xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::desc("Maximum number of iterations SCEV will "
152                                  "symbolically execute a constant "
153                                  "derived loop"),
154                         cl::init(100));
155 
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158     "verify-scev", cl::Hidden,
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161     VerifySCEVMap("verify-scev-maps", cl::Hidden,
162                   cl::desc("Verify no dangling value in ScalarEvolution's "
163                            "ExprValueMap (slow)"));
164 
165 static cl::opt<bool> VerifyIR(
166     "scev-verify-ir", cl::Hidden,
167     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168     cl::init(false));
169 
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171     "scev-mulops-inline-threshold", cl::Hidden,
172     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173     cl::init(32));
174 
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176     "scev-addops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining addition operands into a SCEV"),
178     cl::init(500));
179 
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183     cl::init(32));
184 
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188     cl::init(2));
189 
190 static cl::opt<unsigned> MaxValueCompareDepth(
191     "scalar-evolution-max-value-compare-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive value complexity comparisons"),
193     cl::init(2));
194 
195 static cl::opt<unsigned>
196     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197                   cl::desc("Maximum depth of recursive arithmetics"),
198                   cl::init(32));
199 
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
203 
204 static cl::opt<unsigned>
205     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207                  cl::init(8));
208 
209 static cl::opt<unsigned>
210     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211                   cl::desc("Max coefficients in AddRec during evolving"),
212                   cl::init(8));
213 
214 static cl::opt<unsigned>
215     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216                   cl::desc("Size of the expression which is considered huge"),
217                   cl::init(4096));
218 
219 //===----------------------------------------------------------------------===//
220 //                           SCEV class definitions
221 //===----------------------------------------------------------------------===//
222 
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
225 //
226 
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229   print(dbgs());
230   dbgs() << '\n';
231 }
232 #endif
233 
234 void SCEV::print(raw_ostream &OS) const {
235   switch (static_cast<SCEVTypes>(getSCEVType())) {
236   case scConstant:
237     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238     return;
239   case scTruncate: {
240     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241     const SCEV *Op = Trunc->getOperand();
242     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243        << *Trunc->getType() << ")";
244     return;
245   }
246   case scZeroExtend: {
247     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248     const SCEV *Op = ZExt->getOperand();
249     OS << "(zext " << *Op->getType() << " " << *Op << " to "
250        << *ZExt->getType() << ")";
251     return;
252   }
253   case scSignExtend: {
254     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255     const SCEV *Op = SExt->getOperand();
256     OS << "(sext " << *Op->getType() << " " << *Op << " to "
257        << *SExt->getType() << ")";
258     return;
259   }
260   case scAddRecExpr: {
261     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262     OS << "{" << *AR->getOperand(0);
263     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264       OS << ",+," << *AR->getOperand(i);
265     OS << "}<";
266     if (AR->hasNoUnsignedWrap())
267       OS << "nuw><";
268     if (AR->hasNoSignedWrap())
269       OS << "nsw><";
270     if (AR->hasNoSelfWrap() &&
271         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272       OS << "nw><";
273     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274     OS << ">";
275     return;
276   }
277   case scAddExpr:
278   case scMulExpr:
279   case scUMaxExpr:
280   case scSMaxExpr:
281   case scUMinExpr:
282   case scSMinExpr: {
283     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
284     const char *OpStr = nullptr;
285     switch (NAry->getSCEVType()) {
286     case scAddExpr: OpStr = " + "; break;
287     case scMulExpr: OpStr = " * "; break;
288     case scUMaxExpr: OpStr = " umax "; break;
289     case scSMaxExpr: OpStr = " smax "; break;
290     case scUMinExpr:
291       OpStr = " umin ";
292       break;
293     case scSMinExpr:
294       OpStr = " smin ";
295       break;
296     }
297     OS << "(";
298     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
299          I != E; ++I) {
300       OS << **I;
301       if (std::next(I) != E)
302         OS << OpStr;
303     }
304     OS << ")";
305     switch (NAry->getSCEVType()) {
306     case scAddExpr:
307     case scMulExpr:
308       if (NAry->hasNoUnsignedWrap())
309         OS << "<nuw>";
310       if (NAry->hasNoSignedWrap())
311         OS << "<nsw>";
312     }
313     return;
314   }
315   case scUDivExpr: {
316     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
317     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
318     return;
319   }
320   case scUnknown: {
321     const SCEVUnknown *U = cast<SCEVUnknown>(this);
322     Type *AllocTy;
323     if (U->isSizeOf(AllocTy)) {
324       OS << "sizeof(" << *AllocTy << ")";
325       return;
326     }
327     if (U->isAlignOf(AllocTy)) {
328       OS << "alignof(" << *AllocTy << ")";
329       return;
330     }
331 
332     Type *CTy;
333     Constant *FieldNo;
334     if (U->isOffsetOf(CTy, FieldNo)) {
335       OS << "offsetof(" << *CTy << ", ";
336       FieldNo->printAsOperand(OS, false);
337       OS << ")";
338       return;
339     }
340 
341     // Otherwise just print it normally.
342     U->getValue()->printAsOperand(OS, false);
343     return;
344   }
345   case scCouldNotCompute:
346     OS << "***COULDNOTCOMPUTE***";
347     return;
348   }
349   llvm_unreachable("Unknown SCEV kind!");
350 }
351 
352 Type *SCEV::getType() const {
353   switch (static_cast<SCEVTypes>(getSCEVType())) {
354   case scConstant:
355     return cast<SCEVConstant>(this)->getType();
356   case scTruncate:
357   case scZeroExtend:
358   case scSignExtend:
359     return cast<SCEVCastExpr>(this)->getType();
360   case scAddRecExpr:
361   case scMulExpr:
362   case scUMaxExpr:
363   case scSMaxExpr:
364   case scUMinExpr:
365   case scSMinExpr:
366     return cast<SCEVNAryExpr>(this)->getType();
367   case scAddExpr:
368     return cast<SCEVAddExpr>(this)->getType();
369   case scUDivExpr:
370     return cast<SCEVUDivExpr>(this)->getType();
371   case scUnknown:
372     return cast<SCEVUnknown>(this)->getType();
373   case scCouldNotCompute:
374     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 bool SCEV::isZero() const {
380   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
381     return SC->getValue()->isZero();
382   return false;
383 }
384 
385 bool SCEV::isOne() const {
386   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
387     return SC->getValue()->isOne();
388   return false;
389 }
390 
391 bool SCEV::isAllOnesValue() const {
392   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
393     return SC->getValue()->isMinusOne();
394   return false;
395 }
396 
397 bool SCEV::isNonConstantNegative() const {
398   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
399   if (!Mul) return false;
400 
401   // If there is a constant factor, it will be first.
402   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
403   if (!SC) return false;
404 
405   // Return true if the value is negative, this matches things like (-42 * V).
406   return SC->getAPInt().isNegative();
407 }
408 
409 SCEVCouldNotCompute::SCEVCouldNotCompute() :
410   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
411 
412 bool SCEVCouldNotCompute::classof(const SCEV *S) {
413   return S->getSCEVType() == scCouldNotCompute;
414 }
415 
416 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
417   FoldingSetNodeID ID;
418   ID.AddInteger(scConstant);
419   ID.AddPointer(V);
420   void *IP = nullptr;
421   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
422   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
423   UniqueSCEVs.InsertNode(S, IP);
424   return S;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
428   return getConstant(ConstantInt::get(getContext(), Val));
429 }
430 
431 const SCEV *
432 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
433   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
434   return getConstant(ConstantInt::get(ITy, V, isSigned));
435 }
436 
437 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
438                            unsigned SCEVTy, const SCEV *op, Type *ty)
439   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
440 
441 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
442                                    const SCEV *op, Type *ty)
443   : SCEVCastExpr(ID, scTruncate, op, ty) {
444   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
445          "Cannot truncate non-integer value!");
446 }
447 
448 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
449                                        const SCEV *op, Type *ty)
450   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
451   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
452          "Cannot zero extend non-integer value!");
453 }
454 
455 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
456                                        const SCEV *op, Type *ty)
457   : SCEVCastExpr(ID, scSignExtend, op, ty) {
458   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
459          "Cannot sign extend non-integer value!");
460 }
461 
462 void SCEVUnknown::deleted() {
463   // Clear this SCEVUnknown from various maps.
464   SE->forgetMemoizedResults(this);
465 
466   // Remove this SCEVUnknown from the uniquing map.
467   SE->UniqueSCEVs.RemoveNode(this);
468 
469   // Release the value.
470   setValPtr(nullptr);
471 }
472 
473 void SCEVUnknown::allUsesReplacedWith(Value *New) {
474   // Remove this SCEVUnknown from the uniquing map.
475   SE->UniqueSCEVs.RemoveNode(this);
476 
477   // Update this SCEVUnknown to point to the new value. This is needed
478   // because there may still be outstanding SCEVs which still point to
479   // this SCEVUnknown.
480   setValPtr(New);
481 }
482 
483 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
484   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
485     if (VCE->getOpcode() == Instruction::PtrToInt)
486       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
487         if (CE->getOpcode() == Instruction::GetElementPtr &&
488             CE->getOperand(0)->isNullValue() &&
489             CE->getNumOperands() == 2)
490           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
491             if (CI->isOne()) {
492               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
493                                  ->getElementType();
494               return true;
495             }
496 
497   return false;
498 }
499 
500 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
501   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
502     if (VCE->getOpcode() == Instruction::PtrToInt)
503       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
504         if (CE->getOpcode() == Instruction::GetElementPtr &&
505             CE->getOperand(0)->isNullValue()) {
506           Type *Ty =
507             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
508           if (StructType *STy = dyn_cast<StructType>(Ty))
509             if (!STy->isPacked() &&
510                 CE->getNumOperands() == 3 &&
511                 CE->getOperand(1)->isNullValue()) {
512               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
513                 if (CI->isOne() &&
514                     STy->getNumElements() == 2 &&
515                     STy->getElementType(0)->isIntegerTy(1)) {
516                   AllocTy = STy->getElementType(1);
517                   return true;
518                 }
519             }
520         }
521 
522   return false;
523 }
524 
525 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getNumOperands() == 3 &&
531             CE->getOperand(0)->isNullValue() &&
532             CE->getOperand(1)->isNullValue()) {
533           Type *Ty =
534             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
535           // Ignore vector types here so that ScalarEvolutionExpander doesn't
536           // emit getelementptrs that index into vectors.
537           if (Ty->isStructTy() || Ty->isArrayTy()) {
538             CTy = Ty;
539             FieldNo = CE->getOperand(2);
540             return true;
541           }
542         }
543 
544   return false;
545 }
546 
547 //===----------------------------------------------------------------------===//
548 //                               SCEV Utilities
549 //===----------------------------------------------------------------------===//
550 
551 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
552 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
553 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
554 /// have been previously deemed to be "equally complex" by this routine.  It is
555 /// intended to avoid exponential time complexity in cases like:
556 ///
557 ///   %a = f(%x, %y)
558 ///   %b = f(%a, %a)
559 ///   %c = f(%b, %b)
560 ///
561 ///   %d = f(%x, %y)
562 ///   %e = f(%d, %d)
563 ///   %f = f(%e, %e)
564 ///
565 ///   CompareValueComplexity(%f, %c)
566 ///
567 /// Since we do not continue running this routine on expression trees once we
568 /// have seen unequal values, there is no need to track them in the cache.
569 static int
570 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
571                        const LoopInfo *const LI, Value *LV, Value *RV,
572                        unsigned Depth) {
573   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
574     return 0;
575 
576   // Order pointer values after integer values. This helps SCEVExpander form
577   // GEPs.
578   bool LIsPointer = LV->getType()->isPointerTy(),
579        RIsPointer = RV->getType()->isPointerTy();
580   if (LIsPointer != RIsPointer)
581     return (int)LIsPointer - (int)RIsPointer;
582 
583   // Compare getValueID values.
584   unsigned LID = LV->getValueID(), RID = RV->getValueID();
585   if (LID != RID)
586     return (int)LID - (int)RID;
587 
588   // Sort arguments by their position.
589   if (const auto *LA = dyn_cast<Argument>(LV)) {
590     const auto *RA = cast<Argument>(RV);
591     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
592     return (int)LArgNo - (int)RArgNo;
593   }
594 
595   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
596     const auto *RGV = cast<GlobalValue>(RV);
597 
598     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
599       auto LT = GV->getLinkage();
600       return !(GlobalValue::isPrivateLinkage(LT) ||
601                GlobalValue::isInternalLinkage(LT));
602     };
603 
604     // Use the names to distinguish the two values, but only if the
605     // names are semantically important.
606     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
607       return LGV->getName().compare(RGV->getName());
608   }
609 
610   // For instructions, compare their loop depth, and their operand count.  This
611   // is pretty loose.
612   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
613     const auto *RInst = cast<Instruction>(RV);
614 
615     // Compare loop depths.
616     const BasicBlock *LParent = LInst->getParent(),
617                      *RParent = RInst->getParent();
618     if (LParent != RParent) {
619       unsigned LDepth = LI->getLoopDepth(LParent),
620                RDepth = LI->getLoopDepth(RParent);
621       if (LDepth != RDepth)
622         return (int)LDepth - (int)RDepth;
623     }
624 
625     // Compare the number of operands.
626     unsigned LNumOps = LInst->getNumOperands(),
627              RNumOps = RInst->getNumOperands();
628     if (LNumOps != RNumOps)
629       return (int)LNumOps - (int)RNumOps;
630 
631     for (unsigned Idx : seq(0u, LNumOps)) {
632       int Result =
633           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
634                                  RInst->getOperand(Idx), Depth + 1);
635       if (Result != 0)
636         return Result;
637     }
638   }
639 
640   EqCacheValue.unionSets(LV, RV);
641   return 0;
642 }
643 
644 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
645 // than RHS, respectively. A three-way result allows recursive comparisons to be
646 // more efficient.
647 static int CompareSCEVComplexity(
648     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
649     EquivalenceClasses<const Value *> &EqCacheValue,
650     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
651     DominatorTree &DT, unsigned Depth = 0) {
652   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
653   if (LHS == RHS)
654     return 0;
655 
656   // Primarily, sort the SCEVs by their getSCEVType().
657   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
658   if (LType != RType)
659     return (int)LType - (int)RType;
660 
661   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
662     return 0;
663   // Aside from the getSCEVType() ordering, the particular ordering
664   // isn't very important except that it's beneficial to be consistent,
665   // so that (a + b) and (b + a) don't end up as different expressions.
666   switch (static_cast<SCEVTypes>(LType)) {
667   case scUnknown: {
668     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
669     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
670 
671     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
672                                    RU->getValue(), Depth + 1);
673     if (X == 0)
674       EqCacheSCEV.unionSets(LHS, RHS);
675     return X;
676   }
677 
678   case scConstant: {
679     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
680     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
681 
682     // Compare constant values.
683     const APInt &LA = LC->getAPInt();
684     const APInt &RA = RC->getAPInt();
685     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
686     if (LBitWidth != RBitWidth)
687       return (int)LBitWidth - (int)RBitWidth;
688     return LA.ult(RA) ? -1 : 1;
689   }
690 
691   case scAddRecExpr: {
692     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
693     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
694 
695     // There is always a dominance between two recs that are used by one SCEV,
696     // so we can safely sort recs by loop header dominance. We require such
697     // order in getAddExpr.
698     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
699     if (LLoop != RLoop) {
700       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
701       assert(LHead != RHead && "Two loops share the same header?");
702       if (DT.dominates(LHead, RHead))
703         return 1;
704       else
705         assert(DT.dominates(RHead, LHead) &&
706                "No dominance between recurrences used by one SCEV?");
707       return -1;
708     }
709 
710     // Addrec complexity grows with operand count.
711     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
712     if (LNumOps != RNumOps)
713       return (int)LNumOps - (int)RNumOps;
714 
715     // Lexicographically compare.
716     for (unsigned i = 0; i != LNumOps; ++i) {
717       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
718                                     LA->getOperand(i), RA->getOperand(i), DT,
719                                     Depth + 1);
720       if (X != 0)
721         return X;
722     }
723     EqCacheSCEV.unionSets(LHS, RHS);
724     return 0;
725   }
726 
727   case scAddExpr:
728   case scMulExpr:
729   case scSMaxExpr:
730   case scUMaxExpr:
731   case scSMinExpr:
732   case scUMinExpr: {
733     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
734     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
735 
736     // Lexicographically compare n-ary expressions.
737     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
738     if (LNumOps != RNumOps)
739       return (int)LNumOps - (int)RNumOps;
740 
741     for (unsigned i = 0; i != LNumOps; ++i) {
742       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
743                                     LC->getOperand(i), RC->getOperand(i), DT,
744                                     Depth + 1);
745       if (X != 0)
746         return X;
747     }
748     EqCacheSCEV.unionSets(LHS, RHS);
749     return 0;
750   }
751 
752   case scUDivExpr: {
753     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
754     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
755 
756     // Lexicographically compare udiv expressions.
757     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
758                                   RC->getLHS(), DT, Depth + 1);
759     if (X != 0)
760       return X;
761     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
762                               RC->getRHS(), DT, Depth + 1);
763     if (X == 0)
764       EqCacheSCEV.unionSets(LHS, RHS);
765     return X;
766   }
767 
768   case scTruncate:
769   case scZeroExtend:
770   case scSignExtend: {
771     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
772     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
773 
774     // Compare cast expressions by operand.
775     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
776                                   LC->getOperand(), RC->getOperand(), DT,
777                                   Depth + 1);
778     if (X == 0)
779       EqCacheSCEV.unionSets(LHS, RHS);
780     return X;
781   }
782 
783   case scCouldNotCompute:
784     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
785   }
786   llvm_unreachable("Unknown SCEV kind!");
787 }
788 
789 /// Given a list of SCEV objects, order them by their complexity, and group
790 /// objects of the same complexity together by value.  When this routine is
791 /// finished, we know that any duplicates in the vector are consecutive and that
792 /// complexity is monotonically increasing.
793 ///
794 /// Note that we go take special precautions to ensure that we get deterministic
795 /// results from this routine.  In other words, we don't want the results of
796 /// this to depend on where the addresses of various SCEV objects happened to
797 /// land in memory.
798 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
799                               LoopInfo *LI, DominatorTree &DT) {
800   if (Ops.size() < 2) return;  // Noop
801 
802   EquivalenceClasses<const SCEV *> EqCacheSCEV;
803   EquivalenceClasses<const Value *> EqCacheValue;
804   if (Ops.size() == 2) {
805     // This is the common case, which also happens to be trivially simple.
806     // Special case it.
807     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
808     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
809       std::swap(LHS, RHS);
810     return;
811   }
812 
813   // Do the rough sort by complexity.
814   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
815     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
816            0;
817   });
818 
819   // Now that we are sorted by complexity, group elements of the same
820   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
821   // be extremely short in practice.  Note that we take this approach because we
822   // do not want to depend on the addresses of the objects we are grouping.
823   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
824     const SCEV *S = Ops[i];
825     unsigned Complexity = S->getSCEVType();
826 
827     // If there are any objects of the same complexity and same value as this
828     // one, group them.
829     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
830       if (Ops[j] == S) { // Found a duplicate.
831         // Move it to immediately after i'th element.
832         std::swap(Ops[i+1], Ops[j]);
833         ++i;   // no need to rescan it.
834         if (i == e-2) return;  // Done!
835       }
836     }
837   }
838 }
839 
840 // Returns the size of the SCEV S.
841 static inline int sizeOfSCEV(const SCEV *S) {
842   struct FindSCEVSize {
843     int Size = 0;
844 
845     FindSCEVSize() = default;
846 
847     bool follow(const SCEV *S) {
848       ++Size;
849       // Keep looking at all operands of S.
850       return true;
851     }
852 
853     bool isDone() const {
854       return false;
855     }
856   };
857 
858   FindSCEVSize F;
859   SCEVTraversal<FindSCEVSize> ST(F);
860   ST.visitAll(S);
861   return F.Size;
862 }
863 
864 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
865 /// nodes.
866 static bool isHugeExpression(const SCEV *S) {
867   return S->getExpressionSize() >= HugeExprThreshold;
868 }
869 
870 /// Returns true of \p Ops contains a huge SCEV (see definition above).
871 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
872   return any_of(Ops, isHugeExpression);
873 }
874 
875 namespace {
876 
877 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
878 public:
879   // Computes the Quotient and Remainder of the division of Numerator by
880   // Denominator.
881   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
882                      const SCEV *Denominator, const SCEV **Quotient,
883                      const SCEV **Remainder) {
884     assert(Numerator && Denominator && "Uninitialized SCEV");
885 
886     SCEVDivision D(SE, Numerator, Denominator);
887 
888     // Check for the trivial case here to avoid having to check for it in the
889     // rest of the code.
890     if (Numerator == Denominator) {
891       *Quotient = D.One;
892       *Remainder = D.Zero;
893       return;
894     }
895 
896     if (Numerator->isZero()) {
897       *Quotient = D.Zero;
898       *Remainder = D.Zero;
899       return;
900     }
901 
902     // A simple case when N/1. The quotient is N.
903     if (Denominator->isOne()) {
904       *Quotient = Numerator;
905       *Remainder = D.Zero;
906       return;
907     }
908 
909     // Split the Denominator when it is a product.
910     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
911       const SCEV *Q, *R;
912       *Quotient = Numerator;
913       for (const SCEV *Op : T->operands()) {
914         divide(SE, *Quotient, Op, &Q, &R);
915         *Quotient = Q;
916 
917         // Bail out when the Numerator is not divisible by one of the terms of
918         // the Denominator.
919         if (!R->isZero()) {
920           *Quotient = D.Zero;
921           *Remainder = Numerator;
922           return;
923         }
924       }
925       *Remainder = D.Zero;
926       return;
927     }
928 
929     D.visit(Numerator);
930     *Quotient = D.Quotient;
931     *Remainder = D.Remainder;
932   }
933 
934   // Except in the trivial case described above, we do not know how to divide
935   // Expr by Denominator for the following functions with empty implementation.
936   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
937   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
938   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
939   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
940   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
941   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
942   void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
943   void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
944   void visitUnknown(const SCEVUnknown *Numerator) {}
945   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
946 
947   void visitConstant(const SCEVConstant *Numerator) {
948     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
949       APInt NumeratorVal = Numerator->getAPInt();
950       APInt DenominatorVal = D->getAPInt();
951       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
952       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
953 
954       if (NumeratorBW > DenominatorBW)
955         DenominatorVal = DenominatorVal.sext(NumeratorBW);
956       else if (NumeratorBW < DenominatorBW)
957         NumeratorVal = NumeratorVal.sext(DenominatorBW);
958 
959       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
960       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
961       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
962       Quotient = SE.getConstant(QuotientVal);
963       Remainder = SE.getConstant(RemainderVal);
964       return;
965     }
966   }
967 
968   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
969     const SCEV *StartQ, *StartR, *StepQ, *StepR;
970     if (!Numerator->isAffine())
971       return cannotDivide(Numerator);
972     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
973     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
974     // Bail out if the types do not match.
975     Type *Ty = Denominator->getType();
976     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
977         Ty != StepQ->getType() || Ty != StepR->getType())
978       return cannotDivide(Numerator);
979     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
980                                 Numerator->getNoWrapFlags());
981     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
982                                  Numerator->getNoWrapFlags());
983   }
984 
985   void visitAddExpr(const SCEVAddExpr *Numerator) {
986     SmallVector<const SCEV *, 2> Qs, Rs;
987     Type *Ty = Denominator->getType();
988 
989     for (const SCEV *Op : Numerator->operands()) {
990       const SCEV *Q, *R;
991       divide(SE, Op, Denominator, &Q, &R);
992 
993       // Bail out if types do not match.
994       if (Ty != Q->getType() || Ty != R->getType())
995         return cannotDivide(Numerator);
996 
997       Qs.push_back(Q);
998       Rs.push_back(R);
999     }
1000 
1001     if (Qs.size() == 1) {
1002       Quotient = Qs[0];
1003       Remainder = Rs[0];
1004       return;
1005     }
1006 
1007     Quotient = SE.getAddExpr(Qs);
1008     Remainder = SE.getAddExpr(Rs);
1009   }
1010 
1011   void visitMulExpr(const SCEVMulExpr *Numerator) {
1012     SmallVector<const SCEV *, 2> Qs;
1013     Type *Ty = Denominator->getType();
1014 
1015     bool FoundDenominatorTerm = false;
1016     for (const SCEV *Op : Numerator->operands()) {
1017       // Bail out if types do not match.
1018       if (Ty != Op->getType())
1019         return cannotDivide(Numerator);
1020 
1021       if (FoundDenominatorTerm) {
1022         Qs.push_back(Op);
1023         continue;
1024       }
1025 
1026       // Check whether Denominator divides one of the product operands.
1027       const SCEV *Q, *R;
1028       divide(SE, Op, Denominator, &Q, &R);
1029       if (!R->isZero()) {
1030         Qs.push_back(Op);
1031         continue;
1032       }
1033 
1034       // Bail out if types do not match.
1035       if (Ty != Q->getType())
1036         return cannotDivide(Numerator);
1037 
1038       FoundDenominatorTerm = true;
1039       Qs.push_back(Q);
1040     }
1041 
1042     if (FoundDenominatorTerm) {
1043       Remainder = Zero;
1044       if (Qs.size() == 1)
1045         Quotient = Qs[0];
1046       else
1047         Quotient = SE.getMulExpr(Qs);
1048       return;
1049     }
1050 
1051     if (!isa<SCEVUnknown>(Denominator))
1052       return cannotDivide(Numerator);
1053 
1054     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1055     ValueToValueMap RewriteMap;
1056     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1057         cast<SCEVConstant>(Zero)->getValue();
1058     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1059 
1060     if (Remainder->isZero()) {
1061       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1062       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1063           cast<SCEVConstant>(One)->getValue();
1064       Quotient =
1065           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1066       return;
1067     }
1068 
1069     // Quotient is (Numerator - Remainder) divided by Denominator.
1070     const SCEV *Q, *R;
1071     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1072     // This SCEV does not seem to simplify: fail the division here.
1073     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1074       return cannotDivide(Numerator);
1075     divide(SE, Diff, Denominator, &Q, &R);
1076     if (R != Zero)
1077       return cannotDivide(Numerator);
1078     Quotient = Q;
1079   }
1080 
1081 private:
1082   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1083                const SCEV *Denominator)
1084       : SE(S), Denominator(Denominator) {
1085     Zero = SE.getZero(Denominator->getType());
1086     One = SE.getOne(Denominator->getType());
1087 
1088     // We generally do not know how to divide Expr by Denominator. We
1089     // initialize the division to a "cannot divide" state to simplify the rest
1090     // of the code.
1091     cannotDivide(Numerator);
1092   }
1093 
1094   // Convenience function for giving up on the division. We set the quotient to
1095   // be equal to zero and the remainder to be equal to the numerator.
1096   void cannotDivide(const SCEV *Numerator) {
1097     Quotient = Zero;
1098     Remainder = Numerator;
1099   }
1100 
1101   ScalarEvolution &SE;
1102   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1103 };
1104 
1105 } // end anonymous namespace
1106 
1107 //===----------------------------------------------------------------------===//
1108 //                      Simple SCEV method implementations
1109 //===----------------------------------------------------------------------===//
1110 
1111 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1112 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1113                                        ScalarEvolution &SE,
1114                                        Type *ResultTy) {
1115   // Handle the simplest case efficiently.
1116   if (K == 1)
1117     return SE.getTruncateOrZeroExtend(It, ResultTy);
1118 
1119   // We are using the following formula for BC(It, K):
1120   //
1121   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1122   //
1123   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1124   // overflow.  Hence, we must assure that the result of our computation is
1125   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1126   // safe in modular arithmetic.
1127   //
1128   // However, this code doesn't use exactly that formula; the formula it uses
1129   // is something like the following, where T is the number of factors of 2 in
1130   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1131   // exponentiation:
1132   //
1133   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1134   //
1135   // This formula is trivially equivalent to the previous formula.  However,
1136   // this formula can be implemented much more efficiently.  The trick is that
1137   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1138   // arithmetic.  To do exact division in modular arithmetic, all we have
1139   // to do is multiply by the inverse.  Therefore, this step can be done at
1140   // width W.
1141   //
1142   // The next issue is how to safely do the division by 2^T.  The way this
1143   // is done is by doing the multiplication step at a width of at least W + T
1144   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1145   // when we perform the division by 2^T (which is equivalent to a right shift
1146   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1147   // truncated out after the division by 2^T.
1148   //
1149   // In comparison to just directly using the first formula, this technique
1150   // is much more efficient; using the first formula requires W * K bits,
1151   // but this formula less than W + K bits. Also, the first formula requires
1152   // a division step, whereas this formula only requires multiplies and shifts.
1153   //
1154   // It doesn't matter whether the subtraction step is done in the calculation
1155   // width or the input iteration count's width; if the subtraction overflows,
1156   // the result must be zero anyway.  We prefer here to do it in the width of
1157   // the induction variable because it helps a lot for certain cases; CodeGen
1158   // isn't smart enough to ignore the overflow, which leads to much less
1159   // efficient code if the width of the subtraction is wider than the native
1160   // register width.
1161   //
1162   // (It's possible to not widen at all by pulling out factors of 2 before
1163   // the multiplication; for example, K=2 can be calculated as
1164   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1165   // extra arithmetic, so it's not an obvious win, and it gets
1166   // much more complicated for K > 3.)
1167 
1168   // Protection from insane SCEVs; this bound is conservative,
1169   // but it probably doesn't matter.
1170   if (K > 1000)
1171     return SE.getCouldNotCompute();
1172 
1173   unsigned W = SE.getTypeSizeInBits(ResultTy);
1174 
1175   // Calculate K! / 2^T and T; we divide out the factors of two before
1176   // multiplying for calculating K! / 2^T to avoid overflow.
1177   // Other overflow doesn't matter because we only care about the bottom
1178   // W bits of the result.
1179   APInt OddFactorial(W, 1);
1180   unsigned T = 1;
1181   for (unsigned i = 3; i <= K; ++i) {
1182     APInt Mult(W, i);
1183     unsigned TwoFactors = Mult.countTrailingZeros();
1184     T += TwoFactors;
1185     Mult.lshrInPlace(TwoFactors);
1186     OddFactorial *= Mult;
1187   }
1188 
1189   // We need at least W + T bits for the multiplication step
1190   unsigned CalculationBits = W + T;
1191 
1192   // Calculate 2^T, at width T+W.
1193   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1194 
1195   // Calculate the multiplicative inverse of K! / 2^T;
1196   // this multiplication factor will perform the exact division by
1197   // K! / 2^T.
1198   APInt Mod = APInt::getSignedMinValue(W+1);
1199   APInt MultiplyFactor = OddFactorial.zext(W+1);
1200   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1201   MultiplyFactor = MultiplyFactor.trunc(W);
1202 
1203   // Calculate the product, at width T+W
1204   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1205                                                       CalculationBits);
1206   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1207   for (unsigned i = 1; i != K; ++i) {
1208     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1209     Dividend = SE.getMulExpr(Dividend,
1210                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1211   }
1212 
1213   // Divide by 2^T
1214   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1215 
1216   // Truncate the result, and divide by K! / 2^T.
1217 
1218   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1219                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1220 }
1221 
1222 /// Return the value of this chain of recurrences at the specified iteration
1223 /// number.  We can evaluate this recurrence by multiplying each element in the
1224 /// chain by the binomial coefficient corresponding to it.  In other words, we
1225 /// can evaluate {A,+,B,+,C,+,D} as:
1226 ///
1227 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1228 ///
1229 /// where BC(It, k) stands for binomial coefficient.
1230 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1231                                                 ScalarEvolution &SE) const {
1232   const SCEV *Result = getStart();
1233   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1234     // The computation is correct in the face of overflow provided that the
1235     // multiplication is performed _after_ the evaluation of the binomial
1236     // coefficient.
1237     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1238     if (isa<SCEVCouldNotCompute>(Coeff))
1239       return Coeff;
1240 
1241     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1242   }
1243   return Result;
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 //                    SCEV Expression folder implementations
1248 //===----------------------------------------------------------------------===//
1249 
1250 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1251                                              unsigned Depth) {
1252   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1253          "This is not a truncating conversion!");
1254   assert(isSCEVable(Ty) &&
1255          "This is not a conversion to a SCEVable type!");
1256   Ty = getEffectiveSCEVType(Ty);
1257 
1258   FoldingSetNodeID ID;
1259   ID.AddInteger(scTruncate);
1260   ID.AddPointer(Op);
1261   ID.AddPointer(Ty);
1262   void *IP = nullptr;
1263   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1264 
1265   // Fold if the operand is constant.
1266   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1267     return getConstant(
1268       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1269 
1270   // trunc(trunc(x)) --> trunc(x)
1271   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1272     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1273 
1274   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1275   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1276     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1277 
1278   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1279   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1280     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1281 
1282   if (Depth > MaxCastDepth) {
1283     SCEV *S =
1284         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1285     UniqueSCEVs.InsertNode(S, IP);
1286     addToLoopUseLists(S);
1287     return S;
1288   }
1289 
1290   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1291   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1292   // if after transforming we have at most one truncate, not counting truncates
1293   // that replace other casts.
1294   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1295     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1296     SmallVector<const SCEV *, 4> Operands;
1297     unsigned numTruncs = 0;
1298     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1299          ++i) {
1300       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1301       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1302         numTruncs++;
1303       Operands.push_back(S);
1304     }
1305     if (numTruncs < 2) {
1306       if (isa<SCEVAddExpr>(Op))
1307         return getAddExpr(Operands);
1308       else if (isa<SCEVMulExpr>(Op))
1309         return getMulExpr(Operands);
1310       else
1311         llvm_unreachable("Unexpected SCEV type for Op.");
1312     }
1313     // Although we checked in the beginning that ID is not in the cache, it is
1314     // possible that during recursion and different modification ID was inserted
1315     // into the cache. So if we find it, just return it.
1316     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1317       return S;
1318   }
1319 
1320   // If the input value is a chrec scev, truncate the chrec's operands.
1321   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1322     SmallVector<const SCEV *, 4> Operands;
1323     for (const SCEV *Op : AddRec->operands())
1324       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1325     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1326   }
1327 
1328   // The cast wasn't folded; create an explicit cast node. We can reuse
1329   // the existing insert position since if we get here, we won't have
1330   // made any changes which would invalidate it.
1331   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1332                                                  Op, Ty);
1333   UniqueSCEVs.InsertNode(S, IP);
1334   addToLoopUseLists(S);
1335   return S;
1336 }
1337 
1338 // Get the limit of a recurrence such that incrementing by Step cannot cause
1339 // signed overflow as long as the value of the recurrence within the
1340 // loop does not exceed this limit before incrementing.
1341 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1342                                                  ICmpInst::Predicate *Pred,
1343                                                  ScalarEvolution *SE) {
1344   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1345   if (SE->isKnownPositive(Step)) {
1346     *Pred = ICmpInst::ICMP_SLT;
1347     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1348                            SE->getSignedRangeMax(Step));
1349   }
1350   if (SE->isKnownNegative(Step)) {
1351     *Pred = ICmpInst::ICMP_SGT;
1352     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1353                            SE->getSignedRangeMin(Step));
1354   }
1355   return nullptr;
1356 }
1357 
1358 // Get the limit of a recurrence such that incrementing by Step cannot cause
1359 // unsigned overflow as long as the value of the recurrence within the loop does
1360 // not exceed this limit before incrementing.
1361 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1362                                                    ICmpInst::Predicate *Pred,
1363                                                    ScalarEvolution *SE) {
1364   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1365   *Pred = ICmpInst::ICMP_ULT;
1366 
1367   return SE->getConstant(APInt::getMinValue(BitWidth) -
1368                          SE->getUnsignedRangeMax(Step));
1369 }
1370 
1371 namespace {
1372 
1373 struct ExtendOpTraitsBase {
1374   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1375                                                           unsigned);
1376 };
1377 
1378 // Used to make code generic over signed and unsigned overflow.
