 11327 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11328 return true; 11329 11330 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11331 return true; 11332 11333 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11334 CtxI)) 11335 return true; 11336 11337 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11338 FoundLHS, FoundRHS); 11339 } 11340 11341 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11342 template <typename MinMaxExprType> 11343 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11344 const SCEV *Candidate) { 11345 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11346 if (!MinMaxExpr) 11347 return false; 11348 11349 return is_contained(MinMaxExpr->operands(), Candidate); 11350 } 11351 11352 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11353 ICmpInst::Predicate Pred, 11354 const SCEV *LHS, const SCEV *RHS) { 11355 // If both sides are affine addrecs for the same loop, with equal 11356 // steps, and we know the recurrences don't wrap, then we only 11357 // need to check the predicate on the starting values. 11358 11359 if (!ICmpInst::isRelational(Pred)) 11360 return false; 11361 11362 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11363 if (!LAR) 11364 return false; 11365 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11366 if (!RAR) 11367 return false; 11368 if (LAR->getLoop() != RAR->getLoop()) 11369 return false; 11370 if (!LAR->isAffine() || !RAR->isAffine()) 11371 return false; 11372 11373 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11374 return false; 11375 11376 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11377 SCEV::FlagNSW : SCEV::FlagNUW; 11378 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11379 return false; 11380 11381 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11382 } 11383 11384 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11385 /// expression? 11386 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11387 ICmpInst::Predicate Pred, 11388 const SCEV *LHS, const SCEV *RHS) { 11389 switch (Pred) { 11390 default: 11391 return false; 11392 11393 case ICmpInst::ICMP_SGE: 11394 std::swap(LHS, RHS); 11395 LLVM_FALLTHROUGH; 11396 case ICmpInst::ICMP_SLE: 11397 return 11398 // min(A, ...) <= A 11399 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11400 // A <= max(A, ...) 11401 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11402 11403 case ICmpInst::ICMP_UGE: 11404 std::swap(LHS, RHS); 11405 LLVM_FALLTHROUGH; 11406 case ICmpInst::ICMP_ULE: 11407 return 11408 // min(A, ...) <= A 11409 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11410 // A <= max(A, ...) 11411 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11412 } 11413 11414 llvm_unreachable("covered switch fell through?!"); 11415 } 11416 11417 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11418 const SCEV *LHS, const SCEV *RHS, 11419 const SCEV *FoundLHS, 11420 const SCEV *FoundRHS, 11421 unsigned Depth) { 11422 assert(getTypeSizeInBits(LHS->getType()) == 11423 getTypeSizeInBits(RHS->getType()) && 11424 "LHS and RHS have different sizes?"); 11425 assert(getTypeSizeInBits(FoundLHS->getType()) == 11426 getTypeSizeInBits(FoundRHS->getType()) && 11427 "FoundLHS and FoundRHS have different sizes?"); 11428 // We want to avoid hurting the compile time with analysis of too big trees. 11429 if (Depth > MaxSCEVOperationsImplicationDepth) 11430 return false; 11431 11432 // We only want to work with GT comparison so far. 11433 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11434 Pred = CmpInst::getSwappedPredicate(Pred); 11435 std::swap(LHS, RHS); 11436 std::swap(FoundLHS, FoundRHS); 11437 } 11438 11439 // For unsigned, try to reduce it to corresponding signed comparison. 11440 if (Pred == ICmpInst::ICMP_UGT) 11441 // We can replace unsigned predicate with its signed counterpart if all 11442 // involved values are non-negative. 11443 // TODO: We could have better support for unsigned. 11444 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11445 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11446 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11447 // use this fact to prove that LHS and RHS are non-negative. 11448 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11449 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11450 FoundRHS) && 11451 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11452 FoundRHS)) 11453 Pred = ICmpInst::ICMP_SGT; 11454 } 11455 11456 if (Pred != ICmpInst::ICMP_SGT) 11457 return false; 11458 11459 auto GetOpFromSExt = [&](const SCEV *S) { 11460 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11461 return Ext->getOperand(); 11462 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11463 // the constant in some cases. 11464 return S; 11465 }; 11466 11467 // Acquire values from extensions. 11468 auto *OrigLHS = LHS; 11469 auto *OrigFoundLHS = FoundLHS; 11470 LHS = GetOpFromSExt(LHS); 11471 FoundLHS = GetOpFromSExt(FoundLHS); 11472 11473 // Is the SGT predicate can be proved trivially or using the found context. 11474 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11475 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11476 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11477 FoundRHS, Depth + 1); 11478 }; 11479 11480 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11481 // We want to avoid creation of any new non-constant SCEV. Since we are 11482 // going to compare the operands to RHS, we should be certain that we don't 11483 // need any size extensions for this. So let's decline all cases when the 11484 // sizes of types of LHS and RHS do not match. 11485 // TODO: Maybe try to get RHS from sext to catch more cases? 11486 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11487 return false; 11488 11489 // Should not overflow. 11490 if (!LHSAddExpr->hasNoSignedWrap()) 11491 return false; 11492 11493 auto *LL = LHSAddExpr->getOperand(0); 11494 auto *LR = LHSAddExpr->getOperand(1); 11495 auto *MinusOne = getMinusOne(RHS->getType()); 11496 11497 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11498 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11499 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11500 }; 11501 // Try to prove the following rule: 11502 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11503 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11504 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11505 return true; 11506 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11507 Value *LL, *LR; 11508 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11509 11510 using namespace llvm::PatternMatch; 11511 11512 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11513 // Rules for division. 11514 // We are going to perform some comparisons with Denominator and its 11515 // derivative expressions. In general case, creating a SCEV for it may 11516 // lead to a complex analysis of the entire graph, and in particular it 11517 // can request trip count recalculation for the same loop. This would 11518 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11519 // this, we only want to create SCEVs that are constants in this section. 11520 // So we bail if Denominator is not a constant. 11521 if (!isa<ConstantInt>(LR)) 11522 return false; 11523 11524 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11525 11526 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11527 // then a SCEV for the numerator already exists and matches with FoundLHS. 11528 auto *Numerator = getExistingSCEV(LL); 11529 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11530 return false; 11531 11532 // Make sure that the numerator matches with FoundLHS and the denominator 11533 // is positive. 11534 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11535 return false; 11536 11537 auto *DTy = Denominator->getType(); 11538 auto *FRHSTy = FoundRHS->getType(); 11539 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11540 // One of types is a pointer and another one is not. We cannot extend 11541 // them properly to a wider type, so let us just reject this case. 11542 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11543 // to avoid this check. 11544 return false; 11545 11546 // Given that: 11547 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11548 auto *WTy = getWiderType(DTy, FRHSTy); 11549 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11550 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11551 11552 // Try to prove the following rule: 11553 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11554 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11555 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11556 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11557 if (isKnownNonPositive(RHS) && 11558 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11559 return true; 11560 11561 // Try to prove the following rule: 11562 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11563 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11564 // If we divide it by Denominator > 2, then: 11565 // 1. If FoundLHS is negative, then the result is 0. 11566 // 2. If FoundLHS is non-negative, then the result is non-negative. 11567 // Anyways, the result is non-negative. 11568 auto *MinusOne = getMinusOne(WTy); 11569 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11570 if (isKnownNegative(RHS) && 11571 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11572 return true; 11573 } 11574 } 11575 11576 // If our expression contained SCEVUnknown Phis, and we split it down and now 11577 // need to prove something for them, try to prove the predicate for every 11578 // possible incoming values of those Phis. 11579 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11580 return true; 11581 11582 return false; 11583 } 11584 11585 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11586 const SCEV *LHS, const SCEV *RHS) { 11587 // zext x u<= sext x, sext x s<= zext x 11588 switch (Pred) { 11589 case ICmpInst::ICMP_SGE: 11590 std::swap(LHS, RHS); 11591 LLVM_FALLTHROUGH; 11592 case ICmpInst::ICMP_SLE: { 11593 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11594 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11595 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11596 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11597 return true; 11598 break; 11599 } 11600 case ICmpInst::ICMP_UGE: 11601 std::swap(LHS, RHS); 11602 LLVM_FALLTHROUGH; 11603 case ICmpInst::ICMP_ULE: { 11604 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11605 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11606 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11607 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11608 return true; 11609 break; 11610 } 11611 default: 11612 break; 11613 }; 11614 return false; 11615 } 11616 11617 bool 11618 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11619 const SCEV *LHS, const SCEV *RHS) { 11620 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11621 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11622 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11623 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11624 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11625 } 11626 11627 bool 11628 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11629 const SCEV *LHS, const SCEV *RHS, 11630 const SCEV *FoundLHS, 11631 const SCEV *FoundRHS) { 11632 switch (Pred) { 11633 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11634 case ICmpInst::ICMP_EQ: 11635 case ICmpInst::ICMP_NE: 11636 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11637 return true; 11638 break; 11639 case ICmpInst::ICMP_SLT: 11640 case ICmpInst::ICMP_SLE: 11641 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11642 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11643 return true; 11644 break; 11645 case ICmpInst::ICMP_SGT: 11646 case ICmpInst::ICMP_SGE: 11647 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11648 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11649 return true; 11650 break; 11651 case ICmpInst::ICMP_ULT: 11652 case ICmpInst::ICMP_ULE: 11653 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11654 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11655 return true; 11656 break; 11657 case ICmpInst::ICMP_UGT: 11658 case ICmpInst::ICMP_UGE: 11659 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11660 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11661 return true; 11662 break; 11663 } 11664 11665 // Maybe it can be proved via operations? 