1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/ScopeExit.h" 69 #include "llvm/ADT/Sequence.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/Analysis/AssumptionCache.h" 77 #include "llvm/Analysis/ConstantFolding.h" 78 #include "llvm/Analysis/InstructionSimplify.h" 79 #include "llvm/Analysis/LoopInfo.h" 80 #include "llvm/Analysis/MemoryBuiltins.h" 81 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 82 #include "llvm/Analysis/TargetLibraryInfo.h" 83 #include "llvm/Analysis/ValueTracking.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/Argument.h" 86 #include "llvm/IR/BasicBlock.h" 87 #include "llvm/IR/CFG.h" 88 #include "llvm/IR/Constant.h" 89 #include "llvm/IR/ConstantRange.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DerivedTypes.h" 93 #include "llvm/IR/Dominators.h" 94 #include "llvm/IR/Function.h" 95 #include "llvm/IR/GlobalAlias.h" 96 #include "llvm/IR/GlobalValue.h" 97 #include "llvm/IR/InstIterator.h" 98 #include "llvm/IR/InstrTypes.h" 99 #include "llvm/IR/Instruction.h" 100 #include "llvm/IR/Instructions.h" 101 #include "llvm/IR/IntrinsicInst.h" 102 #include "llvm/IR/Intrinsics.h" 103 #include "llvm/IR/LLVMContext.h" 104 #include "llvm/IR/Operator.h" 105 #include "llvm/IR/PatternMatch.h" 106 #include "llvm/IR/Type.h" 107 #include "llvm/IR/Use.h" 108 #include "llvm/IR/User.h" 109 #include "llvm/IR/Value.h" 110 #include "llvm/IR/Verifier.h" 111 #include "llvm/InitializePasses.h" 112 #include "llvm/Pass.h" 113 #include "llvm/Support/Casting.h" 114 #include "llvm/Support/CommandLine.h" 115 #include "llvm/Support/Compiler.h" 116 #include "llvm/Support/Debug.h" 117 #include "llvm/Support/ErrorHandling.h" 118 #include "llvm/Support/KnownBits.h" 119 #include "llvm/Support/SaveAndRestore.h" 120 #include "llvm/Support/raw_ostream.h" 121 #include <algorithm> 122 #include <cassert> 123 #include <climits> 124 #include <cstdint> 125 #include <cstdlib> 126 #include <map> 127 #include <memory> 128 #include <numeric> 129 #include <optional> 130 #include <tuple> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 using namespace PatternMatch; 136 137 #define DEBUG_TYPE "scalar-evolution" 138 139 STATISTIC(NumExitCountsComputed, 140 "Number of loop exits with predictable exit counts"); 141 STATISTIC(NumExitCountsNotComputed, 142 "Number of loop exits without predictable exit counts"); 143 STATISTIC(NumBruteForceTripCountsComputed, 144 "Number of loops with trip counts computed by force"); 145 146 #ifdef EXPENSIVE_CHECKS 147 bool llvm::VerifySCEV = true; 148 #else 149 bool llvm::VerifySCEV = false; 150 #endif 151 152 static cl::opt<unsigned> 153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 166 static cl::opt<bool> VerifyIR( 167 "scev-verify-ir", cl::Hidden, 168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 169 cl::init(false)); 170 171 static cl::opt<unsigned> MulOpsInlineThreshold( 172 "scev-mulops-inline-threshold", cl::Hidden, 173 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 174 cl::init(32)); 175 176 static cl::opt<unsigned> AddOpsInlineThreshold( 177 "scev-addops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining addition operands into a SCEV"), 179 cl::init(500)); 180 181 static cl::opt<unsigned> MaxSCEVCompareDepth( 182 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 184 cl::init(32)); 185 186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 189 cl::init(2)); 190 191 static cl::opt<unsigned> MaxValueCompareDepth( 192 "scalar-evolution-max-value-compare-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive value complexity comparisons"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> 197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive arithmetics"), 199 cl::init(32)); 200 201 static cl::opt<unsigned> MaxConstantEvolvingDepth( 202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 204 205 static cl::opt<unsigned> 206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 208 cl::init(8)); 209 210 static cl::opt<unsigned> 211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 212 cl::desc("Max coefficients in AddRec during evolving"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 217 cl::desc("Size of the expression which is considered huge"), 218 cl::init(4096)); 219 220 static cl::opt<unsigned> RangeIterThreshold( 221 "scev-range-iter-threshold", cl::Hidden, 222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"), 223 cl::init(32)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 239 "Phi strongly connected components"), 240 cl::init(8)); 241 242 static cl::opt<bool> 243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 244 cl::desc("Handle <= and >= in finite loops"), 245 cl::init(true)); 246 247 static cl::opt<bool> UseContextForNoWrapFlagInference( 248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, 249 cl::desc("Infer nuw/nsw flags using context where suitable"), 250 cl::init(true)); 251 252 //===----------------------------------------------------------------------===// 253 // SCEV class definitions 254 //===----------------------------------------------------------------------===// 255 256 //===----------------------------------------------------------------------===// 257 // Implementation of the SCEV class. 258 // 259 260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 261 LLVM_DUMP_METHOD void SCEV::dump() const { 262 print(dbgs()); 263 dbgs() << '\n'; 264 } 265 #endif 266 267 void SCEV::print(raw_ostream &OS) const { 268 switch (getSCEVType()) { 269 case scConstant: 270 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 271 return; 272 case scVScale: 273 OS << "vscale"; 274 return; 275 case scPtrToInt: { 276 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 277 const SCEV *Op = PtrToInt->getOperand(); 278 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 279 << *PtrToInt->getType() << ")"; 280 return; 281 } 282 case scTruncate: { 283 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 284 const SCEV *Op = Trunc->getOperand(); 285 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 286 << *Trunc->getType() << ")"; 287 return; 288 } 289 case scZeroExtend: { 290 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 291 const SCEV *Op = ZExt->getOperand(); 292 OS << "(zext " << *Op->getType() << " " << *Op << " to " 293 << *ZExt->getType() << ")"; 294 return; 295 } 296 case scSignExtend: { 297 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 298 const SCEV *Op = SExt->getOperand(); 299 OS << "(sext " << *Op->getType() << " " << *Op << " to " 300 << *SExt->getType() << ")"; 301 return; 302 } 303 case scAddRecExpr: { 304 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 305 OS << "{" << *AR->getOperand(0); 306 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 307 OS << ",+," << *AR->getOperand(i); 308 OS << "}<"; 309 if (AR->hasNoUnsignedWrap()) 310 OS << "nuw><"; 311 if (AR->hasNoSignedWrap()) 312 OS << "nsw><"; 313 if (AR->hasNoSelfWrap() && 314 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 315 OS << "nw><"; 316 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 317 OS << ">"; 318 return; 319 } 320 case scAddExpr: 321 case scMulExpr: 322 case scUMaxExpr: 323 case scSMaxExpr: 324 case scUMinExpr: 325 case scSMinExpr: 326 case scSequentialUMinExpr: { 327 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 328 const char *OpStr = nullptr; 329 switch (NAry->getSCEVType()) { 330 case scAddExpr: OpStr = " + "; break; 331 case scMulExpr: OpStr = " * "; break; 332 case scUMaxExpr: OpStr = " umax "; break; 333 case scSMaxExpr: OpStr = " smax "; break; 334 case scUMinExpr: 335 OpStr = " umin "; 336 break; 337 case scSMinExpr: 338 OpStr = " smin "; 339 break; 340 case scSequentialUMinExpr: 341 OpStr = " umin_seq "; 342 break; 343 default: 344 llvm_unreachable("There are no other nary expression types."); 345 } 346 OS << "("; 347 ListSeparator LS(OpStr); 348 for (const SCEV *Op : NAry->operands()) 349 OS << LS << *Op; 350 OS << ")"; 351 switch (NAry->getSCEVType()) { 352 case scAddExpr: 353 case scMulExpr: 354 if (NAry->hasNoUnsignedWrap()) 355 OS << "<nuw>"; 356 if (NAry->hasNoSignedWrap()) 357 OS << "<nsw>"; 358 break; 359 default: 360 // Nothing to print for other nary expressions. 361 break; 362 } 363 return; 364 } 365 case scUDivExpr: { 366 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 367 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 368 return; 369 } 370 case scUnknown: 371 cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false); 372 return; 373 case scCouldNotCompute: 374 OS << "***COULDNOTCOMPUTE***"; 375 return; 376 } 377 llvm_unreachable("Unknown SCEV kind!"); 378 } 379 380 Type *SCEV::getType() const { 381 switch (getSCEVType()) { 382 case scConstant: 383 return cast<SCEVConstant>(this)->getType(); 384 case scVScale: 385 return cast<SCEVVScale>(this)->getType(); 386 case scPtrToInt: 387 case scTruncate: 388 case scZeroExtend: 389 case scSignExtend: 390 return cast<SCEVCastExpr>(this)->getType(); 391 case scAddRecExpr: 392 return cast<SCEVAddRecExpr>(this)->getType(); 393 case scMulExpr: 394 return cast<SCEVMulExpr>(this)->getType(); 395 case scUMaxExpr: 396 case scSMaxExpr: 397 case scUMinExpr: 398 case scSMinExpr: 399 return cast<SCEVMinMaxExpr>(this)->getType(); 400 case scSequentialUMinExpr: 401 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 402 case scAddExpr: 403 return cast<SCEVAddExpr>(this)->getType(); 404 case scUDivExpr: 405 return cast<SCEVUDivExpr>(this)->getType(); 406 case scUnknown: 407 return cast<SCEVUnknown>(this)->getType(); 408 case scCouldNotCompute: 409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 410 } 411 llvm_unreachable("Unknown SCEV kind!"); 412 } 413 414 ArrayRef<const SCEV *> SCEV::operands() const { 415 switch (getSCEVType()) { 416 case scConstant: 417 case scVScale: 418 case scUnknown: 419 return {}; 420 case scPtrToInt: 421 case scTruncate: 422 case scZeroExtend: 423 case scSignExtend: 424 return cast<SCEVCastExpr>(this)->operands(); 425 case scAddRecExpr: 426 case scAddExpr: 427 case scMulExpr: 428 case scUMaxExpr: 429 case scSMaxExpr: 430 case scUMinExpr: 431 case scSMinExpr: 432 case scSequentialUMinExpr: 433 return cast<SCEVNAryExpr>(this)->operands(); 434 case scUDivExpr: 435 return cast<SCEVUDivExpr>(this)->operands(); 436 case scCouldNotCompute: 437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 438 } 439 llvm_unreachable("Unknown SCEV kind!"); 440 } 441 442 bool SCEV::isZero() const { 443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 444 return SC->getValue()->isZero(); 445 return false; 446 } 447 448 bool SCEV::isOne() const { 449 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 450 return SC->getValue()->isOne(); 451 return false; 452 } 453 454 bool SCEV::isAllOnesValue() const { 455 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 456 return SC->getValue()->isMinusOne(); 457 return false; 458 } 459 460 bool SCEV::isNonConstantNegative() const { 461 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 462 if (!Mul) return false; 463 464 // If there is a constant factor, it will be first. 465 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 466 if (!SC) return false; 467 468 // Return true if the value is negative, this matches things like (-42 * V). 469 return SC->getAPInt().isNegative(); 470 } 471 472 SCEVCouldNotCompute::SCEVCouldNotCompute() : 473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 474 475 bool SCEVCouldNotCompute::classof(const SCEV *S) { 476 return S->getSCEVType() == scCouldNotCompute; 477 } 478 479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 480 FoldingSetNodeID ID; 481 ID.AddInteger(scConstant); 482 ID.AddPointer(V); 483 void *IP = nullptr; 484 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 485 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 486 UniqueSCEVs.InsertNode(S, IP); 487 return S; 488 } 489 490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 491 return getConstant(ConstantInt::get(getContext(), Val)); 492 } 493 494 const SCEV * 495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 496 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 497 return getConstant(ConstantInt::get(ITy, V, isSigned)); 498 } 499 500 const SCEV *ScalarEvolution::getVScale(Type *Ty) { 501 FoldingSetNodeID ID; 502 ID.AddInteger(scVScale); 503 ID.AddPointer(Ty); 504 void *IP = nullptr; 505 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 506 return S; 507 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty); 508 UniqueSCEVs.InsertNode(S, IP); 509 return S; 510 } 511 512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 513 const SCEV *op, Type *ty) 514 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 515 516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 517 Type *ITy) 518 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 519 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 520 "Must be a non-bit-width-changing pointer-to-integer cast!"); 521 } 522 523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 524 SCEVTypes SCEVTy, const SCEV *op, 525 Type *ty) 526 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 527 528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 529 Type *ty) 530 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 531 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 532 "Cannot truncate non-integer value!"); 533 } 534 535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 536 const SCEV *op, Type *ty) 537 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 539 "Cannot zero extend non-integer value!"); 540 } 541 542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 543 const SCEV *op, Type *ty) 544 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 546 "Cannot sign extend non-integer value!"); 547 } 548 549 void SCEVUnknown::deleted() { 550 // Clear this SCEVUnknown from various maps. 551 SE->forgetMemoizedResults(this); 552 553 // Remove this SCEVUnknown from the uniquing map. 554 SE->UniqueSCEVs.RemoveNode(this); 555 556 // Release the value. 557 setValPtr(nullptr); 558 } 559 560 void SCEVUnknown::allUsesReplacedWith(Value *New) { 561 // Clear this SCEVUnknown from various maps. 562 SE->forgetMemoizedResults(this); 563 564 // Remove this SCEVUnknown from the uniquing map. 565 SE->UniqueSCEVs.RemoveNode(this); 566 567 // Replace the value pointer in case someone is still using this SCEVUnknown. 568 setValPtr(New); 569 } 570 571 //===----------------------------------------------------------------------===// 572 // SCEV Utilities 573 //===----------------------------------------------------------------------===// 574 575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 577 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 578 /// have been previously deemed to be "equally complex" by this routine. It is 579 /// intended to avoid exponential time complexity in cases like: 580 /// 581 /// %a = f(%x, %y) 582 /// %b = f(%a, %a) 583 /// %c = f(%b, %b) 584 /// 585 /// %d = f(%x, %y) 586 /// %e = f(%d, %d) 587 /// %f = f(%e, %e) 588 /// 589 /// CompareValueComplexity(%f, %c) 590 /// 591 /// Since we do not continue running this routine on expression trees once we 592 /// have seen unequal values, there is no need to track them in the cache. 593 static int 594 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 595 const LoopInfo *const LI, Value *LV, Value *RV, 596 unsigned Depth) { 597 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 598 return 0; 599 600 // Order pointer values after integer values. This helps SCEVExpander form 601 // GEPs. 602 bool LIsPointer = LV->getType()->isPointerTy(), 603 RIsPointer = RV->getType()->isPointerTy(); 604 if (LIsPointer != RIsPointer) 605 return (int)LIsPointer - (int)RIsPointer; 606 607 // Compare getValueID values. 608 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 609 if (LID != RID) 610 return (int)LID - (int)RID; 611 612 // Sort arguments by their position. 613 if (const auto *LA = dyn_cast<Argument>(LV)) { 614 const auto *RA = cast<Argument>(RV); 615 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 616 return (int)LArgNo - (int)RArgNo; 617 } 618 619 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 620 const auto *RGV = cast<GlobalValue>(RV); 621 622 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 623 auto LT = GV->getLinkage(); 624 return !(GlobalValue::isPrivateLinkage(LT) || 625 GlobalValue::isInternalLinkage(LT)); 626 }; 627 628 // Use the names to distinguish the two values, but only if the 629 // names are semantically important. 630 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 631 return LGV->getName().compare(RGV->getName()); 632 } 633 634 // For instructions, compare their loop depth, and their operand count. This 635 // is pretty loose. 636 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 637 const auto *RInst = cast<Instruction>(RV); 638 639 // Compare loop depths. 640 const BasicBlock *LParent = LInst->getParent(), 641 *RParent = RInst->getParent(); 642 if (LParent != RParent) { 643 unsigned LDepth = LI->getLoopDepth(LParent), 644 RDepth = LI->getLoopDepth(RParent); 645 if (LDepth != RDepth) 646 return (int)LDepth - (int)RDepth; 647 } 648 649 // Compare the number of operands. 650 unsigned LNumOps = LInst->getNumOperands(), 651 RNumOps = RInst->getNumOperands(); 652 if (LNumOps != RNumOps) 653 return (int)LNumOps - (int)RNumOps; 654 655 for (unsigned Idx : seq(0u, LNumOps)) { 656 int Result = 657 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 658 RInst->getOperand(Idx), Depth + 1); 659 if (Result != 0) 660 return Result; 661 } 662 } 663 664 EqCacheValue.unionSets(LV, RV); 665 return 0; 666 } 667 668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 669 // than RHS, respectively. A three-way result allows recursive comparisons to be 670 // more efficient. 671 // If the max analysis depth was reached, return std::nullopt, assuming we do 672 // not know if they are equivalent for sure. 673 static std::optional<int> 674 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 675 EquivalenceClasses<const Value *> &EqCacheValue, 676 const LoopInfo *const LI, const SCEV *LHS, 677 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 678 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 679 if (LHS == RHS) 680 return 0; 681 682 // Primarily, sort the SCEVs by their getSCEVType(). 683 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 684 if (LType != RType) 685 return (int)LType - (int)RType; 686 687 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 688 return 0; 689 690 if (Depth > MaxSCEVCompareDepth) 691 return std::nullopt; 692 693 // Aside from the getSCEVType() ordering, the particular ordering 694 // isn't very important except that it's beneficial to be consistent, 695 // so that (a + b) and (b + a) don't end up as different expressions. 696 switch (LType) { 697 case scUnknown: { 698 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 699 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 700 701 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 702 RU->getValue(), Depth + 1); 703 if (X == 0) 704 EqCacheSCEV.unionSets(LHS, RHS); 705 return X; 706 } 707 708 case scConstant: { 709 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 710 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 711 712 // Compare constant values. 713 const APInt &LA = LC->getAPInt(); 714 const APInt &RA = RC->getAPInt(); 715 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 716 if (LBitWidth != RBitWidth) 717 return (int)LBitWidth - (int)RBitWidth; 718 return LA.ult(RA) ? -1 : 1; 719 } 720 721 case scVScale: { 722 const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType()); 723 const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType()); 724 return LTy->getBitWidth() - RTy->getBitWidth(); 725 } 726 727 case scAddRecExpr: { 728 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 729 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 730 731 // There is always a dominance between two recs that are used by one SCEV, 732 // so we can safely sort recs by loop header dominance. We require such 733 // order in getAddExpr. 734 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 735 if (LLoop != RLoop) { 736 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 737 assert(LHead != RHead && "Two loops share the same header?"); 738 if (DT.dominates(LHead, RHead)) 739 return 1; 740 assert(DT.dominates(RHead, LHead) && 741 "No dominance between recurrences used by one SCEV?"); 742 return -1; 743 } 744 745 [[fallthrough]]; 746 } 747 748 case scTruncate: 749 case scZeroExtend: 750 case scSignExtend: 751 case scPtrToInt: 752 case scAddExpr: 753 case scMulExpr: 754 case scUDivExpr: 755 case scSMaxExpr: 756 case scUMaxExpr: 757 case scSMinExpr: 758 case scUMinExpr: 759 case scSequentialUMinExpr: { 760 ArrayRef<const SCEV *> LOps = LHS->operands(); 761 ArrayRef<const SCEV *> ROps = RHS->operands(); 762 763 // Lexicographically compare n-ary-like expressions. 764 unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); 765 if (LNumOps != RNumOps) 766 return (int)LNumOps - (int)RNumOps; 767 768 for (unsigned i = 0; i != LNumOps; ++i) { 769 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i], 770 ROps[i], DT, Depth + 1); 771 if (X != 0) 772 return X; 773 } 774 EqCacheSCEV.unionSets(LHS, RHS); 775 return 0; 776 } 777 778 case scCouldNotCompute: 779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 780 } 781 llvm_unreachable("Unknown SCEV kind!"); 782 } 783 784 /// Given a list of SCEV objects, order them by their complexity, and group 785 /// objects of the same complexity together by value. When this routine is 786 /// finished, we know that any duplicates in the vector are consecutive and that 787 /// complexity is monotonically increasing. 788 /// 789 /// Note that we go take special precautions to ensure that we get deterministic 790 /// results from this routine. In other words, we don't want the results of 791 /// this to depend on where the addresses of various SCEV objects happened to 792 /// land in memory. 793 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 794 LoopInfo *LI, DominatorTree &DT) { 795 if (Ops.size() < 2) return; // Noop 796 797 EquivalenceClasses<const SCEV *> EqCacheSCEV; 798 EquivalenceClasses<const Value *> EqCacheValue; 799 800 // Whether LHS has provably less complexity than RHS. 801 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 802 auto Complexity = 803 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 804 return Complexity && *Complexity < 0; 805 }; 806 if (Ops.size() == 2) { 807 // This is the common case, which also happens to be trivially simple. 808 // Special case it. 809 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 810 if (IsLessComplex(RHS, LHS)) 811 std::swap(LHS, RHS); 812 return; 813 } 814 815 // Do the rough sort by complexity. 816 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 817 return IsLessComplex(LHS, RHS); 818 }); 819 820 // Now that we are sorted by complexity, group elements of the same 821 // complexity. Note that this is, at worst, N^2, but the vector is likely to 822 // be extremely short in practice. Note that we take this approach because we 823 // do not want to depend on the addresses of the objects we are grouping. 824 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 825 const SCEV *S = Ops[i]; 826 unsigned Complexity = S->getSCEVType(); 827 828 // If there are any objects of the same complexity and same value as this 829 // one, group them. 830 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 831 if (Ops[j] == S) { // Found a duplicate. 832 // Move it to immediately after i'th element. 833 std::swap(Ops[i+1], Ops[j]); 834 ++i; // no need to rescan it. 835 if (i == e-2) return; // Done! 836 } 837 } 838 } 839 } 840 841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 842 /// least HugeExprThreshold nodes). 843 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 844 return any_of(Ops, [](const SCEV *S) { 845 return S->getExpressionSize() >= HugeExprThreshold; 846 }); 847 } 848 849 //===----------------------------------------------------------------------===// 850 // Simple SCEV method implementations 851 //===----------------------------------------------------------------------===// 852 853 /// Compute BC(It, K). The result has width W. Assume, K > 0. 854 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 855 ScalarEvolution &SE, 856 Type *ResultTy) { 857 // Handle the simplest case efficiently. 858 if (K == 1) 859 return SE.getTruncateOrZeroExtend(It, ResultTy); 860 861 // We are using the following formula for BC(It, K): 862 // 863 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 864 // 865 // Suppose, W is the bitwidth of the return value. We must be prepared for 866 // overflow. Hence, we must assure that the result of our computation is 867 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 868 // safe in modular arithmetic. 869 // 870 // However, this code doesn't use exactly that formula; the formula it uses 871 // is something like the following, where T is the number of factors of 2 in 872 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 873 // exponentiation: 874 // 875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 876 // 877 // This formula is trivially equivalent to the previous formula. However, 878 // this formula can be implemented much more efficiently. The trick is that 879 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 880 // arithmetic. To do exact division in modular arithmetic, all we have 881 // to do is multiply by the inverse. Therefore, this step can be done at 882 // width W. 883 // 884 // The next issue is how to safely do the division by 2^T. The way this 885 // is done is by doing the multiplication step at a width of at least W + T 886 // bits. This way, the bottom W+T bits of the product are accurate. Then, 887 // when we perform the division by 2^T (which is equivalent to a right shift 888 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 889 // truncated out after the division by 2^T. 890 // 891 // In comparison to just directly using the first formula, this technique 892 // is much more efficient; using the first formula requires W * K bits, 893 // but this formula less than W + K bits. Also, the first formula requires 894 // a division step, whereas this formula only requires multiplies and shifts. 895 // 896 // It doesn't matter whether the subtraction step is done in the calculation 897 // width or the input iteration count's width; if the subtraction overflows, 898 // the result must be zero anyway. We prefer here to do it in the width of 899 // the induction variable because it helps a lot for certain cases; CodeGen 900 // isn't smart enough to ignore the overflow, which leads to much less 901 // efficient code if the width of the subtraction is wider than the native 902 // register width. 903 // 904 // (It's possible to not widen at all by pulling out factors of 2 before 905 // the multiplication; for example, K=2 can be calculated as 906 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 907 // extra arithmetic, so it's not an obvious win, and it gets 908 // much more complicated for K > 3.) 909 910 // Protection from insane SCEVs; this bound is conservative, 911 // but it probably doesn't matter. 912 if (K > 1000) 913 return SE.getCouldNotCompute(); 914 915 unsigned W = SE.getTypeSizeInBits(ResultTy); 916 917 // Calculate K! / 2^T and T; we divide out the factors of two before 918 // multiplying for calculating K! / 2^T to avoid overflow. 919 // Other overflow doesn't matter because we only care about the bottom 920 // W bits of the result. 921 APInt OddFactorial(W, 1); 922 unsigned T = 1; 923 for (unsigned i = 3; i <= K; ++i) { 924 APInt Mult(W, i); 925 unsigned TwoFactors = Mult.countr_zero(); 926 T += TwoFactors; 927 Mult.lshrInPlace(TwoFactors); 928 OddFactorial *= Mult; 929 } 930 931 // We need at least W + T bits for the multiplication step 932 unsigned CalculationBits = W + T; 933 934 // Calculate 2^T, at width T+W. 935 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 936 937 // Calculate the multiplicative inverse of K! / 2^T; 938 // this multiplication factor will perform the exact division by 939 // K! / 2^T. 940 APInt Mod = APInt::getSignedMinValue(W+1); 941 APInt MultiplyFactor = OddFactorial.zext(W+1); 942 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 943 MultiplyFactor = MultiplyFactor.trunc(W); 944 945 // Calculate the product, at width T+W 946 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 947 CalculationBits); 948 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 949 for (unsigned i = 1; i != K; ++i) { 950 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 951 Dividend = SE.getMulExpr(Dividend, 952 SE.getTruncateOrZeroExtend(S, CalculationTy)); 953 } 954 955 // Divide by 2^T 956 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 957 958 // Truncate the result, and divide by K! / 2^T. 959 960 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 961 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 962 } 963 964 /// Return the value of this chain of recurrences at the specified iteration 965 /// number. We can evaluate this recurrence by multiplying each element in the 966 /// chain by the binomial coefficient corresponding to it. In other words, we 967 /// can evaluate {A,+,B,+,C,+,D} as: 968 /// 969 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 970 /// 971 /// where BC(It, k) stands for binomial coefficient. 972 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 973 ScalarEvolution &SE) const { 974 return evaluateAtIteration(operands(), It, SE); 975 } 976 977 const SCEV * 978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 979 const SCEV *It, ScalarEvolution &SE) { 980 assert(Operands.size() > 0); 981 const SCEV *Result = Operands[0]; 982 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 983 // The computation is correct in the face of overflow provided that the 984 // multiplication is performed _after_ the evaluation of the binomial 985 // coefficient. 986 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 987 if (isa<SCEVCouldNotCompute>(Coeff)) 988 return Coeff; 989 990 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 991 } 992 return Result; 993 } 994 995 //===----------------------------------------------------------------------===// 996 // SCEV Expression folder implementations 997 //===----------------------------------------------------------------------===// 998 999 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1000 unsigned Depth) { 1001 assert(Depth <= 1 && 1002 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1003 1004 // We could be called with an integer-typed operands during SCEV rewrites. 1005 // Since the operand is an integer already, just perform zext/trunc/self cast. 1006 if (!Op->getType()->isPointerTy()) 1007 return Op; 1008 1009 // What would be an ID for such a SCEV cast expression? 1010 FoldingSetNodeID ID; 1011 ID.AddInteger(scPtrToInt); 1012 ID.AddPointer(Op); 1013 1014 void *IP = nullptr; 1015 1016 // Is there already an expression for such a cast? 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1018 return S; 1019 1020 // It isn't legal for optimizations to construct new ptrtoint expressions 1021 // for non-integral pointers. 1022 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1023 return getCouldNotCompute(); 1024 1025 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1026 1027 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1028 // is sufficiently wide to represent all possible pointer values. 1029 // We could theoretically teach SCEV to truncate wider pointers, but 1030 // that isn't implemented for now. 1031 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1032 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1033 return getCouldNotCompute(); 1034 1035 // If not, is this expression something we can't reduce any further? 1036 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1037 // Perform some basic constant folding. If the operand of the ptr2int cast 1038 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1039 // left as-is), but produce a zero constant. 1040 // NOTE: We could handle a more general case, but lack motivational cases. 1041 if (isa<ConstantPointerNull>(U->getValue())) 1042 return getZero(IntPtrTy); 1043 1044 // Create an explicit cast node. 1045 // We can reuse the existing insert position since if we get here, 1046 // we won't have made any changes which would invalidate it. 1047 SCEV *S = new (SCEVAllocator) 1048 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1049 UniqueSCEVs.InsertNode(S, IP); 1050 registerUser(S, Op); 1051 return S; 1052 } 1053 1054 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1055 "non-SCEVUnknown's."); 1056 1057 // Otherwise, we've got some expression that is more complex than just a 1058 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1059 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1060 // only, and the expressions must otherwise be integer-typed. 1061 // So sink the cast down to the SCEVUnknown's. 1062 1063 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1064 /// which computes a pointer-typed value, and rewrites the whole expression 1065 /// tree so that *all* the computations are done on integers, and the only 1066 /// pointer-typed operands in the expression are SCEVUnknown. 1067 class SCEVPtrToIntSinkingRewriter 1068 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1069 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1070 1071 public: 1072 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1073 1074 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1075 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1076 return Rewriter.visit(Scev); 1077 } 1078 1079 const SCEV *visit(const SCEV *S) { 1080 Type *STy = S->getType(); 1081 // If the expression is not pointer-typed, just keep it as-is. 1082 if (!STy->isPointerTy()) 1083 return S; 1084 // Else, recursively sink the cast down into it. 1085 return Base::visit(S); 1086 } 1087 1088 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1089 SmallVector<const SCEV *, 2> Operands; 1090 bool Changed = false; 1091 for (const auto *Op : Expr->operands()) { 1092 Operands.push_back(visit(Op)); 1093 Changed |= Op != Operands.back(); 1094 } 1095 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1096 } 1097 1098 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1099 SmallVector<const SCEV *, 2> Operands; 1100 bool Changed = false; 1101 for (const auto *Op : Expr->operands()) { 1102 Operands.push_back(visit(Op)); 1103 Changed |= Op != Operands.back(); 1104 } 1105 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1106 } 1107 1108 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1109 assert(Expr->getType()->isPointerTy() && 1110 "Should only reach pointer-typed SCEVUnknown's."); 1111 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1112 } 1113 }; 1114 1115 // And actually perform the cast sinking. 1116 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1117 assert(IntOp->getType()->isIntegerTy() && 1118 "We must have succeeded in sinking the cast, " 1119 "and ending up with an integer-typed expression!"); 1120 return IntOp; 1121 } 1122 1123 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1124 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1125 1126 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1127 if (isa<SCEVCouldNotCompute>(IntOp)) 1128 return IntOp; 1129 1130 return getTruncateOrZeroExtend(IntOp, Ty); 1131 } 1132 1133 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1134 unsigned Depth) { 1135 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1136 "This is not a truncating conversion!"); 1137 assert(isSCEVable(Ty) && 1138 "This is not a conversion to a SCEVable type!"); 1139 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1140 Ty = getEffectiveSCEVType(Ty); 1141 1142 FoldingSetNodeID ID; 1143 ID.AddInteger(scTruncate); 1144 ID.AddPointer(Op); 1145 ID.AddPointer(Ty); 1146 void *IP = nullptr; 1147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1148 1149 // Fold if the operand is constant. 1150 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1151 return getConstant( 1152 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1153 1154 // trunc(trunc(x)) --> trunc(x) 1155 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1156 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1157 1158 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1159 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1160 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1161 1162 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1163 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1164 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1165 1166 if (Depth > MaxCastDepth) { 1167 SCEV *S = 1168 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1169 UniqueSCEVs.InsertNode(S, IP); 1170 registerUser(S, Op); 1171 return S; 1172 } 1173 1174 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1175 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1176 // if after transforming we have at most one truncate, not counting truncates 1177 // that replace other casts. 1178 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1179 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1180 SmallVector<const SCEV *, 4> Operands; 1181 unsigned numTruncs = 0; 1182 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1183 ++i) { 1184 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1185 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1186 isa<SCEVTruncateExpr>(S)) 1187 numTruncs++; 1188 Operands.push_back(S); 1189 } 1190 if (numTruncs < 2) { 1191 if (isa<SCEVAddExpr>(Op)) 1192 return getAddExpr(Operands); 1193 if (isa<SCEVMulExpr>(Op)) 1194 return getMulExpr(Operands); 1195 llvm_unreachable("Unexpected SCEV type for Op."); 1196 } 1197 // Although we checked in the beginning that ID is not in the cache, it is 1198 // possible that during recursion and different modification ID was inserted 1199 // into the cache. So if we find it, just return it. 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1201 return S; 1202 } 1203 1204 // If the input value is a chrec scev, truncate the chrec's operands. 1205 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1206 SmallVector<const SCEV *, 4> Operands; 1207 for (const SCEV *Op : AddRec->operands()) 1208 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1209 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1210 } 1211 1212 // Return zero if truncating to known zeros. 1213 uint32_t MinTrailingZeros = getMinTrailingZeros(Op); 1214 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1215 return getZero(Ty); 1216 1217 // The cast wasn't folded; create an explicit cast node. We can reuse 1218 // the existing insert position since if we get here, we won't have 1219 // made any changes which would invalidate it. 1220 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1221 Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 registerUser(S, Op); 1224 return S; 1225 } 1226 1227 // Get the limit of a recurrence such that incrementing by Step cannot cause 1228 // signed overflow as long as the value of the recurrence within the 1229 // loop does not exceed this limit before incrementing. 1230 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1231 ICmpInst::Predicate *Pred, 1232 ScalarEvolution *SE) { 1233 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1234 if (SE->isKnownPositive(Step)) { 1235 *Pred = ICmpInst::ICMP_SLT; 1236 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1237 SE->getSignedRangeMax(Step)); 1238 } 1239 if (SE->isKnownNegative(Step)) { 1240 *Pred = ICmpInst::ICMP_SGT; 1241 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1242 SE->getSignedRangeMin(Step)); 1243 } 1244 return nullptr; 1245 } 1246 1247 // Get the limit of a recurrence such that incrementing by Step cannot cause 1248 // unsigned overflow as long as the value of the recurrence within the loop does 1249 // not exceed this limit before incrementing. 1250 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1251 ICmpInst::Predicate *Pred, 1252 ScalarEvolution *SE) { 1253 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1254 *Pred = ICmpInst::ICMP_ULT; 1255 1256 return SE->getConstant(APInt::getMinValue(BitWidth) - 1257 SE->getUnsignedRangeMax(Step)); 1258 } 1259 1260 namespace { 1261 1262 struct ExtendOpTraitsBase { 1263 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1264 unsigned); 1265 }; 1266 1267 // Used to make code generic over signed and unsigned overflow. 1268 template <typename ExtendOp> struct ExtendOpTraits { 1269 // Members present: 1270 // 1271 // static const SCEV::NoWrapFlags WrapType; 1272 // 1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1274 // 1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1276 // ICmpInst::Predicate *Pred, 1277 // ScalarEvolution *SE); 1278 }; 1279 1280 template <> 1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1282 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1283 1284 static const GetExtendExprTy GetExtendExpr; 1285 1286 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1287 ICmpInst::Predicate *Pred, 1288 ScalarEvolution *SE) { 1289 return getSignedOverflowLimitForStep(Step, Pred, SE); 1290 } 1291 }; 1292 1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1294 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1295 1296 template <> 1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1299 1300 static const GetExtendExprTy GetExtendExpr; 1301 1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1306 } 1307 }; 1308 1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1310 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1311 1312 } // end anonymous namespace 1313 1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1319 // expression "Step + sext/zext(PreIncAR)" is congruent with 1320 // "sext/zext(PostIncAR)" 1321 template <typename ExtendOpTy> 1322 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1323 ScalarEvolution *SE, unsigned Depth) { 1324 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1325 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1326 1327 const Loop *L = AR->getLoop(); 1328 const SCEV *Start = AR->getStart(); 1329 const SCEV *Step = AR->getStepRecurrence(*SE); 1330 1331 // Check for a simple looking step prior to loop entry. 1332 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1333 if (!SA) 1334 return nullptr; 1335 1336 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1337 // subtraction is expensive. For this purpose, perform a quick and dirty 1338 // difference, by checking for Step in the operand list. 1339 SmallVector<const SCEV *, 4> DiffOps; 1340 for (const SCEV *Op : SA->operands()) 1341 if (Op != Step) 1342 DiffOps.push_back(Op); 1343 1344 if (DiffOps.size() == SA->getNumOperands()) 1345 return nullptr; 1346 1347 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1348 // `Step`: 1349 1350 // 1. NSW/NUW flags on the step increment. 1351 auto PreStartFlags = 1352 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1353 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1354 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1355 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1356 1357 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1358 // "S+X does not sign/unsign-overflow". 1359 // 1360 1361 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1362 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1363 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1364 return PreStart; 1365 1366 // 2. Direct overflow check on the step operation's expression. 1367 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1368 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1369 const SCEV *OperandExtendedStart = 1370 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1371 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1372 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1373 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1374 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1375 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1376 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1377 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1378 } 1379 return PreStart; 1380 } 1381 1382 // 3. Loop precondition. 1383 ICmpInst::Predicate Pred; 1384 const SCEV *OverflowLimit = 1385 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1386 1387 if (OverflowLimit && 1388 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1389 return PreStart; 1390 1391 return nullptr; 1392 } 1393 1394 // Get the normalized zero or sign extended expression for this AddRec's Start. 1395 template <typename ExtendOpTy> 1396 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1397 ScalarEvolution *SE, 1398 unsigned Depth) { 1399 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1400 1401 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1402 if (!PreStart) 1403 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1404 1405 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1406 Depth), 1407 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1408 } 1409 1410 // Try to prove away overflow by looking at "nearby" add recurrences. A 1411 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1412 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1413 // 1414 // Formally: 1415 // 1416 // {S,+,X} == {S-T,+,X} + T 1417 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1418 // 1419 // If ({S-T,+,X} + T) does not overflow ... (1) 1420 // 1421 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1422 // 1423 // If {S-T,+,X} does not overflow ... (2) 1424 // 1425 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1426 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1427 // 1428 // If (S-T)+T does not overflow ... (3) 1429 // 1430 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1431 // == {Ext(S),+,Ext(X)} == LHS 1432 // 1433 // Thus, if (1), (2) and (3) are true for some T, then 1434 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1435 // 1436 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1437 // does not overflow" restricted to the 0th iteration. Therefore we only need 1438 // to check for (1) and (2). 1439 // 1440 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1441 // is `Delta` (defined below). 1442 template <typename ExtendOpTy> 1443 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1444 const SCEV *Step, 1445 const Loop *L) { 1446 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1447 1448 // We restrict `Start` to a constant to prevent SCEV from spending too much 1449 // time here. It is correct (but more expensive) to continue with a 1450 // non-constant `Start` and do a general SCEV subtraction to compute 1451 // `PreStart` below. 1452 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1453 if (!StartC) 1454 return false; 1455 1456 APInt StartAI = StartC->getAPInt(); 1457 1458 for (unsigned Delta : {-2, -1, 1, 2}) { 1459 const SCEV *PreStart = getConstant(StartAI - Delta); 1460 1461 FoldingSetNodeID ID; 1462 ID.AddInteger(scAddRecExpr); 1463 ID.AddPointer(PreStart); 1464 ID.AddPointer(Step); 1465 ID.AddPointer(L); 1466 void *IP = nullptr; 1467 const auto *PreAR = 1468 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1469 1470 // Give up if we don't already have the add recurrence we need because 1471 // actually constructing an add recurrence is relatively expensive. 1472 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1473 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1474 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1475 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1476 DeltaS, &Pred, this); 1477 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1478 return true; 1479 } 1480 } 1481 1482 return false; 1483 } 1484 1485 // Finds an integer D for an expression (C + x + y + ...) such that the top 1486 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1487 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1488 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1489 // the (C + x + y + ...) expression is \p WholeAddExpr. 1490 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1491 const SCEVConstant *ConstantTerm, 1492 const SCEVAddExpr *WholeAddExpr) { 1493 const APInt &C = ConstantTerm->getAPInt(); 1494 const unsigned BitWidth = C.getBitWidth(); 1495 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1496 uint32_t TZ = BitWidth; 1497 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1498 TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I))); 1499 if (TZ) { 1500 // Set D to be as many least significant bits of C as possible while still 1501 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1502 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1503 } 1504 return APInt(BitWidth, 0); 1505 } 1506 1507 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1508 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1509 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1510 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1511 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1512 const APInt &ConstantStart, 1513 const SCEV *Step) { 1514 const unsigned BitWidth = ConstantStart.getBitWidth(); 1515 const uint32_t TZ = SE.getMinTrailingZeros(Step); 1516 if (TZ) 1517 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1518 : ConstantStart; 1519 return APInt(BitWidth, 0); 1520 } 1521 1522 static void insertFoldCacheEntry( 1523 const ScalarEvolution::FoldID &ID, const SCEV *S, 1524 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, 1525 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> 1526 &FoldCacheUser) { 1527 auto I = FoldCache.insert({ID, S}); 1528 if (!I.second) { 1529 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache 1530 // entry. 1531 auto &UserIDs = FoldCacheUser[I.first->second]; 1532 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs"); 1533 for (unsigned I = 0; I != UserIDs.size(); ++I) 1534 if (UserIDs[I] == ID) { 1535 std::swap(UserIDs[I], UserIDs.back()); 1536 break; 1537 } 1538 UserIDs.pop_back(); 1539 I.first->second = S; 1540 } 1541 auto R = FoldCacheUser.insert({S, {}}); 1542 R.first->second.push_back(ID); 1543 } 1544 1545 const SCEV * 1546 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1547 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1548 "This is not an extending conversion!"); 1549 assert(isSCEVable(Ty) && 1550 "This is not a conversion to a SCEVable type!"); 1551 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1552 Ty = getEffectiveSCEVType(Ty); 1553 1554 FoldID ID(scZeroExtend, Op, Ty); 1555 auto Iter = FoldCache.find(ID); 1556 if (Iter != FoldCache.end()) 1557 return Iter->second; 1558 1559 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); 1560 if (!isa<SCEVZeroExtendExpr>(S)) 1561 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1562 return S; 1563 } 1564 1565 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1566 unsigned Depth) { 1567 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1568 "This is not an extending conversion!"); 1569 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1570 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1571 1572 // Fold if the operand is constant. 1573 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1574 return getConstant( 1575 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1576 1577 // zext(zext(x)) --> zext(x) 1578 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1579 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1580 1581 // Before doing any expensive analysis, check to see if we've already 1582 // computed a SCEV for this Op and Ty. 1583 FoldingSetNodeID ID; 1584 ID.AddInteger(scZeroExtend); 1585 ID.AddPointer(Op); 1586 ID.AddPointer(Ty); 1587 void *IP = nullptr; 1588 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1589 if (Depth > MaxCastDepth) { 1590 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1591 Op, Ty); 1592 UniqueSCEVs.InsertNode(S, IP); 1593 registerUser(S, Op); 1594 return S; 1595 } 1596 1597 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1598 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1599 // It's possible the bits taken off by the truncate were all zero bits. If 1600 // so, we should be able to simplify this further. 1601 const SCEV *X = ST->getOperand(); 1602 ConstantRange CR = getUnsignedRange(X); 1603 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1604 unsigned NewBits = getTypeSizeInBits(Ty); 1605 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1606 CR.zextOrTrunc(NewBits))) 1607 return getTruncateOrZeroExtend(X, Ty, Depth); 1608 } 1609 1610 // If the input value is a chrec scev, and we can prove that the value 1611 // did not overflow the old, smaller, value, we can zero extend all of the 1612 // operands (often constants). This allows analysis of something like 1613 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1615 if (AR->isAffine()) { 1616 const SCEV *Start = AR->getStart(); 1617 const SCEV *Step = AR->getStepRecurrence(*this); 1618 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1619 const Loop *L = AR->getLoop(); 1620 1621 // If we have special knowledge that this addrec won't overflow, 1622 // we don't need to do any further analysis. 1623 if (AR->hasNoUnsignedWrap()) { 1624 Start = 1625 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1626 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1627 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1628 } 1629 1630 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1631 // Note that this serves two purposes: It filters out loops that are 1632 // simply not analyzable, and it covers the case where this code is 1633 // being called from within backedge-taken count analysis, such that 1634 // attempting to ask for the backedge-taken count would likely result 1635 // in infinite recursion. In the later case, the analysis code will 1636 // cope with a conservative value, and it will take care to purge 1637 // that value once it has finished. 1638 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1639 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1640 // Manually compute the final value for AR, checking for overflow. 1641 1642 // Check whether the backedge-taken count can be losslessly casted to 1643 // the addrec's type. The count is always unsigned. 1644 const SCEV *CastedMaxBECount = 1645 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1646 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1647 CastedMaxBECount, MaxBECount->getType(), Depth); 1648 if (MaxBECount == RecastedMaxBECount) { 1649 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1650 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1651 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1652 SCEV::FlagAnyWrap, Depth + 1); 1653 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1654 SCEV::FlagAnyWrap, 1655 Depth + 1), 1656 WideTy, Depth + 1); 1657 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1658 const SCEV *WideMaxBECount = 1659 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1660 const SCEV *OperandExtendedAdd = 1661 getAddExpr(WideStart, 1662 getMulExpr(WideMaxBECount, 1663 getZeroExtendExpr(Step, WideTy, Depth + 1), 1664 SCEV::FlagAnyWrap, Depth + 1), 1665 SCEV::FlagAnyWrap, Depth + 1); 1666 if (ZAdd == OperandExtendedAdd) { 1667 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1668 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1669 // Return the expression with the addrec on the outside. 1670 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1671 Depth + 1); 1672 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1673 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1674 } 1675 // Similar to above, only this time treat the step value as signed. 1676 // This covers loops that count down. 1677 OperandExtendedAdd = 1678 getAddExpr(WideStart, 1679 getMulExpr(WideMaxBECount, 1680 getSignExtendExpr(Step, WideTy, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1), 1682 SCEV::FlagAnyWrap, Depth + 1); 1683 if (ZAdd == OperandExtendedAdd) { 1684 // Cache knowledge of AR NW, which is propagated to this AddRec. 1685 // Negative step causes unsigned wrap, but it still can't self-wrap. 1686 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1687 // Return the expression with the addrec on the outside. 1688 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1689 Depth + 1); 1690 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1691 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1692 } 1693 } 1694 } 1695 1696 // Normally, in the cases we can prove no-overflow via a 1697 // backedge guarding condition, we can also compute a backedge 1698 // taken count for the loop. The exceptions are assumptions and 1699 // guards present in the loop -- SCEV is not great at exploiting 1700 // these to compute max backedge taken counts, but can still use 1701 // these to prove lack of overflow. Use this fact to avoid 1702 // doing extra work that may not pay off. 1703 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1704 !AC.assumptions().empty()) { 1705 1706 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1707 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1708 if (AR->hasNoUnsignedWrap()) { 1709 // Same as nuw case above - duplicated here to avoid a compile time 1710 // issue. It's not clear that the order of checks does matter, but 1711 // it's one of two issue possible causes for a change which was 1712 // reverted. Be conservative for the moment. 1713 Start = 1714 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1715 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1716 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1717 } 1718 1719 // For a negative step, we can extend the operands iff doing so only 1720 // traverses values in the range zext([0,UINT_MAX]). 1721 if (isKnownNegative(Step)) { 1722 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1723 getSignedRangeMin(Step)); 1724 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1725 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1726 // Cache knowledge of AR NW, which is propagated to this 1727 // AddRec. Negative step causes unsigned wrap, but it 1728 // still can't self-wrap. 1729 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1730 // Return the expression with the addrec on the outside. 1731 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1732 Depth + 1); 1733 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1734 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 } 1738 1739 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1740 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1741 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1742 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1743 const APInt &C = SC->getAPInt(); 1744 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1745 if (D != 0) { 1746 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1747 const SCEV *SResidual = 1748 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1749 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1750 return getAddExpr(SZExtD, SZExtR, 1751 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1752 Depth + 1); 1753 } 1754 } 1755 1756 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1757 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1758 Start = 1759 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1760 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1761 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1762 } 1763 } 1764 1765 // zext(A % B) --> zext(A) % zext(B) 1766 { 1767 const SCEV *LHS; 1768 const SCEV *RHS; 1769 if (matchURem(Op, LHS, RHS)) 1770 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1771 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1772 } 1773 1774 // zext(A / B) --> zext(A) / zext(B). 1775 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1776 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1777 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1778 1779 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1780 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1781 if (SA->hasNoUnsignedWrap()) { 1782 // If the addition does not unsign overflow then we can, by definition, 1783 // commute the zero extension with the addition operation. 1784 SmallVector<const SCEV *, 4> Ops; 1785 for (const auto *Op : SA->operands()) 1786 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1787 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1788 } 1789 1790 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1791 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1792 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1793 // 1794 // Often address arithmetics contain expressions like 1795 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1796 // This transformation is useful while proving that such expressions are 1797 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1798 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1799 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1800 if (D != 0) { 1801 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1802 const SCEV *SResidual = 1803 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1804 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1805 return getAddExpr(SZExtD, SZExtR, 1806 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1807 Depth + 1); 1808 } 1809 } 1810 } 1811 1812 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1813 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1814 if (SM->hasNoUnsignedWrap()) { 1815 // If the multiply does not unsign overflow then we can, by definition, 1816 // commute the zero extension with the multiply operation. 1817 SmallVector<const SCEV *, 4> Ops; 1818 for (const auto *Op : SM->operands()) 1819 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1820 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1821 } 1822 1823 // zext(2^K * (trunc X to iN)) to iM -> 1824 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1825 // 1826 // Proof: 1827 // 1828 // zext(2^K * (trunc X to iN)) to iM 1829 // = zext((trunc X to iN) << K) to iM 1830 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1831 // (because shl removes the top K bits) 1832 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1833 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1834 // 1835 if (SM->getNumOperands() == 2) 1836 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1837 if (MulLHS->getAPInt().isPowerOf2()) 1838 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1839 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1840 MulLHS->getAPInt().logBase2(); 1841 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1842 return getMulExpr( 1843 getZeroExtendExpr(MulLHS, Ty), 1844 getZeroExtendExpr( 1845 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1846 SCEV::FlagNUW, Depth + 1); 1847 } 1848 } 1849 1850 // zext(umin(x, y)) -> umin(zext(x), zext(y)) 1851 // zext(umax(x, y)) -> umax(zext(x), zext(y)) 1852 if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) { 1853 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 1854 SmallVector<const SCEV *, 4> Operands; 1855 for (auto *Operand : MinMax->operands()) 1856 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1857 if (isa<SCEVUMinExpr>(MinMax)) 1858 return getUMinExpr(Operands); 1859 return getUMaxExpr(Operands); 1860 } 1861 1862 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) 1863 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) { 1864 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!"); 1865 SmallVector<const SCEV *, 4> Operands; 1866 for (auto *Operand : MinMax->operands()) 1867 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1868 return getUMinExpr(Operands, /*Sequential*/ true); 1869 } 1870 1871 // The cast wasn't folded; create an explicit cast node. 1872 // Recompute the insert position, as it may have been invalidated. 1873 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1874 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1875 Op, Ty); 1876 UniqueSCEVs.InsertNode(S, IP); 1877 registerUser(S, Op); 1878 return S; 1879 } 1880 1881 const SCEV * 1882 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1883 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1884 "This is not an extending conversion!"); 1885 assert(isSCEVable(Ty) && 1886 "This is not a conversion to a SCEVable type!"); 1887 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1888 Ty = getEffectiveSCEVType(Ty); 1889 1890 FoldID ID(scSignExtend, Op, Ty); 1891 auto Iter = FoldCache.find(ID); 1892 if (Iter != FoldCache.end()) 1893 return Iter->second; 1894 1895 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); 1896 if (!isa<SCEVSignExtendExpr>(S)) 1897 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1898 return S; 1899 } 1900 1901 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1902 unsigned Depth) { 1903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1904 "This is not an extending conversion!"); 1905 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1906 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1907 Ty = getEffectiveSCEVType(Ty); 1908 1909 // Fold if the operand is constant. 1910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1911 return getConstant( 1912 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1913 1914 // sext(sext(x)) --> sext(x) 1915 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1916 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1917 1918 // sext(zext(x)) --> zext(x) 1919 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1920 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1921 1922 // Before doing any expensive analysis, check to see if we've already 1923 // computed a SCEV for this Op and Ty. 1924 FoldingSetNodeID ID; 1925 ID.AddInteger(scSignExtend); 1926 ID.AddPointer(Op); 1927 ID.AddPointer(Ty); 1928 void *IP = nullptr; 1929 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1930 // Limit recursion depth. 1931 if (Depth > MaxCastDepth) { 1932 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1933 Op, Ty); 1934 UniqueSCEVs.InsertNode(S, IP); 1935 registerUser(S, Op); 1936 return S; 1937 } 1938 1939 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1940 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1941 // It's possible the bits taken off by the truncate were all sign bits. If 1942 // so, we should be able to simplify this further. 1943 const SCEV *X = ST->getOperand(); 1944 ConstantRange CR = getSignedRange(X); 1945 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1946 unsigned NewBits = getTypeSizeInBits(Ty); 1947 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1948 CR.sextOrTrunc(NewBits))) 1949 return getTruncateOrSignExtend(X, Ty, Depth); 1950 } 1951 1952 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1953 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1954 if (SA->hasNoSignedWrap()) { 1955 // If the addition does not sign overflow then we can, by definition, 1956 // commute the sign extension with the addition operation. 1957 SmallVector<const SCEV *, 4> Ops; 1958 for (const auto *Op : SA->operands()) 1959 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1960 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1961 } 1962 1963 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1964 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1965 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1966 // 1967 // For instance, this will bring two seemingly different expressions: 1968 // 1 + sext(5 + 20 * %x + 24 * %y) and 1969 // sext(6 + 20 * %x + 24 * %y) 1970 // to the same form: 1971 // 2 + sext(4 + 20 * %x + 24 * %y) 1972 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1973 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1974 if (D != 0) { 1975 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1976 const SCEV *SResidual = 1977 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1978 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1979 return getAddExpr(SSExtD, SSExtR, 1980 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1981 Depth + 1); 1982 } 1983 } 1984 } 1985 // If the input value is a chrec scev, and we can prove that the value 1986 // did not overflow the old, smaller, value, we can sign extend all of the 1987 // operands (often constants). This allows analysis of something like 1988 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1989 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1990 if (AR->isAffine()) { 1991 const SCEV *Start = AR->getStart(); 1992 const SCEV *Step = AR->getStepRecurrence(*this); 1993 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1994 const Loop *L = AR->getLoop(); 1995 1996 // If we have special knowledge that this addrec won't overflow, 1997 // we don't need to do any further analysis. 1998 if (AR->hasNoSignedWrap()) { 1999 Start = 2000 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2001 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2002 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2003 } 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2047 Depth + 1); 2048 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2049 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2050 } 2051 // Similar to above, only this time treat the step value as unsigned. 2052 // This covers loops that count up with an unsigned step. 2053 OperandExtendedAdd = 2054 getAddExpr(WideStart, 2055 getMulExpr(WideMaxBECount, 2056 getZeroExtendExpr(Step, WideTy, Depth + 1), 2057 SCEV::FlagAnyWrap, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1); 2059 if (SAdd == OperandExtendedAdd) { 2060 // If AR wraps around then 2061 // 2062 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2063 // => SAdd != OperandExtendedAdd 2064 // 2065 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2066 // (SAdd == OperandExtendedAdd => AR is NW) 2067 2068 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2069 2070 // Return the expression with the addrec on the outside. 2071 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2072 Depth + 1); 2073 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2074 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2075 } 2076 } 2077 } 2078 2079 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2081 if (AR->hasNoSignedWrap()) { 2082 // Same as nsw case above - duplicated here to avoid a compile time 2083 // issue. It's not clear that the order of checks does matter, but 2084 // it's one of two issue possible causes for a change which was 2085 // reverted. Be conservative for the moment. 