1379 template <typename ExtendOp> struct ExtendOpTraits {
1380   // Members present:
1381   //
1382   // static const SCEV::NoWrapFlags WrapType;
1383   //
1384   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1385   //
1386   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1387   //                                           ICmpInst::Predicate *Pred,
1388   //                                           ScalarEvolution *SE);
1389 };
1390 
1391 template <>
1392 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1393   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1394 
1395   static const GetExtendExprTy GetExtendExpr;
1396 
1397   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1398                                              ICmpInst::Predicate *Pred,
1399                                              ScalarEvolution *SE) {
1400     return getSignedOverflowLimitForStep(Step, Pred, SE);
1401   }
1402 };
1403 
1404 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1405     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1406 
1407 template <>
1408 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1409   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1410 
1411   static const GetExtendExprTy GetExtendExpr;
1412 
1413   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1414                                              ICmpInst::Predicate *Pred,
1415                                              ScalarEvolution *SE) {
1416     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1417   }
1418 };
1419 
1420 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1421     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1422 
1423 } // end anonymous namespace
1424 
1425 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1426 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1427 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1428 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1429 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1430 // expression "Step + sext/zext(PreIncAR)" is congruent with
1431 // "sext/zext(PostIncAR)"
1432 template <typename ExtendOpTy>
1433 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1434                                         ScalarEvolution *SE, unsigned Depth) {
1435   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1436   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1437 
1438   const Loop *L = AR->getLoop();
1439   const SCEV *Start = AR->getStart();
1440   const SCEV *Step = AR->getStepRecurrence(*SE);
1441 
1442   // Check for a simple looking step prior to loop entry.
1443   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1444   if (!SA)
1445     return nullptr;
1446 
1447   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1448   // subtraction is expensive. For this purpose, perform a quick and dirty
1449   // difference, by checking for Step in the operand list.
1450   SmallVector<const SCEV *, 4> DiffOps;
1451   for (const SCEV *Op : SA->operands())
1452     if (Op != Step)
1453       DiffOps.push_back(Op);
1454 
1455   if (DiffOps.size() == SA->getNumOperands())
1456     return nullptr;
1457 
1458   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1459   // `Step`:
1460 
1461   // 1. NSW/NUW flags on the step increment.
1462   auto PreStartFlags =
1463     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1464   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1465   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1466       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1467 
1468   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1469   // "S+X does not sign/unsign-overflow".
1470   //
1471 
1472   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1473   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1474       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1475     return PreStart;
1476 
1477   // 2. Direct overflow check on the step operation's expression.
1478   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1479   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1480   const SCEV *OperandExtendedStart =
1481       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1482                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1483   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1484     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1485       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1486       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1487       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1488       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1489     }
1490     return PreStart;
1491   }
1492 
1493   // 3. Loop precondition.
1494   ICmpInst::Predicate Pred;
1495   const SCEV *OverflowLimit =
1496       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1497 
1498   if (OverflowLimit &&
1499       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1500     return PreStart;
1501 
1502   return nullptr;
1503 }
1504 
1505 // Get the normalized zero or sign extended expression for this AddRec's Start.
1506 template <typename ExtendOpTy>
1507 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1508                                         ScalarEvolution *SE,
1509                                         unsigned Depth) {
1510   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1511 
1512   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1513   if (!PreStart)
1514     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1515 
1516   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1517                                              Depth),
1518                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1519 }
1520 
1521 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1522 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1523 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1524 //
1525 // Formally:
1526 //
1527 //     {S,+,X} == {S-T,+,X} + T
1528 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1529 //
1530 // If ({S-T,+,X} + T) does not overflow  ... (1)
1531 //
1532 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1533 //
1534 // If {S-T,+,X} does not overflow  ... (2)
1535 //
1536 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1537 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1538 //
1539 // If (S-T)+T does not overflow  ... (3)
1540 //
1541 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1542 //      == {Ext(S),+,Ext(X)} == LHS
1543 //
1544 // Thus, if (1), (2) and (3) are true for some T, then
1545 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1546 //
1547 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1548 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1549 // to check for (1) and (2).
1550 //
1551 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1552 // is `Delta` (defined below).
1553 template <typename ExtendOpTy>
1554 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1555                                                 const SCEV *Step,
1556                                                 const Loop *L) {
1557   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1558 
1559   // We restrict `Start` to a constant to prevent SCEV from spending too much
1560   // time here.  It is correct (but more expensive) to continue with a
1561   // non-constant `Start` and do a general SCEV subtraction to compute
1562   // `PreStart` below.
1563   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1564   if (!StartC)
1565     return false;
1566 
1567   APInt StartAI = StartC->getAPInt();
1568 
1569   for (unsigned Delta : {-2, -1, 1, 2}) {
1570     const SCEV *PreStart = getConstant(StartAI - Delta);
1571 
1572     FoldingSetNodeID ID;
1573     ID.AddInteger(scAddRecExpr);
1574     ID.AddPointer(PreStart);
1575     ID.AddPointer(Step);
1576     ID.AddPointer(L);
1577     void *IP = nullptr;
1578     const auto *PreAR =
1579       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1580 
1581     // Give up if we don't already have the add recurrence we need because
1582     // actually constructing an add recurrence is relatively expensive.
1583     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1584       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1585       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1586       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1587           DeltaS, &Pred, this);
1588       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1589         return true;
1590     }
1591   }
1592 
1593   return false;
1594 }
1595 
1596 // Finds an integer D for an expression (C + x + y + ...) such that the top
1597 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1598 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1599 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1600 // the (C + x + y + ...) expression is \p WholeAddExpr.
1601 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1602                                             const SCEVConstant *ConstantTerm,
1603                                             const SCEVAddExpr *WholeAddExpr) {
1604   const APInt C = ConstantTerm->getAPInt();
1605   const unsigned BitWidth = C.getBitWidth();
1606   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1607   uint32_t TZ = BitWidth;
1608   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1609     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1610   if (TZ) {
1611     // Set D to be as many least significant bits of C as possible while still
1612     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1613     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1614   }
1615   return APInt(BitWidth, 0);
1616 }
1617 
1618 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1619 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1620 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1621 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1622 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1623                                             const APInt &ConstantStart,
1624                                             const SCEV *Step) {
1625   const unsigned BitWidth = ConstantStart.getBitWidth();
1626   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1627   if (TZ)
1628     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1629                          : ConstantStart;
1630   return APInt(BitWidth, 0);
1631 }
1632 
1633 const SCEV *
1634 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1635   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1636          "This is not an extending conversion!");
1637   assert(isSCEVable(Ty) &&
1638          "This is not a conversion to a SCEVable type!");
1639   Ty = getEffectiveSCEVType(Ty);
1640 
1641   // Fold if the operand is constant.
1642   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1643     return getConstant(
1644       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1645 
1646   // zext(zext(x)) --> zext(x)
1647   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1648     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1649 
1650   // Before doing any expensive analysis, check to see if we've already
1651   // computed a SCEV for this Op and Ty.
1652   FoldingSetNodeID ID;
1653   ID.AddInteger(scZeroExtend);
1654   ID.AddPointer(Op);
1655   ID.AddPointer(Ty);
1656   void *IP = nullptr;
1657   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1658   if (Depth > MaxCastDepth) {
1659     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1660                                                      Op, Ty);
1661     UniqueSCEVs.InsertNode(S, IP);
1662     addToLoopUseLists(S);
1663     return S;
1664   }
1665 
1666   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1667   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1668     // It's possible the bits taken off by the truncate were all zero bits. If
1669     // so, we should be able to simplify this further.
1670     const SCEV *X = ST->getOperand();
1671     ConstantRange CR = getUnsignedRange(X);
1672     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1673     unsigned NewBits = getTypeSizeInBits(Ty);
1674     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1675             CR.zextOrTrunc(NewBits)))
1676       return getTruncateOrZeroExtend(X, Ty, Depth);
1677   }
1678 
1679   // If the input value is a chrec scev, and we can prove that the value
1680   // did not overflow the old, smaller, value, we can zero extend all of the
1681   // operands (often constants).  This allows analysis of something like
1682   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1683   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1684     if (AR->isAffine()) {
1685       const SCEV *Start = AR->getStart();
1686       const SCEV *Step = AR->getStepRecurrence(*this);
1687       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1688       const Loop *L = AR->getLoop();
1689 
1690       if (!AR->hasNoUnsignedWrap()) {
1691         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1692         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1693       }
1694 
1695       // If we have special knowledge that this addrec won't overflow,
1696       // we don't need to do any further analysis.
1697       if (AR->hasNoUnsignedWrap())
1698         return getAddRecExpr(
1699             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1700             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1701 
1702       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1703       // Note that this serves two purposes: It filters out loops that are
1704       // simply not analyzable, and it covers the case where this code is
1705       // being called from within backedge-taken count analysis, such that
1706       // attempting to ask for the backedge-taken count would likely result
1707       // in infinite recursion. In the later case, the analysis code will
1708       // cope with a conservative value, and it will take care to purge
1709       // that value once it has finished.
1710       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1711       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1712         // Manually compute the final value for AR, checking for
1713         // overflow.
1714 
1715         // Check whether the backedge-taken count can be losslessly casted to
1716         // the addrec's type. The count is always unsigned.
1717         const SCEV *CastedMaxBECount =
1718             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1719         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1720             CastedMaxBECount, MaxBECount->getType(), Depth);
1721         if (MaxBECount == RecastedMaxBECount) {
1722           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1723           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1724           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1725                                         SCEV::FlagAnyWrap, Depth + 1);
1726           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1727                                                           SCEV::FlagAnyWrap,
1728                                                           Depth + 1),
1729                                                WideTy, Depth + 1);
1730           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1731           const SCEV *WideMaxBECount =
1732             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1733           const SCEV *OperandExtendedAdd =
1734             getAddExpr(WideStart,
1735                        getMulExpr(WideMaxBECount,
1736                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1737                                   SCEV::FlagAnyWrap, Depth + 1),
1738                        SCEV::FlagAnyWrap, Depth + 1);
1739           if (ZAdd == OperandExtendedAdd) {
1740             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1741             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1742             // Return the expression with the addrec on the outside.
1743             return getAddRecExpr(
1744                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1745                                                          Depth + 1),
1746                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1747                 AR->getNoWrapFlags());
1748           }
1749           // Similar to above, only this time treat the step value as signed.
1750           // This covers loops that count down.
1751           OperandExtendedAdd =
1752             getAddExpr(WideStart,
1753                        getMulExpr(WideMaxBECount,
1754                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1755                                   SCEV::FlagAnyWrap, Depth + 1),
1756                        SCEV::FlagAnyWrap, Depth + 1);
1757           if (ZAdd == OperandExtendedAdd) {
1758             // Cache knowledge of AR NW, which is propagated to this AddRec.
1759             // Negative step causes unsigned wrap, but it still can't self-wrap.
1760             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1761             // Return the expression with the addrec on the outside.
1762             return getAddRecExpr(
1763                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1764                                                          Depth + 1),
1765                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1766                 AR->getNoWrapFlags());
1767           }
1768         }
1769       }
1770 
1771       // Normally, in the cases we can prove no-overflow via a
1772       // backedge guarding condition, we can also compute a backedge
1773       // taken count for the loop.  The exceptions are assumptions and
1774       // guards present in the loop -- SCEV is not great at exploiting
1775       // these to compute max backedge taken counts, but can still use
1776       // these to prove lack of overflow.  Use this fact to avoid
1777       // doing extra work that may not pay off.
1778       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1779           !AC.assumptions().empty()) {
1780         // If the backedge is guarded by a comparison with the pre-inc
1781         // value the addrec is safe. Also, if the entry is guarded by
1782         // a comparison with the start value and the backedge is
1783         // guarded by a comparison with the post-inc value, the addrec
1784         // is safe.
1785         if (isKnownPositive(Step)) {
1786           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1787                                       getUnsignedRangeMax(Step));
1788           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1789               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1790             // Cache knowledge of AR NUW, which is propagated to this
1791             // AddRec.
1792             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1793             // Return the expression with the addrec on the outside.
1794             return getAddRecExpr(
1795                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1796                                                          Depth + 1),
1797                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1798                 AR->getNoWrapFlags());
1799           }
1800         } else if (isKnownNegative(Step)) {
1801           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1802                                       getSignedRangeMin(Step));
1803           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1804               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1805             // Cache knowledge of AR NW, which is propagated to this
1806             // AddRec.  Negative step causes unsigned wrap, but it
1807             // still can't self-wrap.
1808             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1809             // Return the expression with the addrec on the outside.
1810             return getAddRecExpr(
1811                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1812                                                          Depth + 1),
1813                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1814                 AR->getNoWrapFlags());
1815           }
1816         }
1817       }
1818 
1819       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1820       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1821       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1822       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1823         const APInt &C = SC->getAPInt();
1824         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1825         if (D != 0) {
1826           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1827           const SCEV *SResidual =
1828               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1829           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1830           return getAddExpr(SZExtD, SZExtR,
1831                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1832                             Depth + 1);
1833         }
1834       }
1835 
1836       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1837         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1838         return getAddRecExpr(
1839             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1840             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1841       }
1842     }
1843 
1844   // zext(A % B) --> zext(A) % zext(B)
1845   {
1846     const SCEV *LHS;
1847     const SCEV *RHS;
1848     if (matchURem(Op, LHS, RHS))
1849       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1850                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1851   }
1852 
1853   // zext(A / B) --> zext(A) / zext(B).
1854   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1855     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1856                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1857 
1858   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1859     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1860     if (SA->hasNoUnsignedWrap()) {
1861       // If the addition does not unsign overflow then we can, by definition,
1862       // commute the zero extension with the addition operation.
1863       SmallVector<const SCEV *, 4> Ops;
1864       for (const auto *Op : SA->operands())
1865         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1866       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1867     }
1868 
1869     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1870     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1871     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1872     //
1873     // Often address arithmetics contain expressions like
1874     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1875     // This transformation is useful while proving that such expressions are
1876     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1877     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1878       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1879       if (D != 0) {
1880         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1881         const SCEV *SResidual =
1882             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1883         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1884         return getAddExpr(SZExtD, SZExtR,
1885                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1886                           Depth + 1);
1887       }
1888     }
1889   }
1890 
1891   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1892     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1893     if (SM->hasNoUnsignedWrap()) {
1894       // If the multiply does not unsign overflow then we can, by definition,
1895       // commute the zero extension with the multiply operation.
1896       SmallVector<const SCEV *, 4> Ops;
1897       for (const auto *Op : SM->operands())
1898         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1899       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1900     }
1901 
1902     // zext(2^K * (trunc X to iN)) to iM ->
1903     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1904     //
1905     // Proof:
1906     //
1907     //     zext(2^K * (trunc X to iN)) to iM
1908     //   = zext((trunc X to iN) << K) to iM
1909     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1910     //     (because shl removes the top K bits)
1911     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1912     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1913     //
1914     if (SM->getNumOperands() == 2)
1915       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1916         if (MulLHS->getAPInt().isPowerOf2())
1917           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1918             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1919                                MulLHS->getAPInt().logBase2();
1920             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1921             return getMulExpr(
1922                 getZeroExtendExpr(MulLHS, Ty),
1923                 getZeroExtendExpr(
1924                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1925                 SCEV::FlagNUW, Depth + 1);
1926           }
1927   }
1928 
1929   // The cast wasn't folded; create an explicit cast node.
1930   // Recompute the insert position, as it may have been invalidated.
1931   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1932   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1933                                                    Op, Ty);
1934   UniqueSCEVs.InsertNode(S, IP);
1935   addToLoopUseLists(S);
1936   return S;
1937 }
1938 
1939 const SCEV *
1940 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1941   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1942          "This is not an extending conversion!");
1943   assert(isSCEVable(Ty) &&
1944          "This is not a conversion to a SCEVable type!");
1945   Ty = getEffectiveSCEVType(Ty);
1946 
1947   // Fold if the operand is constant.
1948   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1949     return getConstant(
1950       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1951 
1952   // sext(sext(x)) --> sext(x)
1953   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1954     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1955 
1956   // sext(zext(x)) --> zext(x)
1957   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1958     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1959 
1960   // Before doing any expensive analysis, check to see if we've already
1961   // computed a SCEV for this Op and Ty.
1962   FoldingSetNodeID ID;
1963   ID.AddInteger(scSignExtend);
1964   ID.AddPointer(Op);
1965   ID.AddPointer(Ty);
1966   void *IP = nullptr;
1967   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1968   // Limit recursion depth.
1969   if (Depth > MaxCastDepth) {
1970     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1971                                                      Op, Ty);
1972     UniqueSCEVs.InsertNode(S, IP);
1973     addToLoopUseLists(S);
1974     return S;
1975   }
1976 
1977   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1978   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1979     // It's possible the bits taken off by the truncate were all sign bits. If
1980     // so, we should be able to simplify this further.
1981     const SCEV *X = ST->getOperand();
1982     ConstantRange CR = getSignedRange(X);
1983     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1984     unsigned NewBits = getTypeSizeInBits(Ty);
1985     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1986             CR.sextOrTrunc(NewBits)))
1987       return getTruncateOrSignExtend(X, Ty, Depth);
1988   }
1989 
1990   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1991     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1992     if (SA->hasNoSignedWrap()) {
1993       // If the addition does not sign overflow then we can, by definition,
1994       // commute the sign extension with the addition operation.
1995       SmallVector<const SCEV *, 4> Ops;
1996       for (const auto *Op : SA->operands())
1997         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1998       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1999     }
2000 
2001     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2002     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2003     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2004     //
2005     // For instance, this will bring two seemingly different expressions:
2006     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2007     //         sext(6 + 20 * %x + 24 * %y)
2008     // to the same form:
2009     //     2 + sext(4 + 20 * %x + 24 * %y)
2010     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2011       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2012       if (D != 0) {
2013         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2014         const SCEV *SResidual =
2015             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2016         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2017         return getAddExpr(SSExtD, SSExtR,
2018                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2019                           Depth + 1);
2020       }
2021     }
2022   }
2023   // If the input value is a chrec scev, and we can prove that the value
2024   // did not overflow the old, smaller, value, we can sign extend all of the
2025   // operands (often constants).  This allows analysis of something like
2026   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2027   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2028     if (AR->isAffine()) {
2029       const SCEV *Start = AR->getStart();
2030       const SCEV *Step = AR->getStepRecurrence(*this);
2031       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2032       const Loop *L = AR->getLoop();
2033 
2034       if (!AR->hasNoSignedWrap()) {
2035         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2036         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2037       }
2038 
2039       // If we have special knowledge that this addrec won't overflow,
2040       // we don't need to do any further analysis.
2041       if (AR->hasNoSignedWrap())
2042         return getAddRecExpr(
2043             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2044             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2045 
2046       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2047       // Note that this serves two purposes: It filters out loops that are
2048       // simply not analyzable, and it covers the case where this code is
2049       // being called from within backedge-taken count analysis, such that
2050       // attempting to ask for the backedge-taken count would likely result
2051       // in infinite recursion. In the later case, the analysis code will
2052       // cope with a conservative value, and it will take care to purge
2053       // that value once it has finished.
2054       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2055       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2056         // Manually compute the final value for AR, checking for
2057         // overflow.
2058 
2059         // Check whether the backedge-taken count can be losslessly casted to
2060         // the addrec's type. The count is always unsigned.
2061         const SCEV *CastedMaxBECount =
2062             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2063         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2064             CastedMaxBECount, MaxBECount->getType(), Depth);
2065         if (MaxBECount == RecastedMaxBECount) {
2066           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2067           // Check whether Start+Step*MaxBECount has no signed overflow.
2068           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2069                                         SCEV::FlagAnyWrap, Depth + 1);
2070           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2071                                                           SCEV::FlagAnyWrap,
2072                                                           Depth + 1),
2073                                                WideTy, Depth + 1);
2074           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2075           const SCEV *WideMaxBECount =
2076             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2077           const SCEV *OperandExtendedAdd =
2078             getAddExpr(WideStart,
2079                        getMulExpr(WideMaxBECount,
2080                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2081                                   SCEV::FlagAnyWrap, Depth + 1),
2082                        SCEV::FlagAnyWrap, Depth + 1);
2083           if (SAdd == OperandExtendedAdd) {
2084             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2085             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2086             // Return the expression with the addrec on the outside.
2087             return getAddRecExpr(
2088                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2089                                                          Depth + 1),
2090                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2091                 AR->getNoWrapFlags());
2092           }
2093           // Similar to above, only this time treat the step value as unsigned.
2094           // This covers loops that count up with an unsigned step.
2095           OperandExtendedAdd =
2096             getAddExpr(WideStart,
2097                        getMulExpr(WideMaxBECount,
2098                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2099                                   SCEV::FlagAnyWrap, Depth + 1),
2100                        SCEV::FlagAnyWrap, Depth + 1);
2101           if (SAdd == OperandExtendedAdd) {
2102             // If AR wraps around then
2103             //
2104             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2105             // => SAdd != OperandExtendedAdd
2106             //
2107             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2108             // (SAdd == OperandExtendedAdd => AR is NW)
2109 
2110             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2111 
2112             // Return the expression with the addrec on the outside.
2113             return getAddRecExpr(
2114                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2115                                                          Depth + 1),
2116                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2117                 AR->getNoWrapFlags());
2118           }
2119         }
2120       }
2121 
2122       // Normally, in the cases we can prove no-overflow via a
2123       // backedge guarding condition, we can also compute a backedge
2124       // taken count for the loop.  The exceptions are assumptions and
2125       // guards present in the loop -- SCEV is not great at exploiting
2126       // these to compute max backedge taken counts, but can still use
2127       // these to prove lack of overflow.  Use this fact to avoid
2128       // doing extra work that may not pay off.
2129 
2130       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2131           !AC.assumptions().empty()) {
2132         // If the backedge is guarded by a comparison with the pre-inc
2133         // value the addrec is safe. Also, if the entry is guarded by
2134         // a comparison with the start value and the backedge is
2135         // guarded by a comparison with the post-inc value, the addrec
2136         // is safe.
2137         ICmpInst::Predicate Pred;
2138         const SCEV *OverflowLimit =
2139             getSignedOverflowLimitForStep(Step, &Pred, this);
2140         if (OverflowLimit &&
2141             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2142              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2143           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2144           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2145           return getAddRecExpr(
2146               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2147               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2148         }
2149       }
2150 
2151       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2152       // if D + (C - D + Step * n) could be proven to not signed wrap
2153       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2154       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2155         const APInt &C = SC->getAPInt();
2156         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2157         if (D != 0) {
2158           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2159           const SCEV *SResidual =
2160               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2161           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2162           return getAddExpr(SSExtD, SSExtR,
2163                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2164                             Depth + 1);
2165         }
2166       }
2167 
2168       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2169         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2170         return getAddRecExpr(
2171             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2172             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2173       }
2174     }
2175 
2176   // If the input value is provably positive and we could not simplify
2177   // away the sext build a zext instead.
2178   if (isKnownNonNegative(Op))
2179     return getZeroExtendExpr(Op, Ty, Depth + 1);
2180 
2181   // The cast wasn't folded; create an explicit cast node.
2182   // Recompute the insert position, as it may have been invalidated.
2183   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2184   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2185                                                    Op, Ty);
2186   UniqueSCEVs.InsertNode(S, IP);
2187   addToLoopUseLists(S);
2188   return S;
2189 }
2190 
2191 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2192 /// unspecified bits out to the given type.
2193 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2194                                               Type *Ty) {
2195   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2196          "This is not an extending conversion!");
2197   assert(isSCEVable(Ty) &&
2198          "This is not a conversion to a SCEVable type!");
2199   Ty = getEffectiveSCEVType(Ty);
2200 
2201   // Sign-extend negative constants.
2202   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2203     if (SC->getAPInt().isNegative())
2204       return getSignExtendExpr(Op, Ty);
2205 
2206   // Peel off a truncate cast.
2207   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2208     const SCEV *NewOp = T->getOperand();
2209     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2210       return getAnyExtendExpr(NewOp, Ty);
2211     return getTruncateOrNoop(NewOp, Ty);
2212   }
2213 
2214   // Next try a zext cast. If the cast is folded, use it.
2215   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2216   if (!isa<SCEVZeroExtendExpr>(ZExt))
2217     return ZExt;
2218 
2219   // Next try a sext cast. If the cast is folded, use it.
2220   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2221   if (!isa<SCEVSignExtendExpr>(SExt))
2222     return SExt;
2223 
2224   // Force the cast to be folded into the operands of an addrec.
2225   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2226     SmallVector<const SCEV *, 4> Ops;
2227     for (const SCEV *Op : AR->operands())
2228       Ops.push_back(getAnyExtendExpr(Op, Ty));
2229     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2230   }
2231 
2232   // If the expression is obviously signed, use the sext cast value.
2233   if (isa<SCEVSMaxExpr>(Op))
2234     return SExt;
2235 
2236   // Absent any other information, use the zext cast value.
2237   return ZExt;
2238 }
2239 
2240 /// Process the given Ops list, which is a list of operands to be added under
2241 /// the given scale, update the given map. This is a helper function for
2242 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2243 /// that would form an add expression like this:
2244 ///
2245 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2246 ///
2247 /// where A and B are constants, update the map with these values:
2248 ///
2249 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2250 ///
2251 /// and add 13 + A*B*29 to AccumulatedConstant.
2252 /// This will allow getAddRecExpr to produce this:
2253 ///
2254 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2255 ///
2256 /// This form often exposes folding opportunities that are hidden in
2257 /// the original operand list.
2258 ///
2259 /// Return true iff it appears that any interesting folding opportunities
2260 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2261 /// the common case where no interesting opportunities are present, and
2262 /// is also used as a check to avoid infinite recursion.
2263 static bool
2264 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2265                              SmallVectorImpl<const SCEV *> &NewOps,
2266                              APInt &AccumulatedConstant,
2267                              const SCEV *const *Ops, size_t NumOperands,
2268                              const APInt &Scale,
2269                              ScalarEvolution &SE) {
2270   bool Interesting = false;
2271 
2272   // Iterate over the add operands. They are sorted, with constants first.
2273   unsigned i = 0;
2274   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2275     ++i;
2276     // Pull a buried constant out to the outside.
2277     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2278       Interesting = true;
2279     AccumulatedConstant += Scale * C->getAPInt();
2280   }
2281 
2282   // Next comes everything else. We're especially interested in multiplies
2283   // here, but they're in the middle, so just visit the rest with one loop.
2284   for (; i != NumOperands; ++i) {
2285     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2286     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2287       APInt NewScale =
2288           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2289       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2290         // A multiplication of a constant with another add; recurse.
2291         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2292         Interesting |=
2293           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2294                                        Add->op_begin(), Add->getNumOperands(),
2295                                        NewScale, SE);
2296       } else {
2297         // A multiplication of a constant with some other value. Update
2298         // the map.
2299         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2300         const SCEV *Key = SE.getMulExpr(MulOps);
2301         auto Pair = M.insert({Key, NewScale});
2302         if (Pair.second) {
2303           NewOps.push_back(Pair.first->first);
2304         } else {
2305           Pair.first->second += NewScale;
2306           // The map already had an entry for this value, which may indicate
2307           // a folding opportunity.
2308           Interesting = true;
2309         }
2310       }
2311     } else {
2312       // An ordinary operand. Update the map.
2313       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2314           M.insert({Ops[i], Scale});
2315       if (Pair.second) {
2316         NewOps.push_back(Pair.first->first);
2317       } else {
2318         Pair.first->second += Scale;
2319         // The map already had an entry for this value, which may indicate
2320         // a folding opportunity.
2321         Interesting = true;
2322       }
2323     }
2324   }
2325 
2326   return Interesting;
2327 }
2328 
2329 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2330 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2331 // can't-overflow flags for the operation if possible.
2332 static SCEV::NoWrapFlags
2333 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2334                       const ArrayRef<const SCEV *> Ops,
2335                       SCEV::NoWrapFlags Flags) {
2336   using namespace std::placeholders;
2337 
2338   using OBO = OverflowingBinaryOperator;
2339 
2340   bool CanAnalyze =
2341       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2342   (void)CanAnalyze;
2343   assert(CanAnalyze && "don't call from other places!");
2344 
2345   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2346   SCEV::NoWrapFlags SignOrUnsignWrap =
2347       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2348 
2349   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2350   auto IsKnownNonNegative = [&](const SCEV *S) {
2351     return SE->isKnownNonNegative(S);
2352   };
2353 
2354   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2355     Flags =
2356         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2357 
2358   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2359 
2360   if (SignOrUnsignWrap != SignOrUnsignMask &&
2361       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2362       isa<SCEVConstant>(Ops[0])) {
2363 
2364     auto Opcode = [&] {
2365       switch (Type) {
2366       case scAddExpr:
2367         return Instruction::Add;
2368       case scMulExpr:
2369         return Instruction::Mul;
2370       default:
2371         llvm_unreachable("Unexpected SCEV op.");
2372       }
2373     }();
2374 
2375     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2376 
2377     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2378     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2379       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2380           Opcode, C, OBO::NoSignedWrap);
2381       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2382         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2383     }
2384 
2385     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2386     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2387       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2388           Opcode, C, OBO::NoUnsignedWrap);
2389       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2390         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2391     }
2392   }
2393 
2394   return Flags;
2395 }
2396 
2397 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2398   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2399 }
2400 
2401 /// Get a canonical add expression, or something simpler if possible.
2402 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2403                                         SCEV::NoWrapFlags Flags,
2404                                         unsigned Depth) {
2405   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2406          "only nuw or nsw allowed");
2407   assert(!Ops.empty() && "Cannot get empty add!");
2408   if (Ops.size() == 1) return Ops[0];
2409 #ifndef NDEBUG
2410   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2411   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2412     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2413            "SCEVAddExpr operand types don't match!");
2414 #endif
2415 
2416   // Sort by complexity, this groups all similar expression types together.
2417   GroupByComplexity(Ops, &LI, DT);
2418 
2419   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2420 
2421   // If there are any constants, fold them together.
2422   unsigned Idx = 0;
2423   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2424     ++Idx;
2425     assert(Idx < Ops.size());
2426     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2427       // We found two constants, fold them together!
2428       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2429       if (Ops.size() == 2) return Ops[0];
2430       Ops.erase(Ops.begin()+1);  // Erase the folded element
2431       LHSC = cast<SCEVConstant>(Ops[0]);
2432     }
2433 
2434     // If we are left with a constant zero being added, strip it off.
2435     if (LHSC->getValue()->isZero()) {
2436       Ops.erase(Ops.begin());
2437       --Idx;
2438     }
2439 
2440     if (Ops.size() == 1) return Ops[0];
2441   }
2442 
2443   // Limit recursion calls depth.
2444   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2445     return getOrCreateAddExpr(Ops, Flags);
2446 
2447   // Okay, check to see if the same value occurs in the operand list more than
2448   // once.  If so, merge them together into an multiply expression.  Since we
2449   // sorted the list, these values are required to be adjacent.
2450   Type *Ty = Ops[0]->getType();
2451   bool FoundMatch = false;
2452   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2453     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2454       // Scan ahead to count how many equal operands there are.
2455       unsigned Count = 2;
2456       while (i+Count != e && Ops[i+Count] == Ops[i])
2457         ++Count;
2458       // Merge the values into a multiply.
2459       const SCEV *Scale = getConstant(Ty, Count);
2460       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2461       if (Ops.size() == Count)
2462         return Mul;
2463       Ops[i] = Mul;
2464       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2465       --i; e -= Count - 1;
2466       FoundMatch = true;
2467     }
2468   if (FoundMatch)
2469     return getAddExpr(Ops, Flags, Depth + 1);
2470 
2471   // Check for truncates. If all the operands are truncated from the same
2472   // type, see if factoring out the truncate would permit the result to be
2473   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2474   // if the contents of the resulting outer trunc fold to something simple.
2475   auto FindTruncSrcType = [&]() -> Type * {
2476     // We're ultimately looking to fold an addrec of truncs and muls of only
2477     // constants and truncs, so if we find any other types of SCEV
2478     // as operands of the addrec then we bail and return nullptr here.
2479     // Otherwise, we return the type of the operand of a trunc that we find.
2480     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2481       return T->getOperand()->getType();
2482     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2483       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2484       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2485         return T->getOperand()->getType();
2486     }
2487     return nullptr;
2488   };
2489   if (auto *SrcType = FindTruncSrcType()) {
2490     SmallVector<const SCEV *, 8> LargeOps;
2491     bool Ok = true;
2492     // Check all the operands to see if they can be represented in the
2493     // source type of the truncate.
2494     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2495       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2496         if (T->getOperand()->getType() != SrcType) {
2497           Ok = false;
2498           break;
2499         }
2500         LargeOps.push_back(T->getOperand());
2501       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2502         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2503       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2504         SmallVector<const SCEV *, 8> LargeMulOps;
2505         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2506           if (const SCEVTruncateExpr *T =
2507                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2508             if (T->getOperand()->getType() != SrcType) {
2509               Ok = false;
2510               break;
2511             }
2512             LargeMulOps.push_back(T->getOperand());
2513           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2514             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2515           } else {
2516             Ok = false;
2517             break;
2518           }
2519         }
2520         if (Ok)
2521           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2522       } else {
2523         Ok = false;
2524         break;
2525       }
2526     }
2527     if (Ok) {
2528       // Evaluate the expression in the larger type.
2529       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2530       // If it folds to something simple, use it. Otherwise, don't.
2531       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2532         return getTruncateExpr(Fold, Ty);
2533     }
2534   }
2535 
2536   // Skip past any other cast SCEVs.
2537   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2538     ++Idx;
2539 
2540   // If there are add operands they would be next.
2541   if (Idx < Ops.size()) {
2542     bool DeletedAdd = false;
2543     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2544       if (Ops.size() > AddOpsInlineThreshold ||
2545           Add->getNumOperands() > AddOpsInlineThreshold)
2546         break;
2547       // If we have an add, expand the add operands onto the end of the operands
2548       // list.
2549       Ops.erase(Ops.begin()+Idx);
2550       Ops.append(Add->op_begin(), Add->op_end());
2551       DeletedAdd = true;
2552     }
2553 
2554     // If we deleted at least one add, we added operands to the end of the list,
2555     // and they are not necessarily sorted.  Recurse to resort and resimplify
2556     // any operands we just acquired.
2557     if (DeletedAdd)
2558       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2559   }
2560 
2561   // Skip over the add expression until we get to a multiply.
2562   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2563     ++Idx;
2564 
2565   // Check to see if there are any folding opportunities present with
2566   // operands multiplied by constant values.
2567   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2568     uint64_t BitWidth = getTypeSizeInBits(Ty);
2569     DenseMap<const SCEV *, APInt> M;
2570     SmallVector<const SCEV *, 8> NewOps;
2571     APInt AccumulatedConstant(BitWidth, 0);
2572     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2573                                      Ops.data(), Ops.size(),
2574                                      APInt(BitWidth, 1), *this)) {
2575       struct APIntCompare {
2576         bool operator()(const APInt &LHS, const APInt &RHS) const {
2577           return LHS.ult(RHS);
2578         }
2579       };
2580 
2581       // Some interesting folding opportunity is present, so its worthwhile to
2582       // re-generate the operands list. Group the operands by constant scale,
2583       // to avoid multiplying by the same constant scale multiple times.
2584       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2585       for (const SCEV *NewOp : NewOps)
2586         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2587       // Re-generate the operands list.
2588       Ops.clear();
2589       if (AccumulatedConstant != 0)
2590         Ops.push_back(getConstant(AccumulatedConstant));
2591       for (auto &MulOp : MulOpLists)
2592         if (MulOp.first != 0)
2593           Ops.push_back(getMulExpr(
2594               getConstant(MulOp.first),
2595               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2596               SCEV::FlagAnyWrap, Depth + 1));
2597       if (Ops.empty())
2598         return getZero(Ty);
2599       if (Ops.size() == 1)
2600         return Ops[0];
2601       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2602     }
2603   }
2604 
2605   // If we are adding something to a multiply expression, make sure the
2606   // something is not already an operand of the multiply.  If so, merge it into
2607   // the multiply.
2608   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2609     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2610     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2611       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2612       if (isa<SCEVConstant>(MulOpSCEV))
2613         continue;
2614       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2615         if (MulOpSCEV == Ops[AddOp]) {
2616           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2617           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2618           if (Mul->getNumOperands() != 2) {
2619             // If the multiply has more than two operands, we must get the
2620             // Y*Z term.