11666 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11667 return true; 11668 11669 return false; 11670 } 11671 11672 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11673 const SCEV *LHS, 11674 const SCEV *RHS, 11675 const SCEV *FoundLHS, 11676 const SCEV *FoundRHS) { 11677 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11678 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11679 // reduce the compile time impact of this optimization. 11680 return false; 11681 11682 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11683 if (!Addend) 11684 return false; 11685 11686 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11687 11688 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11689 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11690 ConstantRange FoundLHSRange = 11691 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11692 11693 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11694 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11695 11696 // We can also compute the range of values for `LHS` that satisfy the 11697 // consequent, "`LHS` `Pred` `RHS`": 11698 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11699 // The antecedent implies the consequent if every value of `LHS` that 11700 // satisfies the antecedent also satisfies the consequent. 11701 return LHSRange.icmp(Pred, ConstRHS); 11702 } 11703 11704 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11705 bool IsSigned) { 11706 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11707 11708 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11709 const SCEV *One = getOne(Stride->getType()); 11710 11711 if (IsSigned) { 11712 APInt MaxRHS = getSignedRangeMax(RHS); 11713 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11714 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11715 11716 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11717 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11718 } 11719 11720 APInt MaxRHS = getUnsignedRangeMax(RHS); 11721 APInt MaxValue = APInt::getMaxValue(BitWidth); 11722 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11723 11724 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11725 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11726 } 11727 11728 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11729 bool IsSigned) { 11730 11731 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11732 const SCEV *One = getOne(Stride->getType()); 11733 11734 if (IsSigned) { 11735 APInt MinRHS = getSignedRangeMin(RHS); 11736 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11737 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11738 11739 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11740 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11741 } 11742 11743 APInt MinRHS = getUnsignedRangeMin(RHS); 11744 APInt MinValue = APInt::getMinValue(BitWidth); 11745 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11746 11747 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11748 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11749 } 11750 11751 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11752 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11753 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11754 // expression fixes the case of N=0. 11755 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11756 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11757 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11758 } 11759 11760 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11761 const SCEV *Stride, 11762 const SCEV *End, 11763 unsigned BitWidth, 11764 bool IsSigned) { 11765 // The logic in this function assumes we can represent a positive stride. 11766 // If we can't, the backedge-taken count must be zero. 11767 if (IsSigned && BitWidth == 1) 11768 return getZero(Stride->getType()); 11769 11770 // This code has only been closely audited for negative strides in the 11771 // unsigned comparison case, it may be correct for signed comparison, but 11772 // that needs to be established. 11773 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11774 "Stride is expected strictly positive for signed case!"); 11775 11776 // Calculate the maximum backedge count based on the range of values 11777 // permitted by Start, End, and Stride. 11778 APInt MinStart = 11779 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11780 11781 APInt MinStride = 11782 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11783 11784 // We assume either the stride is positive, or the backedge-taken count 11785 // is zero. So force StrideForMaxBECount to be at least one. 11786 APInt One(BitWidth, 1); 11787 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11788 : APIntOps::umax(One, MinStride); 11789 11790 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11791 : APInt::getMaxValue(BitWidth); 11792 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11793 11794 // Although End can be a MAX expression we estimate MaxEnd considering only 11795 // the case End = RHS of the loop termination condition. This is safe because 11796 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11797 // taken count. 11798 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11799 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11800 11801 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11802 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11803 : APIntOps::umax(MaxEnd, MinStart); 11804 11805 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11806 getConstant(StrideForMaxBECount) /* Step */); 11807 } 11808 11809 ScalarEvolution::ExitLimit 11810 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11811 const Loop *L, bool IsSigned, 11812 bool ControlsExit, bool AllowPredicates) { 11813 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11814 11815 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11816 bool PredicatedIV = false; 11817 11818 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11819 // Can we prove this loop *must* be UB if overflow of IV occurs? 11820 // Reasoning goes as follows: 11821 // * Suppose the IV did self wrap. 11822 // * If Stride evenly divides the iteration space, then once wrap 11823 // occurs, the loop must revisit the same values. 11824 // * We know that RHS is invariant, and that none of those values 11825 // caused this exit to be taken previously. Thus, this exit is 11826 // dynamically dead. 11827 // * If this is the sole exit, then a dead exit implies the loop 11828 // must be infinite if there are no abnormal exits. 11829 // * If the loop were infinite, then it must either not be mustprogress 11830 // or have side effects. Otherwise, it must be UB. 11831 // * It can't (by assumption), be UB so we have contradicted our 11832 // premise and can conclude the IV did not in fact self-wrap. 11833 if (!isLoopInvariant(RHS, L)) 11834 return false; 11835 11836 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11837 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11838 return false; 11839 11840 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11841 return false; 11842 11843 return loopIsFiniteByAssumption(L); 11844 }; 11845 11846 if (!IV) { 11847 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11848 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11849 if (AR && AR->getLoop() == L && AR->isAffine()) { 11850 auto canProveNUW = [&]() { 11851 if (!isLoopInvariant(RHS, L)) 11852 return false; 11853 11854 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 11855 // We need the sequence defined by AR to strictly increase in the 11856 // unsigned integer domain for the logic below to hold. 11857 return false; 11858 11859 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 11860 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 11861 // If RHS <=u Limit, then there must exist a value V in the sequence 11862 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 11863 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 11864 // overflow occurs. This limit also implies that a signed comparison 11865 // (in the wide bitwidth) is equivalent to an unsigned comparison as 11866 // the high bits on both sides must be zero. 11867 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 11868 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 11869 Limit = Limit.zext(OuterBitWidth); 11870 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 11871 }; 11872 auto Flags = AR->getNoWrapFlags(); 11873 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 11874 Flags = setFlags(Flags, SCEV::FlagNUW); 11875 11876 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11877 if (AR->hasNoUnsignedWrap()) { 11878 // Emulate what getZeroExtendExpr would have done during construction 11879 // if we'd been able to infer the fact just above at that time. 11880 const SCEV *Step = AR->getStepRecurrence(*this); 11881 Type *Ty = ZExt->getType(); 11882 auto *S = getAddRecExpr( 11883 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11884 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11885 IV = dyn_cast<SCEVAddRecExpr>(S); 11886 } 11887 } 11888 } 11889 } 11890 11891 11892 if (!IV && AllowPredicates) { 11893 // Try to make this an AddRec using runtime tests, in the first X 11894 // iterations of this loop, where X is the SCEV expression found by the 11895 // algorithm below. 11896 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11897 PredicatedIV = true; 11898 } 11899 11900 // Avoid weird loops 11901 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11902 return getCouldNotCompute(); 11903 11904 // A precondition of this method is that the condition being analyzed 11905 // reaches an exiting branch which dominates the latch. Given that, we can 11906 // assume that an increment which violates the nowrap specification and 11907 // produces poison must cause undefined behavior when the resulting poison 11908 // value is branched upon and thus we can conclude that the backedge is 11909 // taken no more often than would be required to produce that poison value. 11910 // Note that a well defined loop can exit on the iteration which violates 11911 // the nowrap specification if there is another exit (either explicit or 11912 // implicit/exceptional) which causes the loop to execute before the 11913 // exiting instruction we're analyzing would trigger UB. 11914 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11915 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11916 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11917 11918 const SCEV *Stride = IV->getStepRecurrence(*this); 11919 11920 bool PositiveStride = isKnownPositive(Stride); 11921 11922 // Avoid negative or zero stride values. 11923 if (!PositiveStride) { 11924 // We can compute the correct backedge taken count for loops with unknown 11925 // strides if we can prove that the loop is not an infinite loop with side 11926 // effects. Here's the loop structure we are trying to handle - 11927 // 11928 // i = start 11929 // do { 11930 // A[i] = i; 11931 // i += s; 11932 // } while (i < end); 11933 // 11934 // The backedge taken count for such loops is evaluated as - 11935 // (max(end, start + stride) - start - 1) /u stride 11936 // 11937 // The additional preconditions that we need to check to prove correctness 11938 // of the above formula is as follows - 11939 // 11940 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11941 // NoWrap flag). 11942 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11943 // no side effects within the loop) 11944 // c) loop has a single static exit (with no abnormal exits) 11945 // 11946 // Precondition a) implies that if the stride is negative, this is a single 11947 // trip loop. The backedge taken count formula reduces to zero in this case. 11948 // 11949 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11950 // then a zero stride means the backedge can't be taken without executing 11951 // undefined behavior. 11952 // 11953 // The positive stride case is the same as isKnownPositive(Stride) returning 11954 // true (original behavior of the function). 11955 // 11956 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11957 !loopHasNoAbnormalExits(L)) 11958 return getCouldNotCompute(); 11959 11960 // This bailout is protecting the logic in computeMaxBECountForLT which 11961 // has not yet been sufficiently auditted or tested with negative strides. 