2086 Start = 2087 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2088 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2089 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2090 } 2091 2092 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2093 // if D + (C - D + Step * n) could be proven to not signed wrap 2094 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2095 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2096 const APInt &C = SC->getAPInt(); 2097 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2098 if (D != 0) { 2099 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2100 const SCEV *SResidual = 2101 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2102 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2103 return getAddExpr(SSExtD, SSExtR, 2104 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2105 Depth + 1); 2106 } 2107 } 2108 2109 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2110 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2111 Start = 2112 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2113 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2114 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // sext(smin(x, y)) -> smin(sext(x), sext(y)) 2124 // sext(smax(x, y)) -> smax(sext(x), sext(y)) 2125 if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) { 2126 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 2127 SmallVector<const SCEV *, 4> Operands; 2128 for (auto *Operand : MinMax->operands()) 2129 Operands.push_back(getSignExtendExpr(Operand, Ty)); 2130 if (isa<SCEVSMinExpr>(MinMax)) 2131 return getSMinExpr(Operands); 2132 return getSMaxExpr(Operands); 2133 } 2134 2135 // The cast wasn't folded; create an explicit cast node. 2136 // Recompute the insert position, as it may have been invalidated. 2137 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2138 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2139 Op, Ty); 2140 UniqueSCEVs.InsertNode(S, IP); 2141 registerUser(S, { Op }); 2142 return S; 2143 } 2144 2145 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2146 Type *Ty) { 2147 switch (Kind) { 2148 case scTruncate: 2149 return getTruncateExpr(Op, Ty); 2150 case scZeroExtend: 2151 return getZeroExtendExpr(Op, Ty); 2152 case scSignExtend: 2153 return getSignExtendExpr(Op, Ty); 2154 case scPtrToInt: 2155 return getPtrToIntExpr(Op, Ty); 2156 default: 2157 llvm_unreachable("Not a SCEV cast expression!"); 2158 } 2159 } 2160 2161 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2162 /// unspecified bits out to the given type. 2163 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2164 Type *Ty) { 2165 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2166 "This is not an extending conversion!"); 2167 assert(isSCEVable(Ty) && 2168 "This is not a conversion to a SCEVable type!"); 2169 Ty = getEffectiveSCEVType(Ty); 2170 2171 // Sign-extend negative constants. 2172 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2173 if (SC->getAPInt().isNegative()) 2174 return getSignExtendExpr(Op, Ty); 2175 2176 // Peel off a truncate cast. 2177 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2178 const SCEV *NewOp = T->getOperand(); 2179 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2180 return getAnyExtendExpr(NewOp, Ty); 2181 return getTruncateOrNoop(NewOp, Ty); 2182 } 2183 2184 // Next try a zext cast. If the cast is folded, use it. 2185 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2186 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2187 return ZExt; 2188 2189 // Next try a sext cast. If the cast is folded, use it. 2190 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2191 if (!isa<SCEVSignExtendExpr>(SExt)) 2192 return SExt; 2193 2194 // Force the cast to be folded into the operands of an addrec. 2195 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2196 SmallVector<const SCEV *, 4> Ops; 2197 for (const SCEV *Op : AR->operands()) 2198 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2199 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2200 } 2201 2202 // If the expression is obviously signed, use the sext cast value. 2203 if (isa<SCEVSMaxExpr>(Op)) 2204 return SExt; 2205 2206 // Absent any other information, use the zext cast value. 2207 return ZExt; 2208 } 2209 2210 /// Process the given Ops list, which is a list of operands to be added under 2211 /// the given scale, update the given map. This is a helper function for 2212 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2213 /// that would form an add expression like this: 2214 /// 2215 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2216 /// 2217 /// where A and B are constants, update the map with these values: 2218 /// 2219 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2220 /// 2221 /// and add 13 + A*B*29 to AccumulatedConstant. 2222 /// This will allow getAddRecExpr to produce this: 2223 /// 2224 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2225 /// 2226 /// This form often exposes folding opportunities that are hidden in 2227 /// the original operand list. 2228 /// 2229 /// Return true iff it appears that any interesting folding opportunities 2230 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2231 /// the common case where no interesting opportunities are present, and 2232 /// is also used as a check to avoid infinite recursion. 2233 static bool 2234 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2235 SmallVectorImpl<const SCEV *> &NewOps, 2236 APInt &AccumulatedConstant, 2237 ArrayRef<const SCEV *> Ops, const APInt &Scale, 2238 ScalarEvolution &SE) { 2239 bool Interesting = false; 2240 2241 // Iterate over the add operands. They are sorted, with constants first. 2242 unsigned i = 0; 2243 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2244 ++i; 2245 // Pull a buried constant out to the outside. 2246 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2247 Interesting = true; 2248 AccumulatedConstant += Scale * C->getAPInt(); 2249 } 2250 2251 // Next comes everything else. We're especially interested in multiplies 2252 // here, but they're in the middle, so just visit the rest with one loop. 2253 for (; i != Ops.size(); ++i) { 2254 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2255 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2256 APInt NewScale = 2257 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2258 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2259 // A multiplication of a constant with another add; recurse. 2260 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2261 Interesting |= 2262 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2263 Add->operands(), NewScale, SE); 2264 } else { 2265 // A multiplication of a constant with some other value. Update 2266 // the map. 2267 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2268 const SCEV *Key = SE.getMulExpr(MulOps); 2269 auto Pair = M.insert({Key, NewScale}); 2270 if (Pair.second) { 2271 NewOps.push_back(Pair.first->first); 2272 } else { 2273 Pair.first->second += NewScale; 2274 // The map already had an entry for this value, which may indicate 2275 // a folding opportunity. 2276 Interesting = true; 2277 } 2278 } 2279 } else { 2280 // An ordinary operand. Update the map. 2281 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2282 M.insert({Ops[i], Scale}); 2283 if (Pair.second) { 2284 NewOps.push_back(Pair.first->first); 2285 } else { 2286 Pair.first->second += Scale; 2287 // The map already had an entry for this value, which may indicate 2288 // a folding opportunity. 2289 Interesting = true; 2290 } 2291 } 2292 } 2293 2294 return Interesting; 2295 } 2296 2297 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2298 const SCEV *LHS, const SCEV *RHS, 2299 const Instruction *CtxI) { 2300 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2301 SCEV::NoWrapFlags, unsigned); 2302 switch (BinOp) { 2303 default: 2304 llvm_unreachable("Unsupported binary op"); 2305 case Instruction::Add: 2306 Operation = &ScalarEvolution::getAddExpr; 2307 break; 2308 case Instruction::Sub: 2309 Operation = &ScalarEvolution::getMinusSCEV; 2310 break; 2311 case Instruction::Mul: 2312 Operation = &ScalarEvolution::getMulExpr; 2313 break; 2314 } 2315 2316 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2317 Signed ? &ScalarEvolution::getSignExtendExpr 2318 : &ScalarEvolution::getZeroExtendExpr; 2319 2320 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2321 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2322 auto *WideTy = 2323 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2324 2325 const SCEV *A = (this->*Extension)( 2326 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2327 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2328 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2329 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2330 if (A == B) 2331 return true; 2332 // Can we use context to prove the fact we need? 2333 if (!CtxI) 2334 return false; 2335 // TODO: Support mul. 2336 if (BinOp == Instruction::Mul) 2337 return false; 2338 auto *RHSC = dyn_cast<SCEVConstant>(RHS); 2339 // TODO: Lift this limitation. 2340 if (!RHSC) 2341 return false; 2342 APInt C = RHSC->getAPInt(); 2343 unsigned NumBits = C.getBitWidth(); 2344 bool IsSub = (BinOp == Instruction::Sub); 2345 bool IsNegativeConst = (Signed && C.isNegative()); 2346 // Compute the direction and magnitude by which we need to check overflow. 2347 bool OverflowDown = IsSub ^ IsNegativeConst; 2348 APInt Magnitude = C; 2349 if (IsNegativeConst) { 2350 if (C == APInt::getSignedMinValue(NumBits)) 2351 // TODO: SINT_MIN on inversion gives the same negative value, we don't 2352 // want to deal with that. 2353 return false; 2354 Magnitude = -C; 2355 } 2356 2357 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 2358 if (OverflowDown) { 2359 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. 2360 APInt Min = Signed ? APInt::getSignedMinValue(NumBits) 2361 : APInt::getMinValue(NumBits); 2362 APInt Limit = Min + Magnitude; 2363 return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI); 2364 } else { 2365 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. 2366 APInt Max = Signed ? APInt::getSignedMaxValue(NumBits) 2367 : APInt::getMaxValue(NumBits); 2368 APInt Limit = Max - Magnitude; 2369 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); 2370 } 2371 } 2372 2373 std::optional<SCEV::NoWrapFlags> 2374 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2375 const OverflowingBinaryOperator *OBO) { 2376 // It cannot be done any better. 2377 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2378 return std::nullopt; 2379 2380 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2381 2382 if (OBO->hasNoUnsignedWrap()) 2383 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2384 if (OBO->hasNoSignedWrap()) 2385 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2386 2387 bool Deduced = false; 2388 2389 if (OBO->getOpcode() != Instruction::Add && 2390 OBO->getOpcode() != Instruction::Sub && 2391 OBO->getOpcode() != Instruction::Mul) 2392 return std::nullopt; 2393 2394 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2395 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2396 2397 const Instruction *CtxI = 2398 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; 2399 if (!OBO->hasNoUnsignedWrap() && 2400 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2401 /* Signed */ false, LHS, RHS, CtxI)) { 2402 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2403 Deduced = true; 2404 } 2405 2406 if (!OBO->hasNoSignedWrap() && 2407 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2408 /* Signed */ true, LHS, RHS, CtxI)) { 2409 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2410 Deduced = true; 2411 } 2412 2413 if (Deduced) 2414 return Flags; 2415 return std::nullopt; 2416 } 2417 2418 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2419 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2420 // can't-overflow flags for the operation if possible. 2421 static SCEV::NoWrapFlags 2422 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2423 const ArrayRef<const SCEV *> Ops, 2424 SCEV::NoWrapFlags Flags) { 2425 using namespace std::placeholders; 2426 2427 using OBO = OverflowingBinaryOperator; 2428 2429 bool CanAnalyze = 2430 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2431 (void)CanAnalyze; 2432 assert(CanAnalyze && "don't call from other places!"); 2433 2434 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2435 SCEV::NoWrapFlags SignOrUnsignWrap = 2436 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2437 2438 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2439 auto IsKnownNonNegative = [&](const SCEV *S) { 2440 return SE->isKnownNonNegative(S); 2441 }; 2442 2443 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2444 Flags = 2445 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2446 2447 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2448 2449 if (SignOrUnsignWrap != SignOrUnsignMask && 2450 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2451 isa<SCEVConstant>(Ops[0])) { 2452 2453 auto Opcode = [&] { 2454 switch (Type) { 2455 case scAddExpr: 2456 return Instruction::Add; 2457 case scMulExpr: 2458 return Instruction::Mul; 2459 default: 2460 llvm_unreachable("Unexpected SCEV op."); 2461 } 2462 }(); 2463 2464 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2465 2466 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2467 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2468 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2469 Opcode, C, OBO::NoSignedWrap); 2470 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2471 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2472 } 2473 2474 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2475 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2476 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2477 Opcode, C, OBO::NoUnsignedWrap); 2478 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2479 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2480 } 2481 } 2482 2483 // <0,+,nonnegative><nw> is also nuw 2484 // TODO: Add corresponding nsw case 2485 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2486 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2487 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2488 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2489 2490 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2491 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2492 Ops.size() == 2) { 2493 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2494 if (UDiv->getOperand(1) == Ops[1]) 2495 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2496 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2497 if (UDiv->getOperand(1) == Ops[0]) 2498 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2499 } 2500 2501 return Flags; 2502 } 2503 2504 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2505 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2506 } 2507 2508 /// Get a canonical add expression, or something simpler if possible. 2509 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2510 SCEV::NoWrapFlags OrigFlags, 2511 unsigned Depth) { 2512 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2513 "only nuw or nsw allowed"); 2514 assert(!Ops.empty() && "Cannot get empty add!"); 2515 if (Ops.size() == 1) return Ops[0]; 2516 #ifndef NDEBUG 2517 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2518 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2519 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2520 "SCEVAddExpr operand types don't match!"); 2521 unsigned NumPtrs = count_if( 2522 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2523 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2524 #endif 2525 2526 // Sort by complexity, this groups all similar expression types together. 2527 GroupByComplexity(Ops, &LI, DT); 2528 2529 // If there are any constants, fold them together. 2530 unsigned Idx = 0; 2531 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2532 ++Idx; 2533 assert(Idx < Ops.size()); 2534 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2535 // We found two constants, fold them together! 2536 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2537 if (Ops.size() == 2) return Ops[0]; 2538 Ops.erase(Ops.begin()+1); // Erase the folded element 2539 LHSC = cast<SCEVConstant>(Ops[0]); 2540 } 2541 2542 // If we are left with a constant zero being added, strip it off. 2543 if (LHSC->getValue()->isZero()) { 2544 Ops.erase(Ops.begin()); 2545 --Idx; 2546 } 2547 2548 if (Ops.size() == 1) return Ops[0]; 2549 } 2550 2551 // Delay expensive flag strengthening until necessary. 2552 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2553 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2554 }; 2555 2556 // Limit recursion calls depth. 2557 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2558 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2559 2560 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2561 // Don't strengthen flags if we have no new information. 2562 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2563 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2564 Add->setNoWrapFlags(ComputeFlags(Ops)); 2565 return S; 2566 } 2567 2568 // Okay, check to see if the same value occurs in the operand list more than 2569 // once. If so, merge them together into an multiply expression. Since we 2570 // sorted the list, these values are required to be adjacent. 2571 Type *Ty = Ops[0]->getType(); 2572 bool FoundMatch = false; 2573 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2574 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2575 // Scan ahead to count how many equal operands there are. 2576 unsigned Count = 2; 2577 while (i+Count != e && Ops[i+Count] == Ops[i]) 2578 ++Count; 2579 // Merge the values into a multiply. 2580 const SCEV *Scale = getConstant(Ty, Count); 2581 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2582 if (Ops.size() == Count) 2583 return Mul; 2584 Ops[i] = Mul; 2585 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2586 --i; e -= Count - 1; 2587 FoundMatch = true; 2588 } 2589 if (FoundMatch) 2590 return getAddExpr(Ops, OrigFlags, Depth + 1); 2591 2592 // Check for truncates. If all the operands are truncated from the same 2593 // type, see if factoring out the truncate would permit the result to be 2594 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2595 // if the contents of the resulting outer trunc fold to something simple. 2596 auto FindTruncSrcType = [&]() -> Type * { 2597 // We're ultimately looking to fold an addrec of truncs and muls of only 2598 // constants and truncs, so if we find any other types of SCEV 2599 // as operands of the addrec then we bail and return nullptr here. 2600 // Otherwise, we return the type of the operand of a trunc that we find. 2601 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2602 return T->getOperand()->getType(); 2603 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2604 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2605 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2606 return T->getOperand()->getType(); 2607 } 2608 return nullptr; 2609 }; 2610 if (auto *SrcType = FindTruncSrcType()) { 2611 SmallVector<const SCEV *, 8> LargeOps; 2612 bool Ok = true; 2613 // Check all the operands to see if they can be represented in the 2614 // source type of the truncate. 2615 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2616 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2617 if (T->getOperand()->getType() != SrcType) { 2618 Ok = false; 2619 break; 2620 } 2621 LargeOps.push_back(T->getOperand()); 2622 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2623 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2624 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2625 SmallVector<const SCEV *, 8> LargeMulOps; 2626 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2627 if (const SCEVTruncateExpr *T = 2628 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2629 if (T->getOperand()->getType() != SrcType) { 2630 Ok = false; 2631 break; 2632 } 2633 LargeMulOps.push_back(T->getOperand()); 2634 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2635 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2636 } else { 2637 Ok = false; 2638 break; 2639 } 2640 } 2641 if (Ok) 2642 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2643 } else { 2644 Ok = false; 2645 break; 2646 } 2647 } 2648 if (Ok) { 2649 // Evaluate the expression in the larger type. 2650 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2651 // If it folds to something simple, use it. Otherwise, don't. 2652 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2653 return getTruncateExpr(Fold, Ty); 2654 } 2655 } 2656 2657 if (Ops.size() == 2) { 2658 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2659 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2660 // C1). 2661 const SCEV *A = Ops[0]; 2662 const SCEV *B = Ops[1]; 2663 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2664 auto *C = dyn_cast<SCEVConstant>(A); 2665 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2666 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2667 auto C2 = C->getAPInt(); 2668 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2669 2670 APInt ConstAdd = C1 + C2; 2671 auto AddFlags = AddExpr->getNoWrapFlags(); 2672 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2673 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2674 ConstAdd.ule(C1)) { 2675 PreservedFlags = 2676 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2677 } 2678 2679 // Adding a constant with the same sign and small magnitude is NSW, if the 2680 // original AddExpr was NSW. 2681 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2682 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2683 ConstAdd.abs().ule(C1.abs())) { 2684 PreservedFlags = 2685 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2686 } 2687 2688 if (PreservedFlags != SCEV::FlagAnyWrap) { 2689 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2690 NewOps[0] = getConstant(ConstAdd); 2691 return getAddExpr(NewOps, PreservedFlags); 2692 } 2693 } 2694 } 2695 2696 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2697 if (Ops.size() == 2) { 2698 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2699 if (Mul && Mul->getNumOperands() == 2 && 2700 Mul->getOperand(0)->isAllOnesValue()) { 2701 const SCEV *X; 2702 const SCEV *Y; 2703 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2704 return getMulExpr(Y, getUDivExpr(X, Y)); 2705 } 2706 } 2707 } 2708 2709 // Skip past any other cast SCEVs. 2710 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2711 ++Idx; 2712 2713 // If there are add operands they would be next. 2714 if (Idx < Ops.size()) { 2715 bool DeletedAdd = false; 2716 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2717 // common NUW flag for expression after inlining. Other flags cannot be 2718 // preserved, because they may depend on the original order of operations. 2719 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2720 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2721 if (Ops.size() > AddOpsInlineThreshold || 2722 Add->getNumOperands() > AddOpsInlineThreshold) 2723 break; 2724 // If we have an add, expand the add operands onto the end of the operands 2725 // list. 2726 Ops.erase(Ops.begin()+Idx); 2727 append_range(Ops, Add->operands()); 2728 DeletedAdd = true; 2729 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2730 } 2731 2732 // If we deleted at least one add, we added operands to the end of the list, 2733 // and they are not necessarily sorted. Recurse to resort and resimplify 2734 // any operands we just acquired. 2735 if (DeletedAdd) 2736 return getAddExpr(Ops, CommonFlags, Depth + 1); 2737 } 2738 2739 // Skip over the add expression until we get to a multiply. 2740 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2741 ++Idx; 2742 2743 // Check to see if there are any folding opportunities present with 2744 // operands multiplied by constant values. 2745 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2746 uint64_t BitWidth = getTypeSizeInBits(Ty); 2747 DenseMap<const SCEV *, APInt> M; 2748 SmallVector<const SCEV *, 8> NewOps; 2749 APInt AccumulatedConstant(BitWidth, 0); 2750 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2751 Ops, APInt(BitWidth, 1), *this)) { 2752 struct APIntCompare { 2753 bool operator()(const APInt &LHS, const APInt &RHS) const { 2754 return LHS.ult(RHS); 2755 } 2756 }; 2757 2758 // Some interesting folding opportunity is present, so its worthwhile to 2759 // re-generate the operands list. Group the operands by constant scale, 2760 // to avoid multiplying by the same constant scale multiple times. 2761 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2762 for (const SCEV *NewOp : NewOps) 2763 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2764 // Re-generate the operands list. 2765 Ops.clear(); 2766 if (AccumulatedConstant != 0) 2767 Ops.push_back(getConstant(AccumulatedConstant)); 2768 for (auto &MulOp : MulOpLists) { 2769 if (MulOp.first == 1) { 2770 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2771 } else if (MulOp.first != 0) { 2772 Ops.push_back(getMulExpr( 2773 getConstant(MulOp.first), 2774 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2775 SCEV::FlagAnyWrap, Depth + 1)); 2776 } 2777 } 2778 if (Ops.empty()) 2779 return getZero(Ty); 2780 if (Ops.size() == 1) 2781 return Ops[0]; 2782 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2783 } 2784 } 2785 2786 // If we are adding something to a multiply expression, make sure the 2787 // something is not already an operand of the multiply. If so, merge it into 2788 // the multiply. 2789 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2790 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2791 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2792 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2793 if (isa<SCEVConstant>(MulOpSCEV)) 2794 continue; 2795 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2796 if (MulOpSCEV == Ops[AddOp]) { 2797 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2798 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2799 if (Mul->getNumOperands() != 2) { 2800 // If the multiply has more than two operands, we must get the 2801 // Y*Z term. 2802 SmallVector<const SCEV *, 4> MulOps( 2803 Mul->operands().take_front(MulOp)); 2804 append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); 2805 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2806 } 2807 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2808 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2809 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2810 SCEV::FlagAnyWrap, Depth + 1); 2811 if (Ops.size() == 2) return OuterMul; 2812 if (AddOp < Idx) { 2813 Ops.erase(Ops.begin()+AddOp); 2814 Ops.erase(Ops.begin()+Idx-1); 2815 } else { 2816 Ops.erase(Ops.begin()+Idx); 2817 Ops.erase(Ops.begin()+AddOp-1); 2818 } 2819 Ops.push_back(OuterMul); 2820 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2821 } 2822 2823 // Check this multiply against other multiplies being added together. 2824 for (unsigned OtherMulIdx = Idx+1; 2825 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2826 ++OtherMulIdx) { 2827 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2828 // If MulOp occurs in OtherMul, we can fold the two multiplies 2829 // together. 2830 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2831 OMulOp != e; ++OMulOp) 2832 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2833 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2834 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2835 if (Mul->getNumOperands() != 2) { 2836 SmallVector<const SCEV *, 4> MulOps( 2837 Mul->operands().take_front(MulOp)); 2838 append_range(MulOps, Mul->operands().drop_front(MulOp+1)); 2839 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2840 } 2841 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2842 if (OtherMul->getNumOperands() != 2) { 2843 SmallVector<const SCEV *, 4> MulOps( 2844 OtherMul->operands().take_front(OMulOp)); 2845 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); 2846 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2847 } 2848 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2849 const SCEV *InnerMulSum = 2850 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2851 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2852 SCEV::FlagAnyWrap, Depth + 1); 2853 if (Ops.size() == 2) return OuterMul; 2854 Ops.erase(Ops.begin()+Idx); 2855 Ops.erase(Ops.begin()+OtherMulIdx-1); 2856 Ops.push_back(OuterMul); 2857 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2858 } 2859 } 2860 } 2861 } 2862 2863 // If there are any add recurrences in the operands list, see if any other 2864 // added values are loop invariant. If so, we can fold them into the 2865 // recurrence. 2866 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2867 ++Idx; 2868 2869 // Scan over all recurrences, trying to fold loop invariants into them. 2870 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2871 // Scan all of the other operands to this add and add them to the vector if 2872 // they are loop invariant w.r.t. the recurrence. 2873 SmallVector<const SCEV *, 8> LIOps; 2874 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2875 const Loop *AddRecLoop = AddRec->getLoop(); 2876 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2877 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2878 LIOps.push_back(Ops[i]); 2879 Ops.erase(Ops.begin()+i); 2880 --i; --e; 2881 } 2882 2883 // If we found some loop invariants, fold them into the recurrence. 2884 if (!LIOps.empty()) { 2885 // Compute nowrap flags for the addition of the loop-invariant ops and 2886 // the addrec. Temporarily push it as an operand for that purpose. These 2887 // flags are valid in the scope of the addrec only. 2888 LIOps.push_back(AddRec); 2889 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2890 LIOps.pop_back(); 2891 2892 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2893 LIOps.push_back(AddRec->getStart()); 2894 2895 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2896 2897 // It is not in general safe to propagate flags valid on an add within 2898 // the addrec scope to one outside it. We must prove that the inner 2899 // scope is guaranteed to execute if the outer one does to be able to 2900 // safely propagate. We know the program is undefined if poison is 2901 // produced on the inner scoped addrec. We also know that *for this use* 2902 // the outer scoped add can't overflow (because of the flags we just 2903 // computed for the inner scoped add) without the program being undefined. 2904 // Proving that entry to the outer scope neccesitates entry to the inner 2905 // scope, thus proves the program undefined if the flags would be violated 2906 // in the outer scope. 2907 SCEV::NoWrapFlags AddFlags = Flags; 2908 if (AddFlags != SCEV::FlagAnyWrap) { 2909 auto *DefI = getDefiningScopeBound(LIOps); 2910 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2911 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2912 AddFlags = SCEV::FlagAnyWrap; 2913 } 2914 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2915 2916 // Build the new addrec. Propagate the NUW and NSW flags if both the 2917 // outer add and the inner addrec are guaranteed to have no overflow. 2918 // Always propagate NW. 2919 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2920 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2921 2922 // If all of the other operands were loop invariant, we are done. 2923 if (Ops.size() == 1) return NewRec; 2924 2925 // Otherwise, add the folded AddRec by the non-invariant parts. 2926 for (unsigned i = 0;; ++i) 2927 if (Ops[i] == AddRec) { 2928 Ops[i] = NewRec; 2929 break; 2930 } 2931 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2932 } 2933 2934 // Okay, if there weren't any loop invariants to be folded, check to see if 2935 // there are multiple AddRec's with the same loop induction variable being 2936 // added together. If so, we can fold them. 2937 for (unsigned OtherIdx = Idx+1; 2938 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2939 ++OtherIdx) { 2940 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2941 // so that the 1st found AddRecExpr is dominated by all others. 2942 assert(DT.dominates( 2943 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2944 AddRec->getLoop()->getHeader()) && 2945 "AddRecExprs are not sorted in reverse dominance order?"); 2946 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2947 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2948 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2949 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2950 ++OtherIdx) { 2951 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2952 if (OtherAddRec->getLoop() == AddRecLoop) { 2953 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2954 i != e; ++i) { 2955 if (i >= AddRecOps.size()) { 2956 append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); 2957 break; 2958 } 2959 SmallVector<const SCEV *, 2> TwoOps = { 2960 AddRecOps[i], OtherAddRec->getOperand(i)}; 2961 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2962 } 2963 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2964 } 2965 } 2966 // Step size has changed, so we cannot guarantee no self-wraparound. 2967 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2968 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2969 } 2970 } 2971 2972 // Otherwise couldn't fold anything into this recurrence. Move onto the 2973 // next one. 2974 } 2975 2976 // Okay, it looks like we really DO need an add expr. Check to see if we 2977 // already have one, otherwise create a new one. 2978 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2979 } 2980 2981 const SCEV * 2982 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2983 SCEV::NoWrapFlags Flags) { 2984 FoldingSetNodeID ID; 2985 ID.AddInteger(scAddExpr); 2986 for (const SCEV *Op : Ops) 2987 ID.AddPointer(Op); 2988 void *IP = nullptr; 2989 SCEVAddExpr *S = 2990 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2991 if (!S) { 2992 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2993 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2994 S = new (SCEVAllocator) 2995 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2996 UniqueSCEVs.InsertNode(S, IP); 2997 registerUser(S, Ops); 2998 } 2999 S->setNoWrapFlags(Flags); 3000 return S; 3001 } 3002 3003 const SCEV * 3004 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 3005 const Loop *L, SCEV::NoWrapFlags Flags) { 3006 FoldingSetNodeID ID; 3007 ID.AddInteger(scAddRecExpr); 3008 for (const SCEV *Op : Ops) 3009 ID.AddPointer(Op); 3010 ID.AddPointer(L); 3011 void *IP = nullptr; 3012 SCEVAddRecExpr *S = 3013 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3014 if (!S) { 3015 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3016 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3017 S = new (SCEVAllocator) 3018 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 3019 UniqueSCEVs.InsertNode(S, IP); 3020 LoopUsers[L].push_back(S); 3021 registerUser(S, Ops); 3022 } 3023 setNoWrapFlags(S, Flags); 3024 return S; 3025 } 3026 3027 const SCEV * 3028 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 3029 SCEV::NoWrapFlags Flags) { 3030 FoldingSetNodeID ID; 3031 ID.AddInteger(scMulExpr); 3032 for (const SCEV *Op : Ops) 3033 ID.AddPointer(Op); 3034 void *IP = nullptr; 3035 SCEVMulExpr *S = 3036 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3037 if (!S) { 3038 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3039 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3040 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 3041 O, Ops.size()); 3042 UniqueSCEVs.InsertNode(S, IP); 3043 registerUser(S, Ops); 3044 } 3045 S->setNoWrapFlags(Flags); 3046 return S; 3047 } 3048 3049 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 3050 uint64_t k = i*j; 3051 if (j > 1 && k / j != i) Overflow = true; 3052 return k; 3053 } 3054 3055 /// Compute the result of "n choose k", the binomial coefficient. If an 3056 /// intermediate computation overflows, Overflow will be set and the return will 3057 /// be garbage. Overflow is not cleared on absence of overflow. 3058 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3059 // We use the multiplicative formula: 3060 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3061 // At each iteration, we take the n-th term of the numeral and divide by the 3062 // (k-n)th term of the denominator. This division will always produce an 3063 // integral result, and helps reduce the chance of overflow in the 3064 // intermediate computations. However, we can still overflow even when the 3065 // final result would fit. 3066 3067 if (n == 0 || n == k) return 1; 3068 if (k > n) return 0; 3069 3070 if (k > n/2) 3071 k = n-k; 3072 3073 uint64_t r = 1; 3074 for (uint64_t i = 1; i <= k; ++i) { 3075 r = umul_ov(r, n-(i-1), Overflow); 3076 r /= i; 3077 } 3078 return r; 3079 } 3080 3081 /// Determine if any of the operands in this SCEV are a constant or if 3082 /// any of the add or multiply expressions in this SCEV contain a constant. 3083 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3084 struct FindConstantInAddMulChain { 3085 bool FoundConstant = false; 3086 3087 bool follow(const SCEV *S) { 3088 FoundConstant |= isa<SCEVConstant>(S); 3089 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3090 } 3091 3092 bool isDone() const { 3093 return FoundConstant; 3094 } 3095 }; 3096 3097 FindConstantInAddMulChain F; 3098 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3099 ST.visitAll(StartExpr); 3100 return F.FoundConstant; 3101 } 3102 3103 /// Get a canonical multiply expression, or something simpler if possible. 3104 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3105 SCEV::NoWrapFlags OrigFlags, 3106 unsigned Depth) { 3107 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3108 "only nuw or nsw allowed"); 3109 assert(!Ops.empty() && "Cannot get empty mul!"); 3110 if (Ops.size() == 1) return Ops[0]; 3111 #ifndef NDEBUG 3112 Type *ETy = Ops[0]->getType(); 3113 assert(!ETy->isPointerTy()); 3114 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3115 assert(Ops[i]->getType() == ETy && 3116 "SCEVMulExpr operand types don't match!"); 3117 #endif 3118 3119 // Sort by complexity, this groups all similar expression types together. 3120 GroupByComplexity(Ops, &LI, DT); 3121 3122 // If there are any constants, fold them together. 3123 unsigned Idx = 0; 3124 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3125 ++Idx; 3126 assert(Idx < Ops.size()); 3127 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3128 // We found two constants, fold them together! 3129 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3130 if (Ops.size() == 2) return Ops[0]; 3131 Ops.erase(Ops.begin()+1); // Erase the folded element 3132 LHSC = cast<SCEVConstant>(Ops[0]); 3133 } 3134 3135 // If we have a multiply of zero, it will always be zero. 3136 if (LHSC->getValue()->isZero()) 3137 return LHSC; 3138 3139 // If we are left with a constant one being multiplied, strip it off. 3140 if (LHSC->getValue()->isOne()) { 3141 Ops.erase(Ops.begin()); 3142 --Idx; 3143 } 3144 3145 if (Ops.size() == 1) 3146 return Ops[0]; 3147 } 3148 3149 // Delay expensive flag strengthening until necessary. 3150 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3151 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3152 }; 3153 3154 // Limit recursion calls depth. 3155 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3156 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3157 3158 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3159 // Don't strengthen flags if we have no new information. 3160 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3161 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3162 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3163 return S; 3164 } 3165 3166 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3167 if (Ops.size() == 2) { 3168 // C1*(C2+V) -> C1*C2 + C1*V 3169 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3170 // If any of Add's ops are Adds or Muls with a constant, apply this 3171 // transformation as well. 3172 // 3173 // TODO: There are some cases where this transformation is not 3174 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3175 // this transformation should be narrowed down. 3176 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3177 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3178 SCEV::FlagAnyWrap, Depth + 1); 3179 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3180 SCEV::FlagAnyWrap, Depth + 1); 3181 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3182 } 3183 3184 if (Ops[0]->isAllOnesValue()) { 3185 // If we have a mul by -1 of an add, try distributing the -1 among the 3186 // add operands. 3187 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3188 SmallVector<const SCEV *, 4> NewOps; 3189 bool AnyFolded = false; 3190 for (const SCEV *AddOp : Add->operands()) { 3191 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3192 Depth + 1); 3193 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3194 NewOps.push_back(Mul); 3195 } 3196 if (AnyFolded) 3197 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3198 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3199 // Negation preserves a recurrence's no self-wrap property. 3200 SmallVector<const SCEV *, 4> Operands; 3201 for (const SCEV *AddRecOp : AddRec->operands()) 3202 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3203 Depth + 1)); 3204 // Let M be the minimum representable signed value. AddRec with nsw 3205 // multiplied by -1 can have signed overflow if and only if it takes a 3206 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the 3207 // maximum signed value. In all other cases signed overflow is 3208 // impossible. 3209 auto FlagsMask = SCEV::FlagNW; 3210 if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) { 3211 auto MinInt = 3212 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType())); 3213 if (getSignedRangeMin(AddRec) != MinInt) 3214 FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW); 3215 } 3216 return getAddRecExpr(Operands, AddRec->getLoop(), 3217 AddRec->getNoWrapFlags(FlagsMask)); 3218 } 3219 } 3220 } 3221 } 3222 3223 // Skip over the add expression until we get to a multiply. 3224 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3225 ++Idx; 3226 3227 // If there are mul operands inline them all into this expression. 3228 if (Idx < Ops.size()) { 3229 bool DeletedMul = false; 3230 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3231 if (Ops.size() > MulOpsInlineThreshold) 3232 break; 3233 // If we have an mul, expand the mul operands onto the end of the 3234 // operands list. 3235 Ops.erase(Ops.begin()+Idx); 3236 append_range(Ops, Mul->operands()); 3237 DeletedMul = true; 3238 } 3239 3240 // If we deleted at least one mul, we added operands to the end of the 3241 // list, and they are not necessarily sorted. Recurse to resort and 3242 // resimplify any operands we just acquired. 3243 if (DeletedMul) 3244 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3245 } 3246 3247 // If there are any add recurrences in the operands list, see if any other 3248 // added values are loop invariant. If so, we can fold them into the 3249 // recurrence. 3250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3251 ++Idx; 3252 3253 // Scan over all recurrences, trying to fold loop invariants into them. 3254 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3255 // Scan all of the other operands to this mul and add them to the vector 3256 // if they are loop invariant w.r.t. the recurrence. 3257 SmallVector<const SCEV *, 8> LIOps; 3258 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3259 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3260 if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) { 3261 LIOps.push_back(Ops[i]); 3262 Ops.erase(Ops.begin()+i); 3263 --i; --e; 3264 } 3265 3266 // If we found some loop invariants, fold them into the recurrence. 3267 if (!LIOps.empty()) { 3268 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3269 SmallVector<const SCEV *, 4> NewOps; 3270 NewOps.reserve(AddRec->getNumOperands()); 3271 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3272 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3273 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3274 SCEV::FlagAnyWrap, Depth + 1)); 3275 3276 // Build the new addrec. Propagate the NUW and NSW flags if both the 3277 // outer mul and the inner addrec are guaranteed to have no overflow. 3278 // 3279 // No self-wrap cannot be guaranteed after changing the step size, but 3280 // will be inferred if either NUW or NSW is true. 3281 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3282 const SCEV *NewRec = getAddRecExpr( 3283 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(Flags)); 3284 3285 // If all of the other operands were loop invariant, we are done. 3286 if (Ops.size() == 1) return NewRec; 3287 3288 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3289 for (unsigned i = 0;; ++i) 3290 if (Ops[i] == AddRec) { 3291 Ops[i] = NewRec; 3292 break; 3293 } 3294 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3295 } 3296 3297 // Okay, if there weren't any loop invariants to be folded, check to see 3298 // if there are multiple AddRec's with the same loop induction variable 3299 // being multiplied together. If so, we can fold them. 3300 3301 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3302 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3303 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3304 // ]]],+,...up to x=2n}. 3305 // Note that the arguments to choose() are always integers with values 3306 // known at compile time, never SCEV objects. 3307 // 3308 // The implementation avoids pointless extra computations when the two 3309 // addrec's are of different length (mathematically, it's equivalent to 3310 // an infinite stream of zeros on the right). 3311 bool OpsModified = false; 3312 for (unsigned OtherIdx = Idx+1; 3313 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3314 ++OtherIdx) { 3315 const SCEVAddRecExpr *OtherAddRec = 3316 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3317 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) 3318 continue; 3319 3320 // Limit max number of arguments to avoid creation of unreasonably big 3321 // SCEVAddRecs with very complex operands. 3322 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3323 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3324 continue; 3325 3326 bool Overflow = false; 3327 Type *Ty = AddRec->getType(); 3328 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3329 SmallVector<const SCEV*, 7> AddRecOps; 3330 for (int x = 0, xe = AddRec->getNumOperands() + 3331 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3332 SmallVector <const SCEV *, 7> SumOps; 3333 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3334 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3335 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3336 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3337 z < ze && !Overflow; ++z) { 3338 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3339 uint64_t Coeff; 3340 if (LargerThan64Bits) 3341 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3342 else 3343 Coeff = Coeff1*Coeff2; 3344 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3345 const SCEV *Term1 = AddRec->getOperand(y-z); 3346 const SCEV *Term2 = OtherAddRec->getOperand(z); 3347 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3348 SCEV::FlagAnyWrap, Depth + 1)); 3349 } 3350 } 3351 if (SumOps.empty()) 3352 SumOps.push_back(getZero(Ty)); 3353 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3354 } 3355 if (!Overflow) { 3356 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 3357 SCEV::FlagAnyWrap); 3358 if (Ops.size() == 2) return NewAddRec; 3359 Ops[Idx] = NewAddRec; 3360 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3361 OpsModified = true; 3362 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3363 if (!AddRec) 3364 break; 3365 } 3366 } 3367 if (OpsModified) 3368 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3369 3370 // Otherwise couldn't fold anything into this recurrence. Move onto the 3371 // next one. 3372 } 3373 3374 // Okay, it looks like we really DO need an mul expr. Check to see if we 3375 // already have one, otherwise create a new one. 3376 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3377 } 3378 3379 /// Represents an unsigned remainder expression based on unsigned division. 3380 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3381 const SCEV *RHS) { 3382 assert(getEffectiveSCEVType(LHS->getType()) == 3383 getEffectiveSCEVType(RHS->getType()) && 3384 "SCEVURemExpr operand types don't match!"); 3385 3386 // Short-circuit easy cases 3387 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3388 // If constant is one, the result is trivial 3389 if (RHSC->getValue()->isOne()) 3390 return getZero(LHS->getType()); // X urem 1 --> 0 3391 3392 // If constant is a power of two, fold into a zext(trunc(LHS)). 3393 if (RHSC->getAPInt().isPowerOf2()) { 3394 Type *FullTy = LHS->getType(); 3395 Type *TruncTy = 3396 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3397 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3398 } 3399 } 3400 3401 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3402 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3403 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3404 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3405 } 3406 3407 /// Get a canonical unsigned division expression, or something simpler if 3408 /// possible. 3409 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3410 const SCEV *RHS) { 3411 assert(!LHS->getType()->isPointerTy() && 3412 "SCEVUDivExpr operand can't be pointer!"); 3413 assert(LHS->getType() == RHS->getType() && 3414 "SCEVUDivExpr operand types don't match!"); 3415 3416 FoldingSetNodeID ID; 3417 ID.AddInteger(scUDivExpr); 3418 ID.AddPointer(LHS); 3419 ID.AddPointer(RHS); 3420 void *IP = nullptr; 3421 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3422 return S; 3423 3424 // 0 udiv Y == 0 3425 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3426 if (LHSC->getValue()->isZero()) 3427 return LHS; 3428 3429 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3430 if (RHSC->getValue()->isOne()) 3431 return LHS; // X udiv 1 --> x 3432 // If the denominator is zero, the result of the udiv is undefined. Don't 3433 // try to analyze it, because the resolution chosen here may differ from 3434 // the resolution chosen in other parts of the compiler. 3435 if (!RHSC->getValue()->isZero()) { 3436 // Determine if the division can be folded into the operands of 3437 // its operands. 3438 // TODO: Generalize this to non-constants by using known-bits information. 3439 Type *Ty = LHS->getType(); 3440 unsigned LZ = RHSC->getAPInt().countl_zero(); 3441 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3442 // For non-power-of-two values, effectively round the value up to the 3443 // nearest power of two. 3444 if (!RHSC->getAPInt().isPowerOf2()) 3445 ++MaxShiftAmt; 3446 IntegerType *ExtTy = 3447 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3449 if (const SCEVConstant *Step = 3450 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3451 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3452 const APInt &StepInt = Step->getAPInt(); 3453 const APInt &DivInt = RHSC->getAPInt(); 3454 if (!StepInt.urem(DivInt) && 3455 getZeroExtendExpr(AR, ExtTy) == 3456 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3457 getZeroExtendExpr(Step, ExtTy), 3458 AR->getLoop(), SCEV::FlagAnyWrap)) { 3459 SmallVector<const SCEV *, 4> Operands; 3460 for (const SCEV *Op : AR->operands()) 3461 Operands.push_back(getUDivExpr(Op, RHS)); 3462 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3463 } 3464 /// Get a canonical UDivExpr for a recurrence. 3465 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3466 // We can currently only fold X%N if X is constant. 3467 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3468 if (StartC && !DivInt.urem(StepInt) && 3469 getZeroExtendExpr(AR, ExtTy) == 3470 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3471 getZeroExtendExpr(Step, ExtTy), 3472 AR->getLoop(), SCEV::FlagAnyWrap)) { 3473 const APInt &StartInt = StartC->getAPInt(); 3474 const APInt &StartRem = StartInt.urem(StepInt); 3475 if (StartRem != 0) { 3476 const SCEV *NewLHS = 3477 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3478 AR->getLoop(), SCEV::FlagNW); 3479 if (LHS != NewLHS) { 3480 LHS = NewLHS; 3481 3482 // Reset the ID to include the new LHS, and check if it is 3483 // already cached. 3484 ID.clear(); 3485 ID.AddInteger(scUDivExpr); 3486 ID.AddPointer(LHS); 3487 ID.AddPointer(RHS); 3488 IP = nullptr; 3489 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3490 return S; 3491 } 3492 } 3493 } 3494 } 3495 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3496 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3497 SmallVector<const SCEV *, 4> Operands; 3498 for (const SCEV *Op : M->operands()) 3499 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3500 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3501 // Find an operand that's safely divisible. 3502 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3503 const SCEV *Op = M->getOperand(i); 3504 const SCEV *Div = getUDivExpr(Op, RHSC); 3505 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3506 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3507 Operands[i] = Div; 3508 return getMulExpr(Operands); 3509 } 3510 } 3511 } 3512 3513 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3514 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3515 if (auto *DivisorConstant = 3516 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3517 bool Overflow = false; 3518 APInt NewRHS = 3519 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3520 if (Overflow) { 3521 return getConstant(RHSC->getType(), 0, false); 3522 } 3523 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3524 } 3525 } 3526 3527 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3528 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3529 SmallVector<const SCEV *, 4> Operands; 3530 for (const SCEV *Op : A->operands()) 3531 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3532 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3533 Operands.clear(); 3534 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3535 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3536 if (isa<SCEVUDivExpr>(Op) || 3537 getMulExpr(Op, RHS) != A->getOperand(i)) 3538 break; 3539 Operands.push_back(Op); 3540 } 3541 if (Operands.size() == A->getNumOperands()) 3542 return getAddExpr(Operands); 3543 } 3544 } 3545 3546 // Fold if both operands are constant. 3547 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3548 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3549 } 3550 } 3551 3552 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3553 // changes). Make sure we get a new one. 3554 IP = nullptr; 3555 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3556 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3557 LHS, RHS); 3558 UniqueSCEVs.InsertNode(S, IP); 3559 registerUser(S, {LHS, RHS}); 3560 return S; 3561 } 3562 3563 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3564 APInt A = C1->getAPInt().abs(); 3565 APInt B = C2->getAPInt().abs(); 3566 uint32_t ABW = A.getBitWidth(); 3567 uint32_t BBW = B.getBitWidth(); 3568 3569 if (ABW > BBW) 3570 B = B.zext(ABW); 3571 else if (ABW < BBW) 3572 A = A.zext(BBW); 3573 3574 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3575 } 3576 3577 /// Get a canonical unsigned division expression, or something simpler if 3578 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3579 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3580 /// it's not exact because the udiv may be clearing bits. 3581 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3582 const SCEV *RHS) { 3583 // TODO: we could try to find factors in all sorts of things, but for now we 3584 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3585 // end of this file for inspiration. 3586 3587 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3588 if (!Mul || !Mul->hasNoUnsignedWrap()) 3589 return getUDivExpr(LHS, RHS); 3590 3591 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3592 // If the mulexpr multiplies by a constant, then that constant must be the 3593 // first element of the mulexpr. 3594 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3595 if (LHSCst == RHSCst) { 3596 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3597 return getMulExpr(Operands); 3598 } 3599 3600 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3601 // that there's a factor provided by one of the other terms. We need to 3602 // check. 3603 APInt Factor = gcd(LHSCst, RHSCst); 3604 if (!Factor.isIntN(1)) { 3605 LHSCst = 3606 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3607 RHSCst = 3608 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3609 SmallVector<const SCEV *, 2> Operands; 3610 Operands.push_back(LHSCst); 3611 append_range(Operands, Mul->operands().drop_front()); 3612 LHS = getMulExpr(Operands); 3613 RHS = RHSCst; 3614 Mul = dyn_cast<SCEVMulExpr>(LHS); 3615 if (!Mul) 3616 return getUDivExactExpr(LHS, RHS); 3617 } 3618 } 3619 } 3620 3621 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3622 if (Mul->getOperand(i) == RHS) { 3623 SmallVector<const SCEV *, 2> Operands; 3624 append_range(Operands, Mul->operands().take_front(i)); 3625 append_range(Operands, Mul->operands().drop_front(i + 1)); 3626 return getMulExpr(Operands); 3627 } 3628 } 3629 3630 return getUDivExpr(LHS, RHS); 3631 } 3632 3633 /// Get an add recurrence expression for the specified loop. Simplify the 3634 /// expression as much as possible. 3635 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3636 const Loop *L, 3637 SCEV::NoWrapFlags Flags) { 3638 SmallVector<const SCEV *, 4> Operands; 3639 Operands.push_back(Start); 3640 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3641 if (StepChrec->getLoop() == L) { 3642 append_range(Operands, StepChrec->operands()); 3643 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3644 } 3645 3646 Operands.push_back(Step); 3647 return getAddRecExpr(Operands, L, Flags); 3648 } 3649 3650 /// Get an add recurrence expression for the specified loop. Simplify the 3651 /// expression as much as possible. 3652 const SCEV * 3653 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3654 const Loop *L, SCEV::NoWrapFlags Flags) { 3655 if (Operands.size() == 1) return Operands[0]; 3656 #ifndef NDEBUG 3657 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3658 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3659 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3660 "SCEVAddRecExpr operand types don't match!"); 3661 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3662 } 3663 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3664 assert(isLoopInvariant(Operands[i], L) && 3665 "SCEVAddRecExpr operand is not loop-invariant!"); 3666 #endif 3667 3668 if (Operands.back()->isZero()) { 3669 Operands.pop_back(); 3670 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3671 } 3672 3673 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3674 // use that information to infer NUW and NSW flags. However, computing a 3675 // BE count requires calling getAddRecExpr, so we may not yet have a 3676 // meaningful BE count at this point (and if we don't, we'd be stuck 3677 // with a SCEVCouldNotCompute as the cached BE count). 3678 3679 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3680 3681 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3682 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3683 const Loop *NestedLoop = NestedAR->getLoop(); 3684 if (L->contains(NestedLoop) 3685 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3686 : (!NestedLoop->contains(L) && 3687 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3688 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3689 Operands[0] = NestedAR->getStart(); 3690 // AddRecs require their operands be loop-invariant with respect to their 3691 // loops. Don't perform this transformation if it would break this 3692 // requirement. 3693 bool AllInvariant = all_of( 3694 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3695 3696 if (AllInvariant) { 3697 // Create a recurrence for the outer loop with the same step size. 3698 // 3699 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3700 // inner recurrence has the same property. 3701 SCEV::NoWrapFlags OuterFlags = 3702 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3703 3704 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3705 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3706 return isLoopInvariant(Op, NestedLoop); 3707 }); 3708 3709 if (AllInvariant) { 3710 // Ok, both add recurrences are valid after the transformation. 3711 // 3712 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3713 // the outer recurrence has the same property. 3714 SCEV::NoWrapFlags InnerFlags = 3715 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3716 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3717 } 3718 } 3719 // Reset Operands to its original state. 3720 Operands[0] = NestedAR; 3721 } 3722 } 3723 3724 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3725 // already have one, otherwise create a new one. 3726 return getOrCreateAddRecExpr(Operands, L, Flags); 3727 } 3728 3729 const SCEV * 3730 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3731 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3732 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3733 // getSCEV(Base)->getType() has the same address space as Base->getType() 3734 // because SCEV::getType() preserves the address space. 3735 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3736 const bool AssumeInBoundsFlags = [&]() { 3737 if (!GEP->isInBounds()) 3738 return false; 3739 3740 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3741 // but to do that, we have to ensure that said flag is valid in the entire 3742 // defined scope of the SCEV. 3743 auto *GEPI = dyn_cast<Instruction>(GEP); 3744 // TODO: non-instructions have global scope. We might be able to prove 3745 // some global scope cases 3746 return GEPI && isSCEVExprNeverPoison(GEPI); 3747 }(); 3748 3749 SCEV::NoWrapFlags OffsetWrap = 3750 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3751 3752 Type *CurTy = GEP->getType(); 3753 bool FirstIter = true; 3754 SmallVector<const SCEV *, 4> Offsets; 3755 for (const SCEV *IndexExpr : IndexExprs) { 3756 // Compute the (potentially symbolic) offset in bytes for this index. 3757 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3758 // For a struct, add the member offset. 3759 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3760 unsigned FieldNo = Index->getZExtValue(); 3761 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3762 Offsets.push_back(FieldOffset); 3763 3764 // Update CurTy to the type of the field at Index. 3765 CurTy = STy->getTypeAtIndex(Index); 3766 } else { 3767 // Update CurTy to its element type. 3768 if (FirstIter) { 3769 assert(isa<PointerType>(CurTy) && 3770 "The first index of a GEP indexes a pointer"); 3771 CurTy = GEP->getSourceElementType(); 3772 FirstIter = false; 3773 } else { 3774 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3775 } 3776 // For an array, add the element offset, explicitly scaled. 3777 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3778 // Getelementptr indices are signed. 3779 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3780 3781 // Multiply the index by the element size to compute the element offset. 3782 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3783 Offsets.push_back(LocalOffset); 3784 } 3785 } 3786 3787 // Handle degenerate case of GEP without offsets. 3788 if (Offsets.empty()) 3789 return BaseExpr; 3790 3791 // Add the offsets together, assuming nsw if inbounds. 3792 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3793 // Add the base address and the offset. We cannot use the nsw flag, as the 3794 // base address is unsigned. However, if we know that the offset is 3795 // non-negative, we can use nuw. 3796 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3797 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3798 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3799 assert(BaseExpr->getType() == GEPExpr->getType() && 3800 "GEP should not change type mid-flight."); 3801 return GEPExpr; 3802 } 3803 3804 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3805 ArrayRef<const SCEV *> Ops) { 3806 FoldingSetNodeID ID; 3807 ID.AddInteger(SCEVType); 3808 for (const SCEV *Op : Ops) 3809 ID.AddPointer(Op); 3810 void *IP = nullptr; 3811 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3812 } 3813 3814 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3815 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3816 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3817 } 3818 3819 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3820 SmallVectorImpl<const SCEV *> &Ops) { 3821 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3822 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3823 if (Ops.size() == 1) return Ops[0]; 3824 #ifndef NDEBUG 3825 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3826 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3827 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3828 "Operand types don't match!"); 3829 assert(Ops[0]->getType()->isPointerTy() == 3830 Ops[i]->getType()->isPointerTy() && 3831 "min/max should be consistently pointerish"); 3832 } 3833 #endif 3834 3835 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3836 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3837 3838 // Sort by complexity, this groups all similar expression types together. 3839 GroupByComplexity(Ops, &LI, DT); 3840 3841 // Check if we have created the same expression before. 3842 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3843 return S; 3844 } 3845 3846 // If there are any constants, fold them together. 3847 unsigned Idx = 0; 3848 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3849 ++Idx; 3850 assert(Idx < Ops.size()); 3851 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3852 switch (Kind) { 3853 case scSMaxExpr: 3854 return APIntOps::smax(LHS, RHS); 3855 case scSMinExpr: 3856 return APIntOps::smin(LHS, RHS); 3857 case scUMaxExpr: 3858 return APIntOps::umax(LHS, RHS); 3859 case scUMinExpr: 3860 return APIntOps::umin(LHS, RHS); 3861 default: 3862 llvm_unreachable("Unknown SCEV min/max opcode"); 3863 } 3864 }; 3865 3866 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3867 // We found two constants, fold them together! 3868 ConstantInt *Fold = ConstantInt::get( 3869 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3870 Ops[0] = getConstant(Fold); 3871 Ops.erase(Ops.begin()+1); // Erase the folded element 3872 if (Ops.size() == 1) return Ops[0]; 3873 LHSC = cast<SCEVConstant>(Ops[0]); 3874 } 3875 3876 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3877 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3878 3879 if (IsMax ? IsMinV : IsMaxV) { 3880 // If we are left with a constant minimum(/maximum)-int, strip it off. 3881 Ops.erase(Ops.begin()); 3882 --Idx; 3883 } else if (IsMax ? IsMaxV : IsMinV) { 3884 // If we have a max(/min) with a constant maximum(/minimum)-int, 3885 // it will always be the extremum. 3886 return LHSC; 3887 } 3888 3889 if (Ops.size() == 1) return Ops[0]; 3890 } 3891 3892 // Find the first operation of the same kind 3893 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3894 ++Idx; 3895 3896 // Check to see if one of the operands is of the same kind. If so, expand its 3897 // operands onto our operand list, and recurse to simplify. 3898 if (Idx < Ops.size()) { 3899 bool DeletedAny = false; 3900 while (Ops[Idx]->getSCEVType() == Kind) { 3901 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3902 Ops.erase(Ops.begin()+Idx); 3903 append_range(Ops, SMME->operands()); 3904 DeletedAny = true; 3905 } 3906 3907 if (DeletedAny) 3908 return getMinMaxExpr(Kind, Ops); 3909 } 3910 3911 // Okay, check to see if the same value occurs in the operand list twice. If 3912 // so, delete one. Since we sorted the list, these values are required to 3913 // be adjacent. 3914 llvm::CmpInst::Predicate GEPred = 3915 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3916 llvm::CmpInst::Predicate LEPred = 3917 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3918 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3919 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3920 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3921 if (Ops[i] == Ops[i + 1] || 3922 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3923 // X op Y op Y --> X op Y 3924 // X op Y --> X, if we know X, Y are ordered appropriately 3925 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3926 --i; 3927 --e; 3928 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3929 Ops[i + 1])) { 3930 // X op Y --> Y, if we know X, Y are ordered appropriately 3931 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3932 --i; 3933 --e; 3934 } 3935 } 3936 3937 if (Ops.size() == 1) return Ops[0]; 3938 3939 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3940 3941 // Okay, it looks like we really DO need an expr. Check to see if we 3942 // already have one, otherwise create a new one. 3943 FoldingSetNodeID ID; 3944 ID.AddInteger(Kind); 3945 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3946 ID.AddPointer(Ops[i]); 3947 void *IP = nullptr; 3948 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3949 if (ExistingSCEV) 3950 return ExistingSCEV; 3951 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3952 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3953 SCEV *S = new (SCEVAllocator) 3954 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3955 3956 UniqueSCEVs.InsertNode(S, IP); 3957 registerUser(S, Ops); 3958 return S; 3959 } 3960 3961 namespace { 3962 3963 class SCEVSequentialMinMaxDeduplicatingVisitor final 3964 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3965 std::optional<const SCEV *>> { 3966 using RetVal = std::optional<const SCEV *>; 3967 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3968 3969 ScalarEvolution &SE; 3970 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3971 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3972 SmallPtrSet<const SCEV *, 16> SeenOps; 3973 3974 bool canRecurseInto(SCEVTypes Kind) const { 3975 // We can only recurse into the SCEV expression of the same effective type 3976 // as the type of our root SCEV expression. 