2621             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2622                                                 Mul->op_begin()+MulOp);
2623             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2624             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2625           }
2626           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2627           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2628           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2629                                             SCEV::FlagAnyWrap, Depth + 1);
2630           if (Ops.size() == 2) return OuterMul;
2631           if (AddOp < Idx) {
2632             Ops.erase(Ops.begin()+AddOp);
2633             Ops.erase(Ops.begin()+Idx-1);
2634           } else {
2635             Ops.erase(Ops.begin()+Idx);
2636             Ops.erase(Ops.begin()+AddOp-1);
2637           }
2638           Ops.push_back(OuterMul);
2639           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2640         }
2641 
2642       // Check this multiply against other multiplies being added together.
2643       for (unsigned OtherMulIdx = Idx+1;
2644            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2645            ++OtherMulIdx) {
2646         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2647         // If MulOp occurs in OtherMul, we can fold the two multiplies
2648         // together.
2649         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2650              OMulOp != e; ++OMulOp)
2651           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2652             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2653             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2654             if (Mul->getNumOperands() != 2) {
2655               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2656                                                   Mul->op_begin()+MulOp);
2657               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2658               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2659             }
2660             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2661             if (OtherMul->getNumOperands() != 2) {
2662               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2663                                                   OtherMul->op_begin()+OMulOp);
2664               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2665               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2666             }
2667             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2668             const SCEV *InnerMulSum =
2669                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2670             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2671                                               SCEV::FlagAnyWrap, Depth + 1);
2672             if (Ops.size() == 2) return OuterMul;
2673             Ops.erase(Ops.begin()+Idx);
2674             Ops.erase(Ops.begin()+OtherMulIdx-1);
2675             Ops.push_back(OuterMul);
2676             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2677           }
2678       }
2679     }
2680   }
2681 
2682   // If there are any add recurrences in the operands list, see if any other
2683   // added values are loop invariant.  If so, we can fold them into the
2684   // recurrence.
2685   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2686     ++Idx;
2687 
2688   // Scan over all recurrences, trying to fold loop invariants into them.
2689   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2690     // Scan all of the other operands to this add and add them to the vector if
2691     // they are loop invariant w.r.t. the recurrence.
2692     SmallVector<const SCEV *, 8> LIOps;
2693     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2694     const Loop *AddRecLoop = AddRec->getLoop();
2695     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2696       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2697         LIOps.push_back(Ops[i]);
2698         Ops.erase(Ops.begin()+i);
2699         --i; --e;
2700       }
2701 
2702     // If we found some loop invariants, fold them into the recurrence.
2703     if (!LIOps.empty()) {
2704       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2705       LIOps.push_back(AddRec->getStart());
2706 
2707       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2708                                              AddRec->op_end());
2709       // This follows from the fact that the no-wrap flags on the outer add
2710       // expression are applicable on the 0th iteration, when the add recurrence
2711       // will be equal to its start value.
2712       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2713 
2714       // Build the new addrec. Propagate the NUW and NSW flags if both the
2715       // outer add and the inner addrec are guaranteed to have no overflow.
2716       // Always propagate NW.
2717       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2718       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2719 
2720       // If all of the other operands were loop invariant, we are done.
2721       if (Ops.size() == 1) return NewRec;
2722 
2723       // Otherwise, add the folded AddRec by the non-invariant parts.
2724       for (unsigned i = 0;; ++i)
2725         if (Ops[i] == AddRec) {
2726           Ops[i] = NewRec;
2727           break;
2728         }
2729       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2730     }
2731 
2732     // Okay, if there weren't any loop invariants to be folded, check to see if
2733     // there are multiple AddRec's with the same loop induction variable being
2734     // added together.  If so, we can fold them.
2735     for (unsigned OtherIdx = Idx+1;
2736          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2737          ++OtherIdx) {
2738       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2739       // so that the 1st found AddRecExpr is dominated by all others.
2740       assert(DT.dominates(
2741            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2742            AddRec->getLoop()->getHeader()) &&
2743         "AddRecExprs are not sorted in reverse dominance order?");
2744       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2745         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2746         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2747                                                AddRec->op_end());
2748         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2749              ++OtherIdx) {
2750           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2751           if (OtherAddRec->getLoop() == AddRecLoop) {
2752             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2753                  i != e; ++i) {
2754               if (i >= AddRecOps.size()) {
2755                 AddRecOps.append(OtherAddRec->op_begin()+i,
2756                                  OtherAddRec->op_end());
2757                 break;
2758               }
2759               SmallVector<const SCEV *, 2> TwoOps = {
2760                   AddRecOps[i], OtherAddRec->getOperand(i)};
2761               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2762             }
2763             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2764           }
2765         }
2766         // Step size has changed, so we cannot guarantee no self-wraparound.
2767         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2768         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2769       }
2770     }
2771 
2772     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2773     // next one.
2774   }
2775 
2776   // Okay, it looks like we really DO need an add expr.  Check to see if we
2777   // already have one, otherwise create a new one.
2778   return getOrCreateAddExpr(Ops, Flags);
2779 }
2780 
2781 const SCEV *
2782 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2783                                     SCEV::NoWrapFlags Flags) {
2784   FoldingSetNodeID ID;
2785   ID.AddInteger(scAddExpr);
2786   for (const SCEV *Op : Ops)
2787     ID.AddPointer(Op);
2788   void *IP = nullptr;
2789   SCEVAddExpr *S =
2790       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2791   if (!S) {
2792     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2793     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2794     S = new (SCEVAllocator)
2795         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2796     UniqueSCEVs.InsertNode(S, IP);
2797     addToLoopUseLists(S);
2798   }
2799   S->setNoWrapFlags(Flags);
2800   return S;
2801 }
2802 
2803 const SCEV *
2804 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2805                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2806   FoldingSetNodeID ID;
2807   ID.AddInteger(scAddRecExpr);
2808   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2809     ID.AddPointer(Ops[i]);
2810   ID.AddPointer(L);
2811   void *IP = nullptr;
2812   SCEVAddRecExpr *S =
2813       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2814   if (!S) {
2815     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2816     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2817     S = new (SCEVAllocator)
2818         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2819     UniqueSCEVs.InsertNode(S, IP);
2820     addToLoopUseLists(S);
2821   }
2822   S->setNoWrapFlags(Flags);
2823   return S;
2824 }
2825 
2826 const SCEV *
2827 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2828                                     SCEV::NoWrapFlags Flags) {
2829   FoldingSetNodeID ID;
2830   ID.AddInteger(scMulExpr);
2831   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2832     ID.AddPointer(Ops[i]);
2833   void *IP = nullptr;
2834   SCEVMulExpr *S =
2835     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2836   if (!S) {
2837     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2838     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2839     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2840                                         O, Ops.size());
2841     UniqueSCEVs.InsertNode(S, IP);
2842     addToLoopUseLists(S);
2843   }
2844   S->setNoWrapFlags(Flags);
2845   return S;
2846 }
2847 
2848 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2849   uint64_t k = i*j;
2850   if (j > 1 && k / j != i) Overflow = true;
2851   return k;
2852 }
2853 
2854 /// Compute the result of "n choose k", the binomial coefficient.  If an
2855 /// intermediate computation overflows, Overflow will be set and the return will
2856 /// be garbage. Overflow is not cleared on absence of overflow.
2857 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2858   // We use the multiplicative formula:
2859   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2860   // At each iteration, we take the n-th term of the numeral and divide by the
2861   // (k-n)th term of the denominator.  This division will always produce an
2862   // integral result, and helps reduce the chance of overflow in the
2863   // intermediate computations. However, we can still overflow even when the
2864   // final result would fit.
2865 
2866   if (n == 0 || n == k) return 1;
2867   if (k > n) return 0;
2868 
2869   if (k > n/2)
2870     k = n-k;
2871 
2872   uint64_t r = 1;
2873   for (uint64_t i = 1; i <= k; ++i) {
2874     r = umul_ov(r, n-(i-1), Overflow);
2875     r /= i;
2876   }
2877   return r;
2878 }
2879 
2880 /// Determine if any of the operands in this SCEV are a constant or if
2881 /// any of the add or multiply expressions in this SCEV contain a constant.
2882 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2883   struct FindConstantInAddMulChain {
2884     bool FoundConstant = false;
2885 
2886     bool follow(const SCEV *S) {
2887       FoundConstant |= isa<SCEVConstant>(S);
2888       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2889     }
2890 
2891     bool isDone() const {
2892       return FoundConstant;
2893     }
2894   };
2895 
2896   FindConstantInAddMulChain F;
2897   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2898   ST.visitAll(StartExpr);
2899   return F.FoundConstant;
2900 }
2901 
2902 /// Get a canonical multiply expression, or something simpler if possible.
2903 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2904                                         SCEV::NoWrapFlags Flags,
2905                                         unsigned Depth) {
2906   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2907          "only nuw or nsw allowed");
2908   assert(!Ops.empty() && "Cannot get empty mul!");
2909   if (Ops.size() == 1) return Ops[0];
2910 #ifndef NDEBUG
2911   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2912   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2913     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2914            "SCEVMulExpr operand types don't match!");
2915 #endif
2916 
2917   // Sort by complexity, this groups all similar expression types together.
2918   GroupByComplexity(Ops, &LI, DT);
2919 
2920   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2921 
2922   // Limit recursion calls depth.
2923   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2924     return getOrCreateMulExpr(Ops, Flags);
2925 
2926   // If there are any constants, fold them together.
2927   unsigned Idx = 0;
2928   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2929 
2930     if (Ops.size() == 2)
2931       // C1*(C2+V) -> C1*C2 + C1*V
2932       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2933         // If any of Add's ops are Adds or Muls with a constant, apply this
2934         // transformation as well.
2935         //
2936         // TODO: There are some cases where this transformation is not
2937         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2938         // this transformation should be narrowed down.
2939         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2940           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2941                                        SCEV::FlagAnyWrap, Depth + 1),
2942                             getMulExpr(LHSC, Add->getOperand(1),
2943                                        SCEV::FlagAnyWrap, Depth + 1),
2944                             SCEV::FlagAnyWrap, Depth + 1);
2945 
2946     ++Idx;
2947     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2948       // We found two constants, fold them together!
2949       ConstantInt *Fold =
2950           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2951       Ops[0] = getConstant(Fold);
2952       Ops.erase(Ops.begin()+1);  // Erase the folded element
2953       if (Ops.size() == 1) return Ops[0];
2954       LHSC = cast<SCEVConstant>(Ops[0]);
2955     }
2956 
2957     // If we are left with a constant one being multiplied, strip it off.
2958     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2959       Ops.erase(Ops.begin());
2960       --Idx;
2961     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2962       // If we have a multiply of zero, it will always be zero.
2963       return Ops[0];
2964     } else if (Ops[0]->isAllOnesValue()) {
2965       // If we have a mul by -1 of an add, try distributing the -1 among the
2966       // add operands.
2967       if (Ops.size() == 2) {
2968         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2969           SmallVector<const SCEV *, 4> NewOps;
2970           bool AnyFolded = false;
2971           for (const SCEV *AddOp : Add->operands()) {
2972             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2973                                          Depth + 1);
2974             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2975             NewOps.push_back(Mul);
2976           }
2977           if (AnyFolded)
2978             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2979         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2980           // Negation preserves a recurrence's no self-wrap property.
2981           SmallVector<const SCEV *, 4> Operands;
2982           for (const SCEV *AddRecOp : AddRec->operands())
2983             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2984                                           Depth + 1));
2985 
2986           return getAddRecExpr(Operands, AddRec->getLoop(),
2987                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2988         }
2989       }
2990     }
2991 
2992     if (Ops.size() == 1)
2993       return Ops[0];
2994   }
2995 
2996   // Skip over the add expression until we get to a multiply.
2997   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2998     ++Idx;
2999 
3000   // If there are mul operands inline them all into this expression.
3001   if (Idx < Ops.size()) {
3002     bool DeletedMul = false;
3003     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3004       if (Ops.size() > MulOpsInlineThreshold)
3005         break;
3006       // If we have an mul, expand the mul operands onto the end of the
3007       // operands list.
3008       Ops.erase(Ops.begin()+Idx);
3009       Ops.append(Mul->op_begin(), Mul->op_end());
3010       DeletedMul = true;
3011     }
3012 
3013     // If we deleted at least one mul, we added operands to the end of the
3014     // list, and they are not necessarily sorted.  Recurse to resort and
3015     // resimplify any operands we just acquired.
3016     if (DeletedMul)
3017       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3018   }
3019 
3020   // If there are any add recurrences in the operands list, see if any other
3021   // added values are loop invariant.  If so, we can fold them into the
3022   // recurrence.
3023   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3024     ++Idx;
3025 
3026   // Scan over all recurrences, trying to fold loop invariants into them.
3027   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3028     // Scan all of the other operands to this mul and add them to the vector
3029     // if they are loop invariant w.r.t. the recurrence.
3030     SmallVector<const SCEV *, 8> LIOps;
3031     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3032     const Loop *AddRecLoop = AddRec->getLoop();
3033     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3034       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3035         LIOps.push_back(Ops[i]);
3036         Ops.erase(Ops.begin()+i);
3037         --i; --e;
3038       }
3039 
3040     // If we found some loop invariants, fold them into the recurrence.
3041     if (!LIOps.empty()) {
3042       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3043       SmallVector<const SCEV *, 4> NewOps;
3044       NewOps.reserve(AddRec->getNumOperands());
3045       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3046       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3047         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3048                                     SCEV::FlagAnyWrap, Depth + 1));
3049 
3050       // Build the new addrec. Propagate the NUW and NSW flags if both the
3051       // outer mul and the inner addrec are guaranteed to have no overflow.
3052       //
3053       // No self-wrap cannot be guaranteed after changing the step size, but
3054       // will be inferred if either NUW or NSW is true.
3055       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3056       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3057 
3058       // If all of the other operands were loop invariant, we are done.
3059       if (Ops.size() == 1) return NewRec;
3060 
3061       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3062       for (unsigned i = 0;; ++i)
3063         if (Ops[i] == AddRec) {
3064           Ops[i] = NewRec;
3065           break;
3066         }
3067       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3068     }
3069 
3070     // Okay, if there weren't any loop invariants to be folded, check to see
3071     // if there are multiple AddRec's with the same loop induction variable
3072     // being multiplied together.  If so, we can fold them.
3073 
3074     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3075     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3076     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3077     //   ]]],+,...up to x=2n}.
3078     // Note that the arguments to choose() are always integers with values
3079     // known at compile time, never SCEV objects.
3080     //
3081     // The implementation avoids pointless extra computations when the two
3082     // addrec's are of different length (mathematically, it's equivalent to
3083     // an infinite stream of zeros on the right).
3084     bool OpsModified = false;
3085     for (unsigned OtherIdx = Idx+1;
3086          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3087          ++OtherIdx) {
3088       const SCEVAddRecExpr *OtherAddRec =
3089         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3090       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3091         continue;
3092 
3093       // Limit max number of arguments to avoid creation of unreasonably big
3094       // SCEVAddRecs with very complex operands.
3095       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3096           MaxAddRecSize || isHugeExpression(AddRec) ||
3097           isHugeExpression(OtherAddRec))
3098         continue;
3099 
3100       bool Overflow = false;
3101       Type *Ty = AddRec->getType();
3102       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3103       SmallVector<const SCEV*, 7> AddRecOps;
3104       for (int x = 0, xe = AddRec->getNumOperands() +
3105              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3106         SmallVector <const SCEV *, 7> SumOps;
3107         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3108           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3109           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3110                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3111                z < ze && !Overflow; ++z) {
3112             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3113             uint64_t Coeff;
3114             if (LargerThan64Bits)
3115               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3116             else
3117               Coeff = Coeff1*Coeff2;
3118             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3119             const SCEV *Term1 = AddRec->getOperand(y-z);
3120             const SCEV *Term2 = OtherAddRec->getOperand(z);
3121             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3122                                         SCEV::FlagAnyWrap, Depth + 1));
3123           }
3124         }
3125         if (SumOps.empty())
3126           SumOps.push_back(getZero(Ty));
3127         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3128       }
3129       if (!Overflow) {
3130         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3131                                               SCEV::FlagAnyWrap);
3132         if (Ops.size() == 2) return NewAddRec;
3133         Ops[Idx] = NewAddRec;
3134         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3135         OpsModified = true;
3136         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3137         if (!AddRec)
3138           break;
3139       }
3140     }
3141     if (OpsModified)
3142       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3143 
3144     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3145     // next one.
3146   }
3147 
3148   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3149   // already have one, otherwise create a new one.
3150   return getOrCreateMulExpr(Ops, Flags);
3151 }
3152 
3153 /// Represents an unsigned remainder expression based on unsigned division.
3154 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3155                                          const SCEV *RHS) {
3156   assert(getEffectiveSCEVType(LHS->getType()) ==
3157          getEffectiveSCEVType(RHS->getType()) &&
3158          "SCEVURemExpr operand types don't match!");
3159 
3160   // Short-circuit easy cases
3161   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3162     // If constant is one, the result is trivial
3163     if (RHSC->getValue()->isOne())
3164       return getZero(LHS->getType()); // X urem 1 --> 0
3165 
3166     // If constant is a power of two, fold into a zext(trunc(LHS)).
3167     if (RHSC->getAPInt().isPowerOf2()) {
3168       Type *FullTy = LHS->getType();
3169       Type *TruncTy =
3170           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3171       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3172     }
3173   }
3174 
3175   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3176   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3177   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3178   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3179 }
3180 
3181 /// Get a canonical unsigned division expression, or something simpler if
3182 /// possible.
3183 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3184                                          const SCEV *RHS) {
3185   assert(getEffectiveSCEVType(LHS->getType()) ==
3186          getEffectiveSCEVType(RHS->getType()) &&
3187          "SCEVUDivExpr operand types don't match!");
3188 
3189   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3190     if (RHSC->getValue()->isOne())
3191       return LHS;                               // X udiv 1 --> x
3192     // If the denominator is zero, the result of the udiv is undefined. Don't
3193     // try to analyze it, because the resolution chosen here may differ from
3194     // the resolution chosen in other parts of the compiler.
3195     if (!RHSC->getValue()->isZero()) {
3196       // Determine if the division can be folded into the operands of
3197       // its operands.
3198       // TODO: Generalize this to non-constants by using known-bits information.
3199       Type *Ty = LHS->getType();
3200       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3201       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3202       // For non-power-of-two values, effectively round the value up to the
3203       // nearest power of two.
3204       if (!RHSC->getAPInt().isPowerOf2())
3205         ++MaxShiftAmt;
3206       IntegerType *ExtTy =
3207         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3208       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3209         if (const SCEVConstant *Step =
3210             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3211           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3212           const APInt &StepInt = Step->getAPInt();
3213           const APInt &DivInt = RHSC->getAPInt();
3214           if (!StepInt.urem(DivInt) &&
3215               getZeroExtendExpr(AR, ExtTy) ==
3216               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3217                             getZeroExtendExpr(Step, ExtTy),
3218                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3219             SmallVector<const SCEV *, 4> Operands;
3220             for (const SCEV *Op : AR->operands())
3221               Operands.push_back(getUDivExpr(Op, RHS));
3222             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3223           }
3224           /// Get a canonical UDivExpr for a recurrence.
3225           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3226           // We can currently only fold X%N if X is constant.
3227           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3228           if (StartC && !DivInt.urem(StepInt) &&
3229               getZeroExtendExpr(AR, ExtTy) ==
3230               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3231                             getZeroExtendExpr(Step, ExtTy),
3232                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3233             const APInt &StartInt = StartC->getAPInt();
3234             const APInt &StartRem = StartInt.urem(StepInt);
3235             if (StartRem != 0)
3236               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3237                                   AR->getLoop(), SCEV::FlagNW);
3238           }
3239         }
3240       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3241       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3242         SmallVector<const SCEV *, 4> Operands;
3243         for (const SCEV *Op : M->operands())
3244           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3245         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3246           // Find an operand that's safely divisible.
3247           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3248             const SCEV *Op = M->getOperand(i);
3249             const SCEV *Div = getUDivExpr(Op, RHSC);
3250             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3251               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3252                                                       M->op_end());
3253               Operands[i] = Div;
3254               return getMulExpr(Operands);
3255             }
3256           }
3257       }
3258 
3259       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3260       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3261         if (auto *DivisorConstant =
3262                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3263           bool Overflow = false;
3264           APInt NewRHS =
3265               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3266           if (Overflow) {
3267             return getConstant(RHSC->getType(), 0, false);
3268           }
3269           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3270         }
3271       }
3272 
3273       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3274       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3275         SmallVector<const SCEV *, 4> Operands;
3276         for (const SCEV *Op : A->operands())
3277           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3278         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3279           Operands.clear();
3280           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3281             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3282             if (isa<SCEVUDivExpr>(Op) ||
3283                 getMulExpr(Op, RHS) != A->getOperand(i))
3284               break;
3285             Operands.push_back(Op);
3286           }
3287           if (Operands.size() == A->getNumOperands())
3288             return getAddExpr(Operands);
3289         }
3290       }
3291 
3292       // Fold if both operands are constant.
3293       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3294         Constant *LHSCV = LHSC->getValue();
3295         Constant *RHSCV = RHSC->getValue();
3296         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3297                                                                    RHSCV)));
3298       }
3299     }
3300   }
3301 
3302   FoldingSetNodeID ID;
3303   ID.AddInteger(scUDivExpr);
3304   ID.AddPointer(LHS);
3305   ID.AddPointer(RHS);
3306   void *IP = nullptr;
3307   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3308   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3309                                              LHS, RHS);
3310   UniqueSCEVs.InsertNode(S, IP);
3311   addToLoopUseLists(S);
3312   return S;
3313 }
3314 
3315 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3316   APInt A = C1->getAPInt().abs();
3317   APInt B = C2->getAPInt().abs();
3318   uint32_t ABW = A.getBitWidth();
3319   uint32_t BBW = B.getBitWidth();
3320 
3321   if (ABW > BBW)
3322     B = B.zext(ABW);
3323   else if (ABW < BBW)
3324     A = A.zext(BBW);
3325 
3326   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3327 }
3328 
3329 /// Get a canonical unsigned division expression, or something simpler if
3330 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3331 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3332 /// it's not exact because the udiv may be clearing bits.
3333 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3334                                               const SCEV *RHS) {
3335   // TODO: we could try to find factors in all sorts of things, but for now we
3336   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3337   // end of this file for inspiration.
3338 
3339   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3340   if (!Mul || !Mul->hasNoUnsignedWrap())
3341     return getUDivExpr(LHS, RHS);
3342 
3343   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3344     // If the mulexpr multiplies by a constant, then that constant must be the
3345     // first element of the mulexpr.
3346     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3347       if (LHSCst == RHSCst) {
3348         SmallVector<const SCEV *, 2> Operands;
3349         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3350         return getMulExpr(Operands);
3351       }
3352 
3353       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3354       // that there's a factor provided by one of the other terms. We need to
3355       // check.
3356       APInt Factor = gcd(LHSCst, RHSCst);
3357       if (!Factor.isIntN(1)) {
3358         LHSCst =
3359             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3360         RHSCst =
3361             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3362         SmallVector<const SCEV *, 2> Operands;
3363         Operands.push_back(LHSCst);
3364         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3365         LHS = getMulExpr(Operands);
3366         RHS = RHSCst;
3367         Mul = dyn_cast<SCEVMulExpr>(LHS);
3368         if (!Mul)
3369           return getUDivExactExpr(LHS, RHS);
3370       }
3371     }
3372   }
3373 
3374   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3375     if (Mul->getOperand(i) == RHS) {
3376       SmallVector<const SCEV *, 2> Operands;
3377       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3378       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3379       return getMulExpr(Operands);
3380     }
3381   }
3382 
3383   return getUDivExpr(LHS, RHS);
3384 }
3385 
3386 /// Get an add recurrence expression for the specified loop.  Simplify the
3387 /// expression as much as possible.
3388 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3389                                            const Loop *L,
3390                                            SCEV::NoWrapFlags Flags) {
3391   SmallVector<const SCEV *, 4> Operands;
3392   Operands.push_back(Start);
3393   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3394     if (StepChrec->getLoop() == L) {
3395       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3396       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3397     }
3398 
3399   Operands.push_back(Step);
3400   return getAddRecExpr(Operands, L, Flags);
3401 }
3402 
3403 /// Get an add recurrence expression for the specified loop.  Simplify the
3404 /// expression as much as possible.
3405 const SCEV *
3406 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3407                                const Loop *L, SCEV::NoWrapFlags Flags) {
3408   if (Operands.size() == 1) return Operands[0];
3409 #ifndef NDEBUG
3410   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3411   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3412     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3413            "SCEVAddRecExpr operand types don't match!");
3414   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3415     assert(isLoopInvariant(Operands[i], L) &&
3416            "SCEVAddRecExpr operand is not loop-invariant!");
3417 #endif
3418 
3419   if (Operands.back()->isZero()) {
3420     Operands.pop_back();
3421     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3422   }
3423 
3424   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3425   // use that information to infer NUW and NSW flags. However, computing a
3426   // BE count requires calling getAddRecExpr, so we may not yet have a
3427   // meaningful BE count at this point (and if we don't, we'd be stuck
3428   // with a SCEVCouldNotCompute as the cached BE count).
3429 
3430   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3431 
3432   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3433   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3434     const Loop *NestedLoop = NestedAR->getLoop();
3435     if (L->contains(NestedLoop)
3436             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3437             : (!NestedLoop->contains(L) &&
3438                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3439       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3440                                                   NestedAR->op_end());
3441       Operands[0] = NestedAR->getStart();
3442       // AddRecs require their operands be loop-invariant with respect to their
3443       // loops. Don't perform this transformation if it would break this
3444       // requirement.
3445       bool AllInvariant = all_of(
3446           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3447 
3448       if (AllInvariant) {
3449         // Create a recurrence for the outer loop with the same step size.
3450         //
3451         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3452         // inner recurrence has the same property.
3453         SCEV::NoWrapFlags OuterFlags =
3454           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3455 
3456         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3457         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3458           return isLoopInvariant(Op, NestedLoop);
3459         });
3460 
3461         if (AllInvariant) {
3462           // Ok, both add recurrences are valid after the transformation.
3463           //
3464           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3465           // the outer recurrence has the same property.
3466           SCEV::NoWrapFlags InnerFlags =
3467             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3468           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3469         }
3470       }
3471       // Reset Operands to its original state.
3472       Operands[0] = NestedAR;
3473     }
3474   }
3475 
3476   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3477   // already have one, otherwise create a new one.
3478   return getOrCreateAddRecExpr(Operands, L, Flags);
3479 }
3480 
3481 const SCEV *
3482 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3483                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3484   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3485   // getSCEV(Base)->getType() has the same address space as Base->getType()
3486   // because SCEV::getType() preserves the address space.
3487   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3488   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3489   // instruction to its SCEV, because the Instruction may be guarded by control
3490   // flow and the no-overflow bits may not be valid for the expression in any
3491   // context. This can be fixed similarly to how these flags are handled for
3492   // adds.
3493   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3494                                              : SCEV::FlagAnyWrap;
3495 
3496   const SCEV *TotalOffset = getZero(IntPtrTy);
3497   // The array size is unimportant. The first thing we do on CurTy is getting
3498   // its element type.
3499   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3500   for (const SCEV *IndexExpr : IndexExprs) {
3501     // Compute the (potentially symbolic) offset in bytes for this index.
3502     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3503       // For a struct, add the member offset.
3504       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3505       unsigned FieldNo = Index->getZExtValue();
3506       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3507 
3508       // Add the field offset to the running total offset.
3509       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3510 
3511       // Update CurTy to the type of the field at Index.
3512       CurTy = STy->getTypeAtIndex(Index);
3513     } else {
3514       // Update CurTy to its element type.
3515       CurTy = cast<SequentialType>(CurTy)->getElementType();
3516       // For an array, add the element offset, explicitly scaled.
3517       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3518       // Getelementptr indices are signed.
3519       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3520 
3521       // Multiply the index by the element size to compute the element offset.
3522       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3523 
3524       // Add the element offset to the running total offset.
3525       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3526     }
3527   }
3528 
3529   // Add the total offset from all the GEP indices to the base.
3530   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3531 }
3532 
3533 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3534 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3535                                          ArrayRef<const SCEV *> Ops) {
3536   FoldingSetNodeID ID;
3537   void *IP = nullptr;
3538   ID.AddInteger(SCEVType);
3539   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3540     ID.AddPointer(Ops[i]);
3541   return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3542       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3543 }
3544 
3545 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3546                                            SmallVectorImpl<const SCEV *> &Ops) {
3547   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3548   if (Ops.size() == 1) return Ops[0];
3549 #ifndef NDEBUG
3550   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3551   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3552     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3553            "Operand types don't match!");
3554 #endif
3555 
3556   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3557   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3558 
3559   // Sort by complexity, this groups all similar expression types together.
3560   GroupByComplexity(Ops, &LI, DT);
3561 
3562   // Check if we have created the same expression before.
3563   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3564     return S;
3565   }
3566 
3567   // If there are any constants, fold them together.
3568   unsigned Idx = 0;
3569   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3570     ++Idx;
3571     assert(Idx < Ops.size());
3572     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3573       if (Kind == scSMaxExpr)
3574         return APIntOps::smax(LHS, RHS);
3575       else if (Kind == scSMinExpr)
3576         return APIntOps::smin(LHS, RHS);
3577       else if (Kind == scUMaxExpr)
3578         return APIntOps::umax(LHS, RHS);
3579       else if (Kind == scUMinExpr)
3580         return APIntOps::umin(LHS, RHS);
3581       llvm_unreachable("Unknown SCEV min/max opcode");
3582     };
3583 
3584     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3585       // We found two constants, fold them together!
3586       ConstantInt *Fold = ConstantInt::get(
3587           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3588       Ops[0] = getConstant(Fold);
3589       Ops.erase(Ops.begin()+1);  // Erase the folded element
3590       if (Ops.size() == 1) return Ops[0];
3591       LHSC = cast<SCEVConstant>(Ops[0]);
3592     }
3593 
3594     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3595     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3596 
3597     if (IsMax ? IsMinV : IsMaxV) {
3598       // If we are left with a constant minimum(/maximum)-int, strip it off.
3599       Ops.erase(Ops.begin());
3600       --Idx;
3601     } else if (IsMax ? IsMaxV : IsMinV) {
3602       // If we have a max(/min) with a constant maximum(/minimum)-int,
3603       // it will always be the extremum.
3604       return LHSC;
3605     }
3606 
3607     if (Ops.size() == 1) return Ops[0];
3608   }
3609 
3610   // Find the first operation of the same kind
3611   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3612     ++Idx;
3613 
3614   // Check to see if one of the operands is of the same kind. If so, expand its
3615   // operands onto our operand list, and recurse to simplify.
3616   if (Idx < Ops.size()) {
3617     bool DeletedAny = false;
3618     while (Ops[Idx]->getSCEVType() == Kind) {
3619       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3620       Ops.erase(Ops.begin()+Idx);
3621       Ops.append(SMME->op_begin(), SMME->op_end());
3622       DeletedAny = true;
3623     }
3624 
3625     if (DeletedAny)
3626       return getMinMaxExpr(Kind, Ops);
3627   }
3628 
3629   // Okay, check to see if the same value occurs in the operand list twice.  If
3630   // so, delete one.  Since we sorted the list, these values are required to
3631   // be adjacent.
3632   llvm::CmpInst::Predicate GEPred =
3633       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3634   llvm::CmpInst::Predicate LEPred =
3635       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3636   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3637   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3638   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3639     if (Ops[i] == Ops[i + 1] ||
3640         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3641       //  X op Y op Y  -->  X op Y
3642       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3643       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3644       --i;
3645       --e;
3646     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3647                                                Ops[i + 1])) {
3648       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3649       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3650       --i;
3651       --e;
3652     }
3653   }
3654 
3655   if (Ops.size() == 1) return Ops[0];
3656 
3657   assert(!Ops.empty() && "Reduced smax down to nothing!");
3658 
3659   // Okay, it looks like we really DO need an expr.  Check to see if we
3660   // already have one, otherwise create a new one.
3661   const SCEV *ExistingSCEV;
3662   FoldingSetNodeID ID;
3663   void *IP;
3664   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3665   if (ExistingSCEV)
3666     return ExistingSCEV;
3667   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3668   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3669   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3670       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3671 
3672   UniqueSCEVs.InsertNode(S, IP);
3673   addToLoopUseLists(S);
3674   return S;
3675 }
3676 
3677 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3678   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3679   return getSMaxExpr(Ops);
3680 }
3681 
3682 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3683   return getMinMaxExpr(scSMaxExpr, Ops);
3684 }
3685 
3686 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3687   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3688   return getUMaxExpr(Ops);
3689 }
3690 
3691 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3692   return getMinMaxExpr(scUMaxExpr, Ops);
3693 }
3694 
3695 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3696                                          const SCEV *RHS) {
3697   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3698   return getSMinExpr(Ops);
3699 }
3700 
3701 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3702   return getMinMaxExpr(scSMinExpr, Ops);
3703 }
3704 
3705 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3706                                          const SCEV *RHS) {
3707   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3708   return getUMinExpr(Ops);
3709 }
3710 
3711 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3712   return getMinMaxExpr(scUMinExpr, Ops);
3713 }
3714 
3715 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3716   // We can bypass creating a target-independent
3717   // constant expression and then folding it back into a ConstantInt.
3718   // This is just a compile-time optimization.
3719   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3720 }
3721 
3722 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3723                                              StructType *STy,
3724                                              unsigned FieldNo) {
3725   // We can bypass creating a target-independent
3726   // constant expression and then folding it back into a ConstantInt.
3727   // This is just a compile-time optimization.
3728   return getConstant(
3729       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3730 }
3731 
3732 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3733   // Don't attempt to do anything other than create a SCEVUnknown object
3734   // here.  createSCEV only calls getUnknown after checking for all other
3735   // interesting possibilities, and any other code that calls getUnknown
3736   // is doing so in order to hide a value from SCEV canonicalization.
3737 
3738   FoldingSetNodeID ID;
3739   ID.AddInteger(scUnknown);
3740   ID.AddPointer(V);
3741   void *IP = nullptr;
3742   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3743     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3744            "Stale SCEVUnknown in uniquing map!");
3745     return S;
3746   }
3747   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3748                                             FirstUnknown);
3749   FirstUnknown = cast<SCEVUnknown>(S);
3750   UniqueSCEVs.InsertNode(S, IP);
3751   return S;
3752 }
3753 
3754 //===----------------------------------------------------------------------===//
3755 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3756 //
3757 
3758 /// Test if values of the given type are analyzable within the SCEV
3759 /// framework. This primarily includes integer types, and it can optionally
3760 /// include pointer types if the ScalarEvolution class has access to
3761 /// target-specific information.
3762 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3763   // Integers and pointers are always SCEVable.
3764   return Ty->isIntOrPtrTy();
3765 }
3766 
3767 /// Return the size in bits of the specified type, for which isSCEVable must
3768 /// return true.
3769 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3770   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3771   if (Ty->isPointerTy())
3772     return getDataLayout().getIndexTypeSizeInBits(Ty);
3773   return getDataLayout().getTypeSizeInBits(Ty);
3774 }
3775 
3776 /// Return a type with the same bitwidth as the given type and which represents
3777 /// how SCEV will treat the given type, for which isSCEVable must return
3778 /// true. For pointer types, this is the pointer-sized integer type.
3779 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3780   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3781 
3782   if (Ty->isIntegerTy())
3783     return Ty;
3784 
3785   // The only other support type is pointer.
3786   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3787   return getDataLayout().getIntPtrType(Ty);
3788 }
3789 
3790 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3791   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3792 }
3793 
3794 const SCEV *ScalarEvolution::getCouldNotCompute() {
3795   return CouldNotCompute.get();
3796 }
3797 
3798 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3799   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3800     auto *SU = dyn_cast<SCEVUnknown>(S);
3801     return SU && SU->getValue() == nullptr;
3802   });
3803 
3804   return !ContainsNulls;
3805 }
3806 
3807 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3808   HasRecMapType::iterator I = HasRecMap.find(S);
3809   if (I != HasRecMap.end())
3810     return I->second;
3811 
3812   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3813   HasRecMap.insert({S, FoundAddRec});
3814   return FoundAddRec;
3815 }
3816 
3817 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3818 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3819 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3820 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3821   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3822   if (!Add)
3823     return {S, nullptr};
3824 
3825   if (Add->getNumOperands() != 2)
3826     return {S, nullptr};
3827 
3828   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3829   if (!ConstOp)
3830     return {S, nullptr};
3831 
3832   return {Add->getOperand(1), ConstOp->getValue()};
3833 }
3834 
3835 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3836 /// by the value and offset from any ValueOffsetPair in the set.