11962 // We used to filter out all known-non-positive cases here, we're in the 11963 // process of being less restrictive bit by bit. 11964 if (IsSigned && isKnownNonPositive(Stride)) 11965 return getCouldNotCompute(); 11966 11967 if (!isKnownNonZero(Stride)) { 11968 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11969 // if it might eventually be greater than start and if so, on which 11970 // iteration. We can't even produce a useful upper bound. 11971 if (!isLoopInvariant(RHS, L)) 11972 return getCouldNotCompute(); 11973 11974 // We allow a potentially zero stride, but we need to divide by stride 11975 // below. Since the loop can't be infinite and this check must control 11976 // the sole exit, we can infer the exit must be taken on the first 11977 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11978 // we know the numerator in the divides below must be zero, so we can 11979 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11980 // and produce the right result. 11981 // FIXME: Handle the case where Stride is poison? 11982 auto wouldZeroStrideBeUB = [&]() { 11983 // Proof by contradiction. Suppose the stride were zero. If we can 11984 // prove that the backedge *is* taken on the first iteration, then since 11985 // we know this condition controls the sole exit, we must have an 11986 // infinite loop. We can't have a (well defined) infinite loop per 11987 // check just above. 11988 // Note: The (Start - Stride) term is used to get the start' term from 11989 // (start' + stride,+,stride). Remember that we only care about the 11990 // result of this expression when stride == 0 at runtime. 11991 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11992 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11993 }; 11994 if (!wouldZeroStrideBeUB()) { 11995 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11996 } 11997 } 11998 } else if (!Stride->isOne() && !NoWrap) { 11999 auto isUBOnWrap = [&]() { 12000 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12001 // follows trivially from the fact that every (un)signed-wrapped, but 12002 // not self-wrapped value must be LT than the last value before 12003 // (un)signed wrap. Since we know that last value didn't exit, nor 12004 // will any smaller one. 12005 return canAssumeNoSelfWrap(IV); 12006 }; 12007 12008 // Avoid proven overflow cases: this will ensure that the backedge taken 12009 // count will not generate any unsigned overflow. Relaxed no-overflow 12010 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12011 // undefined behaviors like the case of C language. 12012 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12013 return getCouldNotCompute(); 12014 } 12015 12016 // On all paths just preceeding, we established the following invariant: 12017 // IV can be assumed not to overflow up to and including the exiting 12018 // iteration. We proved this in one of two ways: 12019 // 1) We can show overflow doesn't occur before the exiting iteration 12020 // 1a) canIVOverflowOnLT, and b) step of one 12021 // 2) We can show that if overflow occurs, the loop must execute UB 12022 // before any possible exit. 12023 // Note that we have not yet proved RHS invariant (in general). 12024 12025 const SCEV *Start = IV->getStart(); 12026 12027 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12028 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12029 // Use integer-typed versions for actual computation; we can't subtract 12030 // pointers in general. 12031 const SCEV *OrigStart = Start; 12032 const SCEV *OrigRHS = RHS; 12033 if (Start->getType()->isPointerTy()) { 12034 Start = getLosslessPtrToIntExpr(Start); 12035 if (isa<SCEVCouldNotCompute>(Start)) 12036 return Start; 12037 } 12038 if (RHS->getType()->isPointerTy()) { 12039 RHS = getLosslessPtrToIntExpr(RHS); 12040 if (isa<SCEVCouldNotCompute>(RHS)) 12041 return RHS; 12042 } 12043 12044 // When the RHS is not invariant, we do not know the end bound of the loop and 12045 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12046 // calculate the MaxBECount, given the start, stride and max value for the end 12047 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12048 // checked above). 12049 if (!isLoopInvariant(RHS, L)) { 12050 const SCEV *MaxBECount = computeMaxBECountForLT( 12051 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12052 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12053 false /*MaxOrZero*/, Predicates); 12054 } 12055 12056 // We use the expression (max(End,Start)-Start)/Stride to describe the 12057 // backedge count, as if the backedge is taken at least once max(End,Start) 12058 // is End and so the result is as above, and if not max(End,Start) is Start 12059 // so we get a backedge count of zero. 12060 const SCEV *BECount = nullptr; 12061 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12062 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12063 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12064 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12065 // Can we prove (max(RHS,Start) > Start - Stride? 12066 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12067 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12068 // In this case, we can use a refined formula for computing backedge taken 12069 // count. The general formula remains: 12070 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12071 // We want to use the alternate formula: 12072 // "((End - 1) - (Start - Stride)) /u Stride" 12073 // Let's do a quick case analysis to show these are equivalent under 12074 // our precondition that max(RHS,Start) > Start - Stride. 12075 // * For RHS <= Start, the backedge-taken count must be zero. 12076 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12077 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12078 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12079 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12080 // this to the stride of 1 case. 12081 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12082 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12083 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12084 // "((RHS - (Start - Stride) - 1) /u Stride". 12085 // Our preconditions trivially imply no overflow in that form. 12086 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12087 const SCEV *Numerator = 12088 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12089 BECount = getUDivExpr(Numerator, Stride); 12090 } 12091 12092 const SCEV *BECountIfBackedgeTaken = nullptr; 12093 if (!BECount) { 12094 auto canProveRHSGreaterThanEqualStart = [&]() { 12095 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12096 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12097 return true; 12098 12099 // (RHS > Start - 1) implies RHS >= Start. 12100 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12101 // "Start - 1" doesn't overflow. 12102 // * For signed comparison, if Start - 1 does overflow, it's equal 12103 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12104 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12105 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12106 // 12107 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12108 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12109 auto *StartMinusOne = getAddExpr(OrigStart, 12110 getMinusOne(OrigStart->getType())); 12111 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12112 }; 12113 12114 // If we know that RHS >= Start in the context of loop, then we know that 12115 // max(RHS, Start) = RHS at this point. 12116 const SCEV *End; 12117 if (canProveRHSGreaterThanEqualStart()) { 12118 End = RHS; 12119 } else { 12120 // If RHS < Start, the backedge will be taken zero times. So in 12121 // general, we can write the backedge-taken count as: 12122 // 12123 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12124 // 12125 // We convert it to the following to make it more convenient for SCEV: 12126 // 12127 // ceil(max(RHS, Start) - Start) / Stride 12128 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12129 12130 // See what would happen if we assume the backedge is taken. This is 12131 // used to compute MaxBECount. 12132 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12133 } 12134 12135 // At this point, we know: 12136 // 12137 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12138 // 2. The index variable doesn't overflow. 12139 // 12140 // Therefore, we know N exists such that 12141 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12142 // doesn't overflow. 12143 // 12144 // Using this information, try to prove whether the addition in 12145 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12146 const SCEV *One = getOne(Stride->getType()); 12147 bool MayAddOverflow = [&] { 12148 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12149 if (StrideC->getAPInt().isPowerOf2()) { 12150 // Suppose Stride is a power of two, and Start/End are unsigned 12151 // integers. Let UMAX be the largest representable unsigned 12152 // integer. 12153 // 12154 // By the preconditions of this function, we know 12155 // "(Start + Stride * N) >= End", and this doesn't overflow. 12156 // As a formula: 12157 // 12158 // End <= (Start + Stride * N) <= UMAX 12159 // 12160 // Subtracting Start from all the terms: 12161 // 12162 // End - Start <= Stride * N <= UMAX - Start 12163 // 12164 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12165 // 12166 // End - Start <= Stride * N <= UMAX 12167 // 12168 // Stride * N is a multiple of Stride. Therefore, 12169 // 12170 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12171 // 12172 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12173 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12174 // 12175 // End - Start <= Stride * N <= UMAX - Stride - 1 12176 // 12177 // Dropping the middle term: 12178 // 12179 // End - Start <= UMAX - Stride - 1 12180 // 12181 // Adding Stride - 1 to both sides: 12182 // 12183 // (End - Start) + (Stride - 1) <= UMAX 12184 // 12185 // In other words, the addition doesn't have unsigned overflow. 12186 // 12187 // A similar proof works if we treat Start/End as signed values. 12188 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12189 // use signed max instead of unsigned max. Note that we're trying 12190 // to prove a lack of unsigned overflow in either case. 12191 return false; 12192 } 12193 } 12194 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12195 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12196 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12197 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12198 // 12199 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12200 return false; 12201 } 12202 return true; 12203 }(); 12204 12205 const SCEV *Delta = getMinusSCEV(End, Start); 12206 if (!MayAddOverflow) { 12207 // floor((D + (S - 1)) / S) 12208 // We prefer this formulation if it's legal because it's fewer operations. 12209 BECount = 12210 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12211 } else { 12212 BECount = getUDivCeilSCEV(Delta, Stride); 12213 } 12214 } 12215 12216 const SCEV *MaxBECount; 12217 bool MaxOrZero = false; 12218 if (isa<SCEVConstant>(BECount)) { 12219 MaxBECount = BECount; 12220 } else if (BECountIfBackedgeTaken && 12221 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12222 // If we know exactly how many times the backedge will be taken if it's 12223 // taken at least once, then the backedge count will either be that or 12224 // zero. 12225 MaxBECount = BECountIfBackedgeTaken; 12226 MaxOrZero = true; 12227 } else { 12228 MaxBECount = computeMaxBECountForLT( 12229 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12230 } 12231 12232 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12233 !isa<SCEVCouldNotCompute>(BECount)) 12234 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12235 12236 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12237 } 12238 12239 ScalarEvolution::ExitLimit 12240 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12241 const Loop *L, bool IsSigned, 12242 bool ControlsExit, bool AllowPredicates) { 12243 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12244 // We handle only IV > Invariant 12245 if (!isLoopInvariant(RHS, L)) 12246 return getCouldNotCompute(); 12247 12248 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12249 if (!IV && AllowPredicates) 12250 // Try to make this an AddRec using runtime tests, in the first X 12251 // iterations of this loop, where X is the SCEV expression found by the 12252 // algorithm below. 