3977 return RootKind == Kind || NonSequentialRootKind == Kind; 3978 }; 3979 3980 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3981 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3982 "Only for min/max expressions."); 3983 SCEVTypes Kind = S->getSCEVType(); 3984 3985 if (!canRecurseInto(Kind)) 3986 return S; 3987 3988 auto *NAry = cast<SCEVNAryExpr>(S); 3989 SmallVector<const SCEV *> NewOps; 3990 bool Changed = visit(Kind, NAry->operands(), NewOps); 3991 3992 if (!Changed) 3993 return S; 3994 if (NewOps.empty()) 3995 return std::nullopt; 3996 3997 return isa<SCEVSequentialMinMaxExpr>(S) 3998 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3999 : SE.getMinMaxExpr(Kind, NewOps); 4000 } 4001 4002 RetVal visit(const SCEV *S) { 4003 // Has the whole operand been seen already? 4004 if (!SeenOps.insert(S).second) 4005 return std::nullopt; 4006 return Base::visit(S); 4007 } 4008 4009 public: 4010 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 4011 SCEVTypes RootKind) 4012 : SE(SE), RootKind(RootKind), 4013 NonSequentialRootKind( 4014 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 4015 RootKind)) {} 4016 4017 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 4018 SmallVectorImpl<const SCEV *> &NewOps) { 4019 bool Changed = false; 4020 SmallVector<const SCEV *> Ops; 4021 Ops.reserve(OrigOps.size()); 4022 4023 for (const SCEV *Op : OrigOps) { 4024 RetVal NewOp = visit(Op); 4025 if (NewOp != Op) 4026 Changed = true; 4027 if (NewOp) 4028 Ops.emplace_back(*NewOp); 4029 } 4030 4031 if (Changed) 4032 NewOps = std::move(Ops); 4033 return Changed; 4034 } 4035 4036 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 4037 4038 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } 4039 4040 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 4041 4042 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 4043 4044 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 4045 4046 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 4047 4048 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 4049 4050 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 4051 4052 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 4053 4054 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 4055 4056 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 4057 return visitAnyMinMaxExpr(Expr); 4058 } 4059 4060 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 4061 return visitAnyMinMaxExpr(Expr); 4062 } 4063 4064 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4065 return visitAnyMinMaxExpr(Expr); 4066 } 4067 4068 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4069 return visitAnyMinMaxExpr(Expr); 4070 } 4071 4072 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4073 return visitAnyMinMaxExpr(Expr); 4074 } 4075 4076 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4077 4078 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4079 }; 4080 4081 } // namespace 4082 4083 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { 4084 switch (Kind) { 4085 case scConstant: 4086 case scVScale: 4087 case scTruncate: 4088 case scZeroExtend: 4089 case scSignExtend: 4090 case scPtrToInt: 4091 case scAddExpr: 4092 case scMulExpr: 4093 case scUDivExpr: 4094 case scAddRecExpr: 4095 case scUMaxExpr: 4096 case scSMaxExpr: 4097 case scUMinExpr: 4098 case scSMinExpr: 4099 case scUnknown: 4100 // If any operand is poison, the whole expression is poison. 4101 return true; 4102 case scSequentialUMinExpr: 4103 // FIXME: if the *first* operand is poison, the whole expression is poison. 4104 return false; // Pessimistically, say that it does not propagate poison. 4105 case scCouldNotCompute: 4106 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4107 } 4108 llvm_unreachable("Unknown SCEV kind!"); 4109 } 4110 4111 /// Return true if V is poison given that AssumedPoison is already poison. 4112 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4113 // The only way poison may be introduced in a SCEV expression is from a 4114 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4115 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4116 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4117 // 4118 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4119 // with the notable exception of umin_seq, where only poison from the first 4120 // operand is (unconditionally) propagated. 4121 struct SCEVPoisonCollector { 4122 bool LookThroughMaybePoisonBlocking; 4123 SmallPtrSet<const SCEV *, 4> MaybePoison; 4124 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) 4125 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} 4126 4127 bool follow(const SCEV *S) { 4128 if (!LookThroughMaybePoisonBlocking && 4129 !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) 4130 return false; 4131 4132 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4133 if (!isGuaranteedNotToBePoison(SU->getValue())) 4134 MaybePoison.insert(S); 4135 } 4136 return true; 4137 } 4138 bool isDone() const { return false; } 4139 }; 4140 4141 // First collect all SCEVs that might result in AssumedPoison to be poison. 4142 // We need to look through potentially poison-blocking operations here, 4143 // because we want to find all SCEVs that *might* result in poison, not only 4144 // those that are *required* to. 4145 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); 4146 visitAll(AssumedPoison, PC1); 4147 4148 // AssumedPoison is never poison. As the assumption is false, the implication 4149 // is true. Don't bother walking the other SCEV in this case. 4150 if (PC1.MaybePoison.empty()) 4151 return true; 4152 4153 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4154 // as well. We cannot look through potentially poison-blocking operations 4155 // here, as their arguments only *may* make the result poison. 4156 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); 4157 visitAll(S, PC2); 4158 4159 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4160 // it will also make S poison by being part of PC2.MaybePoison. 4161 return all_of(PC1.MaybePoison, 4162 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4163 } 4164 4165 const SCEV * 4166 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4167 SmallVectorImpl<const SCEV *> &Ops) { 4168 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4169 "Not a SCEVSequentialMinMaxExpr!"); 4170 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4171 if (Ops.size() == 1) 4172 return Ops[0]; 4173 #ifndef NDEBUG 4174 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4175 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4176 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4177 "Operand types don't match!"); 4178 assert(Ops[0]->getType()->isPointerTy() == 4179 Ops[i]->getType()->isPointerTy() && 4180 "min/max should be consistently pointerish"); 4181 } 4182 #endif 4183 4184 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4185 // so we can *NOT* do any kind of sorting of the expressions! 4186 4187 // Check if we have created the same expression before. 4188 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4189 return S; 4190 4191 // FIXME: there are *some* simplifications that we can do here. 4192 4193 // Keep only the first instance of an operand. 4194 { 4195 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4196 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4197 if (Changed) 4198 return getSequentialMinMaxExpr(Kind, Ops); 4199 } 4200 4201 // Check to see if one of the operands is of the same kind. If so, expand its 4202 // operands onto our operand list, and recurse to simplify. 4203 { 4204 unsigned Idx = 0; 4205 bool DeletedAny = false; 4206 while (Idx < Ops.size()) { 4207 if (Ops[Idx]->getSCEVType() != Kind) { 4208 ++Idx; 4209 continue; 4210 } 4211 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4212 Ops.erase(Ops.begin() + Idx); 4213 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), 4214 SMME->operands().end()); 4215 DeletedAny = true; 4216 } 4217 4218 if (DeletedAny) 4219 return getSequentialMinMaxExpr(Kind, Ops); 4220 } 4221 4222 const SCEV *SaturationPoint; 4223 ICmpInst::Predicate Pred; 4224 switch (Kind) { 4225 case scSequentialUMinExpr: 4226 SaturationPoint = getZero(Ops[0]->getType()); 4227 Pred = ICmpInst::ICMP_ULE; 4228 break; 4229 default: 4230 llvm_unreachable("Not a sequential min/max type."); 4231 } 4232 4233 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4234 // We can replace %x umin_seq %y with %x umin %y if either: 4235 // * %y being poison implies %x is also poison. 4236 // * %x cannot be the saturating value (e.g. zero for umin). 4237 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4238 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4239 SaturationPoint)) { 4240 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4241 Ops[i - 1] = getMinMaxExpr( 4242 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4243 SeqOps); 4244 Ops.erase(Ops.begin() + i); 4245 return getSequentialMinMaxExpr(Kind, Ops); 4246 } 4247 // Fold %x umin_seq %y to %x if %x ule %y. 4248 // TODO: We might be able to prove the predicate for a later operand. 4249 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4250 Ops.erase(Ops.begin() + i); 4251 return getSequentialMinMaxExpr(Kind, Ops); 4252 } 4253 } 4254 4255 // Okay, it looks like we really DO need an expr. Check to see if we 4256 // already have one, otherwise create a new one. 4257 FoldingSetNodeID ID; 4258 ID.AddInteger(Kind); 4259 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4260 ID.AddPointer(Ops[i]); 4261 void *IP = nullptr; 4262 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4263 if (ExistingSCEV) 4264 return ExistingSCEV; 4265 4266 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4267 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4268 SCEV *S = new (SCEVAllocator) 4269 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4270 4271 UniqueSCEVs.InsertNode(S, IP); 4272 registerUser(S, Ops); 4273 return S; 4274 } 4275 4276 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4277 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4278 return getSMaxExpr(Ops); 4279 } 4280 4281 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4282 return getMinMaxExpr(scSMaxExpr, Ops); 4283 } 4284 4285 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4286 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4287 return getUMaxExpr(Ops); 4288 } 4289 4290 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4291 return getMinMaxExpr(scUMaxExpr, Ops); 4292 } 4293 4294 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4295 const SCEV *RHS) { 4296 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4297 return getSMinExpr(Ops); 4298 } 4299 4300 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4301 return getMinMaxExpr(scSMinExpr, Ops); 4302 } 4303 4304 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4305 bool Sequential) { 4306 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4307 return getUMinExpr(Ops, Sequential); 4308 } 4309 4310 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4311 bool Sequential) { 4312 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4313 : getMinMaxExpr(scUMinExpr, Ops); 4314 } 4315 4316 const SCEV * 4317 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { 4318 const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue()); 4319 if (Size.isScalable()) 4320 Res = getMulExpr(Res, getVScale(IntTy)); 4321 return Res; 4322 } 4323 4324 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4325 return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4326 } 4327 4328 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4329 return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4330 } 4331 4332 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4333 StructType *STy, 4334 unsigned FieldNo) { 4335 // We can bypass creating a target-independent constant expression and then 4336 // folding it back into a ConstantInt. This is just a compile-time 4337 // optimization. 4338 const StructLayout *SL = getDataLayout().getStructLayout(STy); 4339 assert(!SL->getSizeInBits().isScalable() && 4340 "Cannot get offset for structure containing scalable vector types"); 4341 return getConstant(IntTy, SL->getElementOffset(FieldNo)); 4342 } 4343 4344 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4345 // Don't attempt to do anything other than create a SCEVUnknown object 4346 // here. createSCEV only calls getUnknown after checking for all other 4347 // interesting possibilities, and any other code that calls getUnknown 4348 // is doing so in order to hide a value from SCEV canonicalization. 4349 4350 FoldingSetNodeID ID; 4351 ID.AddInteger(scUnknown); 4352 ID.AddPointer(V); 4353 void *IP = nullptr; 4354 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4355 assert(cast<SCEVUnknown>(S)->getValue() == V && 4356 "Stale SCEVUnknown in uniquing map!"); 4357 return S; 4358 } 4359 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4360 FirstUnknown); 4361 FirstUnknown = cast<SCEVUnknown>(S); 4362 UniqueSCEVs.InsertNode(S, IP); 4363 return S; 4364 } 4365 4366 //===----------------------------------------------------------------------===// 4367 // Basic SCEV Analysis and PHI Idiom Recognition Code 4368 // 4369 4370 /// Test if values of the given type are analyzable within the SCEV 4371 /// framework. This primarily includes integer types, and it can optionally 4372 /// include pointer types if the ScalarEvolution class has access to 4373 /// target-specific information. 4374 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4375 // Integers and pointers are always SCEVable. 4376 return Ty->isIntOrPtrTy(); 4377 } 4378 4379 /// Return the size in bits of the specified type, for which isSCEVable must 4380 /// return true. 4381 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4382 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4383 if (Ty->isPointerTy()) 4384 return getDataLayout().getIndexTypeSizeInBits(Ty); 4385 return getDataLayout().getTypeSizeInBits(Ty); 4386 } 4387 4388 /// Return a type with the same bitwidth as the given type and which represents 4389 /// how SCEV will treat the given type, for which isSCEVable must return 4390 /// true. For pointer types, this is the pointer index sized integer type. 4391 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4392 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4393 4394 if (Ty->isIntegerTy()) 4395 return Ty; 4396 4397 // The only other support type is pointer. 4398 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4399 return getDataLayout().getIndexType(Ty); 4400 } 4401 4402 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4403 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4404 } 4405 4406 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4407 const SCEV *B) { 4408 /// For a valid use point to exist, the defining scope of one operand 4409 /// must dominate the other. 4410 bool PreciseA, PreciseB; 4411 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4412 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4413 if (!PreciseA || !PreciseB) 4414 // Can't tell. 4415 return false; 4416 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4417 DT.dominates(ScopeB, ScopeA); 4418 } 4419 4420 4421 const SCEV *ScalarEvolution::getCouldNotCompute() { 4422 return CouldNotCompute.get(); 4423 } 4424 4425 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4426 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4427 auto *SU = dyn_cast<SCEVUnknown>(S); 4428 return SU && SU->getValue() == nullptr; 4429 }); 4430 4431 return !ContainsNulls; 4432 } 4433 4434 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4435 HasRecMapType::iterator I = HasRecMap.find(S); 4436 if (I != HasRecMap.end()) 4437 return I->second; 4438 4439 bool FoundAddRec = 4440 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4441 HasRecMap.insert({S, FoundAddRec}); 4442 return FoundAddRec; 4443 } 4444 4445 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4446 /// by the value and offset from any ValueOffsetPair in the set. 4447 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4448 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4449 if (SI == ExprValueMap.end()) 4450 return std::nullopt; 4451 return SI->second.getArrayRef(); 4452 } 4453 4454 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4455 /// cannot be used separately. eraseValueFromMap should be used to remove 4456 /// V from ValueExprMap and ExprValueMap at the same time. 4457 void ScalarEvolution::eraseValueFromMap(Value *V) { 4458 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4459 if (I != ValueExprMap.end()) { 4460 auto EVIt = ExprValueMap.find(I->second); 4461 bool Removed = EVIt->second.remove(V); 4462 (void) Removed; 4463 assert(Removed && "Value not in ExprValueMap?"); 4464 ValueExprMap.erase(I); 4465 } 4466 } 4467 4468 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4469 // A recursive query may have already computed the SCEV. It should be 4470 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4471 // inferred nowrap flags. 4472 auto It = ValueExprMap.find_as(V); 4473 if (It == ValueExprMap.end()) { 4474 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4475 ExprValueMap[S].insert(V); 4476 } 4477 } 4478 4479 /// Determine whether this instruction is either not SCEVable or will always 4480 /// produce a SCEVUnknown. We do not have to walk past such instructions when 4481 /// invalidating. 4482 static bool isAlwaysUnknown(const Instruction *I) { 4483 switch (I->getOpcode()) { 4484 case Instruction::Load: 4485 return true; 4486 default: 4487 return false; 4488 } 4489 } 4490 4491 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4492 /// create a new one. 4493 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4494 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4495 4496 if (const SCEV *S = getExistingSCEV(V)) 4497 return S; 4498 const SCEV *S = createSCEVIter(V); 4499 assert((!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) || 4500 isa<SCEVUnknown>(S)) && 4501 "isAlwaysUnknown() instruction is not SCEVUnknown"); 4502 return S; 4503 } 4504 4505 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4506 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4507 4508 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4509 if (I != ValueExprMap.end()) { 4510 const SCEV *S = I->second; 4511 assert(checkValidity(S) && 4512 "existing SCEV has not been properly invalidated"); 4513 return S; 4514 } 4515 return nullptr; 4516 } 4517 4518 /// Return a SCEV corresponding to -V = -1*V 4519 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4520 SCEV::NoWrapFlags Flags) { 4521 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4522 return getConstant( 4523 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4524 4525 Type *Ty = V->getType(); 4526 Ty = getEffectiveSCEVType(Ty); 4527 return getMulExpr(V, getMinusOne(Ty), Flags); 4528 } 4529 4530 /// If Expr computes ~A, return A else return nullptr 4531 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4532 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4533 if (!Add || Add->getNumOperands() != 2 || 4534 !Add->getOperand(0)->isAllOnesValue()) 4535 return nullptr; 4536 4537 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4538 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4539 !AddRHS->getOperand(0)->isAllOnesValue()) 4540 return nullptr; 4541 4542 return AddRHS->getOperand(1); 4543 } 4544 4545 /// Return a SCEV corresponding to ~V = -1-V 4546 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4547 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4548 4549 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4550 return getConstant( 4551 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4552 4553 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4554 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4555 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4556 SmallVector<const SCEV *, 2> MatchedOperands; 4557 for (const SCEV *Operand : MME->operands()) { 4558 const SCEV *Matched = MatchNotExpr(Operand); 4559 if (!Matched) 4560 return (const SCEV *)nullptr; 4561 MatchedOperands.push_back(Matched); 4562 } 4563 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4564 MatchedOperands); 4565 }; 4566 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4567 return Replaced; 4568 } 4569 4570 Type *Ty = V->getType(); 4571 Ty = getEffectiveSCEVType(Ty); 4572 return getMinusSCEV(getMinusOne(Ty), V); 4573 } 4574 4575 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4576 assert(P->getType()->isPointerTy()); 4577 4578 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4579 // The base of an AddRec is the first operand. 4580 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4581 Ops[0] = removePointerBase(Ops[0]); 4582 // Don't try to transfer nowrap flags for now. We could in some cases 4583 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4584 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4585 } 4586 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4587 // The base of an Add is the pointer operand. 4588 SmallVector<const SCEV *> Ops{Add->operands()}; 4589 const SCEV **PtrOp = nullptr; 4590 for (const SCEV *&AddOp : Ops) { 4591 if (AddOp->getType()->isPointerTy()) { 4592 assert(!PtrOp && "Cannot have multiple pointer ops"); 4593 PtrOp = &AddOp; 4594 } 4595 } 4596 *PtrOp = removePointerBase(*PtrOp); 4597 // Don't try to transfer nowrap flags for now. We could in some cases 4598 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4599 return getAddExpr(Ops); 4600 } 4601 // Any other expression must be a pointer base. 4602 return getZero(P->getType()); 4603 } 4604 4605 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4606 SCEV::NoWrapFlags Flags, 4607 unsigned Depth) { 4608 // Fast path: X - X --> 0. 4609 if (LHS == RHS) 4610 return getZero(LHS->getType()); 4611 4612 // If we subtract two pointers with different pointer bases, bail. 4613 // Eventually, we're going to add an assertion to getMulExpr that we 4614 // can't multiply by a pointer. 4615 if (RHS->getType()->isPointerTy()) { 4616 if (!LHS->getType()->isPointerTy() || 4617 getPointerBase(LHS) != getPointerBase(RHS)) 4618 return getCouldNotCompute(); 4619 LHS = removePointerBase(LHS); 4620 RHS = removePointerBase(RHS); 4621 } 4622 4623 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4624 // makes it so that we cannot make much use of NUW. 4625 auto AddFlags = SCEV::FlagAnyWrap; 4626 const bool RHSIsNotMinSigned = 4627 !getSignedRangeMin(RHS).isMinSignedValue(); 4628 if (hasFlags(Flags, SCEV::FlagNSW)) { 4629 // Let M be the minimum representable signed value. Then (-1)*RHS 4630 // signed-wraps if and only if RHS is M. That can happen even for 4631 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4632 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4633 // (-1)*RHS, we need to prove that RHS != M. 4634 // 4635 // If LHS is non-negative and we know that LHS - RHS does not 4636 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4637 // either by proving that RHS > M or that LHS >= 0. 4638 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4639 AddFlags = SCEV::FlagNSW; 4640 } 4641 } 4642 4643 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4644 // RHS is NSW and LHS >= 0. 4645 // 4646 // The difficulty here is that the NSW flag may have been proven 4647 // relative to a loop that is to be found in a recurrence in LHS and 4648 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4649 // larger scope than intended. 4650 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4651 4652 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4653 } 4654 4655 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4656 unsigned Depth) { 4657 Type *SrcTy = V->getType(); 4658 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4659 "Cannot truncate or zero extend with non-integer arguments!"); 4660 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4661 return V; // No conversion 4662 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4663 return getTruncateExpr(V, Ty, Depth); 4664 return getZeroExtendExpr(V, Ty, Depth); 4665 } 4666 4667 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4668 unsigned Depth) { 4669 Type *SrcTy = V->getType(); 4670 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4671 "Cannot truncate or zero extend with non-integer arguments!"); 4672 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4673 return V; // No conversion 4674 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4675 return getTruncateExpr(V, Ty, Depth); 4676 return getSignExtendExpr(V, Ty, Depth); 4677 } 4678 4679 const SCEV * 4680 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4681 Type *SrcTy = V->getType(); 4682 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4683 "Cannot noop or zero extend with non-integer arguments!"); 4684 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4685 "getNoopOrZeroExtend cannot truncate!"); 4686 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4687 return V; // No conversion 4688 return getZeroExtendExpr(V, Ty); 4689 } 4690 4691 const SCEV * 4692 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4693 Type *SrcTy = V->getType(); 4694 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4695 "Cannot noop or sign extend with non-integer arguments!"); 4696 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4697 "getNoopOrSignExtend cannot truncate!"); 4698 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4699 return V; // No conversion 4700 return getSignExtendExpr(V, Ty); 4701 } 4702 4703 const SCEV * 4704 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4705 Type *SrcTy = V->getType(); 4706 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4707 "Cannot noop or any extend with non-integer arguments!"); 4708 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4709 "getNoopOrAnyExtend cannot truncate!"); 4710 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4711 return V; // No conversion 4712 return getAnyExtendExpr(V, Ty); 4713 } 4714 4715 const SCEV * 4716 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4717 Type *SrcTy = V->getType(); 4718 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4719 "Cannot truncate or noop with non-integer arguments!"); 4720 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4721 "getTruncateOrNoop cannot extend!"); 4722 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4723 return V; // No conversion 4724 return getTruncateExpr(V, Ty); 4725 } 4726 4727 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4728 const SCEV *RHS) { 4729 const SCEV *PromotedLHS = LHS; 4730 const SCEV *PromotedRHS = RHS; 4731 4732 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4733 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4734 else 4735 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4736 4737 return getUMaxExpr(PromotedLHS, PromotedRHS); 4738 } 4739 4740 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4741 const SCEV *RHS, 4742 bool Sequential) { 4743 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4744 return getUMinFromMismatchedTypes(Ops, Sequential); 4745 } 4746 4747 const SCEV * 4748 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4749 bool Sequential) { 4750 assert(!Ops.empty() && "At least one operand must be!"); 4751 // Trivial case. 4752 if (Ops.size() == 1) 4753 return Ops[0]; 4754 4755 // Find the max type first. 4756 Type *MaxType = nullptr; 4757 for (const auto *S : Ops) 4758 if (MaxType) 4759 MaxType = getWiderType(MaxType, S->getType()); 4760 else 4761 MaxType = S->getType(); 4762 assert(MaxType && "Failed to find maximum type!"); 4763 4764 // Extend all ops to max type. 4765 SmallVector<const SCEV *, 2> PromotedOps; 4766 for (const auto *S : Ops) 4767 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4768 4769 // Generate umin. 4770 return getUMinExpr(PromotedOps, Sequential); 4771 } 4772 4773 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4774 // A pointer operand may evaluate to a nonpointer expression, such as null. 4775 if (!V->getType()->isPointerTy()) 4776 return V; 4777 4778 while (true) { 4779 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4780 V = AddRec->getStart(); 4781 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4782 const SCEV *PtrOp = nullptr; 4783 for (const SCEV *AddOp : Add->operands()) { 4784 if (AddOp->getType()->isPointerTy()) { 4785 assert(!PtrOp && "Cannot have multiple pointer ops"); 4786 PtrOp = AddOp; 4787 } 4788 } 4789 assert(PtrOp && "Must have pointer op"); 4790 V = PtrOp; 4791 } else // Not something we can look further into. 4792 return V; 4793 } 4794 } 4795 4796 /// Push users of the given Instruction onto the given Worklist. 4797 static void PushDefUseChildren(Instruction *I, 4798 SmallVectorImpl<Instruction *> &Worklist, 4799 SmallPtrSetImpl<Instruction *> &Visited) { 4800 // Push the def-use children onto the Worklist stack. 4801 for (User *U : I->users()) { 4802 auto *UserInsn = cast<Instruction>(U); 4803 if (isAlwaysUnknown(UserInsn)) 4804 continue; 4805 if (Visited.insert(UserInsn).second) 4806 Worklist.push_back(UserInsn); 4807 } 4808 } 4809 4810 namespace { 4811 4812 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4813 /// expression in case its Loop is L. If it is not L then 4814 /// if IgnoreOtherLoops is true then use AddRec itself 4815 /// otherwise rewrite cannot be done. 4816 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4817 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4818 public: 4819 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4820 bool IgnoreOtherLoops = true) { 4821 SCEVInitRewriter Rewriter(L, SE); 4822 const SCEV *Result = Rewriter.visit(S); 4823 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4824 return SE.getCouldNotCompute(); 4825 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4826 ? SE.getCouldNotCompute() 4827 : Result; 4828 } 4829 4830 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4831 if (!SE.isLoopInvariant(Expr, L)) 4832 SeenLoopVariantSCEVUnknown = true; 4833 return Expr; 4834 } 4835 4836 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4837 // Only re-write AddRecExprs for this loop. 4838 if (Expr->getLoop() == L) 4839 return Expr->getStart(); 4840 SeenOtherLoops = true; 4841 return Expr; 4842 } 4843 4844 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4845 4846 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4847 4848 private: 4849 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4850 : SCEVRewriteVisitor(SE), L(L) {} 4851 4852 const Loop *L; 4853 bool SeenLoopVariantSCEVUnknown = false; 4854 bool SeenOtherLoops = false; 4855 }; 4856 4857 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4858 /// increment expression in case its Loop is L. If it is not L then 4859 /// use AddRec itself. 4860 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4861 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4862 public: 4863 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4864 SCEVPostIncRewriter Rewriter(L, SE); 4865 const SCEV *Result = Rewriter.visit(S); 4866 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4867 ? SE.getCouldNotCompute() 4868 : Result; 4869 } 4870 4871 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4872 if (!SE.isLoopInvariant(Expr, L)) 4873 SeenLoopVariantSCEVUnknown = true; 4874 return Expr; 4875 } 4876 4877 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4878 // Only re-write AddRecExprs for this loop. 4879 if (Expr->getLoop() == L) 4880 return Expr->getPostIncExpr(SE); 4881 SeenOtherLoops = true; 4882 return Expr; 4883 } 4884 4885 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4886 4887 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4888 4889 private: 4890 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4891 : SCEVRewriteVisitor(SE), L(L) {} 4892 4893 const Loop *L; 4894 bool SeenLoopVariantSCEVUnknown = false; 4895 bool SeenOtherLoops = false; 4896 }; 4897 4898 /// This class evaluates the compare condition by matching it against the 4899 /// condition of loop latch. If there is a match we assume a true value 4900 /// for the condition while building SCEV nodes. 4901 class SCEVBackedgeConditionFolder 4902 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4903 public: 4904 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4905 ScalarEvolution &SE) { 4906 bool IsPosBECond = false; 4907 Value *BECond = nullptr; 4908 if (BasicBlock *Latch = L->getLoopLatch()) { 4909 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4910 if (BI && BI->isConditional()) { 4911 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4912 "Both outgoing branches should not target same header!"); 4913 BECond = BI->getCondition(); 4914 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4915 } else { 4916 return S; 4917 } 4918 } 4919 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4920 return Rewriter.visit(S); 4921 } 4922 4923 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4924 const SCEV *Result = Expr; 4925 bool InvariantF = SE.isLoopInvariant(Expr, L); 4926 4927 if (!InvariantF) { 4928 Instruction *I = cast<Instruction>(Expr->getValue()); 4929 switch (I->getOpcode()) { 4930 case Instruction::Select: { 4931 SelectInst *SI = cast<SelectInst>(I); 4932 std::optional<const SCEV *> Res = 4933 compareWithBackedgeCondition(SI->getCondition()); 4934 if (Res) { 4935 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); 4936 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4937 } 4938 break; 4939 } 4940 default: { 4941 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4942 if (Res) 4943 Result = *Res; 4944 break; 4945 } 4946 } 4947 } 4948 return Result; 4949 } 4950 4951 private: 4952 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4953 bool IsPosBECond, ScalarEvolution &SE) 4954 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4955 IsPositiveBECond(IsPosBECond) {} 4956 4957 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4958 4959 const Loop *L; 4960 /// Loop back condition. 4961 Value *BackedgeCond = nullptr; 4962 /// Set to true if loop back is on positive branch condition. 4963 bool IsPositiveBECond; 4964 }; 4965 4966 std::optional<const SCEV *> 4967 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4968 4969 // If value matches the backedge condition for loop latch, 4970 // then return a constant evolution node based on loopback 4971 // branch taken. 4972 if (BackedgeCond == IC) 4973 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4974 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4975 return std::nullopt; 4976 } 4977 4978 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4979 public: 4980 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4981 ScalarEvolution &SE) { 4982 SCEVShiftRewriter Rewriter(L, SE); 4983 const SCEV *Result = Rewriter.visit(S); 4984 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4985 } 4986 4987 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4988 // Only allow AddRecExprs for this loop. 4989 if (!SE.isLoopInvariant(Expr, L)) 4990 Valid = false; 4991 return Expr; 4992 } 4993 4994 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4995 if (Expr->getLoop() == L && Expr->isAffine()) 4996 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4997 Valid = false; 4998 return Expr; 4999 } 5000 5001 bool isValid() { return Valid; } 5002 5003 private: 5004 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 5005 : SCEVRewriteVisitor(SE), L(L) {} 5006 5007 const Loop *L; 5008 bool Valid = true; 5009 }; 5010 5011 } // end anonymous namespace 5012 5013 SCEV::NoWrapFlags 5014 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 5015 if (!AR->isAffine()) 5016 return SCEV::FlagAnyWrap; 5017 5018 using OBO = OverflowingBinaryOperator; 5019 5020 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 5021 5022 if (!AR->hasNoSelfWrap()) { 5023 const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop()); 5024 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) { 5025 ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this)); 5026 const APInt &BECountAP = BECountMax->getAPInt(); 5027 unsigned NoOverflowBitWidth = 5028 BECountAP.getActiveBits() + StepCR.getMinSignedBits(); 5029 if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType())) 5030 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW); 5031 } 5032 } 5033 5034 if (!AR->hasNoSignedWrap()) { 5035 ConstantRange AddRecRange = getSignedRange(AR); 5036 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 5037 5038 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5039 Instruction::Add, IncRange, OBO::NoSignedWrap); 5040 if (NSWRegion.contains(AddRecRange)) 5041 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 5042 } 5043 5044 if (!AR->hasNoUnsignedWrap()) { 5045 ConstantRange AddRecRange = getUnsignedRange(AR); 5046 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 5047 5048 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5049 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 5050 if (NUWRegion.contains(AddRecRange)) 5051 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 5052 } 5053 5054 return Result; 5055 } 5056 5057 SCEV::NoWrapFlags 5058 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5059 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5060 5061 if (AR->hasNoSignedWrap()) 5062 return Result; 5063 5064 if (!AR->isAffine()) 5065 return Result; 5066 5067 // This function can be expensive, only try to prove NSW once per AddRec. 5068 if (!SignedWrapViaInductionTried.insert(AR).second) 5069 return Result; 5070 5071 const SCEV *Step = AR->getStepRecurrence(*this); 5072 const Loop *L = AR->getLoop(); 5073 5074 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5075 // Note that this serves two purposes: It filters out loops that are 5076 // simply not analyzable, and it covers the case where this code is 5077 // being called from within backedge-taken count analysis, such that 5078 // attempting to ask for the backedge-taken count would likely result 5079 // in infinite recursion. In the later case, the analysis code will 5080 // cope with a conservative value, and it will take care to purge 5081 // that value once it has finished. 5082 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5083 5084 // Normally, in the cases we can prove no-overflow via a 5085 // backedge guarding condition, we can also compute a backedge 5086 // taken count for the loop. The exceptions are assumptions and 5087 // guards present in the loop -- SCEV is not great at exploiting 5088 // these to compute max backedge taken counts, but can still use 5089 // these to prove lack of overflow. Use this fact to avoid 5090 // doing extra work that may not pay off. 5091 5092 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5093 AC.assumptions().empty()) 5094 return Result; 5095 5096 // If the backedge is guarded by a comparison with the pre-inc value the 5097 // addrec is safe. Also, if the entry is guarded by a comparison with the 5098 // start value and the backedge is guarded by a comparison with the post-inc 5099 // value, the addrec is safe. 5100 ICmpInst::Predicate Pred; 5101 const SCEV *OverflowLimit = 5102 getSignedOverflowLimitForStep(Step, &Pred, this); 5103 if (OverflowLimit && 5104 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5105 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5106 Result = setFlags(Result, SCEV::FlagNSW); 5107 } 5108 return Result; 5109 } 5110 SCEV::NoWrapFlags 5111 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5112 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5113 5114 if (AR->hasNoUnsignedWrap()) 5115 return Result; 5116 5117 if (!AR->isAffine()) 5118 return Result; 5119 5120 // This function can be expensive, only try to prove NUW once per AddRec. 5121 if (!UnsignedWrapViaInductionTried.insert(AR).second) 5122 return Result; 5123 5124 const SCEV *Step = AR->getStepRecurrence(*this); 5125 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5126 const Loop *L = AR->getLoop(); 5127 5128 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5129 // Note that this serves two purposes: It filters out loops that are 5130 // simply not analyzable, and it covers the case where this code is 5131 // being called from within backedge-taken count analysis, such that 5132 // attempting to ask for the backedge-taken count would likely result 5133 // in infinite recursion. In the later case, the analysis code will 5134 // cope with a conservative value, and it will take care to purge 5135 // that value once it has finished. 5136 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5137 5138 // Normally, in the cases we can prove no-overflow via a 5139 // backedge guarding condition, we can also compute a backedge 5140 // taken count for the loop. The exceptions are assumptions and 5141 // guards present in the loop -- SCEV is not great at exploiting 5142 // these to compute max backedge taken counts, but can still use 5143 // these to prove lack of overflow. Use this fact to avoid 5144 // doing extra work that may not pay off. 5145 5146 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5147 AC.assumptions().empty()) 5148 return Result; 5149 5150 // If the backedge is guarded by a comparison with the pre-inc value the 5151 // addrec is safe. Also, if the entry is guarded by a comparison with the 5152 // start value and the backedge is guarded by a comparison with the post-inc 5153 // value, the addrec is safe. 5154 if (isKnownPositive(Step)) { 5155 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5156 getUnsignedRangeMax(Step)); 5157 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5158 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5159 Result = setFlags(Result, SCEV::FlagNUW); 5160 } 5161 } 5162 5163 return Result; 5164 } 5165 5166 namespace { 5167 5168 /// Represents an abstract binary operation. This may exist as a 5169 /// normal instruction or constant expression, or may have been 5170 /// derived from an expression tree. 5171 struct BinaryOp { 5172 unsigned Opcode; 5173 Value *LHS; 5174 Value *RHS; 5175 bool IsNSW = false; 5176 bool IsNUW = false; 5177 5178 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5179 /// constant expression. 5180 Operator *Op = nullptr; 5181 5182 explicit BinaryOp(Operator *Op) 5183 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5184 Op(Op) { 5185 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5186 IsNSW = OBO->hasNoSignedWrap(); 5187 IsNUW = OBO->hasNoUnsignedWrap(); 5188 } 5189 } 5190 5191 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5192 bool IsNUW = false) 5193 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5194 }; 5195 5196 } // end anonymous namespace 5197 5198 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. 5199 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, 5200 AssumptionCache &AC, 5201 const DominatorTree &DT, 5202 const Instruction *CxtI) { 5203 auto *Op = dyn_cast<Operator>(V); 5204 if (!Op) 5205 return std::nullopt; 5206 5207 // Implementation detail: all the cleverness here should happen without 5208 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5209 // SCEV expressions when possible, and we should not break that. 5210 5211 switch (Op->getOpcode()) { 5212 case Instruction::Add: 5213 case Instruction::Sub: 5214 case Instruction::Mul: 5215 case Instruction::UDiv: 5216 case Instruction::URem: 5217 case Instruction::And: 5218 case Instruction::AShr: 5219 case Instruction::Shl: 5220 return BinaryOp(Op); 5221 5222 case Instruction::Or: { 5223 // LLVM loves to convert `add` of operands with no common bits 5224 // into an `or`. But SCEV really doesn't deal with `or` that well, 5225 // so try extra hard to recognize this `or` as an `add`. 5226 if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI, 5227 &DT, /*UseInstrInfo=*/true)) 5228 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), 5229 /*IsNSW=*/true, /*IsNUW=*/true); 5230 return BinaryOp(Op); 5231 } 5232 5233 case Instruction::Xor: 5234 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5235 // If the RHS of the xor is a signmask, then this is just an add. 5236 // Instcombine turns add of signmask into xor as a strength reduction step. 5237 if (RHSC->getValue().isSignMask()) 5238 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5239 // Binary `xor` is a bit-wise `add`. 5240 if (V->getType()->isIntegerTy(1)) 5241 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5242 return BinaryOp(Op); 5243 5244 case Instruction::LShr: 5245 // Turn logical shift right of a constant into a unsigned divide. 5246 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5247 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5248 5249 // If the shift count is not less than the bitwidth, the result of 5250 // the shift is undefined. Don't try to analyze it, because the 5251 // resolution chosen here may differ from the resolution chosen in 5252 // other parts of the compiler. 5253 if (SA->getValue().ult(BitWidth)) { 5254 Constant *X = 5255 ConstantInt::get(SA->getContext(), 5256 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5257 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5258 } 5259 } 5260 return BinaryOp(Op); 5261 5262 case Instruction::ExtractValue: { 5263 auto *EVI = cast<ExtractValueInst>(Op); 5264 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5265 break; 5266 5267 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5268 if (!WO) 5269 break; 5270 5271 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5272 bool Signed = WO->isSigned(); 5273 // TODO: Should add nuw/nsw flags for mul as well. 5274 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5275 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5276 5277 // Now that we know that all uses of the arithmetic-result component of 5278 // CI are guarded by the overflow check, we can go ahead and pretend 5279 // that the arithmetic is non-overflowing. 5280 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5281 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5282 } 5283 5284 default: 5285 break; 5286 } 5287 5288 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5289 // semantics as a Sub, return a binary sub expression. 5290 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5291 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5292 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5293 5294 return std::nullopt; 5295 } 5296 5297 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5298 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5299 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5300 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5301 /// follows one of the following patterns: 5302 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5303 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5304 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5305 /// we return the type of the truncation operation, and indicate whether the 5306 /// truncated type should be treated as signed/unsigned by setting 5307 /// \p Signed to true/false, respectively. 5308 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5309 bool &Signed, ScalarEvolution &SE) { 5310 // The case where Op == SymbolicPHI (that is, with no type conversions on 5311 // the way) is handled by the regular add recurrence creating logic and 5312 // would have already been triggered in createAddRecForPHI. Reaching it here 5313 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5314 // because one of the other operands of the SCEVAddExpr updating this PHI is 5315 // not invariant). 5316 // 5317 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5318 // this case predicates that allow us to prove that Op == SymbolicPHI will 5319 // be added. 5320 if (Op == SymbolicPHI) 5321 return nullptr; 5322 5323 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5324 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5325 if (SourceBits != NewBits) 5326 return nullptr; 5327 5328 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5329 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5330 if (!SExt && !ZExt) 5331 return nullptr; 5332 const SCEVTruncateExpr *Trunc = 5333 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5334 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5335 if (!Trunc) 5336 return nullptr; 5337 const SCEV *X = Trunc->getOperand(); 5338 if (X != SymbolicPHI) 5339 return nullptr; 5340 Signed = SExt != nullptr; 5341 return Trunc->getType(); 5342 } 5343 5344 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5345 if (!PN->getType()->isIntegerTy()) 5346 return nullptr; 5347 const Loop *L = LI.getLoopFor(PN->getParent()); 5348 if (!L || L->getHeader() != PN->getParent()) 5349 return nullptr; 5350 return L; 5351 } 5352 5353 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5354 // computation that updates the phi follows the following pattern: 5355 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5356 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5357 // If so, try to see if it can be rewritten as an AddRecExpr under some 5358 // Predicates. If successful, return them as a pair. Also cache the results 5359 // of the analysis. 5360 // 5361 // Example usage scenario: 5362 // Say the Rewriter is called for the following SCEV: 5363 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5364 // where: 5365 // %X = phi i64 (%Start, %BEValue) 5366 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5367 // and call this function with %SymbolicPHI = %X. 5368 // 5369 // The analysis will find that the value coming around the backedge has 5370 // the following SCEV: 5371 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5372 // Upon concluding that this matches the desired pattern, the function 5373 // will return the pair {NewAddRec, SmallPredsVec} where: 5374 // NewAddRec = {%Start,+,%Step} 5375 // SmallPredsVec = {P1, P2, P3} as follows: 5376 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5377 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5378 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5379 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5380 // under the predicates {P1,P2,P3}. 5381 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5382 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5383 // 5384 // TODO's: 5385 // 5386 // 1) Extend the Induction descriptor to also support inductions that involve 5387 // casts: When needed (namely, when we are called in the context of the 5388 // vectorizer induction analysis), a Set of cast instructions will be 5389 // populated by this method, and provided back to isInductionPHI. This is 5390 // needed to allow the vectorizer to properly record them to be ignored by 5391 // the cost model and to avoid vectorizing them (otherwise these casts, 5392 // which are redundant under the runtime overflow checks, will be 5393 // vectorized, which can be costly). 5394 // 5395 // 2) Support additional induction/PHISCEV patterns: We also want to support 5396 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5397 // after the induction update operation (the induction increment): 5398 // 5399 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5400 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5401 // 5402 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5403 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5404 // 5405 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5406 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5407 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5408 SmallVector<const SCEVPredicate *, 3> Predicates; 5409 5410 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5411 // return an AddRec expression under some predicate. 5412 5413 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5414 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5415 assert(L && "Expecting an integer loop header phi"); 5416 5417 // The loop may have multiple entrances or multiple exits; we can analyze 5418 // this phi as an addrec if it has a unique entry value and a unique 5419 // backedge value. 5420 Value *BEValueV = nullptr, *StartValueV = nullptr; 5421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5422 Value *V = PN->getIncomingValue(i); 5423 if (L->contains(PN->getIncomingBlock(i))) { 5424 if (!BEValueV) { 5425 BEValueV = V; 5426 } else if (BEValueV != V) { 5427 BEValueV = nullptr; 5428 break; 5429 } 5430 } else if (!StartValueV) { 5431 StartValueV = V; 5432 } else if (StartValueV != V) { 5433 StartValueV = nullptr; 5434 break; 5435 } 5436 } 5437 if (!BEValueV || !StartValueV) 5438 return std::nullopt; 5439 5440 const SCEV *BEValue = getSCEV(BEValueV); 5441 5442 // If the value coming around the backedge is an add with the symbolic 5443 // value we just inserted, possibly with casts that we can ignore under 5444 // an appropriate runtime guard, then we found a simple induction variable! 5445 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5446 if (!Add) 5447 return std::nullopt; 5448 5449 // If there is a single occurrence of the symbolic value, possibly 5450 // casted, replace it with a recurrence. 5451 unsigned FoundIndex = Add->getNumOperands(); 5452 Type *TruncTy = nullptr; 5453 bool Signed; 5454 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5455 if ((TruncTy = 5456 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5457 if (FoundIndex == e) { 5458 FoundIndex = i; 5459 break; 5460 } 5461 5462 if (FoundIndex == Add->getNumOperands()) 5463 return std::nullopt; 5464 5465 // Create an add with everything but the specified operand. 5466 SmallVector<const SCEV *, 8> Ops; 5467 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5468 if (i != FoundIndex) 5469 Ops.push_back(Add->getOperand(i)); 5470 const SCEV *Accum = getAddExpr(Ops); 5471 5472 // The runtime checks will not be valid if the step amount is 5473 // varying inside the loop. 5474 if (!isLoopInvariant(Accum, L)) 5475 return std::nullopt; 5476 5477 // *** Part2: Create the predicates 5478 5479 // Analysis was successful: we have a phi-with-cast pattern for which we 5480 // can return an AddRec expression under the following predicates: 5481 // 5482 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5483 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5484 // P2: An Equal predicate that guarantees that 5485 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5486 // P3: An Equal predicate that guarantees that 5487 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5488 // 5489 // As we next prove, the above predicates guarantee that: 5490 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5491 // 5492 // 5493 // More formally, we want to prove that: 5494 // Expr(i+1) = Start + (i+1) * Accum 5495 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5496 // 5497 // Given that: 5498 // 1) Expr(0) = Start 5499 // 2) Expr(1) = Start + Accum 5500 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5501 // 3) Induction hypothesis (step i): 5502 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5503 // 5504 // Proof: 5505 // Expr(i+1) = 5506 // = Start + (i+1)*Accum 5507 // = (Start + i*Accum) + Accum 5508 // = Expr(i) + Accum 5509 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5510 // :: from step i 5511 // 5512 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5513 // 5514 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5515 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5516 // + Accum :: from P3 5517 // 5518 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5519 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5520 // 5521 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5522 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5523 // 5524 // By induction, the same applies to all iterations 1<=i<n: 5525 // 5526 5527 // Create a truncated addrec for which we will add a no overflow check (P1). 5528 const SCEV *StartVal = getSCEV(StartValueV); 5529 const SCEV *PHISCEV = 5530 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5531 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5532 5533 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5534 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5535 // will be constant. 5536 // 5537 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5538 // add P1. 5539 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5540 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5541 Signed ? SCEVWrapPredicate::IncrementNSSW 5542 : SCEVWrapPredicate::IncrementNUSW; 5543 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5544 Predicates.push_back(AddRecPred); 5545 } 5546 5547 // Create the Equal Predicates P2,P3: 5548 5549 // It is possible that the predicates P2 and/or P3 are computable at 5550 // compile time due to StartVal and/or Accum being constants. 5551 // If either one is, then we can check that now and escape if either P2 5552 // or P3 is false. 5553 5554 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5555 // for each of StartVal and Accum 5556 auto getExtendedExpr = [&](const SCEV *Expr, 5557 bool CreateSignExtend) -> const SCEV * { 5558 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5559 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5560 const SCEV *ExtendedExpr = 5561 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5562 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5563 return ExtendedExpr; 5564 }; 5565 5566 // Given: 5567 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5568 // = getExtendedExpr(Expr) 5569 // Determine whether the predicate P: Expr == ExtendedExpr 5570 // is known to be false at compile time 5571 auto PredIsKnownFalse = [&](const SCEV *Expr, 5572 const SCEV *ExtendedExpr) -> bool { 5573 return Expr != ExtendedExpr && 5574 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5575 }; 5576 5577 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5578 if (PredIsKnownFalse(StartVal, StartExtended)) { 5579 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5580 return std::nullopt; 5581 } 5582 5583 // The Step is always Signed (because the overflow checks are either 5584 // NSSW or NUSW) 5585 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5586 if (PredIsKnownFalse(Accum, AccumExtended)) { 5587 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5588 return std::nullopt; 5589 } 5590 5591 auto AppendPredicate = [&](const SCEV *Expr, 5592 const SCEV *ExtendedExpr) -> void { 5593 if (Expr != ExtendedExpr && 5594 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5595 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5596 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5597 Predicates.push_back(Pred); 5598 } 5599 }; 5600 5601 AppendPredicate(StartVal, StartExtended); 5602 AppendPredicate(Accum, AccumExtended); 5603 5604 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5605 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5606 // into NewAR if it will also add the runtime overflow checks specified in 5607 // Predicates. 5608 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5609 5610 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5611 std::make_pair(NewAR, Predicates); 5612 // Remember the result of the analysis for this SCEV at this locayyytion. 5613 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5614 return PredRewrite; 5615 } 5616 5617 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5618 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5619 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5620 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5621 if (!L) 5622 return std::nullopt; 5623 5624 // Check to see if we already analyzed this PHI. 5625 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5626 if (I != PredicatedSCEVRewrites.end()) { 5627 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5628 I->second; 5629 // Analysis was done before and failed to create an AddRec: 5630 if (Rewrite.first == SymbolicPHI) 5631 return std::nullopt; 5632 // Analysis was done before and succeeded to create an AddRec under 5633 // a predicate: 5634 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5635 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5636 return Rewrite; 5637 } 5638 5639 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5640 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5641 5642 // Record in the cache that the analysis failed 5643 if (!Rewrite) { 5644 SmallVector<const SCEVPredicate *, 3> Predicates; 5645 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5646 return std::nullopt; 5647 } 5648 5649 return Rewrite; 5650 } 5651 5652 // FIXME: This utility is currently required because the Rewriter currently 5653 // does not rewrite this expression: 5654 // {0, +, (sext ix (trunc iy to ix) to iy)} 5655 // into {0, +, %step}, 5656 // even when the following Equal predicate exists: 5657 // "%step == (sext ix (trunc iy to ix) to iy)". 5658 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5659 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5660 if (AR1 == AR2) 5661 return true; 5662 5663 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5664 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5665 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5666 return false; 5667 return true; 5668 }; 5669 5670 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5671 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5672 return false; 5673 return true; 5674 } 5675 5676 /// A helper function for createAddRecFromPHI to handle simple cases. 5677 /// 5678 /// This function tries to find an AddRec expression for the simplest (yet most 5679 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5680 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5681 /// technique for finding the AddRec expression. 5682 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5683 Value *BEValueV, 5684 Value *StartValueV) { 5685 const Loop *L = LI.getLoopFor(PN->getParent()); 5686 assert(L && L->getHeader() == PN->getParent()); 5687 assert(BEValueV && StartValueV); 5688 5689 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); 5690 if (!BO) 5691 return nullptr; 5692 5693 if (BO->Opcode != Instruction::Add) 5694 return nullptr; 5695 5696 const SCEV *Accum = nullptr; 5697 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5698 Accum = getSCEV(BO->RHS); 5699 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5700 Accum = getSCEV(BO->LHS); 5701 5702 if (!Accum) 5703 return nullptr; 5704 5705 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5706 if (BO->IsNUW) 5707 Flags = setFlags(Flags, SCEV::FlagNUW); 5708 if (BO->IsNSW) 5709 Flags = setFlags(Flags, SCEV::FlagNSW); 5710 5711 const SCEV *StartVal = getSCEV(StartValueV); 5712 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5713 insertValueToMap(PN, PHISCEV); 5714 5715 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5716 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5717 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5718 proveNoWrapViaConstantRanges(AR))); 5719 } 5720 5721 // We can add Flags to the post-inc expression only if we 5722 // know that it is *undefined behavior* for BEValueV to 5723 // overflow. 5724 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5725 assert(isLoopInvariant(Accum, L) && 5726 "Accum is defined outside L, but is not invariant?"); 5727 if (isAddRecNeverPoison(BEInst, L)) 5728 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5729 } 5730 5731 return PHISCEV; 5732 } 5733 5734 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5735 const Loop *L = LI.getLoopFor(PN->getParent()); 5736 if (!L || L->getHeader() != PN->getParent()) 5737 return nullptr; 5738 5739 // The loop may have multiple entrances or multiple exits; we can analyze 5740 // this phi as an addrec if it has a unique entry value and a unique 5741 // backedge value. 5742 Value *BEValueV = nullptr, *StartValueV = nullptr; 5743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5744 Value *V = PN->getIncomingValue(i); 5745 if (L->contains(PN->getIncomingBlock(i))) { 5746 if (!BEValueV) { 5747 BEValueV = V; 5748 } else if (BEValueV != V) { 5749 BEValueV = nullptr; 5750 break; 5751 } 5752 } else if (!StartValueV) { 5753 StartValueV = V; 5754 } else if (StartValueV != V) { 5755 StartValueV = nullptr; 5756 break; 5757 } 5758 } 5759 if (!BEValueV || !StartValueV) 5760 return nullptr; 5761 5762 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5763 "PHI node already processed?"); 5764 5765 // First, try to find AddRec expression without creating a fictituos symbolic 5766 // value for PN. 5767 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5768 return S; 5769 5770 // Handle PHI node value symbolically. 5771 const SCEV *SymbolicName = getUnknown(PN); 5772 insertValueToMap(PN, SymbolicName); 5773 5774 // Using this symbolic name for the PHI, analyze the value coming around 5775 // the back-edge. 5776 const SCEV *BEValue = getSCEV(BEValueV); 5777 5778 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5779 // has a special value for the first iteration of the loop. 5780 5781 // If the value coming around the backedge is an add with the symbolic 5782 // value we just inserted, then we found a simple induction variable! 5783 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5784 // If there is a single occurrence of the symbolic value, replace it 5785 // with a recurrence. 5786 unsigned FoundIndex = Add->getNumOperands(); 5787 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5788 if (Add->getOperand(i) == SymbolicName) 5789 if (FoundIndex == e) { 5790 FoundIndex = i; 5791 break; 5792 } 5793 5794 if (FoundIndex != Add->getNumOperands()) { 5795 // Create an add with everything but the specified operand. 5796 SmallVector<const SCEV *, 8> Ops; 5797 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5798 if (i != FoundIndex) 5799 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5800 L, *this)); 5801 const SCEV *Accum = getAddExpr(Ops); 5802 5803 // This is not a valid addrec if the step amount is varying each 5804 // loop iteration, but is not itself an addrec in this loop. 5805 if (isLoopInvariant(Accum, L) || 5806 (isa<SCEVAddRecExpr>(Accum) && 5807 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5808 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5809 5810 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { 5811 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5812 if (BO->IsNUW) 5813 Flags = setFlags(Flags, SCEV::FlagNUW); 5814 if (BO->IsNSW) 5815 Flags = setFlags(Flags, SCEV::FlagNSW); 5816 } 5817 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5818 // If the increment is an inbounds GEP, then we know the address 5819 // space cannot be wrapped around. We cannot make any guarantee 5820 // about signed or unsigned overflow because pointers are 5821 // unsigned but we may have a negative index from the base 5822 // pointer. We can guarantee that no unsigned wrap occurs if the 5823 // indices form a positive value. 5824 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5825 Flags = setFlags(Flags, SCEV::FlagNW); 5826 if (isKnownPositive(Accum)) 5827 Flags = setFlags(Flags, SCEV::FlagNUW); 5828 } 5829 5830 // We cannot transfer nuw and nsw flags from subtraction 5831 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5832 // for instance. 5833 } 5834 5835 const SCEV *StartVal = getSCEV(StartValueV); 5836 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5837 5838 // Okay, for the entire analysis of this edge we assumed the PHI 5839 // to be symbolic. We now need to go back and purge all of the 5840 // entries for the scalars that use the symbolic expression. 5841 forgetMemoizedResults(SymbolicName); 5842 insertValueToMap(PN, PHISCEV); 5843 5844 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5845 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5846 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5847 proveNoWrapViaConstantRanges(AR))); 5848 } 5849 5850 // We can add Flags to the post-inc expression only if we 5851 // know that it is *undefined behavior* for BEValueV to 5852 // overflow. 5853 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5854 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5855 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5856 5857 return PHISCEV; 5858 } 5859 } 5860 } else { 5861 // Otherwise, this could be a loop like this: 5862 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5863 // In this case, j = {1,+,1} and BEValue is j. 5864 // Because the other in-value of i (0) fits the evolution of BEValue 5865 // i really is an addrec evolution. 5866 // 5867 // We can generalize this saying that i is the shifted value of BEValue 5868 // by one iteration: 5869 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5870 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5871 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5872 if (Shifted != getCouldNotCompute() && 5873 Start != getCouldNotCompute()) { 5874 const SCEV *StartVal = getSCEV(StartValueV); 5875 if (Start == StartVal) { 5876 // Okay, for the entire analysis of this edge we assumed the PHI 5877 // to be symbolic. We now need to go back and purge all of the 5878 // entries for the scalars that use the symbolic expression. 5879 forgetMemoizedResults(SymbolicName); 5880 insertValueToMap(PN, Shifted); 5881 return Shifted; 5882 } 5883 } 5884 } 5885 5886 // Remove the temporary PHI node SCEV that has been inserted while intending 5887 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5888 // as it will prevent later (possibly simpler) SCEV expressions to be added 5889 // to the ValueExprMap. 5890 eraseValueFromMap(PN); 5891 5892 return nullptr; 5893 } 5894 5895 // Try to match a control flow sequence that branches out at BI and merges back 5896 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5897 // match. 