3837 SetVector<ScalarEvolution::ValueOffsetPair> *
3838 ScalarEvolution::getSCEVValues(const SCEV *S) {
3839   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3840   if (SI == ExprValueMap.end())
3841     return nullptr;
3842 #ifndef NDEBUG
3843   if (VerifySCEVMap) {
3844     // Check there is no dangling Value in the set returned.
3845     for (const auto &VE : SI->second)
3846       assert(ValueExprMap.count(VE.first));
3847   }
3848 #endif
3849   return &SI->second;
3850 }
3851 
3852 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3853 /// cannot be used separately. eraseValueFromMap should be used to remove
3854 /// V from ValueExprMap and ExprValueMap at the same time.
3855 void ScalarEvolution::eraseValueFromMap(Value *V) {
3856   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3857   if (I != ValueExprMap.end()) {
3858     const SCEV *S = I->second;
3859     // Remove {V, 0} from the set of ExprValueMap[S]
3860     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3861       SV->remove({V, nullptr});
3862 
3863     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3864     const SCEV *Stripped;
3865     ConstantInt *Offset;
3866     std::tie(Stripped, Offset) = splitAddExpr(S);
3867     if (Offset != nullptr) {
3868       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3869         SV->remove({V, Offset});
3870     }
3871     ValueExprMap.erase(V);
3872   }
3873 }
3874 
3875 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3876 /// TODO: In reality it is better to check the poison recursively
3877 /// but this is better than nothing.
3878 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3879   if (auto *I = dyn_cast<Instruction>(V)) {
3880     if (isa<OverflowingBinaryOperator>(I)) {
3881       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3882         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3883           return true;
3884         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3885           return true;
3886       }
3887     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3888       return true;
3889   }
3890   return false;
3891 }
3892 
3893 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3894 /// create a new one.
3895 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3896   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3897 
3898   const SCEV *S = getExistingSCEV(V);
3899   if (S == nullptr) {
3900     S = createSCEV(V);
3901     // During PHI resolution, it is possible to create two SCEVs for the same
3902     // V, so it is needed to double check whether V->S is inserted into
3903     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3904     std::pair<ValueExprMapType::iterator, bool> Pair =
3905         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3906     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3907       ExprValueMap[S].insert({V, nullptr});
3908 
3909       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3910       // ExprValueMap.
3911       const SCEV *Stripped = S;
3912       ConstantInt *Offset = nullptr;
3913       std::tie(Stripped, Offset) = splitAddExpr(S);
3914       // If stripped is SCEVUnknown, don't bother to save
3915       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3916       // increase the complexity of the expansion code.
3917       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3918       // because it may generate add/sub instead of GEP in SCEV expansion.
3919       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3920           !isa<GetElementPtrInst>(V))
3921         ExprValueMap[Stripped].insert({V, Offset});
3922     }
3923   }
3924   return S;
3925 }
3926 
3927 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3928   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3929 
3930   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3931   if (I != ValueExprMap.end()) {
3932     const SCEV *S = I->second;
3933     if (checkValidity(S))
3934       return S;
3935     eraseValueFromMap(V);
3936     forgetMemoizedResults(S);
3937   }
3938   return nullptr;
3939 }
3940 
3941 /// Return a SCEV corresponding to -V = -1*V
3942 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3943                                              SCEV::NoWrapFlags Flags) {
3944   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3945     return getConstant(
3946                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3947 
3948   Type *Ty = V->getType();
3949   Ty = getEffectiveSCEVType(Ty);
3950   return getMulExpr(
3951       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3952 }
3953 
3954 /// If Expr computes ~A, return A else return nullptr
3955 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3956   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3957   if (!Add || Add->getNumOperands() != 2 ||
3958       !Add->getOperand(0)->isAllOnesValue())
3959     return nullptr;
3960 
3961   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3962   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3963       !AddRHS->getOperand(0)->isAllOnesValue())
3964     return nullptr;
3965 
3966   return AddRHS->getOperand(1);
3967 }
3968 
3969 /// Return a SCEV corresponding to ~V = -1-V
3970 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3971   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3972     return getConstant(
3973                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3974 
3975   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3976   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3977     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3978       SmallVector<const SCEV *, 2> MatchedOperands;
3979       for (const SCEV *Operand : MME->operands()) {
3980         const SCEV *Matched = MatchNotExpr(Operand);
3981         if (!Matched)
3982           return (const SCEV *)nullptr;
3983         MatchedOperands.push_back(Matched);
3984       }
3985       return getMinMaxExpr(
3986           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3987           MatchedOperands);
3988     };
3989     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3990       return Replaced;
3991   }
3992 
3993   Type *Ty = V->getType();
3994   Ty = getEffectiveSCEVType(Ty);
3995   const SCEV *AllOnes =
3996                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3997   return getMinusSCEV(AllOnes, V);
3998 }
3999 
4000 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4001                                           SCEV::NoWrapFlags Flags,
4002                                           unsigned Depth) {
4003   // Fast path: X - X --> 0.
4004   if (LHS == RHS)
4005     return getZero(LHS->getType());
4006 
4007   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4008   // makes it so that we cannot make much use of NUW.
4009   auto AddFlags = SCEV::FlagAnyWrap;
4010   const bool RHSIsNotMinSigned =
4011       !getSignedRangeMin(RHS).isMinSignedValue();
4012   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4013     // Let M be the minimum representable signed value. Then (-1)*RHS
4014     // signed-wraps if and only if RHS is M. That can happen even for
4015     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4016     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4017     // (-1)*RHS, we need to prove that RHS != M.
4018     //
4019     // If LHS is non-negative and we know that LHS - RHS does not
4020     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4021     // either by proving that RHS > M or that LHS >= 0.
4022     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4023       AddFlags = SCEV::FlagNSW;
4024     }
4025   }
4026 
4027   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4028   // RHS is NSW and LHS >= 0.
4029   //
4030   // The difficulty here is that the NSW flag may have been proven
4031   // relative to a loop that is to be found in a recurrence in LHS and
4032   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4033   // larger scope than intended.
4034   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4035 
4036   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4037 }
4038 
4039 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4040                                                      unsigned Depth) {
4041   Type *SrcTy = V->getType();
4042   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4043          "Cannot truncate or zero extend with non-integer arguments!");
4044   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4045     return V;  // No conversion
4046   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4047     return getTruncateExpr(V, Ty, Depth);
4048   return getZeroExtendExpr(V, Ty, Depth);
4049 }
4050 
4051 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4052                                                      unsigned Depth) {
4053   Type *SrcTy = V->getType();
4054   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4055          "Cannot truncate or zero extend with non-integer arguments!");
4056   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4057     return V;  // No conversion
4058   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4059     return getTruncateExpr(V, Ty, Depth);
4060   return getSignExtendExpr(V, Ty, Depth);
4061 }
4062 
4063 const SCEV *
4064 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4065   Type *SrcTy = V->getType();
4066   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4067          "Cannot noop or zero extend with non-integer arguments!");
4068   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4069          "getNoopOrZeroExtend cannot truncate!");
4070   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4071     return V;  // No conversion
4072   return getZeroExtendExpr(V, Ty);
4073 }
4074 
4075 const SCEV *
4076 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4077   Type *SrcTy = V->getType();
4078   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4079          "Cannot noop or sign extend with non-integer arguments!");
4080   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4081          "getNoopOrSignExtend cannot truncate!");
4082   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4083     return V;  // No conversion
4084   return getSignExtendExpr(V, Ty);
4085 }
4086 
4087 const SCEV *
4088 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4089   Type *SrcTy = V->getType();
4090   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4091          "Cannot noop or any extend with non-integer arguments!");
4092   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4093          "getNoopOrAnyExtend cannot truncate!");
4094   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4095     return V;  // No conversion
4096   return getAnyExtendExpr(V, Ty);
4097 }
4098 
4099 const SCEV *
4100 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4101   Type *SrcTy = V->getType();
4102   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4103          "Cannot truncate or noop with non-integer arguments!");
4104   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4105          "getTruncateOrNoop cannot extend!");
4106   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4107     return V;  // No conversion
4108   return getTruncateExpr(V, Ty);
4109 }
4110 
4111 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4112                                                         const SCEV *RHS) {
4113   const SCEV *PromotedLHS = LHS;
4114   const SCEV *PromotedRHS = RHS;
4115 
4116   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4117     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4118   else
4119     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4120 
4121   return getUMaxExpr(PromotedLHS, PromotedRHS);
4122 }
4123 
4124 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4125                                                         const SCEV *RHS) {
4126   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4127   return getUMinFromMismatchedTypes(Ops);
4128 }
4129 
4130 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4131     SmallVectorImpl<const SCEV *> &Ops) {
4132   assert(!Ops.empty() && "At least one operand must be!");
4133   // Trivial case.
4134   if (Ops.size() == 1)
4135     return Ops[0];
4136 
4137   // Find the max type first.
4138   Type *MaxType = nullptr;
4139   for (auto *S : Ops)
4140     if (MaxType)
4141       MaxType = getWiderType(MaxType, S->getType());
4142     else
4143       MaxType = S->getType();
4144 
4145   // Extend all ops to max type.
4146   SmallVector<const SCEV *, 2> PromotedOps;
4147   for (auto *S : Ops)
4148     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4149 
4150   // Generate umin.
4151   return getUMinExpr(PromotedOps);
4152 }
4153 
4154 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4155   // A pointer operand may evaluate to a nonpointer expression, such as null.
4156   if (!V->getType()->isPointerTy())
4157     return V;
4158 
4159   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4160     return getPointerBase(Cast->getOperand());
4161   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4162     const SCEV *PtrOp = nullptr;
4163     for (const SCEV *NAryOp : NAry->operands()) {
4164       if (NAryOp->getType()->isPointerTy()) {
4165         // Cannot find the base of an expression with multiple pointer operands.
4166         if (PtrOp)
4167           return V;
4168         PtrOp = NAryOp;
4169       }
4170     }
4171     if (!PtrOp)
4172       return V;
4173     return getPointerBase(PtrOp);
4174   }
4175   return V;
4176 }
4177 
4178 /// Push users of the given Instruction onto the given Worklist.
4179 static void
4180 PushDefUseChildren(Instruction *I,
4181                    SmallVectorImpl<Instruction *> &Worklist) {
4182   // Push the def-use children onto the Worklist stack.
4183   for (User *U : I->users())
4184     Worklist.push_back(cast<Instruction>(U));
4185 }
4186 
4187 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4188   SmallVector<Instruction *, 16> Worklist;
4189   PushDefUseChildren(PN, Worklist);
4190 
4191   SmallPtrSet<Instruction *, 8> Visited;
4192   Visited.insert(PN);
4193   while (!Worklist.empty()) {
4194     Instruction *I = Worklist.pop_back_val();
4195     if (!Visited.insert(I).second)
4196       continue;
4197 
4198     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4199     if (It != ValueExprMap.end()) {
4200       const SCEV *Old = It->second;
4201 
4202       // Short-circuit the def-use traversal if the symbolic name
4203       // ceases to appear in expressions.
4204       if (Old != SymName && !hasOperand(Old, SymName))
4205         continue;
4206 
4207       // SCEVUnknown for a PHI either means that it has an unrecognized
4208       // structure, it's a PHI that's in the progress of being computed
4209       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4210       // additional loop trip count information isn't going to change anything.
4211       // In the second case, createNodeForPHI will perform the necessary
4212       // updates on its own when it gets to that point. In the third, we do
4213       // want to forget the SCEVUnknown.
4214       if (!isa<PHINode>(I) ||
4215           !isa<SCEVUnknown>(Old) ||
4216           (I != PN && Old == SymName)) {
4217         eraseValueFromMap(It->first);
4218         forgetMemoizedResults(Old);
4219       }
4220     }
4221 
4222     PushDefUseChildren(I, Worklist);
4223   }
4224 }
4225 
4226 namespace {
4227 
4228 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4229 /// expression in case its Loop is L. If it is not L then
4230 /// if IgnoreOtherLoops is true then use AddRec itself
4231 /// otherwise rewrite cannot be done.
4232 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4233 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4234 public:
4235   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4236                              bool IgnoreOtherLoops = true) {
4237     SCEVInitRewriter Rewriter(L, SE);
4238     const SCEV *Result = Rewriter.visit(S);
4239     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4240       return SE.getCouldNotCompute();
4241     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4242                ? SE.getCouldNotCompute()
4243                : Result;
4244   }
4245 
4246   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4247     if (!SE.isLoopInvariant(Expr, L))
4248       SeenLoopVariantSCEVUnknown = true;
4249     return Expr;
4250   }
4251 
4252   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4253     // Only re-write AddRecExprs for this loop.
4254     if (Expr->getLoop() == L)
4255       return Expr->getStart();
4256     SeenOtherLoops = true;
4257     return Expr;
4258   }
4259 
4260   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4261 
4262   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4263 
4264 private:
4265   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4266       : SCEVRewriteVisitor(SE), L(L) {}
4267 
4268   const Loop *L;
4269   bool SeenLoopVariantSCEVUnknown = false;
4270   bool SeenOtherLoops = false;
4271 };
4272 
4273 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4274 /// increment expression in case its Loop is L. If it is not L then
4275 /// use AddRec itself.
4276 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4277 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4278 public:
4279   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4280     SCEVPostIncRewriter Rewriter(L, SE);
4281     const SCEV *Result = Rewriter.visit(S);
4282     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4283         ? SE.getCouldNotCompute()
4284         : Result;
4285   }
4286 
4287   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4288     if (!SE.isLoopInvariant(Expr, L))
4289       SeenLoopVariantSCEVUnknown = true;
4290     return Expr;
4291   }
4292 
4293   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4294     // Only re-write AddRecExprs for this loop.
4295     if (Expr->getLoop() == L)
4296       return Expr->getPostIncExpr(SE);
4297     SeenOtherLoops = true;
4298     return Expr;
4299   }
4300 
4301   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4302 
4303   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4304 
4305 private:
4306   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4307       : SCEVRewriteVisitor(SE), L(L) {}
4308 
4309   const Loop *L;
4310   bool SeenLoopVariantSCEVUnknown = false;
4311   bool SeenOtherLoops = false;
4312 };
4313 
4314 /// This class evaluates the compare condition by matching it against the
4315 /// condition of loop latch. If there is a match we assume a true value
4316 /// for the condition while building SCEV nodes.
4317 class SCEVBackedgeConditionFolder
4318     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4319 public:
4320   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4321                              ScalarEvolution &SE) {
4322     bool IsPosBECond = false;
4323     Value *BECond = nullptr;
4324     if (BasicBlock *Latch = L->getLoopLatch()) {
4325       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4326       if (BI && BI->isConditional()) {
4327         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4328                "Both outgoing branches should not target same header!");
4329         BECond = BI->getCondition();
4330         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4331       } else {
4332         return S;
4333       }
4334     }
4335     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4336     return Rewriter.visit(S);
4337   }
4338 
4339   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4340     const SCEV *Result = Expr;
4341     bool InvariantF = SE.isLoopInvariant(Expr, L);
4342 
4343     if (!InvariantF) {
4344       Instruction *I = cast<Instruction>(Expr->getValue());
4345       switch (I->getOpcode()) {
4346       case Instruction::Select: {
4347         SelectInst *SI = cast<SelectInst>(I);
4348         Optional<const SCEV *> Res =
4349             compareWithBackedgeCondition(SI->getCondition());
4350         if (Res.hasValue()) {
4351           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4352           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4353         }
4354         break;
4355       }
4356       default: {
4357         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4358         if (Res.hasValue())
4359           Result = Res.getValue();
4360         break;
4361       }
4362       }
4363     }
4364     return Result;
4365   }
4366 
4367 private:
4368   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4369                                        bool IsPosBECond, ScalarEvolution &SE)
4370       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4371         IsPositiveBECond(IsPosBECond) {}
4372 
4373   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4374 
4375   const Loop *L;
4376   /// Loop back condition.
4377   Value *BackedgeCond = nullptr;
4378   /// Set to true if loop back is on positive branch condition.
4379   bool IsPositiveBECond;
4380 };
4381 
4382 Optional<const SCEV *>
4383 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4384 
4385   // If value matches the backedge condition for loop latch,
4386   // then return a constant evolution node based on loopback
4387   // branch taken.
4388   if (BackedgeCond == IC)
4389     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4390                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4391   return None;
4392 }
4393 
4394 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4395 public:
4396   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4397                              ScalarEvolution &SE) {
4398     SCEVShiftRewriter Rewriter(L, SE);
4399     const SCEV *Result = Rewriter.visit(S);
4400     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4401   }
4402 
4403   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4404     // Only allow AddRecExprs for this loop.
4405     if (!SE.isLoopInvariant(Expr, L))
4406       Valid = false;
4407     return Expr;
4408   }
4409 
4410   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4411     if (Expr->getLoop() == L && Expr->isAffine())
4412       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4413     Valid = false;
4414     return Expr;
4415   }
4416 
4417   bool isValid() { return Valid; }
4418 
4419 private:
4420   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4421       : SCEVRewriteVisitor(SE), L(L) {}
4422 
4423   const Loop *L;
4424   bool Valid = true;
4425 };
4426 
4427 } // end anonymous namespace
4428 
4429 SCEV::NoWrapFlags
4430 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4431   if (!AR->isAffine())
4432     return SCEV::FlagAnyWrap;
4433 
4434   using OBO = OverflowingBinaryOperator;
4435 
4436   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4437 
4438   if (!AR->hasNoSignedWrap()) {
4439     ConstantRange AddRecRange = getSignedRange(AR);
4440     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4441 
4442     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4443         Instruction::Add, IncRange, OBO::NoSignedWrap);
4444     if (NSWRegion.contains(AddRecRange))
4445       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4446   }
4447 
4448   if (!AR->hasNoUnsignedWrap()) {
4449     ConstantRange AddRecRange = getUnsignedRange(AR);
4450     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4451 
4452     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4453         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4454     if (NUWRegion.contains(AddRecRange))
4455       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4456   }
4457 
4458   return Result;
4459 }
4460 
4461 namespace {
4462 
4463 /// Represents an abstract binary operation.  This may exist as a
4464 /// normal instruction or constant expression, or may have been
4465 /// derived from an expression tree.
4466 struct BinaryOp {
4467   unsigned Opcode;
4468   Value *LHS;
4469   Value *RHS;
4470   bool IsNSW = false;
4471   bool IsNUW = false;
4472 
4473   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4474   /// constant expression.
4475   Operator *Op = nullptr;
4476 
4477   explicit BinaryOp(Operator *Op)
4478       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4479         Op(Op) {
4480     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4481       IsNSW = OBO->hasNoSignedWrap();
4482       IsNUW = OBO->hasNoUnsignedWrap();
4483     }
4484   }
4485 
4486   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4487                     bool IsNUW = false)
4488       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4489 };
4490 
4491 } // end anonymous namespace
4492 
4493 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4494 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4495   auto *Op = dyn_cast<Operator>(V);
4496   if (!Op)
4497     return None;
4498 
4499   // Implementation detail: all the cleverness here should happen without
4500   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4501   // SCEV expressions when possible, and we should not break that.
4502 
4503   switch (Op->getOpcode()) {
4504   case Instruction::Add:
4505   case Instruction::Sub:
4506   case Instruction::Mul:
4507   case Instruction::UDiv:
4508   case Instruction::URem:
4509   case Instruction::And:
4510   case Instruction::Or:
4511   case Instruction::AShr:
4512   case Instruction::Shl:
4513     return BinaryOp(Op);
4514 
4515   case Instruction::Xor:
4516     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4517       // If the RHS of the xor is a signmask, then this is just an add.
4518       // Instcombine turns add of signmask into xor as a strength reduction step.
4519       if (RHSC->getValue().isSignMask())
4520         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4521     return BinaryOp(Op);
4522 
4523   case Instruction::LShr:
4524     // Turn logical shift right of a constant into a unsigned divide.
4525     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4526       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4527 
4528       // If the shift count is not less than the bitwidth, the result of
4529       // the shift is undefined. Don't try to analyze it, because the
4530       // resolution chosen here may differ from the resolution chosen in
4531       // other parts of the compiler.
4532       if (SA->getValue().ult(BitWidth)) {
4533         Constant *X =
4534             ConstantInt::get(SA->getContext(),
4535                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4536         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4537       }
4538     }
4539     return BinaryOp(Op);
4540 
4541   case Instruction::ExtractValue: {
4542     auto *EVI = cast<ExtractValueInst>(Op);
4543     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4544       break;
4545 
4546     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4547     if (!WO)
4548       break;
4549 
4550     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4551     bool Signed = WO->isSigned();
4552     // TODO: Should add nuw/nsw flags for mul as well.
4553     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4554       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4555 
4556     // Now that we know that all uses of the arithmetic-result component of
4557     // CI are guarded by the overflow check, we can go ahead and pretend
4558     // that the arithmetic is non-overflowing.
4559     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4560                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4561   }
4562 
4563   default:
4564     break;
4565   }
4566 
4567   return None;
4568 }
4569 
4570 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4571 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4572 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4573 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4574 /// follows one of the following patterns:
4575 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4576 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4577 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4578 /// we return the type of the truncation operation, and indicate whether the
4579 /// truncated type should be treated as signed/unsigned by setting
4580 /// \p Signed to true/false, respectively.
4581 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4582                                bool &Signed, ScalarEvolution &SE) {
4583   // The case where Op == SymbolicPHI (that is, with no type conversions on
4584   // the way) is handled by the regular add recurrence creating logic and
4585   // would have already been triggered in createAddRecForPHI. Reaching it here
4586   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4587   // because one of the other operands of the SCEVAddExpr updating this PHI is
4588   // not invariant).
4589   //
4590   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4591   // this case predicates that allow us to prove that Op == SymbolicPHI will
4592   // be added.
4593   if (Op == SymbolicPHI)
4594     return nullptr;
4595 
4596   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4597   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4598   if (SourceBits != NewBits)
4599     return nullptr;
4600 
4601   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4602   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4603   if (!SExt && !ZExt)
4604     return nullptr;
4605   const SCEVTruncateExpr *Trunc =
4606       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4607            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4608   if (!Trunc)
4609     return nullptr;
4610   const SCEV *X = Trunc->getOperand();
4611   if (X != SymbolicPHI)
4612     return nullptr;
4613   Signed = SExt != nullptr;
4614   return Trunc->getType();
4615 }
4616 
4617 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4618   if (!PN->getType()->isIntegerTy())
4619     return nullptr;
4620   const Loop *L = LI.getLoopFor(PN->getParent());
4621   if (!L || L->getHeader() != PN->getParent())
4622     return nullptr;
4623   return L;
4624 }
4625 
4626 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4627 // computation that updates the phi follows the following pattern:
4628 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4629 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4630 // If so, try to see if it can be rewritten as an AddRecExpr under some
4631 // Predicates. If successful, return them as a pair. Also cache the results
4632 // of the analysis.
4633 //
4634 // Example usage scenario:
4635 //    Say the Rewriter is called for the following SCEV:
4636 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4637 //    where:
4638 //         %X = phi i64 (%Start, %BEValue)
4639 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4640 //    and call this function with %SymbolicPHI = %X.
4641 //
4642 //    The analysis will find that the value coming around the backedge has
4643 //    the following SCEV:
4644 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4645 //    Upon concluding that this matches the desired pattern, the function
4646 //    will return the pair {NewAddRec, SmallPredsVec} where:
4647 //         NewAddRec = {%Start,+,%Step}
4648 //         SmallPredsVec = {P1, P2, P3} as follows:
4649 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4650 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4651 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4652 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4653 //    under the predicates {P1,P2,P3}.
4654 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4655 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4656 //
4657 // TODO's:
4658 //
4659 // 1) Extend the Induction descriptor to also support inductions that involve
4660 //    casts: When needed (namely, when we are called in the context of the
4661 //    vectorizer induction analysis), a Set of cast instructions will be
4662 //    populated by this method, and provided back to isInductionPHI. This is
4663 //    needed to allow the vectorizer to properly record them to be ignored by
4664 //    the cost model and to avoid vectorizing them (otherwise these casts,
4665 //    which are redundant under the runtime overflow checks, will be
4666 //    vectorized, which can be costly).
4667 //
4668 // 2) Support additional induction/PHISCEV patterns: We also want to support
4669 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4670 //    after the induction update operation (the induction increment):
4671 //
4672 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4673 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4674 //
4675 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4676 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4677 //
4678 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4679 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4680 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4681   SmallVector<const SCEVPredicate *, 3> Predicates;
4682 
4683   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4684   // return an AddRec expression under some predicate.
4685 
4686   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4687   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4688   assert(L && "Expecting an integer loop header phi");
4689 
4690   // The loop may have multiple entrances or multiple exits; we can analyze
4691   // this phi as an addrec if it has a unique entry value and a unique
4692   // backedge value.
4693   Value *BEValueV = nullptr, *StartValueV = nullptr;
4694   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4695     Value *V = PN->getIncomingValue(i);
4696     if (L->contains(PN->getIncomingBlock(i))) {
4697       if (!BEValueV) {
4698         BEValueV = V;
4699       } else if (BEValueV != V) {
4700         BEValueV = nullptr;
4701         break;
4702       }
4703     } else if (!StartValueV) {
4704       StartValueV = V;
4705     } else if (StartValueV != V) {
4706       StartValueV = nullptr;
4707       break;
4708     }
4709   }
4710   if (!BEValueV || !StartValueV)
4711     return None;
4712 
4713   const SCEV *BEValue = getSCEV(BEValueV);
4714 
4715   // If the value coming around the backedge is an add with the symbolic
4716   // value we just inserted, possibly with casts that we can ignore under
4717   // an appropriate runtime guard, then we found a simple induction variable!
4718   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4719   if (!Add)
4720     return None;
4721 
4722   // If there is a single occurrence of the symbolic value, possibly
4723   // casted, replace it with a recurrence.
4724   unsigned FoundIndex = Add->getNumOperands();
4725   Type *TruncTy = nullptr;
4726   bool Signed;
4727   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4728     if ((TruncTy =
4729              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4730       if (FoundIndex == e) {
4731         FoundIndex = i;
4732         break;
4733       }
4734 
4735   if (FoundIndex == Add->getNumOperands())
4736     return None;
4737 
4738   // Create an add with everything but the specified operand.
4739   SmallVector<const SCEV *, 8> Ops;
4740   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4741     if (i != FoundIndex)
4742       Ops.push_back(Add->getOperand(i));
4743   const SCEV *Accum = getAddExpr(Ops);
4744 
4745   // The runtime checks will not be valid if the step amount is
4746   // varying inside the loop.
4747   if (!isLoopInvariant(Accum, L))
4748     return None;
4749 
4750   // *** Part2: Create the predicates
4751 
4752   // Analysis was successful: we have a phi-with-cast pattern for which we
4753   // can return an AddRec expression under the following predicates:
4754   //
4755   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4756   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4757   // P2: An Equal predicate that guarantees that
4758   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4759   // P3: An Equal predicate that guarantees that
4760   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4761   //
4762   // As we next prove, the above predicates guarantee that:
4763   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4764   //
4765   //
4766   // More formally, we want to prove that:
4767   //     Expr(i+1) = Start + (i+1) * Accum
4768   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4769   //
4770   // Given that:
4771   // 1) Expr(0) = Start
4772   // 2) Expr(1) = Start + Accum
4773   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4774   // 3) Induction hypothesis (step i):
4775   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4776   //
4777   // Proof:
4778   //  Expr(i+1) =
4779   //   = Start + (i+1)*Accum
4780   //   = (Start + i*Accum) + Accum
4781   //   = Expr(i) + Accum
4782   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4783   //                                                             :: from step i
4784   //
4785   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4786   //
4787   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4788   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4789   //     + Accum                                                     :: from P3
4790   //
4791   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4792   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4793   //
4794   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4795   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4796   //
4797   // By induction, the same applies to all iterations 1<=i<n:
4798   //
4799 
4800   // Create a truncated addrec for which we will add a no overflow check (P1).
4801   const SCEV *StartVal = getSCEV(StartValueV);
4802   const SCEV *PHISCEV =
4803       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4804                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4805 
4806   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4807   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4808   // will be constant.
4809   //
4810   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4811   // add P1.
4812   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4813     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4814         Signed ? SCEVWrapPredicate::IncrementNSSW
4815                : SCEVWrapPredicate::IncrementNUSW;
4816     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4817     Predicates.push_back(AddRecPred);
4818   }
4819 
4820   // Create the Equal Predicates P2,P3:
4821 
4822   // It is possible that the predicates P2 and/or P3 are computable at
4823   // compile time due to StartVal and/or Accum being constants.
4824   // If either one is, then we can check that now and escape if either P2
4825   // or P3 is false.
4826 
4827   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4828   // for each of StartVal and Accum
4829   auto getExtendedExpr = [&](const SCEV *Expr,
4830                              bool CreateSignExtend) -> const SCEV * {
4831     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4832     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4833     const SCEV *ExtendedExpr =
4834         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4835                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4836     return ExtendedExpr;
4837   };
4838 
4839   // Given:
4840   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4841   //               = getExtendedExpr(Expr)
4842   // Determine whether the predicate P: Expr == ExtendedExpr
4843   // is known to be false at compile time
4844   auto PredIsKnownFalse = [&](const SCEV *Expr,
4845                               const SCEV *ExtendedExpr) -> bool {
4846     return Expr != ExtendedExpr &&
4847            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4848   };
4849 
4850   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4851   if (PredIsKnownFalse(StartVal, StartExtended)) {
4852     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4853     return None;
4854   }
4855 
4856   // The Step is always Signed (because the overflow checks are either
4857   // NSSW or NUSW)
4858   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4859   if (PredIsKnownFalse(Accum, AccumExtended)) {
4860     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4861     return None;
4862   }
4863 
4864   auto AppendPredicate = [&](const SCEV *Expr,
4865                              const SCEV *ExtendedExpr) -> void {
4866     if (Expr != ExtendedExpr &&
4867         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4868       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4869       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4870       Predicates.push_back(Pred);
4871     }
4872   };
4873 
4874   AppendPredicate(StartVal, StartExtended);
4875   AppendPredicate(Accum, AccumExtended);
4876 
4877   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4878   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4879   // into NewAR if it will also add the runtime overflow checks specified in
4880   // Predicates.
4881   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4882 
4883   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4884       std::make_pair(NewAR, Predicates);
4885   // Remember the result of the analysis for this SCEV at this locayyytion.
4886   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4887   return PredRewrite;
4888 }
4889 
4890 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4891 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4892   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4893   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4894   if (!L)
4895     return None;
4896 
4897   // Check to see if we already analyzed this PHI.
4898   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4899   if (I != PredicatedSCEVRewrites.end()) {
4900     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4901         I->second;
4902     // Analysis was done before and failed to create an AddRec:
4903     if (Rewrite.first == SymbolicPHI)
4904       return None;
4905     // Analysis was done before and succeeded to create an AddRec under
4906     // a predicate:
4907     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4908     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4909     return Rewrite;
4910   }
4911 
4912   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4913     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4914 
4915   // Record in the cache that the analysis failed
4916   if (!Rewrite) {
4917     SmallVector<const SCEVPredicate *, 3> Predicates;
4918     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4919     return None;
4920   }
4921 
4922   return Rewrite;
4923 }
4924 
4925 // FIXME: This utility is currently required because the Rewriter currently
4926 // does not rewrite this expression:
4927 // {0, +, (sext ix (trunc iy to ix) to iy)}
4928 // into {0, +, %step},
4929 // even when the following Equal predicate exists:
4930 // "%step == (sext ix (trunc iy to ix) to iy)".
4931 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4932     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4933   if (AR1 == AR2)
4934     return true;
4935 
4936   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4937     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4938         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4939       return false;
4940     return true;
4941   };
4942 
4943   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4944       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4945     return false;
4946   return true;
4947 }
4948 
4949 /// A helper function for createAddRecFromPHI to handle simple cases.
4950 ///
4951 /// This function tries to find an AddRec expression for the simplest (yet most
4952 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4953 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4954 /// technique for finding the AddRec expression.
4955 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4956                                                       Value *BEValueV,
4957                                                       Value *StartValueV) {
4958   const Loop *L = LI.getLoopFor(PN->getParent());
4959   assert(L && L->getHeader() == PN->getParent());
4960   assert(BEValueV && StartValueV);
4961 
4962   auto BO = MatchBinaryOp(BEValueV, DT);
4963   if (!BO)
4964     return nullptr;
4965 
4966   if (BO->Opcode != Instruction::Add)
4967     return nullptr;
4968 
4969   const SCEV *Accum = nullptr;
4970   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4971     Accum = getSCEV(BO->RHS);
4972   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4973     Accum = getSCEV(BO->LHS);
4974 
4975   if (!Accum)
4976     return nullptr;
4977 
4978   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4979   if (BO->IsNUW)
4980     Flags = setFlags(Flags, SCEV::FlagNUW);
4981   if (BO->IsNSW)
4982     Flags = setFlags(Flags, SCEV::FlagNSW);
4983 
4984   const SCEV *StartVal = getSCEV(StartValueV);
4985   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4986 
4987   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4988 
4989   // We can add Flags to the post-inc expression only if we
4990   // know that it is *undefined behavior* for BEValueV to
4991   // overflow.
4992   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4993     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4994       (void)getAddRecExpr(getAddExpr(StartVal, Accum, Flags), Accum, L, Flags);
4995 
4996   return PHISCEV;
4997 }
4998 
4999 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5000   const Loop *L = LI.getLoopFor(PN->getParent());
5001   if (!L || L->getHeader() != PN->getParent())
5002     return nullptr;
5003 
5004   // The loop may have multiple entrances or multiple exits; we can analyze
5005   // this phi as an addrec if it has a unique entry value and a unique
5006   // backedge value.
5007   Value *BEValueV = nullptr, *StartValueV = nullptr;
5008   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5009     Value *V = PN->getIncomingValue(i);
5010     if (L->contains(PN->getIncomingBlock(i))) {
5011       if (!BEValueV) {
5012         BEValueV = V;
5013       } else if (BEValueV != V) {
5014         BEValueV = nullptr;
5015         break;
5016       }
5017     } else if (!StartValueV) {
5018       StartValueV = V;
5019     } else if (StartValueV != V) {
5020       StartValueV = nullptr;
5021       break;
5022     }
5023   }
5024   if (!BEValueV || !StartValueV)
5025     return nullptr;
5026 
5027   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5028          "PHI node already processed?");
5029 
5030   // First, try to find AddRec expression without creating a fictituos symbolic
5031   // value for PN.
5032   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5033     return S;
5034 
5035   // Handle PHI node value symbolically.
5036   const SCEV *SymbolicName = getUnknown(PN);
5037   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5038 
5039   // Using this symbolic name for the PHI, analyze the value coming around
5040   // the back-edge.
5041   const SCEV *BEValue = getSCEV(BEValueV);
5042 
5043   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5044   // has a special value for the first iteration of the loop.
5045 
5046   // If the value coming around the backedge is an add with the symbolic
5047   // value we just inserted, then we found a simple induction variable!
5048   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5049     // If there is a single occurrence of the symbolic value, replace it
5050     // with a recurrence.
5051     unsigned FoundIndex = Add->getNumOperands();
5052     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5053       if (Add->getOperand(i) == SymbolicName)
5054         if (FoundIndex == e) {
5055           FoundIndex = i;
5056           break;
5057         }
5058 
5059     if (FoundIndex != Add->getNumOperands()) {
5060       // Create an add with everything but the specified operand.
5061       SmallVector<const SCEV *, 8> Ops;
5062       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5063         if (i != FoundIndex)
5064           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5065                                                              L, *this));
5066       const SCEV *Accum = getAddExpr(Ops);
5067 
5068       // This is not a valid addrec if the step amount is varying each
5069       // loop iteration, but is not itself an addrec in this loop.