12253 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12254 12255 // Avoid weird loops 12256 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12257 return getCouldNotCompute(); 12258 12259 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12260 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12261 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12262 12263 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12264 12265 // Avoid negative or zero stride values 12266 if (!isKnownPositive(Stride)) 12267 return getCouldNotCompute(); 12268 12269 // Avoid proven overflow cases: this will ensure that the backedge taken count 12270 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12271 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12272 // behaviors like the case of C language. 12273 if (!Stride->isOne() && !NoWrap) 12274 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12275 return getCouldNotCompute(); 12276 12277 const SCEV *Start = IV->getStart(); 12278 const SCEV *End = RHS; 12279 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12280 // If we know that Start >= RHS in the context of loop, then we know that 12281 // min(RHS, Start) = RHS at this point. 12282 if (isLoopEntryGuardedByCond( 12283 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12284 End = RHS; 12285 else 12286 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12287 } 12288 12289 if (Start->getType()->isPointerTy()) { 12290 Start = getLosslessPtrToIntExpr(Start); 12291 if (isa<SCEVCouldNotCompute>(Start)) 12292 return Start; 12293 } 12294 if (End->getType()->isPointerTy()) { 12295 End = getLosslessPtrToIntExpr(End); 12296 if (isa<SCEVCouldNotCompute>(End)) 12297 return End; 12298 } 12299 12300 // Compute ((Start - End) + (Stride - 1)) / Stride. 12301 // FIXME: This can overflow. Holding off on fixing this for now; 12302 // howManyGreaterThans will hopefully be gone soon. 12303 const SCEV *One = getOne(Stride->getType()); 12304 const SCEV *BECount = getUDivExpr( 12305 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12306 12307 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12308 : getUnsignedRangeMax(Start); 12309 12310 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12311 : getUnsignedRangeMin(Stride); 12312 12313 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12314 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12315 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12316 12317 // Although End can be a MIN expression we estimate MinEnd considering only 12318 // the case End = RHS. This is safe because in the other case (Start - End) 12319 // is zero, leading to a zero maximum backedge taken count. 12320 APInt MinEnd = 12321 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12322 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12323 12324 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12325 ? BECount 12326 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12327 getConstant(MinStride)); 12328 12329 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12330 MaxBECount = BECount; 12331 12332 return ExitLimit(BECount, MaxBECount, false, Predicates); 12333 } 12334 12335 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12336 ScalarEvolution &SE) const { 12337 if (Range.isFullSet()) // Infinite loop. 12338 return SE.getCouldNotCompute(); 12339 12340 // If the start is a non-zero constant, shift the range to simplify things. 12341 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12342 if (!SC->getValue()->isZero()) { 12343 SmallVector<const SCEV *, 4> Operands(operands()); 12344 Operands[0] = SE.getZero(SC->getType()); 12345 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12346 getNoWrapFlags(FlagNW)); 12347 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12348 return ShiftedAddRec->getNumIterationsInRange( 12349 Range.subtract(SC->getAPInt()), SE); 12350 // This is strange and shouldn't happen. 12351 return SE.getCouldNotCompute(); 12352 } 12353 12354 // The only time we can solve this is when we have all constant indices. 12355 // Otherwise, we cannot determine the overflow conditions. 12356 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12357 return SE.getCouldNotCompute(); 12358 12359 // Okay at this point we know that all elements of the chrec are constants and 12360 // that the start element is zero. 12361 12362 // First check to see if the range contains zero. If not, the first 12363 // iteration exits. 12364 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12365 if (!Range.contains(APInt(BitWidth, 0))) 12366 return SE.getZero(getType()); 12367 12368 if (isAffine()) { 12369 // If this is an affine expression then we have this situation: 12370 // Solve {0,+,A} in Range === Ax in Range 12371 12372 // We know that zero is in the range. If A is positive then we know that 12373 // the upper value of the range must be the first possible exit value. 12374 // If A is negative then the lower of the range is the last possible loop 12375 // value. Also note that we already checked for a full range. 12376 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12377 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12378 12379 // The exit value should be (End+A)/A. 12380 APInt ExitVal = (End + A).udiv(A); 12381 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12382 12383 // Evaluate at the exit value. If we really did fall out of the valid 12384 // range, then we computed our trip count, otherwise wrap around or other 12385 // things must have happened. 12386 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12387 if (Range.contains(Val->getValue())) 12388 return SE.getCouldNotCompute(); // Something strange happened 12389 12390 // Ensure that the previous value is in the range. This is a sanity check. 12391 assert(Range.contains( 12392 EvaluateConstantChrecAtConstant(this, 12393 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12394 "Linear scev computation is off in a bad way!"); 12395 return SE.getConstant(ExitValue); 12396 } 12397 12398 if (isQuadratic()) { 12399 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12400 return SE.getConstant(S.getValue()); 12401 } 12402 12403 return SE.getCouldNotCompute(); 12404 } 12405 12406 const SCEVAddRecExpr * 12407 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12408 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12409 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12410 // but in this case we cannot guarantee that the value returned will be an 12411 // AddRec because SCEV does not have a fixed point where it stops 12412 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12413 // may happen if we reach arithmetic depth limit while simplifying. So we 12414 // construct the returned value explicitly. 12415 SmallVector<const SCEV *, 3> Ops; 12416 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12417 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12418 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12419 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12420 // We know that the last operand is not a constant zero (otherwise it would 12421 // have been popped out earlier). This guarantees us that if the result has 12422 // the same last operand, then it will also not be popped out, meaning that 12423 // the returned value will be an AddRec. 12424 const SCEV *Last = getOperand(getNumOperands() - 1); 12425 assert(!Last->isZero() && "Recurrency with zero step?"); 12426 Ops.push_back(Last); 12427 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12428 SCEV::FlagAnyWrap)); 12429 } 12430 12431 // Return true when S contains at least an undef value. 12432 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12433 return SCEVExprContains(S, [](const SCEV *S) { 12434 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12435 return isa<UndefValue>(SU->getValue()); 12436 return false; 12437 }); 12438 } 12439 12440 /// Return the size of an element read or written by Inst. 12441 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12442 Type *Ty; 12443 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12444 Ty = Store->getValueOperand()->getType(); 12445 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12446 Ty = Load->getType(); 12447 else 12448 return nullptr; 12449 12450 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12451 return getSizeOfExpr(ETy, Ty); 12452 } 12453 12454 //===----------------------------------------------------------------------===// 12455 // SCEVCallbackVH Class Implementation 12456 //===----------------------------------------------------------------------===// 12457 12458 void ScalarEvolution::SCEVCallbackVH::deleted() { 12459 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12460 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12461 SE->ConstantEvolutionLoopExitValue.erase(PN); 12462 SE->eraseValueFromMap(getValPtr()); 12463 // this now dangles! 12464 } 12465 12466 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12467 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12468 12469 // Forget all the expressions associated with users of the old value, 12470 // so that future queries will recompute the expressions using the new 12471 // value. 12472 Value *Old = getValPtr(); 12473 SmallVector<User *, 16> Worklist(Old->users()); 12474 SmallPtrSet<User *, 8> Visited; 12475 while (!Worklist.empty()) { 12476 User *U = Worklist.pop_back_val(); 12477 // Deleting the Old value will cause this to dangle. Postpone 12478 // that until everything else is done. 12479 if (U == Old) 12480 continue; 12481 if (!Visited.insert(U).second) 12482 continue; 12483 if (PHINode *PN = dyn_cast<PHINode>(U)) 12484 SE->ConstantEvolutionLoopExitValue.erase(PN); 12485 SE->eraseValueFromMap(U); 12486 llvm::append_range(Worklist, U->users()); 12487 } 12488 // Delete the Old value. 12489 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12490 SE->ConstantEvolutionLoopExitValue.erase(PN); 12491 SE->eraseValueFromMap(Old); 12492 // this now dangles! 12493 } 12494 12495 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12496 : CallbackVH(V), SE(se) {} 12497 12498 //===----------------------------------------------------------------------===// 12499 // ScalarEvolution Class Implementation 12500 //===----------------------------------------------------------------------===// 12501 12502 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12503 AssumptionCache &AC, DominatorTree &DT, 12504 LoopInfo &LI) 12505 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12506 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12507 LoopDispositions(64), BlockDispositions(64) { 12508 // To use guards for proving predicates, we need to scan every instruction in 12509 // relevant basic blocks, and not just terminators. Doing this is a waste of 12510 // time if the IR does not actually contain any calls to 12511 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12512 // 12513 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12514 // to _add_ guards to the module when there weren't any before, and wants 12515 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12516 // efficient in lieu of being smart in that rather obscure case. 12517 12518 auto *GuardDecl = F.getParent()->getFunction( 12519 Intrinsic::getName(Intrinsic::experimental_guard)); 12520 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12521 } 12522 12523 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12524 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12525 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12526 ValueExprMap(std::move(Arg.ValueExprMap)), 12527 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12528 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12529 PendingMerges(std::move(Arg.PendingMerges)), 12530 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12531 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12532 PredicatedBackedgeTakenCounts( 12533 std::move(Arg.PredicatedBackedgeTakenCounts)), 12534 ConstantEvolutionLoopExitValue( 12535 std::move(Arg.ConstantEvolutionLoopExitValue)), 12536 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12537 LoopDispositions(std::move(Arg.LoopDispositions)), 12538 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12539 BlockDispositions(std::move(Arg.BlockDispositions)), 12540 SCEVUsers(std::move(Arg.SCEVUsers)), 12541 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12542 SignedRanges(std::move(Arg.SignedRanges)), 12543 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12544 UniquePreds(std::move(Arg.UniquePreds)), 12545 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12546 LoopUsers(std::move(Arg.LoopUsers)), 12547 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12548 FirstUnknown(Arg.FirstUnknown) { 12549 Arg.FirstUnknown = nullptr; 12550 } 12551 12552 ScalarEvolution::~ScalarEvolution() { 12553 // Iterate through all the SCEVUnknown instances and call their 12554 // destructors, so that they release their references to their values. 