5898 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5899 Value *&C, Value *&LHS, Value *&RHS) { 5900 C = BI->getCondition(); 5901 5902 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5903 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5904 5905 if (!LeftEdge.isSingleEdge()) 5906 return false; 5907 5908 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5909 5910 Use &LeftUse = Merge->getOperandUse(0); 5911 Use &RightUse = Merge->getOperandUse(1); 5912 5913 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5914 LHS = LeftUse; 5915 RHS = RightUse; 5916 return true; 5917 } 5918 5919 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5920 LHS = RightUse; 5921 RHS = LeftUse; 5922 return true; 5923 } 5924 5925 return false; 5926 } 5927 5928 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5929 auto IsReachable = 5930 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5931 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5932 // Try to match 5933 // 5934 // br %cond, label %left, label %right 5935 // left: 5936 // br label %merge 5937 // right: 5938 // br label %merge 5939 // merge: 5940 // V = phi [ %x, %left ], [ %y, %right ] 5941 // 5942 // as "select %cond, %x, %y" 5943 5944 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5945 assert(IDom && "At least the entry block should dominate PN"); 5946 5947 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5948 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5949 5950 if (BI && BI->isConditional() && 5951 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5952 properlyDominates(getSCEV(LHS), PN->getParent()) && 5953 properlyDominates(getSCEV(RHS), PN->getParent())) 5954 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5955 } 5956 5957 return nullptr; 5958 } 5959 5960 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5961 if (const SCEV *S = createAddRecFromPHI(PN)) 5962 return S; 5963 5964 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5965 return getSCEV(V); 5966 5967 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5968 return S; 5969 5970 // If it's not a loop phi, we can't handle it yet. 5971 return getUnknown(PN); 5972 } 5973 5974 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5975 SCEVTypes RootKind) { 5976 struct FindClosure { 5977 const SCEV *OperandToFind; 5978 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5979 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5980 5981 bool Found = false; 5982 5983 bool canRecurseInto(SCEVTypes Kind) const { 5984 // We can only recurse into the SCEV expression of the same effective type 5985 // as the type of our root SCEV expression, and into zero-extensions. 5986 return RootKind == Kind || NonSequentialRootKind == Kind || 5987 scZeroExtend == Kind; 5988 }; 5989 5990 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5991 : OperandToFind(OperandToFind), RootKind(RootKind), 5992 NonSequentialRootKind( 5993 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5994 RootKind)) {} 5995 5996 bool follow(const SCEV *S) { 5997 Found = S == OperandToFind; 5998 5999 return !isDone() && canRecurseInto(S->getSCEVType()); 6000 } 6001 6002 bool isDone() const { return Found; } 6003 }; 6004 6005 FindClosure FC(OperandToFind, RootKind); 6006 visitAll(Root, FC); 6007 return FC.Found; 6008 } 6009 6010 std::optional<const SCEV *> 6011 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, 6012 ICmpInst *Cond, 6013 Value *TrueVal, 6014 Value *FalseVal) { 6015 // Try to match some simple smax or umax patterns. 6016 auto *ICI = Cond; 6017 6018 Value *LHS = ICI->getOperand(0); 6019 Value *RHS = ICI->getOperand(1); 6020 6021 switch (ICI->getPredicate()) { 6022 case ICmpInst::ICMP_SLT: 6023 case ICmpInst::ICMP_SLE: 6024 case ICmpInst::ICMP_ULT: 6025 case ICmpInst::ICMP_ULE: 6026 std::swap(LHS, RHS); 6027 [[fallthrough]]; 6028 case ICmpInst::ICMP_SGT: 6029 case ICmpInst::ICMP_SGE: 6030 case ICmpInst::ICMP_UGT: 6031 case ICmpInst::ICMP_UGE: 6032 // a > b ? a+x : b+x -> max(a, b)+x 6033 // a > b ? b+x : a+x -> min(a, b)+x 6034 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { 6035 bool Signed = ICI->isSigned(); 6036 const SCEV *LA = getSCEV(TrueVal); 6037 const SCEV *RA = getSCEV(FalseVal); 6038 const SCEV *LS = getSCEV(LHS); 6039 const SCEV *RS = getSCEV(RHS); 6040 if (LA->getType()->isPointerTy()) { 6041 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6042 // Need to make sure we can't produce weird expressions involving 6043 // negated pointers. 6044 if (LA == LS && RA == RS) 6045 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6046 if (LA == RS && RA == LS) 6047 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6048 } 6049 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6050 if (Op->getType()->isPointerTy()) { 6051 Op = getLosslessPtrToIntExpr(Op); 6052 if (isa<SCEVCouldNotCompute>(Op)) 6053 return Op; 6054 } 6055 if (Signed) 6056 Op = getNoopOrSignExtend(Op, Ty); 6057 else 6058 Op = getNoopOrZeroExtend(Op, Ty); 6059 return Op; 6060 }; 6061 LS = CoerceOperand(LS); 6062 RS = CoerceOperand(RS); 6063 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6064 break; 6065 const SCEV *LDiff = getMinusSCEV(LA, LS); 6066 const SCEV *RDiff = getMinusSCEV(RA, RS); 6067 if (LDiff == RDiff) 6068 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6069 LDiff); 6070 LDiff = getMinusSCEV(LA, RS); 6071 RDiff = getMinusSCEV(RA, LS); 6072 if (LDiff == RDiff) 6073 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6074 LDiff); 6075 } 6076 break; 6077 case ICmpInst::ICMP_NE: 6078 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6079 std::swap(TrueVal, FalseVal); 6080 [[fallthrough]]; 6081 case ICmpInst::ICMP_EQ: 6082 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6083 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && 6084 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6085 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); 6086 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6087 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6088 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6089 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6090 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6091 return getAddExpr(getUMaxExpr(X, C), Y); 6092 } 6093 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6094 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6095 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6096 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6097 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6098 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6099 const SCEV *X = getSCEV(LHS); 6100 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6101 X = ZExt->getOperand(); 6102 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { 6103 const SCEV *FalseValExpr = getSCEV(FalseVal); 6104 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6105 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, 6106 /*Sequential=*/true); 6107 } 6108 } 6109 break; 6110 default: 6111 break; 6112 } 6113 6114 return std::nullopt; 6115 } 6116 6117 static std::optional<const SCEV *> 6118 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6119 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6120 assert(CondExpr->getType()->isIntegerTy(1) && 6121 TrueExpr->getType() == FalseExpr->getType() && 6122 TrueExpr->getType()->isIntegerTy(1) && 6123 "Unexpected operands of a select."); 6124 6125 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6126 // --> C + (umin_seq cond, x - C) 6127 // 6128 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6129 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6130 // --> C + (umin_seq ~cond, x - C) 6131 6132 // FIXME: while we can't legally model the case where both of the hands 6133 // are fully variable, we only require that the *difference* is constant. 6134 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6135 return std::nullopt; 6136 6137 const SCEV *X, *C; 6138 if (isa<SCEVConstant>(TrueExpr)) { 6139 CondExpr = SE->getNotSCEV(CondExpr); 6140 X = FalseExpr; 6141 C = TrueExpr; 6142 } else { 6143 X = TrueExpr; 6144 C = FalseExpr; 6145 } 6146 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6147 /*Sequential=*/true)); 6148 } 6149 6150 static std::optional<const SCEV *> 6151 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, 6152 Value *FalseVal) { 6153 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6154 return std::nullopt; 6155 6156 const auto *SECond = SE->getSCEV(Cond); 6157 const auto *SETrue = SE->getSCEV(TrueVal); 6158 const auto *SEFalse = SE->getSCEV(FalseVal); 6159 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6160 } 6161 6162 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6163 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6164 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6165 assert(TrueVal->getType() == FalseVal->getType() && 6166 V->getType() == TrueVal->getType() && 6167 "Types of select hands and of the result must match."); 6168 6169 // For now, only deal with i1-typed `select`s. 6170 if (!V->getType()->isIntegerTy(1)) 6171 return getUnknown(V); 6172 6173 if (std::optional<const SCEV *> S = 6174 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6175 return *S; 6176 6177 return getUnknown(V); 6178 } 6179 6180 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6181 Value *TrueVal, 6182 Value *FalseVal) { 6183 // Handle "constant" branch or select. This can occur for instance when a 6184 // loop pass transforms an inner loop and moves on to process the outer loop. 6185 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6186 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6187 6188 if (auto *I = dyn_cast<Instruction>(V)) { 6189 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6190 if (std::optional<const SCEV *> S = 6191 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, 6192 TrueVal, FalseVal)) 6193 return *S; 6194 } 6195 } 6196 6197 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6198 } 6199 6200 /// Expand GEP instructions into add and multiply operations. This allows them 6201 /// to be analyzed by regular SCEV code. 6202 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6203 assert(GEP->getSourceElementType()->isSized() && 6204 "GEP source element type must be sized"); 6205 6206 SmallVector<const SCEV *, 4> IndexExprs; 6207 for (Value *Index : GEP->indices()) 6208 IndexExprs.push_back(getSCEV(Index)); 6209 return getGEPExpr(GEP, IndexExprs); 6210 } 6211 6212 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { 6213 uint64_t BitWidth = getTypeSizeInBits(S->getType()); 6214 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { 6215 return TrailingZeros >= BitWidth 6216 ? APInt::getZero(BitWidth) 6217 : APInt::getOneBitSet(BitWidth, TrailingZeros); 6218 }; 6219 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { 6220 // The result is GCD of all operands results. 6221 APInt Res = getConstantMultiple(N->getOperand(0)); 6222 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) 6223 Res = APIntOps::GreatestCommonDivisor( 6224 Res, getConstantMultiple(N->getOperand(I))); 6225 return Res; 6226 }; 6227 6228 switch (S->getSCEVType()) { 6229 case scConstant: 6230 return cast<SCEVConstant>(S)->getAPInt(); 6231 case scPtrToInt: 6232 return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand()); 6233 case scUDivExpr: 6234 case scVScale: 6235 return APInt(BitWidth, 1); 6236 case scTruncate: { 6237 // Only multiples that are a power of 2 will hold after truncation. 6238 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); 6239 uint32_t TZ = getMinTrailingZeros(T->getOperand()); 6240 return GetShiftedByZeros(TZ); 6241 } 6242 case scZeroExtend: { 6243 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S); 6244 return getConstantMultiple(Z->getOperand()).zext(BitWidth); 6245 } 6246 case scSignExtend: { 6247 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); 6248 return getConstantMultiple(E->getOperand()).sext(BitWidth); 6249 } 6250 case scMulExpr: { 6251 const SCEVMulExpr *M = cast<SCEVMulExpr>(S); 6252 if (M->hasNoUnsignedWrap()) { 6253 // The result is the product of all operand results. 6254 APInt Res = getConstantMultiple(M->getOperand(0)); 6255 for (const SCEV *Operand : M->operands().drop_front()) 6256 Res = Res * getConstantMultiple(Operand); 6257 return Res; 6258 } 6259 6260 // If there are no wrap guarentees, find the trailing zeros, which is the 6261 // sum of trailing zeros for all its operands. 6262 uint32_t TZ = 0; 6263 for (const SCEV *Operand : M->operands()) 6264 TZ += getMinTrailingZeros(Operand); 6265 return GetShiftedByZeros(TZ); 6266 } 6267 case scAddExpr: 6268 case scAddRecExpr: { 6269 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S); 6270 if (N->hasNoUnsignedWrap()) 6271 return GetGCDMultiple(N); 6272 // Find the trailing bits, which is the minimum of its operands. 6273 uint32_t TZ = getMinTrailingZeros(N->getOperand(0)); 6274 for (const SCEV *Operand : N->operands().drop_front()) 6275 TZ = std::min(TZ, getMinTrailingZeros(Operand)); 6276 return GetShiftedByZeros(TZ); 6277 } 6278 case scUMaxExpr: 6279 case scSMaxExpr: 6280 case scUMinExpr: 6281 case scSMinExpr: 6282 case scSequentialUMinExpr: 6283 return GetGCDMultiple(cast<SCEVNAryExpr>(S)); 6284 case scUnknown: { 6285 // ask ValueTracking for known bits 6286 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6287 unsigned Known = 6288 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT) 6289 .countMinTrailingZeros(); 6290 return GetShiftedByZeros(Known); 6291 } 6292 case scCouldNotCompute: 6293 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6294 } 6295 llvm_unreachable("Unknown SCEV kind!"); 6296 } 6297 6298 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { 6299 auto I = ConstantMultipleCache.find(S); 6300 if (I != ConstantMultipleCache.end()) 6301 return I->second; 6302 6303 APInt Result = getConstantMultipleImpl(S); 6304 auto InsertPair = ConstantMultipleCache.insert({S, Result}); 6305 assert(InsertPair.second && "Should insert a new key"); 6306 return InsertPair.first->second; 6307 } 6308 6309 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { 6310 APInt Multiple = getConstantMultiple(S); 6311 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; 6312 } 6313 6314 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { 6315 return std::min(getConstantMultiple(S).countTrailingZeros(), 6316 (unsigned)getTypeSizeInBits(S->getType())); 6317 } 6318 6319 /// Helper method to assign a range to V from metadata present in the IR. 6320 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6321 if (Instruction *I = dyn_cast<Instruction>(V)) 6322 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6323 return getConstantRangeFromMetadata(*MD); 6324 6325 return std::nullopt; 6326 } 6327 6328 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6329 SCEV::NoWrapFlags Flags) { 6330 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6331 AddRec->setNoWrapFlags(Flags); 6332 UnsignedRanges.erase(AddRec); 6333 SignedRanges.erase(AddRec); 6334 ConstantMultipleCache.erase(AddRec); 6335 } 6336 } 6337 6338 ConstantRange ScalarEvolution:: 6339 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6340 const DataLayout &DL = getDataLayout(); 6341 6342 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6343 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6344 6345 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6346 // use information about the trip count to improve our available range. Note 6347 // that the trip count independent cases are already handled by known bits. 6348 // WARNING: The definition of recurrence used here is subtly different than 6349 // the one used by AddRec (and thus most of this file). Step is allowed to 6350 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6351 // and other addrecs in the same loop (for non-affine addrecs). The code 6352 // below intentionally handles the case where step is not loop invariant. 6353 auto *P = dyn_cast<PHINode>(U->getValue()); 6354 if (!P) 6355 return FullSet; 6356 6357 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6358 // even the values that are not available in these blocks may come from them, 6359 // and this leads to false-positive recurrence test. 6360 for (auto *Pred : predecessors(P->getParent())) 6361 if (!DT.isReachableFromEntry(Pred)) 6362 return FullSet; 6363 6364 BinaryOperator *BO; 6365 Value *Start, *Step; 6366 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6367 return FullSet; 6368 6369 // If we found a recurrence in reachable code, we must be in a loop. Note 6370 // that BO might be in some subloop of L, and that's completely okay. 6371 auto *L = LI.getLoopFor(P->getParent()); 6372 assert(L && L->getHeader() == P->getParent()); 6373 if (!L->contains(BO->getParent())) 6374 // NOTE: This bailout should be an assert instead. However, asserting 6375 // the condition here exposes a case where LoopFusion is querying SCEV 6376 // with malformed loop information during the midst of the transform. 6377 // There doesn't appear to be an obvious fix, so for the moment bailout 6378 // until the caller issue can be fixed. PR49566 tracks the bug. 6379 return FullSet; 6380 6381 // TODO: Extend to other opcodes such as mul, and div 6382 switch (BO->getOpcode()) { 6383 default: 6384 return FullSet; 6385 case Instruction::AShr: 6386 case Instruction::LShr: 6387 case Instruction::Shl: 6388 break; 6389 }; 6390 6391 if (BO->getOperand(0) != P) 6392 // TODO: Handle the power function forms some day. 6393 return FullSet; 6394 6395 unsigned TC = getSmallConstantMaxTripCount(L); 6396 if (!TC || TC >= BitWidth) 6397 return FullSet; 6398 6399 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6400 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6401 assert(KnownStart.getBitWidth() == BitWidth && 6402 KnownStep.getBitWidth() == BitWidth); 6403 6404 // Compute total shift amount, being careful of overflow and bitwidths. 6405 auto MaxShiftAmt = KnownStep.getMaxValue(); 6406 APInt TCAP(BitWidth, TC-1); 6407 bool Overflow = false; 6408 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6409 if (Overflow) 6410 return FullSet; 6411 6412 switch (BO->getOpcode()) { 6413 default: 6414 llvm_unreachable("filtered out above"); 6415 case Instruction::AShr: { 6416 // For each ashr, three cases: 6417 // shift = 0 => unchanged value 6418 // saturation => 0 or -1 6419 // other => a value closer to zero (of the same sign) 6420 // Thus, the end value is closer to zero than the start. 6421 auto KnownEnd = KnownBits::ashr(KnownStart, 6422 KnownBits::makeConstant(TotalShift)); 6423 if (KnownStart.isNonNegative()) 6424 // Analogous to lshr (simply not yet canonicalized) 6425 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6426 KnownStart.getMaxValue() + 1); 6427 if (KnownStart.isNegative()) 6428 // End >=u Start && End <=s Start 6429 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6430 KnownEnd.getMaxValue() + 1); 6431 break; 6432 } 6433 case Instruction::LShr: { 6434 // For each lshr, three cases: 6435 // shift = 0 => unchanged value 6436 // saturation => 0 6437 // other => a smaller positive number 6438 // Thus, the low end of the unsigned range is the last value produced. 6439 auto KnownEnd = KnownBits::lshr(KnownStart, 6440 KnownBits::makeConstant(TotalShift)); 6441 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6442 KnownStart.getMaxValue() + 1); 6443 } 6444 case Instruction::Shl: { 6445 // Iff no bits are shifted out, value increases on every shift. 6446 auto KnownEnd = KnownBits::shl(KnownStart, 6447 KnownBits::makeConstant(TotalShift)); 6448 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6449 return ConstantRange(KnownStart.getMinValue(), 6450 KnownEnd.getMaxValue() + 1); 6451 break; 6452 } 6453 }; 6454 return FullSet; 6455 } 6456 6457 const ConstantRange & 6458 ScalarEvolution::getRangeRefIter(const SCEV *S, 6459 ScalarEvolution::RangeSignHint SignHint) { 6460 DenseMap<const SCEV *, ConstantRange> &Cache = 6461 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6462 : SignedRanges; 6463 SmallVector<const SCEV *> WorkList; 6464 SmallPtrSet<const SCEV *, 8> Seen; 6465 6466 // Add Expr to the worklist, if Expr is either an N-ary expression or a 6467 // SCEVUnknown PHI node. 6468 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { 6469 if (!Seen.insert(Expr).second) 6470 return; 6471 if (Cache.contains(Expr)) 6472 return; 6473 switch (Expr->getSCEVType()) { 6474 case scUnknown: 6475 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) 6476 break; 6477 [[fallthrough]]; 6478 case scConstant: 6479 case scVScale: 6480 case scTruncate: 6481 case scZeroExtend: 6482 case scSignExtend: 6483 case scPtrToInt: 6484 case scAddExpr: 6485 case scMulExpr: 6486 case scUDivExpr: 6487 case scAddRecExpr: 6488 case scUMaxExpr: 6489 case scSMaxExpr: 6490 case scUMinExpr: 6491 case scSMinExpr: 6492 case scSequentialUMinExpr: 6493 WorkList.push_back(Expr); 6494 break; 6495 case scCouldNotCompute: 6496 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6497 } 6498 }; 6499 AddToWorklist(S); 6500 6501 // Build worklist by queuing operands of N-ary expressions and phi nodes. 6502 for (unsigned I = 0; I != WorkList.size(); ++I) { 6503 const SCEV *P = WorkList[I]; 6504 auto *UnknownS = dyn_cast<SCEVUnknown>(P); 6505 // If it is not a `SCEVUnknown`, just recurse into operands. 6506 if (!UnknownS) { 6507 for (const SCEV *Op : P->operands()) 6508 AddToWorklist(Op); 6509 continue; 6510 } 6511 // `SCEVUnknown`'s require special treatment. 6512 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { 6513 if (!PendingPhiRangesIter.insert(P).second) 6514 continue; 6515 for (auto &Op : reverse(P->operands())) 6516 AddToWorklist(getSCEV(Op)); 6517 } 6518 } 6519 6520 if (!WorkList.empty()) { 6521 // Use getRangeRef to compute ranges for items in the worklist in reverse 6522 // order. This will force ranges for earlier operands to be computed before 6523 // their users in most cases. 6524 for (const SCEV *P : 6525 reverse(make_range(WorkList.begin() + 1, WorkList.end()))) { 6526 getRangeRef(P, SignHint); 6527 6528 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) 6529 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) 6530 PendingPhiRangesIter.erase(P); 6531 } 6532 } 6533 6534 return getRangeRef(S, SignHint, 0); 6535 } 6536 6537 /// Determine the range for a particular SCEV. If SignHint is 6538 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6539 /// with a "cleaner" unsigned (resp. signed) representation. 6540 const ConstantRange &ScalarEvolution::getRangeRef( 6541 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { 6542 DenseMap<const SCEV *, ConstantRange> &Cache = 6543 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6544 : SignedRanges; 6545 ConstantRange::PreferredRangeType RangeType = 6546 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6547 : ConstantRange::Signed; 6548 6549 // See if we've computed this range already. 6550 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6551 if (I != Cache.end()) 6552 return I->second; 6553 6554 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6555 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6556 6557 // Switch to iteratively computing the range for S, if it is part of a deeply 6558 // nested expression. 6559 if (Depth > RangeIterThreshold) 6560 return getRangeRefIter(S, SignHint); 6561 6562 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6563 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6564 using OBO = OverflowingBinaryOperator; 6565 6566 // If the value has known zeros, the maximum value will have those known zeros 6567 // as well. 6568 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 6569 APInt Multiple = getNonZeroConstantMultiple(S); 6570 APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple); 6571 if (!Remainder.isZero()) 6572 ConservativeResult = 6573 ConstantRange(APInt::getMinValue(BitWidth), 6574 APInt::getMaxValue(BitWidth) - Remainder + 1); 6575 } 6576 else { 6577 uint32_t TZ = getMinTrailingZeros(S); 6578 if (TZ != 0) { 6579 ConservativeResult = ConstantRange( 6580 APInt::getSignedMinValue(BitWidth), 6581 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6582 } 6583 } 6584 6585 switch (S->getSCEVType()) { 6586 case scConstant: 6587 llvm_unreachable("Already handled above."); 6588 case scVScale: 6589 return setRange(S, SignHint, getVScaleRange(&F, BitWidth)); 6590 case scTruncate: { 6591 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); 6592 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); 6593 return setRange( 6594 Trunc, SignHint, 6595 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); 6596 } 6597 case scZeroExtend: { 6598 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); 6599 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); 6600 return setRange( 6601 ZExt, SignHint, 6602 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); 6603 } 6604 case scSignExtend: { 6605 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); 6606 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); 6607 return setRange( 6608 SExt, SignHint, 6609 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); 6610 } 6611 case scPtrToInt: { 6612 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); 6613 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); 6614 return setRange(PtrToInt, SignHint, X); 6615 } 6616 case scAddExpr: { 6617 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 6618 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); 6619 unsigned WrapType = OBO::AnyWrap; 6620 if (Add->hasNoSignedWrap()) 6621 WrapType |= OBO::NoSignedWrap; 6622 if (Add->hasNoUnsignedWrap()) 6623 WrapType |= OBO::NoUnsignedWrap; 6624 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6625 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1), 6626 WrapType, RangeType); 6627 return setRange(Add, SignHint, 6628 ConservativeResult.intersectWith(X, RangeType)); 6629 } 6630 case scMulExpr: { 6631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); 6632 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); 6633 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6634 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1)); 6635 return setRange(Mul, SignHint, 6636 ConservativeResult.intersectWith(X, RangeType)); 6637 } 6638 case scUDivExpr: { 6639 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6640 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); 6641 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); 6642 return setRange(UDiv, SignHint, 6643 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6644 } 6645 case scAddRecExpr: { 6646 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); 6647 // If there's no unsigned wrap, the value will never be less than its 6648 // initial value. 6649 if (AddRec->hasNoUnsignedWrap()) { 6650 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6651 if (!UnsignedMinValue.isZero()) 6652 ConservativeResult = ConservativeResult.intersectWith( 6653 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6654 } 6655 6656 // If there's no signed wrap, and all the operands except initial value have 6657 // the same sign or zero, the value won't ever be: 6658 // 1: smaller than initial value if operands are non negative, 6659 // 2: bigger than initial value if operands are non positive. 6660 // For both cases, value can not cross signed min/max boundary. 6661 if (AddRec->hasNoSignedWrap()) { 6662 bool AllNonNeg = true; 6663 bool AllNonPos = true; 6664 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6665 if (!isKnownNonNegative(AddRec->getOperand(i))) 6666 AllNonNeg = false; 6667 if (!isKnownNonPositive(AddRec->getOperand(i))) 6668 AllNonPos = false; 6669 } 6670 if (AllNonNeg) 6671 ConservativeResult = ConservativeResult.intersectWith( 6672 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6673 APInt::getSignedMinValue(BitWidth)), 6674 RangeType); 6675 else if (AllNonPos) 6676 ConservativeResult = ConservativeResult.intersectWith( 6677 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 6678 getSignedRangeMax(AddRec->getStart()) + 6679 1), 6680 RangeType); 6681 } 6682 6683 // TODO: non-affine addrec 6684 if (AddRec->isAffine()) { 6685 const SCEV *MaxBEScev = 6686 getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6687 if (!isa<SCEVCouldNotCompute>(MaxBEScev)) { 6688 APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt(); 6689 6690 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if 6691 // MaxBECount's active bits are all <= AddRec's bit width. 6692 if (MaxBECount.getBitWidth() > BitWidth && 6693 MaxBECount.getActiveBits() <= BitWidth) 6694 MaxBECount = MaxBECount.trunc(BitWidth); 6695 else if (MaxBECount.getBitWidth() < BitWidth) 6696 MaxBECount = MaxBECount.zext(BitWidth); 6697 6698 if (MaxBECount.getBitWidth() == BitWidth) { 6699 auto RangeFromAffine = getRangeForAffineAR( 6700 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6701 ConservativeResult = 6702 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6703 6704 auto RangeFromFactoring = getRangeViaFactoring( 6705 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6706 ConservativeResult = 6707 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6708 } 6709 } 6710 6711 // Now try symbolic BE count and more powerful methods. 6712 if (UseExpensiveRangeSharpening) { 6713 const SCEV *SymbolicMaxBECount = 6714 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6715 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6716 getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth && 6717 AddRec->hasNoSelfWrap()) { 6718 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6719 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6720 ConservativeResult = 6721 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6722 } 6723 } 6724 } 6725 6726 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6727 } 6728 case scUMaxExpr: 6729 case scSMaxExpr: 6730 case scUMinExpr: 6731 case scSMinExpr: 6732 case scSequentialUMinExpr: { 6733 Intrinsic::ID ID; 6734 switch (S->getSCEVType()) { 6735 case scUMaxExpr: 6736 ID = Intrinsic::umax; 6737 break; 6738 case scSMaxExpr: 6739 ID = Intrinsic::smax; 6740 break; 6741 case scUMinExpr: 6742 case scSequentialUMinExpr: 6743 ID = Intrinsic::umin; 6744 break; 6745 case scSMinExpr: 6746 ID = Intrinsic::smin; 6747 break; 6748 default: 6749 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6750 } 6751 6752 const auto *NAry = cast<SCEVNAryExpr>(S); 6753 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); 6754 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6755 X = X.intrinsic( 6756 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); 6757 return setRange(S, SignHint, 6758 ConservativeResult.intersectWith(X, RangeType)); 6759 } 6760 case scUnknown: { 6761 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6762 Value *V = U->getValue(); 6763 6764 // Check if the IR explicitly contains !range metadata. 6765 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); 6766 if (MDRange) 6767 ConservativeResult = 6768 ConservativeResult.intersectWith(*MDRange, RangeType); 6769 6770 // Use facts about recurrences in the underlying IR. Note that add 6771 // recurrences are AddRecExprs and thus don't hit this path. This 6772 // primarily handles shift recurrences. 6773 auto CR = getRangeForUnknownRecurrence(U); 6774 ConservativeResult = ConservativeResult.intersectWith(CR); 6775 6776 // See if ValueTracking can give us a useful range. 6777 const DataLayout &DL = getDataLayout(); 6778 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT); 6779 if (Known.getBitWidth() != BitWidth) 6780 Known = Known.zextOrTrunc(BitWidth); 6781 6782 // ValueTracking may be able to compute a tighter result for the number of 6783 // sign bits than for the value of those sign bits. 6784 unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT); 6785 if (U->getType()->isPointerTy()) { 6786 // If the pointer size is larger than the index size type, this can cause 6787 // NS to be larger than BitWidth. So compensate for this. 6788 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6789 int ptrIdxDiff = ptrSize - BitWidth; 6790 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6791 NS -= ptrIdxDiff; 6792 } 6793 6794 if (NS > 1) { 6795 // If we know any of the sign bits, we know all of the sign bits. 6796 if (!Known.Zero.getHiBits(NS).isZero()) 6797 Known.Zero.setHighBits(NS); 6798 if (!Known.One.getHiBits(NS).isZero()) 6799 Known.One.setHighBits(NS); 6800 } 6801 6802 if (Known.getMinValue() != Known.getMaxValue() + 1) 6803 ConservativeResult = ConservativeResult.intersectWith( 6804 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6805 RangeType); 6806 if (NS > 1) 6807 ConservativeResult = ConservativeResult.intersectWith( 6808 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6809 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6810 RangeType); 6811 6812 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { 6813 // Strengthen the range if the underlying IR value is a 6814 // global/alloca/heap allocation using the size of the object. 6815 ObjectSizeOpts Opts; 6816 Opts.RoundToAlign = false; 6817 Opts.NullIsUnknownSize = true; 6818 uint64_t ObjSize; 6819 if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) || 6820 isAllocationFn(V, &TLI)) && 6821 getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) { 6822 // The highest address the object can start is ObjSize bytes before the 6823 // end (unsigned max value). If this value is not a multiple of the 6824 // alignment, the last possible start value is the next lowest multiple 6825 // of the alignment. Note: The computations below cannot overflow, 6826 // because if they would there's no possible start address for the 6827 // object. 6828 APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize); 6829 uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); 6830 uint64_t Rem = MaxVal.urem(Align); 6831 MaxVal -= APInt(BitWidth, Rem); 6832 APInt MinVal = APInt::getZero(BitWidth); 6833 if (llvm::isKnownNonZero(V, DL)) 6834 MinVal = Align; 6835 ConservativeResult = ConservativeResult.intersectWith( 6836 ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType); 6837 } 6838 } 6839 6840 // A range of Phi is a subset of union of all ranges of its input. 6841 if (PHINode *Phi = dyn_cast<PHINode>(V)) { 6842 // Make sure that we do not run over cycled Phis. 6843 if (PendingPhiRanges.insert(Phi).second) { 6844 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6845 6846 for (const auto &Op : Phi->operands()) { 6847 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); 6848 RangeFromOps = RangeFromOps.unionWith(OpRange); 6849 // No point to continue if we already have a full set. 6850 if (RangeFromOps.isFullSet()) 6851 break; 6852 } 6853 ConservativeResult = 6854 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6855 bool Erased = PendingPhiRanges.erase(Phi); 6856 assert(Erased && "Failed to erase Phi properly?"); 6857 (void)Erased; 6858 } 6859 } 6860 6861 // vscale can't be equal to zero 6862 if (const auto *II = dyn_cast<IntrinsicInst>(V)) 6863 if (II->getIntrinsicID() == Intrinsic::vscale) { 6864 ConstantRange Disallowed = APInt::getZero(BitWidth); 6865 ConservativeResult = ConservativeResult.difference(Disallowed); 6866 } 6867 6868 return setRange(U, SignHint, std::move(ConservativeResult)); 6869 } 6870 case scCouldNotCompute: 6871 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6872 } 6873 6874 return setRange(S, SignHint, std::move(ConservativeResult)); 6875 } 6876 6877 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6878 // values that the expression can take. Initially, the expression has a value 6879 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6880 // argument defines if we treat Step as signed or unsigned. 6881 static ConstantRange getRangeForAffineARHelper(APInt Step, 6882 const ConstantRange &StartRange, 6883 const APInt &MaxBECount, 6884 bool Signed) { 6885 unsigned BitWidth = Step.getBitWidth(); 6886 assert(BitWidth == StartRange.getBitWidth() && 6887 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths"); 6888 // If either Step or MaxBECount is 0, then the expression won't change, and we 6889 // just need to return the initial range. 6890 if (Step == 0 || MaxBECount == 0) 6891 return StartRange; 6892 6893 // If we don't know anything about the initial value (i.e. StartRange is 6894 // FullRange), then we don't know anything about the final range either. 6895 // Return FullRange. 6896 if (StartRange.isFullSet()) 6897 return ConstantRange::getFull(BitWidth); 6898 6899 // If Step is signed and negative, then we use its absolute value, but we also 6900 // note that we're moving in the opposite direction. 6901 bool Descending = Signed && Step.isNegative(); 6902 6903 if (Signed) 6904 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6905 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6906 // This equations hold true due to the well-defined wrap-around behavior of 6907 // APInt. 6908 Step = Step.abs(); 6909 6910 // Check if Offset is more than full span of BitWidth. If it is, the 6911 // expression is guaranteed to overflow. 6912 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6913 return ConstantRange::getFull(BitWidth); 6914 6915 // Offset is by how much the expression can change. Checks above guarantee no 6916 // overflow here. 6917 APInt Offset = Step * MaxBECount; 6918 6919 // Minimum value of the final range will match the minimal value of StartRange 6920 // if the expression is increasing and will be decreased by Offset otherwise. 6921 // Maximum value of the final range will match the maximal value of StartRange 6922 // if the expression is decreasing and will be increased by Offset otherwise. 6923 APInt StartLower = StartRange.getLower(); 6924 APInt StartUpper = StartRange.getUpper() - 1; 6925 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6926 : (StartUpper + std::move(Offset)); 6927 6928 // It's possible that the new minimum/maximum value will fall into the initial 6929 // range (due to wrap around). This means that the expression can take any 6930 // value in this bitwidth, and we have to return full range. 6931 if (StartRange.contains(MovedBoundary)) 6932 return ConstantRange::getFull(BitWidth); 6933 6934 APInt NewLower = 6935 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6936 APInt NewUpper = 6937 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6938 NewUpper += 1; 6939 6940 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6941 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6942 } 6943 6944 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6945 const SCEV *Step, 6946 const APInt &MaxBECount) { 6947 assert(getTypeSizeInBits(Start->getType()) == 6948 getTypeSizeInBits(Step->getType()) && 6949 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && 6950 "mismatched bit widths"); 6951 6952 // First, consider step signed. 6953 ConstantRange StartSRange = getSignedRange(Start); 6954 ConstantRange StepSRange = getSignedRange(Step); 6955 6956 // If Step can be both positive and negative, we need to find ranges for the 6957 // maximum absolute step values in both directions and union them. 6958 ConstantRange SR = getRangeForAffineARHelper( 6959 StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true); 6960 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6961 StartSRange, MaxBECount, 6962 /* Signed = */ true)); 6963 6964 // Next, consider step unsigned. 6965 ConstantRange UR = getRangeForAffineARHelper( 6966 getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount, 6967 /* Signed = */ false); 6968 6969 // Finally, intersect signed and unsigned ranges. 6970 return SR.intersectWith(UR, ConstantRange::Smallest); 6971 } 6972 6973 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6974 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6975 ScalarEvolution::RangeSignHint SignHint) { 6976 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6977 assert(AddRec->hasNoSelfWrap() && 6978 "This only works for non-self-wrapping AddRecs!"); 6979 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6980 const SCEV *Step = AddRec->getStepRecurrence(*this); 6981 // Only deal with constant step to save compile time. 6982 if (!isa<SCEVConstant>(Step)) 6983 return ConstantRange::getFull(BitWidth); 6984 // Let's make sure that we can prove that we do not self-wrap during 6985 // MaxBECount iterations. We need this because MaxBECount is a maximum 6986 // iteration count estimate, and we might infer nw from some exit for which we 6987 // do not know max exit count (or any other side reasoning). 6988 // TODO: Turn into assert at some point. 6989 if (getTypeSizeInBits(MaxBECount->getType()) > 6990 getTypeSizeInBits(AddRec->getType())) 6991 return ConstantRange::getFull(BitWidth); 6992 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6993 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6994 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6995 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6996 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6997 MaxItersWithoutWrap)) 6998 return ConstantRange::getFull(BitWidth); 6999 7000 ICmpInst::Predicate LEPred = 7001 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 7002 ICmpInst::Predicate GEPred = 7003 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 7004 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 7005 7006 // We know that there is no self-wrap. Let's take Start and End values and 7007 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 7008 // the iteration. They either lie inside the range [Min(Start, End), 7009 // Max(Start, End)] or outside it: 7010 // 7011 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 7012 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 7013 // 7014 // No self wrap flag guarantees that the intermediate values cannot be BOTH 7015 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 7016 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 7017 // Start <= End and step is positive, or Start >= End and step is negative. 7018 const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop()); 7019 ConstantRange StartRange = getRangeRef(Start, SignHint); 7020 ConstantRange EndRange = getRangeRef(End, SignHint); 7021 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 7022 // If they already cover full iteration space, we will know nothing useful 7023 // even if we prove what we want to prove. 7024 if (RangeBetween.isFullSet()) 7025 return RangeBetween; 7026 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 7027 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 7028 : RangeBetween.isWrappedSet(); 7029 if (IsWrappedSet) 7030 return ConstantRange::getFull(BitWidth); 7031 7032 if (isKnownPositive(Step) && 7033 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 7034 return RangeBetween; 7035 if (isKnownNegative(Step) && 7036 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 7037 return RangeBetween; 7038 return ConstantRange::getFull(BitWidth); 7039 } 7040 7041 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 7042 const SCEV *Step, 7043 const APInt &MaxBECount) { 7044 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 7045 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 7046 7047 unsigned BitWidth = MaxBECount.getBitWidth(); 7048 assert(getTypeSizeInBits(Start->getType()) == BitWidth && 7049 getTypeSizeInBits(Step->getType()) == BitWidth && 7050 "mismatched bit widths"); 7051 7052 struct SelectPattern { 7053 Value *Condition = nullptr; 7054 APInt TrueValue; 7055 APInt FalseValue; 7056 7057 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 7058 const SCEV *S) { 7059 std::optional<unsigned> CastOp; 7060 APInt Offset(BitWidth, 0); 7061 7062 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 7063 "Should be!"); 7064 7065 // Peel off a constant offset: 7066 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 7067 // In the future we could consider being smarter here and handle 7068 // {Start+Step,+,Step} too. 7069 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 7070 return; 7071 7072 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 7073 S = SA->getOperand(1); 7074 } 7075 7076 // Peel off a cast operation 7077 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 7078 CastOp = SCast->getSCEVType(); 7079 S = SCast->getOperand(); 7080 } 7081 7082 using namespace llvm::PatternMatch; 7083 7084 auto *SU = dyn_cast<SCEVUnknown>(S); 7085 const APInt *TrueVal, *FalseVal; 7086 if (!SU || 7087 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 7088 m_APInt(FalseVal)))) { 7089 Condition = nullptr; 7090 return; 7091 } 7092 7093 TrueValue = *TrueVal; 7094 FalseValue = *FalseVal; 7095 7096 // Re-apply the cast we peeled off earlier 7097 if (CastOp) 7098 switch (*CastOp) { 7099 default: 7100 llvm_unreachable("Unknown SCEV cast type!"); 7101 7102 case scTruncate: 7103 TrueValue = TrueValue.trunc(BitWidth); 7104 FalseValue = FalseValue.trunc(BitWidth); 7105 break; 7106 case scZeroExtend: 7107 TrueValue = TrueValue.zext(BitWidth); 7108 FalseValue = FalseValue.zext(BitWidth); 7109 break; 7110 case scSignExtend: 7111 TrueValue = TrueValue.sext(BitWidth); 7112 FalseValue = FalseValue.sext(BitWidth); 7113 break; 7114 } 7115 7116 // Re-apply the constant offset we peeled off earlier 7117 TrueValue += Offset; 7118 FalseValue += Offset; 7119 } 7120 7121 bool isRecognized() { return Condition != nullptr; } 7122 }; 7123 7124 SelectPattern StartPattern(*this, BitWidth, Start); 7125 if (!StartPattern.isRecognized()) 7126 return ConstantRange::getFull(BitWidth); 7127 7128 SelectPattern StepPattern(*this, BitWidth, Step); 7129 if (!StepPattern.isRecognized()) 7130 return ConstantRange::getFull(BitWidth); 7131 7132 if (StartPattern.Condition != StepPattern.Condition) { 7133 // We don't handle this case today; but we could, by considering four 7134 // possibilities below instead of two. I'm not sure if there are cases where 7135 // that will help over what getRange already does, though. 7136 return ConstantRange::getFull(BitWidth); 7137 } 7138 7139 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 7140 // construct arbitrary general SCEV expressions here. This function is called 7141 // from deep in the call stack, and calling getSCEV (on a sext instruction, 7142 // say) can end up caching a suboptimal value. 7143 7144 // FIXME: without the explicit `this` receiver below, MSVC errors out with 7145 // C2352 and C2512 (otherwise it isn't needed). 7146 7147 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 7148 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 7149 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 7150 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 7151 7152 ConstantRange TrueRange = 7153 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount); 7154 ConstantRange FalseRange = 7155 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount); 7156 7157 return TrueRange.unionWith(FalseRange); 7158 } 7159 7160 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 7161 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 7162 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 7163 7164 // Return early if there are no flags to propagate to the SCEV. 7165 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7166 if (BinOp->hasNoUnsignedWrap()) 7167 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 7168 if (BinOp->hasNoSignedWrap()) 7169 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 7170 if (Flags == SCEV::FlagAnyWrap) 7171 return SCEV::FlagAnyWrap; 7172 7173 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7174 } 7175 7176 const Instruction * 7177 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7178 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7179 return &*AddRec->getLoop()->getHeader()->begin(); 7180 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7181 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7182 return I; 7183 return nullptr; 7184 } 7185 7186 const Instruction * 7187 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7188 bool &Precise) { 7189 Precise = true; 7190 // Do a bounded search of the def relation of the requested SCEVs. 7191 SmallSet<const SCEV *, 16> Visited; 7192 SmallVector<const SCEV *> Worklist; 7193 auto pushOp = [&](const SCEV *S) { 7194 if (!Visited.insert(S).second) 7195 return; 7196 // Threshold of 30 here is arbitrary. 7197 if (Visited.size() > 30) { 7198 Precise = false; 7199 return; 7200 } 7201 Worklist.push_back(S); 7202 }; 7203 7204 for (const auto *S : Ops) 7205 pushOp(S); 7206 7207 const Instruction *Bound = nullptr; 7208 while (!Worklist.empty()) { 7209 auto *S = Worklist.pop_back_val(); 7210 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7211 if (!Bound || DT.dominates(Bound, DefI)) 7212 Bound = DefI; 7213 } else { 7214 for (const auto *Op : S->operands()) 7215 pushOp(Op); 7216 } 7217 } 7218 return Bound ? Bound : &*F.getEntryBlock().begin(); 7219 } 7220 7221 const Instruction * 7222 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7223 bool Discard; 7224 return getDefiningScopeBound(Ops, Discard); 7225 } 7226 7227 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7228 const Instruction *B) { 7229 if (A->getParent() == B->getParent() && 7230 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7231 B->getIterator())) 7232 return true; 7233 7234 auto *BLoop = LI.getLoopFor(B->getParent()); 7235 if (BLoop && BLoop->getHeader() == B->getParent() && 7236 BLoop->getLoopPreheader() == A->getParent() && 7237 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7238 A->getParent()->end()) && 7239 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7240 B->getIterator())) 7241 return true; 7242 return false; 7243 } 7244 7245 7246 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7247 // Only proceed if we can prove that I does not yield poison. 7248 if (!programUndefinedIfPoison(I)) 7249 return false; 7250 7251 // At this point we know that if I is executed, then it does not wrap 7252 // according to at least one of NSW or NUW. If I is not executed, then we do 7253 // not know if the calculation that I represents would wrap. Multiple 7254 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7255 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7256 // derived from other instructions that map to the same SCEV. We cannot make 7257 // that guarantee for cases where I is not executed. So we need to find a 7258 // upper bound on the defining scope for the SCEV, and prove that I is 7259 // executed every time we enter that scope. When the bounding scope is a 7260 // loop (the common case), this is equivalent to proving I executes on every 7261 // iteration of that loop. 7262 SmallVector<const SCEV *> SCEVOps; 7263 for (const Use &Op : I->operands()) { 7264 // I could be an extractvalue from a call to an overflow intrinsic. 7265 // TODO: We can do better here in some cases. 7266 if (isSCEVable(Op->getType())) 7267 SCEVOps.push_back(getSCEV(Op)); 7268 } 7269 auto *DefI = getDefiningScopeBound(SCEVOps); 7270 return isGuaranteedToTransferExecutionTo(DefI, I); 7271 } 7272 7273 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7274 // If we know that \c I can never be poison period, then that's enough. 7275 if (isSCEVExprNeverPoison(I)) 7276 return true; 7277 7278 // If the loop only has one exit, then we know that, if the loop is entered, 7279 // any instruction dominating that exit will be executed. If any such 7280 // instruction would result in UB, the addrec cannot be poison. 7281 // 7282 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but 7283 // also handles uses outside the loop header (they just need to dominate the 7284 // single exit). 7285 7286 auto *ExitingBB = L->getExitingBlock(); 7287 if (!ExitingBB || !loopHasNoAbnormalExits(L)) 7288 return false; 7289 7290 SmallPtrSet<const Value *, 16> KnownPoison; 7291 SmallVector<const Instruction *, 8> Worklist; 7292 7293 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7294 // things that are known to be poison under that assumption go on the 7295 // Worklist. 7296 KnownPoison.insert(I); 7297 Worklist.push_back(I); 7298 7299 while (!Worklist.empty()) { 7300 const Instruction *Poison = Worklist.pop_back_val(); 7301 7302 for (const Use &U : Poison->uses()) { 7303 const Instruction *PoisonUser = cast<Instruction>(U.getUser()); 7304 if (mustTriggerUB(PoisonUser, KnownPoison) && 7305 DT.dominates(PoisonUser->getParent(), ExitingBB)) 7306 return true; 7307 7308 if (propagatesPoison(U) && L->contains(PoisonUser)) 7309 if (KnownPoison.insert(PoisonUser).second) 7310 Worklist.push_back(PoisonUser); 7311 } 7312 } 7313 7314 return false; 7315 } 7316 7317 ScalarEvolution::LoopProperties 7318 ScalarEvolution::getLoopProperties(const Loop *L) { 7319 using LoopProperties = ScalarEvolution::LoopProperties; 7320 7321 auto Itr = LoopPropertiesCache.find(L); 7322 if (Itr == LoopPropertiesCache.end()) { 7323 auto HasSideEffects = [](Instruction *I) { 7324 if (auto *SI = dyn_cast<StoreInst>(I)) 7325 return !SI->isSimple(); 7326 7327 return I->mayThrow() || I->mayWriteToMemory(); 7328 }; 7329 7330 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7331 /*HasNoSideEffects*/ true}; 7332 7333 for (auto *BB : L->getBlocks()) 7334 for (auto &I : *BB) { 7335 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7336 LP.HasNoAbnormalExits = false; 7337 if (HasSideEffects(&I)) 7338 LP.HasNoSideEffects = false; 7339 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7340 break; // We're already as pessimistic as we can get. 7341 } 7342 7343 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7344 assert(InsertPair.second && "We just checked!"); 7345 Itr = InsertPair.first; 7346 } 7347 7348 return Itr->second; 7349 } 7350 7351 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7352 // A mustprogress loop without side effects must be finite. 7353 // TODO: The check used here is very conservative. It's only *specific* 7354 // side effects which are well defined in infinite loops. 7355 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7356 } 7357 7358 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7359 // Worklist item with a Value and a bool indicating whether all operands have 7360 // been visited already. 7361 using PointerTy = PointerIntPair<Value *, 1, bool>; 7362 SmallVector<PointerTy> Stack; 7363 7364 Stack.emplace_back(V, true); 7365 Stack.emplace_back(V, false); 7366 while (!Stack.empty()) { 7367 auto E = Stack.pop_back_val(); 7368 Value *CurV = E.getPointer(); 7369 7370 if (getExistingSCEV(CurV)) 7371 continue; 7372 7373 SmallVector<Value *> Ops; 7374 const SCEV *CreatedSCEV = nullptr; 7375 // If all operands have been visited already, create the SCEV. 7376 if (E.getInt()) { 7377 CreatedSCEV = createSCEV(CurV); 7378 } else { 7379 // Otherwise get the operands we need to create SCEV's for before creating 7380 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7381 // just use it. 7382 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7383 } 7384 7385 if (CreatedSCEV) { 7386 insertValueToMap(CurV, CreatedSCEV); 7387 } else { 7388 // Queue CurV for SCEV creation, followed by its's operands which need to 7389 // be constructed first. 7390 Stack.emplace_back(CurV, true); 7391 for (Value *Op : Ops) 7392 Stack.emplace_back(Op, false); 7393 } 7394 } 7395 7396 return getExistingSCEV(V); 7397 } 7398 7399 const SCEV * 7400 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7401 if (!isSCEVable(V->getType())) 7402 return getUnknown(V); 7403 7404 if (Instruction *I = dyn_cast<Instruction>(V)) { 7405 // Don't attempt to analyze instructions in blocks that aren't 7406 // reachable. Such instructions don't matter, and they aren't required 7407 // to obey basic rules for definitions dominating uses which this 7408 // analysis depends on. 7409 if (!DT.isReachableFromEntry(I->getParent())) 7410 return getUnknown(PoisonValue::get(V->getType())); 7411 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7412 return getConstant(CI); 7413 else if (isa<GlobalAlias>(V)) 7414 return getUnknown(V); 7415 else if (!isa<ConstantExpr>(V)) 7416 return getUnknown(V); 7417 7418 Operator *U = cast<Operator>(V); 7419 if (auto BO = 7420 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7421 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7422 switch (BO->Opcode) { 7423 case Instruction::Add: 7424 case Instruction::Mul: { 7425 // For additions and multiplications, traverse add/mul chains for which we 7426 // can potentially create a single SCEV, to reduce the number of 7427 // get{Add,Mul}Expr calls. 7428 do { 7429 if (BO->Op) { 7430 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7431 Ops.push_back(BO->Op); 7432 break; 7433 } 7434 } 7435 Ops.push_back(BO->RHS); 7436 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7437 dyn_cast<Instruction>(V)); 7438 if (!NewBO || 7439 (BO->Opcode == Instruction::Add && 7440 (NewBO->Opcode != Instruction::Add && 7441 NewBO->Opcode != Instruction::Sub)) || 7442 (BO->Opcode == Instruction::Mul && 7443 NewBO->Opcode != Instruction::Mul)) { 7444 Ops.push_back(BO->LHS); 7445 break; 7446 } 7447 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions 7448 // requires a SCEV for the LHS. 7449 if (BO->Op && (BO->IsNSW || BO->IsNUW)) { 7450 auto *I = dyn_cast<Instruction>(BO->Op); 7451 if (I && programUndefinedIfPoison(I)) { 7452 Ops.push_back(BO->LHS); 7453 break; 7454 } 7455 } 7456 BO = NewBO; 7457 } while (true); 7458 return nullptr; 7459 } 7460 case Instruction::Sub: 7461 case Instruction::UDiv: 7462 case Instruction::URem: 7463 break; 7464 case Instruction::AShr: 7465 case Instruction::Shl: 7466 case Instruction::Xor: 7467 if (!IsConstArg) 7468 return nullptr; 7469 break; 7470 case Instruction::And: 7471 case Instruction::Or: 7472 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1)) 7473 return nullptr; 7474 break; 7475 case Instruction::LShr: 7476 return getUnknown(V); 7477 default: 7478 llvm_unreachable("Unhandled binop"); 7479 break; 7480 } 7481 7482 Ops.push_back(BO->LHS); 7483 Ops.push_back(BO->RHS); 7484 return nullptr; 7485 } 7486 7487 switch (U->getOpcode()) { 7488 case Instruction::Trunc: 7489 case Instruction::ZExt: 7490 case Instruction::SExt: 7491 case Instruction::PtrToInt: 7492 Ops.push_back(U->getOperand(0)); 7493 return nullptr; 7494 7495 case Instruction::BitCast: 7496 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7497 Ops.push_back(U->getOperand(0)); 7498 return nullptr; 7499 } 7500 return getUnknown(V); 7501 7502 case Instruction::SDiv: 7503 case Instruction::SRem: 7504 Ops.push_back(U->getOperand(0)); 7505 Ops.push_back(U->getOperand(1)); 7506 return nullptr; 7507 7508 case Instruction::GetElementPtr: 7509 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7510 "GEP source element type must be sized"); 7511 for (Value *Index : U->operands()) 7512 Ops.push_back(Index); 7513 return nullptr; 7514 7515 case Instruction::IntToPtr: 7516 return getUnknown(V); 7517 7518 case Instruction::PHI: 7519 // Keep constructing SCEVs' for phis recursively for now. 7520 return nullptr; 7521 7522 case Instruction::Select: { 7523 // Check if U is a select that can be simplified to a SCEVUnknown. 7524 auto CanSimplifyToUnknown = [this, U]() { 7525 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7526 return false; 7527 7528 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7529 if (!ICI) 7530 return false; 7531 Value *LHS = ICI->getOperand(0); 7532 Value *RHS = ICI->getOperand(1); 7533 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7534 ICI->getPredicate() == CmpInst::ICMP_NE) { 7535 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7536 return true; 7537 } else if (getTypeSizeInBits(LHS->getType()) > 7538 getTypeSizeInBits(U->getType())) 7539 return true; 7540 return false; 7541 }; 7542 if (CanSimplifyToUnknown()) 7543 return getUnknown(U); 7544 7545 for (Value *Inc : U->operands()) 7546 Ops.push_back(Inc); 7547 return nullptr; 7548 break; 7549 } 7550 case Instruction::Call: 7551 case Instruction::Invoke: 7552 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7553 Ops.push_back(RV); 7554 return nullptr; 7555 } 7556 7557 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7558 switch (II->getIntrinsicID()) { 7559 case Intrinsic::abs: 7560 Ops.push_back(II->getArgOperand(0)); 7561 return nullptr; 7562 case Intrinsic::umax: 7563 case Intrinsic::umin: 7564 case Intrinsic::smax: 7565 case Intrinsic::smin: 7566 case Intrinsic::usub_sat: 7567 case Intrinsic::uadd_sat: 7568 Ops.push_back(II->getArgOperand(0)); 7569 Ops.push_back(II->getArgOperand(1)); 7570 return nullptr; 7571 case Intrinsic::start_loop_iterations: 7572 case Intrinsic::annotation: 7573 case Intrinsic::ptr_annotation: 7574 Ops.push_back(II->getArgOperand(0)); 7575 return nullptr; 7576 default: 7577 break; 7578 } 7579 } 7580 break; 7581 } 7582 7583 return nullptr; 7584 } 7585 7586 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7587 if (!isSCEVable(V->getType())) 7588 return getUnknown(V); 7589 7590 if (Instruction *I = dyn_cast<Instruction>(V)) { 7591 // Don't attempt to analyze instructions in blocks that aren't 7592 // reachable. Such instructions don't matter, and they aren't required 7593 // to obey basic rules for definitions dominating uses which this 7594 // analysis depends on. 7595 if (!DT.isReachableFromEntry(I->getParent())) 7596 return getUnknown(PoisonValue::get(V->getType())); 7597 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7598 return getConstant(CI); 7599 else if (isa<GlobalAlias>(V)) 7600 return getUnknown(V); 7601 else if (!isa<ConstantExpr>(V)) 7602 return getUnknown(V); 7603 7604 const SCEV *LHS; 7605 const SCEV *RHS; 7606 7607 Operator *U = cast<Operator>(V); 7608 if (auto BO = 7609 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7610 switch (BO->Opcode) { 7611 case Instruction::Add: { 7612 // The simple thing to do would be to just call getSCEV on both operands 7613 // and call getAddExpr with the result. However if we're looking at a 7614 // bunch of things all added together, this can be quite inefficient, 7615 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7616 // Instead, gather up all the operands and make a single getAddExpr call. 7617 // LLVM IR canonical form means we need only traverse the left operands. 7618 SmallVector<const SCEV *, 4> AddOps; 7619 do { 7620 if (BO->Op) { 7621 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7622 AddOps.push_back(OpSCEV); 7623 break; 7624 } 7625 7626 // If a NUW or NSW flag can be applied to the SCEV for this 7627 // addition, then compute the SCEV for this addition by itself 7628 // with a separate call to getAddExpr. We need to do that 7629 // instead of pushing the operands of the addition onto AddOps, 7630 // since the flags are only known to apply to this particular 7631 // addition - they may not apply to other additions that can be 7632 // formed with operands from AddOps. 7633 const SCEV *RHS = getSCEV(BO->RHS); 7634 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7635 if (Flags != SCEV::FlagAnyWrap) { 7636 const SCEV *LHS = getSCEV(BO->LHS); 7637 if (BO->Opcode == Instruction::Sub) 7638 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7639 else 7640 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7641 break; 7642 } 7643 } 7644 7645 if (BO->Opcode == Instruction::Sub) 7646 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7647 else 7648 AddOps.push_back(getSCEV(BO->RHS)); 7649 7650 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7651 dyn_cast<Instruction>(V)); 7652 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7653 NewBO->Opcode != Instruction::Sub)) { 7654 AddOps.push_back(getSCEV(BO->LHS)); 7655 break; 7656 } 7657 BO = NewBO; 7658 } while (true); 7659 7660 return getAddExpr(AddOps); 7661 } 7662 7663 case Instruction::Mul: { 7664 SmallVector<const SCEV *, 4> MulOps; 7665 do { 7666 if (BO->Op) { 7667 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7668 MulOps.push_back(OpSCEV); 7669 break; 7670 } 7671 7672 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7673 if (Flags != SCEV::FlagAnyWrap) { 7674 LHS = getSCEV(BO->LHS); 7675 RHS = getSCEV(BO->RHS); 7676 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7677 break; 7678 } 7679 } 7680 7681 MulOps.push_back(getSCEV(BO->RHS)); 7682 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7683 dyn_cast<Instruction>(V)); 7684 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7685 MulOps.push_back(getSCEV(BO->LHS)); 7686 break; 7687 } 7688 BO = NewBO; 7689 } while (true); 7690 7691 return getMulExpr(MulOps); 7692 } 7693 case Instruction::UDiv: 7694 LHS = getSCEV(BO->LHS); 7695 RHS = getSCEV(BO->RHS); 7696 return getUDivExpr(LHS, RHS); 7697 case Instruction::URem: 7698 LHS = getSCEV(BO->LHS); 7699 RHS = getSCEV(BO->RHS); 7700 return getURemExpr(LHS, RHS); 7701 case Instruction::Sub: { 7702 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7703 if (BO->Op) 7704 Flags = getNoWrapFlagsFromUB(BO->Op); 7705 LHS = getSCEV(BO->LHS); 7706 RHS = getSCEV(BO->RHS); 7707 return getMinusSCEV(LHS, RHS, Flags); 7708 } 7709 case Instruction::And: 7710 // For an expression like x&255 that merely masks off the high bits, 7711 // use zext(trunc(x)) as the SCEV expression. 7712 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7713 if (CI->isZero()) 7714 return getSCEV(BO->RHS); 7715 if (CI->isMinusOne()) 7716 return getSCEV(BO->LHS); 7717 const APInt &A = CI->getValue(); 7718 7719 // Instcombine's ShrinkDemandedConstant may strip bits out of 7720 // constants, obscuring what would otherwise be a low-bits mask. 7721 // Use computeKnownBits to compute what ShrinkDemandedConstant 7722 // knew about to reconstruct a low-bits mask value. 7723 unsigned LZ = A.countl_zero(); 7724 unsigned TZ = A.countr_zero(); 7725 unsigned BitWidth = A.getBitWidth(); 7726 KnownBits Known(BitWidth); 7727 computeKnownBits(BO->LHS, Known, getDataLayout(), 7728 0, &AC, nullptr, &DT); 7729 7730 APInt EffectiveMask = 7731 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7732 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7733 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7734 const SCEV *LHS = getSCEV(BO->LHS); 7735 const SCEV *ShiftedLHS = nullptr; 7736 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7737 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7738 // For an expression like (x * 8) & 8, simplify the multiply. 7739 unsigned MulZeros = OpC->getAPInt().countr_zero(); 7740 unsigned GCD = std::min(MulZeros, TZ); 7741 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7742 SmallVector<const SCEV*, 4> MulOps; 7743 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7744 append_range(MulOps, LHSMul->operands().drop_front()); 7745 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7746 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7747 } 7748 } 7749 if (!ShiftedLHS) 7750 ShiftedLHS = getUDivExpr(LHS, MulCount); 7751 return getMulExpr( 7752 getZeroExtendExpr( 7753 getTruncateExpr(ShiftedLHS, 7754 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7755 BO->LHS->getType()), 7756 MulCount); 7757 } 7758 } 7759 // Binary `and` is a bit-wise `umin`. 7760 if (BO->LHS->getType()->isIntegerTy(1)) { 7761 LHS = getSCEV(BO->LHS); 7762 RHS = getSCEV(BO->RHS); 7763 return getUMinExpr(LHS, RHS); 7764 } 7765 break; 7766 7767 case Instruction::Or: 7768 // Binary `or` is a bit-wise `umax`. 7769 if (BO->LHS->getType()->isIntegerTy(1)) { 7770 LHS = getSCEV(BO->LHS); 7771 RHS = getSCEV(BO->RHS); 7772 return getUMaxExpr(LHS, RHS); 7773 } 7774 break; 7775 7776 case Instruction::Xor: 7777 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7778 // If the RHS of xor is -1, then this is a not operation. 7779 if (CI->isMinusOne()) 7780 return getNotSCEV(getSCEV(BO->LHS)); 7781 7782 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7783 // This is a variant of the check for xor with -1, and it handles 7784 // the case where instcombine has trimmed non-demanded bits out 7785 // of an xor with -1. 7786 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7787 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7788 if (LBO->getOpcode() == Instruction::And && 7789 LCI->getValue() == CI->getValue()) 7790 if (const SCEVZeroExtendExpr *Z = 7791 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7792 Type *UTy = BO->LHS->getType(); 7793 const SCEV *Z0 = Z->getOperand(); 7794 Type *Z0Ty = Z0->getType(); 7795 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7796 7797 // If C is a low-bits mask, the zero extend is serving to 7798 // mask off the high bits. Complement the operand and 7799 // re-apply the zext. 7800 if (CI->getValue().isMask(Z0TySize)) 7801 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7802 7803 // If C is a single bit, it may be in the sign-bit position 7804 // before the zero-extend. In this case, represent the xor 7805 // using an add, which is equivalent, and re-apply the zext. 7806 APInt Trunc = CI->getValue().trunc(Z0TySize); 7807 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7808 Trunc.isSignMask()) 7809 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7810 UTy); 7811 } 7812 } 7813 break; 7814 7815 case Instruction::Shl: 7816 // Turn shift left of a constant amount into a multiply. 7817 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7818 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7819 7820 // If the shift count is not less than the bitwidth, the result of 7821 // the shift is undefined. Don't try to analyze it, because the 7822 // resolution chosen here may differ from the resolution chosen in 7823 // other parts of the compiler. 7824 if (SA->getValue().uge(BitWidth)) 7825 break; 7826 7827 // We can safely preserve the nuw flag in all cases. It's also safe to 7828 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7829 // requires special handling. It can be preserved as long as we're not 7830 // left shifting by bitwidth - 1. 7831 auto Flags = SCEV::FlagAnyWrap; 7832 if (BO->Op) { 7833 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7834 if ((MulFlags & SCEV::FlagNSW) && 7835 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7836 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7837 if (MulFlags & SCEV::FlagNUW) 7838 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7839 } 7840 7841 ConstantInt *X = ConstantInt::get( 7842 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7843 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7844 } 7845 break; 7846 7847 case Instruction::AShr: { 7848 // AShr X, C, where C is a constant. 7849 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7850 if (!CI) 7851 break; 7852 7853 Type *OuterTy = BO->LHS->getType(); 7854 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7855 // If the shift count is not less than the bitwidth, the result of 7856 // the shift is undefined. Don't try to analyze it, because the 7857 // resolution chosen here may differ from the resolution chosen in 7858 // other parts of the compiler. 