5070       if (isLoopInvariant(Accum, L) ||
5071           (isa<SCEVAddRecExpr>(Accum) &&
5072            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5073         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5074 
5075         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5076           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5077             if (BO->IsNUW)
5078               Flags = setFlags(Flags, SCEV::FlagNUW);
5079             if (BO->IsNSW)
5080               Flags = setFlags(Flags, SCEV::FlagNSW);
5081           }
5082         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5083           // If the increment is an inbounds GEP, then we know the address
5084           // space cannot be wrapped around. We cannot make any guarantee
5085           // about signed or unsigned overflow because pointers are
5086           // unsigned but we may have a negative index from the base
5087           // pointer. We can guarantee that no unsigned wrap occurs if the
5088           // indices form a positive value.
5089           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5090             Flags = setFlags(Flags, SCEV::FlagNW);
5091 
5092             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5093             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5094               Flags = setFlags(Flags, SCEV::FlagNUW);
5095           }
5096 
5097           // We cannot transfer nuw and nsw flags from subtraction
5098           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5099           // for instance.
5100         }
5101 
5102         const SCEV *StartVal = getSCEV(StartValueV);
5103         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5104 
5105         // Okay, for the entire analysis of this edge we assumed the PHI
5106         // to be symbolic.  We now need to go back and purge all of the
5107         // entries for the scalars that use the symbolic expression.
5108         forgetSymbolicName(PN, SymbolicName);
5109         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5110 
5111         // We can add Flags to the post-inc expression only if we
5112         // know that it is *undefined behavior* for BEValueV to
5113         // overflow.
5114         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5115           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5116             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5117 
5118         return PHISCEV;
5119       }
5120     }
5121   } else {
5122     // Otherwise, this could be a loop like this:
5123     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5124     // In this case, j = {1,+,1}  and BEValue is j.
5125     // Because the other in-value of i (0) fits the evolution of BEValue
5126     // i really is an addrec evolution.
5127     //
5128     // We can generalize this saying that i is the shifted value of BEValue
5129     // by one iteration:
5130     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5131     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5132     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5133     if (Shifted != getCouldNotCompute() &&
5134         Start != getCouldNotCompute()) {
5135       const SCEV *StartVal = getSCEV(StartValueV);
5136       if (Start == StartVal) {
5137         // Okay, for the entire analysis of this edge we assumed the PHI
5138         // to be symbolic.  We now need to go back and purge all of the
5139         // entries for the scalars that use the symbolic expression.
5140         forgetSymbolicName(PN, SymbolicName);
5141         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5142         return Shifted;
5143       }
5144     }
5145   }
5146 
5147   // Remove the temporary PHI node SCEV that has been inserted while intending
5148   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5149   // as it will prevent later (possibly simpler) SCEV expressions to be added
5150   // to the ValueExprMap.
5151   eraseValueFromMap(PN);
5152 
5153   return nullptr;
5154 }
5155 
5156 // Checks if the SCEV S is available at BB.  S is considered available at BB
5157 // if S can be materialized at BB without introducing a fault.
5158 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5159                                BasicBlock *BB) {
5160   struct CheckAvailable {
5161     bool TraversalDone = false;
5162     bool Available = true;
5163 
5164     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5165     BasicBlock *BB = nullptr;
5166     DominatorTree &DT;
5167 
5168     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5169       : L(L), BB(BB), DT(DT) {}
5170 
5171     bool setUnavailable() {
5172       TraversalDone = true;
5173       Available = false;
5174       return false;
5175     }
5176 
5177     bool follow(const SCEV *S) {
5178       switch (S->getSCEVType()) {
5179       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5180       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5181       case scUMinExpr:
5182       case scSMinExpr:
5183         // These expressions are available if their operand(s) is/are.
5184         return true;
5185 
5186       case scAddRecExpr: {
5187         // We allow add recurrences that are on the loop BB is in, or some
5188         // outer loop.  This guarantees availability because the value of the
5189         // add recurrence at BB is simply the "current" value of the induction
5190         // variable.  We can relax this in the future; for instance an add
5191         // recurrence on a sibling dominating loop is also available at BB.
5192         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5193         if (L && (ARLoop == L || ARLoop->contains(L)))
5194           return true;
5195 
5196         return setUnavailable();
5197       }
5198 
5199       case scUnknown: {
5200         // For SCEVUnknown, we check for simple dominance.
5201         const auto *SU = cast<SCEVUnknown>(S);
5202         Value *V = SU->getValue();
5203 
5204         if (isa<Argument>(V))
5205           return false;
5206 
5207         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5208           return false;
5209 
5210         return setUnavailable();
5211       }
5212 
5213       case scUDivExpr:
5214       case scCouldNotCompute:
5215         // We do not try to smart about these at all.
5216         return setUnavailable();
5217       }
5218       llvm_unreachable("switch should be fully covered!");
5219     }
5220 
5221     bool isDone() { return TraversalDone; }
5222   };
5223 
5224   CheckAvailable CA(L, BB, DT);
5225   SCEVTraversal<CheckAvailable> ST(CA);
5226 
5227   ST.visitAll(S);
5228   return CA.Available;
5229 }
5230 
5231 // Try to match a control flow sequence that branches out at BI and merges back
5232 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5233 // match.
5234 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5235                           Value *&C, Value *&LHS, Value *&RHS) {
5236   C = BI->getCondition();
5237 
5238   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5239   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5240 
5241   if (!LeftEdge.isSingleEdge())
5242     return false;
5243 
5244   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5245 
5246   Use &LeftUse = Merge->getOperandUse(0);
5247   Use &RightUse = Merge->getOperandUse(1);
5248 
5249   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5250     LHS = LeftUse;
5251     RHS = RightUse;
5252     return true;
5253   }
5254 
5255   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5256     LHS = RightUse;
5257     RHS = LeftUse;
5258     return true;
5259   }
5260 
5261   return false;
5262 }
5263 
5264 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5265   auto IsReachable =
5266       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5267   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5268     const Loop *L = LI.getLoopFor(PN->getParent());
5269 
5270     // We don't want to break LCSSA, even in a SCEV expression tree.
5271     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5272       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5273         return nullptr;
5274 
5275     // Try to match
5276     //
5277     //  br %cond, label %left, label %right
5278     // left:
5279     //  br label %merge
5280     // right:
5281     //  br label %merge
5282     // merge:
5283     //  V = phi [ %x, %left ], [ %y, %right ]
5284     //
5285     // as "select %cond, %x, %y"
5286 
5287     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5288     assert(IDom && "At least the entry block should dominate PN");
5289 
5290     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5291     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5292 
5293     if (BI && BI->isConditional() &&
5294         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5295         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5296         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5297       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5298   }
5299 
5300   return nullptr;
5301 }
5302 
5303 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5304   if (const SCEV *S = createAddRecFromPHI(PN))
5305     return S;
5306 
5307   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5308     return S;
5309 
5310   // If the PHI has a single incoming value, follow that value, unless the
5311   // PHI's incoming blocks are in a different loop, in which case doing so
5312   // risks breaking LCSSA form. Instcombine would normally zap these, but
5313   // it doesn't have DominatorTree information, so it may miss cases.
5314   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5315     if (LI.replacementPreservesLCSSAForm(PN, V))
5316       return getSCEV(V);
5317 
5318   // If it's not a loop phi, we can't handle it yet.
5319   return getUnknown(PN);
5320 }
5321 
5322 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5323                                                       Value *Cond,
5324                                                       Value *TrueVal,
5325                                                       Value *FalseVal) {
5326   // Handle "constant" branch or select. This can occur for instance when a
5327   // loop pass transforms an inner loop and moves on to process the outer loop.
5328   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5329     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5330 
5331   // Try to match some simple smax or umax patterns.
5332   auto *ICI = dyn_cast<ICmpInst>(Cond);
5333   if (!ICI)
5334     return getUnknown(I);
5335 
5336   Value *LHS = ICI->getOperand(0);
5337   Value *RHS = ICI->getOperand(1);
5338 
5339   switch (ICI->getPredicate()) {
5340   case ICmpInst::ICMP_SLT:
5341   case ICmpInst::ICMP_SLE:
5342     std::swap(LHS, RHS);
5343     LLVM_FALLTHROUGH;
5344   case ICmpInst::ICMP_SGT:
5345   case ICmpInst::ICMP_SGE:
5346     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5347     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5348     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5349       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5350       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5351       const SCEV *LA = getSCEV(TrueVal);
5352       const SCEV *RA = getSCEV(FalseVal);
5353       const SCEV *LDiff = getMinusSCEV(LA, LS);
5354       const SCEV *RDiff = getMinusSCEV(RA, RS);
5355       if (LDiff == RDiff)
5356         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5357       LDiff = getMinusSCEV(LA, RS);
5358       RDiff = getMinusSCEV(RA, LS);
5359       if (LDiff == RDiff)
5360         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5361     }
5362     break;
5363   case ICmpInst::ICMP_ULT:
5364   case ICmpInst::ICMP_ULE:
5365     std::swap(LHS, RHS);
5366     LLVM_FALLTHROUGH;
5367   case ICmpInst::ICMP_UGT:
5368   case ICmpInst::ICMP_UGE:
5369     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5370     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5371     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5372       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5373       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5374       const SCEV *LA = getSCEV(TrueVal);
5375       const SCEV *RA = getSCEV(FalseVal);
5376       const SCEV *LDiff = getMinusSCEV(LA, LS);
5377       const SCEV *RDiff = getMinusSCEV(RA, RS);
5378       if (LDiff == RDiff)
5379         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5380       LDiff = getMinusSCEV(LA, RS);
5381       RDiff = getMinusSCEV(RA, LS);
5382       if (LDiff == RDiff)
5383         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5384     }
5385     break;
5386   case ICmpInst::ICMP_NE:
5387     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5388     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5389         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5390       const SCEV *One = getOne(I->getType());
5391       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5392       const SCEV *LA = getSCEV(TrueVal);
5393       const SCEV *RA = getSCEV(FalseVal);
5394       const SCEV *LDiff = getMinusSCEV(LA, LS);
5395       const SCEV *RDiff = getMinusSCEV(RA, One);
5396       if (LDiff == RDiff)
5397         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5398     }
5399     break;
5400   case ICmpInst::ICMP_EQ:
5401     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5402     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5403         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5404       const SCEV *One = getOne(I->getType());
5405       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5406       const SCEV *LA = getSCEV(TrueVal);
5407       const SCEV *RA = getSCEV(FalseVal);
5408       const SCEV *LDiff = getMinusSCEV(LA, One);
5409       const SCEV *RDiff = getMinusSCEV(RA, LS);
5410       if (LDiff == RDiff)
5411         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5412     }
5413     break;
5414   default:
5415     break;
5416   }
5417 
5418   return getUnknown(I);
5419 }
5420 
5421 /// Expand GEP instructions into add and multiply operations. This allows them
5422 /// to be analyzed by regular SCEV code.
5423 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5424   // Don't attempt to analyze GEPs over unsized objects.
5425   if (!GEP->getSourceElementType()->isSized())
5426     return getUnknown(GEP);
5427 
5428   SmallVector<const SCEV *, 4> IndexExprs;
5429   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5430     IndexExprs.push_back(getSCEV(*Index));
5431   return getGEPExpr(GEP, IndexExprs);
5432 }
5433 
5434 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5435   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5436     return C->getAPInt().countTrailingZeros();
5437 
5438   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5439     return std::min(GetMinTrailingZeros(T->getOperand()),
5440                     (uint32_t)getTypeSizeInBits(T->getType()));
5441 
5442   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5443     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5444     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5445                ? getTypeSizeInBits(E->getType())
5446                : OpRes;
5447   }
5448 
5449   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5450     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5451     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5452                ? getTypeSizeInBits(E->getType())
5453                : OpRes;
5454   }
5455 
5456   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5457     // The result is the min of all operands results.
5458     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5459     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5460       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5461     return MinOpRes;
5462   }
5463 
5464   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5465     // The result is the sum of all operands results.
5466     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5467     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5468     for (unsigned i = 1, e = M->getNumOperands();
5469          SumOpRes != BitWidth && i != e; ++i)
5470       SumOpRes =
5471           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5472     return SumOpRes;
5473   }
5474 
5475   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5476     // The result is the min of all operands results.
5477     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5478     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5479       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5480     return MinOpRes;
5481   }
5482 
5483   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5484     // The result is the min of all operands results.
5485     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5486     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5487       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5488     return MinOpRes;
5489   }
5490 
5491   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5492     // The result is the min of all operands results.
5493     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5494     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5495       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5496     return MinOpRes;
5497   }
5498 
5499   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5500     // For a SCEVUnknown, ask ValueTracking.
5501     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5502     return Known.countMinTrailingZeros();
5503   }
5504 
5505   // SCEVUDivExpr
5506   return 0;
5507 }
5508 
5509 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5510   auto I = MinTrailingZerosCache.find(S);
5511   if (I != MinTrailingZerosCache.end())
5512     return I->second;
5513 
5514   uint32_t Result = GetMinTrailingZerosImpl(S);
5515   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5516   assert(InsertPair.second && "Should insert a new key");
5517   return InsertPair.first->second;
5518 }
5519 
5520 /// Helper method to assign a range to V from metadata present in the IR.
5521 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5522   if (Instruction *I = dyn_cast<Instruction>(V))
5523     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5524       return getConstantRangeFromMetadata(*MD);
5525 
5526   return None;
5527 }
5528 
5529 /// Determine the range for a particular SCEV.  If SignHint is
5530 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5531 /// with a "cleaner" unsigned (resp. signed) representation.
5532 const ConstantRange &
5533 ScalarEvolution::getRangeRef(const SCEV *S,
5534                              ScalarEvolution::RangeSignHint SignHint) {
5535   DenseMap<const SCEV *, ConstantRange> &Cache =
5536       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5537                                                        : SignedRanges;
5538   ConstantRange::PreferredRangeType RangeType =
5539       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5540           ? ConstantRange::Unsigned : ConstantRange::Signed;
5541 
5542   // See if we've computed this range already.
5543   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5544   if (I != Cache.end())
5545     return I->second;
5546 
5547   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5548     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5549 
5550   unsigned BitWidth = getTypeSizeInBits(S->getType());
5551   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5552 
5553   // If the value has known zeros, the maximum value will have those known zeros
5554   // as well.
5555   uint32_t TZ = GetMinTrailingZeros(S);
5556   if (TZ != 0) {
5557     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5558       ConservativeResult =
5559           ConstantRange(APInt::getMinValue(BitWidth),
5560                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5561     else
5562       ConservativeResult = ConstantRange(
5563           APInt::getSignedMinValue(BitWidth),
5564           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5565   }
5566 
5567   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5568     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5569     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5570       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5571     return setRange(Add, SignHint,
5572                     ConservativeResult.intersectWith(X, RangeType));
5573   }
5574 
5575   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5576     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5577     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5578       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5579     return setRange(Mul, SignHint,
5580                     ConservativeResult.intersectWith(X, RangeType));
5581   }
5582 
5583   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5584     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5585     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5586       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5587     return setRange(SMax, SignHint,
5588                     ConservativeResult.intersectWith(X, RangeType));
5589   }
5590 
5591   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5592     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5593     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5594       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5595     return setRange(UMax, SignHint,
5596                     ConservativeResult.intersectWith(X, RangeType));
5597   }
5598 
5599   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5600     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5601     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5602     return setRange(UDiv, SignHint,
5603                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5604   }
5605 
5606   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5607     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5608     return setRange(ZExt, SignHint,
5609                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5610                                                      RangeType));
5611   }
5612 
5613   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5614     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5615     return setRange(SExt, SignHint,
5616                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5617                                                      RangeType));
5618   }
5619 
5620   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5621     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5622     return setRange(Trunc, SignHint,
5623                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5624                                                      RangeType));
5625   }
5626 
5627   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5628     // If there's no unsigned wrap, the value will never be less than its
5629     // initial value.
5630     if (AddRec->hasNoUnsignedWrap())
5631       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5632         if (!C->getValue()->isZero())
5633           ConservativeResult = ConservativeResult.intersectWith(
5634               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType);
5635 
5636     // If there's no signed wrap, and all the operands have the same sign or
5637     // zero, the value won't ever change sign.
5638     if (AddRec->hasNoSignedWrap()) {
5639       bool AllNonNeg = true;
5640       bool AllNonPos = true;
5641       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5642         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5643         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5644       }
5645       if (AllNonNeg)
5646         ConservativeResult = ConservativeResult.intersectWith(
5647           ConstantRange(APInt(BitWidth, 0),
5648                         APInt::getSignedMinValue(BitWidth)), RangeType);
5649       else if (AllNonPos)
5650         ConservativeResult = ConservativeResult.intersectWith(
5651           ConstantRange(APInt::getSignedMinValue(BitWidth),
5652                         APInt(BitWidth, 1)), RangeType);
5653     }
5654 
5655     // TODO: non-affine addrec
5656     if (AddRec->isAffine()) {
5657       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5658       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5659           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5660         auto RangeFromAffine = getRangeForAffineAR(
5661             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5662             BitWidth);
5663         if (!RangeFromAffine.isFullSet())
5664           ConservativeResult =
5665               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5666 
5667         auto RangeFromFactoring = getRangeViaFactoring(
5668             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5669             BitWidth);
5670         if (!RangeFromFactoring.isFullSet())
5671           ConservativeResult =
5672               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5673       }
5674     }
5675 
5676     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5677   }
5678 
5679   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5680     // Check if the IR explicitly contains !range metadata.
5681     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5682     if (MDRange.hasValue())
5683       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5684                                                             RangeType);
5685 
5686     // Split here to avoid paying the compile-time cost of calling both
5687     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5688     // if needed.
5689     const DataLayout &DL = getDataLayout();
5690     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5691       // For a SCEVUnknown, ask ValueTracking.
5692       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5693       if (Known.One != ~Known.Zero + 1)
5694         ConservativeResult =
5695             ConservativeResult.intersectWith(
5696                 ConstantRange(Known.One, ~Known.Zero + 1), RangeType);
5697     } else {
5698       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5699              "generalize as needed!");
5700       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5701       if (NS > 1)
5702         ConservativeResult = ConservativeResult.intersectWith(
5703             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5704                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5705             RangeType);
5706     }
5707 
5708     // A range of Phi is a subset of union of all ranges of its input.
5709     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5710       // Make sure that we do not run over cycled Phis.
5711       if (PendingPhiRanges.insert(Phi).second) {
5712         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5713         for (auto &Op : Phi->operands()) {
5714           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5715           RangeFromOps = RangeFromOps.unionWith(OpRange);
5716           // No point to continue if we already have a full set.
5717           if (RangeFromOps.isFullSet())
5718             break;
5719         }
5720         ConservativeResult =
5721             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5722         bool Erased = PendingPhiRanges.erase(Phi);
5723         assert(Erased && "Failed to erase Phi properly?");
5724         (void) Erased;
5725       }
5726     }
5727 
5728     return setRange(U, SignHint, std::move(ConservativeResult));
5729   }
5730 
5731   return setRange(S, SignHint, std::move(ConservativeResult));
5732 }
5733 
5734 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5735 // values that the expression can take. Initially, the expression has a value
5736 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5737 // argument defines if we treat Step as signed or unsigned.
5738 static ConstantRange getRangeForAffineARHelper(APInt Step,
5739                                                const ConstantRange &StartRange,
5740                                                const APInt &MaxBECount,
5741                                                unsigned BitWidth, bool Signed) {
5742   // If either Step or MaxBECount is 0, then the expression won't change, and we
5743   // just need to return the initial range.
5744   if (Step == 0 || MaxBECount == 0)
5745     return StartRange;
5746 
5747   // If we don't know anything about the initial value (i.e. StartRange is
5748   // FullRange), then we don't know anything about the final range either.
5749   // Return FullRange.
5750   if (StartRange.isFullSet())
5751     return ConstantRange::getFull(BitWidth);
5752 
5753   // If Step is signed and negative, then we use its absolute value, but we also
5754   // note that we're moving in the opposite direction.
5755   bool Descending = Signed && Step.isNegative();
5756 
5757   if (Signed)
5758     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5759     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5760     // This equations hold true due to the well-defined wrap-around behavior of
5761     // APInt.
5762     Step = Step.abs();
5763 
5764   // Check if Offset is more than full span of BitWidth. If it is, the
5765   // expression is guaranteed to overflow.
5766   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5767     return ConstantRange::getFull(BitWidth);
5768 
5769   // Offset is by how much the expression can change. Checks above guarantee no
5770   // overflow here.
5771   APInt Offset = Step * MaxBECount;
5772 
5773   // Minimum value of the final range will match the minimal value of StartRange
5774   // if the expression is increasing and will be decreased by Offset otherwise.
5775   // Maximum value of the final range will match the maximal value of StartRange
5776   // if the expression is decreasing and will be increased by Offset otherwise.
5777   APInt StartLower = StartRange.getLower();
5778   APInt StartUpper = StartRange.getUpper() - 1;
5779   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5780                                    : (StartUpper + std::move(Offset));
5781 
5782   // It's possible that the new minimum/maximum value will fall into the initial
5783   // range (due to wrap around). This means that the expression can take any
5784   // value in this bitwidth, and we have to return full range.
5785   if (StartRange.contains(MovedBoundary))
5786     return ConstantRange::getFull(BitWidth);
5787 
5788   APInt NewLower =
5789       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5790   APInt NewUpper =
5791       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5792   NewUpper += 1;
5793 
5794   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5795   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5796 }
5797 
5798 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5799                                                    const SCEV *Step,
5800                                                    const SCEV *MaxBECount,
5801                                                    unsigned BitWidth) {
5802   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5803          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5804          "Precondition!");
5805 
5806   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5807   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5808 
5809   // First, consider step signed.
5810   ConstantRange StartSRange = getSignedRange(Start);
5811   ConstantRange StepSRange = getSignedRange(Step);
5812 
5813   // If Step can be both positive and negative, we need to find ranges for the
5814   // maximum absolute step values in both directions and union them.
5815   ConstantRange SR =
5816       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5817                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5818   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5819                                               StartSRange, MaxBECountValue,
5820                                               BitWidth, /* Signed = */ true));
5821 
5822   // Next, consider step unsigned.
5823   ConstantRange UR = getRangeForAffineARHelper(
5824       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5825       MaxBECountValue, BitWidth, /* Signed = */ false);
5826 
5827   // Finally, intersect signed and unsigned ranges.
5828   return SR.intersectWith(UR, ConstantRange::Smallest);
5829 }
5830 
5831 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5832                                                     const SCEV *Step,
5833                                                     const SCEV *MaxBECount,
5834                                                     unsigned BitWidth) {
5835   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5836   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5837 
5838   struct SelectPattern {
5839     Value *Condition = nullptr;
5840     APInt TrueValue;
5841     APInt FalseValue;
5842 
5843     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5844                            const SCEV *S) {
5845       Optional<unsigned> CastOp;
5846       APInt Offset(BitWidth, 0);
5847 
5848       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5849              "Should be!");
5850 
5851       // Peel off a constant offset:
5852       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5853         // In the future we could consider being smarter here and handle
5854         // {Start+Step,+,Step} too.
5855         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5856           return;
5857 
5858         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5859         S = SA->getOperand(1);
5860       }
5861 
5862       // Peel off a cast operation
5863       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5864         CastOp = SCast->getSCEVType();
5865         S = SCast->getOperand();
5866       }
5867 
5868       using namespace llvm::PatternMatch;
5869 
5870       auto *SU = dyn_cast<SCEVUnknown>(S);
5871       const APInt *TrueVal, *FalseVal;
5872       if (!SU ||
5873           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5874                                           m_APInt(FalseVal)))) {
5875         Condition = nullptr;
5876         return;
5877       }
5878 
5879       TrueValue = *TrueVal;
5880       FalseValue = *FalseVal;
5881 
5882       // Re-apply the cast we peeled off earlier
5883       if (CastOp.hasValue())
5884         switch (*CastOp) {
5885         default:
5886           llvm_unreachable("Unknown SCEV cast type!");
5887 
5888         case scTruncate:
5889           TrueValue = TrueValue.trunc(BitWidth);
5890           FalseValue = FalseValue.trunc(BitWidth);
5891           break;
5892         case scZeroExtend:
5893           TrueValue = TrueValue.zext(BitWidth);
5894           FalseValue = FalseValue.zext(BitWidth);
5895           break;
5896         case scSignExtend:
5897           TrueValue = TrueValue.sext(BitWidth);
5898           FalseValue = FalseValue.sext(BitWidth);
5899           break;
5900         }
5901 
5902       // Re-apply the constant offset we peeled off earlier
5903       TrueValue += Offset;
5904       FalseValue += Offset;
5905     }
5906 
5907     bool isRecognized() { return Condition != nullptr; }
5908   };
5909 
5910   SelectPattern StartPattern(*this, BitWidth, Start);
5911   if (!StartPattern.isRecognized())
5912     return ConstantRange::getFull(BitWidth);
5913 
5914   SelectPattern StepPattern(*this, BitWidth, Step);
5915   if (!StepPattern.isRecognized())
5916     return ConstantRange::getFull(BitWidth);
5917 
5918   if (StartPattern.Condition != StepPattern.Condition) {
5919     // We don't handle this case today; but we could, by considering four
5920     // possibilities below instead of two. I'm not sure if there are cases where
5921     // that will help over what getRange already does, though.
5922     return ConstantRange::getFull(BitWidth);
5923   }
5924 
5925   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5926   // construct arbitrary general SCEV expressions here.  This function is called
5927   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5928   // say) can end up caching a suboptimal value.
5929 
5930   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5931   // C2352 and C2512 (otherwise it isn't needed).
5932 
5933   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5934   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5935   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5936   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5937 
5938   ConstantRange TrueRange =
5939       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5940   ConstantRange FalseRange =
5941       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5942 
5943   return TrueRange.unionWith(FalseRange);
5944 }
5945 
5946 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5947   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5948   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5949 
5950   // Return early if there are no flags to propagate to the SCEV.
5951   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5952   if (BinOp->hasNoUnsignedWrap())
5953     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5954   if (BinOp->hasNoSignedWrap())
5955     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5956   if (Flags == SCEV::FlagAnyWrap)
5957     return SCEV::FlagAnyWrap;
5958 
5959   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5960 }
5961 
5962 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5963   // Here we check that I is in the header of the innermost loop containing I,
5964   // since we only deal with instructions in the loop header. The actual loop we
5965   // need to check later will come from an add recurrence, but getting that
5966   // requires computing the SCEV of the operands, which can be expensive. This
5967   // check we can do cheaply to rule out some cases early.
5968   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5969   if (InnermostContainingLoop == nullptr ||
5970       InnermostContainingLoop->getHeader() != I->getParent())
5971     return false;
5972 
5973   // Only proceed if we can prove that I does not yield poison.
5974   if (!programUndefinedIfFullPoison(I))
5975     return false;
5976 
5977   // At this point we know that if I is executed, then it does not wrap
5978   // according to at least one of NSW or NUW. If I is not executed, then we do
5979   // not know if the calculation that I represents would wrap. Multiple
5980   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5981   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5982   // derived from other instructions that map to the same SCEV. We cannot make
5983   // that guarantee for cases where I is not executed. So we need to find the
5984   // loop that I is considered in relation to and prove that I is executed for
5985   // every iteration of that loop. That implies that the value that I
5986   // calculates does not wrap anywhere in the loop, so then we can apply the
5987   // flags to the SCEV.
5988   //
5989   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5990   // from different loops, so that we know which loop to prove that I is
5991   // executed in.
5992   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5993     // I could be an extractvalue from a call to an overflow intrinsic.
5994     // TODO: We can do better here in some cases.
5995     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5996       return false;
5997     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5998     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5999       bool AllOtherOpsLoopInvariant = true;
6000       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6001            ++OtherOpIndex) {
6002         if (OtherOpIndex != OpIndex) {
6003           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6004           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6005             AllOtherOpsLoopInvariant = false;
6006             break;
6007           }
6008         }
6009       }
6010       if (AllOtherOpsLoopInvariant &&
6011           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6012         return true;
6013     }
6014   }
6015   return false;
6016 }
6017 
6018 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6019   // If we know that \c I can never be poison period, then that's enough.
6020   if (isSCEVExprNeverPoison(I))
6021     return true;
6022 
6023   // For an add recurrence specifically, we assume that infinite loops without
6024   // side effects are undefined behavior, and then reason as follows:
6025   //
6026   // If the add recurrence is poison in any iteration, it is poison on all
6027   // future iterations (since incrementing poison yields poison). If the result
6028   // of the add recurrence is fed into the loop latch condition and the loop
6029   // does not contain any throws or exiting blocks other than the latch, we now
6030   // have the ability to "choose" whether the backedge is taken or not (by
6031   // choosing a sufficiently evil value for the poison feeding into the branch)
6032   // for every iteration including and after the one in which \p I first became
6033   // poison.  There are two possibilities (let's call the iteration in which \p
6034   // I first became poison as K):
6035   //
6036   //  1. In the set of iterations including and after K, the loop body executes
6037   //     no side effects.  In this case executing the backege an infinte number
6038   //     of times will yield undefined behavior.
6039   //
6040   //  2. In the set of iterations including and after K, the loop body executes
6041   //     at least one side effect.  In this case, that specific instance of side
6042   //     effect is control dependent on poison, which also yields undefined
6043   //     behavior.
6044 
6045   auto *ExitingBB = L->getExitingBlock();
6046   auto *LatchBB = L->getLoopLatch();
6047   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6048     return false;
6049 
6050   SmallPtrSet<const Instruction *, 16> Pushed;
6051   SmallVector<const Instruction *, 8> PoisonStack;
6052 
6053   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6054   // things that are known to be fully poison under that assumption go on the
6055   // PoisonStack.
6056   Pushed.insert(I);
6057   PoisonStack.push_back(I);
6058 
6059   bool LatchControlDependentOnPoison = false;
6060   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6061     const Instruction *Poison = PoisonStack.pop_back_val();
6062 
6063     for (auto *PoisonUser : Poison->users()) {
6064       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6065         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6066           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6067       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6068         assert(BI->isConditional() && "Only possibility!");
6069         if (BI->getParent() == LatchBB) {
6070           LatchControlDependentOnPoison = true;
6071           break;
6072         }
6073       }
6074     }
6075   }
6076 
6077   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6078 }
6079 
6080 ScalarEvolution::LoopProperties
6081 ScalarEvolution::getLoopProperties(const Loop *L) {
6082   using LoopProperties = ScalarEvolution::LoopProperties;
6083 
6084   auto Itr = LoopPropertiesCache.find(L);
6085   if (Itr == LoopPropertiesCache.end()) {
6086     auto HasSideEffects = [](Instruction *I) {
6087       if (auto *SI = dyn_cast<StoreInst>(I))
6088         return !SI->isSimple();
6089 
6090       return I->mayHaveSideEffects();
6091     };
6092 
6093     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6094                          /*HasNoSideEffects*/ true};
6095 
6096     for (auto *BB : L->getBlocks())
6097       for (auto &I : *BB) {
6098         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6099           LP.HasNoAbnormalExits = false;
6100         if (HasSideEffects(&I))
6101           LP.HasNoSideEffects = false;
6102         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6103           break; // We're already as pessimistic as we can get.
6104       }
6105 
6106     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6107     assert(InsertPair.second && "We just checked!");
6108     Itr = InsertPair.first;
6109   }
6110 
6111   return Itr->second;
6112 }
6113 
6114 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6115   if (!isSCEVable(V->getType()))
6116     return getUnknown(V);
6117 
6118   if (Instruction *I = dyn_cast<Instruction>(V)) {
6119     // Don't attempt to analyze instructions in blocks that aren't
6120     // reachable. Such instructions don't matter, and they aren't required
6121     // to obey basic rules for definitions dominating uses which this
6122     // analysis depends on.
6123     if (!DT.isReachableFromEntry(I->getParent()))
6124       return getUnknown(UndefValue::get(V->getType()));
6125   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6126     return getConstant(CI);
6127   else if (isa<ConstantPointerNull>(V))
6128     return getZero(V->getType());
6129   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6130     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6131   else if (!isa<ConstantExpr>(V))
6132     return getUnknown(V);
6133 
6134   Operator *U = cast<Operator>(V);
6135   if (auto BO = MatchBinaryOp(U, DT)) {
6136     switch (BO->Opcode) {
6137     case Instruction::Add: {
6138       // The simple thing to do would be to just call getSCEV on both operands
6139       // and call getAddExpr with the result. However if we're looking at a
6140       // bunch of things all added together, this can be quite inefficient,
6141       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6142       // Instead, gather up all the operands and make a single getAddExpr call.
6143       // LLVM IR canonical form means we need only traverse the left operands.
6144       SmallVector<const SCEV *, 4> AddOps;
6145       do {
6146         if (BO->Op) {
6147           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6148             AddOps.push_back(OpSCEV);
6149             break;
6150           }
6151 
6152           // If a NUW or NSW flag can be applied to the SCEV for this
6153           // addition, then compute the SCEV for this addition by itself
6154           // with a separate call to getAddExpr. We need to do that
6155           // instead of pushing the operands of the addition onto AddOps,
6156           // since the flags are only known to apply to this particular
6157           // addition - they may not apply to other additions that can be
6158           // formed with operands from AddOps.
6159           const SCEV *RHS = getSCEV(BO->RHS);
6160           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6161           if (Flags != SCEV::FlagAnyWrap) {
6162             const SCEV *LHS = getSCEV(BO->LHS);
6163             if (BO->Opcode == Instruction::Sub)
6164               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6165             else
6166               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6167             break;
6168           }
6169         }
6170 
6171         if (BO->Opcode == Instruction::Sub)
6172           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6173         else
6174           AddOps.push_back(getSCEV(BO->RHS));
6175 
6176         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6177         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6178                        NewBO->Opcode != Instruction::Sub)) {
6179           AddOps.push_back(getSCEV(BO->LHS));
6180           break;
6181         }
6182         BO = NewBO;
6183       } while (true);
6184 
6185       return getAddExpr(AddOps);
6186     }
6187 
6188     case Instruction::Mul: {
6189       SmallVector<const SCEV *, 4> MulOps;
6190       do {
6191         if (BO->Op) {
6192           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6193             MulOps.push_back(OpSCEV);
6194             break;
6195           }
6196 
6197           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6198           if (Flags != SCEV::FlagAnyWrap) {
6199             MulOps.push_back(
6200                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6201             break;
6202           }
6203         }
6204 
6205         MulOps.push_back(getSCEV(BO->RHS));
6206         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6207         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6208           MulOps.push_back(getSCEV(BO->LHS));
6209           break;
6210         }
6211         BO = NewBO;
6212       } while (true);
6213 
6214       return getMulExpr(MulOps);
6215     }
6216     case Instruction::UDiv:
6217       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6218     case Instruction::URem:
6219       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6220     case Instruction::Sub: {
6221       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6222       if (BO->Op)
6223         Flags = getNoWrapFlagsFromUB(BO->Op);
6224       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6225     }
6226     case Instruction::And:
6227       // For an expression like x&255 that merely masks off the high bits,
6228       // use zext(trunc(x)) as the SCEV expression.
6229       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6230         if (CI->isZero())
6231           return getSCEV(BO->RHS);
6232         if (CI->isMinusOne())
6233           return getSCEV(BO->LHS);
6234         const APInt &A = CI->getValue();
6235 
6236         // Instcombine's ShrinkDemandedConstant may strip bits out of
6237         // constants, obscuring what would otherwise be a low-bits mask.
6238         // Use computeKnownBits to compute what ShrinkDemandedConstant
6239         // knew about to reconstruct a low-bits mask value.
6240         unsigned LZ = A.countLeadingZeros();
6241         unsigned TZ = A.countTrailingZeros();
6242         unsigned BitWidth = A.getBitWidth();
6243         KnownBits Known(BitWidth);
6244         computeKnownBits(BO->LHS, Known, getDataLayout(),
6245                          0, &AC, nullptr, &DT);
6246 
6247         APInt EffectiveMask =
6248             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6249         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6250           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6251           const SCEV *LHS = getSCEV(BO->LHS);
6252           const SCEV *ShiftedLHS = nullptr;
6253           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6254             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6255               // For an expression like (x * 8) & 8, simplify the multiply.