12555 for (SCEVUnknown *U = FirstUnknown; U;) { 12556 SCEVUnknown *Tmp = U; 12557 U = U->Next; 12558 Tmp->~SCEVUnknown(); 12559 } 12560 FirstUnknown = nullptr; 12561 12562 ExprValueMap.clear(); 12563 ValueExprMap.clear(); 12564 HasRecMap.clear(); 12565 BackedgeTakenCounts.clear(); 12566 PredicatedBackedgeTakenCounts.clear(); 12567 12568 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12569 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12570 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12571 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12572 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12573 } 12574 12575 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12576 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12577 } 12578 12579 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12580 const Loop *L) { 12581 // Print all inner loops first 12582 for (Loop *I : *L) 12583 PrintLoopInfo(OS, SE, I); 12584 12585 OS << "Loop "; 12586 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12587 OS << ": "; 12588 12589 SmallVector<BasicBlock *, 8> ExitingBlocks; 12590 L->getExitingBlocks(ExitingBlocks); 12591 if (ExitingBlocks.size() != 1) 12592 OS << "<multiple exits> "; 12593 12594 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12595 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12596 else 12597 OS << "Unpredictable backedge-taken count.\n"; 12598 12599 if (ExitingBlocks.size() > 1) 12600 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12601 OS << " exit count for " << ExitingBlock->getName() << ": " 12602 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12603 } 12604 12605 OS << "Loop "; 12606 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12607 OS << ": "; 12608 12609 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12610 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12611 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12612 OS << ", actual taken count either this or zero."; 12613 } else { 12614 OS << "Unpredictable max backedge-taken count. "; 12615 } 12616 12617 OS << "\n" 12618 "Loop "; 12619 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12620 OS << ": "; 12621 12622 SCEVUnionPredicate Pred; 12623 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12624 if (!isa<SCEVCouldNotCompute>(PBT)) { 12625 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12626 OS << " Predicates:\n"; 12627 Pred.print(OS, 4); 12628 } else { 12629 OS << "Unpredictable predicated backedge-taken count. "; 12630 } 12631 OS << "\n"; 12632 12633 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12634 OS << "Loop "; 12635 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12636 OS << ": "; 12637 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12638 } 12639 } 12640 12641 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12642 switch (LD) { 12643 case ScalarEvolution::LoopVariant: 12644 return "Variant"; 12645 case ScalarEvolution::LoopInvariant: 12646 return "Invariant"; 12647 case ScalarEvolution::LoopComputable: 12648 return "Computable"; 12649 } 12650 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12651 } 12652 12653 void ScalarEvolution::print(raw_ostream &OS) const { 12654 // ScalarEvolution's implementation of the print method is to print 12655 // out SCEV values of all instructions that are interesting. Doing 12656 // this potentially causes it to create new SCEV objects though, 12657 // which technically conflicts with the const qualifier. This isn't 12658 // observable from outside the class though, so casting away the 12659 // const isn't dangerous. 12660 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12661 12662 if (ClassifyExpressions) { 12663 OS << "Classifying expressions for: "; 12664 F.printAsOperand(OS, /*PrintType=*/false); 12665 OS << "\n"; 12666 for (Instruction &I : instructions(F)) 12667 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12668 OS << I << '\n'; 12669 OS << " --> "; 12670 const SCEV *SV = SE.getSCEV(&I); 12671 SV->print(OS); 12672 if (!isa<SCEVCouldNotCompute>(SV)) { 12673 OS << " U: "; 12674 SE.getUnsignedRange(SV).print(OS); 12675 OS << " S: "; 12676 SE.getSignedRange(SV).print(OS); 12677 } 12678 12679 const Loop *L = LI.getLoopFor(I.getParent()); 12680 12681 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12682 if (AtUse != SV) { 12683 OS << " --> "; 12684 AtUse->print(OS); 12685 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12686 OS << " U: "; 12687 SE.getUnsignedRange(AtUse).print(OS); 12688 OS << " S: "; 12689 SE.getSignedRange(AtUse).print(OS); 12690 } 12691 } 12692 12693 if (L) { 12694 OS << "\t\t" "Exits: "; 12695 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12696 if (!SE.isLoopInvariant(ExitValue, L)) { 12697 OS << "<<Unknown>>"; 12698 } else { 12699 OS << *ExitValue; 12700 } 12701 12702 bool First = true; 12703 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12704 if (First) { 12705 OS << "\t\t" "LoopDispositions: { "; 12706 First = false; 12707 } else { 12708 OS << ", "; 12709 } 12710 12711 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12712 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12713 } 12714 12715 for (auto *InnerL : depth_first(L)) { 12716 if (InnerL == L) 12717 continue; 12718 if (First) { 12719 OS << "\t\t" "LoopDispositions: { "; 12720 First = false; 12721 } else { 12722 OS << ", "; 12723 } 12724 12725 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12726 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12727 } 12728 12729 OS << " }"; 12730 } 12731 12732 OS << "\n"; 12733 } 12734 } 12735 12736 OS << "Determining loop execution counts for: "; 12737 F.printAsOperand(OS, /*PrintType=*/false); 12738 OS << "\n"; 12739 for (Loop *I : LI) 12740 PrintLoopInfo(OS, &SE, I); 12741 } 12742 12743 ScalarEvolution::LoopDisposition 12744 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12745 auto &Values = LoopDispositions[S]; 12746 for (auto &V : Values) { 12747 if (V.getPointer() == L) 12748 return V.getInt(); 12749 } 12750 Values.emplace_back(L, LoopVariant); 12751 LoopDisposition D = computeLoopDisposition(S, L); 12752 auto &Values2 = LoopDispositions[S]; 12753 for (auto &V : llvm::reverse(Values2)) { 12754 if (V.getPointer() == L) { 12755 V.setInt(D); 12756 break; 12757 } 12758 } 12759 return D; 12760 } 12761 12762 ScalarEvolution::LoopDisposition 12763 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12764 switch (S->getSCEVType()) { 12765 case scConstant: 12766 return LoopInvariant; 12767 case scPtrToInt: 12768 case scTruncate: 12769 case scZeroExtend: 12770 case scSignExtend: 12771 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12772 case scAddRecExpr: { 12773 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12774 12775 // If L is the addrec's loop, it's computable. 12776 if (AR->getLoop() == L) 12777 return LoopComputable; 12778 12779 // Add recurrences are never invariant in the function-body (null loop). 12780 if (!L) 12781 return LoopVariant; 12782 12783 // Everything that is not defined at loop entry is variant. 12784 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12785 return LoopVariant; 12786 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12787 " dominate the contained loop's header?"); 12788 12789 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12790 if (AR->getLoop()->contains(L)) 12791 return LoopInvariant; 12792 12793 // This recurrence is variant w.r.t. L if any of its operands 12794 // are variant. 12795 for (auto *Op : AR->operands()) 12796 if (!isLoopInvariant(Op, L)) 12797 return LoopVariant; 12798 12799 // Otherwise it's loop-invariant. 12800 return LoopInvariant; 12801 } 12802 case scAddExpr: 12803 case scMulExpr: 12804 case scUMaxExpr: 12805 case scSMaxExpr: 12806 case scUMinExpr: 12807 case scSMinExpr: { 12808 bool HasVarying = false; 12809 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12810 LoopDisposition D = getLoopDisposition(Op, L); 12811 if (D == LoopVariant) 12812 return LoopVariant; 12813 if (D == LoopComputable) 12814 HasVarying = true; 12815 } 12816 return HasVarying ? LoopComputable : LoopInvariant; 12817 } 12818 case scUDivExpr: { 12819 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12820 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12821 if (LD == LoopVariant) 12822 return LoopVariant; 12823 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12824 if (RD == LoopVariant) 12825 return LoopVariant; 12826 return (LD == LoopInvariant && RD == LoopInvariant) ? 12827 LoopInvariant : LoopComputable; 12828 } 12829 case scUnknown: 12830 // All non-instruction values are loop invariant. All instructions are loop 12831 // invariant if they are not contained in the specified loop. 12832 // Instructions are never considered invariant in the function body 12833 // (null loop) because they are defined within the "loop". 12834 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12835 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12836 return LoopInvariant; 12837 case scCouldNotCompute: 12838 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12839 } 12840 llvm_unreachable("Unknown SCEV kind!"); 12841 } 12842 12843 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12844 return getLoopDisposition(S, L) == LoopInvariant; 12845 } 12846 12847 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12848 return getLoopDisposition(S, L) == LoopComputable; 12849 } 12850 12851 ScalarEvolution::BlockDisposition 12852 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12853 auto &Values = BlockDispositions[S]; 12854 for (auto &V : Values) { 12855 if (V.getPointer() == BB) 12856 return V.getInt(); 12857 } 12858 Values.emplace_back(BB, DoesNotDominateBlock); 12859 BlockDisposition D = computeBlockDisposition(S, BB); 12860 auto &Values2 = BlockDispositions[S]; 12861 for (auto &V : llvm::reverse(Values2)) { 12862 if (V.getPointer() == BB) { 12863 V.setInt(D); 12864 break; 12865 } 12866 } 12867 return D; 12868 } 12869 12870 ScalarEvolution::BlockDisposition 12871 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12872 switch (S->getSCEVType()) { 12873 case scConstant: 12874 return ProperlyDominatesBlock; 12875 case scPtrToInt: 12876 case scTruncate: 12877 case scZeroExtend: 12878 case scSignExtend: 12879 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12880 case scAddRecExpr: { 12881 // This uses a "dominates" query instead of "properly dominates" query 12882 // to test for proper dominance too, because the instruction which 12883 // produces the addrec's value is a PHI, and a PHI effectively properly 12884 // dominates its entire containing block. 12885 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12886 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12887 return DoesNotDominateBlock; 12888 12889 // Fall through into SCEVNAryExpr handling. 