7859 if (CI->getValue().uge(BitWidth)) 7860 break; 7861 7862 if (CI->isZero()) 7863 return getSCEV(BO->LHS); // shift by zero --> noop 7864 7865 uint64_t AShrAmt = CI->getZExtValue(); 7866 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7867 7868 Operator *L = dyn_cast<Operator>(BO->LHS); 7869 if (L && L->getOpcode() == Instruction::Shl) { 7870 // X = Shl A, n 7871 // Y = AShr X, m 7872 // Both n and m are constant. 7873 7874 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7875 if (L->getOperand(1) == BO->RHS) 7876 // For a two-shift sext-inreg, i.e. n = m, 7877 // use sext(trunc(x)) as the SCEV expression. 7878 return getSignExtendExpr( 7879 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7880 7881 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7882 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7883 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7884 if (ShlAmt > AShrAmt) { 7885 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7886 // expression. We already checked that ShlAmt < BitWidth, so 7887 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7888 // ShlAmt - AShrAmt < Amt. 7889 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7890 ShlAmt - AShrAmt); 7891 return getSignExtendExpr( 7892 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7893 getConstant(Mul)), OuterTy); 7894 } 7895 } 7896 } 7897 break; 7898 } 7899 } 7900 } 7901 7902 switch (U->getOpcode()) { 7903 case Instruction::Trunc: 7904 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7905 7906 case Instruction::ZExt: 7907 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7908 7909 case Instruction::SExt: 7910 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, 7911 dyn_cast<Instruction>(V))) { 7912 // The NSW flag of a subtract does not always survive the conversion to 7913 // A + (-1)*B. By pushing sign extension onto its operands we are much 7914 // more likely to preserve NSW and allow later AddRec optimisations. 7915 // 7916 // NOTE: This is effectively duplicating this logic from getSignExtend: 7917 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7918 // but by that point the NSW information has potentially been lost. 7919 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7920 Type *Ty = U->getType(); 7921 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7922 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7923 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7924 } 7925 } 7926 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7927 7928 case Instruction::BitCast: 7929 // BitCasts are no-op casts so we just eliminate the cast. 7930 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7931 return getSCEV(U->getOperand(0)); 7932 break; 7933 7934 case Instruction::PtrToInt: { 7935 // Pointer to integer cast is straight-forward, so do model it. 7936 const SCEV *Op = getSCEV(U->getOperand(0)); 7937 Type *DstIntTy = U->getType(); 7938 // But only if effective SCEV (integer) type is wide enough to represent 7939 // all possible pointer values. 7940 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7941 if (isa<SCEVCouldNotCompute>(IntOp)) 7942 return getUnknown(V); 7943 return IntOp; 7944 } 7945 case Instruction::IntToPtr: 7946 // Just don't deal with inttoptr casts. 7947 return getUnknown(V); 7948 7949 case Instruction::SDiv: 7950 // If both operands are non-negative, this is just an udiv. 7951 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7952 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7953 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7954 break; 7955 7956 case Instruction::SRem: 7957 // If both operands are non-negative, this is just an urem. 7958 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7959 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7960 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7961 break; 7962 7963 case Instruction::GetElementPtr: 7964 return createNodeForGEP(cast<GEPOperator>(U)); 7965 7966 case Instruction::PHI: 7967 return createNodeForPHI(cast<PHINode>(U)); 7968 7969 case Instruction::Select: 7970 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7971 U->getOperand(2)); 7972 7973 case Instruction::Call: 7974 case Instruction::Invoke: 7975 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7976 return getSCEV(RV); 7977 7978 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7979 switch (II->getIntrinsicID()) { 7980 case Intrinsic::abs: 7981 return getAbsExpr( 7982 getSCEV(II->getArgOperand(0)), 7983 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7984 case Intrinsic::umax: 7985 LHS = getSCEV(II->getArgOperand(0)); 7986 RHS = getSCEV(II->getArgOperand(1)); 7987 return getUMaxExpr(LHS, RHS); 7988 case Intrinsic::umin: 7989 LHS = getSCEV(II->getArgOperand(0)); 7990 RHS = getSCEV(II->getArgOperand(1)); 7991 return getUMinExpr(LHS, RHS); 7992 case Intrinsic::smax: 7993 LHS = getSCEV(II->getArgOperand(0)); 7994 RHS = getSCEV(II->getArgOperand(1)); 7995 return getSMaxExpr(LHS, RHS); 7996 case Intrinsic::smin: 7997 LHS = getSCEV(II->getArgOperand(0)); 7998 RHS = getSCEV(II->getArgOperand(1)); 7999 return getSMinExpr(LHS, RHS); 8000 case Intrinsic::usub_sat: { 8001 const SCEV *X = getSCEV(II->getArgOperand(0)); 8002 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8003 const SCEV *ClampedY = getUMinExpr(X, Y); 8004 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 8005 } 8006 case Intrinsic::uadd_sat: { 8007 const SCEV *X = getSCEV(II->getArgOperand(0)); 8008 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8009 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 8010 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 8011 } 8012 case Intrinsic::start_loop_iterations: 8013 case Intrinsic::annotation: 8014 case Intrinsic::ptr_annotation: 8015 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 8016 // just eqivalent to the first operand for SCEV purposes. 8017 return getSCEV(II->getArgOperand(0)); 8018 case Intrinsic::vscale: 8019 return getVScale(II->getType()); 8020 default: 8021 break; 8022 } 8023 } 8024 break; 8025 } 8026 8027 return getUnknown(V); 8028 } 8029 8030 //===----------------------------------------------------------------------===// 8031 // Iteration Count Computation Code 8032 // 8033 8034 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 8035 if (isa<SCEVCouldNotCompute>(ExitCount)) 8036 return getCouldNotCompute(); 8037 8038 auto *ExitCountType = ExitCount->getType(); 8039 assert(ExitCountType->isIntegerTy()); 8040 auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(), 8041 1 + ExitCountType->getScalarSizeInBits()); 8042 return getTripCountFromExitCount(ExitCount, EvalTy, nullptr); 8043 } 8044 8045 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 8046 Type *EvalTy, 8047 const Loop *L) { 8048 if (isa<SCEVCouldNotCompute>(ExitCount)) 8049 return getCouldNotCompute(); 8050 8051 unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType()); 8052 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); 8053 8054 auto CanAddOneWithoutOverflow = [&]() { 8055 ConstantRange ExitCountRange = 8056 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED); 8057 if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize))) 8058 return true; 8059 8060 return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, 8061 getMinusOne(ExitCount->getType())); 8062 }; 8063 8064 // If we need to zero extend the backedge count, check if we can add one to 8065 // it prior to zero extending without overflow. Provided this is safe, it 8066 // allows better simplification of the +1. 8067 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) 8068 return getZeroExtendExpr( 8069 getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy); 8070 8071 // Get the total trip count from the count by adding 1. This may wrap. 8072 return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy)); 8073 } 8074 8075 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 8076 if (!ExitCount) 8077 return 0; 8078 8079 ConstantInt *ExitConst = ExitCount->getValue(); 8080 8081 // Guard against huge trip counts. 8082 if (ExitConst->getValue().getActiveBits() > 32) 8083 return 0; 8084 8085 // In case of integer overflow, this returns 0, which is correct. 8086 return ((unsigned)ExitConst->getZExtValue()) + 1; 8087 } 8088 8089 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 8090 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 8091 return getConstantTripCount(ExitCount); 8092 } 8093 8094 unsigned 8095 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 8096 const BasicBlock *ExitingBlock) { 8097 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8098 assert(L->isLoopExiting(ExitingBlock) && 8099 "Exiting block must actually branch out of the loop!"); 8100 const SCEVConstant *ExitCount = 8101 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 8102 return getConstantTripCount(ExitCount); 8103 } 8104 8105 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 8106 const auto *MaxExitCount = 8107 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 8108 return getConstantTripCount(MaxExitCount); 8109 } 8110 8111 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8112 SmallVector<BasicBlock *, 8> ExitingBlocks; 8113 L->getExitingBlocks(ExitingBlocks); 8114 8115 std::optional<unsigned> Res; 8116 for (auto *ExitingBB : ExitingBlocks) { 8117 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8118 if (!Res) 8119 Res = Multiple; 8120 Res = (unsigned)std::gcd(*Res, Multiple); 8121 } 8122 return Res.value_or(1); 8123 } 8124 8125 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8126 const SCEV *ExitCount) { 8127 if (ExitCount == getCouldNotCompute()) 8128 return 1; 8129 8130 // Get the trip count 8131 const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L)); 8132 8133 APInt Multiple = getNonZeroConstantMultiple(TCExpr); 8134 // If a trip multiple is huge (>=2^32), the trip count is still divisible by 8135 // the greatest power of 2 divisor less than 2^32. 8136 return Multiple.getActiveBits() > 32 8137 ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros()) 8138 : (unsigned)Multiple.zextOrTrunc(32).getZExtValue(); 8139 } 8140 8141 /// Returns the largest constant divisor of the trip count of this loop as a 8142 /// normal unsigned value, if possible. This means that the actual trip count is 8143 /// always a multiple of the returned value (don't forget the trip count could 8144 /// very well be zero as well!). 8145 /// 8146 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8147 /// multiple of a constant (which is also the case if the trip count is simply 8148 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8149 /// if the trip count is very large (>= 2^32). 8150 /// 8151 /// As explained in the comments for getSmallConstantTripCount, this assumes 8152 /// that control exits the loop via ExitingBlock. 8153 unsigned 8154 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8155 const BasicBlock *ExitingBlock) { 8156 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8157 assert(L->isLoopExiting(ExitingBlock) && 8158 "Exiting block must actually branch out of the loop!"); 8159 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8160 return getSmallConstantTripMultiple(L, ExitCount); 8161 } 8162 8163 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8164 const BasicBlock *ExitingBlock, 8165 ExitCountKind Kind) { 8166 switch (Kind) { 8167 case Exact: 8168 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8169 case SymbolicMaximum: 8170 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); 8171 case ConstantMaximum: 8172 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8173 }; 8174 llvm_unreachable("Invalid ExitCountKind!"); 8175 } 8176 8177 const SCEV * 8178 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8179 SmallVector<const SCEVPredicate *, 4> &Preds) { 8180 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8181 } 8182 8183 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8184 ExitCountKind Kind) { 8185 switch (Kind) { 8186 case Exact: 8187 return getBackedgeTakenInfo(L).getExact(L, this); 8188 case ConstantMaximum: 8189 return getBackedgeTakenInfo(L).getConstantMax(this); 8190 case SymbolicMaximum: 8191 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8192 }; 8193 llvm_unreachable("Invalid ExitCountKind!"); 8194 } 8195 8196 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8197 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8198 } 8199 8200 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8201 static void PushLoopPHIs(const Loop *L, 8202 SmallVectorImpl<Instruction *> &Worklist, 8203 SmallPtrSetImpl<Instruction *> &Visited) { 8204 BasicBlock *Header = L->getHeader(); 8205 8206 // Push all Loop-header PHIs onto the Worklist stack. 8207 for (PHINode &PN : Header->phis()) 8208 if (Visited.insert(&PN).second) 8209 Worklist.push_back(&PN); 8210 } 8211 8212 const ScalarEvolution::BackedgeTakenInfo & 8213 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8214 auto &BTI = getBackedgeTakenInfo(L); 8215 if (BTI.hasFullInfo()) 8216 return BTI; 8217 8218 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8219 8220 if (!Pair.second) 8221 return Pair.first->second; 8222 8223 BackedgeTakenInfo Result = 8224 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8225 8226 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8227 } 8228 8229 ScalarEvolution::BackedgeTakenInfo & 8230 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8231 // Initially insert an invalid entry for this loop. If the insertion 8232 // succeeds, proceed to actually compute a backedge-taken count and 8233 // update the value. The temporary CouldNotCompute value tells SCEV 8234 // code elsewhere that it shouldn't attempt to request a new 8235 // backedge-taken count, which could result in infinite recursion. 8236 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8237 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8238 if (!Pair.second) 8239 return Pair.first->second; 8240 8241 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8242 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8243 // must be cleared in this scope. 8244 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8245 8246 // Now that we know more about the trip count for this loop, forget any 8247 // existing SCEV values for PHI nodes in this loop since they are only 8248 // conservative estimates made without the benefit of trip count 8249 // information. This invalidation is not necessary for correctness, and is 8250 // only done to produce more precise results. 8251 if (Result.hasAnyInfo()) { 8252 // Invalidate any expression using an addrec in this loop. 8253 SmallVector<const SCEV *, 8> ToForget; 8254 auto LoopUsersIt = LoopUsers.find(L); 8255 if (LoopUsersIt != LoopUsers.end()) 8256 append_range(ToForget, LoopUsersIt->second); 8257 forgetMemoizedResults(ToForget); 8258 8259 // Invalidate constant-evolved loop header phis. 8260 for (PHINode &PN : L->getHeader()->phis()) 8261 ConstantEvolutionLoopExitValue.erase(&PN); 8262 } 8263 8264 // Re-lookup the insert position, since the call to 8265 // computeBackedgeTakenCount above could result in a 8266 // recusive call to getBackedgeTakenInfo (on a different 8267 // loop), which would invalidate the iterator computed 8268 // earlier. 8269 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8270 } 8271 8272 void ScalarEvolution::forgetAllLoops() { 8273 // This method is intended to forget all info about loops. It should 8274 // invalidate caches as if the following happened: 8275 // - The trip counts of all loops have changed arbitrarily 8276 // - Every llvm::Value has been updated in place to produce a different 8277 // result. 8278 BackedgeTakenCounts.clear(); 8279 PredicatedBackedgeTakenCounts.clear(); 8280 BECountUsers.clear(); 8281 LoopPropertiesCache.clear(); 8282 ConstantEvolutionLoopExitValue.clear(); 8283 ValueExprMap.clear(); 8284 ValuesAtScopes.clear(); 8285 ValuesAtScopesUsers.clear(); 8286 LoopDispositions.clear(); 8287 BlockDispositions.clear(); 8288 UnsignedRanges.clear(); 8289 SignedRanges.clear(); 8290 ExprValueMap.clear(); 8291 HasRecMap.clear(); 8292 ConstantMultipleCache.clear(); 8293 PredicatedSCEVRewrites.clear(); 8294 FoldCache.clear(); 8295 FoldCacheUser.clear(); 8296 } 8297 void ScalarEvolution::visitAndClearUsers( 8298 SmallVectorImpl<Instruction *> &Worklist, 8299 SmallPtrSetImpl<Instruction *> &Visited, 8300 SmallVectorImpl<const SCEV *> &ToForget) { 8301 while (!Worklist.empty()) { 8302 Instruction *I = Worklist.pop_back_val(); 8303 if (!isSCEVable(I->getType())) 8304 continue; 8305 8306 ValueExprMapType::iterator It = 8307 ValueExprMap.find_as(static_cast<Value *>(I)); 8308 if (It != ValueExprMap.end()) { 8309 eraseValueFromMap(It->first); 8310 ToForget.push_back(It->second); 8311 if (PHINode *PN = dyn_cast<PHINode>(I)) 8312 ConstantEvolutionLoopExitValue.erase(PN); 8313 } 8314 8315 PushDefUseChildren(I, Worklist, Visited); 8316 } 8317 } 8318 8319 void ScalarEvolution::forgetLoop(const Loop *L) { 8320 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8321 SmallVector<Instruction *, 32> Worklist; 8322 SmallPtrSet<Instruction *, 16> Visited; 8323 SmallVector<const SCEV *, 16> ToForget; 8324 8325 // Iterate over all the loops and sub-loops to drop SCEV information. 8326 while (!LoopWorklist.empty()) { 8327 auto *CurrL = LoopWorklist.pop_back_val(); 8328 8329 // Drop any stored trip count value. 8330 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8331 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8332 8333 // Drop information about predicated SCEV rewrites for this loop. 8334 for (auto I = PredicatedSCEVRewrites.begin(); 8335 I != PredicatedSCEVRewrites.end();) { 8336 std::pair<const SCEV *, const Loop *> Entry = I->first; 8337 if (Entry.second == CurrL) 8338 PredicatedSCEVRewrites.erase(I++); 8339 else 8340 ++I; 8341 } 8342 8343 auto LoopUsersItr = LoopUsers.find(CurrL); 8344 if (LoopUsersItr != LoopUsers.end()) { 8345 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8346 LoopUsersItr->second.end()); 8347 } 8348 8349 // Drop information about expressions based on loop-header PHIs. 8350 PushLoopPHIs(CurrL, Worklist, Visited); 8351 visitAndClearUsers(Worklist, Visited, ToForget); 8352 8353 LoopPropertiesCache.erase(CurrL); 8354 // Forget all contained loops too, to avoid dangling entries in the 8355 // ValuesAtScopes map. 8356 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8357 } 8358 forgetMemoizedResults(ToForget); 8359 } 8360 8361 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8362 forgetLoop(L->getOutermostLoop()); 8363 } 8364 8365 void ScalarEvolution::forgetValue(Value *V) { 8366 Instruction *I = dyn_cast<Instruction>(V); 8367 if (!I) return; 8368 8369 // Drop information about expressions based on loop-header PHIs. 8370 SmallVector<Instruction *, 16> Worklist; 8371 SmallPtrSet<Instruction *, 8> Visited; 8372 SmallVector<const SCEV *, 8> ToForget; 8373 Worklist.push_back(I); 8374 Visited.insert(I); 8375 visitAndClearUsers(Worklist, Visited, ToForget); 8376 8377 forgetMemoizedResults(ToForget); 8378 } 8379 8380 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } 8381 8382 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { 8383 // Unless a specific value is passed to invalidation, completely clear both 8384 // caches. 8385 if (!V) { 8386 BlockDispositions.clear(); 8387 LoopDispositions.clear(); 8388 return; 8389 } 8390 8391 if (!isSCEVable(V->getType())) 8392 return; 8393 8394 const SCEV *S = getExistingSCEV(V); 8395 if (!S) 8396 return; 8397 8398 // Invalidate the block and loop dispositions cached for S. Dispositions of 8399 // S's users may change if S's disposition changes (i.e. a user may change to 8400 // loop-invariant, if S changes to loop invariant), so also invalidate 8401 // dispositions of S's users recursively. 8402 SmallVector<const SCEV *, 8> Worklist = {S}; 8403 SmallPtrSet<const SCEV *, 8> Seen = {S}; 8404 while (!Worklist.empty()) { 8405 const SCEV *Curr = Worklist.pop_back_val(); 8406 bool LoopDispoRemoved = LoopDispositions.erase(Curr); 8407 bool BlockDispoRemoved = BlockDispositions.erase(Curr); 8408 if (!LoopDispoRemoved && !BlockDispoRemoved) 8409 continue; 8410 auto Users = SCEVUsers.find(Curr); 8411 if (Users != SCEVUsers.end()) 8412 for (const auto *User : Users->second) 8413 if (Seen.insert(User).second) 8414 Worklist.push_back(User); 8415 } 8416 } 8417 8418 /// Get the exact loop backedge taken count considering all loop exits. A 8419 /// computable result can only be returned for loops with all exiting blocks 8420 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8421 /// is never skipped. This is a valid assumption as long as the loop exits via 8422 /// that test. For precise results, it is the caller's responsibility to specify 8423 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8424 const SCEV * 8425 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8426 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8427 // If any exits were not computable, the loop is not computable. 8428 if (!isComplete() || ExitNotTaken.empty()) 8429 return SE->getCouldNotCompute(); 8430 8431 const BasicBlock *Latch = L->getLoopLatch(); 8432 // All exiting blocks we have collected must dominate the only backedge. 8433 if (!Latch) 8434 return SE->getCouldNotCompute(); 8435 8436 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8437 // count is simply a minimum out of all these calculated exit counts. 8438 SmallVector<const SCEV *, 2> Ops; 8439 for (const auto &ENT : ExitNotTaken) { 8440 const SCEV *BECount = ENT.ExactNotTaken; 8441 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8442 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8443 "We should only have known counts for exiting blocks that dominate " 8444 "latch!"); 8445 8446 Ops.push_back(BECount); 8447 8448 if (Preds) 8449 for (const auto *P : ENT.Predicates) 8450 Preds->push_back(P); 8451 8452 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8453 "Predicate should be always true!"); 8454 } 8455 8456 // If an earlier exit exits on the first iteration (exit count zero), then 8457 // a later poison exit count should not propagate into the result. This are 8458 // exactly the semantics provided by umin_seq. 8459 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8460 } 8461 8462 /// Get the exact not taken count for this loop exit. 8463 const SCEV * 8464 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8465 ScalarEvolution *SE) const { 8466 for (const auto &ENT : ExitNotTaken) 8467 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8468 return ENT.ExactNotTaken; 8469 8470 return SE->getCouldNotCompute(); 8471 } 8472 8473 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8474 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8475 for (const auto &ENT : ExitNotTaken) 8476 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8477 return ENT.ConstantMaxNotTaken; 8478 8479 return SE->getCouldNotCompute(); 8480 } 8481 8482 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8483 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8484 for (const auto &ENT : ExitNotTaken) 8485 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8486 return ENT.SymbolicMaxNotTaken; 8487 8488 return SE->getCouldNotCompute(); 8489 } 8490 8491 /// getConstantMax - Get the constant max backedge taken count for the loop. 8492 const SCEV * 8493 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8494 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8495 return !ENT.hasAlwaysTruePredicate(); 8496 }; 8497 8498 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8499 return SE->getCouldNotCompute(); 8500 8501 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8502 isa<SCEVConstant>(getConstantMax())) && 8503 "No point in having a non-constant max backedge taken count!"); 8504 return getConstantMax(); 8505 } 8506 8507 const SCEV * 8508 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8509 ScalarEvolution *SE) { 8510 if (!SymbolicMax) 8511 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8512 return SymbolicMax; 8513 } 8514 8515 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8516 ScalarEvolution *SE) const { 8517 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8518 return !ENT.hasAlwaysTruePredicate(); 8519 }; 8520 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8521 } 8522 8523 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8524 : ExitLimit(E, E, E, false, std::nullopt) {} 8525 8526 ScalarEvolution::ExitLimit::ExitLimit( 8527 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8528 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8529 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8530 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), 8531 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { 8532 // If we prove the max count is zero, so is the symbolic bound. This happens 8533 // in practice due to differences in a) how context sensitive we've chosen 8534 // to be and b) how we reason about bounds implied by UB. 8535 if (ConstantMaxNotTaken->isZero()) { 8536 this->ExactNotTaken = E = ConstantMaxNotTaken; 8537 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; 8538 } 8539 8540 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8541 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8542 "Exact is not allowed to be less precise than Constant Max"); 8543 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8544 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && 8545 "Exact is not allowed to be less precise than Symbolic Max"); 8546 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || 8547 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8548 "Symbolic Max is not allowed to be less precise than Constant Max"); 8549 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8550 isa<SCEVConstant>(ConstantMaxNotTaken)) && 8551 "No point in having a non-constant max backedge taken count!"); 8552 for (const auto *PredSet : PredSetList) 8553 for (const auto *P : *PredSet) 8554 addPredicate(P); 8555 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8556 "Backedge count should be int"); 8557 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8558 !ConstantMaxNotTaken->getType()->isPointerTy()) && 8559 "Max backedge count should be int"); 8560 } 8561 8562 ScalarEvolution::ExitLimit::ExitLimit( 8563 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8564 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8565 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8566 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, 8567 { &PredSet }) {} 8568 8569 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8570 /// computable exit into a persistent ExitNotTakenInfo array. 8571 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8572 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8573 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8574 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8575 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8576 8577 ExitNotTaken.reserve(ExitCounts.size()); 8578 std::transform(ExitCounts.begin(), ExitCounts.end(), 8579 std::back_inserter(ExitNotTaken), 8580 [&](const EdgeExitInfo &EEI) { 8581 BasicBlock *ExitBB = EEI.first; 8582 const ExitLimit &EL = EEI.second; 8583 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, 8584 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, 8585 EL.Predicates); 8586 }); 8587 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8588 isa<SCEVConstant>(ConstantMax)) && 8589 "No point in having a non-constant max backedge taken count!"); 8590 } 8591 8592 /// Compute the number of times the backedge of the specified loop will execute. 8593 ScalarEvolution::BackedgeTakenInfo 8594 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8595 bool AllowPredicates) { 8596 SmallVector<BasicBlock *, 8> ExitingBlocks; 8597 L->getExitingBlocks(ExitingBlocks); 8598 8599 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8600 8601 SmallVector<EdgeExitInfo, 4> ExitCounts; 8602 bool CouldComputeBECount = true; 8603 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8604 const SCEV *MustExitMaxBECount = nullptr; 8605 const SCEV *MayExitMaxBECount = nullptr; 8606 bool MustExitMaxOrZero = false; 8607 8608 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8609 // and compute maxBECount. 8610 // Do a union of all the predicates here. 8611 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8612 BasicBlock *ExitBB = ExitingBlocks[i]; 8613 8614 // We canonicalize untaken exits to br (constant), ignore them so that 8615 // proving an exit untaken doesn't negatively impact our ability to reason 8616 // about the loop as whole. 8617 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8618 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8619 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8620 if (ExitIfTrue == CI->isZero()) 8621 continue; 8622 } 8623 8624 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8625 8626 assert((AllowPredicates || EL.Predicates.empty()) && 8627 "Predicated exit limit when predicates are not allowed!"); 8628 8629 // 1. For each exit that can be computed, add an entry to ExitCounts. 8630 // CouldComputeBECount is true only if all exits can be computed. 8631 if (EL.ExactNotTaken != getCouldNotCompute()) 8632 ++NumExitCountsComputed; 8633 else 8634 // We couldn't compute an exact value for this exit, so 8635 // we won't be able to compute an exact value for the loop. 8636 CouldComputeBECount = false; 8637 // Remember exit count if either exact or symbolic is known. Because 8638 // Exact always implies symbolic, only check symbolic. 8639 if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) 8640 ExitCounts.emplace_back(ExitBB, EL); 8641 else { 8642 assert(EL.ExactNotTaken == getCouldNotCompute() && 8643 "Exact is known but symbolic isn't?"); 8644 ++NumExitCountsNotComputed; 8645 } 8646 8647 // 2. Derive the loop's MaxBECount from each exit's max number of 8648 // non-exiting iterations. Partition the loop exits into two kinds: 8649 // LoopMustExits and LoopMayExits. 8650 // 8651 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8652 // is a LoopMayExit. If any computable LoopMustExit is found, then 8653 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable 8654 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8655 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than 8656 // any 8657 // computable EL.ConstantMaxNotTaken. 8658 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && 8659 DT.dominates(ExitBB, Latch)) { 8660 if (!MustExitMaxBECount) { 8661 MustExitMaxBECount = EL.ConstantMaxNotTaken; 8662 MustExitMaxOrZero = EL.MaxOrZero; 8663 } else { 8664 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, 8665 EL.ConstantMaxNotTaken); 8666 } 8667 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8668 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) 8669 MayExitMaxBECount = EL.ConstantMaxNotTaken; 8670 else { 8671 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, 8672 EL.ConstantMaxNotTaken); 8673 } 8674 } 8675 } 8676 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8677 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8678 // The loop backedge will be taken the maximum or zero times if there's 8679 // a single exit that must be taken the maximum or zero times. 8680 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8681 8682 // Remember which SCEVs are used in exit limits for invalidation purposes. 8683 // We only care about non-constant SCEVs here, so we can ignore 8684 // EL.ConstantMaxNotTaken 8685 // and MaxBECount, which must be SCEVConstant. 8686 for (const auto &Pair : ExitCounts) { 8687 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8688 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8689 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) 8690 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( 8691 {L, AllowPredicates}); 8692 } 8693 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8694 MaxBECount, MaxOrZero); 8695 } 8696 8697 ScalarEvolution::ExitLimit 8698 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8699 bool AllowPredicates) { 8700 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8701 // If our exiting block does not dominate the latch, then its connection with 8702 // loop's exit limit may be far from trivial. 8703 const BasicBlock *Latch = L->getLoopLatch(); 8704 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8705 return getCouldNotCompute(); 8706 8707 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8708 Instruction *Term = ExitingBlock->getTerminator(); 8709 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8710 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8711 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8712 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8713 "It should have one successor in loop and one exit block!"); 8714 // Proceed to the next level to examine the exit condition expression. 8715 return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue, 8716 /*ControlsOnlyExit=*/IsOnlyExit, 8717 AllowPredicates); 8718 } 8719 8720 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8721 // For switch, make sure that there is a single exit from the loop. 8722 BasicBlock *Exit = nullptr; 8723 for (auto *SBB : successors(ExitingBlock)) 8724 if (!L->contains(SBB)) { 8725 if (Exit) // Multiple exit successors. 8726 return getCouldNotCompute(); 8727 Exit = SBB; 8728 } 8729 assert(Exit && "Exiting block must have at least one exit"); 8730 return computeExitLimitFromSingleExitSwitch( 8731 L, SI, Exit, 8732 /*ControlsOnlyExit=*/IsOnlyExit); 8733 } 8734 8735 return getCouldNotCompute(); 8736 } 8737 8738 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8739 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 8740 bool AllowPredicates) { 8741 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8742 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8743 ControlsOnlyExit, AllowPredicates); 8744 } 8745 8746 std::optional<ScalarEvolution::ExitLimit> 8747 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8748 bool ExitIfTrue, bool ControlsOnlyExit, 8749 bool AllowPredicates) { 8750 (void)this->L; 8751 (void)this->ExitIfTrue; 8752 (void)this->AllowPredicates; 8753 8754 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8755 this->AllowPredicates == AllowPredicates && 8756 "Variance in assumed invariant key components!"); 8757 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit}); 8758 if (Itr == TripCountMap.end()) 8759 return std::nullopt; 8760 return Itr->second; 8761 } 8762 8763 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8764 bool ExitIfTrue, 8765 bool ControlsOnlyExit, 8766 bool AllowPredicates, 8767 const ExitLimit &EL) { 8768 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8769 this->AllowPredicates == AllowPredicates && 8770 "Variance in assumed invariant key components!"); 8771 8772 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL}); 8773 assert(InsertResult.second && "Expected successful insertion!"); 8774 (void)InsertResult; 8775 (void)ExitIfTrue; 8776 } 8777 8778 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8779 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8780 bool ControlsOnlyExit, bool AllowPredicates) { 8781 8782 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, 8783 AllowPredicates)) 8784 return *MaybeEL; 8785 8786 ExitLimit EL = computeExitLimitFromCondImpl( 8787 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); 8788 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); 8789 return EL; 8790 } 8791 8792 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8793 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8794 bool ControlsOnlyExit, bool AllowPredicates) { 8795 // Handle BinOp conditions (And, Or). 8796 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8797 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) 8798 return *LimitFromBinOp; 8799 8800 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8801 // Proceed to the next level to examine the icmp. 8802 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8803 ExitLimit EL = 8804 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit); 8805 if (EL.hasFullInfo() || !AllowPredicates) 8806 return EL; 8807 8808 // Try again, but use SCEV predicates this time. 8809 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, 8810 ControlsOnlyExit, 8811 /*AllowPredicates=*/true); 8812 } 8813 8814 // Check for a constant condition. These are normally stripped out by 8815 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8816 // preserve the CFG and is temporarily leaving constant conditions 8817 // in place. 8818 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8819 if (ExitIfTrue == !CI->getZExtValue()) 8820 // The backedge is always taken. 8821 return getCouldNotCompute(); 8822 // The backedge is never taken. 8823 return getZero(CI->getType()); 8824 } 8825 8826 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8827 // with a constant step, we can form an equivalent icmp predicate and figure 8828 // out how many iterations will be taken before we exit. 8829 const WithOverflowInst *WO; 8830 const APInt *C; 8831 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8832 match(WO->getRHS(), m_APInt(C))) { 8833 ConstantRange NWR = 8834 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8835 WO->getNoWrapKind()); 8836 CmpInst::Predicate Pred; 8837 APInt NewRHSC, Offset; 8838 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8839 if (!ExitIfTrue) 8840 Pred = ICmpInst::getInversePredicate(Pred); 8841 auto *LHS = getSCEV(WO->getLHS()); 8842 if (Offset != 0) 8843 LHS = getAddExpr(LHS, getConstant(Offset)); 8844 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8845 ControlsOnlyExit, AllowPredicates); 8846 if (EL.hasAnyInfo()) 8847 return EL; 8848 } 8849 8850 // If it's not an integer or pointer comparison then compute it the hard way. 8851 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8852 } 8853 8854 std::optional<ScalarEvolution::ExitLimit> 8855 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8856 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8857 bool ControlsOnlyExit, bool AllowPredicates) { 8858 // Check if the controlling expression for this loop is an And or Or. 8859 Value *Op0, *Op1; 8860 bool IsAnd = false; 8861 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8862 IsAnd = true; 8863 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8864 IsAnd = false; 8865 else 8866 return std::nullopt; 8867 8868 // EitherMayExit is true in these two cases: 8869 // br (and Op0 Op1), loop, exit 8870 // br (or Op0 Op1), exit, loop 8871 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8872 ExitLimit EL0 = computeExitLimitFromCondCached( 8873 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 8874 AllowPredicates); 8875 ExitLimit EL1 = computeExitLimitFromCondCached( 8876 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 8877 AllowPredicates); 8878 8879 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8880 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8881 if (isa<ConstantInt>(Op1)) 8882 return Op1 == NeutralElement ? EL0 : EL1; 8883 if (isa<ConstantInt>(Op0)) 8884 return Op0 == NeutralElement ? EL1 : EL0; 8885 8886 const SCEV *BECount = getCouldNotCompute(); 8887 const SCEV *ConstantMaxBECount = getCouldNotCompute(); 8888 const SCEV *SymbolicMaxBECount = getCouldNotCompute(); 8889 if (EitherMayExit) { 8890 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); 8891 // Both conditions must be same for the loop to continue executing. 8892 // Choose the less conservative count. 8893 if (EL0.ExactNotTaken != getCouldNotCompute() && 8894 EL1.ExactNotTaken != getCouldNotCompute()) { 8895 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 8896 UseSequentialUMin); 8897 } 8898 if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) 8899 ConstantMaxBECount = EL1.ConstantMaxNotTaken; 8900 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) 8901 ConstantMaxBECount = EL0.ConstantMaxNotTaken; 8902 else 8903 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, 8904 EL1.ConstantMaxNotTaken); 8905 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) 8906 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; 8907 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) 8908 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; 8909 else 8910 SymbolicMaxBECount = getUMinFromMismatchedTypes( 8911 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); 8912 } else { 8913 // Both conditions must be same at the same time for the loop to exit. 8914 // For now, be conservative. 8915 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8916 BECount = EL0.ExactNotTaken; 8917 } 8918 8919 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8920 // to be more aggressive when computing BECount than when computing 8921 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken 8922 // and 8923 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and 8924 // EL1.ConstantMaxNotTaken to not. 8925 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 8926 !isa<SCEVCouldNotCompute>(BECount)) 8927 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8928 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) 8929 SymbolicMaxBECount = 8930 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 8931 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 8932 { &EL0.Predicates, &EL1.Predicates }); 8933 } 8934 8935 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 8936 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 8937 bool AllowPredicates) { 8938 // If the condition was exit on true, convert the condition to exit on false 8939 ICmpInst::Predicate Pred; 8940 if (!ExitIfTrue) 8941 Pred = ExitCond->getPredicate(); 8942 else 8943 Pred = ExitCond->getInversePredicate(); 8944 const ICmpInst::Predicate OriginalPred = Pred; 8945 8946 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8947 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8948 8949 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit, 8950 AllowPredicates); 8951 if (EL.hasAnyInfo()) 8952 return EL; 8953 8954 auto *ExhaustiveCount = 8955 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8956 8957 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8958 return ExhaustiveCount; 8959 8960 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8961 ExitCond->getOperand(1), L, OriginalPred); 8962 } 8963 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 8964 const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8965 bool ControlsOnlyExit, bool AllowPredicates) { 8966 8967 // Try to evaluate any dependencies out of the loop. 8968 LHS = getSCEVAtScope(LHS, L); 8969 RHS = getSCEVAtScope(RHS, L); 8970 8971 // At this point, we would like to compute how many iterations of the 8972 // loop the predicate will return true for these inputs. 8973 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8974 // If there is a loop-invariant, force it into the RHS. 8975 std::swap(LHS, RHS); 8976 Pred = ICmpInst::getSwappedPredicate(Pred); 8977 } 8978 8979 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && 8980 loopIsFiniteByAssumption(L); 8981 // Simplify the operands before analyzing them. 8982 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); 8983 8984 // If we have a comparison of a chrec against a constant, try to use value 8985 // ranges to answer this query. 8986 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8987 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8988 if (AddRec->getLoop() == L) { 8989 // Form the constant range. 8990 ConstantRange CompRange = 8991 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8992 8993 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8994 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8995 } 8996 8997 // If this loop must exit based on this condition (or execute undefined 8998 // behaviour), and we can prove the test sequence produced must repeat 8999 // the same values on self-wrap of the IV, then we can infer that IV 9000 // doesn't self wrap because if it did, we'd have an infinite (undefined) 9001 // loop. 9002 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 9003 // TODO: We can peel off any functions which are invertible *in L*. Loop 9004 // invariant terms are effectively constants for our purposes here. 9005 auto *InnerLHS = LHS; 9006 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 9007 InnerLHS = ZExt->getOperand(); 9008 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 9009 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 9010 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 9011 StrideC && StrideC->getAPInt().isPowerOf2()) { 9012 auto Flags = AR->getNoWrapFlags(); 9013 Flags = setFlags(Flags, SCEV::FlagNW); 9014 SmallVector<const SCEV*> Operands{AR->operands()}; 9015 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9016 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9017 } 9018 } 9019 } 9020 9021 switch (Pred) { 9022 case ICmpInst::ICMP_NE: { // while (X != Y) 9023 // Convert to: while (X-Y != 0) 9024 if (LHS->getType()->isPointerTy()) { 9025 LHS = getLosslessPtrToIntExpr(LHS); 9026 if (isa<SCEVCouldNotCompute>(LHS)) 9027 return LHS; 9028 } 9029 if (RHS->getType()->isPointerTy()) { 9030 RHS = getLosslessPtrToIntExpr(RHS); 9031 if (isa<SCEVCouldNotCompute>(RHS)) 9032 return RHS; 9033 } 9034 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit, 9035 AllowPredicates); 9036 if (EL.hasAnyInfo()) 9037 return EL; 9038 break; 9039 } 9040 case ICmpInst::ICMP_EQ: { // while (X == Y) 9041 // Convert to: while (X-Y == 0) 9042 if (LHS->getType()->isPointerTy()) { 9043 LHS = getLosslessPtrToIntExpr(LHS); 9044 if (isa<SCEVCouldNotCompute>(LHS)) 9045 return LHS; 9046 } 9047 if (RHS->getType()->isPointerTy()) { 9048 RHS = getLosslessPtrToIntExpr(RHS); 9049 if (isa<SCEVCouldNotCompute>(RHS)) 9050 return RHS; 9051 } 9052 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 9053 if (EL.hasAnyInfo()) return EL; 9054 break; 9055 } 9056 case ICmpInst::ICMP_SLE: 9057 case ICmpInst::ICMP_ULE: 9058 // Since the loop is finite, an invariant RHS cannot include the boundary 9059 // value, otherwise it would loop forever. 9060 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9061 !isLoopInvariant(RHS, L)) 9062 break; 9063 RHS = getAddExpr(getOne(RHS->getType()), RHS); 9064 [[fallthrough]]; 9065 case ICmpInst::ICMP_SLT: 9066 case ICmpInst::ICMP_ULT: { // while (X < Y) 9067 bool IsSigned = ICmpInst::isSigned(Pred); 9068 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9069 AllowPredicates); 9070 if (EL.hasAnyInfo()) 9071 return EL; 9072 break; 9073 } 9074 case ICmpInst::ICMP_SGE: 9075 case ICmpInst::ICMP_UGE: 9076 // Since the loop is finite, an invariant RHS cannot include the boundary 9077 // value, otherwise it would loop forever. 9078 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9079 !isLoopInvariant(RHS, L)) 9080 break; 9081 RHS = getAddExpr(getMinusOne(RHS->getType()), RHS); 9082 [[fallthrough]]; 9083 case ICmpInst::ICMP_SGT: 9084 case ICmpInst::ICMP_UGT: { // while (X > Y) 9085 bool IsSigned = ICmpInst::isSigned(Pred); 9086 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9087 AllowPredicates); 9088 if (EL.hasAnyInfo()) 9089 return EL; 9090 break; 9091 } 9092 default: 9093 break; 9094 } 9095 9096 return getCouldNotCompute(); 9097 } 9098 9099 ScalarEvolution::ExitLimit 9100 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 9101 SwitchInst *Switch, 9102 BasicBlock *ExitingBlock, 9103 bool ControlsOnlyExit) { 9104 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 9105 9106 // Give up if the exit is the default dest of a switch. 9107 if (Switch->getDefaultDest() == ExitingBlock) 9108 return getCouldNotCompute(); 9109 9110 assert(L->contains(Switch->getDefaultDest()) && 9111 "Default case must not exit the loop!"); 9112 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 9113 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 9114 9115 // while (X != Y) --> while (X-Y != 0) 9116 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit); 9117 if (EL.hasAnyInfo()) 9118 return EL; 9119 9120 return getCouldNotCompute(); 9121 } 9122 9123 static ConstantInt * 9124 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9125 ScalarEvolution &SE) { 9126 const SCEV *InVal = SE.getConstant(C); 9127 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9128 assert(isa<SCEVConstant>(Val) && 9129 "Evaluation of SCEV at constant didn't fold correctly?"); 9130 return cast<SCEVConstant>(Val)->getValue(); 9131 } 9132 9133 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9134 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9135 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9136 if (!RHS) 9137 return getCouldNotCompute(); 9138 9139 const BasicBlock *Latch = L->getLoopLatch(); 9140 if (!Latch) 9141 return getCouldNotCompute(); 9142 9143 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9144 if (!Predecessor) 9145 return getCouldNotCompute(); 9146 9147 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9148 // Return LHS in OutLHS and shift_opt in OutOpCode. 9149 auto MatchPositiveShift = 9150 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9151 9152 using namespace PatternMatch; 9153 9154 ConstantInt *ShiftAmt; 9155 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9156 OutOpCode = Instruction::LShr; 9157 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9158 OutOpCode = Instruction::AShr; 9159 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9160 OutOpCode = Instruction::Shl; 9161 else 9162 return false; 9163 9164 return ShiftAmt->getValue().isStrictlyPositive(); 9165 }; 9166 9167 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9168 // 9169 // loop: 9170 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9171 // %iv.shifted = lshr i32 %iv, <positive constant> 9172 // 9173 // Return true on a successful match. Return the corresponding PHI node (%iv 9174 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9175 auto MatchShiftRecurrence = 9176 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9177 std::optional<Instruction::BinaryOps> PostShiftOpCode; 9178 9179 { 9180 Instruction::BinaryOps OpC; 9181 Value *V; 9182 9183 // If we encounter a shift instruction, "peel off" the shift operation, 9184 // and remember that we did so. Later when we inspect %iv's backedge 9185 // value, we will make sure that the backedge value uses the same 9186 // operation. 9187 // 9188 // Note: the peeled shift operation does not have to be the same 9189 // instruction as the one feeding into the PHI's backedge value. We only 9190 // really care about it being the same *kind* of shift instruction -- 9191 // that's all that is required for our later inferences to hold. 9192 if (MatchPositiveShift(LHS, V, OpC)) { 9193 PostShiftOpCode = OpC; 9194 LHS = V; 9195 } 9196 } 9197 9198 PNOut = dyn_cast<PHINode>(LHS); 9199 if (!PNOut || PNOut->getParent() != L->getHeader()) 9200 return false; 9201 9202 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9203 Value *OpLHS; 9204 9205 return 9206 // The backedge value for the PHI node must be a shift by a positive 9207 // amount 9208 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9209 9210 // of the PHI node itself 9211 OpLHS == PNOut && 9212 9213 // and the kind of shift should be match the kind of shift we peeled 9214 // off, if any. 9215 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9216 }; 9217 9218 PHINode *PN; 9219 Instruction::BinaryOps OpCode; 9220 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9221 return getCouldNotCompute(); 9222 9223 const DataLayout &DL = getDataLayout(); 9224 9225 // The key rationale for this optimization is that for some kinds of shift 9226 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9227 // within a finite number of iterations. If the condition guarding the 9228 // backedge (in the sense that the backedge is taken if the condition is true) 9229 // is false for the value the shift recurrence stabilizes to, then we know 9230 // that the backedge is taken only a finite number of times. 9231 9232 ConstantInt *StableValue = nullptr; 9233 switch (OpCode) { 9234 default: 9235 llvm_unreachable("Impossible case!"); 9236 9237 case Instruction::AShr: { 9238 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9239 // bitwidth(K) iterations. 9240 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9241 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9242 Predecessor->getTerminator(), &DT); 9243 auto *Ty = cast<IntegerType>(RHS->getType()); 9244 if (Known.isNonNegative()) 9245 StableValue = ConstantInt::get(Ty, 0); 9246 else if (Known.isNegative()) 9247 StableValue = ConstantInt::get(Ty, -1, true); 9248 else 9249 return getCouldNotCompute(); 9250 9251 break; 9252 } 9253 case Instruction::LShr: 9254 case Instruction::Shl: 9255 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9256 // stabilize to 0 in at most bitwidth(K) iterations. 9257 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9258 break; 9259 } 9260 9261 auto *Result = 9262 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9263 assert(Result->getType()->isIntegerTy(1) && 9264 "Otherwise cannot be an operand to a branch instruction"); 9265 9266 if (Result->isZeroValue()) { 9267 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9268 const SCEV *UpperBound = 9269 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9270 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); 9271 } 9272 9273 return getCouldNotCompute(); 9274 } 9275 9276 /// Return true if we can constant fold an instruction of the specified type, 9277 /// assuming that all operands were constants. 9278 static bool CanConstantFold(const Instruction *I) { 9279 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9280 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9281 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9282 return true; 9283 9284 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9285 if (const Function *F = CI->getCalledFunction()) 9286 return canConstantFoldCallTo(CI, F); 9287 return false; 9288 } 9289 9290 /// Determine whether this instruction can constant evolve within this loop 9291 /// assuming its operands can all constant evolve. 9292 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9293 // An instruction outside of the loop can't be derived from a loop PHI. 9294 if (!L->contains(I)) return false; 9295 9296 if (isa<PHINode>(I)) { 9297 // We don't currently keep track of the control flow needed to evaluate 9298 // PHIs, so we cannot handle PHIs inside of loops. 9299 return L->getHeader() == I->getParent(); 9300 } 9301 9302 // If we won't be able to constant fold this expression even if the operands 9303 // are constants, bail early. 9304 return CanConstantFold(I); 9305 } 9306 9307 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9308 /// recursing through each instruction operand until reaching a loop header phi. 9309 static PHINode * 9310 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9311 DenseMap<Instruction *, PHINode *> &PHIMap, 9312 unsigned Depth) { 9313 if (Depth > MaxConstantEvolvingDepth) 9314 return nullptr; 9315 9316 // Otherwise, we can evaluate this instruction if all of its operands are 9317 // constant or derived from a PHI node themselves. 9318 PHINode *PHI = nullptr; 9319 for (Value *Op : UseInst->operands()) { 9320 if (isa<Constant>(Op)) continue; 9321 9322 Instruction *OpInst = dyn_cast<Instruction>(Op); 9323 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9324 9325 PHINode *P = dyn_cast<PHINode>(OpInst); 9326 if (!P) 9327 // If this operand is already visited, reuse the prior result. 9328 // We may have P != PHI if this is the deepest point at which the 9329 // inconsistent paths meet. 9330 P = PHIMap.lookup(OpInst); 9331 if (!P) { 9332 // Recurse and memoize the results, whether a phi is found or not. 9333 // This recursive call invalidates pointers into PHIMap. 9334 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9335 PHIMap[OpInst] = P; 9336 } 9337 if (!P) 9338 return nullptr; // Not evolving from PHI 9339 if (PHI && PHI != P) 9340 return nullptr; // Evolving from multiple different PHIs. 9341 PHI = P; 9342 } 9343 // This is a expression evolving from a constant PHI! 9344 return PHI; 9345 } 9346 9347 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9348 /// in the loop that V is derived from. We allow arbitrary operations along the 9349 /// way, but the operands of an operation must either be constants or a value 9350 /// derived from a constant PHI. If this expression does not fit with these 9351 /// constraints, return null. 9352 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9353 Instruction *I = dyn_cast<Instruction>(V); 9354 if (!I || !canConstantEvolve(I, L)) return nullptr; 9355 9356 if (PHINode *PN = dyn_cast<PHINode>(I)) 9357 return PN; 9358 9359 // Record non-constant instructions contained by the loop. 9360 DenseMap<Instruction *, PHINode *> PHIMap; 9361 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9362 } 9363 9364 /// EvaluateExpression - Given an expression that passes the 9365 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9366 /// in the loop has the value PHIVal. If we can't fold this expression for some 9367 /// reason, return null. 9368 static Constant *EvaluateExpression(Value *V, const Loop *L, 9369 DenseMap<Instruction *, Constant *> &Vals, 9370 const DataLayout &DL, 9371 const TargetLibraryInfo *TLI) { 9372 // Convenient constant check, but redundant for recursive calls. 9373 if (Constant *C = dyn_cast<Constant>(V)) return C; 9374 Instruction *I = dyn_cast<Instruction>(V); 9375 if (!I) return nullptr; 9376 9377 if (Constant *C = Vals.lookup(I)) return C; 9378 9379 // An instruction inside the loop depends on a value outside the loop that we 9380 // weren't given a mapping for, or a value such as a call inside the loop. 9381 if (!canConstantEvolve(I, L)) return nullptr; 9382 9383 // An unmapped PHI can be due to a branch or another loop inside this loop, 9384 // or due to this not being the initial iteration through a loop where we 9385 // couldn't compute the evolution of this particular PHI last time. 9386 if (isa<PHINode>(I)) return nullptr; 9387 9388 std::vector<Constant*> Operands(I->getNumOperands()); 9389 9390 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9391 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9392 if (!Operand) { 9393 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9394 if (!Operands[i]) return nullptr; 9395 continue; 9396 } 9397 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9398 Vals[Operand] = C; 9399 if (!C) return nullptr; 9400 Operands[i] = C; 9401 } 9402 9403 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9404 } 9405 9406 9407 // If every incoming value to PN except the one for BB is a specific Constant, 9408 // return that, else return nullptr. 9409 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9410 Constant *IncomingVal = nullptr; 9411 9412 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9413 if (PN->getIncomingBlock(i) == BB) 9414 continue; 9415 9416 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9417 if (!CurrentVal) 9418 return nullptr; 9419 9420 if (IncomingVal != CurrentVal) { 9421 if (IncomingVal) 9422 return nullptr; 9423 IncomingVal = CurrentVal; 9424 } 9425 } 9426 9427 return IncomingVal; 9428 } 9429 9430 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9431 /// in the header of its containing loop, we know the loop executes a 9432 /// constant number of times, and the PHI node is just a recurrence 9433 /// involving constants, fold it. 9434 Constant * 9435 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9436 const APInt &BEs, 9437 const Loop *L) { 9438 auto I = ConstantEvolutionLoopExitValue.find(PN); 9439 if (I != ConstantEvolutionLoopExitValue.end()) 9440 return I->second; 9441 9442 if (BEs.ugt(MaxBruteForceIterations)) 9443 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9444 9445 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9446 9447 DenseMap<Instruction *, Constant *> CurrentIterVals; 9448 BasicBlock *Header = L->getHeader(); 9449 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9450 9451 BasicBlock *Latch = L->getLoopLatch(); 9452 if (!Latch) 9453 return nullptr; 9454 9455 for (PHINode &PHI : Header->phis()) { 9456 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9457 CurrentIterVals[&PHI] = StartCST; 9458 } 9459 if (!CurrentIterVals.count(PN)) 9460 return RetVal = nullptr; 9461 9462 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9463 9464 // Execute the loop symbolically to determine the exit value. 9465 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9466 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9467 9468 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9469 unsigned IterationNum = 0; 9470 const DataLayout &DL = getDataLayout(); 9471 for (; ; ++IterationNum) { 9472 if (IterationNum == NumIterations) 9473 return RetVal = CurrentIterVals[PN]; // Got exit value! 9474 9475 // Compute the value of the PHIs for the next iteration. 9476 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9477 DenseMap<Instruction *, Constant *> NextIterVals; 9478 Constant *NextPHI = 9479 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9480 if (!NextPHI) 9481 return nullptr; // Couldn't evaluate! 9482 NextIterVals[PN] = NextPHI; 9483 9484 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9485 9486 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9487 // cease to be able to evaluate one of them or if they stop evolving, 9488 // because that doesn't necessarily prevent us from computing PN. 9489 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9490 for (const auto &I : CurrentIterVals) { 9491 PHINode *PHI = dyn_cast<PHINode>(I.first); 9492 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9493 PHIsToCompute.emplace_back(PHI, I.second); 9494 } 9495 // We use two distinct loops because EvaluateExpression may invalidate any 9496 // iterators into CurrentIterVals. 9497 for (const auto &I : PHIsToCompute) { 9498 PHINode *PHI = I.first; 9499 Constant *&NextPHI = NextIterVals[PHI]; 9500 if (!NextPHI) { // Not already computed. 9501 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9502 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9503 } 9504 if (NextPHI != I.second) 9505 StoppedEvolving = false; 9506 } 9507 9508 // If all entries in CurrentIterVals == NextIterVals then we can stop 9509 // iterating, the loop can't continue to change. 9510 if (StoppedEvolving) 9511 return RetVal = CurrentIterVals[PN]; 9512 9513 CurrentIterVals.swap(NextIterVals); 9514 } 9515 } 9516 9517 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9518 Value *Cond, 9519 bool ExitWhen) { 9520 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9521 if (!PN) return getCouldNotCompute(); 9522 9523 // If the loop is canonicalized, the PHI will have exactly two entries. 9524 // That's the only form we support here. 9525 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9526 9527 DenseMap<Instruction *, Constant *> CurrentIterVals; 9528 BasicBlock *Header = L->getHeader(); 9529 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9530 9531 BasicBlock *Latch = L->getLoopLatch(); 9532 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9533 9534 for (PHINode &PHI : Header->phis()) { 9535 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9536 CurrentIterVals[&PHI] = StartCST; 9537 } 9538 if (!CurrentIterVals.count(PN)) 9539 return getCouldNotCompute(); 9540 9541 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9542 // the loop symbolically to determine when the condition gets a value of 9543 // "ExitWhen". 9544 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9545 const DataLayout &DL = getDataLayout(); 9546 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9547 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9548 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9549 9550 // Couldn't symbolically evaluate. 9551 if (!CondVal) return getCouldNotCompute(); 9552 9553 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9554 ++NumBruteForceTripCountsComputed; 9555 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9556 } 9557 9558 // Update all the PHI nodes for the next iteration. 9559 DenseMap<Instruction *, Constant *> NextIterVals; 9560 9561 // Create a list of which PHIs we need to compute. We want to do this before 9562 // calling EvaluateExpression on them because that may invalidate iterators 9563 // into CurrentIterVals. 9564 SmallVector<PHINode *, 8> PHIsToCompute; 9565 for (const auto &I : CurrentIterVals) { 9566 PHINode *PHI = dyn_cast<PHINode>(I.first); 9567 if (!PHI || PHI->getParent() != Header) continue; 9568 PHIsToCompute.push_back(PHI); 9569 } 9570 for (PHINode *PHI : PHIsToCompute) { 9571 Constant *&NextPHI = NextIterVals[PHI]; 9572 if (NextPHI) continue; // Already computed! 9573 9574 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9575 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9576 } 9577 CurrentIterVals.swap(NextIterVals); 9578 } 9579 9580 // Too many iterations were needed to evaluate. 9581 return getCouldNotCompute(); 9582 } 9583 9584 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9585 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9586 ValuesAtScopes[V]; 9587 // Check to see if we've folded this expression at this loop before. 9588 for (auto &LS : Values) 9589 if (LS.first == L) 9590 return LS.second ? LS.second : V; 9591 9592 Values.emplace_back(L, nullptr); 9593 9594 // Otherwise compute it. 9595 const SCEV *C = computeSCEVAtScope(V, L); 9596 for (auto &LS : reverse(ValuesAtScopes[V])) 9597 if (LS.first == L) { 9598 LS.second = C; 9599 if (!isa<SCEVConstant>(C)) 9600 ValuesAtScopesUsers[C].push_back({L, V}); 9601 break; 9602 } 9603 return C; 9604 } 9605 9606 /// This builds up a Constant using the ConstantExpr interface. That way, we 9607 /// will return Constants for objects which aren't represented by a 9608 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9609 /// Returns NULL if the SCEV isn't representable as a Constant. 9610 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9611 switch (V->getSCEVType()) { 9612 case scCouldNotCompute: 9613 case scAddRecExpr: 9614 case scVScale: 9615 return nullptr; 9616 case scConstant: 9617 return cast<SCEVConstant>(V)->getValue(); 9618 case scUnknown: 9619 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9620 case scSignExtend: { 9621 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9622 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9623 return ConstantExpr::getSExt(CastOp, SS->getType()); 9624 return nullptr; 9625 } 9626 case scZeroExtend: { 9627 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9628 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9629 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9630 return nullptr; 9631 } 9632 case scPtrToInt: { 9633 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9634 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9635 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9636 9637 return nullptr; 9638 } 9639 case scTruncate: { 9640 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9641 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9642 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9643 return nullptr; 9644 } 9645 case scAddExpr: { 9646 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9647 Constant *C = nullptr; 9648 for (const SCEV *Op : SA->operands()) { 9649 Constant *OpC = BuildConstantFromSCEV(Op); 9650 if (!OpC) 9651 return nullptr; 9652 if (!C) { 9653 C = OpC; 9654 continue; 9655 } 9656 assert(!C->getType()->isPointerTy() && 9657 "Can only have one pointer, and it must be last"); 9658 if (auto *PT = dyn_cast<PointerType>(OpC->getType())) { 9659 // The offsets have been converted to bytes. We can add bytes to an 9660 // i8* by GEP with the byte count in the first index. 9661 Type *DestPtrTy = 9662 Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace()); 9663 OpC = ConstantExpr::getBitCast(OpC, DestPtrTy); 9664 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9665 OpC, C); 9666 } else { 9667 C = ConstantExpr::getAdd(C, OpC); 9668 } 9669 } 9670 return C; 9671 } 9672 case scMulExpr: { 9673 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9674 Constant *C = nullptr; 9675 for (const SCEV *Op : SM->operands()) { 9676 assert(!Op->getType()->isPointerTy() && "Can't multiply pointers"); 9677 Constant *OpC = BuildConstantFromSCEV(Op); 9678 if (!OpC) 9679 return nullptr; 9680 C = C ? ConstantExpr::getMul(C, OpC) : OpC; 9681 } 9682 return C; 9683 } 9684 case scUDivExpr: 9685 case scSMaxExpr: 9686 case scUMaxExpr: 9687 case scSMinExpr: 9688 case scUMinExpr: 9689 case scSequentialUMinExpr: 9690 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9691 } 9692 llvm_unreachable("Unknown SCEV kind!"); 9693 } 9694 9695 const SCEV * 9696 ScalarEvolution::getWithOperands(const SCEV *S, 9697 SmallVectorImpl<const SCEV *> &NewOps) { 9698 switch (S->getSCEVType()) { 9699 case scTruncate: 9700 case scZeroExtend: 9701 case scSignExtend: 9702 case scPtrToInt: 9703 return getCastExpr(S->getSCEVType(), NewOps[0], S->getType()); 9704 case scAddRecExpr: { 9705 auto *AddRec = cast<SCEVAddRecExpr>(S); 9706 return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags()); 9707 } 9708 case scAddExpr: 9709 return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags()); 9710 case scMulExpr: 9711 return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags()); 9712 case scUDivExpr: 9713 return getUDivExpr(NewOps[0], NewOps[1]); 9714 case scUMaxExpr: 9715 case scSMaxExpr: 9716 case scUMinExpr: 9717 case scSMinExpr: 9718 return getMinMaxExpr(S->getSCEVType(), NewOps); 9719 case scSequentialUMinExpr: 9720 return getSequentialMinMaxExpr(S->getSCEVType(), NewOps); 9721 case scConstant: 9722 case scVScale: 9723 case scUnknown: 9724 return S; 9725 case scCouldNotCompute: 9726 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9727 } 9728 llvm_unreachable("Unknown SCEV kind!"); 9729 } 9730 9731 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9732 switch (V->getSCEVType()) { 9733 case scConstant: 9734 case scVScale: 9735 return V; 9736 case scAddRecExpr: { 9737 // If this is a loop recurrence for a loop that does not contain L, then we 9738 // are dealing with the final value computed by the loop. 9739 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); 9740 // First, attempt to evaluate each operand. 