6256               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6257               unsigned GCD = std::min(MulZeros, TZ);
6258               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6259               SmallVector<const SCEV*, 4> MulOps;
6260               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6261               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6262               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6263               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6264             }
6265           }
6266           if (!ShiftedLHS)
6267             ShiftedLHS = getUDivExpr(LHS, MulCount);
6268           return getMulExpr(
6269               getZeroExtendExpr(
6270                   getTruncateExpr(ShiftedLHS,
6271                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6272                   BO->LHS->getType()),
6273               MulCount);
6274         }
6275       }
6276       break;
6277 
6278     case Instruction::Or:
6279       // If the RHS of the Or is a constant, we may have something like:
6280       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6281       // optimizations will transparently handle this case.
6282       //
6283       // In order for this transformation to be safe, the LHS must be of the
6284       // form X*(2^n) and the Or constant must be less than 2^n.
6285       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6286         const SCEV *LHS = getSCEV(BO->LHS);
6287         const APInt &CIVal = CI->getValue();
6288         if (GetMinTrailingZeros(LHS) >=
6289             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6290           // Build a plain add SCEV.
6291           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6292           // If the LHS of the add was an addrec and it has no-wrap flags,
6293           // transfer the no-wrap flags, since an or won't introduce a wrap.
6294           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6295             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6296             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6297                 OldAR->getNoWrapFlags());
6298           }
6299           return S;
6300         }
6301       }
6302       break;
6303 
6304     case Instruction::Xor:
6305       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6306         // If the RHS of xor is -1, then this is a not operation.
6307         if (CI->isMinusOne())
6308           return getNotSCEV(getSCEV(BO->LHS));
6309 
6310         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6311         // This is a variant of the check for xor with -1, and it handles
6312         // the case where instcombine has trimmed non-demanded bits out
6313         // of an xor with -1.
6314         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6315           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6316             if (LBO->getOpcode() == Instruction::And &&
6317                 LCI->getValue() == CI->getValue())
6318               if (const SCEVZeroExtendExpr *Z =
6319                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6320                 Type *UTy = BO->LHS->getType();
6321                 const SCEV *Z0 = Z->getOperand();
6322                 Type *Z0Ty = Z0->getType();
6323                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6324 
6325                 // If C is a low-bits mask, the zero extend is serving to
6326                 // mask off the high bits. Complement the operand and
6327                 // re-apply the zext.
6328                 if (CI->getValue().isMask(Z0TySize))
6329                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6330 
6331                 // If C is a single bit, it may be in the sign-bit position
6332                 // before the zero-extend. In this case, represent the xor
6333                 // using an add, which is equivalent, and re-apply the zext.
6334                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6335                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6336                     Trunc.isSignMask())
6337                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6338                                            UTy);
6339               }
6340       }
6341       break;
6342 
6343     case Instruction::Shl:
6344       // Turn shift left of a constant amount into a multiply.
6345       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6346         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6347 
6348         // If the shift count is not less than the bitwidth, the result of
6349         // the shift is undefined. Don't try to analyze it, because the
6350         // resolution chosen here may differ from the resolution chosen in
6351         // other parts of the compiler.
6352         if (SA->getValue().uge(BitWidth))
6353           break;
6354 
6355         // It is currently not resolved how to interpret NSW for left
6356         // shift by BitWidth - 1, so we avoid applying flags in that
6357         // case. Remove this check (or this comment) once the situation
6358         // is resolved. See
6359         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6360         // and http://reviews.llvm.org/D8890 .
6361         auto Flags = SCEV::FlagAnyWrap;
6362         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6363           Flags = getNoWrapFlagsFromUB(BO->Op);
6364 
6365         Constant *X = ConstantInt::get(
6366             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6367         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6368       }
6369       break;
6370 
6371     case Instruction::AShr: {
6372       // AShr X, C, where C is a constant.
6373       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6374       if (!CI)
6375         break;
6376 
6377       Type *OuterTy = BO->LHS->getType();
6378       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6379       // If the shift count is not less than the bitwidth, the result of
6380       // the shift is undefined. Don't try to analyze it, because the
6381       // resolution chosen here may differ from the resolution chosen in
6382       // other parts of the compiler.
6383       if (CI->getValue().uge(BitWidth))
6384         break;
6385 
6386       if (CI->isZero())
6387         return getSCEV(BO->LHS); // shift by zero --> noop
6388 
6389       uint64_t AShrAmt = CI->getZExtValue();
6390       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6391 
6392       Operator *L = dyn_cast<Operator>(BO->LHS);
6393       if (L && L->getOpcode() == Instruction::Shl) {
6394         // X = Shl A, n
6395         // Y = AShr X, m
6396         // Both n and m are constant.
6397 
6398         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6399         if (L->getOperand(1) == BO->RHS)
6400           // For a two-shift sext-inreg, i.e. n = m,
6401           // use sext(trunc(x)) as the SCEV expression.
6402           return getSignExtendExpr(
6403               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6404 
6405         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6406         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6407           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6408           if (ShlAmt > AShrAmt) {
6409             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6410             // expression. We already checked that ShlAmt < BitWidth, so
6411             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6412             // ShlAmt - AShrAmt < Amt.
6413             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6414                                             ShlAmt - AShrAmt);
6415             return getSignExtendExpr(
6416                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6417                 getConstant(Mul)), OuterTy);
6418           }
6419         }
6420       }
6421       break;
6422     }
6423     }
6424   }
6425 
6426   switch (U->getOpcode()) {
6427   case Instruction::Trunc:
6428     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6429 
6430   case Instruction::ZExt:
6431     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6432 
6433   case Instruction::SExt:
6434     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6435       // The NSW flag of a subtract does not always survive the conversion to
6436       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6437       // more likely to preserve NSW and allow later AddRec optimisations.
6438       //
6439       // NOTE: This is effectively duplicating this logic from getSignExtend:
6440       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6441       // but by that point the NSW information has potentially been lost.
6442       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6443         Type *Ty = U->getType();
6444         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6445         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6446         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6447       }
6448     }
6449     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6450 
6451   case Instruction::BitCast:
6452     // BitCasts are no-op casts so we just eliminate the cast.
6453     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6454       return getSCEV(U->getOperand(0));
6455     break;
6456 
6457   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6458   // lead to pointer expressions which cannot safely be expanded to GEPs,
6459   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6460   // simplifying integer expressions.
6461 
6462   case Instruction::GetElementPtr:
6463     return createNodeForGEP(cast<GEPOperator>(U));
6464 
6465   case Instruction::PHI:
6466     return createNodeForPHI(cast<PHINode>(U));
6467 
6468   case Instruction::Select:
6469     // U can also be a select constant expr, which let fall through.  Since
6470     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6471     // constant expressions cannot have instructions as operands, we'd have
6472     // returned getUnknown for a select constant expressions anyway.
6473     if (isa<Instruction>(U))
6474       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6475                                       U->getOperand(1), U->getOperand(2));
6476     break;
6477 
6478   case Instruction::Call:
6479   case Instruction::Invoke:
6480     if (Value *RV = CallSite(U).getReturnedArgOperand())
6481       return getSCEV(RV);
6482     break;
6483   }
6484 
6485   return getUnknown(V);
6486 }
6487 
6488 //===----------------------------------------------------------------------===//
6489 //                   Iteration Count Computation Code
6490 //
6491 
6492 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6493   if (!ExitCount)
6494     return 0;
6495 
6496   ConstantInt *ExitConst = ExitCount->getValue();
6497 
6498   // Guard against huge trip counts.
6499   if (ExitConst->getValue().getActiveBits() > 32)
6500     return 0;
6501 
6502   // In case of integer overflow, this returns 0, which is correct.
6503   return ((unsigned)ExitConst->getZExtValue()) + 1;
6504 }
6505 
6506 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6507   if (BasicBlock *ExitingBB = L->getExitingBlock())
6508     return getSmallConstantTripCount(L, ExitingBB);
6509 
6510   // No trip count information for multiple exits.
6511   return 0;
6512 }
6513 
6514 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6515                                                     BasicBlock *ExitingBlock) {
6516   assert(ExitingBlock && "Must pass a non-null exiting block!");
6517   assert(L->isLoopExiting(ExitingBlock) &&
6518          "Exiting block must actually branch out of the loop!");
6519   const SCEVConstant *ExitCount =
6520       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6521   return getConstantTripCount(ExitCount);
6522 }
6523 
6524 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6525   const auto *MaxExitCount =
6526       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6527   return getConstantTripCount(MaxExitCount);
6528 }
6529 
6530 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6531   if (BasicBlock *ExitingBB = L->getExitingBlock())
6532     return getSmallConstantTripMultiple(L, ExitingBB);
6533 
6534   // No trip multiple information for multiple exits.
6535   return 0;
6536 }
6537 
6538 /// Returns the largest constant divisor of the trip count of this loop as a
6539 /// normal unsigned value, if possible. This means that the actual trip count is
6540 /// always a multiple of the returned value (don't forget the trip count could
6541 /// very well be zero as well!).
6542 ///
6543 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6544 /// multiple of a constant (which is also the case if the trip count is simply
6545 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6546 /// if the trip count is very large (>= 2^32).
6547 ///
6548 /// As explained in the comments for getSmallConstantTripCount, this assumes
6549 /// that control exits the loop via ExitingBlock.
6550 unsigned
6551 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6552                                               BasicBlock *ExitingBlock) {
6553   assert(ExitingBlock && "Must pass a non-null exiting block!");
6554   assert(L->isLoopExiting(ExitingBlock) &&
6555          "Exiting block must actually branch out of the loop!");
6556   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6557   if (ExitCount == getCouldNotCompute())
6558     return 1;
6559 
6560   // Get the trip count from the BE count by adding 1.
6561   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6562 
6563   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6564   if (!TC)
6565     // Attempt to factor more general cases. Returns the greatest power of
6566     // two divisor. If overflow happens, the trip count expression is still
6567     // divisible by the greatest power of 2 divisor returned.
6568     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6569 
6570   ConstantInt *Result = TC->getValue();
6571 
6572   // Guard against huge trip counts (this requires checking
6573   // for zero to handle the case where the trip count == -1 and the
6574   // addition wraps).
6575   if (!Result || Result->getValue().getActiveBits() > 32 ||
6576       Result->getValue().getActiveBits() == 0)
6577     return 1;
6578 
6579   return (unsigned)Result->getZExtValue();
6580 }
6581 
6582 /// Get the expression for the number of loop iterations for which this loop is
6583 /// guaranteed not to exit via ExitingBlock. Otherwise return
6584 /// SCEVCouldNotCompute.
6585 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6586                                           BasicBlock *ExitingBlock) {
6587   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6588 }
6589 
6590 const SCEV *
6591 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6592                                                  SCEVUnionPredicate &Preds) {
6593   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6594 }
6595 
6596 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6597   return getBackedgeTakenInfo(L).getExact(L, this);
6598 }
6599 
6600 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6601 /// known never to be less than the actual backedge taken count.
6602 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6603   return getBackedgeTakenInfo(L).getMax(this);
6604 }
6605 
6606 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6607   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6608 }
6609 
6610 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6611 static void
6612 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6613   BasicBlock *Header = L->getHeader();
6614 
6615   // Push all Loop-header PHIs onto the Worklist stack.
6616   for (PHINode &PN : Header->phis())
6617     Worklist.push_back(&PN);
6618 }
6619 
6620 const ScalarEvolution::BackedgeTakenInfo &
6621 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6622   auto &BTI = getBackedgeTakenInfo(L);
6623   if (BTI.hasFullInfo())
6624     return BTI;
6625 
6626   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6627 
6628   if (!Pair.second)
6629     return Pair.first->second;
6630 
6631   BackedgeTakenInfo Result =
6632       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6633 
6634   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6635 }
6636 
6637 const ScalarEvolution::BackedgeTakenInfo &
6638 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6639   // Initially insert an invalid entry for this loop. If the insertion
6640   // succeeds, proceed to actually compute a backedge-taken count and
6641   // update the value. The temporary CouldNotCompute value tells SCEV
6642   // code elsewhere that it shouldn't attempt to request a new
6643   // backedge-taken count, which could result in infinite recursion.
6644   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6645       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6646   if (!Pair.second)
6647     return Pair.first->second;
6648 
6649   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6650   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6651   // must be cleared in this scope.
6652   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6653 
6654   // In product build, there are no usage of statistic.
6655   (void)NumTripCountsComputed;
6656   (void)NumTripCountsNotComputed;
6657 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6658   const SCEV *BEExact = Result.getExact(L, this);
6659   if (BEExact != getCouldNotCompute()) {
6660     assert(isLoopInvariant(BEExact, L) &&
6661            isLoopInvariant(Result.getMax(this), L) &&
6662            "Computed backedge-taken count isn't loop invariant for loop!");
6663     ++NumTripCountsComputed;
6664   }
6665   else if (Result.getMax(this) == getCouldNotCompute() &&
6666            isa<PHINode>(L->getHeader()->begin())) {
6667     // Only count loops that have phi nodes as not being computable.
6668     ++NumTripCountsNotComputed;
6669   }
6670 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6671 
6672   // Now that we know more about the trip count for this loop, forget any
6673   // existing SCEV values for PHI nodes in this loop since they are only
6674   // conservative estimates made without the benefit of trip count
6675   // information. This is similar to the code in forgetLoop, except that
6676   // it handles SCEVUnknown PHI nodes specially.
6677   if (Result.hasAnyInfo()) {
6678     SmallVector<Instruction *, 16> Worklist;
6679     PushLoopPHIs(L, Worklist);
6680 
6681     SmallPtrSet<Instruction *, 8> Discovered;
6682     while (!Worklist.empty()) {
6683       Instruction *I = Worklist.pop_back_val();
6684 
6685       ValueExprMapType::iterator It =
6686         ValueExprMap.find_as(static_cast<Value *>(I));
6687       if (It != ValueExprMap.end()) {
6688         const SCEV *Old = It->second;
6689 
6690         // SCEVUnknown for a PHI either means that it has an unrecognized
6691         // structure, or it's a PHI that's in the progress of being computed
6692         // by createNodeForPHI.  In the former case, additional loop trip
6693         // count information isn't going to change anything. In the later
6694         // case, createNodeForPHI will perform the necessary updates on its
6695         // own when it gets to that point.
6696         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6697           eraseValueFromMap(It->first);
6698           forgetMemoizedResults(Old);
6699         }
6700         if (PHINode *PN = dyn_cast<PHINode>(I))
6701           ConstantEvolutionLoopExitValue.erase(PN);
6702       }
6703 
6704       // Since we don't need to invalidate anything for correctness and we're
6705       // only invalidating to make SCEV's results more precise, we get to stop
6706       // early to avoid invalidating too much.  This is especially important in
6707       // cases like:
6708       //
6709       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6710       // loop0:
6711       //   %pn0 = phi
6712       //   ...
6713       // loop1:
6714       //   %pn1 = phi
6715       //   ...
6716       //
6717       // where both loop0 and loop1's backedge taken count uses the SCEV
6718       // expression for %v.  If we don't have the early stop below then in cases
6719       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6720       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6721       // count for loop1, effectively nullifying SCEV's trip count cache.
6722       for (auto *U : I->users())
6723         if (auto *I = dyn_cast<Instruction>(U)) {
6724           auto *LoopForUser = LI.getLoopFor(I->getParent());
6725           if (LoopForUser && L->contains(LoopForUser) &&
6726               Discovered.insert(I).second)
6727             Worklist.push_back(I);
6728         }
6729     }
6730   }
6731 
6732   // Re-lookup the insert position, since the call to
6733   // computeBackedgeTakenCount above could result in a
6734   // recusive call to getBackedgeTakenInfo (on a different
6735   // loop), which would invalidate the iterator computed
6736   // earlier.
6737   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6738 }
6739 
6740 void ScalarEvolution::forgetAllLoops() {
6741   // This method is intended to forget all info about loops. It should
6742   // invalidate caches as if the following happened:
6743   // - The trip counts of all loops have changed arbitrarily
6744   // - Every llvm::Value has been updated in place to produce a different
6745   // result.
6746   BackedgeTakenCounts.clear();
6747   PredicatedBackedgeTakenCounts.clear();
6748   LoopPropertiesCache.clear();
6749   ConstantEvolutionLoopExitValue.clear();
6750   ValueExprMap.clear();
6751   ValuesAtScopes.clear();
6752   LoopDispositions.clear();
6753   BlockDispositions.clear();
6754   UnsignedRanges.clear();
6755   SignedRanges.clear();
6756   ExprValueMap.clear();
6757   HasRecMap.clear();
6758   MinTrailingZerosCache.clear();
6759   PredicatedSCEVRewrites.clear();
6760 }
6761 
6762 void ScalarEvolution::forgetLoop(const Loop *L) {
6763   // Drop any stored trip count value.
6764   auto RemoveLoopFromBackedgeMap =
6765       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6766         auto BTCPos = Map.find(L);
6767         if (BTCPos != Map.end()) {
6768           BTCPos->second.clear();
6769           Map.erase(BTCPos);
6770         }
6771       };
6772 
6773   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6774   SmallVector<Instruction *, 32> Worklist;
6775   SmallPtrSet<Instruction *, 16> Visited;
6776 
6777   // Iterate over all the loops and sub-loops to drop SCEV information.
6778   while (!LoopWorklist.empty()) {
6779     auto *CurrL = LoopWorklist.pop_back_val();
6780 
6781     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6782     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6783 
6784     // Drop information about predicated SCEV rewrites for this loop.
6785     for (auto I = PredicatedSCEVRewrites.begin();
6786          I != PredicatedSCEVRewrites.end();) {
6787       std::pair<const SCEV *, const Loop *> Entry = I->first;
6788       if (Entry.second == CurrL)
6789         PredicatedSCEVRewrites.erase(I++);
6790       else
6791         ++I;
6792     }
6793 
6794     auto LoopUsersItr = LoopUsers.find(CurrL);
6795     if (LoopUsersItr != LoopUsers.end()) {
6796       for (auto *S : LoopUsersItr->second)
6797         forgetMemoizedResults(S);
6798       LoopUsers.erase(LoopUsersItr);
6799     }
6800 
6801     // Drop information about expressions based on loop-header PHIs.
6802     PushLoopPHIs(CurrL, Worklist);
6803 
6804     while (!Worklist.empty()) {
6805       Instruction *I = Worklist.pop_back_val();
6806       if (!Visited.insert(I).second)
6807         continue;
6808 
6809       ValueExprMapType::iterator It =
6810           ValueExprMap.find_as(static_cast<Value *>(I));
6811       if (It != ValueExprMap.end()) {
6812         eraseValueFromMap(It->first);
6813         forgetMemoizedResults(It->second);
6814         if (PHINode *PN = dyn_cast<PHINode>(I))
6815           ConstantEvolutionLoopExitValue.erase(PN);
6816       }
6817 
6818       PushDefUseChildren(I, Worklist);
6819     }
6820 
6821     LoopPropertiesCache.erase(CurrL);
6822     // Forget all contained loops too, to avoid dangling entries in the
6823     // ValuesAtScopes map.
6824     LoopWorklist.append(CurrL->begin(), CurrL->end());
6825   }
6826 }
6827 
6828 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6829   while (Loop *Parent = L->getParentLoop())
6830     L = Parent;
6831   forgetLoop(L);
6832 }
6833 
6834 void ScalarEvolution::forgetValue(Value *V) {
6835   Instruction *I = dyn_cast<Instruction>(V);
6836   if (!I) return;
6837 
6838   // Drop information about expressions based on loop-header PHIs.
6839   SmallVector<Instruction *, 16> Worklist;
6840   Worklist.push_back(I);
6841 
6842   SmallPtrSet<Instruction *, 8> Visited;
6843   while (!Worklist.empty()) {
6844     I = Worklist.pop_back_val();
6845     if (!Visited.insert(I).second)
6846       continue;
6847 
6848     ValueExprMapType::iterator It =
6849       ValueExprMap.find_as(static_cast<Value *>(I));
6850     if (It != ValueExprMap.end()) {
6851       eraseValueFromMap(It->first);
6852       forgetMemoizedResults(It->second);
6853       if (PHINode *PN = dyn_cast<PHINode>(I))
6854         ConstantEvolutionLoopExitValue.erase(PN);
6855     }
6856 
6857     PushDefUseChildren(I, Worklist);
6858   }
6859 }
6860 
6861 /// Get the exact loop backedge taken count considering all loop exits. A
6862 /// computable result can only be returned for loops with all exiting blocks
6863 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6864 /// is never skipped. This is a valid assumption as long as the loop exits via
6865 /// that test. For precise results, it is the caller's responsibility to specify
6866 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6867 const SCEV *
6868 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6869                                              SCEVUnionPredicate *Preds) const {
6870   // If any exits were not computable, the loop is not computable.
6871   if (!isComplete() || ExitNotTaken.empty())
6872     return SE->getCouldNotCompute();
6873 
6874   const BasicBlock *Latch = L->getLoopLatch();
6875   // All exiting blocks we have collected must dominate the only backedge.
6876   if (!Latch)
6877     return SE->getCouldNotCompute();
6878 
6879   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6880   // count is simply a minimum out of all these calculated exit counts.
6881   SmallVector<const SCEV *, 2> Ops;
6882   for (auto &ENT : ExitNotTaken) {
6883     const SCEV *BECount = ENT.ExactNotTaken;
6884     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6885     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6886            "We should only have known counts for exiting blocks that dominate "
6887            "latch!");
6888 
6889     Ops.push_back(BECount);
6890 
6891     if (Preds && !ENT.hasAlwaysTruePredicate())
6892       Preds->add(ENT.Predicate.get());
6893 
6894     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6895            "Predicate should be always true!");
6896   }
6897 
6898   return SE->getUMinFromMismatchedTypes(Ops);
6899 }
6900 
6901 /// Get the exact not taken count for this loop exit.
6902 const SCEV *
6903 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6904                                              ScalarEvolution *SE) const {
6905   for (auto &ENT : ExitNotTaken)
6906     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6907       return ENT.ExactNotTaken;
6908 
6909   return SE->getCouldNotCompute();
6910 }
6911 
6912 /// getMax - Get the max backedge taken count for the loop.
6913 const SCEV *
6914 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6915   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6916     return !ENT.hasAlwaysTruePredicate();
6917   };
6918 
6919   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6920     return SE->getCouldNotCompute();
6921 
6922   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6923          "No point in having a non-constant max backedge taken count!");
6924   return getMax();
6925 }
6926 
6927 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6928   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6929     return !ENT.hasAlwaysTruePredicate();
6930   };
6931   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6932 }
6933 
6934 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6935                                                     ScalarEvolution *SE) const {
6936   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6937       SE->hasOperand(getMax(), S))
6938     return true;
6939 
6940   for (auto &ENT : ExitNotTaken)
6941     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6942         SE->hasOperand(ENT.ExactNotTaken, S))
6943       return true;
6944 
6945   return false;
6946 }
6947 
6948 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6949     : ExactNotTaken(E), MaxNotTaken(E) {
6950   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6951           isa<SCEVConstant>(MaxNotTaken)) &&
6952          "No point in having a non-constant max backedge taken count!");
6953 }
6954 
6955 ScalarEvolution::ExitLimit::ExitLimit(
6956     const SCEV *E, const SCEV *M, bool MaxOrZero,
6957     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6958     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6959   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6960           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6961          "Exact is not allowed to be less precise than Max");
6962   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6963           isa<SCEVConstant>(MaxNotTaken)) &&
6964          "No point in having a non-constant max backedge taken count!");
6965   for (auto *PredSet : PredSetList)
6966     for (auto *P : *PredSet)
6967       addPredicate(P);
6968 }
6969 
6970 ScalarEvolution::ExitLimit::ExitLimit(
6971     const SCEV *E, const SCEV *M, bool MaxOrZero,
6972     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6973     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6974   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6975           isa<SCEVConstant>(MaxNotTaken)) &&
6976          "No point in having a non-constant max backedge taken count!");
6977 }
6978 
6979 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6980                                       bool MaxOrZero)
6981     : ExitLimit(E, M, MaxOrZero, None) {
6982   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6983           isa<SCEVConstant>(MaxNotTaken)) &&
6984          "No point in having a non-constant max backedge taken count!");
6985 }
6986 
6987 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6988 /// computable exit into a persistent ExitNotTakenInfo array.
6989 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6990     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6991         ExitCounts,
6992     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6993     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6994   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6995 
6996   ExitNotTaken.reserve(ExitCounts.size());
6997   std::transform(
6998       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6999       [&](const EdgeExitInfo &EEI) {
7000         BasicBlock *ExitBB = EEI.first;
7001         const ExitLimit &EL = EEI.second;
7002         if (EL.Predicates.empty())
7003           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7004 
7005         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7006         for (auto *Pred : EL.Predicates)
7007           Predicate->add(Pred);
7008 
7009         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7010       });
7011   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7012          "No point in having a non-constant max backedge taken count!");
7013 }
7014 
7015 /// Invalidate this result and free the ExitNotTakenInfo array.
7016 void ScalarEvolution::BackedgeTakenInfo::clear() {
7017   ExitNotTaken.clear();
7018 }
7019 
7020 /// Compute the number of times the backedge of the specified loop will execute.
7021 ScalarEvolution::BackedgeTakenInfo
7022 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7023                                            bool AllowPredicates) {
7024   SmallVector<BasicBlock *, 8> ExitingBlocks;
7025   L->getExitingBlocks(ExitingBlocks);
7026 
7027   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7028 
7029   SmallVector<EdgeExitInfo, 4> ExitCounts;
7030   bool CouldComputeBECount = true;
7031   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7032   const SCEV *MustExitMaxBECount = nullptr;
7033   const SCEV *MayExitMaxBECount = nullptr;
7034   bool MustExitMaxOrZero = false;
7035 
7036   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7037   // and compute maxBECount.
7038   // Do a union of all the predicates here.
7039   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7040     BasicBlock *ExitBB = ExitingBlocks[i];
7041     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7042 
7043     assert((AllowPredicates || EL.Predicates.empty()) &&
7044            "Predicated exit limit when predicates are not allowed!");
7045 
7046     // 1. For each exit that can be computed, add an entry to ExitCounts.
7047     // CouldComputeBECount is true only if all exits can be computed.
7048     if (EL.ExactNotTaken == getCouldNotCompute())
7049       // We couldn't compute an exact value for this exit, so
7050       // we won't be able to compute an exact value for the loop.
7051       CouldComputeBECount = false;
7052     else
7053       ExitCounts.emplace_back(ExitBB, EL);
7054 
7055     // 2. Derive the loop's MaxBECount from each exit's max number of
7056     // non-exiting iterations. Partition the loop exits into two kinds:
7057     // LoopMustExits and LoopMayExits.
7058     //
7059     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7060     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7061     // MaxBECount is the minimum EL.MaxNotTaken of computable
7062     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7063     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7064     // computable EL.MaxNotTaken.
7065     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7066         DT.dominates(ExitBB, Latch)) {
7067       if (!MustExitMaxBECount) {
7068         MustExitMaxBECount = EL.MaxNotTaken;
7069         MustExitMaxOrZero = EL.MaxOrZero;
7070       } else {
7071         MustExitMaxBECount =
7072             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7073       }
7074     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7075       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7076         MayExitMaxBECount = EL.MaxNotTaken;
7077       else {
7078         MayExitMaxBECount =
7079             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7080       }
7081     }
7082   }
7083   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7084     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7085   // The loop backedge will be taken the maximum or zero times if there's
7086   // a single exit that must be taken the maximum or zero times.
7087   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7088   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7089                            MaxBECount, MaxOrZero);
7090 }
7091 
7092 ScalarEvolution::ExitLimit
7093 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7094                                       bool AllowPredicates) {
7095   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7096   // If our exiting block does not dominate the latch, then its connection with
7097   // loop's exit limit may be far from trivial.
7098   const BasicBlock *Latch = L->getLoopLatch();
7099   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7100     return getCouldNotCompute();
7101 
7102   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7103   Instruction *Term = ExitingBlock->getTerminator();
7104   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7105     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7106     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7107     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7108            "It should have one successor in loop and one exit block!");
7109     // Proceed to the next level to examine the exit condition expression.
7110     return computeExitLimitFromCond(
7111         L, BI->getCondition(), ExitIfTrue,
7112         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7113   }
7114 
7115   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7116     // For switch, make sure that there is a single exit from the loop.
7117     BasicBlock *Exit = nullptr;
7118     for (auto *SBB : successors(ExitingBlock))
7119       if (!L->contains(SBB)) {
7120         if (Exit) // Multiple exit successors.
7121           return getCouldNotCompute();
7122         Exit = SBB;
7123       }
7124     assert(Exit && "Exiting block must have at least one exit");
7125     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7126                                                 /*ControlsExit=*/IsOnlyExit);
7127   }
7128 
7129   return getCouldNotCompute();
7130 }
7131 
7132 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7133     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7134     bool ControlsExit, bool AllowPredicates) {
7135   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7136   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7137                                         ControlsExit, AllowPredicates);
7138 }
7139 
7140 Optional<ScalarEvolution::ExitLimit>
7141 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7142                                       bool ExitIfTrue, bool ControlsExit,
7143                                       bool AllowPredicates) {
7144   (void)this->L;
7145   (void)this->ExitIfTrue;
7146   (void)this->AllowPredicates;
7147 
7148   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7149          this->AllowPredicates == AllowPredicates &&
7150          "Variance in assumed invariant key components!");
7151   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7152   if (Itr == TripCountMap.end())
7153     return None;
7154   return Itr->second;
7155 }
7156 
7157 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7158                                              bool ExitIfTrue,
7159                                              bool ControlsExit,
7160                                              bool AllowPredicates,
7161                                              const ExitLimit &EL) {
7162   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7163          this->AllowPredicates == AllowPredicates &&
7164          "Variance in assumed invariant key components!");
7165 
7166   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7167   assert(InsertResult.second && "Expected successful insertion!");
7168   (void)InsertResult;
7169   (void)ExitIfTrue;
7170 }
7171 
7172 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7173     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7174     bool ControlsExit, bool AllowPredicates) {
7175 
7176   if (auto MaybeEL =
7177           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7178     return *MaybeEL;
7179 
7180   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7181                                               ControlsExit, AllowPredicates);
7182   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7183   return EL;
7184 }
7185 
7186 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7187     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7188     bool ControlsExit, bool AllowPredicates) {
7189   // Check if the controlling expression for this loop is an And or Or.
7190   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7191     if (BO->getOpcode() == Instruction::And) {
7192       // Recurse on the operands of the and.
7193       bool EitherMayExit = !ExitIfTrue;
7194       ExitLimit EL0 = computeExitLimitFromCondCached(
7195           Cache, L, BO->getOperand(0), ExitIfTrue,
7196           ControlsExit && !EitherMayExit, AllowPredicates);
7197       ExitLimit EL1 = computeExitLimitFromCondCached(
7198           Cache, L, BO->getOperand(1), ExitIfTrue,
7199           ControlsExit && !EitherMayExit, AllowPredicates);
7200       const SCEV *BECount = getCouldNotCompute();
7201       const SCEV *MaxBECount = getCouldNotCompute();
7202       if (EitherMayExit) {
7203         // Both conditions must be true for the loop to continue executing.
7204         // Choose the less conservative count.
7205         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7206             EL1.ExactNotTaken == getCouldNotCompute())
7207           BECount = getCouldNotCompute();
7208         else
7209           BECount =
7210               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7211         if (EL0.MaxNotTaken == getCouldNotCompute())
7212           MaxBECount = EL1.MaxNotTaken;
7213         else if (EL1.MaxNotTaken == getCouldNotCompute())
7214           MaxBECount = EL0.MaxNotTaken;
7215         else
7216           MaxBECount =
7217               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7218       } else {
7219         // Both conditions must be true at the same time for the loop to exit.
7220         // For now, be conservative.
7221         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7222           MaxBECount = EL0.MaxNotTaken;
7223         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7224           BECount = EL0.ExactNotTaken;
7225       }
7226 
7227       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7228       // to be more aggressive when computing BECount than when computing
7229       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7230       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7231       // to not.
7232       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7233           !isa<SCEVCouldNotCompute>(BECount))
7234         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7235 
7236       return ExitLimit(BECount, MaxBECount, false,
7237                        {&EL0.Predicates, &EL1.Predicates});
7238     }
7239     if (BO->getOpcode() == Instruction::Or) {
7240       // Recurse on the operands of the or.
7241       bool EitherMayExit = ExitIfTrue;
7242       ExitLimit EL0 = computeExitLimitFromCondCached(
7243           Cache, L, BO->getOperand(0), ExitIfTrue,
7244           ControlsExit && !EitherMayExit, AllowPredicates);
7245       ExitLimit EL1 = computeExitLimitFromCondCached(
7246           Cache, L, BO->getOperand(1), ExitIfTrue,
7247           ControlsExit && !EitherMayExit, AllowPredicates);
7248       const SCEV *BECount = getCouldNotCompute();
7249       const SCEV *MaxBECount = getCouldNotCompute();
7250       if (EitherMayExit) {
7251         // Both conditions must be false for the loop to continue executing.
7252         // Choose the less conservative count.
7253         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7254             EL1.ExactNotTaken == getCouldNotCompute())
7255           BECount = getCouldNotCompute();
7256         else
7257           BECount =
7258               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7259         if (EL0.MaxNotTaken == getCouldNotCompute())
7260           MaxBECount = EL1.MaxNotTaken;
7261         else if (EL1.MaxNotTaken == getCouldNotCompute())
7262           MaxBECount = EL0.MaxNotTaken;
7263         else
7264           MaxBECount =
7265               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7266       } else {
7267         // Both conditions must be false at the same time for the loop to exit.
7268         // For now, be conservative.
7269         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7270           MaxBECount = EL0.MaxNotTaken;
7271         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7272           BECount = EL0.ExactNotTaken;
7273       }
7274       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7275       // to be more aggressive when computing BECount than when computing
7276       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7277       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7278       // to not.
7279       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7280           !isa<SCEVCouldNotCompute>(BECount))
7281         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7282 
7283       return ExitLimit(BECount, MaxBECount, false,
7284                        {&EL0.Predicates, &EL1.Predicates});
7285     }
7286   }
7287 
7288   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7289   // Proceed to the next level to examine the icmp.
7290   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7291     ExitLimit EL =
7292         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7293     if (EL.hasFullInfo() || !AllowPredicates)
7294       return EL;
7295 
7296     // Try again, but use SCEV predicates this time.
7297     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7298                                     /*AllowPredicates=*/true);
7299   }
7300 
7301   // Check for a constant condition. These are normally stripped out by
7302   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7303   // preserve the CFG and is temporarily leaving constant conditions
7304   // in place.
7305   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7306     if (ExitIfTrue == !CI->getZExtValue())
7307       // The backedge is always taken.
7308       return getCouldNotCompute();
7309     else
7310       // The backedge is never taken.
7311       return getZero(CI->getType());
7312   }
7313 
7314   // If it's not an integer or pointer comparison then compute it the hard way.
7315   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7316 }
7317 
7318 ScalarEvolution::ExitLimit
7319 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7320                                           ICmpInst *ExitCond,
7321                                           bool ExitIfTrue,
7322                                           bool ControlsExit,
7323                                           bool AllowPredicates) {
7324   // If the condition was exit on true, convert the condition to exit on false
7325   ICmpInst::Predicate Pred;
7326   if (!ExitIfTrue)
7327     Pred = ExitCond->getPredicate();
7328   else
7329     Pred = ExitCond->getInversePredicate();
7330   const ICmpInst::Predicate OriginalPred = Pred;
7331 
7332   // Handle common loops like: for (X = "string"; *X; ++X)
7333   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7334     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7335       ExitLimit ItCnt =
7336         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7337       if (ItCnt.hasAnyInfo())
7338         return ItCnt;
7339     }
7340 
7341   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7342   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7343 
7344   // Try to evaluate any dependencies out of the loop.
7345   LHS = getSCEVAtScope(LHS, L);
7346   RHS = getSCEVAtScope(RHS, L);
7347 
7348   // At this point, we would like to compute how many iterations of the
7349   // loop the predicate will return true for these inputs.
7350   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7351     // If there is a loop-invariant, force it into the RHS.
7352     std::swap(LHS, RHS);
7353     Pred = ICmpInst::getSwappedPredicate(Pred);
7354   }
7355 
7356   // Simplify the operands before analyzing them.
7357   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7358 
7359   // If we have a comparison of a chrec against a constant, try to use value
7360   // ranges to answer this query.
7361   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7362     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7363       if (AddRec->getLoop() == L) {
7364         // Form the constant range.