12890 LLVM_FALLTHROUGH; 12891 } 12892 case scAddExpr: 12893 case scMulExpr: 12894 case scUMaxExpr: 12895 case scSMaxExpr: 12896 case scUMinExpr: 12897 case scSMinExpr: { 12898 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12899 bool Proper = true; 12900 for (const SCEV *NAryOp : NAry->operands()) { 12901 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12902 if (D == DoesNotDominateBlock) 12903 return DoesNotDominateBlock; 12904 if (D == DominatesBlock) 12905 Proper = false; 12906 } 12907 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12908 } 12909 case scUDivExpr: { 12910 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12911 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12912 BlockDisposition LD = getBlockDisposition(LHS, BB); 12913 if (LD == DoesNotDominateBlock) 12914 return DoesNotDominateBlock; 12915 BlockDisposition RD = getBlockDisposition(RHS, BB); 12916 if (RD == DoesNotDominateBlock) 12917 return DoesNotDominateBlock; 12918 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12919 ProperlyDominatesBlock : DominatesBlock; 12920 } 12921 case scUnknown: 12922 if (Instruction *I = 12923 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12924 if (I->getParent() == BB) 12925 return DominatesBlock; 12926 if (DT.properlyDominates(I->getParent(), BB)) 12927 return ProperlyDominatesBlock; 12928 return DoesNotDominateBlock; 12929 } 12930 return ProperlyDominatesBlock; 12931 case scCouldNotCompute: 12932 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12933 } 12934 llvm_unreachable("Unknown SCEV kind!"); 12935 } 12936 12937 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12938 return getBlockDisposition(S, BB) >= DominatesBlock; 12939 } 12940 12941 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12942 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12943 } 12944 12945 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12946 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12947 } 12948 12949 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 12950 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 12951 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 12952 12953 while (!Worklist.empty()) { 12954 const SCEV *Curr = Worklist.pop_back_val(); 12955 auto Users = SCEVUsers.find(Curr); 12956 if (Users != SCEVUsers.end()) 12957 for (auto *User : Users->second) 12958 if (ToForget.insert(User).second) 12959 Worklist.push_back(User); 12960 } 12961 12962 for (auto *S : ToForget) 12963 forgetMemoizedResultsImpl(S); 12964 12965 for (auto I = PredicatedSCEVRewrites.begin(); 12966 I != PredicatedSCEVRewrites.end();) { 12967 std::pair<const SCEV *, const Loop *> Entry = I->first; 12968 if (ToForget.count(Entry.first)) 12969 PredicatedSCEVRewrites.erase(I++); 12970 else 12971 ++I; 12972 } 12973 12974 auto RemoveSCEVFromBackedgeMap = [&ToForget]( 12975 DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12976 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12977 BackedgeTakenInfo &BEInfo = I->second; 12978 if (any_of(ToForget, 12979 [&BEInfo](const SCEV *S) { return BEInfo.hasOperand(S); })) 12980 Map.erase(I++); 12981 else 12982 ++I; 12983 } 12984 }; 12985 12986 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12987 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12988 } 12989 12990 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 12991 ValuesAtScopes.erase(S); 12992 LoopDispositions.erase(S); 12993 BlockDispositions.erase(S); 12994 UnsignedRanges.erase(S); 12995 SignedRanges.erase(S); 12996 ExprValueMap.erase(S); 12997 HasRecMap.erase(S); 12998 MinTrailingZerosCache.erase(S); 12999 } 13000 13001 void 13002 ScalarEvolution::getUsedLoops(const SCEV *S, 13003 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13004 struct FindUsedLoops { 13005 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13006 : LoopsUsed(LoopsUsed) {} 13007 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13008 bool follow(const SCEV *S) { 13009 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13010 LoopsUsed.insert(AR->getLoop()); 13011 return true; 13012 } 13013 13014 bool isDone() const { return false; } 13015 }; 13016 13017 FindUsedLoops F(LoopsUsed); 13018 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13019 } 13020 13021 void ScalarEvolution::verify() const { 13022 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13023 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13024 13025 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13026 13027 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13028 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13029 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13030 13031 const SCEV *visitConstant(const SCEVConstant *Constant) { 13032 return SE.getConstant(Constant->getAPInt()); 13033 } 13034 13035 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13036 return SE.getUnknown(Expr->getValue()); 13037 } 13038 13039 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13040 return SE.getCouldNotCompute(); 13041 } 13042 }; 13043 13044 SCEVMapper SCM(SE2); 13045 13046 while (!LoopStack.empty()) { 13047 auto *L = LoopStack.pop_back_val(); 13048 llvm::append_range(LoopStack, *L); 13049 13050 auto *CurBECount = SCM.visit( 13051 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13052 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13053 13054 if (CurBECount == SE2.getCouldNotCompute() || 13055 NewBECount == SE2.getCouldNotCompute()) { 13056 // NB! This situation is legal, but is very suspicious -- whatever pass 13057 // change the loop to make a trip count go from could not compute to 13058 // computable or vice-versa *should have* invalidated SCEV. However, we 13059 // choose not to assert here (for now) since we don't want false 13060 // positives. 13061 continue; 13062 } 13063 13064 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13065 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13066 // not propagate undef aggressively). This means we can (and do) fail 13067 // verification in cases where a transform makes the trip count of a loop 13068 // go from "undef" to "undef+1" (say). The transform is fine, since in 13069 // both cases the loop iterates "undef" times, but SCEV thinks we 13070 // increased the trip count of the loop by 1 incorrectly. 13071 continue; 13072 } 13073 13074 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13075 SE.getTypeSizeInBits(NewBECount->getType())) 13076 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13077 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13078 SE.getTypeSizeInBits(NewBECount->getType())) 13079 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13080 13081 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13082 13083 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13084 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13085 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13086 dbgs() << "Old: " << *CurBECount << "\n"; 13087 dbgs() << "New: " << *NewBECount << "\n"; 13088 dbgs() << "Delta: " << *Delta << "\n"; 13089 std::abort(); 13090 } 13091 } 13092 13093 // Collect all valid loops currently in LoopInfo. 13094 SmallPtrSet<Loop *, 32> ValidLoops; 13095 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13096 while (!Worklist.empty()) { 13097 Loop *L = Worklist.pop_back_val(); 13098 if (ValidLoops.contains(L)) 13099 continue; 13100 ValidLoops.insert(L); 13101 Worklist.append(L->begin(), L->end()); 13102 } 13103 // Check for SCEV expressions referencing invalid/deleted loops. 13104 for (auto &KV : ValueExprMap) { 13105 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13106 if (!AR) 13107 continue; 13108 assert(ValidLoops.contains(AR->getLoop()) && 13109 "AddRec references invalid loop"); 13110 } 13111 13112 // Verify intergity of SCEV users. 13113 for (const auto &S : UniqueSCEVs) { 13114 SmallVector<const SCEV *, 4> Ops; 13115 collectUniqueOps(&S, Ops); 13116 for (const auto *Op : Ops) { 13117 // We do not store dependencies of constants. 13118 if (isa<SCEVConstant>(Op)) 13119 continue; 13120 auto It = SCEVUsers.find(Op); 13121 if (It != SCEVUsers.end() && It->second.count(&S)) 13122 continue; 13123 dbgs() << "Use of operand " << *Op << " by user " << S 13124 << " is not being tracked!\n"; 13125 std::abort(); 13126 } 13127 } 13128 } 13129 13130 bool ScalarEvolution::invalidate( 13131 Function &F, const PreservedAnalyses &PA, 13132 FunctionAnalysisManager::Invalidator &Inv) { 13133 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13134 // of its dependencies is invalidated. 13135 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13136 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13137 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13138 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13139 Inv.invalidate<LoopAnalysis>(F, PA); 13140 } 13141 13142 AnalysisKey ScalarEvolutionAnalysis::Key; 13143 13144 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13145 FunctionAnalysisManager &AM) { 13146 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13147 AM.getResult<AssumptionAnalysis>(F), 13148 AM.getResult<DominatorTreeAnalysis>(F), 13149 AM.getResult<LoopAnalysis>(F)); 13150 } 13151 13152 PreservedAnalyses 13153 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13154 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13155 return PreservedAnalyses::all(); 13156 } 13157 13158 PreservedAnalyses 13159 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13160 // For compatibility with opt's -analyze feature under legacy pass manager 13161 // which was not ported to NPM. This keeps tests using 13162 // update_analyze_test_checks.py working. 13163 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13164 << F.getName() << "':\n"; 13165 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13166 return PreservedAnalyses::all(); 13167 } 13168 13169 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13170 "Scalar Evolution Analysis", false, true) 13171 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13172 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13173 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13174 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13175 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13176 "Scalar Evolution Analysis", false, true) 13177 13178 char ScalarEvolutionWrapperPass::ID = 0; 13179 13180 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13181 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13182 } 13183 13184 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13185 SE.reset(new ScalarEvolution( 13186 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13187 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13188 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13189 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13190 return false; 13191 } 13192 13193 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13194 13195 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13196 SE->print(OS); 13197 } 13198 13199 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13200 if (!VerifySCEV) 13201 return; 13202 13203 SE->verify(); 13204 } 13205 13206 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13207 AU.setPreservesAll(); 13208 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13209 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13210 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13211 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13212 } 13213 13214 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13215 const SCEV *RHS) { 13216 FoldingSetNodeID ID; 13217 assert(LHS->getType() == RHS->getType() && 13218 "Type mismatch between LHS and RHS"); 13219 // Unique this node based on the arguments 13220 ID.AddInteger(SCEVPredicate::P_Equal); 13221 ID.AddPointer(LHS); 13222 ID.AddPointer(RHS); 13223 void *IP = nullptr; 13224 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13225 return S; 13226 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13227 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13228 UniquePreds.InsertNode(Eq, IP); 13229 return Eq; 13230 } 13231 13232 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13233 const SCEVAddRecExpr *AR, 13234 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13235 FoldingSetNodeID ID; 13236 // Unique this node based on the arguments 13237 ID.AddInteger(SCEVPredicate::P_Wrap); 13238 ID.AddPointer(AR); 13239 ID.AddInteger(AddedFlags); 13240 void *IP = nullptr; 13241 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13242 return S; 13243 auto *OF = new (SCEVAllocator) 13244 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13245 UniquePreds.InsertNode(OF, IP); 13246 return OF; 13247 } 13248 13249 namespace { 13250 13251 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13252 public: 13253 13254 /// Rewrites \p S in the context of a loop L and the SCEV predication 13255 /// infrastructure. 13256 /// 13257 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13258 /// equivalences present in \p Pred. 13259 /// 13260 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13261 /// \p NewPreds such that the result will be an AddRecExpr. 