9741 // Avoid performing the look-up in the common case where the specified 9742 // expression has no loop-variant portions. 9743 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9744 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9745 if (OpAtScope == AddRec->getOperand(i)) 9746 continue; 9747 9748 // Okay, at least one of these operands is loop variant but might be 9749 // foldable. Build a new instance of the folded commutative expression. 9750 SmallVector<const SCEV *, 8> NewOps; 9751 NewOps.reserve(AddRec->getNumOperands()); 9752 append_range(NewOps, AddRec->operands().take_front(i)); 9753 NewOps.push_back(OpAtScope); 9754 for (++i; i != e; ++i) 9755 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9756 9757 const SCEV *FoldedRec = getAddRecExpr( 9758 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); 9759 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9760 // The addrec may be folded to a nonrecurrence, for example, if the 9761 // induction variable is multiplied by zero after constant folding. Go 9762 // ahead and return the folded value. 9763 if (!AddRec) 9764 return FoldedRec; 9765 break; 9766 } 9767 9768 // If the scope is outside the addrec's loop, evaluate it by using the 9769 // loop exit value of the addrec. 9770 if (!AddRec->getLoop()->contains(L)) { 9771 // To evaluate this recurrence, we need to know how many times the AddRec 9772 // loop iterates. Compute this now. 9773 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9774 if (BackedgeTakenCount == getCouldNotCompute()) 9775 return AddRec; 9776 9777 // Then, evaluate the AddRec. 9778 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9779 } 9780 9781 return AddRec; 9782 } 9783 case scTruncate: 9784 case scZeroExtend: 9785 case scSignExtend: 9786 case scPtrToInt: 9787 case scAddExpr: 9788 case scMulExpr: 9789 case scUDivExpr: 9790 case scUMaxExpr: 9791 case scSMaxExpr: 9792 case scUMinExpr: 9793 case scSMinExpr: 9794 case scSequentialUMinExpr: { 9795 ArrayRef<const SCEV *> Ops = V->operands(); 9796 // Avoid performing the look-up in the common case where the specified 9797 // expression has no loop-variant portions. 9798 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 9799 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); 9800 if (OpAtScope != Ops[i]) { 9801 // Okay, at least one of these operands is loop variant but might be 9802 // foldable. Build a new instance of the folded commutative expression. 9803 SmallVector<const SCEV *, 8> NewOps; 9804 NewOps.reserve(Ops.size()); 9805 append_range(NewOps, Ops.take_front(i)); 9806 NewOps.push_back(OpAtScope); 9807 9808 for (++i; i != e; ++i) { 9809 OpAtScope = getSCEVAtScope(Ops[i], L); 9810 NewOps.push_back(OpAtScope); 9811 } 9812 9813 return getWithOperands(V, NewOps); 9814 } 9815 } 9816 // If we got here, all operands are loop invariant. 9817 return V; 9818 } 9819 case scUnknown: { 9820 // If this instruction is evolved from a constant-evolving PHI, compute the 9821 // exit value from the loop without using SCEVs. 9822 const SCEVUnknown *SU = cast<SCEVUnknown>(V); 9823 Instruction *I = dyn_cast<Instruction>(SU->getValue()); 9824 if (!I) 9825 return V; // This is some other type of SCEVUnknown, just return it. 9826 9827 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9828 const Loop *CurrLoop = this->LI[I->getParent()]; 9829 // Looking for loop exit value. 9830 if (CurrLoop && CurrLoop->getParentLoop() == L && 9831 PN->getParent() == CurrLoop->getHeader()) { 9832 // Okay, there is no closed form solution for the PHI node. Check 9833 // to see if the loop that contains it has a known backedge-taken 9834 // count. If so, we may be able to force computation of the exit 9835 // value. 9836 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9837 // This trivial case can show up in some degenerate cases where 9838 // the incoming IR has not yet been fully simplified. 9839 if (BackedgeTakenCount->isZero()) { 9840 Value *InitValue = nullptr; 9841 bool MultipleInitValues = false; 9842 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9843 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9844 if (!InitValue) 9845 InitValue = PN->getIncomingValue(i); 9846 else if (InitValue != PN->getIncomingValue(i)) { 9847 MultipleInitValues = true; 9848 break; 9849 } 9850 } 9851 } 9852 if (!MultipleInitValues && InitValue) 9853 return getSCEV(InitValue); 9854 } 9855 // Do we have a loop invariant value flowing around the backedge 9856 // for a loop which must execute the backedge? 9857 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9858 isKnownPositive(BackedgeTakenCount) && 9859 PN->getNumIncomingValues() == 2) { 9860 9861 unsigned InLoopPred = 9862 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9863 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9864 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9865 return getSCEV(BackedgeVal); 9866 } 9867 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9868 // Okay, we know how many times the containing loop executes. If 9869 // this is a constant evolving PHI node, get the final value at 9870 // the specified iteration number. 9871 Constant *RV = 9872 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); 9873 if (RV) 9874 return getSCEV(RV); 9875 } 9876 } 9877 } 9878 9879 // Okay, this is an expression that we cannot symbolically evaluate 9880 // into a SCEV. Check to see if it's possible to symbolically evaluate 9881 // the arguments into constants, and if so, try to constant propagate the 9882 // result. This is particularly useful for computing loop exit values. 9883 if (!CanConstantFold(I)) 9884 return V; // This is some other type of SCEVUnknown, just return it. 9885 9886 SmallVector<Constant *, 4> Operands; 9887 Operands.reserve(I->getNumOperands()); 9888 bool MadeImprovement = false; 9889 for (Value *Op : I->operands()) { 9890 if (Constant *C = dyn_cast<Constant>(Op)) { 9891 Operands.push_back(C); 9892 continue; 9893 } 9894 9895 // If any of the operands is non-constant and if they are 9896 // non-integer and non-pointer, don't even try to analyze them 9897 // with scev techniques. 9898 if (!isSCEVable(Op->getType())) 9899 return V; 9900 9901 const SCEV *OrigV = getSCEV(Op); 9902 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9903 MadeImprovement |= OrigV != OpV; 9904 9905 Constant *C = BuildConstantFromSCEV(OpV); 9906 if (!C) 9907 return V; 9908 if (C->getType() != Op->getType()) 9909 C = ConstantExpr::getCast( 9910 CastInst::getCastOpcode(C, false, Op->getType(), false), C, 9911 Op->getType()); 9912 Operands.push_back(C); 9913 } 9914 9915 // Check to see if getSCEVAtScope actually made an improvement. 9916 if (!MadeImprovement) 9917 return V; // This is some other type of SCEVUnknown, just return it. 9918 9919 Constant *C = nullptr; 9920 const DataLayout &DL = getDataLayout(); 9921 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9922 if (!C) 9923 return V; 9924 return getSCEV(C); 9925 } 9926 case scCouldNotCompute: 9927 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9928 } 9929 llvm_unreachable("Unknown SCEV type!"); 9930 } 9931 9932 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9933 return getSCEVAtScope(getSCEV(V), L); 9934 } 9935 9936 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9937 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9938 return stripInjectiveFunctions(ZExt->getOperand()); 9939 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9940 return stripInjectiveFunctions(SExt->getOperand()); 9941 return S; 9942 } 9943 9944 /// Finds the minimum unsigned root of the following equation: 9945 /// 9946 /// A * X = B (mod N) 9947 /// 9948 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9949 /// A and B isn't important. 9950 /// 9951 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9952 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9953 ScalarEvolution &SE) { 9954 uint32_t BW = A.getBitWidth(); 9955 assert(BW == SE.getTypeSizeInBits(B->getType())); 9956 assert(A != 0 && "A must be non-zero."); 9957 9958 // 1. D = gcd(A, N) 9959 // 9960 // The gcd of A and N may have only one prime factor: 2. The number of 9961 // trailing zeros in A is its multiplicity 9962 uint32_t Mult2 = A.countr_zero(); 9963 // D = 2^Mult2 9964 9965 // 2. Check if B is divisible by D. 9966 // 9967 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9968 // is not less than multiplicity of this prime factor for D. 9969 if (SE.getMinTrailingZeros(B) < Mult2) 9970 return SE.getCouldNotCompute(); 9971 9972 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9973 // modulo (N / D). 9974 // 9975 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9976 // (N / D) in general. The inverse itself always fits into BW bits, though, 9977 // so we immediately truncate it. 9978 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9979 APInt Mod(BW + 1, 0); 9980 Mod.setBit(BW - Mult2); // Mod = N / D 9981 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9982 9983 // 4. Compute the minimum unsigned root of the equation: 9984 // I * (B / D) mod (N / D) 9985 // To simplify the computation, we factor out the divide by D: 9986 // (I * B mod N) / D 9987 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9988 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9989 } 9990 9991 /// For a given quadratic addrec, generate coefficients of the corresponding 9992 /// quadratic equation, multiplied by a common value to ensure that they are 9993 /// integers. 9994 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9995 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9996 /// were multiplied by, and BitWidth is the bit width of the original addrec 9997 /// coefficients. 9998 /// This function returns std::nullopt if the addrec coefficients are not 9999 /// compile- time constants. 10000 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 10001 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 10002 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 10003 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 10004 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 10005 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 10006 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 10007 << *AddRec << '\n'); 10008 10009 // We currently can only solve this if the coefficients are constants. 10010 if (!LC || !MC || !NC) { 10011 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 10012 return std::nullopt; 10013 } 10014 10015 APInt L = LC->getAPInt(); 10016 APInt M = MC->getAPInt(); 10017 APInt N = NC->getAPInt(); 10018 assert(!N.isZero() && "This is not a quadratic addrec"); 10019 10020 unsigned BitWidth = LC->getAPInt().getBitWidth(); 10021 unsigned NewWidth = BitWidth + 1; 10022 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 10023 << BitWidth << '\n'); 10024 // The sign-extension (as opposed to a zero-extension) here matches the 10025 // extension used in SolveQuadraticEquationWrap (with the same motivation). 10026 N = N.sext(NewWidth); 10027 M = M.sext(NewWidth); 10028 L = L.sext(NewWidth); 10029 10030 // The increments are M, M+N, M+2N, ..., so the accumulated values are 10031 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 10032 // L+M, L+2M+N, L+3M+3N, ... 10033 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 10034 // 10035 // The equation Acc = 0 is then 10036 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 10037 // In a quadratic form it becomes: 10038 // N n^2 + (2M-N) n + 2L = 0. 10039 10040 APInt A = N; 10041 APInt B = 2 * M - A; 10042 APInt C = 2 * L; 10043 APInt T = APInt(NewWidth, 2); 10044 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 10045 << "x + " << C << ", coeff bw: " << NewWidth 10046 << ", multiplied by " << T << '\n'); 10047 return std::make_tuple(A, B, C, T, BitWidth); 10048 } 10049 10050 /// Helper function to compare optional APInts: 10051 /// (a) if X and Y both exist, return min(X, Y), 10052 /// (b) if neither X nor Y exist, return std::nullopt, 10053 /// (c) if exactly one of X and Y exists, return that value. 10054 static std::optional<APInt> MinOptional(std::optional<APInt> X, 10055 std::optional<APInt> Y) { 10056 if (X && Y) { 10057 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 10058 APInt XW = X->sext(W); 10059 APInt YW = Y->sext(W); 10060 return XW.slt(YW) ? *X : *Y; 10061 } 10062 if (!X && !Y) 10063 return std::nullopt; 10064 return X ? *X : *Y; 10065 } 10066 10067 /// Helper function to truncate an optional APInt to a given BitWidth. 10068 /// When solving addrec-related equations, it is preferable to return a value 10069 /// that has the same bit width as the original addrec's coefficients. If the 10070 /// solution fits in the original bit width, truncate it (except for i1). 10071 /// Returning a value of a different bit width may inhibit some optimizations. 10072 /// 10073 /// In general, a solution to a quadratic equation generated from an addrec 10074 /// may require BW+1 bits, where BW is the bit width of the addrec's 10075 /// coefficients. The reason is that the coefficients of the quadratic 10076 /// equation are BW+1 bits wide (to avoid truncation when converting from 10077 /// the addrec to the equation). 10078 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, 10079 unsigned BitWidth) { 10080 if (!X) 10081 return std::nullopt; 10082 unsigned W = X->getBitWidth(); 10083 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 10084 return X->trunc(BitWidth); 10085 return X; 10086 } 10087 10088 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 10089 /// iterations. The values L, M, N are assumed to be signed, and they 10090 /// should all have the same bit widths. 10091 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 10092 /// where BW is the bit width of the addrec's coefficients. 10093 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 10094 /// returned as such, otherwise the bit width of the returned value may 10095 /// be greater than BW. 10096 /// 10097 /// This function returns std::nullopt if 10098 /// (a) the addrec coefficients are not constant, or 10099 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 10100 /// like x^2 = 5, no integer solutions exist, in other cases an integer 10101 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 10102 static std::optional<APInt> 10103 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 10104 APInt A, B, C, M; 10105 unsigned BitWidth; 10106 auto T = GetQuadraticEquation(AddRec); 10107 if (!T) 10108 return std::nullopt; 10109 10110 std::tie(A, B, C, M, BitWidth) = *T; 10111 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 10112 std::optional<APInt> X = 10113 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); 10114 if (!X) 10115 return std::nullopt; 10116 10117 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 10118 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 10119 if (!V->isZero()) 10120 return std::nullopt; 10121 10122 return TruncIfPossible(X, BitWidth); 10123 } 10124 10125 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 10126 /// iterations. The values M, N are assumed to be signed, and they 10127 /// should all have the same bit widths. 10128 /// Find the least n such that c(n) does not belong to the given range, 10129 /// while c(n-1) does. 10130 /// 10131 /// This function returns std::nullopt if 10132 /// (a) the addrec coefficients are not constant, or 10133 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 10134 /// bounds of the range. 10135 static std::optional<APInt> 10136 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 10137 const ConstantRange &Range, ScalarEvolution &SE) { 10138 assert(AddRec->getOperand(0)->isZero() && 10139 "Starting value of addrec should be 0"); 10140 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 10141 << Range << ", addrec " << *AddRec << '\n'); 10142 // This case is handled in getNumIterationsInRange. Here we can assume that 10143 // we start in the range. 10144 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 10145 "Addrec's initial value should be in range"); 10146 10147 APInt A, B, C, M; 10148 unsigned BitWidth; 10149 auto T = GetQuadraticEquation(AddRec); 10150 if (!T) 10151 return std::nullopt; 10152 10153 // Be careful about the return value: there can be two reasons for not 10154 // returning an actual number. First, if no solutions to the equations 10155 // were found, and second, if the solutions don't leave the given range. 10156 // The first case means that the actual solution is "unknown", the second 10157 // means that it's known, but not valid. If the solution is unknown, we 10158 // cannot make any conclusions. 10159 // Return a pair: the optional solution and a flag indicating if the 10160 // solution was found. 10161 auto SolveForBoundary = 10162 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { 10163 // Solve for signed overflow and unsigned overflow, pick the lower 10164 // solution. 10165 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10166 << Bound << " (before multiplying by " << M << ")\n"); 10167 Bound *= M; // The quadratic equation multiplier. 10168 10169 std::optional<APInt> SO; 10170 if (BitWidth > 1) { 10171 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10172 "signed overflow\n"); 10173 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10174 } 10175 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10176 "unsigned overflow\n"); 10177 std::optional<APInt> UO = 10178 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); 10179 10180 auto LeavesRange = [&] (const APInt &X) { 10181 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10182 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10183 if (Range.contains(V0->getValue())) 10184 return false; 10185 // X should be at least 1, so X-1 is non-negative. 10186 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10187 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10188 if (Range.contains(V1->getValue())) 10189 return true; 10190 return false; 10191 }; 10192 10193 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there 10194 // can be a solution, but the function failed to find it. We cannot treat it 10195 // as "no solution". 10196 if (!SO || !UO) 10197 return {std::nullopt, false}; 10198 10199 // Check the smaller value first to see if it leaves the range. 10200 // At this point, both SO and UO must have values. 10201 std::optional<APInt> Min = MinOptional(SO, UO); 10202 if (LeavesRange(*Min)) 10203 return { Min, true }; 10204 std::optional<APInt> Max = Min == SO ? UO : SO; 10205 if (LeavesRange(*Max)) 10206 return { Max, true }; 10207 10208 // Solutions were found, but were eliminated, hence the "true". 10209 return {std::nullopt, true}; 10210 }; 10211 10212 std::tie(A, B, C, M, BitWidth) = *T; 10213 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10214 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10215 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10216 auto SL = SolveForBoundary(Lower); 10217 auto SU = SolveForBoundary(Upper); 10218 // If any of the solutions was unknown, no meaninigful conclusions can 10219 // be made. 10220 if (!SL.second || !SU.second) 10221 return std::nullopt; 10222 10223 // Claim: The correct solution is not some value between Min and Max. 10224 // 10225 // Justification: Assuming that Min and Max are different values, one of 10226 // them is when the first signed overflow happens, the other is when the 10227 // first unsigned overflow happens. Crossing the range boundary is only 10228 // possible via an overflow (treating 0 as a special case of it, modeling 10229 // an overflow as crossing k*2^W for some k). 10230 // 10231 // The interesting case here is when Min was eliminated as an invalid 10232 // solution, but Max was not. The argument is that if there was another 10233 // overflow between Min and Max, it would also have been eliminated if 10234 // it was considered. 10235 // 10236 // For a given boundary, it is possible to have two overflows of the same 10237 // type (signed/unsigned) without having the other type in between: this 10238 // can happen when the vertex of the parabola is between the iterations 10239 // corresponding to the overflows. This is only possible when the two 10240 // overflows cross k*2^W for the same k. In such case, if the second one 10241 // left the range (and was the first one to do so), the first overflow 10242 // would have to enter the range, which would mean that either we had left 10243 // the range before or that we started outside of it. Both of these cases 10244 // are contradictions. 10245 // 10246 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct 10247 // solution is not some value between the Max for this boundary and the 10248 // Min of the other boundary. 10249 // 10250 // Justification: Assume that we had such Max_A and Min_B corresponding 10251 // to range boundaries A and B and such that Max_A < Min_B. If there was 10252 // a solution between Max_A and Min_B, it would have to be caused by an 10253 // overflow corresponding to either A or B. It cannot correspond to B, 10254 // since Min_B is the first occurrence of such an overflow. If it 10255 // corresponded to A, it would have to be either a signed or an unsigned 10256 // overflow that is larger than both eliminated overflows for A. But 10257 // between the eliminated overflows and this overflow, the values would 10258 // cover the entire value space, thus crossing the other boundary, which 10259 // is a contradiction. 10260 10261 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10262 } 10263 10264 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, 10265 const Loop *L, 10266 bool ControlsOnlyExit, 10267 bool AllowPredicates) { 10268 10269 // This is only used for loops with a "x != y" exit test. The exit condition 10270 // is now expressed as a single expression, V = x-y. So the exit test is 10271 // effectively V != 0. We know and take advantage of the fact that this 10272 // expression only being used in a comparison by zero context. 10273 10274 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10275 // If the value is a constant 10276 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10277 // If the value is already zero, the branch will execute zero times. 10278 if (C->getValue()->isZero()) return C; 10279 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10280 } 10281 10282 const SCEVAddRecExpr *AddRec = 10283 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10284 10285 if (!AddRec && AllowPredicates) 10286 // Try to make this an AddRec using runtime tests, in the first X 10287 // iterations of this loop, where X is the SCEV expression found by the 10288 // algorithm below. 10289 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10290 10291 if (!AddRec || AddRec->getLoop() != L) 10292 return getCouldNotCompute(); 10293 10294 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10295 // the quadratic equation to solve it. 10296 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10297 // We can only use this value if the chrec ends up with an exact zero 10298 // value at this index. When solving for "X*X != 5", for example, we 10299 // should not accept a root of 2. 10300 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10301 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10302 return ExitLimit(R, R, R, false, Predicates); 10303 } 10304 return getCouldNotCompute(); 10305 } 10306 10307 // Otherwise we can only handle this if it is affine. 10308 if (!AddRec->isAffine()) 10309 return getCouldNotCompute(); 10310 10311 // If this is an affine expression, the execution count of this branch is 10312 // the minimum unsigned root of the following equation: 10313 // 10314 // Start + Step*N = 0 (mod 2^BW) 10315 // 10316 // equivalent to: 10317 // 10318 // Step*N = -Start (mod 2^BW) 10319 // 10320 // where BW is the common bit width of Start and Step. 10321 10322 // Get the initial value for the loop. 10323 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10324 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10325 10326 // For now we handle only constant steps. 10327 // 10328 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10329 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10330 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10331 // We have not yet seen any such cases. 10332 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10333 if (!StepC || StepC->getValue()->isZero()) 10334 return getCouldNotCompute(); 10335 10336 // For positive steps (counting up until unsigned overflow): 10337 // N = -Start/Step (as unsigned) 10338 // For negative steps (counting down to zero): 10339 // N = Start/-Step 10340 // First compute the unsigned distance from zero in the direction of Step. 10341 bool CountDown = StepC->getAPInt().isNegative(); 10342 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10343 10344 // Handle unitary steps, which cannot wraparound. 10345 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10346 // N = Distance (as unsigned) 10347 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10348 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10349 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10350 10351 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10352 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10353 // case, and see if we can improve the bound. 10354 // 10355 // Explicitly handling this here is necessary because getUnsignedRange 10356 // isn't context-sensitive; it doesn't know that we only care about the 10357 // range inside the loop. 10358 const SCEV *Zero = getZero(Distance->getType()); 10359 const SCEV *One = getOne(Distance->getType()); 10360 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10361 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10362 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10363 // as "unsigned_max(Distance + 1) - 1". 10364 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10365 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10366 } 10367 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, 10368 Predicates); 10369 } 10370 10371 // If the condition controls loop exit (the loop exits only if the expression 10372 // is true) and the addition is no-wrap we can use unsigned divide to 10373 // compute the backedge count. In this case, the step may not divide the 10374 // distance, but we don't care because if the condition is "missed" the loop 10375 // will have undefined behavior due to wrapping. 10376 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && 10377 loopHasNoAbnormalExits(AddRec->getLoop())) { 10378 const SCEV *Exact = 10379 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10380 const SCEV *ConstantMax = getCouldNotCompute(); 10381 if (Exact != getCouldNotCompute()) { 10382 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10383 ConstantMax = 10384 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10385 } 10386 const SCEV *SymbolicMax = 10387 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; 10388 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); 10389 } 10390 10391 // Solve the general equation. 10392 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10393 getNegativeSCEV(Start), *this); 10394 10395 const SCEV *M = E; 10396 if (E != getCouldNotCompute()) { 10397 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10398 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10399 } 10400 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; 10401 return ExitLimit(E, M, S, false, Predicates); 10402 } 10403 10404 ScalarEvolution::ExitLimit 10405 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10406 // Loops that look like: while (X == 0) are very strange indeed. We don't 10407 // handle them yet except for the trivial case. This could be expanded in the 10408 // future as needed. 10409 10410 // If the value is a constant, check to see if it is known to be non-zero 10411 // already. If so, the backedge will execute zero times. 10412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10413 if (!C->getValue()->isZero()) 10414 return getZero(C->getType()); 10415 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10416 } 10417 10418 // We could implement others, but I really doubt anyone writes loops like 10419 // this, and if they did, they would already be constant folded. 10420 return getCouldNotCompute(); 10421 } 10422 10423 std::pair<const BasicBlock *, const BasicBlock *> 10424 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10425 const { 10426 // If the block has a unique predecessor, then there is no path from the 10427 // predecessor to the block that does not go through the direct edge 10428 // from the predecessor to the block. 10429 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10430 return {Pred, BB}; 10431 10432 // A loop's header is defined to be a block that dominates the loop. 10433 // If the header has a unique predecessor outside the loop, it must be 10434 // a block that has exactly one successor that can reach the loop. 10435 if (const Loop *L = LI.getLoopFor(BB)) 10436 return {L->getLoopPredecessor(), L->getHeader()}; 10437 10438 return {nullptr, nullptr}; 10439 } 10440 10441 /// SCEV structural equivalence is usually sufficient for testing whether two 10442 /// expressions are equal, however for the purposes of looking for a condition 10443 /// guarding a loop, it can be useful to be a little more general, since a 10444 /// front-end may have replicated the controlling expression. 10445 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10446 // Quick check to see if they are the same SCEV. 10447 if (A == B) return true; 10448 10449 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10450 // Not all instructions that are "identical" compute the same value. For 10451 // instance, two distinct alloca instructions allocating the same type are 10452 // identical and do not read memory; but compute distinct values. 10453 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10454 }; 10455 10456 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10457 // two different instructions with the same value. Check for this case. 10458 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10459 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10460 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10461 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10462 if (ComputesEqualValues(AI, BI)) 10463 return true; 10464 10465 // Otherwise assume they may have a different value. 10466 return false; 10467 } 10468 10469 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10470 const SCEV *&LHS, const SCEV *&RHS, 10471 unsigned Depth) { 10472 bool Changed = false; 10473 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10474 // '0 != 0'. 10475 auto TrivialCase = [&](bool TriviallyTrue) { 10476 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10477 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10478 return true; 10479 }; 10480 // If we hit the max recursion limit bail out. 10481 if (Depth >= 3) 10482 return false; 10483 10484 // Canonicalize a constant to the right side. 10485 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10486 // Check for both operands constant. 10487 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10488 if (ConstantExpr::getICmp(Pred, 10489 LHSC->getValue(), 10490 RHSC->getValue())->isNullValue()) 10491 return TrivialCase(false); 10492 return TrivialCase(true); 10493 } 10494 // Otherwise swap the operands to put the constant on the right. 10495 std::swap(LHS, RHS); 10496 Pred = ICmpInst::getSwappedPredicate(Pred); 10497 Changed = true; 10498 } 10499 10500 // If we're comparing an addrec with a value which is loop-invariant in the 10501 // addrec's loop, put the addrec on the left. Also make a dominance check, 10502 // as both operands could be addrecs loop-invariant in each other's loop. 10503 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10504 const Loop *L = AR->getLoop(); 10505 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10506 std::swap(LHS, RHS); 10507 Pred = ICmpInst::getSwappedPredicate(Pred); 10508 Changed = true; 10509 } 10510 } 10511 10512 // If there's a constant operand, canonicalize comparisons with boundary 10513 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10514 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10515 const APInt &RA = RC->getAPInt(); 10516 10517 bool SimplifiedByConstantRange = false; 10518 10519 if (!ICmpInst::isEquality(Pred)) { 10520 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10521 if (ExactCR.isFullSet()) 10522 return TrivialCase(true); 10523 if (ExactCR.isEmptySet()) 10524 return TrivialCase(false); 10525 10526 APInt NewRHS; 10527 CmpInst::Predicate NewPred; 10528 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10529 ICmpInst::isEquality(NewPred)) { 10530 // We were able to convert an inequality to an equality. 10531 Pred = NewPred; 10532 RHS = getConstant(NewRHS); 10533 Changed = SimplifiedByConstantRange = true; 10534 } 10535 } 10536 10537 if (!SimplifiedByConstantRange) { 10538 switch (Pred) { 10539 default: 10540 break; 10541 case ICmpInst::ICMP_EQ: 10542 case ICmpInst::ICMP_NE: 10543 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10544 if (!RA) 10545 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10546 if (const SCEVMulExpr *ME = 10547 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10548 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10549 ME->getOperand(0)->isAllOnesValue()) { 10550 RHS = AE->getOperand(1); 10551 LHS = ME->getOperand(1); 10552 Changed = true; 10553 } 10554 break; 10555 10556 10557 // The "Should have been caught earlier!" messages refer to the fact 10558 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10559 // should have fired on the corresponding cases, and canonicalized the 10560 // check to trivial case. 10561 10562 case ICmpInst::ICMP_UGE: 10563 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10564 Pred = ICmpInst::ICMP_UGT; 10565 RHS = getConstant(RA - 1); 10566 Changed = true; 10567 break; 10568 case ICmpInst::ICMP_ULE: 10569 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10570 Pred = ICmpInst::ICMP_ULT; 10571 RHS = getConstant(RA + 1); 10572 Changed = true; 10573 break; 10574 case ICmpInst::ICMP_SGE: 10575 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10576 Pred = ICmpInst::ICMP_SGT; 10577 RHS = getConstant(RA - 1); 10578 Changed = true; 10579 break; 10580 case ICmpInst::ICMP_SLE: 10581 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10582 Pred = ICmpInst::ICMP_SLT; 10583 RHS = getConstant(RA + 1); 10584 Changed = true; 10585 break; 10586 } 10587 } 10588 } 10589 10590 // Check for obvious equality. 10591 if (HasSameValue(LHS, RHS)) { 10592 if (ICmpInst::isTrueWhenEqual(Pred)) 10593 return TrivialCase(true); 10594 if (ICmpInst::isFalseWhenEqual(Pred)) 10595 return TrivialCase(false); 10596 } 10597 10598 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10599 // adding or subtracting 1 from one of the operands. 10600 switch (Pred) { 10601 case ICmpInst::ICMP_SLE: 10602 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 10603 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10604 SCEV::FlagNSW); 10605 Pred = ICmpInst::ICMP_SLT; 10606 Changed = true; 10607 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10608 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10609 SCEV::FlagNSW); 10610 Pred = ICmpInst::ICMP_SLT; 10611 Changed = true; 10612 } 10613 break; 10614 case ICmpInst::ICMP_SGE: 10615 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 10616 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10617 SCEV::FlagNSW); 10618 Pred = ICmpInst::ICMP_SGT; 10619 Changed = true; 10620 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10621 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10622 SCEV::FlagNSW); 10623 Pred = ICmpInst::ICMP_SGT; 10624 Changed = true; 10625 } 10626 break; 10627 case ICmpInst::ICMP_ULE: 10628 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 10629 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10630 SCEV::FlagNUW); 10631 Pred = ICmpInst::ICMP_ULT; 10632 Changed = true; 10633 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10634 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10635 Pred = ICmpInst::ICMP_ULT; 10636 Changed = true; 10637 } 10638 break; 10639 case ICmpInst::ICMP_UGE: 10640 if (!getUnsignedRangeMin(RHS).isMinValue()) { 10641 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10642 Pred = ICmpInst::ICMP_UGT; 10643 Changed = true; 10644 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10645 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10646 SCEV::FlagNUW); 10647 Pred = ICmpInst::ICMP_UGT; 10648 Changed = true; 10649 } 10650 break; 10651 default: 10652 break; 10653 } 10654 10655 // TODO: More simplifications are possible here. 10656 10657 // Recursively simplify until we either hit a recursion limit or nothing 10658 // changes. 10659 if (Changed) 10660 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1); 10661 10662 return Changed; 10663 } 10664 10665 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10666 return getSignedRangeMax(S).isNegative(); 10667 } 10668 10669 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10670 return getSignedRangeMin(S).isStrictlyPositive(); 10671 } 10672 10673 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10674 return !getSignedRangeMin(S).isNegative(); 10675 } 10676 10677 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10678 return !getSignedRangeMax(S).isStrictlyPositive(); 10679 } 10680 10681 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10682 return getUnsignedRangeMin(S) != 0; 10683 } 10684 10685 std::pair<const SCEV *, const SCEV *> 10686 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10687 // Compute SCEV on entry of loop L. 10688 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10689 if (Start == getCouldNotCompute()) 10690 return { Start, Start }; 10691 // Compute post increment SCEV for loop L. 10692 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10693 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10694 return { Start, PostInc }; 10695 } 10696 10697 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10698 const SCEV *LHS, const SCEV *RHS) { 10699 // First collect all loops. 10700 SmallPtrSet<const Loop *, 8> LoopsUsed; 10701 getUsedLoops(LHS, LoopsUsed); 10702 getUsedLoops(RHS, LoopsUsed); 10703 10704 if (LoopsUsed.empty()) 10705 return false; 10706 10707 // Domination relationship must be a linear order on collected loops. 10708 #ifndef NDEBUG 10709 for (const auto *L1 : LoopsUsed) 10710 for (const auto *L2 : LoopsUsed) 10711 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10712 DT.dominates(L2->getHeader(), L1->getHeader())) && 10713 "Domination relationship is not a linear order"); 10714 #endif 10715 10716 const Loop *MDL = 10717 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10718 [&](const Loop *L1, const Loop *L2) { 10719 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10720 }); 10721 10722 // Get init and post increment value for LHS. 10723 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10724 // if LHS contains unknown non-invariant SCEV then bail out. 10725 if (SplitLHS.first == getCouldNotCompute()) 10726 return false; 10727 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10728 // Get init and post increment value for RHS. 10729 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10730 // if RHS contains unknown non-invariant SCEV then bail out. 10731 if (SplitRHS.first == getCouldNotCompute()) 10732 return false; 10733 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10734 // It is possible that init SCEV contains an invariant load but it does 10735 // not dominate MDL and is not available at MDL loop entry, so we should 10736 // check it here. 10737 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10738 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10739 return false; 10740 10741 // It seems backedge guard check is faster than entry one so in some cases 10742 // it can speed up whole estimation by short circuit 10743 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10744 SplitRHS.second) && 10745 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10746 } 10747 10748 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10749 const SCEV *LHS, const SCEV *RHS) { 10750 // Canonicalize the inputs first. 10751 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10752 10753 if (isKnownViaInduction(Pred, LHS, RHS)) 10754 return true; 10755 10756 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10757 return true; 10758 10759 // Otherwise see what can be done with some simple reasoning. 10760 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10761 } 10762 10763 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10764 const SCEV *LHS, 10765 const SCEV *RHS) { 10766 if (isKnownPredicate(Pred, LHS, RHS)) 10767 return true; 10768 if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10769 return false; 10770 return std::nullopt; 10771 } 10772 10773 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10774 const SCEV *LHS, const SCEV *RHS, 10775 const Instruction *CtxI) { 10776 // TODO: Analyze guards and assumes from Context's block. 10777 return isKnownPredicate(Pred, LHS, RHS) || 10778 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10779 } 10780 10781 std::optional<bool> 10782 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 10783 const SCEV *RHS, const Instruction *CtxI) { 10784 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10785 if (KnownWithoutContext) 10786 return KnownWithoutContext; 10787 10788 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10789 return true; 10790 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10791 ICmpInst::getInversePredicate(Pred), 10792 LHS, RHS)) 10793 return false; 10794 return std::nullopt; 10795 } 10796 10797 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10798 const SCEVAddRecExpr *LHS, 10799 const SCEV *RHS) { 10800 const Loop *L = LHS->getLoop(); 10801 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10802 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10803 } 10804 10805 std::optional<ScalarEvolution::MonotonicPredicateType> 10806 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10807 ICmpInst::Predicate Pred) { 10808 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10809 10810 #ifndef NDEBUG 10811 // Verify an invariant: inverting the predicate should turn a monotonically 10812 // increasing change to a monotonically decreasing one, and vice versa. 10813 if (Result) { 10814 auto ResultSwapped = 10815 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10816 10817 assert(*ResultSwapped != *Result && 10818 "monotonicity should flip as we flip the predicate"); 10819 } 10820 #endif 10821 10822 return Result; 10823 } 10824 10825 std::optional<ScalarEvolution::MonotonicPredicateType> 10826 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10827 ICmpInst::Predicate Pred) { 10828 // A zero step value for LHS means the induction variable is essentially a 10829 // loop invariant value. We don't really depend on the predicate actually 10830 // flipping from false to true (for increasing predicates, and the other way 10831 // around for decreasing predicates), all we care about is that *if* the 10832 // predicate changes then it only changes from false to true. 10833 // 10834 // A zero step value in itself is not very useful, but there may be places 10835 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10836 // as general as possible. 10837 10838 // Only handle LE/LT/GE/GT predicates. 10839 if (!ICmpInst::isRelational(Pred)) 10840 return std::nullopt; 10841 10842 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10843 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10844 "Should be greater or less!"); 10845 10846 // Check that AR does not wrap. 10847 if (ICmpInst::isUnsigned(Pred)) { 10848 if (!LHS->hasNoUnsignedWrap()) 10849 return std::nullopt; 10850 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10851 } 10852 assert(ICmpInst::isSigned(Pred) && 10853 "Relational predicate is either signed or unsigned!"); 10854 if (!LHS->hasNoSignedWrap()) 10855 return std::nullopt; 10856 10857 const SCEV *Step = LHS->getStepRecurrence(*this); 10858 10859 if (isKnownNonNegative(Step)) 10860 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10861 10862 if (isKnownNonPositive(Step)) 10863 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10864 10865 return std::nullopt; 10866 } 10867 10868 std::optional<ScalarEvolution::LoopInvariantPredicate> 10869 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10870 const SCEV *LHS, const SCEV *RHS, 10871 const Loop *L, 10872 const Instruction *CtxI) { 10873 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10874 if (!isLoopInvariant(RHS, L)) { 10875 if (!isLoopInvariant(LHS, L)) 10876 return std::nullopt; 10877 10878 std::swap(LHS, RHS); 10879 Pred = ICmpInst::getSwappedPredicate(Pred); 10880 } 10881 10882 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10883 if (!ArLHS || ArLHS->getLoop() != L) 10884 return std::nullopt; 10885 10886 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10887 if (!MonotonicType) 10888 return std::nullopt; 10889 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10890 // true as the loop iterates, and the backedge is control dependent on 10891 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10892 // 10893 // * if the predicate was false in the first iteration then the predicate 10894 // is never evaluated again, since the loop exits without taking the 10895 // backedge. 10896 // * if the predicate was true in the first iteration then it will 10897 // continue to be true for all future iterations since it is 10898 // monotonically increasing. 10899 // 10900 // For both the above possibilities, we can replace the loop varying 10901 // predicate with its value on the first iteration of the loop (which is 10902 // loop invariant). 10903 // 10904 // A similar reasoning applies for a monotonically decreasing predicate, by 10905 // replacing true with false and false with true in the above two bullets. 10906 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10907 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10908 10909 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10910 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 10911 RHS); 10912 10913 if (!CtxI) 10914 return std::nullopt; 10915 // Try to prove via context. 10916 // TODO: Support other cases. 10917 switch (Pred) { 10918 default: 10919 break; 10920 case ICmpInst::ICMP_ULE: 10921 case ICmpInst::ICMP_ULT: { 10922 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!"); 10923 // Given preconditions 10924 // (1) ArLHS does not cross the border of positive and negative parts of 10925 // range because of: 10926 // - Positive step; (TODO: lift this limitation) 10927 // - nuw - does not cross zero boundary; 10928 // - nsw - does not cross SINT_MAX boundary; 10929 // (2) ArLHS <s RHS 10930 // (3) RHS >=s 0 10931 // we can replace the loop variant ArLHS <u RHS condition with loop 10932 // invariant Start(ArLHS) <u RHS. 10933 // 10934 // Because of (1) there are two options: 10935 // - ArLHS is always negative. It means that ArLHS <u RHS is always false; 10936 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. 10937 // It means that ArLHS <s RHS <=> ArLHS <u RHS. 10938 // Because of (2) ArLHS <u RHS is trivially true. 10939 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. 10940 // We can strengthen this to Start(ArLHS) <u RHS. 10941 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); 10942 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && 10943 isKnownPositive(ArLHS->getStepRecurrence(*this)) && 10944 isKnownNonNegative(RHS) && 10945 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) 10946 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 10947 RHS); 10948 } 10949 } 10950 10951 return std::nullopt; 10952 } 10953 10954 std::optional<ScalarEvolution::LoopInvariantPredicate> 10955 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10956 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10957 const Instruction *CtxI, const SCEV *MaxIter) { 10958 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 10959 Pred, LHS, RHS, L, CtxI, MaxIter)) 10960 return LIP; 10961 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) 10962 // Number of iterations expressed as UMIN isn't always great for expressing 10963 // the value on the last iteration. If the straightforward approach didn't 10964 // work, try the following trick: if the a predicate is invariant for X, it 10965 // is also invariant for umin(X, ...). So try to find something that works 10966 // among subexpressions of MaxIter expressed as umin. 10967 for (auto *Op : UMin->operands()) 10968 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 10969 Pred, LHS, RHS, L, CtxI, Op)) 10970 return LIP; 10971 return std::nullopt; 10972 } 10973 10974 std::optional<ScalarEvolution::LoopInvariantPredicate> 10975 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( 10976 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10977 const Instruction *CtxI, const SCEV *MaxIter) { 10978 // Try to prove the following set of facts: 10979 // - The predicate is monotonic in the iteration space. 10980 // - If the check does not fail on the 1st iteration: 10981 // - No overflow will happen during first MaxIter iterations; 10982 // - It will not fail on the MaxIter'th iteration. 10983 // If the check does fail on the 1st iteration, we leave the loop and no 10984 // other checks matter. 10985 10986 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10987 if (!isLoopInvariant(RHS, L)) { 10988 if (!isLoopInvariant(LHS, L)) 10989 return std::nullopt; 10990 10991 std::swap(LHS, RHS); 10992 Pred = ICmpInst::getSwappedPredicate(Pred); 10993 } 10994 10995 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10996 if (!AR || AR->getLoop() != L) 10997 return std::nullopt; 10998 10999 // The predicate must be relational (i.e. <, <=, >=, >). 11000 if (!ICmpInst::isRelational(Pred)) 11001 return std::nullopt; 11002 11003 // TODO: Support steps other than +/- 1. 11004 const SCEV *Step = AR->getStepRecurrence(*this); 11005 auto *One = getOne(Step->getType()); 11006 auto *MinusOne = getNegativeSCEV(One); 11007 if (Step != One && Step != MinusOne) 11008 return std::nullopt; 11009 11010 // Type mismatch here means that MaxIter is potentially larger than max 11011 // unsigned value in start type, which mean we cannot prove no wrap for the 11012 // indvar. 11013 if (AR->getType() != MaxIter->getType()) 11014 return std::nullopt; 11015 11016 // Value of IV on suggested last iteration. 11017 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 11018 // Does it still meet the requirement? 11019 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 11020 return std::nullopt; 11021 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 11022 // not exceed max unsigned value of this type), this effectively proves 11023 // that there is no wrap during the iteration. To prove that there is no 11024 // signed/unsigned wrap, we need to check that 11025 // Start <= Last for step = 1 or Start >= Last for step = -1. 11026 ICmpInst::Predicate NoOverflowPred = 11027 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11028 if (Step == MinusOne) 11029 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 11030 const SCEV *Start = AR->getStart(); 11031 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 11032 return std::nullopt; 11033 11034 // Everything is fine. 11035 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 11036 } 11037 11038 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 11039 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 11040 if (HasSameValue(LHS, RHS)) 11041 return ICmpInst::isTrueWhenEqual(Pred); 11042 11043 // This code is split out from isKnownPredicate because it is called from 11044 // within isLoopEntryGuardedByCond. 11045 11046 auto CheckRanges = [&](const ConstantRange &RangeLHS, 11047 const ConstantRange &RangeRHS) { 11048 return RangeLHS.icmp(Pred, RangeRHS); 11049 }; 11050 11051 // The check at the top of the function catches the case where the values are 11052 // known to be equal. 11053 if (Pred == CmpInst::ICMP_EQ) 11054 return false; 11055 11056 if (Pred == CmpInst::ICMP_NE) { 11057 auto SL = getSignedRange(LHS); 11058 auto SR = getSignedRange(RHS); 11059 if (CheckRanges(SL, SR)) 11060 return true; 11061 auto UL = getUnsignedRange(LHS); 11062 auto UR = getUnsignedRange(RHS); 11063 if (CheckRanges(UL, UR)) 11064 return true; 11065 auto *Diff = getMinusSCEV(LHS, RHS); 11066 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 11067 } 11068 11069 if (CmpInst::isSigned(Pred)) { 11070 auto SL = getSignedRange(LHS); 11071 auto SR = getSignedRange(RHS); 11072 return CheckRanges(SL, SR); 11073 } 11074 11075 auto UL = getUnsignedRange(LHS); 11076 auto UR = getUnsignedRange(RHS); 11077 return CheckRanges(UL, UR); 11078 } 11079 11080 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 11081 const SCEV *LHS, 11082 const SCEV *RHS) { 11083 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 11084 // C1 and C2 are constant integers. If either X or Y are not add expressions, 11085 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 11086 // OutC1 and OutC2. 11087 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 11088 APInt &OutC1, APInt &OutC2, 11089 SCEV::NoWrapFlags ExpectedFlags) { 11090 const SCEV *XNonConstOp, *XConstOp; 11091 const SCEV *YNonConstOp, *YConstOp; 11092 SCEV::NoWrapFlags XFlagsPresent; 11093 SCEV::NoWrapFlags YFlagsPresent; 11094 11095 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 11096 XConstOp = getZero(X->getType()); 11097 XNonConstOp = X; 11098 XFlagsPresent = ExpectedFlags; 11099 } 11100 if (!isa<SCEVConstant>(XConstOp) || 11101 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 11102 return false; 11103 11104 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 11105 YConstOp = getZero(Y->getType()); 11106 YNonConstOp = Y; 11107 YFlagsPresent = ExpectedFlags; 11108 } 11109 11110 if (!isa<SCEVConstant>(YConstOp) || 11111 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 11112 return false; 11113 11114 if (YNonConstOp != XNonConstOp) 11115 return false; 11116 11117 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 11118 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 11119 11120 return true; 11121 }; 11122 11123 APInt C1; 11124 APInt C2; 11125 11126 switch (Pred) { 11127 default: 11128 break; 11129 11130 case ICmpInst::ICMP_SGE: 11131 std::swap(LHS, RHS); 11132 [[fallthrough]]; 11133 case ICmpInst::ICMP_SLE: 11134 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 11135 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 11136 return true; 11137 11138 break; 11139 11140 case ICmpInst::ICMP_SGT: 11141 std::swap(LHS, RHS); 11142 [[fallthrough]]; 11143 case ICmpInst::ICMP_SLT: 11144 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 11145 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 11146 return true; 11147 11148 break; 11149 11150 case ICmpInst::ICMP_UGE: 11151 std::swap(LHS, RHS); 11152 [[fallthrough]]; 11153 case ICmpInst::ICMP_ULE: 11154 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 11155 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 11156 return true; 11157 11158 break; 11159 11160 case ICmpInst::ICMP_UGT: 11161 std::swap(LHS, RHS); 11162 [[fallthrough]]; 11163 case ICmpInst::ICMP_ULT: 11164 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 11165 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 11166 return true; 11167 break; 11168 } 11169 11170 return false; 11171 } 11172 11173 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 11174 const SCEV *LHS, 11175 const SCEV *RHS) { 11176 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 11177 return false; 11178 11179 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 11180 // the stack can result in exponential time complexity. 11181 SaveAndRestore Restore(ProvingSplitPredicate, true); 11182 11183 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 11184 // 11185 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 11186 // isKnownPredicate. isKnownPredicate is more powerful, but also more 11187 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 11188 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 11189 // use isKnownPredicate later if needed. 11190 return isKnownNonNegative(RHS) && 11191 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 11192 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 11193 } 11194 11195 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 11196 ICmpInst::Predicate Pred, 11197 const SCEV *LHS, const SCEV *RHS) { 11198 // No need to even try if we know the module has no guards. 11199 if (!HasGuards) 11200 return false; 11201 11202 return any_of(*BB, [&](const Instruction &I) { 11203 using namespace llvm::PatternMatch; 11204 11205 Value *Condition; 11206 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11207 m_Value(Condition))) && 11208 isImpliedCond(Pred, LHS, RHS, Condition, false); 11209 }); 11210 } 11211 11212 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11213 /// protected by a conditional between LHS and RHS. This is used to 11214 /// to eliminate casts. 11215 bool 11216 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11217 ICmpInst::Predicate Pred, 11218 const SCEV *LHS, const SCEV *RHS) { 11219 // Interpret a null as meaning no loop, where there is obviously no guard 11220 // (interprocedural conditions notwithstanding). Do not bother about 11221 // unreachable loops. 11222 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11223 return true; 11224 11225 if (VerifyIR) 11226 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11227 "This cannot be done on broken IR!"); 11228 11229 11230 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11231 return true; 11232 11233 BasicBlock *Latch = L->getLoopLatch(); 11234 if (!Latch) 11235 return false; 11236 11237 BranchInst *LoopContinuePredicate = 11238 dyn_cast<BranchInst>(Latch->getTerminator()); 11239 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11240 isImpliedCond(Pred, LHS, RHS, 11241 LoopContinuePredicate->getCondition(), 11242 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11243 return true; 11244 11245 // We don't want more than one activation of the following loops on the stack 11246 // -- that can lead to O(n!) time complexity. 11247 if (WalkingBEDominatingConds) 11248 return false; 11249 11250 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); 11251 11252 // See if we can exploit a trip count to prove the predicate. 11253 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11254 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11255 if (LatchBECount != getCouldNotCompute()) { 11256 // We know that Latch branches back to the loop header exactly 11257 // LatchBECount times. This means the backdege condition at Latch is 11258 // equivalent to "{0,+,1} u< LatchBECount". 11259 Type *Ty = LatchBECount->getType(); 11260 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11261 const SCEV *LoopCounter = 11262 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11263 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11264 LatchBECount)) 11265 return true; 11266 } 11267 11268 // Check conditions due to any @llvm.assume intrinsics. 11269 for (auto &AssumeVH : AC.assumptions()) { 11270 if (!AssumeVH) 11271 continue; 11272 auto *CI = cast<CallInst>(AssumeVH); 11273 if (!DT.dominates(CI, Latch->getTerminator())) 11274 continue; 11275 11276 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11277 return true; 11278 } 11279 11280 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11281 return true; 11282 11283 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11284 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11285 assert(DTN && "should reach the loop header before reaching the root!"); 11286 11287 BasicBlock *BB = DTN->getBlock(); 11288 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11289 return true; 11290 11291 BasicBlock *PBB = BB->getSinglePredecessor(); 11292 if (!PBB) 11293 continue; 11294 11295 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11296 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11297 continue; 11298 11299 Value *Condition = ContinuePredicate->getCondition(); 11300 11301 // If we have an edge `E` within the loop body that dominates the only 11302 // latch, the condition guarding `E` also guards the backedge. This 11303 // reasoning works only for loops with a single latch. 11304 11305 BasicBlockEdge DominatingEdge(PBB, BB); 11306 if (DominatingEdge.isSingleEdge()) { 11307 // We're constructively (and conservatively) enumerating edges within the 11308 // loop body that dominate the latch. The dominator tree better agree 11309 // with us on this: 11310 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11311 11312 if (isImpliedCond(Pred, LHS, RHS, Condition, 11313 BB != ContinuePredicate->getSuccessor(0))) 11314 return true; 11315 } 11316 } 11317 11318 return false; 11319 } 11320 11321 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11322 ICmpInst::Predicate Pred, 11323 const SCEV *LHS, 11324 const SCEV *RHS) { 11325 // Do not bother proving facts for unreachable code. 11326 if (!DT.isReachableFromEntry(BB)) 11327 return true; 11328 if (VerifyIR) 11329 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11330 "This cannot be done on broken IR!"); 11331 11332 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11333 // the facts (a >= b && a != b) separately. A typical situation is when the 11334 // non-strict comparison is known from ranges and non-equality is known from 11335 // dominating predicates. If we are proving strict comparison, we always try 11336 // to prove non-equality and non-strict comparison separately. 11337 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11338 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11339 bool ProvedNonStrictComparison = false; 11340 bool ProvedNonEquality = false; 11341 11342 auto SplitAndProve = 11343 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11344 if (!ProvedNonStrictComparison) 11345 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11346 if (!ProvedNonEquality) 11347 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11348 if (ProvedNonStrictComparison && ProvedNonEquality) 11349 return true; 11350 return false; 11351 }; 11352 11353 if (ProvingStrictComparison) { 11354 auto ProofFn = [&](ICmpInst::Predicate P) { 11355 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11356 }; 11357 if (SplitAndProve(ProofFn)) 11358 return true; 11359 } 11360 11361 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11362 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11363 const Instruction *CtxI = &BB->front(); 11364 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11365 return true; 11366 if (ProvingStrictComparison) { 11367 auto ProofFn = [&](ICmpInst::Predicate P) { 11368 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11369 }; 11370 if (SplitAndProve(ProofFn)) 11371 return true; 11372 } 11373 return false; 11374 }; 11375 11376 // Starting at the block's predecessor, climb up the predecessor chain, as long 11377 // as there are predecessors that can be found that have unique successors 11378 // leading to the original block. 11379 const Loop *ContainingLoop = LI.getLoopFor(BB); 11380 const BasicBlock *PredBB; 11381 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11382 PredBB = ContainingLoop->getLoopPredecessor(); 11383 else 11384 PredBB = BB->getSinglePredecessor(); 11385 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11386 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11387 const BranchInst *BlockEntryPredicate = 11388 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11389 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11390 continue; 11391 11392 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11393 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11394 return true; 11395 } 11396 11397 // Check conditions due to any @llvm.assume intrinsics. 11398 for (auto &AssumeVH : AC.assumptions()) { 11399 if (!AssumeVH) 11400 continue; 11401 auto *CI = cast<CallInst>(AssumeVH); 11402 if (!DT.dominates(CI, BB)) 11403 continue; 11404 11405 if (ProveViaCond(CI->getArgOperand(0), false)) 11406 return true; 11407 } 11408 11409 // Check conditions due to any @llvm.experimental.guard intrinsics. 11410 auto *GuardDecl = F.getParent()->getFunction( 11411 Intrinsic::getName(Intrinsic::experimental_guard)); 11412 if (GuardDecl) 11413 for (const auto *GU : GuardDecl->users()) 11414 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 11415 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) 11416 if (ProveViaCond(Guard->getArgOperand(0), false)) 11417 return true; 11418 return false; 11419 } 11420 11421 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11422 ICmpInst::Predicate Pred, 11423 const SCEV *LHS, 11424 const SCEV *RHS) { 11425 // Interpret a null as meaning no loop, where there is obviously no guard 11426 // (interprocedural conditions notwithstanding). 11427 if (!L) 11428 return false; 11429 11430 // Both LHS and RHS must be available at loop entry. 11431 assert(isAvailableAtLoopEntry(LHS, L) && 11432 "LHS is not available at Loop Entry"); 11433 assert(isAvailableAtLoopEntry(RHS, L) && 11434 "RHS is not available at Loop Entry"); 11435 11436 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11437 return true; 11438 11439 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11440 } 11441 11442 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11443 const SCEV *RHS, 11444 const Value *FoundCondValue, bool Inverse, 11445 const Instruction *CtxI) { 11446 // False conditions implies anything. Do not bother analyzing it further. 11447 if (FoundCondValue == 11448 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11449 return true; 11450 11451 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11452 return false; 11453 11454 auto ClearOnExit = 11455 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11456 11457 // Recursively handle And and Or conditions. 11458 const Value *Op0, *Op1; 11459 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11460 if (!Inverse) 11461 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11462 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11463 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11464 if (Inverse) 11465 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11466 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11467 } 11468 11469 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11470 if (!ICI) return false; 11471 11472 // Now that we found a conditional branch that dominates the loop or controls 11473 // the loop latch. Check to see if it is the comparison we are looking for. 11474 ICmpInst::Predicate FoundPred; 11475 if (Inverse) 11476 FoundPred = ICI->getInversePredicate(); 11477 else 11478 FoundPred = ICI->getPredicate(); 11479 11480 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11481 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11482 11483 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11484 } 11485 11486 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11487 const SCEV *RHS, 11488 ICmpInst::Predicate FoundPred, 11489 const SCEV *FoundLHS, const SCEV *FoundRHS, 11490 const Instruction *CtxI) { 11491 // Balance the types. 11492 if (getTypeSizeInBits(LHS->getType()) < 11493 getTypeSizeInBits(FoundLHS->getType())) { 11494 // For unsigned and equality predicates, try to prove that both found 11495 // operands fit into narrow unsigned range. If so, try to prove facts in 11496 // narrow types. 11497 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11498 !FoundRHS->getType()->isPointerTy()) { 11499 auto *NarrowType = LHS->getType(); 11500 auto *WideType = FoundLHS->getType(); 11501 auto BitWidth = getTypeSizeInBits(NarrowType); 11502 const SCEV *MaxValue = getZeroExtendExpr( 11503 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11504 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11505 MaxValue) && 11506 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11507 MaxValue)) { 11508 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11509 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11510 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11511 TruncFoundRHS, CtxI)) 11512 return true; 11513 } 11514 } 11515 11516 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11517 return false; 11518 if (CmpInst::isSigned(Pred)) { 11519 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11520 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11521 } else { 11522 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11523 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11524 } 11525 } else if (getTypeSizeInBits(LHS->getType()) > 11526 getTypeSizeInBits(FoundLHS->getType())) { 11527 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11528 return false; 11529 if (CmpInst::isSigned(FoundPred)) { 11530 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11531 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11532 } else { 11533 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11534 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11535 } 11536 } 11537 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11538 FoundRHS, CtxI); 11539 } 11540 11541 bool ScalarEvolution::isImpliedCondBalancedTypes( 11542 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11543 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11544 const Instruction *CtxI) { 11545 assert(getTypeSizeInBits(LHS->getType()) == 11546 getTypeSizeInBits(FoundLHS->getType()) && 11547 "Types should be balanced!"); 11548 // Canonicalize the query to match the way instcombine will have 11549 // canonicalized the comparison. 11550 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11551 if (LHS == RHS) 11552 return CmpInst::isTrueWhenEqual(Pred); 11553 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11554 if (FoundLHS == FoundRHS) 11555 return CmpInst::isFalseWhenEqual(FoundPred); 11556 11557 // Check to see if we can make the LHS or RHS match. 