7365         ConstantRange CompRange =
7366             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7367 
7368         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7369         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7370       }
7371 
7372   switch (Pred) {
7373   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7374     // Convert to: while (X-Y != 0)
7375     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7376                                 AllowPredicates);
7377     if (EL.hasAnyInfo()) return EL;
7378     break;
7379   }
7380   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7381     // Convert to: while (X-Y == 0)
7382     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7383     if (EL.hasAnyInfo()) return EL;
7384     break;
7385   }
7386   case ICmpInst::ICMP_SLT:
7387   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7388     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7389     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7390                                     AllowPredicates);
7391     if (EL.hasAnyInfo()) return EL;
7392     break;
7393   }
7394   case ICmpInst::ICMP_SGT:
7395   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7396     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7397     ExitLimit EL =
7398         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7399                             AllowPredicates);
7400     if (EL.hasAnyInfo()) return EL;
7401     break;
7402   }
7403   default:
7404     break;
7405   }
7406 
7407   auto *ExhaustiveCount =
7408       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7409 
7410   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7411     return ExhaustiveCount;
7412 
7413   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7414                                       ExitCond->getOperand(1), L, OriginalPred);
7415 }
7416 
7417 ScalarEvolution::ExitLimit
7418 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7419                                                       SwitchInst *Switch,
7420                                                       BasicBlock *ExitingBlock,
7421                                                       bool ControlsExit) {
7422   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7423 
7424   // Give up if the exit is the default dest of a switch.
7425   if (Switch->getDefaultDest() == ExitingBlock)
7426     return getCouldNotCompute();
7427 
7428   assert(L->contains(Switch->getDefaultDest()) &&
7429          "Default case must not exit the loop!");
7430   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7431   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7432 
7433   // while (X != Y) --> while (X-Y != 0)
7434   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7435   if (EL.hasAnyInfo())
7436     return EL;
7437 
7438   return getCouldNotCompute();
7439 }
7440 
7441 static ConstantInt *
7442 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7443                                 ScalarEvolution &SE) {
7444   const SCEV *InVal = SE.getConstant(C);
7445   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7446   assert(isa<SCEVConstant>(Val) &&
7447          "Evaluation of SCEV at constant didn't fold correctly?");
7448   return cast<SCEVConstant>(Val)->getValue();
7449 }
7450 
7451 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7452 /// compute the backedge execution count.
7453 ScalarEvolution::ExitLimit
7454 ScalarEvolution::computeLoadConstantCompareExitLimit(
7455   LoadInst *LI,
7456   Constant *RHS,
7457   const Loop *L,
7458   ICmpInst::Predicate predicate) {
7459   if (LI->isVolatile()) return getCouldNotCompute();
7460 
7461   // Check to see if the loaded pointer is a getelementptr of a global.
7462   // TODO: Use SCEV instead of manually grubbing with GEPs.
7463   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7464   if (!GEP) return getCouldNotCompute();
7465 
7466   // Make sure that it is really a constant global we are gepping, with an
7467   // initializer, and make sure the first IDX is really 0.
7468   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7469   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7470       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7471       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7472     return getCouldNotCompute();
7473 
7474   // Okay, we allow one non-constant index into the GEP instruction.
7475   Value *VarIdx = nullptr;
7476   std::vector<Constant*> Indexes;
7477   unsigned VarIdxNum = 0;
7478   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7479     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7480       Indexes.push_back(CI);
7481     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7482       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7483       VarIdx = GEP->getOperand(i);
7484       VarIdxNum = i-2;
7485       Indexes.push_back(nullptr);
7486     }
7487 
7488   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7489   if (!VarIdx)
7490     return getCouldNotCompute();
7491 
7492   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7493   // Check to see if X is a loop variant variable value now.
7494   const SCEV *Idx = getSCEV(VarIdx);
7495   Idx = getSCEVAtScope(Idx, L);
7496 
7497   // We can only recognize very limited forms of loop index expressions, in
7498   // particular, only affine AddRec's like {C1,+,C2}.
7499   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7500   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7501       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7502       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7503     return getCouldNotCompute();
7504 
7505   unsigned MaxSteps = MaxBruteForceIterations;
7506   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7507     ConstantInt *ItCst = ConstantInt::get(
7508                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7509     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7510 
7511     // Form the GEP offset.
7512     Indexes[VarIdxNum] = Val;
7513 
7514     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7515                                                          Indexes);
7516     if (!Result) break;  // Cannot compute!
7517 
7518     // Evaluate the condition for this iteration.
7519     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7520     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7521     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7522       ++NumArrayLenItCounts;
7523       return getConstant(ItCst);   // Found terminating iteration!
7524     }
7525   }
7526   return getCouldNotCompute();
7527 }
7528 
7529 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7530     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7531   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7532   if (!RHS)
7533     return getCouldNotCompute();
7534 
7535   const BasicBlock *Latch = L->getLoopLatch();
7536   if (!Latch)
7537     return getCouldNotCompute();
7538 
7539   const BasicBlock *Predecessor = L->getLoopPredecessor();
7540   if (!Predecessor)
7541     return getCouldNotCompute();
7542 
7543   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7544   // Return LHS in OutLHS and shift_opt in OutOpCode.
7545   auto MatchPositiveShift =
7546       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7547 
7548     using namespace PatternMatch;
7549 
7550     ConstantInt *ShiftAmt;
7551     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7552       OutOpCode = Instruction::LShr;
7553     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7554       OutOpCode = Instruction::AShr;
7555     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7556       OutOpCode = Instruction::Shl;
7557     else
7558       return false;
7559 
7560     return ShiftAmt->getValue().isStrictlyPositive();
7561   };
7562 
7563   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7564   //
7565   // loop:
7566   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7567   //   %iv.shifted = lshr i32 %iv, <positive constant>
7568   //
7569   // Return true on a successful match.  Return the corresponding PHI node (%iv
7570   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7571   auto MatchShiftRecurrence =
7572       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7573     Optional<Instruction::BinaryOps> PostShiftOpCode;
7574 
7575     {
7576       Instruction::BinaryOps OpC;
7577       Value *V;
7578 
7579       // If we encounter a shift instruction, "peel off" the shift operation,
7580       // and remember that we did so.  Later when we inspect %iv's backedge
7581       // value, we will make sure that the backedge value uses the same
7582       // operation.
7583       //
7584       // Note: the peeled shift operation does not have to be the same
7585       // instruction as the one feeding into the PHI's backedge value.  We only
7586       // really care about it being the same *kind* of shift instruction --
7587       // that's all that is required for our later inferences to hold.
7588       if (MatchPositiveShift(LHS, V, OpC)) {
7589         PostShiftOpCode = OpC;
7590         LHS = V;
7591       }
7592     }
7593 
7594     PNOut = dyn_cast<PHINode>(LHS);
7595     if (!PNOut || PNOut->getParent() != L->getHeader())
7596       return false;
7597 
7598     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7599     Value *OpLHS;
7600 
7601     return
7602         // The backedge value for the PHI node must be a shift by a positive
7603         // amount
7604         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7605 
7606         // of the PHI node itself
7607         OpLHS == PNOut &&
7608 
7609         // and the kind of shift should be match the kind of shift we peeled
7610         // off, if any.
7611         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7612   };
7613 
7614   PHINode *PN;
7615   Instruction::BinaryOps OpCode;
7616   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7617     return getCouldNotCompute();
7618 
7619   const DataLayout &DL = getDataLayout();
7620 
7621   // The key rationale for this optimization is that for some kinds of shift
7622   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7623   // within a finite number of iterations.  If the condition guarding the
7624   // backedge (in the sense that the backedge is taken if the condition is true)
7625   // is false for the value the shift recurrence stabilizes to, then we know
7626   // that the backedge is taken only a finite number of times.
7627 
7628   ConstantInt *StableValue = nullptr;
7629   switch (OpCode) {
7630   default:
7631     llvm_unreachable("Impossible case!");
7632 
7633   case Instruction::AShr: {
7634     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7635     // bitwidth(K) iterations.
7636     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7637     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7638                                        Predecessor->getTerminator(), &DT);
7639     auto *Ty = cast<IntegerType>(RHS->getType());
7640     if (Known.isNonNegative())
7641       StableValue = ConstantInt::get(Ty, 0);
7642     else if (Known.isNegative())
7643       StableValue = ConstantInt::get(Ty, -1, true);
7644     else
7645       return getCouldNotCompute();
7646 
7647     break;
7648   }
7649   case Instruction::LShr:
7650   case Instruction::Shl:
7651     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7652     // stabilize to 0 in at most bitwidth(K) iterations.
7653     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7654     break;
7655   }
7656 
7657   auto *Result =
7658       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7659   assert(Result->getType()->isIntegerTy(1) &&
7660          "Otherwise cannot be an operand to a branch instruction");
7661 
7662   if (Result->isZeroValue()) {
7663     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7664     const SCEV *UpperBound =
7665         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7666     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7667   }
7668 
7669   return getCouldNotCompute();
7670 }
7671 
7672 /// Return true if we can constant fold an instruction of the specified type,
7673 /// assuming that all operands were constants.
7674 static bool CanConstantFold(const Instruction *I) {
7675   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7676       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7677       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7678     return true;
7679 
7680   if (const CallInst *CI = dyn_cast<CallInst>(I))
7681     if (const Function *F = CI->getCalledFunction())
7682       return canConstantFoldCallTo(CI, F);
7683   return false;
7684 }
7685 
7686 /// Determine whether this instruction can constant evolve within this loop
7687 /// assuming its operands can all constant evolve.
7688 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7689   // An instruction outside of the loop can't be derived from a loop PHI.
7690   if (!L->contains(I)) return false;
7691 
7692   if (isa<PHINode>(I)) {
7693     // We don't currently keep track of the control flow needed to evaluate
7694     // PHIs, so we cannot handle PHIs inside of loops.
7695     return L->getHeader() == I->getParent();
7696   }
7697 
7698   // If we won't be able to constant fold this expression even if the operands
7699   // are constants, bail early.
7700   return CanConstantFold(I);
7701 }
7702 
7703 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7704 /// recursing through each instruction operand until reaching a loop header phi.
7705 static PHINode *
7706 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7707                                DenseMap<Instruction *, PHINode *> &PHIMap,
7708                                unsigned Depth) {
7709   if (Depth > MaxConstantEvolvingDepth)
7710     return nullptr;
7711 
7712   // Otherwise, we can evaluate this instruction if all of its operands are
7713   // constant or derived from a PHI node themselves.
7714   PHINode *PHI = nullptr;
7715   for (Value *Op : UseInst->operands()) {
7716     if (isa<Constant>(Op)) continue;
7717 
7718     Instruction *OpInst = dyn_cast<Instruction>(Op);
7719     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7720 
7721     PHINode *P = dyn_cast<PHINode>(OpInst);
7722     if (!P)
7723       // If this operand is already visited, reuse the prior result.
7724       // We may have P != PHI if this is the deepest point at which the
7725       // inconsistent paths meet.
7726       P = PHIMap.lookup(OpInst);
7727     if (!P) {
7728       // Recurse and memoize the results, whether a phi is found or not.
7729       // This recursive call invalidates pointers into PHIMap.
7730       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7731       PHIMap[OpInst] = P;
7732     }
7733     if (!P)
7734       return nullptr;  // Not evolving from PHI
7735     if (PHI && PHI != P)
7736       return nullptr;  // Evolving from multiple different PHIs.
7737     PHI = P;
7738   }
7739   // This is a expression evolving from a constant PHI!
7740   return PHI;
7741 }
7742 
7743 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7744 /// in the loop that V is derived from.  We allow arbitrary operations along the
7745 /// way, but the operands of an operation must either be constants or a value
7746 /// derived from a constant PHI.  If this expression does not fit with these
7747 /// constraints, return null.
7748 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7749   Instruction *I = dyn_cast<Instruction>(V);
7750   if (!I || !canConstantEvolve(I, L)) return nullptr;
7751 
7752   if (PHINode *PN = dyn_cast<PHINode>(I))
7753     return PN;
7754 
7755   // Record non-constant instructions contained by the loop.
7756   DenseMap<Instruction *, PHINode *> PHIMap;
7757   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7758 }
7759 
7760 /// EvaluateExpression - Given an expression that passes the
7761 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7762 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7763 /// reason, return null.
7764 static Constant *EvaluateExpression(Value *V, const Loop *L,
7765                                     DenseMap<Instruction *, Constant *> &Vals,
7766                                     const DataLayout &DL,
7767                                     const TargetLibraryInfo *TLI) {
7768   // Convenient constant check, but redundant for recursive calls.
7769   if (Constant *C = dyn_cast<Constant>(V)) return C;
7770   Instruction *I = dyn_cast<Instruction>(V);
7771   if (!I) return nullptr;
7772 
7773   if (Constant *C = Vals.lookup(I)) return C;
7774 
7775   // An instruction inside the loop depends on a value outside the loop that we
7776   // weren't given a mapping for, or a value such as a call inside the loop.
7777   if (!canConstantEvolve(I, L)) return nullptr;
7778 
7779   // An unmapped PHI can be due to a branch or another loop inside this loop,
7780   // or due to this not being the initial iteration through a loop where we
7781   // couldn't compute the evolution of this particular PHI last time.
7782   if (isa<PHINode>(I)) return nullptr;
7783 
7784   std::vector<Constant*> Operands(I->getNumOperands());
7785 
7786   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7787     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7788     if (!Operand) {
7789       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7790       if (!Operands[i]) return nullptr;
7791       continue;
7792     }
7793     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7794     Vals[Operand] = C;
7795     if (!C) return nullptr;
7796     Operands[i] = C;
7797   }
7798 
7799   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7800     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7801                                            Operands[1], DL, TLI);
7802   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7803     if (!LI->isVolatile())
7804       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7805   }
7806   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7807 }
7808 
7809 
7810 // If every incoming value to PN except the one for BB is a specific Constant,
7811 // return that, else return nullptr.
7812 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7813   Constant *IncomingVal = nullptr;
7814 
7815   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7816     if (PN->getIncomingBlock(i) == BB)
7817       continue;
7818 
7819     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7820     if (!CurrentVal)
7821       return nullptr;
7822 
7823     if (IncomingVal != CurrentVal) {
7824       if (IncomingVal)
7825         return nullptr;
7826       IncomingVal = CurrentVal;
7827     }
7828   }
7829 
7830   return IncomingVal;
7831 }
7832 
7833 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7834 /// in the header of its containing loop, we know the loop executes a
7835 /// constant number of times, and the PHI node is just a recurrence
7836 /// involving constants, fold it.
7837 Constant *
7838 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7839                                                    const APInt &BEs,
7840                                                    const Loop *L) {
7841   auto I = ConstantEvolutionLoopExitValue.find(PN);
7842   if (I != ConstantEvolutionLoopExitValue.end())
7843     return I->second;
7844 
7845   if (BEs.ugt(MaxBruteForceIterations))
7846     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7847 
7848   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7849 
7850   DenseMap<Instruction *, Constant *> CurrentIterVals;
7851   BasicBlock *Header = L->getHeader();
7852   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7853 
7854   BasicBlock *Latch = L->getLoopLatch();
7855   if (!Latch)
7856     return nullptr;
7857 
7858   for (PHINode &PHI : Header->phis()) {
7859     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7860       CurrentIterVals[&PHI] = StartCST;
7861   }
7862   if (!CurrentIterVals.count(PN))
7863     return RetVal = nullptr;
7864 
7865   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7866 
7867   // Execute the loop symbolically to determine the exit value.
7868   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7869          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7870 
7871   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7872   unsigned IterationNum = 0;
7873   const DataLayout &DL = getDataLayout();
7874   for (; ; ++IterationNum) {
7875     if (IterationNum == NumIterations)
7876       return RetVal = CurrentIterVals[PN];  // Got exit value!
7877 
7878     // Compute the value of the PHIs for the next iteration.
7879     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7880     DenseMap<Instruction *, Constant *> NextIterVals;
7881     Constant *NextPHI =
7882         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7883     if (!NextPHI)
7884       return nullptr;        // Couldn't evaluate!
7885     NextIterVals[PN] = NextPHI;
7886 
7887     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7888 
7889     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7890     // cease to be able to evaluate one of them or if they stop evolving,
7891     // because that doesn't necessarily prevent us from computing PN.
7892     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7893     for (const auto &I : CurrentIterVals) {
7894       PHINode *PHI = dyn_cast<PHINode>(I.first);
7895       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7896       PHIsToCompute.emplace_back(PHI, I.second);
7897     }
7898     // We use two distinct loops because EvaluateExpression may invalidate any
7899     // iterators into CurrentIterVals.
7900     for (const auto &I : PHIsToCompute) {
7901       PHINode *PHI = I.first;
7902       Constant *&NextPHI = NextIterVals[PHI];
7903       if (!NextPHI) {   // Not already computed.
7904         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7905         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7906       }
7907       if (NextPHI != I.second)
7908         StoppedEvolving = false;
7909     }
7910 
7911     // If all entries in CurrentIterVals == NextIterVals then we can stop
7912     // iterating, the loop can't continue to change.
7913     if (StoppedEvolving)
7914       return RetVal = CurrentIterVals[PN];
7915 
7916     CurrentIterVals.swap(NextIterVals);
7917   }
7918 }
7919 
7920 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7921                                                           Value *Cond,
7922                                                           bool ExitWhen) {
7923   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7924   if (!PN) return getCouldNotCompute();
7925 
7926   // If the loop is canonicalized, the PHI will have exactly two entries.
7927   // That's the only form we support here.
7928   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7929 
7930   DenseMap<Instruction *, Constant *> CurrentIterVals;
7931   BasicBlock *Header = L->getHeader();
7932   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7933 
7934   BasicBlock *Latch = L->getLoopLatch();
7935   assert(Latch && "Should follow from NumIncomingValues == 2!");
7936 
7937   for (PHINode &PHI : Header->phis()) {
7938     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7939       CurrentIterVals[&PHI] = StartCST;
7940   }
7941   if (!CurrentIterVals.count(PN))
7942     return getCouldNotCompute();
7943 
7944   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7945   // the loop symbolically to determine when the condition gets a value of
7946   // "ExitWhen".
7947   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7948   const DataLayout &DL = getDataLayout();
7949   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7950     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7951         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7952 
7953     // Couldn't symbolically evaluate.
7954     if (!CondVal) return getCouldNotCompute();
7955 
7956     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7957       ++NumBruteForceTripCountsComputed;
7958       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7959     }
7960 
7961     // Update all the PHI nodes for the next iteration.
7962     DenseMap<Instruction *, Constant *> NextIterVals;
7963 
7964     // Create a list of which PHIs we need to compute. We want to do this before
7965     // calling EvaluateExpression on them because that may invalidate iterators
7966     // into CurrentIterVals.
7967     SmallVector<PHINode *, 8> PHIsToCompute;
7968     for (const auto &I : CurrentIterVals) {
7969       PHINode *PHI = dyn_cast<PHINode>(I.first);
7970       if (!PHI || PHI->getParent() != Header) continue;
7971       PHIsToCompute.push_back(PHI);
7972     }
7973     for (PHINode *PHI : PHIsToCompute) {
7974       Constant *&NextPHI = NextIterVals[PHI];
7975       if (NextPHI) continue;    // Already computed!
7976 
7977       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7978       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7979     }
7980     CurrentIterVals.swap(NextIterVals);
7981   }
7982 
7983   // Too many iterations were needed to evaluate.
7984   return getCouldNotCompute();
7985 }
7986 
7987 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7988   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7989       ValuesAtScopes[V];
7990   // Check to see if we've folded this expression at this loop before.
7991   for (auto &LS : Values)
7992     if (LS.first == L)
7993       return LS.second ? LS.second : V;
7994 
7995   Values.emplace_back(L, nullptr);
7996 
7997   // Otherwise compute it.
7998   const SCEV *C = computeSCEVAtScope(V, L);
7999   for (auto &LS : reverse(ValuesAtScopes[V]))
8000     if (LS.first == L) {
8001       LS.second = C;
8002       break;
8003     }
8004   return C;
8005 }
8006 
8007 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8008 /// will return Constants for objects which aren't represented by a
8009 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8010 /// Returns NULL if the SCEV isn't representable as a Constant.
8011 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8012   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8013     case scCouldNotCompute:
8014     case scAddRecExpr:
8015       break;
8016     case scConstant:
8017       return cast<SCEVConstant>(V)->getValue();
8018     case scUnknown:
8019       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8020     case scSignExtend: {
8021       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8022       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8023         return ConstantExpr::getSExt(CastOp, SS->getType());
8024       break;
8025     }
8026     case scZeroExtend: {
8027       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8028       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8029         return ConstantExpr::getZExt(CastOp, SZ->getType());
8030       break;
8031     }
8032     case scTruncate: {
8033       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8034       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8035         return ConstantExpr::getTrunc(CastOp, ST->getType());
8036       break;
8037     }
8038     case scAddExpr: {
8039       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8040       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8041         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8042           unsigned AS = PTy->getAddressSpace();
8043           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8044           C = ConstantExpr::getBitCast(C, DestPtrTy);
8045         }
8046         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8047           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8048           if (!C2) return nullptr;
8049 
8050           // First pointer!
8051           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8052             unsigned AS = C2->getType()->getPointerAddressSpace();
8053             std::swap(C, C2);
8054             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8055             // The offsets have been converted to bytes.  We can add bytes to an
8056             // i8* by GEP with the byte count in the first index.
8057             C = ConstantExpr::getBitCast(C, DestPtrTy);
8058           }
8059 
8060           // Don't bother trying to sum two pointers. We probably can't
8061           // statically compute a load that results from it anyway.
8062           if (C2->getType()->isPointerTy())
8063             return nullptr;
8064 
8065           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8066             if (PTy->getElementType()->isStructTy())
8067               C2 = ConstantExpr::getIntegerCast(
8068                   C2, Type::getInt32Ty(C->getContext()), true);
8069             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8070           } else
8071             C = ConstantExpr::getAdd(C, C2);
8072         }
8073         return C;
8074       }
8075       break;
8076     }
8077     case scMulExpr: {
8078       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8079       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8080         // Don't bother with pointers at all.
8081         if (C->getType()->isPointerTy()) return nullptr;
8082         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8083           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8084           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8085           C = ConstantExpr::getMul(C, C2);
8086         }
8087         return C;
8088       }
8089       break;
8090     }
8091     case scUDivExpr: {
8092       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8093       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8094         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8095           if (LHS->getType() == RHS->getType())
8096             return ConstantExpr::getUDiv(LHS, RHS);
8097       break;
8098     }
8099     case scSMaxExpr:
8100     case scUMaxExpr:
8101     case scSMinExpr:
8102     case scUMinExpr:
8103       break; // TODO: smax, umax, smin, umax.
8104   }
8105   return nullptr;
8106 }
8107 
8108 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8109   if (isa<SCEVConstant>(V)) return V;
8110 
8111   // If this instruction is evolved from a constant-evolving PHI, compute the
8112   // exit value from the loop without using SCEVs.
8113   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8114     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8115       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8116         const Loop *LI = this->LI[I->getParent()];
8117         // Looking for loop exit value.
8118         if (LI && LI->getParentLoop() == L &&
8119             PN->getParent() == LI->getHeader()) {
8120           // Okay, there is no closed form solution for the PHI node.  Check
8121           // to see if the loop that contains it has a known backedge-taken
8122           // count.  If so, we may be able to force computation of the exit
8123           // value.
8124           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8125           // This trivial case can show up in some degenerate cases where
8126           // the incoming IR has not yet been fully simplified.
8127           if (BackedgeTakenCount->isZero()) {
8128             Value *InitValue = nullptr;
8129             bool MultipleInitValues = false;
8130             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8131               if (!LI->contains(PN->getIncomingBlock(i))) {
8132                 if (!InitValue)
8133                   InitValue = PN->getIncomingValue(i);
8134                 else if (InitValue != PN->getIncomingValue(i)) {
8135                   MultipleInitValues = true;
8136                   break;
8137                 }
8138               }
8139             }
8140             if (!MultipleInitValues && InitValue)
8141               return getSCEV(InitValue);
8142           }
8143           // Do we have a loop invariant value flowing around the backedge
8144           // for a loop which must execute the backedge?
8145           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8146               isKnownPositive(BackedgeTakenCount) &&
8147               PN->getNumIncomingValues() == 2) {
8148             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8149             const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8150             if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8151               return OnBackedge;
8152           }
8153           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8154             // Okay, we know how many times the containing loop executes.  If
8155             // this is a constant evolving PHI node, get the final value at
8156             // the specified iteration number.
8157             Constant *RV =
8158                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8159             if (RV) return getSCEV(RV);
8160           }
8161         }
8162 
8163         // If there is a single-input Phi, evaluate it at our scope. If we can
8164         // prove that this replacement does not break LCSSA form, use new value.
8165         if (PN->getNumOperands() == 1) {
8166           const SCEV *Input = getSCEV(PN->getOperand(0));
8167           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8168           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8169           // for the simplest case just support constants.
8170           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8171         }
8172       }
8173 
8174       // Okay, this is an expression that we cannot symbolically evaluate
8175       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8176       // the arguments into constants, and if so, try to constant propagate the
8177       // result.  This is particularly useful for computing loop exit values.
8178       if (CanConstantFold(I)) {
8179         SmallVector<Constant *, 4> Operands;
8180         bool MadeImprovement = false;
8181         for (Value *Op : I->operands()) {
8182           if (Constant *C = dyn_cast<Constant>(Op)) {
8183             Operands.push_back(C);
8184             continue;
8185           }
8186 
8187           // If any of the operands is non-constant and if they are
8188           // non-integer and non-pointer, don't even try to analyze them
8189           // with scev techniques.
8190           if (!isSCEVable(Op->getType()))
8191             return V;
8192 
8193           const SCEV *OrigV = getSCEV(Op);
8194           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8195           MadeImprovement |= OrigV != OpV;
8196 
8197           Constant *C = BuildConstantFromSCEV(OpV);
8198           if (!C) return V;
8199           if (C->getType() != Op->getType())
8200             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8201                                                               Op->getType(),
8202                                                               false),
8203                                       C, Op->getType());
8204           Operands.push_back(C);
8205         }
8206 
8207         // Check to see if getSCEVAtScope actually made an improvement.
8208         if (MadeImprovement) {
8209           Constant *C = nullptr;
8210           const DataLayout &DL = getDataLayout();
8211           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8212             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8213                                                 Operands[1], DL, &TLI);
8214           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8215             if (!LI->isVolatile())
8216               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8217           } else
8218             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8219           if (!C) return V;
8220           return getSCEV(C);
8221         }
8222       }
8223     }
8224 
8225     // This is some other type of SCEVUnknown, just return it.
8226     return V;
8227   }
8228 
8229   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8230     // Avoid performing the look-up in the common case where the specified
8231     // expression has no loop-variant portions.
8232     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8233       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8234       if (OpAtScope != Comm->getOperand(i)) {
8235         // Okay, at least one of these operands is loop variant but might be
8236         // foldable.  Build a new instance of the folded commutative expression.
8237         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8238                                             Comm->op_begin()+i);
8239         NewOps.push_back(OpAtScope);
8240 
8241         for (++i; i != e; ++i) {
8242           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8243           NewOps.push_back(OpAtScope);
8244         }
8245         if (isa<SCEVAddExpr>(Comm))
8246           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8247         if (isa<SCEVMulExpr>(Comm))
8248           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8249         if (isa<SCEVMinMaxExpr>(Comm))
8250           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8251         llvm_unreachable("Unknown commutative SCEV type!");
8252       }
8253     }
8254     // If we got here, all operands are loop invariant.
8255     return Comm;
8256   }
8257 
8258   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8259     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8260     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8261     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8262       return Div;   // must be loop invariant
8263     return getUDivExpr(LHS, RHS);
8264   }
8265 
8266   // If this is a loop recurrence for a loop that does not contain L, then we
8267   // are dealing with the final value computed by the loop.
8268   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8269     // First, attempt to evaluate each operand.
8270     // Avoid performing the look-up in the common case where the specified
8271     // expression has no loop-variant portions.
8272     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8273       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8274       if (OpAtScope == AddRec->getOperand(i))
8275         continue;
8276 
8277       // Okay, at least one of these operands is loop variant but might be
8278       // foldable.  Build a new instance of the folded commutative expression.
8279       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8280                                           AddRec->op_begin()+i);
8281       NewOps.push_back(OpAtScope);
8282       for (++i; i != e; ++i)
8283         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8284 
8285       const SCEV *FoldedRec =
8286         getAddRecExpr(NewOps, AddRec->getLoop(),
8287                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8288       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8289       // The addrec may be folded to a nonrecurrence, for example, if the
8290       // induction variable is multiplied by zero after constant folding. Go
8291       // ahead and return the folded value.
8292       if (!AddRec)
8293         return FoldedRec;
8294       break;
8295     }
8296 
8297     // If the scope is outside the addrec's loop, evaluate it by using the
8298     // loop exit value of the addrec.
8299     if (!AddRec->getLoop()->contains(L)) {
8300       // To evaluate this recurrence, we need to know how many times the AddRec
8301       // loop iterates.  Compute this now.
8302       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8303       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8304 
8305       // Then, evaluate the AddRec.
8306       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8307     }
8308 
8309     return AddRec;
8310   }
8311 
8312   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8313     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8314     if (Op == Cast->getOperand())
8315       return Cast;  // must be loop invariant
8316     return getZeroExtendExpr(Op, Cast->getType());
8317   }
8318 
8319   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8320     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8321     if (Op == Cast->getOperand())
8322       return Cast;  // must be loop invariant
8323     return getSignExtendExpr(Op, Cast->getType());
8324   }
8325 
8326   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8327     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8328     if (Op == Cast->getOperand())
8329       return Cast;  // must be loop invariant
8330     return getTruncateExpr(Op, Cast->getType());
8331   }
8332 
8333   llvm_unreachable("Unknown SCEV type!");
8334 }
8335 
8336 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8337   return getSCEVAtScope(getSCEV(V), L);
8338 }
8339 
8340 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8341   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8342     return stripInjectiveFunctions(ZExt->getOperand());
8343   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8344     return stripInjectiveFunctions(SExt->getOperand());
8345   return S;
8346 }
8347 
8348 /// Finds the minimum unsigned root of the following equation:
8349 ///
8350 ///     A * X = B (mod N)
8351 ///
8352 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8353 /// A and B isn't important.
8354 ///
8355 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8356 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8357                                                ScalarEvolution &SE) {
8358   uint32_t BW = A.getBitWidth();
8359   assert(BW == SE.getTypeSizeInBits(B->getType()));
8360   assert(A != 0 && "A must be non-zero.");
8361 
8362   // 1. D = gcd(A, N)
8363   //
8364   // The gcd of A and N may have only one prime factor: 2. The number of
8365   // trailing zeros in A is its multiplicity
8366   uint32_t Mult2 = A.countTrailingZeros();
8367   // D = 2^Mult2
8368 
8369   // 2. Check if B is divisible by D.
8370   //
8371   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8372   // is not less than multiplicity of this prime factor for D.
8373   if (SE.GetMinTrailingZeros(B) < Mult2)
8374     return SE.getCouldNotCompute();
8375 
8376   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8377   // modulo (N / D).
8378   //
8379   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8380   // (N / D) in general. The inverse itself always fits into BW bits, though,
8381   // so we immediately truncate it.
8382   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8383   APInt Mod(BW + 1, 0);
8384   Mod.setBit(BW - Mult2);  // Mod = N / D
8385   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8386 
8387   // 4. Compute the minimum unsigned root of the equation:
8388   // I * (B / D) mod (N / D)
8389   // To simplify the computation, we factor out the divide by D:
8390   // (I * B mod N) / D
8391   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8392   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8393 }
8394 
8395 /// For a given quadratic addrec, generate coefficients of the corresponding
8396 /// quadratic equation, multiplied by a common value to ensure that they are
8397 /// integers.
8398 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8399 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8400 /// were multiplied by, and BitWidth is the bit width of the original addrec
8401 /// coefficients.
8402 /// This function returns None if the addrec coefficients are not compile-
8403 /// time constants.
8404 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8405 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8406   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8407   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8408   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8409   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8410   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8411                     << *AddRec << '\n');
8412 
8413   // We currently can only solve this if the coefficients are constants.
8414   if (!LC || !MC || !NC) {
8415     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8416     return None;
8417   }
8418 
8419   APInt L = LC->getAPInt();
8420   APInt M = MC->getAPInt();
8421   APInt N = NC->getAPInt();
8422   assert(!N.isNullValue() && "This is not a quadratic addrec");
8423 
8424   unsigned BitWidth = LC->getAPInt().getBitWidth();
8425   unsigned NewWidth = BitWidth + 1;
8426   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8427                     << BitWidth << '\n');
8428   // The sign-extension (as opposed to a zero-extension) here matches the
8429   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8430   N = N.sext(NewWidth);
8431   M = M.sext(NewWidth);
8432   L = L.sext(NewWidth);
8433 
8434   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8435   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8436   //   L+M, L+2M+N, L+3M+3N, ...
8437   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8438   //
8439   // The equation Acc = 0 is then
8440   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8441   // In a quadratic form it becomes:
8442   //   N n^2 + (2M-N) n + 2L = 0.
8443 
8444   APInt A = N;
8445   APInt B = 2 * M - A;
8446   APInt C = 2 * L;
8447   APInt T = APInt(NewWidth, 2);
8448   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8449                     << "x + " << C << ", coeff bw: " << NewWidth
8450                     << ", multiplied by " << T << '\n');
8451   return std::make_tuple(A, B, C, T, BitWidth);
8452 }
8453 
8454 /// Helper function to compare optional APInts:
8455 /// (a) if X and Y both exist, return min(X, Y),
8456 /// (b) if neither X nor Y exist, return None,
8457 /// (c) if exactly one of X and Y exists, return that value.
8458 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8459   if (X.hasValue() && Y.hasValue()) {
8460     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8461     APInt XW = X->sextOrSelf(W);
8462     APInt YW = Y->sextOrSelf(W);
8463     return XW.slt(YW) ? *X : *Y;
8464   }
8465   if (!X.hasValue() && !Y.hasValue())
8466     return None;
8467   return X.hasValue() ? *X : *Y;
8468 }
8469 
8470 /// Helper function to truncate an optional APInt to a given BitWidth.
8471 /// When solving addrec-related equations, it is preferable to return a value
8472 /// that has the same bit width as the original addrec's coefficients. If the
8473 /// solution fits in the original bit width, truncate it (except for i1).
8474 /// Returning a value of a different bit width may inhibit some optimizations.
8475 ///
8476 /// In general, a solution to a quadratic equation generated from an addrec
8477 /// may require BW+1 bits, where BW is the bit width of the addrec's
8478 /// coefficients. The reason is that the coefficients of the quadratic
8479 /// equation are BW+1 bits wide (to avoid truncation when converting from
8480 /// the addrec to the equation).
8481 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8482   if (!X.hasValue())
8483     return None;
8484   unsigned W = X->getBitWidth();
8485   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8486     return X->trunc(BitWidth);
8487   return X;
8488 }
8489 
8490 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8491 /// iterations. The values L, M, N are assumed to be signed, and they
8492 /// should all have the same bit widths.
8493 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8494 /// where BW is the bit width of the addrec's coefficients.
8495 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8496 /// returned as such, otherwise the bit width of the returned value may
8497 /// be greater than BW.
8498 ///
8499 /// This function returns None if
8500 /// (a) the addrec coefficients are not constant, or
8501 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8502 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8503 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8504 static Optional<APInt>
8505 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8506   APInt A, B, C, M;
8507   unsigned BitWidth;
8508   auto T = GetQuadraticEquation(AddRec);
8509   if (!T.hasValue())
8510     return None;
8511 
8512   std::tie(A, B, C, M, BitWidth) = *T;
8513   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8514   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8515   if (!X.hasValue())
8516     return None;
8517 
8518   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8519   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8520   if (!V->isZero())
8521     return None;
8522 
8523   return TruncIfPossible(X, BitWidth);
8524 }
8525 
8526 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8527 /// iterations. The values M, N are assumed to be signed, and they
8528 /// should all have the same bit widths.
8529 /// Find the least n such that c(n) does not belong to the given range,
8530 /// while c(n-1) does.