13262 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13263 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13264 SCEVUnionPredicate *Pred) { 13265 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13266 return Rewriter.visit(S); 13267 } 13268 13269 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13270 if (Pred) { 13271 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13272 for (auto *Pred : ExprPreds) 13273 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13274 if (IPred->getLHS() == Expr) 13275 return IPred->getRHS(); 13276 } 13277 return convertToAddRecWithPreds(Expr); 13278 } 13279 13280 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13281 const SCEV *Operand = visit(Expr->getOperand()); 13282 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13283 if (AR && AR->getLoop() == L && AR->isAffine()) { 13284 // This couldn't be folded because the operand didn't have the nuw 13285 // flag. Add the nusw flag as an assumption that we could make. 13286 const SCEV *Step = AR->getStepRecurrence(SE); 13287 Type *Ty = Expr->getType(); 13288 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13289 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13290 SE.getSignExtendExpr(Step, Ty), L, 13291 AR->getNoWrapFlags()); 13292 } 13293 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13294 } 13295 13296 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13297 const SCEV *Operand = visit(Expr->getOperand()); 13298 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13299 if (AR && AR->getLoop() == L && AR->isAffine()) { 13300 // This couldn't be folded because the operand didn't have the nsw 13301 // flag. Add the nssw flag as an assumption that we could make. 13302 const SCEV *Step = AR->getStepRecurrence(SE); 13303 Type *Ty = Expr->getType(); 13304 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13305 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13306 SE.getSignExtendExpr(Step, Ty), L, 13307 AR->getNoWrapFlags()); 13308 } 13309 return SE.getSignExtendExpr(Operand, Expr->getType()); 13310 } 13311 13312 private: 13313 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13314 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13315 SCEVUnionPredicate *Pred) 13316 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13317 13318 bool addOverflowAssumption(const SCEVPredicate *P) { 13319 if (!NewPreds) { 13320 // Check if we've already made this assumption. 13321 return Pred && Pred->implies(P); 13322 } 13323 NewPreds->insert(P); 13324 return true; 13325 } 13326 13327 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13328 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13329 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13330 return addOverflowAssumption(A); 13331 } 13332 13333 // If \p Expr represents a PHINode, we try to see if it can be represented 13334 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13335 // to add this predicate as a runtime overflow check, we return the AddRec. 13336 // If \p Expr does not meet these conditions (is not a PHI node, or we 13337 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13338 // return \p Expr. 13339 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13340 if (!isa<PHINode>(Expr->getValue())) 13341 return Expr; 13342 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13343 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13344 if (!PredicatedRewrite) 13345 return Expr; 13346 for (auto *P : PredicatedRewrite->second){ 13347 // Wrap predicates from outer loops are not supported. 13348 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13349 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13350 if (L != AR->getLoop()) 13351 return Expr; 13352 } 13353 if (!addOverflowAssumption(P)) 13354 return Expr; 13355 } 13356 return PredicatedRewrite->first; 13357 } 13358 13359 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13360 SCEVUnionPredicate *Pred; 13361 const Loop *L; 13362 }; 13363 13364 } // end anonymous namespace 13365 13366 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13367 SCEVUnionPredicate &Preds) { 13368 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13369 } 13370 13371 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13372 const SCEV *S, const Loop *L, 13373 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13374 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13375 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13376 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13377 13378 if (!AddRec) 13379 return nullptr; 13380 13381 // Since the transformation was successful, we can now transfer the SCEV 13382 // predicates. 13383 for (auto *P : TransformPreds) 13384 Preds.insert(P); 13385 13386 return AddRec; 13387 } 13388 13389 /// SCEV predicates 13390 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13391 SCEVPredicateKind Kind) 13392 : FastID(ID), Kind(Kind) {} 13393 13394 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13395 const SCEV *LHS, const SCEV *RHS) 13396 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13397 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13398 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13399 } 13400 13401 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13402 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13403 13404 if (!Op) 13405 return false; 13406 13407 return Op->LHS == LHS && Op->RHS == RHS; 13408 } 13409 13410 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13411 13412 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13413 13414 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13415 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13416 } 13417 13418 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13419 const SCEVAddRecExpr *AR, 13420 IncrementWrapFlags Flags) 13421 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13422 13423 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13424 13425 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13426 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13427 13428 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13429 } 13430 13431 bool SCEVWrapPredicate::isAlwaysTrue() const { 13432 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13433 IncrementWrapFlags IFlags = Flags; 13434 13435 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13436 IFlags = clearFlags(IFlags, IncrementNSSW); 13437 13438 return IFlags == IncrementAnyWrap; 13439 } 13440 13441 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13442 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13443 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13444 OS << "<nusw>"; 13445 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13446 OS << "<nssw>"; 13447 OS << "\n"; 13448 } 13449 13450 SCEVWrapPredicate::IncrementWrapFlags 13451 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13452 ScalarEvolution &SE) { 13453 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13454 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13455 13456 // We can safely transfer the NSW flag as NSSW. 13457 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13458 ImpliedFlags = IncrementNSSW; 13459 13460 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13461 // If the increment is positive, the SCEV NUW flag will also imply the 13462 // WrapPredicate NUSW flag. 13463 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13464 if (Step->getValue()->getValue().isNonNegative()) 13465 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13466 } 13467 13468 return ImpliedFlags; 13469 } 13470 13471 /// Union predicates don't get cached so create a dummy set ID for it. 13472 SCEVUnionPredicate::SCEVUnionPredicate() 13473 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13474 13475 bool SCEVUnionPredicate::isAlwaysTrue() const { 13476 return all_of(Preds, 13477 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13478 } 13479 13480 ArrayRef<const SCEVPredicate *> 13481 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13482 auto I = SCEVToPreds.find(Expr); 13483 if (I == SCEVToPreds.end()) 13484 return ArrayRef<const SCEVPredicate *>(); 13485 return I->second; 13486 } 13487 13488 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13489 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13490 return all_of(Set->Preds, 13491 [this](const SCEVPredicate *I) { return this->implies(I); }); 13492 13493 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13494 if (ScevPredsIt == SCEVToPreds.end()) 13495 return false; 13496 auto &SCEVPreds = ScevPredsIt->second; 13497 13498 return any_of(SCEVPreds, 13499 [N](const SCEVPredicate *I) { return I->implies(N); }); 13500 } 13501 13502 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13503 13504 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13505 for (auto Pred : Preds) 13506 Pred->print(OS, Depth); 13507 } 13508 13509 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13510 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13511 for (auto Pred : Set->Preds) 13512 add(Pred); 13513 return; 13514 } 13515 13516 if (implies(N)) 13517 return; 13518 13519 const SCEV *Key = N->getExpr(); 13520 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13521 " associated expression!"); 13522 13523 SCEVToPreds[Key].push_back(N); 13524 Preds.push_back(N); 13525 } 13526 13527 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13528 Loop &L) 13529 : SE(SE), L(L) {} 13530 13531 void ScalarEvolution::registerUser(const SCEV *User, 13532 ArrayRef<const SCEV *> Ops) { 13533 for (auto *Op : Ops) 13534 // We do not expect that forgetting cached data for SCEVConstants will ever 13535 // open any prospects for sharpening or introduce any correctness issues, 13536 // so we don't bother storing their dependencies. 13537 if (!isa<SCEVConstant>(Op)) 13538 SCEVUsers[Op].insert(User); 13539 } 13540 13541 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13542 const SCEV *Expr = SE.getSCEV(V); 13543 RewriteEntry &Entry = RewriteMap[Expr]; 13544 13545 // If we already have an entry and the version matches, return it. 13546 if (Entry.second && Generation == Entry.first) 13547 return Entry.second; 13548 13549 // We found an entry but it's stale. Rewrite the stale entry 13550 // according to the current predicate. 13551 if (Entry.second) 13552 Expr = Entry.second; 13553 13554 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13555 Entry = {Generation, NewSCEV}; 13556 13557 return NewSCEV; 13558 } 13559 13560 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13561 if (!BackedgeCount) { 13562 SCEVUnionPredicate BackedgePred; 13563 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13564 addPredicate(BackedgePred); 13565 } 13566 return BackedgeCount; 13567 } 13568 13569 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13570 if (Preds.implies(&Pred)) 13571 return; 13572 Preds.add(&Pred); 13573 updateGeneration(); 13574 } 13575 13576 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13577 return Preds; 13578 } 13579 13580 void PredicatedScalarEvolution::updateGeneration() { 13581 // If the generation number wrapped recompute everything. 13582 if (++Generation == 0) { 13583 for (auto &II : RewriteMap) { 13584 const SCEV *Rewritten = II.second.second; 13585 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13586 } 13587 } 13588 } 13589 13590 void PredicatedScalarEvolution::setNoOverflow( 13591 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13592 const SCEV *Expr = getSCEV(V); 13593 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13594 13595 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13596 13597 // Clear the statically implied flags. 13598 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13599 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13600 13601 auto II = FlagsMap.insert({V, Flags}); 13602 if (!II.second) 13603 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13604 } 13605 13606 bool PredicatedScalarEvolution::hasNoOverflow( 13607 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13608 const SCEV *Expr = getSCEV(V); 13609 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13610 13611 Flags = SCEVWrapPredicate::clearFlags( 13612 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13613 13614 auto II = FlagsMap.find(V); 13615 13616 if (II != FlagsMap.end()) 13617 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13618 13619 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13620 } 13621 13622 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13623 const SCEV *Expr = this->getSCEV(V); 13624 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13625 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13626 13627 if (!New) 13628 return nullptr; 13629 13630 for (auto *P : NewPreds) 13631 Preds.add(P); 13632 13633 updateGeneration(); 13634 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13635 return New; 13636 } 13637 13638 PredicatedScalarEvolution::PredicatedScalarEvolution( 13639 const PredicatedScalarEvolution &Init) 13640 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13641 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13642 for (auto I : Init.FlagsMap) 13643 FlagsMap.insert(I); 13644 } 13645 13646 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13647 // For each block. 