11558 if (LHS == FoundRHS || RHS == FoundLHS) { 11559 if (isa<SCEVConstant>(RHS)) { 11560 std::swap(FoundLHS, FoundRHS); 11561 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11562 } else { 11563 std::swap(LHS, RHS); 11564 Pred = ICmpInst::getSwappedPredicate(Pred); 11565 } 11566 } 11567 11568 // Check whether the found predicate is the same as the desired predicate. 11569 if (FoundPred == Pred) 11570 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11571 11572 // Check whether swapping the found predicate makes it the same as the 11573 // desired predicate. 11574 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11575 // We can write the implication 11576 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11577 // using one of the following ways: 11578 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11579 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11580 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11581 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11582 // Forms 1. and 2. require swapping the operands of one condition. Don't 11583 // do this if it would break canonical constant/addrec ordering. 11584 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11585 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11586 CtxI); 11587 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11588 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11589 11590 // There's no clear preference between forms 3. and 4., try both. Avoid 11591 // forming getNotSCEV of pointer values as the resulting subtract is 11592 // not legal. 11593 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11594 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11595 FoundLHS, FoundRHS, CtxI)) 11596 return true; 11597 11598 if (!FoundLHS->getType()->isPointerTy() && 11599 !FoundRHS->getType()->isPointerTy() && 11600 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11601 getNotSCEV(FoundRHS), CtxI)) 11602 return true; 11603 11604 return false; 11605 } 11606 11607 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11608 CmpInst::Predicate P2) { 11609 assert(P1 != P2 && "Handled earlier!"); 11610 return CmpInst::isRelational(P2) && 11611 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11612 }; 11613 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11614 // Unsigned comparison is the same as signed comparison when both the 11615 // operands are non-negative or negative. 11616 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11617 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11618 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11619 // Create local copies that we can freely swap and canonicalize our 11620 // conditions to "le/lt". 11621 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11622 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11623 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11624 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11625 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11626 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11627 std::swap(CanonicalLHS, CanonicalRHS); 11628 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11629 } 11630 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11631 "Must be!"); 11632 assert((ICmpInst::isLT(CanonicalFoundPred) || 11633 ICmpInst::isLE(CanonicalFoundPred)) && 11634 "Must be!"); 11635 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11636 // Use implication: 11637 // x <u y && y >=s 0 --> x <s y. 11638 // If we can prove the left part, the right part is also proven. 11639 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11640 CanonicalRHS, CanonicalFoundLHS, 11641 CanonicalFoundRHS); 11642 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11643 // Use implication: 11644 // x <s y && y <s 0 --> x <u y. 11645 // If we can prove the left part, the right part is also proven. 11646 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11647 CanonicalRHS, CanonicalFoundLHS, 11648 CanonicalFoundRHS); 11649 } 11650 11651 // Check if we can make progress by sharpening ranges. 11652 if (FoundPred == ICmpInst::ICMP_NE && 11653 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11654 11655 const SCEVConstant *C = nullptr; 11656 const SCEV *V = nullptr; 11657 11658 if (isa<SCEVConstant>(FoundLHS)) { 11659 C = cast<SCEVConstant>(FoundLHS); 11660 V = FoundRHS; 11661 } else { 11662 C = cast<SCEVConstant>(FoundRHS); 11663 V = FoundLHS; 11664 } 11665 11666 // The guarding predicate tells us that C != V. If the known range 11667 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11668 // range we consider has to correspond to same signedness as the 11669 // predicate we're interested in folding. 11670 11671 APInt Min = ICmpInst::isSigned(Pred) ? 11672 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11673 11674 if (Min == C->getAPInt()) { 11675 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11676 // This is true even if (Min + 1) wraps around -- in case of 11677 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11678 11679 APInt SharperMin = Min + 1; 11680 11681 switch (Pred) { 11682 case ICmpInst::ICMP_SGE: 11683 case ICmpInst::ICMP_UGE: 11684 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11685 // RHS, we're done. 11686 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11687 CtxI)) 11688 return true; 11689 [[fallthrough]]; 11690 11691 case ICmpInst::ICMP_SGT: 11692 case ICmpInst::ICMP_UGT: 11693 // We know from the range information that (V `Pred` Min || 11694 // V == Min). We know from the guarding condition that !(V 11695 // == Min). This gives us 11696 // 11697 // V `Pred` Min || V == Min && !(V == Min) 11698 // => V `Pred` Min 11699 // 11700 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11701 11702 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11703 return true; 11704 break; 11705 11706 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11707 case ICmpInst::ICMP_SLE: 11708 case ICmpInst::ICMP_ULE: 11709 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11710 LHS, V, getConstant(SharperMin), CtxI)) 11711 return true; 11712 [[fallthrough]]; 11713 11714 case ICmpInst::ICMP_SLT: 11715 case ICmpInst::ICMP_ULT: 11716 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11717 LHS, V, getConstant(Min), CtxI)) 11718 return true; 11719 break; 11720 11721 default: 11722 // No change 11723 break; 11724 } 11725 } 11726 } 11727 11728 // Check whether the actual condition is beyond sufficient. 11729 if (FoundPred == ICmpInst::ICMP_EQ) 11730 if (ICmpInst::isTrueWhenEqual(Pred)) 11731 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11732 return true; 11733 if (Pred == ICmpInst::ICMP_NE) 11734 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11735 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11736 return true; 11737 11738 // Otherwise assume the worst. 11739 return false; 11740 } 11741 11742 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11743 const SCEV *&L, const SCEV *&R, 11744 SCEV::NoWrapFlags &Flags) { 11745 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11746 if (!AE || AE->getNumOperands() != 2) 11747 return false; 11748 11749 L = AE->getOperand(0); 11750 R = AE->getOperand(1); 11751 Flags = AE->getNoWrapFlags(); 11752 return true; 11753 } 11754 11755 std::optional<APInt> 11756 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { 11757 // We avoid subtracting expressions here because this function is usually 11758 // fairly deep in the call stack (i.e. is called many times). 11759 11760 // X - X = 0. 11761 if (More == Less) 11762 return APInt(getTypeSizeInBits(More->getType()), 0); 11763 11764 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11765 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11766 const auto *MAR = cast<SCEVAddRecExpr>(More); 11767 11768 if (LAR->getLoop() != MAR->getLoop()) 11769 return std::nullopt; 11770 11771 // We look at affine expressions only; not for correctness but to keep 11772 // getStepRecurrence cheap. 11773 if (!LAR->isAffine() || !MAR->isAffine()) 11774 return std::nullopt; 11775 11776 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11777 return std::nullopt; 11778 11779 Less = LAR->getStart(); 11780 More = MAR->getStart(); 11781 11782 // fall through 11783 } 11784 11785 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11786 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11787 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11788 return M - L; 11789 } 11790 11791 SCEV::NoWrapFlags Flags; 11792 const SCEV *LLess = nullptr, *RLess = nullptr; 11793 const SCEV *LMore = nullptr, *RMore = nullptr; 11794 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11795 // Compare (X + C1) vs X. 11796 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11797 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11798 if (RLess == More) 11799 return -(C1->getAPInt()); 11800 11801 // Compare X vs (X + C2). 11802 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11803 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11804 if (RMore == Less) 11805 return C2->getAPInt(); 11806 11807 // Compare (X + C1) vs (X + C2). 11808 if (C1 && C2 && RLess == RMore) 11809 return C2->getAPInt() - C1->getAPInt(); 11810 11811 return std::nullopt; 11812 } 11813 11814 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11815 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11816 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11817 // Try to recognize the following pattern: 11818 // 11819 // FoundRHS = ... 11820 // ... 11821 // loop: 11822 // FoundLHS = {Start,+,W} 11823 // context_bb: // Basic block from the same loop 11824 // known(Pred, FoundLHS, FoundRHS) 11825 // 11826 // If some predicate is known in the context of a loop, it is also known on 11827 // each iteration of this loop, including the first iteration. Therefore, in 11828 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11829 // prove the original pred using this fact. 11830 if (!CtxI) 11831 return false; 11832 const BasicBlock *ContextBB = CtxI->getParent(); 11833 // Make sure AR varies in the context block. 11834 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11835 const Loop *L = AR->getLoop(); 11836 // Make sure that context belongs to the loop and executes on 1st iteration 11837 // (if it ever executes at all). 11838 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11839 return false; 11840 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11841 return false; 11842 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11843 } 11844 11845 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11846 const Loop *L = AR->getLoop(); 11847 // Make sure that context belongs to the loop and executes on 1st iteration 11848 // (if it ever executes at all). 11849 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11850 return false; 11851 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11852 return false; 11853 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11854 } 11855 11856 return false; 11857 } 11858 11859 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11861 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11862 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11863 return false; 11864 11865 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11866 if (!AddRecLHS) 11867 return false; 11868 11869 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11870 if (!AddRecFoundLHS) 11871 return false; 11872 11873 // We'd like to let SCEV reason about control dependencies, so we constrain 11874 // both the inequalities to be about add recurrences on the same loop. This 11875 // way we can use isLoopEntryGuardedByCond later. 11876 11877 const Loop *L = AddRecFoundLHS->getLoop(); 11878 if (L != AddRecLHS->getLoop()) 11879 return false; 11880 11881 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11882 // 11883 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11884 // ... (2) 11885 // 11886 // Informal proof for (2), assuming (1) [*]: 11887 // 11888 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11889 // 11890 // Then 11891 // 11892 // FoundLHS s< FoundRHS s< INT_MIN - C 11893 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11894 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11895 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11896 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11897 // <=> FoundLHS + C s< FoundRHS + C 11898 // 11899 // [*]: (1) can be proved by ruling out overflow. 11900 // 11901 // [**]: This can be proved by analyzing all the four possibilities: 11902 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11903 // (A s>= 0, B s>= 0). 11904 // 11905 // Note: 11906 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11907 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11908 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11909 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11910 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11911 // C)". 11912 11913 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11914 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11915 if (!LDiff || !RDiff || *LDiff != *RDiff) 11916 return false; 11917 11918 if (LDiff->isMinValue()) 11919 return true; 11920 11921 APInt FoundRHSLimit; 11922 11923 if (Pred == CmpInst::ICMP_ULT) { 11924 FoundRHSLimit = -(*RDiff); 11925 } else { 11926 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11927 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11928 } 11929 11930 // Try to prove (1) or (2), as needed. 11931 return isAvailableAtLoopEntry(FoundRHS, L) && 11932 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11933 getConstant(FoundRHSLimit)); 11934 } 11935 11936 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11937 const SCEV *LHS, const SCEV *RHS, 11938 const SCEV *FoundLHS, 11939 const SCEV *FoundRHS, unsigned Depth) { 11940 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11941 11942 auto ClearOnExit = make_scope_exit([&]() { 11943 if (LPhi) { 11944 bool Erased = PendingMerges.erase(LPhi); 11945 assert(Erased && "Failed to erase LPhi!"); 11946 (void)Erased; 11947 } 11948 if (RPhi) { 11949 bool Erased = PendingMerges.erase(RPhi); 11950 assert(Erased && "Failed to erase RPhi!"); 11951 (void)Erased; 11952 } 11953 }); 11954 11955 // Find respective Phis and check that they are not being pending. 11956 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11957 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11958 if (!PendingMerges.insert(Phi).second) 11959 return false; 11960 LPhi = Phi; 11961 } 11962 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11963 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11964 // If we detect a loop of Phi nodes being processed by this method, for 11965 // example: 11966 // 11967 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11968 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11969 // 11970 // we don't want to deal with a case that complex, so return conservative 11971 // answer false. 11972 if (!PendingMerges.insert(Phi).second) 11973 return false; 11974 RPhi = Phi; 11975 } 11976 11977 // If none of LHS, RHS is a Phi, nothing to do here. 11978 if (!LPhi && !RPhi) 11979 return false; 11980 11981 // If there is a SCEVUnknown Phi we are interested in, make it left. 11982 if (!LPhi) { 11983 std::swap(LHS, RHS); 11984 std::swap(FoundLHS, FoundRHS); 11985 std::swap(LPhi, RPhi); 11986 Pred = ICmpInst::getSwappedPredicate(Pred); 11987 } 11988 11989 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11990 const BasicBlock *LBB = LPhi->getParent(); 11991 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11992 11993 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11994 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11995 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11996 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11997 }; 11998 11999 if (RPhi && RPhi->getParent() == LBB) { 12000 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 12001 // If we compare two Phis from the same block, and for each entry block 12002 // the predicate is true for incoming values from this block, then the 12003 // predicate is also true for the Phis. 12004 for (const BasicBlock *IncBB : predecessors(LBB)) { 12005 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12006 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 12007 if (!ProvedEasily(L, R)) 12008 return false; 12009 } 12010 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 12011 // Case two: RHS is also a Phi from the same basic block, and it is an 12012 // AddRec. It means that there is a loop which has both AddRec and Unknown 12013 // PHIs, for it we can compare incoming values of AddRec from above the loop 12014 // and latch with their respective incoming values of LPhi. 12015 // TODO: Generalize to handle loops with many inputs in a header. 12016 if (LPhi->getNumIncomingValues() != 2) return false; 12017 12018 auto *RLoop = RAR->getLoop(); 12019 auto *Predecessor = RLoop->getLoopPredecessor(); 12020 assert(Predecessor && "Loop with AddRec with no predecessor?"); 12021 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 12022 if (!ProvedEasily(L1, RAR->getStart())) 12023 return false; 12024 auto *Latch = RLoop->getLoopLatch(); 12025 assert(Latch && "Loop with AddRec with no latch?"); 12026 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 12027 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 12028 return false; 12029 } else { 12030 // In all other cases go over inputs of LHS and compare each of them to RHS, 12031 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 12032 // At this point RHS is either a non-Phi, or it is a Phi from some block 12033 // different from LBB. 12034 for (const BasicBlock *IncBB : predecessors(LBB)) { 12035 // Check that RHS is available in this block. 12036 if (!dominates(RHS, IncBB)) 12037 return false; 12038 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12039 // Make sure L does not refer to a value from a potentially previous 12040 // iteration of a loop. 12041 if (!properlyDominates(L, LBB)) 12042 return false; 12043 if (!ProvedEasily(L, RHS)) 12044 return false; 12045 } 12046 } 12047 return true; 12048 } 12049 12050 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 12051 const SCEV *LHS, 12052 const SCEV *RHS, 12053 const SCEV *FoundLHS, 12054 const SCEV *FoundRHS) { 12055 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 12056 // sure that we are dealing with same LHS. 12057 if (RHS == FoundRHS) { 12058 std::swap(LHS, RHS); 12059 std::swap(FoundLHS, FoundRHS); 12060 Pred = ICmpInst::getSwappedPredicate(Pred); 12061 } 12062 if (LHS != FoundLHS) 12063 return false; 12064 12065 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 12066 if (!SUFoundRHS) 12067 return false; 12068 12069 Value *Shiftee, *ShiftValue; 12070 12071 using namespace PatternMatch; 12072 if (match(SUFoundRHS->getValue(), 12073 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 12074 auto *ShifteeS = getSCEV(Shiftee); 12075 // Prove one of the following: 12076 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 12077 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 12078 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12079 // ---> LHS <s RHS 12080 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12081 // ---> LHS <=s RHS 12082 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 12083 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 12084 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 12085 if (isKnownNonNegative(ShifteeS)) 12086 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 12087 } 12088 12089 return false; 12090 } 12091 12092 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 12093 const SCEV *LHS, const SCEV *RHS, 12094 const SCEV *FoundLHS, 12095 const SCEV *FoundRHS, 12096 const Instruction *CtxI) { 12097 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12098 return true; 12099 12100 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12101 return true; 12102 12103 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12104 return true; 12105 12106 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 12107 CtxI)) 12108 return true; 12109 12110 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 12111 FoundLHS, FoundRHS); 12112 } 12113 12114 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 12115 template <typename MinMaxExprType> 12116 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 12117 const SCEV *Candidate) { 12118 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 12119 if (!MinMaxExpr) 12120 return false; 12121 12122 return is_contained(MinMaxExpr->operands(), Candidate); 12123 } 12124 12125 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 12126 ICmpInst::Predicate Pred, 12127 const SCEV *LHS, const SCEV *RHS) { 12128 // If both sides are affine addrecs for the same loop, with equal 12129 // steps, and we know the recurrences don't wrap, then we only 12130 // need to check the predicate on the starting values. 12131 12132 if (!ICmpInst::isRelational(Pred)) 12133 return false; 12134 12135 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 12136 if (!LAR) 12137 return false; 12138 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12139 if (!RAR) 12140 return false; 12141 if (LAR->getLoop() != RAR->getLoop()) 12142 return false; 12143 if (!LAR->isAffine() || !RAR->isAffine()) 12144 return false; 12145 12146 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 12147 return false; 12148 12149 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 12150 SCEV::FlagNSW : SCEV::FlagNUW; 12151 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 12152 return false; 12153 12154 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 12155 } 12156 12157 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 12158 /// expression? 12159 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 12160 ICmpInst::Predicate Pred, 12161 const SCEV *LHS, const SCEV *RHS) { 12162 switch (Pred) { 12163 default: 12164 return false; 12165 12166 case ICmpInst::ICMP_SGE: 12167 std::swap(LHS, RHS); 12168 [[fallthrough]]; 12169 case ICmpInst::ICMP_SLE: 12170 return 12171 // min(A, ...) <= A 12172 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 12173 // A <= max(A, ...) 12174 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 12175 12176 case ICmpInst::ICMP_UGE: 12177 std::swap(LHS, RHS); 12178 [[fallthrough]]; 12179 case ICmpInst::ICMP_ULE: 12180 return 12181 // min(A, ...) <= A 12182 // FIXME: what about umin_seq? 12183 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 12184 // A <= max(A, ...) 12185 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 12186 } 12187 12188 llvm_unreachable("covered switch fell through?!"); 12189 } 12190 12191 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 12192 const SCEV *LHS, const SCEV *RHS, 12193 const SCEV *FoundLHS, 12194 const SCEV *FoundRHS, 12195 unsigned Depth) { 12196 assert(getTypeSizeInBits(LHS->getType()) == 12197 getTypeSizeInBits(RHS->getType()) && 12198 "LHS and RHS have different sizes?"); 12199 assert(getTypeSizeInBits(FoundLHS->getType()) == 12200 getTypeSizeInBits(FoundRHS->getType()) && 12201 "FoundLHS and FoundRHS have different sizes?"); 12202 // We want to avoid hurting the compile time with analysis of too big trees. 12203 if (Depth > MaxSCEVOperationsImplicationDepth) 12204 return false; 12205 12206 // We only want to work with GT comparison so far. 12207 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12208 Pred = CmpInst::getSwappedPredicate(Pred); 12209 std::swap(LHS, RHS); 12210 std::swap(FoundLHS, FoundRHS); 12211 } 12212 12213 // For unsigned, try to reduce it to corresponding signed comparison. 12214 if (Pred == ICmpInst::ICMP_UGT) 12215 // We can replace unsigned predicate with its signed counterpart if all 12216 // involved values are non-negative. 12217 // TODO: We could have better support for unsigned. 12218 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12219 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12220 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12221 // use this fact to prove that LHS and RHS are non-negative. 12222 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12223 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12224 FoundRHS) && 12225 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12226 FoundRHS)) 12227 Pred = ICmpInst::ICMP_SGT; 12228 } 12229 12230 if (Pred != ICmpInst::ICMP_SGT) 12231 return false; 12232 12233 auto GetOpFromSExt = [&](const SCEV *S) { 12234 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12235 return Ext->getOperand(); 12236 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12237 // the constant in some cases. 12238 return S; 12239 }; 12240 12241 // Acquire values from extensions. 12242 auto *OrigLHS = LHS; 12243 auto *OrigFoundLHS = FoundLHS; 12244 LHS = GetOpFromSExt(LHS); 12245 FoundLHS = GetOpFromSExt(FoundLHS); 12246 12247 // Is the SGT predicate can be proved trivially or using the found context. 12248 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12249 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12250 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12251 FoundRHS, Depth + 1); 12252 }; 12253 12254 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12255 // We want to avoid creation of any new non-constant SCEV. Since we are 12256 // going to compare the operands to RHS, we should be certain that we don't 12257 // need any size extensions for this. So let's decline all cases when the 12258 // sizes of types of LHS and RHS do not match. 12259 // TODO: Maybe try to get RHS from sext to catch more cases? 12260 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12261 return false; 12262 12263 // Should not overflow. 12264 if (!LHSAddExpr->hasNoSignedWrap()) 12265 return false; 12266 12267 auto *LL = LHSAddExpr->getOperand(0); 12268 auto *LR = LHSAddExpr->getOperand(1); 12269 auto *MinusOne = getMinusOne(RHS->getType()); 12270 12271 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12272 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12273 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12274 }; 12275 // Try to prove the following rule: 12276 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12277 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12278 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12279 return true; 12280 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12281 Value *LL, *LR; 12282 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12283 12284 using namespace llvm::PatternMatch; 12285 12286 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12287 // Rules for division. 12288 // We are going to perform some comparisons with Denominator and its 12289 // derivative expressions. In general case, creating a SCEV for it may 12290 // lead to a complex analysis of the entire graph, and in particular it 12291 // can request trip count recalculation for the same loop. This would 12292 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12293 // this, we only want to create SCEVs that are constants in this section. 12294 // So we bail if Denominator is not a constant. 12295 if (!isa<ConstantInt>(LR)) 12296 return false; 12297 12298 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12299 12300 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12301 // then a SCEV for the numerator already exists and matches with FoundLHS. 12302 auto *Numerator = getExistingSCEV(LL); 12303 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12304 return false; 12305 12306 // Make sure that the numerator matches with FoundLHS and the denominator 12307 // is positive. 12308 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12309 return false; 12310 12311 auto *DTy = Denominator->getType(); 12312 auto *FRHSTy = FoundRHS->getType(); 12313 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12314 // One of types is a pointer and another one is not. We cannot extend 12315 // them properly to a wider type, so let us just reject this case. 12316 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12317 // to avoid this check. 12318 return false; 12319 12320 // Given that: 12321 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12322 auto *WTy = getWiderType(DTy, FRHSTy); 12323 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12324 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12325 12326 // Try to prove the following rule: 12327 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12328 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12329 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12330 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12331 if (isKnownNonPositive(RHS) && 12332 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12333 return true; 12334 12335 // Try to prove the following rule: 12336 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12337 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12338 // If we divide it by Denominator > 2, then: 12339 // 1. If FoundLHS is negative, then the result is 0. 12340 // 2. If FoundLHS is non-negative, then the result is non-negative. 12341 // Anyways, the result is non-negative. 12342 auto *MinusOne = getMinusOne(WTy); 12343 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12344 if (isKnownNegative(RHS) && 12345 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12346 return true; 12347 } 12348 } 12349 12350 // If our expression contained SCEVUnknown Phis, and we split it down and now 12351 // need to prove something for them, try to prove the predicate for every 12352 // possible incoming values of those Phis. 12353 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12354 return true; 12355 12356 return false; 12357 } 12358 12359 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12360 const SCEV *LHS, const SCEV *RHS) { 12361 // zext x u<= sext x, sext x s<= zext x 12362 switch (Pred) { 12363 case ICmpInst::ICMP_SGE: 12364 std::swap(LHS, RHS); 12365 [[fallthrough]]; 12366 case ICmpInst::ICMP_SLE: { 12367 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12368 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12369 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12370 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12371 return true; 12372 break; 12373 } 12374 case ICmpInst::ICMP_UGE: 12375 std::swap(LHS, RHS); 12376 [[fallthrough]]; 12377 case ICmpInst::ICMP_ULE: { 12378 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12379 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12380 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12381 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12382 return true; 12383 break; 12384 } 12385 default: 12386 break; 12387 }; 12388 return false; 12389 } 12390 12391 bool 12392 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12393 const SCEV *LHS, const SCEV *RHS) { 12394 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12395 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12396 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12397 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12398 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12399 } 12400 12401 bool 12402 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12403 const SCEV *LHS, const SCEV *RHS, 12404 const SCEV *FoundLHS, 12405 const SCEV *FoundRHS) { 12406 switch (Pred) { 12407 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12408 case ICmpInst::ICMP_EQ: 12409 case ICmpInst::ICMP_NE: 12410 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12411 return true; 12412 break; 12413 case ICmpInst::ICMP_SLT: 12414 case ICmpInst::ICMP_SLE: 12415 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12416 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12417 return true; 12418 break; 12419 case ICmpInst::ICMP_SGT: 12420 case ICmpInst::ICMP_SGE: 12421 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12422 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12423 return true; 12424 break; 12425 case ICmpInst::ICMP_ULT: 12426 case ICmpInst::ICMP_ULE: 12427 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12428 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12429 return true; 12430 break; 12431 case ICmpInst::ICMP_UGT: 12432 case ICmpInst::ICMP_UGE: 12433 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12434 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12435 return true; 12436 break; 12437 } 12438 12439 // Maybe it can be proved via operations? 12440 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12441 return true; 12442 12443 return false; 12444 } 12445 12446 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12447 const SCEV *LHS, 12448 const SCEV *RHS, 12449 const SCEV *FoundLHS, 12450 const SCEV *FoundRHS) { 12451 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12452 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12453 // reduce the compile time impact of this optimization. 12454 return false; 12455 12456 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12457 if (!Addend) 12458 return false; 12459 12460 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12461 12462 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12463 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12464 ConstantRange FoundLHSRange = 12465 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12466 12467 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12468 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12469 12470 // We can also compute the range of values for `LHS` that satisfy the 12471 // consequent, "`LHS` `Pred` `RHS`": 12472 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12473 // The antecedent implies the consequent if every value of `LHS` that 12474 // satisfies the antecedent also satisfies the consequent. 12475 return LHSRange.icmp(Pred, ConstRHS); 12476 } 12477 12478 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12479 bool IsSigned) { 12480 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12481 12482 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12483 const SCEV *One = getOne(Stride->getType()); 12484 12485 if (IsSigned) { 12486 APInt MaxRHS = getSignedRangeMax(RHS); 12487 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12488 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12489 12490 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12491 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12492 } 12493 12494 APInt MaxRHS = getUnsignedRangeMax(RHS); 12495 APInt MaxValue = APInt::getMaxValue(BitWidth); 12496 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12497 12498 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12499 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12500 } 12501 12502 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12503 bool IsSigned) { 12504 12505 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12506 const SCEV *One = getOne(Stride->getType()); 12507 12508 if (IsSigned) { 12509 APInt MinRHS = getSignedRangeMin(RHS); 12510 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12511 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12512 12513 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12514 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12515 } 12516 12517 APInt MinRHS = getUnsignedRangeMin(RHS); 12518 APInt MinValue = APInt::getMinValue(BitWidth); 12519 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12520 12521 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12522 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12523 } 12524 12525 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12526 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12527 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12528 // expression fixes the case of N=0. 12529 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12530 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12531 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12532 } 12533 12534 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12535 const SCEV *Stride, 12536 const SCEV *End, 12537 unsigned BitWidth, 12538 bool IsSigned) { 12539 // The logic in this function assumes we can represent a positive stride. 12540 // If we can't, the backedge-taken count must be zero. 12541 if (IsSigned && BitWidth == 1) 12542 return getZero(Stride->getType()); 12543 12544 // This code below only been closely audited for negative strides in the 12545 // unsigned comparison case, it may be correct for signed comparison, but 12546 // that needs to be established. 12547 if (IsSigned && isKnownNegative(Stride)) 12548 return getCouldNotCompute(); 12549 12550 // Calculate the maximum backedge count based on the range of values 12551 // permitted by Start, End, and Stride. 12552 APInt MinStart = 12553 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12554 12555 APInt MinStride = 12556 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12557 12558 // We assume either the stride is positive, or the backedge-taken count 12559 // is zero. So force StrideForMaxBECount to be at least one. 12560 APInt One(BitWidth, 1); 12561 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12562 : APIntOps::umax(One, MinStride); 12563 12564 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12565 : APInt::getMaxValue(BitWidth); 12566 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12567 12568 // Although End can be a MAX expression we estimate MaxEnd considering only 12569 // the case End = RHS of the loop termination condition. This is safe because 12570 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12571 // taken count. 12572 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12573 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12574 12575 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12576 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12577 : APIntOps::umax(MaxEnd, MinStart); 12578 12579 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12580 getConstant(StrideForMaxBECount) /* Step */); 12581 } 12582 12583 ScalarEvolution::ExitLimit 12584 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12585 const Loop *L, bool IsSigned, 12586 bool ControlsOnlyExit, bool AllowPredicates) { 12587 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12588 12589 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12590 bool PredicatedIV = false; 12591 12592 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12593 // Can we prove this loop *must* be UB if overflow of IV occurs? 12594 // Reasoning goes as follows: 12595 // * Suppose the IV did self wrap. 12596 // * If Stride evenly divides the iteration space, then once wrap 12597 // occurs, the loop must revisit the same values. 12598 // * We know that RHS is invariant, and that none of those values 12599 // caused this exit to be taken previously. Thus, this exit is 12600 // dynamically dead. 12601 // * If this is the sole exit, then a dead exit implies the loop 12602 // must be infinite if there are no abnormal exits. 12603 // * If the loop were infinite, then it must either not be mustprogress 12604 // or have side effects. Otherwise, it must be UB. 12605 // * It can't (by assumption), be UB so we have contradicted our 12606 // premise and can conclude the IV did not in fact self-wrap. 12607 if (!isLoopInvariant(RHS, L)) 12608 return false; 12609 12610 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12611 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12612 return false; 12613 12614 if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L)) 12615 return false; 12616 12617 return loopIsFiniteByAssumption(L); 12618 }; 12619 12620 if (!IV) { 12621 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12622 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12623 if (AR && AR->getLoop() == L && AR->isAffine()) { 12624 auto canProveNUW = [&]() { 12625 if (!isLoopInvariant(RHS, L)) 12626 return false; 12627 12628 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12629 // We need the sequence defined by AR to strictly increase in the 12630 // unsigned integer domain for the logic below to hold. 12631 return false; 12632 12633 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12634 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12635 // If RHS <=u Limit, then there must exist a value V in the sequence 12636 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12637 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12638 // overflow occurs. This limit also implies that a signed comparison 12639 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12640 // the high bits on both sides must be zero. 12641 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12642 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12643 Limit = Limit.zext(OuterBitWidth); 12644 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12645 }; 12646 auto Flags = AR->getNoWrapFlags(); 12647 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12648 Flags = setFlags(Flags, SCEV::FlagNUW); 12649 12650 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12651 if (AR->hasNoUnsignedWrap()) { 12652 // Emulate what getZeroExtendExpr would have done during construction 12653 // if we'd been able to infer the fact just above at that time. 12654 const SCEV *Step = AR->getStepRecurrence(*this); 12655 Type *Ty = ZExt->getType(); 12656 auto *S = getAddRecExpr( 12657 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12658 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12659 IV = dyn_cast<SCEVAddRecExpr>(S); 12660 } 12661 } 12662 } 12663 } 12664 12665 12666 if (!IV && AllowPredicates) { 12667 // Try to make this an AddRec using runtime tests, in the first X 12668 // iterations of this loop, where X is the SCEV expression found by the 12669 // algorithm below. 12670 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12671 PredicatedIV = true; 12672 } 12673 12674 // Avoid weird loops 12675 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12676 return getCouldNotCompute(); 12677 12678 // A precondition of this method is that the condition being analyzed 12679 // reaches an exiting branch which dominates the latch. Given that, we can 12680 // assume that an increment which violates the nowrap specification and 12681 // produces poison must cause undefined behavior when the resulting poison 12682 // value is branched upon and thus we can conclude that the backedge is 12683 // taken no more often than would be required to produce that poison value. 12684 // Note that a well defined loop can exit on the iteration which violates 12685 // the nowrap specification if there is another exit (either explicit or 12686 // implicit/exceptional) which causes the loop to execute before the 12687 // exiting instruction we're analyzing would trigger UB. 12688 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12689 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 12690 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12691 12692 const SCEV *Stride = IV->getStepRecurrence(*this); 12693 12694 bool PositiveStride = isKnownPositive(Stride); 12695 12696 // Avoid negative or zero stride values. 12697 if (!PositiveStride) { 12698 // We can compute the correct backedge taken count for loops with unknown 12699 // strides if we can prove that the loop is not an infinite loop with side 12700 // effects. Here's the loop structure we are trying to handle - 12701 // 12702 // i = start 12703 // do { 12704 // A[i] = i; 12705 // i += s; 12706 // } while (i < end); 12707 // 12708 // The backedge taken count for such loops is evaluated as - 12709 // (max(end, start + stride) - start - 1) /u stride 12710 // 12711 // The additional preconditions that we need to check to prove correctness 12712 // of the above formula is as follows - 12713 // 12714 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12715 // NoWrap flag). 12716 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12717 // no side effects within the loop) 12718 // c) loop has a single static exit (with no abnormal exits) 12719 // 12720 // Precondition a) implies that if the stride is negative, this is a single 12721 // trip loop. The backedge taken count formula reduces to zero in this case. 12722 // 12723 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12724 // then a zero stride means the backedge can't be taken without executing 12725 // undefined behavior. 12726 // 12727 // The positive stride case is the same as isKnownPositive(Stride) returning 12728 // true (original behavior of the function). 12729 // 12730 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12731 !loopHasNoAbnormalExits(L)) 12732 return getCouldNotCompute(); 12733 12734 if (!isKnownNonZero(Stride)) { 12735 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12736 // if it might eventually be greater than start and if so, on which 12737 // iteration. We can't even produce a useful upper bound. 12738 if (!isLoopInvariant(RHS, L)) 12739 return getCouldNotCompute(); 12740 12741 // We allow a potentially zero stride, but we need to divide by stride 12742 // below. Since the loop can't be infinite and this check must control 12743 // the sole exit, we can infer the exit must be taken on the first 12744 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12745 // we know the numerator in the divides below must be zero, so we can 12746 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12747 // and produce the right result. 12748 // FIXME: Handle the case where Stride is poison? 12749 auto wouldZeroStrideBeUB = [&]() { 12750 // Proof by contradiction. Suppose the stride were zero. If we can 12751 // prove that the backedge *is* taken on the first iteration, then since 12752 // we know this condition controls the sole exit, we must have an 12753 // infinite loop. We can't have a (well defined) infinite loop per 12754 // check just above. 12755 // Note: The (Start - Stride) term is used to get the start' term from 12756 // (start' + stride,+,stride). Remember that we only care about the 12757 // result of this expression when stride == 0 at runtime. 12758 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12759 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12760 }; 12761 if (!wouldZeroStrideBeUB()) { 12762 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12763 } 12764 } 12765 } else if (!Stride->isOne() && !NoWrap) { 12766 auto isUBOnWrap = [&]() { 12767 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12768 // follows trivially from the fact that every (un)signed-wrapped, but 12769 // not self-wrapped value must be LT than the last value before 12770 // (un)signed wrap. Since we know that last value didn't exit, nor 12771 // will any smaller one. 12772 return canAssumeNoSelfWrap(IV); 12773 }; 12774 12775 // Avoid proven overflow cases: this will ensure that the backedge taken 12776 // count will not generate any unsigned overflow. Relaxed no-overflow 12777 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12778 // undefined behaviors like the case of C language. 12779 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12780 return getCouldNotCompute(); 12781 } 12782 12783 // On all paths just preceeding, we established the following invariant: 12784 // IV can be assumed not to overflow up to and including the exiting 12785 // iteration. We proved this in one of two ways: 12786 // 1) We can show overflow doesn't occur before the exiting iteration 12787 // 1a) canIVOverflowOnLT, and b) step of one 12788 // 2) We can show that if overflow occurs, the loop must execute UB 12789 // before any possible exit. 12790 // Note that we have not yet proved RHS invariant (in general). 12791 12792 const SCEV *Start = IV->getStart(); 12793 12794 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12795 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12796 // Use integer-typed versions for actual computation; we can't subtract 12797 // pointers in general. 12798 const SCEV *OrigStart = Start; 12799 const SCEV *OrigRHS = RHS; 12800 if (Start->getType()->isPointerTy()) { 12801 Start = getLosslessPtrToIntExpr(Start); 12802 if (isa<SCEVCouldNotCompute>(Start)) 12803 return Start; 12804 } 12805 if (RHS->getType()->isPointerTy()) { 12806 RHS = getLosslessPtrToIntExpr(RHS); 12807 if (isa<SCEVCouldNotCompute>(RHS)) 12808 return RHS; 12809 } 12810 12811 // When the RHS is not invariant, we do not know the end bound of the loop and 12812 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12813 // calculate the MaxBECount, given the start, stride and max value for the end 12814 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12815 // checked above). 12816 if (!isLoopInvariant(RHS, L)) { 12817 const SCEV *MaxBECount = computeMaxBECountForLT( 12818 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12819 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12820 MaxBECount, false /*MaxOrZero*/, Predicates); 12821 } 12822 12823 // We use the expression (max(End,Start)-Start)/Stride to describe the 12824 // backedge count, as if the backedge is taken at least once max(End,Start) 12825 // is End and so the result is as above, and if not max(End,Start) is Start 12826 // so we get a backedge count of zero. 12827 const SCEV *BECount = nullptr; 12828 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12829 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12830 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12831 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12832 // Can we prove (max(RHS,Start) > Start - Stride? 12833 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12834 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12835 // In this case, we can use a refined formula for computing backedge taken 12836 // count. The general formula remains: 12837 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12838 // We want to use the alternate formula: 12839 // "((End - 1) - (Start - Stride)) /u Stride" 12840 // Let's do a quick case analysis to show these are equivalent under 12841 // our precondition that max(RHS,Start) > Start - Stride. 12842 // * For RHS <= Start, the backedge-taken count must be zero. 12843 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12844 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12845 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12846 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12847 // this to the stride of 1 case. 12848 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12849 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12850 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12851 // "((RHS - (Start - Stride) - 1) /u Stride". 12852 // Our preconditions trivially imply no overflow in that form. 12853 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12854 const SCEV *Numerator = 12855 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12856 BECount = getUDivExpr(Numerator, Stride); 12857 } 12858 12859 const SCEV *BECountIfBackedgeTaken = nullptr; 12860 if (!BECount) { 12861 auto canProveRHSGreaterThanEqualStart = [&]() { 12862 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12863 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12864 return true; 12865 12866 // (RHS > Start - 1) implies RHS >= Start. 12867 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12868 // "Start - 1" doesn't overflow. 12869 // * For signed comparison, if Start - 1 does overflow, it's equal 12870 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12871 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12872 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12873 // 12874 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12875 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12876 auto *StartMinusOne = getAddExpr(OrigStart, 12877 getMinusOne(OrigStart->getType())); 12878 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12879 }; 12880 12881 // If we know that RHS >= Start in the context of loop, then we know that 12882 // max(RHS, Start) = RHS at this point. 12883 const SCEV *End; 12884 if (canProveRHSGreaterThanEqualStart()) { 12885 End = RHS; 12886 } else { 12887 // If RHS < Start, the backedge will be taken zero times. So in 12888 // general, we can write the backedge-taken count as: 12889 // 12890 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12891 // 12892 // We convert it to the following to make it more convenient for SCEV: 12893 // 12894 // ceil(max(RHS, Start) - Start) / Stride 12895 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12896 12897 // See what would happen if we assume the backedge is taken. This is 12898 // used to compute MaxBECount. 12899 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12900 } 12901 12902 // At this point, we know: 12903 // 12904 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12905 // 2. The index variable doesn't overflow. 12906 // 12907 // Therefore, we know N exists such that 12908 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12909 // doesn't overflow. 12910 // 12911 // Using this information, try to prove whether the addition in 12912 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12913 const SCEV *One = getOne(Stride->getType()); 12914 bool MayAddOverflow = [&] { 12915 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12916 if (StrideC->getAPInt().isPowerOf2()) { 12917 // Suppose Stride is a power of two, and Start/End are unsigned 12918 // integers. Let UMAX be the largest representable unsigned 12919 // integer. 12920 // 12921 // By the preconditions of this function, we know 12922 // "(Start + Stride * N) >= End", and this doesn't overflow. 12923 // As a formula: 12924 // 12925 // End <= (Start + Stride * N) <= UMAX 12926 // 12927 // Subtracting Start from all the terms: 12928 // 12929 // End - Start <= Stride * N <= UMAX - Start 12930 // 12931 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12932 // 12933 // End - Start <= Stride * N <= UMAX 12934 // 12935 // Stride * N is a multiple of Stride. Therefore, 12936 // 12937 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12938 // 12939 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12940 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12941 // 12942 // End - Start <= Stride * N <= UMAX - Stride - 1 12943 // 12944 // Dropping the middle term: 12945 // 12946 // End - Start <= UMAX - Stride - 1 12947 // 12948 // Adding Stride - 1 to both sides: 12949 // 12950 // (End - Start) + (Stride - 1) <= UMAX 12951 // 12952 // In other words, the addition doesn't have unsigned overflow. 12953 // 12954 // A similar proof works if we treat Start/End as signed values. 12955 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12956 // use signed max instead of unsigned max. Note that we're trying 12957 // to prove a lack of unsigned overflow in either case. 12958 return false; 12959 } 12960 } 12961 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12962 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12963 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12964 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12965 // 12966 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12967 return false; 12968 } 12969 return true; 12970 }(); 12971 12972 const SCEV *Delta = getMinusSCEV(End, Start); 12973 if (!MayAddOverflow) { 12974 // floor((D + (S - 1)) / S) 12975 // We prefer this formulation if it's legal because it's fewer operations. 12976 BECount = 12977 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12978 } else { 12979 BECount = getUDivCeilSCEV(Delta, Stride); 12980 } 12981 } 12982 12983 const SCEV *ConstantMaxBECount; 12984 bool MaxOrZero = false; 12985 if (isa<SCEVConstant>(BECount)) { 12986 ConstantMaxBECount = BECount; 12987 } else if (BECountIfBackedgeTaken && 12988 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12989 // If we know exactly how many times the backedge will be taken if it's 12990 // taken at least once, then the backedge count will either be that or 12991 // zero. 12992 ConstantMaxBECount = BECountIfBackedgeTaken; 12993 MaxOrZero = true; 12994 } else { 12995 ConstantMaxBECount = computeMaxBECountForLT( 12996 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12997 } 12998 12999 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 13000 !isa<SCEVCouldNotCompute>(BECount)) 13001 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 13002 13003 const SCEV *SymbolicMaxBECount = 13004 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13005 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, 13006 Predicates); 13007 } 13008 13009 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( 13010 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, 13011 bool ControlsOnlyExit, bool AllowPredicates) { 13012 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 13013 // We handle only IV > Invariant 13014 if (!isLoopInvariant(RHS, L)) 13015 return getCouldNotCompute(); 13016 13017 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 13018 if (!IV && AllowPredicates) 13019 // Try to make this an AddRec using runtime tests, in the first X 13020 // iterations of this loop, where X is the SCEV expression found by the 13021 // algorithm below. 13022 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13023 13024 // Avoid weird loops 13025 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13026 return getCouldNotCompute(); 13027 13028 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13029 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 13030 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13031 13032 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 13033 13034 // Avoid negative or zero stride values 13035 if (!isKnownPositive(Stride)) 13036 return getCouldNotCompute(); 13037 13038 // Avoid proven overflow cases: this will ensure that the backedge taken count 13039 // will not generate any unsigned overflow. Relaxed no-overflow conditions 13040 // exploit NoWrapFlags, allowing to optimize in presence of undefined 13041 // behaviors like the case of C language. 13042 if (!Stride->isOne() && !NoWrap) 13043 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 13044 return getCouldNotCompute(); 13045 13046 const SCEV *Start = IV->getStart(); 13047 const SCEV *End = RHS; 13048 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 13049 // If we know that Start >= RHS in the context of loop, then we know that 13050 // min(RHS, Start) = RHS at this point. 13051 if (isLoopEntryGuardedByCond( 13052 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 13053 End = RHS; 13054 else 13055 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 13056 } 13057 13058 if (Start->getType()->isPointerTy()) { 13059 Start = getLosslessPtrToIntExpr(Start); 13060 if (isa<SCEVCouldNotCompute>(Start)) 13061 return Start; 13062 } 13063 if (End->getType()->isPointerTy()) { 13064 End = getLosslessPtrToIntExpr(End); 13065 if (isa<SCEVCouldNotCompute>(End)) 13066 return End; 13067 } 13068 13069 // Compute ((Start - End) + (Stride - 1)) / Stride. 13070 // FIXME: This can overflow. Holding off on fixing this for now; 13071 // howManyGreaterThans will hopefully be gone soon. 13072 const SCEV *One = getOne(Stride->getType()); 13073 const SCEV *BECount = getUDivExpr( 13074 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 13075 13076 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 13077 : getUnsignedRangeMax(Start); 13078 13079 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 13080 : getUnsignedRangeMin(Stride); 13081 13082 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 13083 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 13084 : APInt::getMinValue(BitWidth) + (MinStride - 1); 13085 13086 // Although End can be a MIN expression we estimate MinEnd considering only 13087 // the case End = RHS. This is safe because in the other case (Start - End) 13088 // is zero, leading to a zero maximum backedge taken count. 13089 APInt MinEnd = 13090 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 13091 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 13092 13093 const SCEV *ConstantMaxBECount = 13094 isa<SCEVConstant>(BECount) 13095 ? BECount 13096 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 13097 getConstant(MinStride)); 13098 13099 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) 13100 ConstantMaxBECount = BECount; 13101 const SCEV *SymbolicMaxBECount = 13102 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13103 13104 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 13105 Predicates); 13106 } 13107 13108 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 13109 ScalarEvolution &SE) const { 13110 if (Range.isFullSet()) // Infinite loop. 13111 return SE.getCouldNotCompute(); 13112 13113 // If the start is a non-zero constant, shift the range to simplify things. 13114 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 13115 if (!SC->getValue()->isZero()) { 13116 SmallVector<const SCEV *, 4> Operands(operands()); 13117 Operands[0] = SE.getZero(SC->getType()); 13118 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 13119 getNoWrapFlags(FlagNW)); 13120 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 13121 return ShiftedAddRec->getNumIterationsInRange( 13122 Range.subtract(SC->getAPInt()), SE); 13123 // This is strange and shouldn't happen. 13124 return SE.getCouldNotCompute(); 13125 } 13126 13127 // The only time we can solve this is when we have all constant indices. 13128 // Otherwise, we cannot determine the overflow conditions. 13129 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 13130 return SE.getCouldNotCompute(); 13131 13132 // Okay at this point we know that all elements of the chrec are constants and 13133 // that the start element is zero. 13134 13135 // First check to see if the range contains zero. If not, the first 13136 // iteration exits. 13137 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 13138 if (!Range.contains(APInt(BitWidth, 0))) 13139 return SE.getZero(getType()); 13140 13141 if (isAffine()) { 13142 // If this is an affine expression then we have this situation: 13143 // Solve {0,+,A} in Range === Ax in Range 13144 13145 // We know that zero is in the range. If A is positive then we know that 13146 // the upper value of the range must be the first possible exit value. 13147 // If A is negative then the lower of the range is the last possible loop 13148 // value. Also note that we already checked for a full range. 13149 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 13150 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 13151 13152 // The exit value should be (End+A)/A. 13153 APInt ExitVal = (End + A).udiv(A); 13154 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 13155 13156 // Evaluate at the exit value. If we really did fall out of the valid 13157 // range, then we computed our trip count, otherwise wrap around or other 13158 // things must have happened. 13159 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 13160 if (Range.contains(Val->getValue())) 13161 return SE.getCouldNotCompute(); // Something strange happened 13162 13163 // Ensure that the previous value is in the range. 13164 assert(Range.contains( 13165 EvaluateConstantChrecAtConstant(this, 13166 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 13167 "Linear scev computation is off in a bad way!"); 13168 return SE.getConstant(ExitValue); 13169 } 13170 13171 if (isQuadratic()) { 13172 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 13173 return SE.getConstant(*S); 13174 } 13175 13176 return SE.getCouldNotCompute(); 13177 } 13178 13179 const SCEVAddRecExpr * 13180 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 13181 assert(getNumOperands() > 1 && "AddRec with zero step?"); 13182 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 13183 // but in this case we cannot guarantee that the value returned will be an 13184 // AddRec because SCEV does not have a fixed point where it stops 13185 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 13186 // may happen if we reach arithmetic depth limit while simplifying. So we 13187 // construct the returned value explicitly. 13188 SmallVector<const SCEV *, 3> Ops; 13189 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 13190 // (this + Step) is {A+B,+,B+C,+...,+,N}. 13191 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 13192 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 13193 // We know that the last operand is not a constant zero (otherwise it would 13194 // have been popped out earlier). This guarantees us that if the result has 13195 // the same last operand, then it will also not be popped out, meaning that 13196 // the returned value will be an AddRec. 13197 const SCEV *Last = getOperand(getNumOperands() - 1); 13198 assert(!Last->isZero() && "Recurrency with zero step?"); 13199 Ops.push_back(Last); 13200 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13201 SCEV::FlagAnyWrap)); 13202 } 13203 13204 // Return true when S contains at least an undef value. 13205 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13206 return SCEVExprContains(S, [](const SCEV *S) { 13207 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13208 return isa<UndefValue>(SU->getValue()); 13209 return false; 13210 }); 13211 } 13212 13213 // Return true when S contains a value that is a nullptr. 13214 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13215 return SCEVExprContains(S, [](const SCEV *S) { 13216 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13217 return SU->getValue() == nullptr; 13218 return false; 13219 }); 13220 } 13221 13222 /// Return the size of an element read or written by Inst. 13223 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13224 Type *Ty; 13225 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13226 Ty = Store->getValueOperand()->getType(); 13227 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13228 Ty = Load->getType(); 13229 else 13230 return nullptr; 13231 13232 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13233 return getSizeOfExpr(ETy, Ty); 13234 } 13235 13236 //===----------------------------------------------------------------------===// 13237 // SCEVCallbackVH Class Implementation 13238 //===----------------------------------------------------------------------===// 13239 13240 void ScalarEvolution::SCEVCallbackVH::deleted() { 13241 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13242 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13243 SE->ConstantEvolutionLoopExitValue.erase(PN); 13244 SE->eraseValueFromMap(getValPtr()); 13245 // this now dangles! 13246 } 13247 13248 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13249 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13250 13251 // Forget all the expressions associated with users of the old value, 13252 // so that future queries will recompute the expressions using the new 13253 // value. 13254 Value *Old = getValPtr(); 13255 SmallVector<User *, 16> Worklist(Old->users()); 13256 SmallPtrSet<User *, 8> Visited; 13257 while (!Worklist.empty()) { 13258 User *U = Worklist.pop_back_val(); 13259 // Deleting the Old value will cause this to dangle. Postpone 13260 // that until everything else is done. 13261 if (U == Old) 13262 continue; 13263 if (!Visited.insert(U).second) 13264 continue; 13265 if (PHINode *PN = dyn_cast<PHINode>(U)) 13266 SE->ConstantEvolutionLoopExitValue.erase(PN); 13267 SE->eraseValueFromMap(U); 13268 llvm::append_range(Worklist, U->users()); 13269 } 13270 // Delete the Old value. 13271 if (PHINode *PN = dyn_cast<PHINode>(Old)) 13272 SE->ConstantEvolutionLoopExitValue.erase(PN); 13273 SE->eraseValueFromMap(Old); 13274 // this now dangles! 13275 } 13276 13277 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13278 : CallbackVH(V), SE(se) {} 13279 13280 //===----------------------------------------------------------------------===// 13281 // ScalarEvolution Class Implementation 13282 //===----------------------------------------------------------------------===// 13283 13284 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13285 AssumptionCache &AC, DominatorTree &DT, 13286 LoopInfo &LI) 13287 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 13288 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13289 LoopDispositions(64), BlockDispositions(64) { 13290 // To use guards for proving predicates, we need to scan every instruction in 13291 // relevant basic blocks, and not just terminators. Doing this is a waste of 13292 // time if the IR does not actually contain any calls to 13293 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13294 // 13295 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13296 // to _add_ guards to the module when there weren't any before, and wants 13297 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13298 // efficient in lieu of being smart in that rather obscure case. 13299 13300 auto *GuardDecl = F.getParent()->getFunction( 13301 Intrinsic::getName(Intrinsic::experimental_guard)); 13302 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13303 } 13304 13305 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13306 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 13307 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13308 ValueExprMap(std::move(Arg.ValueExprMap)), 13309 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13310 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13311 PendingMerges(std::move(Arg.PendingMerges)), 13312 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), 13313 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13314 PredicatedBackedgeTakenCounts( 13315 std::move(Arg.PredicatedBackedgeTakenCounts)), 13316 BECountUsers(std::move(Arg.BECountUsers)), 13317 ConstantEvolutionLoopExitValue( 13318 std::move(Arg.ConstantEvolutionLoopExitValue)), 13319 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13320 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13321 LoopDispositions(std::move(Arg.LoopDispositions)), 13322 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13323 BlockDispositions(std::move(Arg.BlockDispositions)), 13324 SCEVUsers(std::move(Arg.SCEVUsers)), 13325 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13326 SignedRanges(std::move(Arg.SignedRanges)), 13327 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13328 UniquePreds(std::move(Arg.UniquePreds)), 13329 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13330 LoopUsers(std::move(Arg.LoopUsers)), 13331 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13332 FirstUnknown(Arg.FirstUnknown) { 13333 Arg.FirstUnknown = nullptr; 13334 } 13335 13336 ScalarEvolution::~ScalarEvolution() { 13337 // Iterate through all the SCEVUnknown instances and call their 13338 // destructors, so that they release their references to their values. 13339 for (SCEVUnknown *U = FirstUnknown; U;) { 13340 SCEVUnknown *Tmp = U; 13341 U = U->Next; 13342 Tmp->~SCEVUnknown(); 13343 } 13344 FirstUnknown = nullptr; 13345 13346 ExprValueMap.clear(); 13347 ValueExprMap.clear(); 13348 HasRecMap.clear(); 13349 BackedgeTakenCounts.clear(); 13350 PredicatedBackedgeTakenCounts.clear(); 13351 13352 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13353 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13354 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13355 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13356 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13357 } 13358 13359 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13360 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13361 } 13362 13363 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13364 const Loop *L) { 13365 // Print all inner loops first 13366 for (Loop *I : *L) 13367 PrintLoopInfo(OS, SE, I); 13368 13369 OS << "Loop "; 13370 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13371 OS << ": "; 13372 13373 SmallVector<BasicBlock *, 8> ExitingBlocks; 13374 L->getExitingBlocks(ExitingBlocks); 13375 if (ExitingBlocks.size() != 1) 13376 OS << "<multiple exits> "; 13377 13378 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 13379 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 13380 else 13381 OS << "Unpredictable backedge-taken count.\n"; 13382 13383 if (ExitingBlocks.size() > 1) 13384 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13385 OS << " exit count for " << ExitingBlock->getName() << ": " 13386 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13387 } 13388 13389 OS << "Loop "; 13390 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13391 OS << ": "; 13392 13393 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); 13394 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { 13395 OS << "constant max backedge-taken count is " << *ConstantBTC; 13396 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13397 OS << ", actual taken count either this or zero."; 13398 } else { 13399 OS << "Unpredictable constant max backedge-taken count. "; 13400 } 13401 13402 OS << "\n" 13403 "Loop "; 13404 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13405 OS << ": "; 13406 13407 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); 13408 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { 13409 OS << "symbolic max backedge-taken count is " << *SymbolicBTC; 13410 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13411 OS << ", actual taken count either this or zero."; 13412 } else { 13413 OS << "Unpredictable symbolic max backedge-taken count. "; 13414 } 13415 13416 OS << "\n"; 13417 if (ExitingBlocks.size() > 1) 13418 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13419 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " 13420 << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum) 13421 << "\n"; 13422 } 13423 13424 OS << "Loop "; 13425 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13426 OS << ": "; 13427 13428 SmallVector<const SCEVPredicate *, 4> Preds; 13429 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13430 if (!isa<SCEVCouldNotCompute>(PBT)) { 13431 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13432 OS << " Predicates:\n"; 13433 for (const auto *P : Preds) 13434 P->print(OS, 4); 13435 } else { 13436 OS << "Unpredictable predicated backedge-taken count. "; 13437 } 13438 OS << "\n"; 13439 13440 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13441 OS << "Loop "; 13442 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13443 OS << ": "; 13444 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13445 } 13446 } 13447 13448 namespace llvm { 13449 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { 13450 switch (LD) { 13451 case ScalarEvolution::LoopVariant: 13452 OS << "Variant"; 13453 break; 13454 case ScalarEvolution::LoopInvariant: 13455 OS << "Invariant"; 13456 break; 13457 case ScalarEvolution::LoopComputable: 13458 OS << "Computable"; 13459 break; 13460 } 13461 return OS; 13462 } 13463 13464 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { 13465 switch (BD) { 13466 case ScalarEvolution::DoesNotDominateBlock: 13467 OS << "DoesNotDominate"; 13468 break; 13469 case ScalarEvolution::DominatesBlock: 13470 OS << "Dominates"; 13471 break; 13472 case ScalarEvolution::ProperlyDominatesBlock: 13473 OS << "ProperlyDominates"; 13474 break; 13475 } 13476 return OS; 13477 } 13478 } 13479 13480 void ScalarEvolution::print(raw_ostream &OS) const { 13481 // ScalarEvolution's implementation of the print method is to print 13482 // out SCEV values of all instructions that are interesting. Doing 13483 // this potentially causes it to create new SCEV objects though, 13484 // which technically conflicts with the const qualifier. This isn't 13485 // observable from outside the class though, so casting away the 13486 // const isn't dangerous. 13487 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13488 13489 if (ClassifyExpressions) { 13490 OS << "Classifying expressions for: "; 13491 F.printAsOperand(OS, /*PrintType=*/false); 13492 OS << "\n"; 13493 for (Instruction &I : instructions(F)) 13494 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13495 OS << I << '\n'; 13496 OS << " --> "; 13497 const SCEV *SV = SE.getSCEV(&I); 13498 SV->print(OS); 13499 if (!isa<SCEVCouldNotCompute>(SV)) { 13500 OS << " U: "; 13501 SE.getUnsignedRange(SV).print(OS); 13502 OS << " S: "; 13503 SE.getSignedRange(SV).print(OS); 13504 } 13505 13506 const Loop *L = LI.getLoopFor(I.getParent()); 13507 13508 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13509 if (AtUse != SV) { 13510 OS << " --> "; 13511 AtUse->print(OS); 13512 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13513 OS << " U: "; 13514 SE.getUnsignedRange(AtUse).print(OS); 13515 OS << " S: "; 13516 SE.getSignedRange(AtUse).print(OS); 13517 } 13518 } 13519 13520 if (L) { 13521 OS << "\t\t" "Exits: "; 13522 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13523 if (!SE.isLoopInvariant(ExitValue, L)) { 13524 OS << "<<Unknown>>"; 13525 } else { 13526 OS << *ExitValue; 13527 } 13528 13529 bool First = true; 13530 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13531 if (First) { 13532 OS << "\t\t" "LoopDispositions: { "; 13533 First = false; 13534 } else { 13535 OS << ", "; 13536 } 13537 13538 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13539 OS << ": " << SE.getLoopDisposition(SV, Iter); 13540 } 13541 13542 for (const auto *InnerL : depth_first(L)) { 13543 if (InnerL == L) 13544 continue; 13545 if (First) { 13546 OS << "\t\t" "LoopDispositions: { "; 13547 First = false; 13548 } else { 13549 OS << ", "; 13550 } 13551 13552 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13553 OS << ": " << SE.getLoopDisposition(SV, InnerL); 13554 } 13555 13556 OS << " }"; 13557 } 13558 13559 OS << "\n"; 13560 } 13561 } 13562 13563 OS << "Determining loop execution counts for: "; 13564 F.printAsOperand(OS, /*PrintType=*/false); 13565 OS << "\n"; 13566 for (Loop *I : LI) 13567 PrintLoopInfo(OS, &SE, I); 13568 } 13569 13570 ScalarEvolution::LoopDisposition 13571 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13572 auto &Values = LoopDispositions[S]; 13573 for (auto &V : Values) { 13574 if (V.getPointer() == L) 13575 return V.getInt(); 13576 } 13577 Values.emplace_back(L, LoopVariant); 13578 LoopDisposition D = computeLoopDisposition(S, L); 13579 auto &Values2 = LoopDispositions[S]; 13580 for (auto &V : llvm::reverse(Values2)) { 13581 if (V.getPointer() == L) { 13582 V.setInt(D); 13583 break; 13584 } 13585 } 13586 return D; 13587 } 13588 13589 ScalarEvolution::LoopDisposition 13590 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13591 switch (S->getSCEVType()) { 13592 case scConstant: 13593 case scVScale: 13594 return LoopInvariant; 13595 case scAddRecExpr: { 13596 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13597 13598 // If L is the addrec's loop, it's computable. 13599 if (AR->getLoop() == L) 13600 return LoopComputable; 13601 13602 // Add recurrences are never invariant in the function-body (null loop). 13603 if (!L) 13604 return LoopVariant; 13605 13606 // Everything that is not defined at loop entry is variant. 13607 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13608 return LoopVariant; 13609 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13610 " dominate the contained loop's header?"); 13611 13612 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13613 if (AR->getLoop()->contains(L)) 13614 return LoopInvariant; 13615 13616 // This recurrence is variant w.r.t. L if any of its operands 13617 // are variant. 13618 for (const auto *Op : AR->operands()) 13619 if (!isLoopInvariant(Op, L)) 13620 return LoopVariant; 13621 13622 // Otherwise it's loop-invariant. 13623 return LoopInvariant; 13624 } 13625 case scTruncate: 13626 case scZeroExtend: 13627 case scSignExtend: 13628 case scPtrToInt: 13629 case scAddExpr: 13630 case scMulExpr: 13631 case scUDivExpr: 13632 case scUMaxExpr: 13633 case scSMaxExpr: 13634 case scUMinExpr: 13635 case scSMinExpr: 13636 case scSequentialUMinExpr: { 13637 bool HasVarying = false; 13638 for (const auto *Op : S->operands()) { 13639 LoopDisposition D = getLoopDisposition(Op, L); 13640 if (D == LoopVariant) 13641 return LoopVariant; 13642 if (D == LoopComputable) 13643 HasVarying = true; 13644 } 13645 return HasVarying ? LoopComputable : LoopInvariant; 13646 } 13647 case scUnknown: 13648 // All non-instruction values are loop invariant. All instructions are loop 13649 // invariant if they are not contained in the specified loop. 13650 // Instructions are never considered invariant in the function body 13651 // (null loop) because they are defined within the "loop". 13652 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13653 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13654 return LoopInvariant; 13655 case scCouldNotCompute: 13656 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13657 } 13658 llvm_unreachable("Unknown SCEV kind!"); 13659 } 13660 13661 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13662 return getLoopDisposition(S, L) == LoopInvariant; 13663 } 13664 13665 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13666 return getLoopDisposition(S, L) == LoopComputable; 13667 } 13668 13669 ScalarEvolution::BlockDisposition 13670 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13671 auto &Values = BlockDispositions[S]; 13672 for (auto &V : Values) { 13673 if (V.getPointer() == BB) 13674 return V.getInt(); 13675 } 13676 Values.emplace_back(BB, DoesNotDominateBlock); 13677 BlockDisposition D = computeBlockDisposition(S, BB); 13678 auto &Values2 = BlockDispositions[S]; 13679 for (auto &V : llvm::reverse(Values2)) { 13680 if (V.getPointer() == BB) { 13681 V.setInt(D); 13682 break; 13683 } 13684 } 13685 return D; 13686 } 13687 13688 ScalarEvolution::BlockDisposition 13689 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13690 switch (S->getSCEVType()) { 13691 case scConstant: 13692 case scVScale: 13693 return ProperlyDominatesBlock; 13694 case scAddRecExpr: { 13695 // This uses a "dominates" query instead of "properly dominates" query 13696 // to test for proper dominance too, because the instruction which 13697 // produces the addrec's value is a PHI, and a PHI effectively properly 13698 // dominates its entire containing block. 13699 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13700 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13701 return DoesNotDominateBlock; 13702 13703 // Fall through into SCEVNAryExpr handling. 13704 [[fallthrough]]; 13705 } 13706 case scTruncate: 13707 case scZeroExtend: 13708 case scSignExtend: 13709 case scPtrToInt: 13710 case scAddExpr: 13711 case scMulExpr: 13712 case scUDivExpr: 13713 case scUMaxExpr: 13714 case scSMaxExpr: 13715 case scUMinExpr: 13716 case scSMinExpr: 13717 case scSequentialUMinExpr: { 13718 bool Proper = true; 13719 for (const SCEV *NAryOp : S->operands()) { 13720 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13721 if (D == DoesNotDominateBlock) 13722 return DoesNotDominateBlock; 13723 if (D == DominatesBlock) 13724 Proper = false; 13725 } 13726 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13727 } 13728 case scUnknown: 13729 if (Instruction *I = 13730 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13731 if (I->getParent() == BB) 13732 return DominatesBlock; 13733 if (DT.properlyDominates(I->getParent(), BB)) 13734 return ProperlyDominatesBlock; 13735 return DoesNotDominateBlock; 13736 } 13737 return ProperlyDominatesBlock; 13738 case scCouldNotCompute: 13739 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13740 } 13741 llvm_unreachable("Unknown SCEV kind!"); 13742 } 13743 13744 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13745 return getBlockDisposition(S, BB) >= DominatesBlock; 13746 } 13747 13748 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13749 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13750 } 13751 13752 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13753 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13754 } 13755 13756 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13757 bool Predicated) { 13758 auto &BECounts = 13759 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13760 auto It = BECounts.find(L); 13761 if (It != BECounts.end()) { 13762 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13763 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 13764 if (!isa<SCEVConstant>(S)) { 13765 auto UserIt = BECountUsers.find(S); 13766 assert(UserIt != BECountUsers.end()); 13767 UserIt->second.erase({L, Predicated}); 13768 } 13769 } 13770 } 13771 BECounts.erase(It); 13772 } 13773 } 13774 13775 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13776 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13777 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13778 13779 while (!Worklist.empty()) { 13780 const SCEV *Curr = Worklist.pop_back_val(); 13781 auto Users = SCEVUsers.find(Curr); 13782 if (Users != SCEVUsers.end()) 13783 for (const auto *User : Users->second) 13784 if (ToForget.insert(User).second) 13785 Worklist.push_back(User); 13786 } 13787 13788 for (const auto *S : ToForget) 13789 forgetMemoizedResultsImpl(S); 13790 13791 for (auto I = PredicatedSCEVRewrites.begin(); 13792 I != PredicatedSCEVRewrites.end();) { 13793 std::pair<const SCEV *, const Loop *> Entry = I->first; 13794 if (ToForget.count(Entry.first)) 13795 PredicatedSCEVRewrites.erase(I++); 13796 else 13797 ++I; 13798 } 13799 } 13800 13801 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13802 LoopDispositions.erase(S); 13803 BlockDispositions.erase(S); 13804 UnsignedRanges.erase(S); 13805 SignedRanges.erase(S); 13806 HasRecMap.erase(S); 13807 ConstantMultipleCache.erase(S); 13808 13809 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { 13810 UnsignedWrapViaInductionTried.erase(AR); 13811 SignedWrapViaInductionTried.erase(AR); 13812 } 13813 13814 auto ExprIt = ExprValueMap.find(S); 13815 if (ExprIt != ExprValueMap.end()) { 13816 for (Value *V : ExprIt->second) { 13817 auto ValueIt = ValueExprMap.find_as(V); 13818 if (ValueIt != ValueExprMap.end()) 13819 ValueExprMap.erase(ValueIt); 13820 } 13821 ExprValueMap.erase(ExprIt); 13822 } 13823 13824 auto ScopeIt = ValuesAtScopes.find(S); 13825 if (ScopeIt != ValuesAtScopes.end()) { 13826 for (const auto &Pair : ScopeIt->second) 13827 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13828 erase_value(ValuesAtScopesUsers[Pair.second], 13829 std::make_pair(Pair.first, S)); 13830 ValuesAtScopes.erase(ScopeIt); 13831 } 13832 13833 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13834 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13835 for (const auto &Pair : ScopeUserIt->second) 13836 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13837 ValuesAtScopesUsers.erase(ScopeUserIt); 13838 } 13839 13840 auto BEUsersIt = BECountUsers.find(S); 13841 if (BEUsersIt != BECountUsers.end()) { 13842 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13843 auto Copy = BEUsersIt->second; 13844 for (const auto &Pair : Copy) 13845 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13846 BECountUsers.erase(BEUsersIt); 13847 } 13848 13849 auto FoldUser = FoldCacheUser.find(S); 13850 if (FoldUser != FoldCacheUser.end()) 13851 for (auto &KV : FoldUser->second) 13852 FoldCache.erase(KV); 13853 FoldCacheUser.erase(S); 13854 } 13855 13856 void 13857 ScalarEvolution::getUsedLoops(const SCEV *S, 13858 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13859 struct FindUsedLoops { 13860 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13861 : LoopsUsed(LoopsUsed) {} 13862 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13863 bool follow(const SCEV *S) { 13864 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13865 LoopsUsed.insert(AR->getLoop()); 13866 return true; 13867 } 13868 13869 bool isDone() const { return false; } 13870 }; 13871 13872 FindUsedLoops F(LoopsUsed); 13873 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13874 } 13875 13876 void ScalarEvolution::getReachableBlocks( 13877 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13878 SmallVector<BasicBlock *> Worklist; 13879 Worklist.push_back(&F.getEntryBlock()); 13880 while (!Worklist.empty()) { 13881 BasicBlock *BB = Worklist.pop_back_val(); 13882 if (!Reachable.insert(BB).second) 13883 continue; 13884 13885 Value *Cond; 13886 BasicBlock *TrueBB, *FalseBB; 13887 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13888 m_BasicBlock(FalseBB)))) { 13889 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13890 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13891 continue; 13892 } 13893 13894 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13895 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13896 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13897 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13898 Worklist.push_back(TrueBB); 13899 continue; 13900 } 13901 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13902 R)) { 13903 Worklist.push_back(FalseBB); 13904 continue; 13905 } 13906 } 13907 } 13908 13909 append_range(Worklist, successors(BB)); 13910 } 13911 } 13912 13913 void ScalarEvolution::verify() const { 13914 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13915 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13916 13917 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13918 13919 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13920 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13921 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13922 13923 const SCEV *visitConstant(const SCEVConstant *Constant) { 13924 return SE.getConstant(Constant->getAPInt()); 13925 } 13926 13927 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13928 return SE.getUnknown(Expr->getValue()); 13929 } 13930 13931 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13932 return SE.getCouldNotCompute(); 13933 } 13934 }; 13935 13936 SCEVMapper SCM(SE2); 13937 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13938 SE2.getReachableBlocks(ReachableBlocks, F); 13939 13940 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13941 if (containsUndefs(Old) || containsUndefs(New)) { 13942 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13943 // not propagate undef aggressively). This means we can (and do) fail 13944 // verification in cases where a transform makes a value go from "undef" 13945 // to "undef+1" (say). The transform is fine, since in both cases the 13946 // result is "undef", but SCEV thinks the value increased by 1. 13947 return nullptr; 13948 } 13949 13950 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13951 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13952 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13953 return nullptr; 13954 13955 return Delta; 13956 }; 13957 13958 while (!LoopStack.empty()) { 13959 auto *L = LoopStack.pop_back_val(); 13960 llvm::append_range(LoopStack, *L); 13961 13962 // Only verify BECounts in reachable loops. For an unreachable loop, 13963 // any BECount is legal. 13964 if (!ReachableBlocks.contains(L->getHeader())) 13965 continue; 13966 13967 // Only verify cached BECounts. Computing new BECounts may change the 13968 // results of subsequent SCEV uses. 13969 auto It = BackedgeTakenCounts.find(L); 13970 if (It == BackedgeTakenCounts.end()) 13971 continue; 13972 13973 auto *CurBECount = 13974 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13975 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13976 13977 if (CurBECount == SE2.getCouldNotCompute() || 13978 NewBECount == SE2.getCouldNotCompute()) { 13979 // NB! This situation is legal, but is very suspicious -- whatever pass 13980 // change the loop to make a trip count go from could not compute to 13981 // computable or vice-versa *should have* invalidated SCEV. However, we 13982 // choose not to assert here (for now) since we don't want false 13983 // positives. 13984 continue; 13985 } 13986 13987 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13988 SE.getTypeSizeInBits(NewBECount->getType())) 13989 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13990 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13991 SE.getTypeSizeInBits(NewBECount->getType())) 13992 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13993 13994 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13995 if (Delta && !Delta->isZero()) { 13996 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13997 dbgs() << "Old: " << *CurBECount << "\n"; 13998 dbgs() << "New: " << *NewBECount << "\n"; 13999 dbgs() << "Delta: " << *Delta << "\n"; 14000 std::abort(); 14001 } 14002 } 14003 14004 // Collect all valid loops currently in LoopInfo. 14005 SmallPtrSet<Loop *, 32> ValidLoops; 14006 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 14007 while (!Worklist.empty()) { 14008 Loop *L = Worklist.pop_back_val(); 14009 if (ValidLoops.insert(L).second) 14010 Worklist.append(L->begin(), L->end()); 14011 } 14012 for (const auto &KV : ValueExprMap) { 14013 #ifndef NDEBUG 14014 // Check for SCEV expressions referencing invalid/deleted loops. 14015 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 14016 assert(ValidLoops.contains(AR->getLoop()) && 14017 "AddRec references invalid loop"); 14018 } 14019 #endif 14020 14021 // Check that the value is also part of the reverse map. 14022 auto It = ExprValueMap.find(KV.second); 14023 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 14024 dbgs() << "Value " << *KV.first 14025 << " is in ValueExprMap but not in ExprValueMap\n"; 14026 std::abort(); 14027 } 14028 14029 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 14030 if (!ReachableBlocks.contains(I->getParent())) 14031 continue; 14032 const SCEV *OldSCEV = SCM.visit(KV.second); 14033 const SCEV *NewSCEV = SE2.getSCEV(I); 14034 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 14035 if (Delta && !Delta->isZero()) { 14036 dbgs() << "SCEV for value " << *I << " changed!\n" 14037 << "Old: " << *OldSCEV << "\n" 14038 << "New: " << *NewSCEV << "\n" 14039 << "Delta: " << *Delta << "\n"; 14040 std::abort(); 14041 } 14042 } 14043 } 14044 14045 for (const auto &KV : ExprValueMap) { 14046 for (Value *V : KV.second) { 14047 auto It = ValueExprMap.find_as(V); 14048 if (It == ValueExprMap.end()) { 14049 dbgs() << "Value " << *V 14050 << " is in ExprValueMap but not in ValueExprMap\n"; 14051 std::abort(); 14052 } 14053 if (It->second != KV.first) { 14054 dbgs() << "Value " << *V << " mapped to " << *It->second 14055 << " rather than " << *KV.first << "\n"; 14056 std::abort(); 14057 } 14058 } 14059 } 14060 14061 // Verify integrity of SCEV users. 14062 for (const auto &S : UniqueSCEVs) { 14063 for (const auto *Op : S.operands()) { 14064 // We do not store dependencies of constants. 14065 if (isa<SCEVConstant>(Op)) 14066 continue; 14067 auto It = SCEVUsers.find(Op); 14068 if (It != SCEVUsers.end() && It->second.count(&S)) 14069 continue; 14070 dbgs() << "Use of operand " << *Op << " by user " << S 14071 << " is not being tracked!\n"; 14072 std::abort(); 14073 } 14074 } 14075 14076 // Verify integrity of ValuesAtScopes users. 14077 for (const auto &ValueAndVec : ValuesAtScopes) { 14078 const SCEV *Value = ValueAndVec.first; 14079 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 14080 const Loop *L = LoopAndValueAtScope.first; 14081 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 14082 if (!isa<SCEVConstant>(ValueAtScope)) { 14083 auto It = ValuesAtScopesUsers.find(ValueAtScope); 14084 if (It != ValuesAtScopesUsers.end() && 14085 is_contained(It->second, std::make_pair(L, Value))) 14086 continue; 14087 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14088 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 14089 std::abort(); 14090 } 14091 } 14092 } 14093 14094 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 14095 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 14096 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 14097 const Loop *L = LoopAndValue.first; 14098 const SCEV *Value = LoopAndValue.second; 14099 assert(!isa<SCEVConstant>(Value)); 14100 auto It = ValuesAtScopes.find(Value); 14101 if (It != ValuesAtScopes.end() && 14102 is_contained(It->second, std::make_pair(L, ValueAtScope))) 14103 continue; 14104 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14105 << *ValueAtScope << " missing in ValuesAtScopes\n"; 14106 std::abort(); 14107 } 14108 } 14109 14110 // Verify integrity of BECountUsers. 14111 auto VerifyBECountUsers = [&](bool Predicated) { 14112 auto &BECounts = 14113 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14114 for (const auto &LoopAndBEInfo : BECounts) { 14115 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 14116 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14117 if (!isa<SCEVConstant>(S)) { 14118 auto UserIt = BECountUsers.find(S); 14119 if (UserIt != BECountUsers.end() && 14120 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 14121 continue; 14122 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first 14123 << " missing from BECountUsers\n"; 14124 std::abort(); 14125 } 14126 } 14127 } 14128 } 14129 }; 14130 VerifyBECountUsers(/* Predicated */ false); 14131 VerifyBECountUsers(/* Predicated */ true); 14132 14133 // Verify intergity of loop disposition cache. 14134 for (auto &[S, Values] : LoopDispositions) { 14135 for (auto [Loop, CachedDisposition] : Values) { 14136 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); 14137 if (CachedDisposition != RecomputedDisposition) { 14138 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop 14139 << " is incorrect: cached " << CachedDisposition << ", actual " 14140 << RecomputedDisposition << "\n"; 14141 std::abort(); 14142 } 14143 } 14144 } 14145 14146 // Verify integrity of the block disposition cache. 14147 for (auto &[S, Values] : BlockDispositions) { 14148 for (auto [BB, CachedDisposition] : Values) { 14149 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); 14150 if (CachedDisposition != RecomputedDisposition) { 14151 dbgs() << "Cached disposition of " << *S << " for block %" 14152 << BB->getName() << " is incorrect: cached " << CachedDisposition 14153 << ", actual " << RecomputedDisposition << "\n"; 14154 std::abort(); 14155 } 14156 } 14157 } 14158 14159 // Verify FoldCache/FoldCacheUser caches. 14160 for (auto [FoldID, Expr] : FoldCache) { 14161 auto I = FoldCacheUser.find(Expr); 14162 if (I == FoldCacheUser.end()) { 14163 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr 14164 << "!\n"; 14165 std::abort(); 14166 } 14167 if (!is_contained(I->second, FoldID)) { 14168 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; 14169 std::abort(); 14170 } 14171 } 14172 for (auto [Expr, IDs] : FoldCacheUser) { 14173 for (auto &FoldID : IDs) { 14174 auto I = FoldCache.find(FoldID); 14175 if (I == FoldCache.end()) { 14176 dbgs() << "Missing entry in FoldCache for expression " << *Expr 14177 << "!\n"; 14178 std::abort(); 14179 } 14180 if (I->second != Expr) { 14181 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " 14182 << *I->second << " != " << *Expr << "!\n"; 14183 std::abort(); 14184 } 14185 } 14186 } 14187 14188 // Verify that ConstantMultipleCache computations are correct. We check that 14189 // cached multiples and recomputed multiples are multiples of each other to 14190 // verify correctness. It is possible that a recomputed multiple is different 14191 // from the cached multiple due to strengthened no wrap flags or changes in 14192 // KnownBits computations. 14193 for (auto [S, Multiple] : ConstantMultipleCache) { 14194 APInt RecomputedMultiple = SE2.getConstantMultiple(S); 14195 if ((Multiple != 0 && RecomputedMultiple != 0 && 14196 Multiple.urem(RecomputedMultiple) != 0 && 14197 RecomputedMultiple.urem(Multiple) != 0)) { 14198 dbgs() << "Incorrect cached computation in ConstantMultipleCache for " 14199 << *S << " : Computed " << RecomputedMultiple 14200 << " but cache contains " << Multiple << "!\n"; 14201 std::abort(); 14202 } 14203 } 14204 } 14205 14206 bool ScalarEvolution::invalidate( 14207 Function &F, const PreservedAnalyses &PA, 14208 FunctionAnalysisManager::Invalidator &Inv) { 14209 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 14210 // of its dependencies is invalidated. 14211 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 14212 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 14213 Inv.invalidate<AssumptionAnalysis>(F, PA) || 14214 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 14215 Inv.invalidate<LoopAnalysis>(F, PA); 14216 } 14217 14218 AnalysisKey ScalarEvolutionAnalysis::Key; 14219 14220 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 14221 FunctionAnalysisManager &AM) { 14222 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 14223 auto &AC = AM.getResult<AssumptionAnalysis>(F); 14224 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 14225 auto &LI = AM.getResult<LoopAnalysis>(F); 14226 return ScalarEvolution(F, TLI, AC, DT, LI); 14227 } 14228 14229 PreservedAnalyses 14230 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 14231 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 14232 return PreservedAnalyses::all(); 14233 } 14234 14235 PreservedAnalyses 14236 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 14237 // For compatibility with opt's -analyze feature under legacy pass manager 14238 // which was not ported to NPM. This keeps tests using 14239 // update_analyze_test_checks.py working. 14240 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 14241 << F.getName() << "':\n"; 14242 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 14243 return PreservedAnalyses::all(); 14244 } 14245 14246 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 14247 "Scalar Evolution Analysis", false, true) 14248 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14249 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 14250 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 14251 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 14252 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 14253 "Scalar Evolution Analysis", false, true) 14254 14255 char ScalarEvolutionWrapperPass::ID = 0; 14256 14257 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 14258 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 14259 } 14260 14261 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 14262 SE.reset(new ScalarEvolution( 14263 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 14264 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 14265 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 14266 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 14267 return false; 14268 } 14269 14270 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 14271 14272 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 14273 SE->print(OS); 14274 } 14275 14276 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 14277 if (!VerifySCEV) 14278 return; 14279 14280 SE->verify(); 14281 } 14282 14283 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 14284 AU.setPreservesAll(); 14285 AU.addRequiredTransitive<AssumptionCacheTracker>(); 14286 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 14287 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 14288 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 14289 } 14290 14291 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 14292 const SCEV *RHS) { 14293 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 14294 } 14295 14296 const SCEVPredicate * 14297 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 14298 const SCEV *LHS, const SCEV *RHS) { 14299 FoldingSetNodeID ID; 14300 assert(LHS->getType() == RHS->getType() && 14301 "Type mismatch between LHS and RHS"); 14302 // Unique this node based on the arguments 14303 ID.AddInteger(SCEVPredicate::P_Compare); 14304 ID.AddInteger(Pred); 14305 ID.AddPointer(LHS); 14306 ID.AddPointer(RHS); 14307 void *IP = nullptr; 14308 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14309 return S; 14310 SCEVComparePredicate *Eq = new (SCEVAllocator) 14311 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14312 UniquePreds.InsertNode(Eq, IP); 14313 return Eq; 14314 } 14315 14316 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14317 const SCEVAddRecExpr *AR, 14318 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14319 FoldingSetNodeID ID; 14320 // Unique this node based on the arguments 14321 ID.AddInteger(SCEVPredicate::P_Wrap); 14322 ID.AddPointer(AR); 14323 ID.AddInteger(AddedFlags); 14324 void *IP = nullptr; 14325 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14326 return S; 14327 auto *OF = new (SCEVAllocator) 14328 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14329 UniquePreds.InsertNode(OF, IP); 14330 return OF; 14331 } 14332 14333 namespace { 14334 14335 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14336 public: 14337 14338 /// Rewrites \p S in the context of a loop L and the SCEV predication 14339 /// infrastructure. 14340 /// 14341 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14342 /// equivalences present in \p Pred. 14343 /// 14344 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14345 /// \p NewPreds such that the result will be an AddRecExpr. 14346 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14347 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14348 const SCEVPredicate *Pred) { 14349 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14350 return Rewriter.visit(S); 14351 } 14352 14353 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14354 if (Pred) { 14355 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14356 for (const auto *Pred : U->getPredicates()) 14357 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14358 if (IPred->getLHS() == Expr && 14359 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14360 return IPred->getRHS(); 14361 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14362 if (IPred->getLHS() == Expr && 14363 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14364 return IPred->getRHS(); 14365 } 14366 } 14367 return convertToAddRecWithPreds(Expr); 14368 } 14369 14370 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14371 const SCEV *Operand = visit(Expr->getOperand()); 14372 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14373 if (AR && AR->getLoop() == L && AR->isAffine()) { 14374 // This couldn't be folded because the operand didn't have the nuw 14375 // flag. Add the nusw flag as an assumption that we could make. 14376 const SCEV *Step = AR->getStepRecurrence(SE); 14377 Type *Ty = Expr->getType(); 14378 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14379 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14380 SE.getSignExtendExpr(Step, Ty), L, 14381 AR->getNoWrapFlags()); 14382 } 14383 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14384 } 14385 14386 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14387 const SCEV *Operand = visit(Expr->getOperand()); 14388 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14389 if (AR && AR->getLoop() == L && AR->isAffine()) { 14390 // This couldn't be folded because the operand didn't have the nsw 14391 // flag. Add the nssw flag as an assumption that we could make. 14392 const SCEV *Step = AR->getStepRecurrence(SE); 14393 Type *Ty = Expr->getType(); 14394 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14395 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14396 SE.getSignExtendExpr(Step, Ty), L, 14397 AR->getNoWrapFlags()); 14398 } 14399 return SE.getSignExtendExpr(Operand, Expr->getType()); 14400 } 14401 14402 private: 14403 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14404 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14405 const SCEVPredicate *Pred) 14406 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14407 14408 bool addOverflowAssumption(const SCEVPredicate *P) { 14409 if (!NewPreds) { 14410 // Check if we've already made this assumption. 14411 return Pred && Pred->implies(P); 14412 } 14413 NewPreds->insert(P); 14414 return true; 14415 } 14416 14417 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14418 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14419 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14420 return addOverflowAssumption(A); 14421 } 14422 14423 // If \p Expr represents a PHINode, we try to see if it can be represented 14424 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14425 // to add this predicate as a runtime overflow check, we return the AddRec. 14426 // If \p Expr does not meet these conditions (is not a PHI node, or we 14427 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14428 // return \p Expr. 14429 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14430 if (!isa<PHINode>(Expr->getValue())) 14431 return Expr; 14432 std::optional< 14433 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14434 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14435 if (!PredicatedRewrite) 14436 return Expr; 14437 for (const auto *P : PredicatedRewrite->second){ 14438 // Wrap predicates from outer loops are not supported. 14439 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14440 if (L != WP->getExpr()->getLoop()) 14441 return Expr; 14442 } 14443 if (!addOverflowAssumption(P)) 14444 return Expr; 14445 } 14446 return PredicatedRewrite->first; 14447 } 14448 14449 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14450 const SCEVPredicate *Pred; 14451 const Loop *L; 14452 }; 14453 14454 } // end anonymous namespace 14455 14456 const SCEV * 14457 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14458 const SCEVPredicate &Preds) { 14459 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14460 } 14461 14462 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14463 const SCEV *S, const Loop *L, 14464 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14465 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14466 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14467 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14468 14469 if (!AddRec) 14470 return nullptr; 14471 14472 // Since the transformation was successful, we can now transfer the SCEV 14473 // predicates. 14474 for (const auto *P : TransformPreds) 14475 Preds.insert(P); 14476 14477 return AddRec; 14478 } 14479 14480 /// SCEV predicates 14481 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14482 SCEVPredicateKind Kind) 14483 : FastID(ID), Kind(Kind) {} 14484 14485 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14486 const ICmpInst::Predicate Pred, 14487 const SCEV *LHS, const SCEV *RHS) 14488 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14489 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14490 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14491 } 14492 14493 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14494 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14495 14496 if (!Op) 14497 return false; 14498 14499 if (Pred != ICmpInst::ICMP_EQ) 14500 return false; 14501 14502 return Op->LHS == LHS && Op->RHS == RHS; 14503 } 14504 14505 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14506 14507 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14508 if (Pred == ICmpInst::ICMP_EQ) 14509 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14510 else 14511 OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " 14512 << *RHS << "\n"; 14513 14514 } 14515 14516 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14517 const SCEVAddRecExpr *AR, 14518 IncrementWrapFlags Flags) 14519 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14520 14521 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14522 14523 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14524 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14525 14526 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14527 } 14528 14529 bool SCEVWrapPredicate::isAlwaysTrue() const { 14530 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14531 IncrementWrapFlags IFlags = Flags; 14532 14533 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14534 IFlags = clearFlags(IFlags, IncrementNSSW); 14535 14536 return IFlags == IncrementAnyWrap; 14537 } 14538 14539 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14540 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14541 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14542 OS << "<nusw>"; 14543 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14544 OS << "<nssw>"; 14545 OS << "\n"; 14546 } 14547 14548 SCEVWrapPredicate::IncrementWrapFlags 14549 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14550 ScalarEvolution &SE) { 14551 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14552 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14553 14554 // We can safely transfer the NSW flag as NSSW. 14555 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14556 ImpliedFlags = IncrementNSSW; 14557 14558 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14559 // If the increment is positive, the SCEV NUW flag will also imply the 14560 // WrapPredicate NUSW flag. 14561 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14562 if (Step->getValue()->getValue().isNonNegative()) 14563 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14564 } 14565 14566 return ImpliedFlags; 14567 } 14568 14569 /// Union predicates don't get cached so create a dummy set ID for it. 14570 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14571 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14572 for (const auto *P : Preds) 14573 add(P); 14574 } 14575 14576 bool SCEVUnionPredicate::isAlwaysTrue() const { 14577 return all_of(Preds, 14578 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14579 } 14580 14581 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14582 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14583 return all_of(Set->Preds, 14584 [this](const SCEVPredicate *I) { return this->implies(I); }); 14585 14586 return any_of(Preds, 14587 [N](const SCEVPredicate *I) { return I->implies(N); }); 14588 } 14589 14590 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14591 for (const auto *Pred : Preds) 14592 Pred->print(OS, Depth); 14593 } 14594 14595 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14596 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14597 for (const auto *Pred : Set->Preds) 14598 add(Pred); 14599 return; 14600 } 14601 14602 Preds.push_back(N); 14603 } 14604 14605 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14606 Loop &L) 14607 : SE(SE), L(L) { 14608 SmallVector<const SCEVPredicate*, 4> Empty; 14609 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14610 } 14611 14612 void ScalarEvolution::registerUser(const SCEV *User, 14613 ArrayRef<const SCEV *> Ops) { 14614 for (const auto *Op : Ops) 14615 // We do not expect that forgetting cached data for SCEVConstants will ever 14616 // open any prospects for sharpening or introduce any correctness issues, 14617 // so we don't bother storing their dependencies. 14618 if (!isa<SCEVConstant>(Op)) 14619 SCEVUsers[Op].insert(User); 14620 } 14621 14622 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14623 const SCEV *Expr = SE.getSCEV(V); 14624 RewriteEntry &Entry = RewriteMap[Expr]; 14625 14626 // If we already have an entry and the version matches, return it. 14627 if (Entry.second && Generation == Entry.first) 14628 return Entry.second; 14629 14630 // We found an entry but it's stale. Rewrite the stale entry 14631 // according to the current predicate. 14632 if (Entry.second) 14633 Expr = Entry.second; 14634 14635 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14636 Entry = {Generation, NewSCEV}; 14637 14638 return NewSCEV; 14639 } 14640 14641 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14642 if (!BackedgeCount) { 14643 SmallVector<const SCEVPredicate *, 4> Preds; 14644 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14645 for (const auto *P : Preds) 14646 addPredicate(*P); 14647 } 14648 return BackedgeCount; 14649 } 14650 14651 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14652 if (Preds->implies(&Pred)) 14653 return; 14654 14655 auto &OldPreds = Preds->getPredicates(); 14656 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14657 NewPreds.push_back(&Pred); 14658 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14659 updateGeneration(); 14660 } 14661 14662 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14663 return *Preds; 14664 } 14665 14666 void PredicatedScalarEvolution::updateGeneration() { 14667 // If the generation number wrapped recompute everything. 14668 if (++Generation == 0) { 14669 for (auto &II : RewriteMap) { 14670 const SCEV *Rewritten = II.second.second; 14671 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14672 } 14673 } 14674 } 14675 14676 void PredicatedScalarEvolution::setNoOverflow( 14677 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14678 const SCEV *Expr = getSCEV(V); 14679 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14680 14681 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14682 14683 // Clear the statically implied flags. 14684 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14685 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14686 14687 auto II = FlagsMap.insert({V, Flags}); 14688 if (!II.second) 14689 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14690 } 14691 14692 bool PredicatedScalarEvolution::hasNoOverflow( 14693 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14694 const SCEV *Expr = getSCEV(V); 14695 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14696 14697 Flags = SCEVWrapPredicate::clearFlags( 14698 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14699 14700 auto II = FlagsMap.find(V); 14701 14702 if (II != FlagsMap.end()) 14703 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14704 14705 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14706 } 14707 14708 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14709 const SCEV *Expr = this->getSCEV(V); 14710 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14711 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14712 14713 if (!New) 14714 return nullptr; 14715 14716 for (const auto *P : NewPreds) 14717 addPredicate(*P); 14718 14719 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14720 return New; 14721 } 14722 14723 PredicatedScalarEvolution::PredicatedScalarEvolution( 14724 const PredicatedScalarEvolution &Init) 14725 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14726 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14727 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14728 for (auto I : Init.FlagsMap) 14729 FlagsMap.insert(I); 14730 } 14731 14732 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14733 // For each block. 14734 for (auto *BB : L.getBlocks()) 14735 for (auto &I : *BB) { 14736 if (!SE.isSCEVable(I.getType())) 14737 continue; 14738 14739 auto *Expr = SE.getSCEV(&I); 14740 auto II = RewriteMap.find(Expr); 14741 14742 if (II == RewriteMap.end()) 14743 continue; 14744 14745 // Don't print things that are not interesting. 14746 if (II->second.second == Expr) 14747 continue; 14748 14749 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14750 OS.indent(Depth + 2) << *Expr << "\n"; 14751 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14752 } 14753 } 14754 14755 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14756 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14757 // for URem with constant power-of-2 second operands. 14758 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14759 // 4, A / B becomes X / 8). 14760 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14761 const SCEV *&RHS) { 14762 // Try to match 'zext (trunc A to iB) to iY', which is used 14763 // for URem with constant power-of-2 second operands. Make sure the size of 14764 // the operand A matches the size of the whole expressions. 14765 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14766 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14767 LHS = Trunc->getOperand(); 14768 // Bail out if the type of the LHS is larger than the type of the 14769 // expression for now. 14770 if (getTypeSizeInBits(LHS->getType()) > 14771 getTypeSizeInBits(Expr->getType())) 14772 return false; 14773 if (LHS->getType() != Expr->getType()) 14774 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14775 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14776 << getTypeSizeInBits(Trunc->getType())); 14777 return true; 14778 } 14779 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14780 if (Add == nullptr || Add->getNumOperands() != 2) 14781 return false; 14782 14783 const SCEV *A = Add->getOperand(1); 14784 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14785 14786 if (Mul == nullptr) 14787 return false; 14788 14789 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14790 // (SomeExpr + (-(SomeExpr / B) * B)). 14791 if (Expr == getURemExpr(A, B)) { 14792 LHS = A; 14793 RHS = B; 14794 return true; 14795 } 14796 return false; 14797 }; 14798 14799 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14800 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14801 return MatchURemWithDivisor(Mul->getOperand(1)) || 14802 MatchURemWithDivisor(Mul->getOperand(2)); 14803 14804 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14805 if (Mul->getNumOperands() == 2) 14806 return MatchURemWithDivisor(Mul->getOperand(1)) || 14807 MatchURemWithDivisor(Mul->getOperand(0)) || 14808 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14809 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14810 return false; 14811 } 14812 14813 const SCEV * 14814 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14815 SmallVector<BasicBlock*, 16> ExitingBlocks; 14816 L->getExitingBlocks(ExitingBlocks); 14817 14818 // Form an expression for the maximum exit count possible for this loop. We 14819 // merge the max and exact information to approximate a version of 14820 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14821 SmallVector<const SCEV*, 4> ExitCounts; 14822 for (BasicBlock *ExitingBB : ExitingBlocks) { 14823 const SCEV *ExitCount = 14824 getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum); 14825 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14826 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14827 "We should only have known counts for exiting blocks that " 14828 "dominate latch!"); 14829 ExitCounts.push_back(ExitCount); 14830 } 14831 } 14832 if (ExitCounts.empty()) 14833 return getCouldNotCompute(); 14834 return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); 14835 } 14836 14837 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14838 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14839 /// replacement is loop invariant in the loop of the AddRec. 14840 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14841 const DenseMap<const SCEV *, const SCEV *> ⤅ 14842 14843 public: 14844 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14845 DenseMap<const SCEV *, const SCEV *> &M) 14846 : SCEVRewriteVisitor(SE), Map(M) {} 14847 14848 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14849 14850 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14851 auto I = Map.find(Expr); 14852 if (I == Map.end()) 14853 return Expr; 14854 return I->second; 14855 } 14856 14857 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14858 auto I = Map.find(Expr); 14859 if (I == Map.end()) { 14860 // If we didn't find the extact ZExt expr in the map, check if there's an 14861 // entry for a smaller ZExt we can use instead. 14862 Type *Ty = Expr->getType(); 14863 const SCEV *Op = Expr->getOperand(0); 14864 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; 14865 while (Bitwidth % 8 == 0 && Bitwidth >= 8 && 14866 Bitwidth > Op->getType()->getScalarSizeInBits()) { 14867 Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth); 14868 auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy); 14869 auto I = Map.find(NarrowExt); 14870 if (I != Map.end()) 14871 return SE.getZeroExtendExpr(I->second, Ty); 14872 Bitwidth = Bitwidth / 2; 14873 } 14874 14875 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14876 Expr); 14877 } 14878 return I->second; 14879 } 14880 14881 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14882 auto I = Map.find(Expr); 14883 if (I == Map.end()) 14884 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( 14885 Expr); 14886 return I->second; 14887 } 14888 14889 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { 14890 auto I = Map.find(Expr); 14891 if (I == Map.end()) 14892 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); 14893 return I->second; 14894 } 14895 14896 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { 14897 auto I = Map.find(Expr); 14898 if (I == Map.end()) 14899 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); 14900 return I->second; 14901 } 14902 }; 14903 14904 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14905 SmallVector<const SCEV *> ExprsToRewrite; 14906 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14907 const SCEV *RHS, 14908 DenseMap<const SCEV *, const SCEV *> 14909 &RewriteMap) { 14910 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14911 // replacement SCEV which isn't directly implied by the structure of that 14912 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14913 // legal. See the scoping rules for flags in the header to understand why. 14914 14915 // If LHS is a constant, apply information to the other expression. 14916 if (isa<SCEVConstant>(LHS)) { 14917 std::swap(LHS, RHS); 14918 Predicate = CmpInst::getSwappedPredicate(Predicate); 14919 } 14920 14921 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14922 // create this form when combining two checks of the form (X u< C2 + C1) and 14923 // (X >=u C1). 14924 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14925 &ExprsToRewrite]() { 14926 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14927 if (!AddExpr || AddExpr->getNumOperands() != 2) 14928 return false; 14929 14930 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14931 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14932 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14933 if (!C1 || !C2 || !LHSUnknown) 14934 return false; 14935 14936 auto ExactRegion = 14937 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14938 .sub(C1->getAPInt()); 14939 14940 // Bail out, unless we have a non-wrapping, monotonic range. 14941 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14942 return false; 14943 auto I = RewriteMap.find(LHSUnknown); 14944 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14945 RewriteMap[LHSUnknown] = getUMaxExpr( 14946 getConstant(ExactRegion.getUnsignedMin()), 14947 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14948 ExprsToRewrite.push_back(LHSUnknown); 14949 return true; 14950 }; 14951 if (MatchRangeCheckIdiom()) 14952 return; 14953 14954 // Return true if \p Expr is a MinMax SCEV expression with a non-negative 14955 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS 14956 // the non-constant operand and in \p LHS the constant operand. 14957 auto IsMinMaxSCEVWithNonNegativeConstant = 14958 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, 14959 const SCEV *&RHS) { 14960 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) { 14961 if (MinMax->getNumOperands() != 2) 14962 return false; 14963 if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) { 14964 if (C->getAPInt().isNegative()) 14965 return false; 14966 SCTy = MinMax->getSCEVType(); 14967 LHS = MinMax->getOperand(0); 14968 RHS = MinMax->getOperand(1); 14969 return true; 14970 } 14971 } 14972 return false; 14973 }; 14974 14975 // Checks whether Expr is a non-negative constant, and Divisor is a positive 14976 // constant, and returns their APInt in ExprVal and in DivisorVal. 14977 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, 14978 APInt &ExprVal, APInt &DivisorVal) { 14979 auto *ConstExpr = dyn_cast<SCEVConstant>(Expr); 14980 auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor); 14981 if (!ConstExpr || !ConstDivisor) 14982 return false; 14983 ExprVal = ConstExpr->getAPInt(); 14984 DivisorVal = ConstDivisor->getAPInt(); 14985 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); 14986 }; 14987 14988 // Return a new SCEV that modifies \p Expr to the closest number divides by 14989 // \p Divisor and greater or equal than Expr. 14990 // For now, only handle constant Expr and Divisor. 14991 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, 14992 const SCEV *Divisor) { 14993 APInt ExprVal; 14994 APInt DivisorVal; 14995 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 14996 return Expr; 14997 APInt Rem = ExprVal.urem(DivisorVal); 14998 if (!Rem.isZero()) 14999 // return the SCEV: Expr + Divisor - Expr % Divisor 15000 return getConstant(ExprVal + DivisorVal - Rem); 15001 return Expr; 15002 }; 15003 15004 // Return a new SCEV that modifies \p Expr to the closest number divides by 15005 // \p Divisor and less or equal than Expr. 15006 // For now, only handle constant Expr and Divisor. 15007 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, 15008 const SCEV *Divisor) { 15009 APInt ExprVal; 15010 APInt DivisorVal; 15011 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15012 return Expr; 15013 APInt Rem = ExprVal.urem(DivisorVal); 15014 // return the SCEV: Expr - Expr % Divisor 15015 return getConstant(ExprVal - Rem); 15016 }; 15017 15018 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, 15019 // recursively. This is done by aligning up/down the constant value to the 15020 // Divisor. 15021 std::function<const SCEV *(const SCEV *, const SCEV *)> 15022 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, 15023 const SCEV *Divisor) { 15024 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; 15025 SCEVTypes SCTy; 15026 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, 15027 MinMaxRHS)) 15028 return MinMaxExpr; 15029 auto IsMin = 15030 isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr); 15031 assert(isKnownNonNegative(MinMaxLHS) && 15032 "Expected non-negative operand!"); 15033 auto *DivisibleExpr = 15034 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) 15035 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); 15036 SmallVector<const SCEV *> Ops = { 15037 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; 15038 return getMinMaxExpr(SCTy, Ops); 15039 }; 15040 15041 // If we have LHS == 0, check if LHS is computing a property of some unknown 15042 // SCEV %v which we can rewrite %v to express explicitly. 15043 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 15044 if (Predicate == CmpInst::ICMP_EQ && RHSC && 15045 RHSC->getValue()->isNullValue()) { 15046 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 15047 // explicitly express that. 15048 const SCEV *URemLHS = nullptr; 15049 const SCEV *URemRHS = nullptr; 15050 if (matchURem(LHS, URemLHS, URemRHS)) { 15051 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 15052 auto I = RewriteMap.find(LHSUnknown); 15053 const SCEV *RewrittenLHS = 15054 I != RewriteMap.end() ? I->second : LHSUnknown; 15055 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); 15056 const auto *Multiple = 15057 getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS); 15058 RewriteMap[LHSUnknown] = Multiple; 15059 ExprsToRewrite.push_back(LHSUnknown); 15060 return; 15061 } 15062 } 15063 } 15064 15065 // Do not apply information for constants or if RHS contains an AddRec. 15066 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 15067 return; 15068 15069 // If RHS is SCEVUnknown, make sure the information is applied to it. 15070 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 15071 std::swap(LHS, RHS); 15072 Predicate = CmpInst::getSwappedPredicate(Predicate); 15073 } 15074 15075 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From 15076 // and \p FromRewritten are the same (i.e. there has been no rewrite 15077 // registered for \p From), then puts this value in the list of rewritten 15078 // expressions. 15079 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, 15080 const SCEV *To) { 15081 if (From == FromRewritten) 15082 ExprsToRewrite.push_back(From); 15083 RewriteMap[From] = To; 15084 }; 15085 15086 // Checks whether \p S has already been rewritten. In that case returns the 15087 // existing rewrite because we want to chain further rewrites onto the 15088 // already rewritten value. Otherwise returns \p S. 15089 auto GetMaybeRewritten = [&](const SCEV *S) { 15090 auto I = RewriteMap.find(S); 15091 return I != RewriteMap.end() ? I->second : S; 15092 }; 15093 15094 // Check for the SCEV expression (A /u B) * B while B is a constant, inside 15095 // \p Expr. The check is done recuresively on \p Expr, which is assumed to 15096 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A 15097 // /u B) * B was found, and return the divisor B in \p DividesBy. For 15098 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since 15099 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p 15100 // DividesBy. 15101 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = 15102 [&](const SCEV *Expr, const SCEV *&DividesBy) { 15103 if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) { 15104 if (Mul->getNumOperands() != 2) 15105 return false; 15106 auto *MulLHS = Mul->getOperand(0); 15107 auto *MulRHS = Mul->getOperand(1); 15108 if (isa<SCEVConstant>(MulLHS)) 15109 std::swap(MulLHS, MulRHS); 15110 if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS)) 15111 if (Div->getOperand(1) == MulRHS) { 15112 DividesBy = MulRHS; 15113 return true; 15114 } 15115 } 15116 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15117 return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) || 15118 HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy); 15119 return false; 15120 }; 15121 15122 // Return true if Expr known to divide by \p DividesBy. 15123 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = 15124 [&](const SCEV *Expr, const SCEV *DividesBy) { 15125 if (getURemExpr(Expr, DividesBy)->isZero()) 15126 return true; 15127 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15128 return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) && 15129 IsKnownToDivideBy(MinMax->getOperand(1), DividesBy); 15130 return false; 15131 }; 15132 15133 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); 15134 const SCEV *DividesBy = nullptr; 15135 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) 15136 // Check that the whole expression is divided by DividesBy 15137 DividesBy = 15138 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; 15139 15140 // Collect rewrites for LHS and its transitive operands based on the 15141 // condition. 15142 // For min/max expressions, also apply the guard to its operands: 15143 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', 15144 // 'min(a, b) > c' -> '(a > c) and (b > c)', 15145 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', 15146 // 'max(a, b) < c' -> '(a < c) and (b < c)'. 15147 15148 // We cannot express strict predicates in SCEV, so instead we replace them 15149 // with non-strict ones against plus or minus one of RHS depending on the 15150 // predicate. 15151 const SCEV *One = getOne(RHS->getType()); 15152 switch (Predicate) { 15153 case CmpInst::ICMP_ULT: 15154 if (RHS->getType()->isPointerTy()) 15155 return; 15156 RHS = getUMaxExpr(RHS, One); 15157 [[fallthrough]]; 15158 case CmpInst::ICMP_SLT: { 15159 RHS = getMinusSCEV(RHS, One); 15160 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15161 break; 15162 } 15163 case CmpInst::ICMP_UGT: 15164 case CmpInst::ICMP_SGT: 15165 RHS = getAddExpr(RHS, One); 15166 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15167 break; 15168 case CmpInst::ICMP_ULE: 15169 case CmpInst::ICMP_SLE: 15170 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15171 break; 15172 case CmpInst::ICMP_UGE: 15173 case CmpInst::ICMP_SGE: 15174 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15175 break; 15176 default: 15177 break; 15178 } 15179 15180 SmallVector<const SCEV *, 16> Worklist(1, LHS); 15181 SmallPtrSet<const SCEV *, 16> Visited; 15182 15183 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { 15184 append_range(Worklist, S->operands()); 15185 }; 15186 15187 while (!Worklist.empty()) { 15188 const SCEV *From = Worklist.pop_back_val(); 15189 if (isa<SCEVConstant>(From)) 15190 continue; 15191 if (!Visited.insert(From).second) 15192 continue; 15193 const SCEV *FromRewritten = GetMaybeRewritten(From); 15194 const SCEV *To = nullptr; 15195 15196 switch (Predicate) { 15197 case CmpInst::ICMP_ULT: 15198 case CmpInst::ICMP_ULE: 15199 To = getUMinExpr(FromRewritten, RHS); 15200 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten)) 15201 EnqueueOperands(UMax); 15202 break; 15203 case CmpInst::ICMP_SLT: 15204 case CmpInst::ICMP_SLE: 15205 To = getSMinExpr(FromRewritten, RHS); 15206 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten)) 15207 EnqueueOperands(SMax); 15208 break; 15209 case CmpInst::ICMP_UGT: 15210 case CmpInst::ICMP_UGE: 15211 To = getUMaxExpr(FromRewritten, RHS); 15212 if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten)) 15213 EnqueueOperands(UMin); 15214 break; 15215 case CmpInst::ICMP_SGT: 15216 case CmpInst::ICMP_SGE: 15217 To = getSMaxExpr(FromRewritten, RHS); 15218 if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten)) 15219 EnqueueOperands(SMin); 15220 break; 15221 case CmpInst::ICMP_EQ: 15222 if (isa<SCEVConstant>(RHS)) 15223 To = RHS; 15224 break; 15225 case CmpInst::ICMP_NE: 15226 if (isa<SCEVConstant>(RHS) && 15227 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) { 15228 const SCEV *OneAlignedUp = 15229 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; 15230 To = getUMaxExpr(FromRewritten, OneAlignedUp); 15231 } 15232 break; 15233 default: 15234 break; 15235 } 15236 15237 if (To) 15238 AddRewrite(From, FromRewritten, To); 15239 } 15240 }; 15241 15242 BasicBlock *Header = L->getHeader(); 15243 SmallVector<PointerIntPair<Value *, 1, bool>> Terms; 15244 // First, collect information from assumptions dominating the loop. 15245 for (auto &AssumeVH : AC.assumptions()) { 15246 if (!AssumeVH) 15247 continue; 15248 auto *AssumeI = cast<CallInst>(AssumeVH); 15249 if (!DT.dominates(AssumeI, Header)) 15250 continue; 15251 Terms.emplace_back(AssumeI->getOperand(0), true); 15252 } 15253 15254 // Second, collect information from llvm.experimental.guards dominating the loop. 15255 auto *GuardDecl = F.getParent()->getFunction( 15256 Intrinsic::getName(Intrinsic::experimental_guard)); 15257 if (GuardDecl) 15258 for (const auto *GU : GuardDecl->users()) 15259 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 15260 if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header)) 15261 Terms.emplace_back(Guard->getArgOperand(0), true); 15262 15263 // Third, collect conditions from dominating branches. Starting at the loop 15264 // predecessor, climb up the predecessor chain, as long as there are 15265 // predecessors that can be found that have unique successors leading to the 15266 // original header. 15267 // TODO: share this logic with isLoopEntryGuardedByCond. 15268 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 15269 L->getLoopPredecessor(), Header); 15270 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 15271 15272 const BranchInst *LoopEntryPredicate = 15273 dyn_cast<BranchInst>(Pair.first->getTerminator()); 15274 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 15275 continue; 15276 15277 Terms.emplace_back(LoopEntryPredicate->getCondition(), 15278 LoopEntryPredicate->getSuccessor(0) == Pair.second); 15279 } 15280 15281 // Now apply the information from the collected conditions to RewriteMap. 15282 // Conditions are processed in reverse order, so the earliest conditions is 15283 // processed first. This ensures the SCEVs with the shortest dependency chains 15284 // are constructed first. 15285 DenseMap<const SCEV *, const SCEV *> RewriteMap; 15286 for (auto [Term, EnterIfTrue] : reverse(Terms)) { 15287 SmallVector<Value *, 8> Worklist; 15288 SmallPtrSet<Value *, 8> Visited; 15289 Worklist.push_back(Term); 15290 while (!Worklist.empty()) { 15291 Value *Cond = Worklist.pop_back_val(); 15292 if (!Visited.insert(Cond).second) 15293 continue; 15294 15295 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 15296 auto Predicate = 15297 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 15298 const auto *LHS = getSCEV(Cmp->getOperand(0)); 15299 const auto *RHS = getSCEV(Cmp->getOperand(1)); 15300 CollectCondition(Predicate, LHS, RHS, RewriteMap); 15301 continue; 15302 } 15303 15304 Value *L, *R; 15305 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 15306 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 15307 Worklist.push_back(L); 15308 Worklist.push_back(R); 15309 } 15310 } 15311 } 15312 15313 if (RewriteMap.empty()) 15314 return Expr; 15315 15316 // Now that all rewrite information is collect, rewrite the collected 15317 // expressions with the information in the map. This applies information to 15318 // sub-expressions. 15319 if (ExprsToRewrite.size() > 1) { 15320 for (const SCEV *Expr : ExprsToRewrite) { 15321 const SCEV *RewriteTo = RewriteMap[Expr]; 15322 RewriteMap.erase(Expr); 15323 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15324 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 15325 } 15326 } 15327 15328 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15329 return Rewriter.visit(Expr); 15330 } 15331