13648 for (auto *BB : L.getBlocks()) 13649 for (auto &I : *BB) { 13650 if (!SE.isSCEVable(I.getType())) 13651 continue; 13652 13653 auto *Expr = SE.getSCEV(&I); 13654 auto II = RewriteMap.find(Expr); 13655 13656 if (II == RewriteMap.end()) 13657 continue; 13658 13659 // Don't print things that are not interesting. 13660 if (II->second.second == Expr) 13661 continue; 13662 13663 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13664 OS.indent(Depth + 2) << *Expr << "\n"; 13665 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13666 } 13667 } 13668 13669 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13670 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13671 // for URem with constant power-of-2 second operands. 13672 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13673 // 4, A / B becomes X / 8). 13674 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13675 const SCEV *&RHS) { 13676 // Try to match 'zext (trunc A to iB) to iY', which is used 13677 // for URem with constant power-of-2 second operands. Make sure the size of 13678 // the operand A matches the size of the whole expressions. 13679 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13680 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13681 LHS = Trunc->getOperand(); 13682 // Bail out if the type of the LHS is larger than the type of the 13683 // expression for now. 13684 if (getTypeSizeInBits(LHS->getType()) > 13685 getTypeSizeInBits(Expr->getType())) 13686 return false; 13687 if (LHS->getType() != Expr->getType()) 13688 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13689 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13690 << getTypeSizeInBits(Trunc->getType())); 13691 return true; 13692 } 13693 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13694 if (Add == nullptr || Add->getNumOperands() != 2) 13695 return false; 13696 13697 const SCEV *A = Add->getOperand(1); 13698 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13699 13700 if (Mul == nullptr) 13701 return false; 13702 13703 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13704 // (SomeExpr + (-(SomeExpr / B) * B)). 13705 if (Expr == getURemExpr(A, B)) { 13706 LHS = A; 13707 RHS = B; 13708 return true; 13709 } 13710 return false; 13711 }; 13712 13713 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13714 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13715 return MatchURemWithDivisor(Mul->getOperand(1)) || 13716 MatchURemWithDivisor(Mul->getOperand(2)); 13717 13718 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13719 if (Mul->getNumOperands() == 2) 13720 return MatchURemWithDivisor(Mul->getOperand(1)) || 13721 MatchURemWithDivisor(Mul->getOperand(0)) || 13722 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13723 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13724 return false; 13725 } 13726 13727 const SCEV * 13728 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13729 SmallVector<BasicBlock*, 16> ExitingBlocks; 13730 L->getExitingBlocks(ExitingBlocks); 13731 13732 // Form an expression for the maximum exit count possible for this loop. We 13733 // merge the max and exact information to approximate a version of 13734 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13735 SmallVector<const SCEV*, 4> ExitCounts; 13736 for (BasicBlock *ExitingBB : ExitingBlocks) { 13737 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13738 if (isa<SCEVCouldNotCompute>(ExitCount)) 13739 ExitCount = getExitCount(L, ExitingBB, 13740 ScalarEvolution::ConstantMaximum); 13741 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13742 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13743 "We should only have known counts for exiting blocks that " 13744 "dominate latch!"); 13745 ExitCounts.push_back(ExitCount); 13746 } 13747 } 13748 if (ExitCounts.empty()) 13749 return getCouldNotCompute(); 13750 return getUMinFromMismatchedTypes(ExitCounts); 13751 } 13752 13753 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 13754 /// in the map. It skips AddRecExpr because we cannot guarantee that the 13755 /// replacement is loop invariant in the loop of the AddRec. 13756 /// 13757 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 13758 /// supported. 13759 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13760 const DenseMap<const SCEV *, const SCEV *> ⤅ 13761 13762 public: 13763 SCEVLoopGuardRewriter(ScalarEvolution &SE, 13764 DenseMap<const SCEV *, const SCEV *> &M) 13765 : SCEVRewriteVisitor(SE), Map(M) {} 13766 13767 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13768 13769 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13770 auto I = Map.find(Expr); 13771 if (I == Map.end()) 13772 return Expr; 13773 return I->second; 13774 } 13775 13776 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13777 auto I = Map.find(Expr); 13778 if (I == Map.end()) 13779 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 13780 Expr); 13781 return I->second; 13782 } 13783 }; 13784 13785 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13786 SmallVector<const SCEV *> ExprsToRewrite; 13787 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13788 const SCEV *RHS, 13789 DenseMap<const SCEV *, const SCEV *> 13790 &RewriteMap) { 13791 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13792 // replacement SCEV which isn't directly implied by the structure of that 13793 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13794 // legal. See the scoping rules for flags in the header to understand why. 13795 13796 // If LHS is a constant, apply information to the other expression. 13797 if (isa<SCEVConstant>(LHS)) { 13798 std::swap(LHS, RHS); 13799 Predicate = CmpInst::getSwappedPredicate(Predicate); 13800 } 13801 13802 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13803 // create this form when combining two checks of the form (X u< C2 + C1) and 13804 // (X >=u C1). 13805 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 13806 &ExprsToRewrite]() { 13807 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13808 if (!AddExpr || AddExpr->getNumOperands() != 2) 13809 return false; 13810 13811 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13812 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13813 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13814 if (!C1 || !C2 || !LHSUnknown) 13815 return false; 13816 13817 auto ExactRegion = 13818 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13819 .sub(C1->getAPInt()); 13820 13821 // Bail out, unless we have a non-wrapping, monotonic range. 13822 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13823 return false; 13824 auto I = RewriteMap.find(LHSUnknown); 13825 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13826 RewriteMap[LHSUnknown] = getUMaxExpr( 13827 getConstant(ExactRegion.getUnsignedMin()), 13828 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13829 ExprsToRewrite.push_back(LHSUnknown); 13830 return true; 13831 }; 13832 if (MatchRangeCheckIdiom()) 13833 return; 13834 13835 // If we have LHS == 0, check if LHS is computing a property of some unknown 13836 // SCEV %v which we can rewrite %v to express explicitly. 13837 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13838 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13839 RHSC->getValue()->isNullValue()) { 13840 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13841 // explicitly express that. 13842 const SCEV *URemLHS = nullptr; 13843 const SCEV *URemRHS = nullptr; 13844 if (matchURem(LHS, URemLHS, URemRHS)) { 13845 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13846 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13847 RewriteMap[LHSUnknown] = Multiple; 13848 ExprsToRewrite.push_back(LHSUnknown); 13849 return; 13850 } 13851 } 13852 } 13853 13854 // Do not apply information for constants or if RHS contains an AddRec. 13855 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 13856 return; 13857 13858 // If RHS is SCEVUnknown, make sure the information is applied to it. 13859 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13860 std::swap(LHS, RHS); 13861 Predicate = CmpInst::getSwappedPredicate(Predicate); 13862 } 13863 13864 // Limit to expressions that can be rewritten. 13865 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 13866 return; 13867 13868 // Check whether LHS has already been rewritten. In that case we want to 13869 // chain further rewrites onto the already rewritten value. 13870 auto I = RewriteMap.find(LHS); 13871 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13872 13873 const SCEV *RewrittenRHS = nullptr; 13874 switch (Predicate) { 13875 case CmpInst::ICMP_ULT: 13876 RewrittenRHS = 13877 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13878 break; 13879 case CmpInst::ICMP_SLT: 13880 RewrittenRHS = 13881 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13882 break; 13883 case CmpInst::ICMP_ULE: 13884 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13885 break; 13886 case CmpInst::ICMP_SLE: 13887 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13888 break; 13889 case CmpInst::ICMP_UGT: 13890 RewrittenRHS = 13891 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13892 break; 13893 case CmpInst::ICMP_SGT: 13894 RewrittenRHS = 13895 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13896 break; 13897 case CmpInst::ICMP_UGE: 13898 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13899 break; 13900 case CmpInst::ICMP_SGE: 13901 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13902 break; 13903 case CmpInst::ICMP_EQ: 13904 if (isa<SCEVConstant>(RHS)) 13905 RewrittenRHS = RHS; 13906 break; 13907 case CmpInst::ICMP_NE: 13908 if (isa<SCEVConstant>(RHS) && 13909 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13910 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13911 break; 13912 default: 13913 break; 13914 } 13915 13916 if (RewrittenRHS) { 13917 RewriteMap[LHS] = RewrittenRHS; 13918 if (LHS == RewrittenLHS) 13919 ExprsToRewrite.push_back(LHS); 13920 } 13921 }; 13922 // Starting at the loop predecessor, climb up the predecessor chain, as long 13923 // as there are predecessors that can be found that have unique successors 13924 // leading to the original header. 13925 // TODO: share this logic with isLoopEntryGuardedByCond. 13926 DenseMap<const SCEV *, const SCEV *> RewriteMap; 13927 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13928 L->getLoopPredecessor(), L->getHeader()); 13929 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13930 13931 const BranchInst *LoopEntryPredicate = 13932 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13933 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13934 continue; 13935 13936 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13937 SmallVector<Value *, 8> Worklist; 13938 SmallPtrSet<Value *, 8> Visited; 13939 Worklist.push_back(LoopEntryPredicate->getCondition()); 13940 while (!Worklist.empty()) { 13941 Value *Cond = Worklist.pop_back_val(); 13942 if (!Visited.insert(Cond).second) 13943 continue; 13944 13945 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13946 auto Predicate = 13947 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13948 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13949 getSCEV(Cmp->getOperand(1)), RewriteMap); 13950 continue; 13951 } 13952 13953 Value *L, *R; 13954 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13955 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13956 Worklist.push_back(L); 13957 Worklist.push_back(R); 13958 } 13959 } 13960 } 13961 13962 // Also collect information from assumptions dominating the loop. 13963 for (auto &AssumeVH : AC.assumptions()) { 13964 if (!AssumeVH) 13965 continue; 13966 auto *AssumeI = cast<CallInst>(AssumeVH); 13967 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13968 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13969 continue; 13970 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13971 getSCEV(Cmp->getOperand(1)), RewriteMap); 13972 } 13973 13974 if (RewriteMap.empty()) 13975 return Expr; 13976 13977 // Now that all rewrite information is collect, rewrite the collected 13978 // expressions with the information in the map. This applies information to 13979 // sub-expressions. 13980 if (ExprsToRewrite.size() > 1) { 13981 for (const SCEV *Expr : ExprsToRewrite) { 13982 const SCEV *RewriteTo = RewriteMap[Expr]; 13983 RewriteMap.erase(Expr); 13984 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13985 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 13986 } 13987 } 13988 13989 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13990 return Rewriter.visit(Expr); 13991 } 13992