8531 ///
8532 /// This function returns None if
8533 /// (a) the addrec coefficients are not constant, or
8534 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8535 ///     bounds of the range.
8536 static Optional<APInt>
8537 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8538                           const ConstantRange &Range, ScalarEvolution &SE) {
8539   assert(AddRec->getOperand(0)->isZero() &&
8540          "Starting value of addrec should be 0");
8541   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8542                     << Range << ", addrec " << *AddRec << '\n');
8543   // This case is handled in getNumIterationsInRange. Here we can assume that
8544   // we start in the range.
8545   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8546          "Addrec's initial value should be in range");
8547 
8548   APInt A, B, C, M;
8549   unsigned BitWidth;
8550   auto T = GetQuadraticEquation(AddRec);
8551   if (!T.hasValue())
8552     return None;
8553 
8554   // Be careful about the return value: there can be two reasons for not
8555   // returning an actual number. First, if no solutions to the equations
8556   // were found, and second, if the solutions don't leave the given range.
8557   // The first case means that the actual solution is "unknown", the second
8558   // means that it's known, but not valid. If the solution is unknown, we
8559   // cannot make any conclusions.
8560   // Return a pair: the optional solution and a flag indicating if the
8561   // solution was found.
8562   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8563     // Solve for signed overflow and unsigned overflow, pick the lower
8564     // solution.
8565     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8566                       << Bound << " (before multiplying by " << M << ")\n");
8567     Bound *= M; // The quadratic equation multiplier.
8568 
8569     Optional<APInt> SO = None;
8570     if (BitWidth > 1) {
8571       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8572                            "signed overflow\n");
8573       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8574     }
8575     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8576                          "unsigned overflow\n");
8577     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8578                                                               BitWidth+1);
8579 
8580     auto LeavesRange = [&] (const APInt &X) {
8581       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8582       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8583       if (Range.contains(V0->getValue()))
8584         return false;
8585       // X should be at least 1, so X-1 is non-negative.
8586       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8587       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8588       if (Range.contains(V1->getValue()))
8589         return true;
8590       return false;
8591     };
8592 
8593     // If SolveQuadraticEquationWrap returns None, it means that there can
8594     // be a solution, but the function failed to find it. We cannot treat it
8595     // as "no solution".
8596     if (!SO.hasValue() || !UO.hasValue())
8597       return { None, false };
8598 
8599     // Check the smaller value first to see if it leaves the range.
8600     // At this point, both SO and UO must have values.
8601     Optional<APInt> Min = MinOptional(SO, UO);
8602     if (LeavesRange(*Min))
8603       return { Min, true };
8604     Optional<APInt> Max = Min == SO ? UO : SO;
8605     if (LeavesRange(*Max))
8606       return { Max, true };
8607 
8608     // Solutions were found, but were eliminated, hence the "true".
8609     return { None, true };
8610   };
8611 
8612   std::tie(A, B, C, M, BitWidth) = *T;
8613   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8614   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8615   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8616   auto SL = SolveForBoundary(Lower);
8617   auto SU = SolveForBoundary(Upper);
8618   // If any of the solutions was unknown, no meaninigful conclusions can
8619   // be made.
8620   if (!SL.second || !SU.second)
8621     return None;
8622 
8623   // Claim: The correct solution is not some value between Min and Max.
8624   //
8625   // Justification: Assuming that Min and Max are different values, one of
8626   // them is when the first signed overflow happens, the other is when the
8627   // first unsigned overflow happens. Crossing the range boundary is only
8628   // possible via an overflow (treating 0 as a special case of it, modeling
8629   // an overflow as crossing k*2^W for some k).
8630   //
8631   // The interesting case here is when Min was eliminated as an invalid
8632   // solution, but Max was not. The argument is that if there was another
8633   // overflow between Min and Max, it would also have been eliminated if
8634   // it was considered.
8635   //
8636   // For a given boundary, it is possible to have two overflows of the same
8637   // type (signed/unsigned) without having the other type in between: this
8638   // can happen when the vertex of the parabola is between the iterations
8639   // corresponding to the overflows. This is only possible when the two
8640   // overflows cross k*2^W for the same k. In such case, if the second one
8641   // left the range (and was the first one to do so), the first overflow
8642   // would have to enter the range, which would mean that either we had left
8643   // the range before or that we started outside of it. Both of these cases
8644   // are contradictions.
8645   //
8646   // Claim: In the case where SolveForBoundary returns None, the correct
8647   // solution is not some value between the Max for this boundary and the
8648   // Min of the other boundary.
8649   //
8650   // Justification: Assume that we had such Max_A and Min_B corresponding
8651   // to range boundaries A and B and such that Max_A < Min_B. If there was
8652   // a solution between Max_A and Min_B, it would have to be caused by an
8653   // overflow corresponding to either A or B. It cannot correspond to B,
8654   // since Min_B is the first occurrence of such an overflow. If it
8655   // corresponded to A, it would have to be either a signed or an unsigned
8656   // overflow that is larger than both eliminated overflows for A. But
8657   // between the eliminated overflows and this overflow, the values would
8658   // cover the entire value space, thus crossing the other boundary, which
8659   // is a contradiction.
8660 
8661   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8662 }
8663 
8664 ScalarEvolution::ExitLimit
8665 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8666                               bool AllowPredicates) {
8667 
8668   // This is only used for loops with a "x != y" exit test. The exit condition
8669   // is now expressed as a single expression, V = x-y. So the exit test is
8670   // effectively V != 0.  We know and take advantage of the fact that this
8671   // expression only being used in a comparison by zero context.
8672 
8673   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8674   // If the value is a constant
8675   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8676     // If the value is already zero, the branch will execute zero times.
8677     if (C->getValue()->isZero()) return C;
8678     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8679   }
8680 
8681   const SCEVAddRecExpr *AddRec =
8682       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8683 
8684   if (!AddRec && AllowPredicates)
8685     // Try to make this an AddRec using runtime tests, in the first X
8686     // iterations of this loop, where X is the SCEV expression found by the
8687     // algorithm below.
8688     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8689 
8690   if (!AddRec || AddRec->getLoop() != L)
8691     return getCouldNotCompute();
8692 
8693   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8694   // the quadratic equation to solve it.
8695   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8696     // We can only use this value if the chrec ends up with an exact zero
8697     // value at this index.  When solving for "X*X != 5", for example, we
8698     // should not accept a root of 2.
8699     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8700       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8701       return ExitLimit(R, R, false, Predicates);
8702     }
8703     return getCouldNotCompute();
8704   }
8705 
8706   // Otherwise we can only handle this if it is affine.
8707   if (!AddRec->isAffine())
8708     return getCouldNotCompute();
8709 
8710   // If this is an affine expression, the execution count of this branch is
8711   // the minimum unsigned root of the following equation:
8712   //
8713   //     Start + Step*N = 0 (mod 2^BW)
8714   //
8715   // equivalent to:
8716   //
8717   //             Step*N = -Start (mod 2^BW)
8718   //
8719   // where BW is the common bit width of Start and Step.
8720 
8721   // Get the initial value for the loop.
8722   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8723   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8724 
8725   // For now we handle only constant steps.
8726   //
8727   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8728   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8729   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8730   // We have not yet seen any such cases.
8731   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8732   if (!StepC || StepC->getValue()->isZero())
8733     return getCouldNotCompute();
8734 
8735   // For positive steps (counting up until unsigned overflow):
8736   //   N = -Start/Step (as unsigned)
8737   // For negative steps (counting down to zero):
8738   //   N = Start/-Step
8739   // First compute the unsigned distance from zero in the direction of Step.
8740   bool CountDown = StepC->getAPInt().isNegative();
8741   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8742 
8743   // Handle unitary steps, which cannot wraparound.
8744   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8745   //   N = Distance (as unsigned)
8746   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8747     APInt MaxBECount = getUnsignedRangeMax(Distance);
8748 
8749     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8750     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8751     // case, and see if we can improve the bound.
8752     //
8753     // Explicitly handling this here is necessary because getUnsignedRange
8754     // isn't context-sensitive; it doesn't know that we only care about the
8755     // range inside the loop.
8756     const SCEV *Zero = getZero(Distance->getType());
8757     const SCEV *One = getOne(Distance->getType());
8758     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8759     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8760       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8761       // as "unsigned_max(Distance + 1) - 1".
8762       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8763       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8764     }
8765     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8766   }
8767 
8768   // If the condition controls loop exit (the loop exits only if the expression
8769   // is true) and the addition is no-wrap we can use unsigned divide to
8770   // compute the backedge count.  In this case, the step may not divide the
8771   // distance, but we don't care because if the condition is "missed" the loop
8772   // will have undefined behavior due to wrapping.
8773   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8774       loopHasNoAbnormalExits(AddRec->getLoop())) {
8775     const SCEV *Exact =
8776         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8777     const SCEV *Max =
8778         Exact == getCouldNotCompute()
8779             ? Exact
8780             : getConstant(getUnsignedRangeMax(Exact));
8781     return ExitLimit(Exact, Max, false, Predicates);
8782   }
8783 
8784   // Solve the general equation.
8785   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8786                                                getNegativeSCEV(Start), *this);
8787   const SCEV *M = E == getCouldNotCompute()
8788                       ? E
8789                       : getConstant(getUnsignedRangeMax(E));
8790   return ExitLimit(E, M, false, Predicates);
8791 }
8792 
8793 ScalarEvolution::ExitLimit
8794 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8795   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8796   // handle them yet except for the trivial case.  This could be expanded in the
8797   // future as needed.
8798 
8799   // If the value is a constant, check to see if it is known to be non-zero
8800   // already.  If so, the backedge will execute zero times.
8801   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8802     if (!C->getValue()->isZero())
8803       return getZero(C->getType());
8804     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8805   }
8806 
8807   // We could implement others, but I really doubt anyone writes loops like
8808   // this, and if they did, they would already be constant folded.
8809   return getCouldNotCompute();
8810 }
8811 
8812 std::pair<BasicBlock *, BasicBlock *>
8813 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8814   // If the block has a unique predecessor, then there is no path from the
8815   // predecessor to the block that does not go through the direct edge
8816   // from the predecessor to the block.
8817   if (BasicBlock *Pred = BB->getSinglePredecessor())
8818     return {Pred, BB};
8819 
8820   // A loop's header is defined to be a block that dominates the loop.
8821   // If the header has a unique predecessor outside the loop, it must be
8822   // a block that has exactly one successor that can reach the loop.
8823   if (Loop *L = LI.getLoopFor(BB))
8824     return {L->getLoopPredecessor(), L->getHeader()};
8825 
8826   return {nullptr, nullptr};
8827 }
8828 
8829 /// SCEV structural equivalence is usually sufficient for testing whether two
8830 /// expressions are equal, however for the purposes of looking for a condition
8831 /// guarding a loop, it can be useful to be a little more general, since a
8832 /// front-end may have replicated the controlling expression.
8833 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8834   // Quick check to see if they are the same SCEV.
8835   if (A == B) return true;
8836 
8837   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8838     // Not all instructions that are "identical" compute the same value.  For
8839     // instance, two distinct alloca instructions allocating the same type are
8840     // identical and do not read memory; but compute distinct values.
8841     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8842   };
8843 
8844   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8845   // two different instructions with the same value. Check for this case.
8846   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8847     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8848       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8849         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8850           if (ComputesEqualValues(AI, BI))
8851             return true;
8852 
8853   // Otherwise assume they may have a different value.
8854   return false;
8855 }
8856 
8857 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8858                                            const SCEV *&LHS, const SCEV *&RHS,
8859                                            unsigned Depth) {
8860   bool Changed = false;
8861   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8862   // '0 != 0'.
8863   auto TrivialCase = [&](bool TriviallyTrue) {
8864     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8865     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8866     return true;
8867   };
8868   // If we hit the max recursion limit bail out.
8869   if (Depth >= 3)
8870     return false;
8871 
8872   // Canonicalize a constant to the right side.
8873   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8874     // Check for both operands constant.
8875     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8876       if (ConstantExpr::getICmp(Pred,
8877                                 LHSC->getValue(),
8878                                 RHSC->getValue())->isNullValue())
8879         return TrivialCase(false);
8880       else
8881         return TrivialCase(true);
8882     }
8883     // Otherwise swap the operands to put the constant on the right.
8884     std::swap(LHS, RHS);
8885     Pred = ICmpInst::getSwappedPredicate(Pred);
8886     Changed = true;
8887   }
8888 
8889   // If we're comparing an addrec with a value which is loop-invariant in the
8890   // addrec's loop, put the addrec on the left. Also make a dominance check,
8891   // as both operands could be addrecs loop-invariant in each other's loop.
8892   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8893     const Loop *L = AR->getLoop();
8894     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8895       std::swap(LHS, RHS);
8896       Pred = ICmpInst::getSwappedPredicate(Pred);
8897       Changed = true;
8898     }
8899   }
8900 
8901   // If there's a constant operand, canonicalize comparisons with boundary
8902   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8903   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8904     const APInt &RA = RC->getAPInt();
8905 
8906     bool SimplifiedByConstantRange = false;
8907 
8908     if (!ICmpInst::isEquality(Pred)) {
8909       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8910       if (ExactCR.isFullSet())
8911         return TrivialCase(true);
8912       else if (ExactCR.isEmptySet())
8913         return TrivialCase(false);
8914 
8915       APInt NewRHS;
8916       CmpInst::Predicate NewPred;
8917       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8918           ICmpInst::isEquality(NewPred)) {
8919         // We were able to convert an inequality to an equality.
8920         Pred = NewPred;
8921         RHS = getConstant(NewRHS);
8922         Changed = SimplifiedByConstantRange = true;
8923       }
8924     }
8925 
8926     if (!SimplifiedByConstantRange) {
8927       switch (Pred) {
8928       default:
8929         break;
8930       case ICmpInst::ICMP_EQ:
8931       case ICmpInst::ICMP_NE:
8932         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8933         if (!RA)
8934           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8935             if (const SCEVMulExpr *ME =
8936                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8937               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8938                   ME->getOperand(0)->isAllOnesValue()) {
8939                 RHS = AE->getOperand(1);
8940                 LHS = ME->getOperand(1);
8941                 Changed = true;
8942               }
8943         break;
8944 
8945 
8946         // The "Should have been caught earlier!" messages refer to the fact
8947         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8948         // should have fired on the corresponding cases, and canonicalized the
8949         // check to trivial case.
8950 
8951       case ICmpInst::ICMP_UGE:
8952         assert(!RA.isMinValue() && "Should have been caught earlier!");
8953         Pred = ICmpInst::ICMP_UGT;
8954         RHS = getConstant(RA - 1);
8955         Changed = true;
8956         break;
8957       case ICmpInst::ICMP_ULE:
8958         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8959         Pred = ICmpInst::ICMP_ULT;
8960         RHS = getConstant(RA + 1);
8961         Changed = true;
8962         break;
8963       case ICmpInst::ICMP_SGE:
8964         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8965         Pred = ICmpInst::ICMP_SGT;
8966         RHS = getConstant(RA - 1);
8967         Changed = true;
8968         break;
8969       case ICmpInst::ICMP_SLE:
8970         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8971         Pred = ICmpInst::ICMP_SLT;
8972         RHS = getConstant(RA + 1);
8973         Changed = true;
8974         break;
8975       }
8976     }
8977   }
8978 
8979   // Check for obvious equality.
8980   if (HasSameValue(LHS, RHS)) {
8981     if (ICmpInst::isTrueWhenEqual(Pred))
8982       return TrivialCase(true);
8983     if (ICmpInst::isFalseWhenEqual(Pred))
8984       return TrivialCase(false);
8985   }
8986 
8987   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8988   // adding or subtracting 1 from one of the operands.
8989   switch (Pred) {
8990   case ICmpInst::ICMP_SLE:
8991     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8992       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8993                        SCEV::FlagNSW);
8994       Pred = ICmpInst::ICMP_SLT;
8995       Changed = true;
8996     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8997       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8998                        SCEV::FlagNSW);
8999       Pred = ICmpInst::ICMP_SLT;
9000       Changed = true;
9001     }
9002     break;
9003   case ICmpInst::ICMP_SGE:
9004     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9005       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9006                        SCEV::FlagNSW);
9007       Pred = ICmpInst::ICMP_SGT;
9008       Changed = true;
9009     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9010       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9011                        SCEV::FlagNSW);
9012       Pred = ICmpInst::ICMP_SGT;
9013       Changed = true;
9014     }
9015     break;
9016   case ICmpInst::ICMP_ULE:
9017     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9018       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9019                        SCEV::FlagNUW);
9020       Pred = ICmpInst::ICMP_ULT;
9021       Changed = true;
9022     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9023       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9024       Pred = ICmpInst::ICMP_ULT;
9025       Changed = true;
9026     }
9027     break;
9028   case ICmpInst::ICMP_UGE:
9029     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9030       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9031       Pred = ICmpInst::ICMP_UGT;
9032       Changed = true;
9033     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9034       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9035                        SCEV::FlagNUW);
9036       Pred = ICmpInst::ICMP_UGT;
9037       Changed = true;
9038     }
9039     break;
9040   default:
9041     break;
9042   }
9043 
9044   // TODO: More simplifications are possible here.
9045 
9046   // Recursively simplify until we either hit a recursion limit or nothing
9047   // changes.
9048   if (Changed)
9049     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9050 
9051   return Changed;
9052 }
9053 
9054 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9055   return getSignedRangeMax(S).isNegative();
9056 }
9057 
9058 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9059   return getSignedRangeMin(S).isStrictlyPositive();
9060 }
9061 
9062 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9063   return !getSignedRangeMin(S).isNegative();
9064 }
9065 
9066 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9067   return !getSignedRangeMax(S).isStrictlyPositive();
9068 }
9069 
9070 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9071   return isKnownNegative(S) || isKnownPositive(S);
9072 }
9073 
9074 std::pair<const SCEV *, const SCEV *>
9075 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9076   // Compute SCEV on entry of loop L.
9077   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9078   if (Start == getCouldNotCompute())
9079     return { Start, Start };
9080   // Compute post increment SCEV for loop L.
9081   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9082   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9083   return { Start, PostInc };
9084 }
9085 
9086 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9087                                           const SCEV *LHS, const SCEV *RHS) {
9088   // First collect all loops.
9089   SmallPtrSet<const Loop *, 8> LoopsUsed;
9090   getUsedLoops(LHS, LoopsUsed);
9091   getUsedLoops(RHS, LoopsUsed);
9092 
9093   if (LoopsUsed.empty())
9094     return false;
9095 
9096   // Domination relationship must be a linear order on collected loops.
9097 #ifndef NDEBUG
9098   for (auto *L1 : LoopsUsed)
9099     for (auto *L2 : LoopsUsed)
9100       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9101               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9102              "Domination relationship is not a linear order");
9103 #endif
9104 
9105   const Loop *MDL =
9106       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9107                         [&](const Loop *L1, const Loop *L2) {
9108          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9109        });
9110 
9111   // Get init and post increment value for LHS.
9112   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9113   // if LHS contains unknown non-invariant SCEV then bail out.
9114   if (SplitLHS.first == getCouldNotCompute())
9115     return false;
9116   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9117   // Get init and post increment value for RHS.
9118   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9119   // if RHS contains unknown non-invariant SCEV then bail out.
9120   if (SplitRHS.first == getCouldNotCompute())
9121     return false;
9122   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9123   // It is possible that init SCEV contains an invariant load but it does
9124   // not dominate MDL and is not available at MDL loop entry, so we should
9125   // check it here.
9126   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9127       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9128     return false;
9129 
9130   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9131          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9132                                      SplitRHS.second);
9133 }
9134 
9135 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9136                                        const SCEV *LHS, const SCEV *RHS) {
9137   // Canonicalize the inputs first.
9138   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9139 
9140   if (isKnownViaInduction(Pred, LHS, RHS))
9141     return true;
9142 
9143   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9144     return true;
9145 
9146   // Otherwise see what can be done with some simple reasoning.
9147   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9148 }
9149 
9150 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9151                                               const SCEVAddRecExpr *LHS,
9152                                               const SCEV *RHS) {
9153   const Loop *L = LHS->getLoop();
9154   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9155          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9156 }
9157 
9158 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9159                                            ICmpInst::Predicate Pred,
9160                                            bool &Increasing) {
9161   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9162 
9163 #ifndef NDEBUG
9164   // Verify an invariant: inverting the predicate should turn a monotonically
9165   // increasing change to a monotonically decreasing one, and vice versa.
9166   bool IncreasingSwapped;
9167   bool ResultSwapped = isMonotonicPredicateImpl(
9168       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9169 
9170   assert(Result == ResultSwapped && "should be able to analyze both!");
9171   if (ResultSwapped)
9172     assert(Increasing == !IncreasingSwapped &&
9173            "monotonicity should flip as we flip the predicate");
9174 #endif
9175 
9176   return Result;
9177 }
9178 
9179 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9180                                                ICmpInst::Predicate Pred,
9181                                                bool &Increasing) {
9182 
9183   // A zero step value for LHS means the induction variable is essentially a
9184   // loop invariant value. We don't really depend on the predicate actually
9185   // flipping from false to true (for increasing predicates, and the other way
9186   // around for decreasing predicates), all we care about is that *if* the
9187   // predicate changes then it only changes from false to true.
9188   //
9189   // A zero step value in itself is not very useful, but there may be places
9190   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9191   // as general as possible.
9192 
9193   switch (Pred) {
9194   default:
9195     return false; // Conservative answer
9196 
9197   case ICmpInst::ICMP_UGT:
9198   case ICmpInst::ICMP_UGE:
9199   case ICmpInst::ICMP_ULT:
9200   case ICmpInst::ICMP_ULE:
9201     if (!LHS->hasNoUnsignedWrap())
9202       return false;
9203 
9204     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9205     return true;
9206 
9207   case ICmpInst::ICMP_SGT:
9208   case ICmpInst::ICMP_SGE:
9209   case ICmpInst::ICMP_SLT:
9210   case ICmpInst::ICMP_SLE: {
9211     if (!LHS->hasNoSignedWrap())
9212       return false;
9213 
9214     const SCEV *Step = LHS->getStepRecurrence(*this);
9215 
9216     if (isKnownNonNegative(Step)) {
9217       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9218       return true;
9219     }
9220 
9221     if (isKnownNonPositive(Step)) {
9222       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9223       return true;
9224     }
9225 
9226     return false;
9227   }
9228 
9229   }
9230 
9231   llvm_unreachable("switch has default clause!");
9232 }
9233 
9234 bool ScalarEvolution::isLoopInvariantPredicate(
9235     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9236     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9237     const SCEV *&InvariantRHS) {
9238 
9239   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9240   if (!isLoopInvariant(RHS, L)) {
9241     if (!isLoopInvariant(LHS, L))
9242       return false;
9243 
9244     std::swap(LHS, RHS);
9245     Pred = ICmpInst::getSwappedPredicate(Pred);
9246   }
9247 
9248   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9249   if (!ArLHS || ArLHS->getLoop() != L)
9250     return false;
9251 
9252   bool Increasing;
9253   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9254     return false;
9255 
9256   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9257   // true as the loop iterates, and the backedge is control dependent on
9258   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9259   //
9260   //   * if the predicate was false in the first iteration then the predicate
9261   //     is never evaluated again, since the loop exits without taking the
9262   //     backedge.
9263   //   * if the predicate was true in the first iteration then it will
9264   //     continue to be true for all future iterations since it is
9265   //     monotonically increasing.
9266   //
9267   // For both the above possibilities, we can replace the loop varying
9268   // predicate with its value on the first iteration of the loop (which is
9269   // loop invariant).
9270   //
9271   // A similar reasoning applies for a monotonically decreasing predicate, by
9272   // replacing true with false and false with true in the above two bullets.
9273 
9274   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9275 
9276   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9277     return false;
9278 
9279   InvariantPred = Pred;
9280   InvariantLHS = ArLHS->getStart();
9281   InvariantRHS = RHS;
9282   return true;
9283 }
9284 
9285 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9286     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9287   if (HasSameValue(LHS, RHS))
9288     return ICmpInst::isTrueWhenEqual(Pred);
9289 
9290   // This code is split out from isKnownPredicate because it is called from
9291   // within isLoopEntryGuardedByCond.
9292 
9293   auto CheckRanges =
9294       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9295     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9296         .contains(RangeLHS);
9297   };
9298 
9299   // The check at the top of the function catches the case where the values are
9300   // known to be equal.
9301   if (Pred == CmpInst::ICMP_EQ)
9302     return false;
9303 
9304   if (Pred == CmpInst::ICMP_NE)
9305     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9306            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9307            isKnownNonZero(getMinusSCEV(LHS, RHS));
9308 
9309   if (CmpInst::isSigned(Pred))
9310     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9311 
9312   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9313 }
9314 
9315 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9316                                                     const SCEV *LHS,
9317                                                     const SCEV *RHS) {
9318   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9319   // Return Y via OutY.
9320   auto MatchBinaryAddToConst =
9321       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9322              SCEV::NoWrapFlags ExpectedFlags) {
9323     const SCEV *NonConstOp, *ConstOp;
9324     SCEV::NoWrapFlags FlagsPresent;
9325 
9326     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9327         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9328       return false;
9329 
9330     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9331     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9332   };
9333 
9334   APInt C;
9335 
9336   switch (Pred) {
9337   default:
9338     break;
9339 
9340   case ICmpInst::ICMP_SGE:
9341     std::swap(LHS, RHS);
9342     LLVM_FALLTHROUGH;
9343   case ICmpInst::ICMP_SLE:
9344     // X s<= (X + C)<nsw> if C >= 0
9345     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9346       return true;
9347 
9348     // (X + C)<nsw> s<= X if C <= 0
9349     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9350         !C.isStrictlyPositive())
9351       return true;
9352     break;
9353 
9354   case ICmpInst::ICMP_SGT:
9355     std::swap(LHS, RHS);
9356     LLVM_FALLTHROUGH;
9357   case ICmpInst::ICMP_SLT:
9358     // X s< (X + C)<nsw> if C > 0
9359     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9360         C.isStrictlyPositive())
9361       return true;
9362 
9363     // (X + C)<nsw> s< X if C < 0
9364     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9365       return true;
9366     break;
9367   }
9368 
9369   return false;
9370 }
9371 
9372 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9373                                                    const SCEV *LHS,
9374                                                    const SCEV *RHS) {
9375   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9376     return false;
9377 
9378   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9379   // the stack can result in exponential time complexity.
9380   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9381 
9382   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9383   //
9384   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9385   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9386   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9387   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9388   // use isKnownPredicate later if needed.
9389   return isKnownNonNegative(RHS) &&
9390          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9391          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9392 }
9393 
9394 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9395                                         ICmpInst::Predicate Pred,
9396                                         const SCEV *LHS, const SCEV *RHS) {
9397   // No need to even try if we know the module has no guards.
9398   if (!HasGuards)
9399     return false;
9400 
9401   return any_of(*BB, [&](Instruction &I) {
9402     using namespace llvm::PatternMatch;
9403 
9404     Value *Condition;
9405     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9406                          m_Value(Condition))) &&
9407            isImpliedCond(Pred, LHS, RHS, Condition, false);
9408   });
9409 }
9410 
9411 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9412 /// protected by a conditional between LHS and RHS.  This is used to
9413 /// to eliminate casts.
9414 bool
9415 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9416                                              ICmpInst::Predicate Pred,
9417                                              const SCEV *LHS, const SCEV *RHS) {
9418   // Interpret a null as meaning no loop, where there is obviously no guard
9419   // (interprocedural conditions notwithstanding).
9420   if (!L) return true;
9421 
9422   if (VerifyIR)
9423     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9424            "This cannot be done on broken IR!");
9425 
9426 
9427   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9428     return true;
9429 
9430   BasicBlock *Latch = L->getLoopLatch();
9431   if (!Latch)
9432     return false;
9433 
9434   BranchInst *LoopContinuePredicate =
9435     dyn_cast<BranchInst>(Latch->getTerminator());
9436   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9437       isImpliedCond(Pred, LHS, RHS,
9438                     LoopContinuePredicate->getCondition(),
9439                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9440     return true;
9441 
9442   // We don't want more than one activation of the following loops on the stack
9443   // -- that can lead to O(n!) time complexity.
9444   if (WalkingBEDominatingConds)
9445     return false;
9446 
9447   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9448 
9449   // See if we can exploit a trip count to prove the predicate.
9450   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9451   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9452   if (LatchBECount != getCouldNotCompute()) {
9453     // We know that Latch branches back to the loop header exactly
9454     // LatchBECount times.  This means the backdege condition at Latch is
9455     // equivalent to  "{0,+,1} u< LatchBECount".
9456     Type *Ty = LatchBECount->getType();
9457     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9458     const SCEV *LoopCounter =
9459       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9460     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9461                       LatchBECount))
9462       return true;
9463   }
9464 
9465   // Check conditions due to any @llvm.assume intrinsics.
9466   for (auto &AssumeVH : AC.assumptions()) {
9467     if (!AssumeVH)
9468       continue;
9469     auto *CI = cast<CallInst>(AssumeVH);
9470     if (!DT.dominates(CI, Latch->getTerminator()))
9471       continue;
9472 
9473     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9474       return true;
9475   }
9476 
9477   // If the loop is not reachable from the entry block, we risk running into an
9478   // infinite loop as we walk up into the dom tree.  These loops do not matter
9479   // anyway, so we just return a conservative answer when we see them.
9480   if (!DT.isReachableFromEntry(L->getHeader()))
9481     return false;
9482 
9483   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9484     return true;
9485 
9486   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9487        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9488     assert(DTN && "should reach the loop header before reaching the root!");
9489 
9490     BasicBlock *BB = DTN->getBlock();
9491     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9492       return true;
9493 
9494     BasicBlock *PBB = BB->getSinglePredecessor();
9495     if (!PBB)
9496       continue;
9497 
9498     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9499     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9500       continue;
9501 
9502     Value *Condition = ContinuePredicate->getCondition();
9503 
9504     // If we have an edge `E` within the loop body that dominates the only
9505     // latch, the condition guarding `E` also guards the backedge.  This
9506     // reasoning works only for loops with a single latch.
9507 
9508     BasicBlockEdge DominatingEdge(PBB, BB);
9509     if (DominatingEdge.isSingleEdge()) {
9510       // We're constructively (and conservatively) enumerating edges within the
9511       // loop body that dominate the latch.  The dominator tree better agree
9512       // with us on this:
9513       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9514 
9515       if (isImpliedCond(Pred, LHS, RHS, Condition,
9516                         BB != ContinuePredicate->getSuccessor(0)))
9517         return true;
9518     }
9519   }
9520 
9521   return false;
9522 }
9523 
9524 bool
9525 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9526                                           ICmpInst::Predicate Pred,
9527                                           const SCEV *LHS, const SCEV *RHS) {
9528   // Interpret a null as meaning no loop, where there is obviously no guard
9529   // (interprocedural conditions notwithstanding).
9530   if (!L) return false;
9531 
9532   if (VerifyIR)
9533     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9534            "This cannot be done on broken IR!");
9535 
9536   // Both LHS and RHS must be available at loop entry.
9537   assert(isAvailableAtLoopEntry(LHS, L) &&
9538          "LHS is not available at Loop Entry");
9539   assert(isAvailableAtLoopEntry(RHS, L) &&
9540          "RHS is not available at Loop Entry");
9541 
9542   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9543     return true;
9544 
9545   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9546   // the facts (a >= b && a != b) separately. A typical situation is when the
9547   // non-strict comparison is known from ranges and non-equality is known from
9548   // dominating predicates. If we are proving strict comparison, we always try
9549   // to prove non-equality and non-strict comparison separately.
9550   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9551   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9552   bool ProvedNonStrictComparison = false;
9553   bool ProvedNonEquality = false;
9554 
9555   if (ProvingStrictComparison) {
9556     ProvedNonStrictComparison =
9557         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9558     ProvedNonEquality =
9559         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9560     if (ProvedNonStrictComparison && ProvedNonEquality)
9561       return true;
9562   }
9563 
9564   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9565   auto ProveViaGuard = [&](BasicBlock *Block) {
9566     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9567       return true;
9568     if (ProvingStrictComparison) {
9569       if (!ProvedNonStrictComparison)
9570         ProvedNonStrictComparison =
9571             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9572       if (!ProvedNonEquality)
9573         ProvedNonEquality =
9574             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9575       if (ProvedNonStrictComparison && ProvedNonEquality)
9576         return true;
9577     }
9578     return false;
9579   };
9580 
9581   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9582   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9583     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9584       return true;
9585     if (ProvingStrictComparison) {
9586       if (!ProvedNonStrictComparison)
9587         ProvedNonStrictComparison =
9588             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9589       if (!ProvedNonEquality)
9590         ProvedNonEquality =
9591             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9592       if (ProvedNonStrictComparison && ProvedNonEquality)
9593         return true;
9594     }
9595     return false;
9596   };
9597 
9598   // Starting at the loop predecessor, climb up the predecessor chain, as long
9599   // as there are predecessors that can be found that have unique successors
9600   // leading to the original header.
9601   for (std::pair<BasicBlock *, BasicBlock *>
9602          Pair(L->getLoopPredecessor(), L->getHeader());
9603        Pair.first;
9604        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9605 
9606     if (ProveViaGuard(Pair.first))
9607       return true;
9608 
9609     BranchInst *LoopEntryPredicate =
9610       dyn_cast<BranchInst>(Pair.first->getTerminator());
9611     if (!LoopEntryPredicate ||
9612         LoopEntryPredicate->isUnconditional())
9613       continue;
9614 
9615     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9616                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9617       return true;
9618   }
9619 
9620   // Check conditions due to any @llvm.assume intrinsics.
9621   for (auto &AssumeVH : AC.assumptions()) {
9622     if (!AssumeVH)
9623       continue;
9624     auto *CI = cast<CallInst>(AssumeVH);
9625     if (!DT.dominates(CI, L->getHeader()))
9626       continue;
9627 
9628     if (ProveViaCond(CI->getArgOperand(0), false))
9629       return true;
9630   }
9631 
9632   return false;
9633 }
9634 
9635 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9636                                     const SCEV *LHS, const SCEV *RHS,
9637                                     Value *FoundCondValue,
9638                                     bool Inverse) {
9639   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9640     return false;
9641 
9642   auto ClearOnExit =
9643       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9644 
9645   // Recursively handle And and Or conditions.
9646   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9647     if (BO->getOpcode() == Instruction::And) {
9648       if (!Inverse)
9649         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9650                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9651     } else if (BO->getOpcode() == Instruction::Or) {
9652       if (Inverse)
9653         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9654                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9655     }
9656   }
9657 
9658   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9659   if (!ICI) return false;
9660 
9661   // Now that we found a conditional branch that dominates the loop or controls
9662   // the loop latch. Check to see if it is the comparison we are looking for.
9663   ICmpInst::Predicate FoundPred;
9664   if (Inverse)
9665     FoundPred = ICI->getInversePredicate();
9666   else
9667     FoundPred = ICI->getPredicate();
9668 
9669   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9670   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9671 
9672   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9673 }
9674 
9675 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9676                                     const SCEV *RHS,
9677                                     ICmpInst::Predicate FoundPred,
9678                                     const SCEV *FoundLHS,
9679                                     const SCEV *FoundRHS) {
9680   // Balance the types.
9681   if (getTypeSizeInBits(LHS->getType()) <
9682       getTypeSizeInBits(FoundLHS->getType())) {
9683     if (CmpInst::isSigned(Pred)) {
9684       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9685       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9686     } else {
9687       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9688       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9689     }
9690   } else if (getTypeSizeInBits(LHS->getType()) >
9691       getTypeSizeInBits(FoundLHS->getType())) {
9692     if (CmpInst::isSigned(FoundPred)) {
9693       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9694       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9695     } else {
9696       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9697       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9698     }
9699   }
9700 
9701   // Canonicalize the query to match the way instcombine will have
9702   // canonicalized the comparison.
9703   if (SimplifyICmpOperands(Pred, LHS, RHS))
9704     if (LHS == RHS)
9705       return CmpInst::isTrueWhenEqual(Pred);
9706   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9707     if (FoundLHS == FoundRHS)
9708       return CmpInst::isFalseWhenEqual(FoundPred);
9709 
9710   // Check to see if we can make the LHS or RHS match.
9711   if (LHS == FoundRHS || RHS == FoundLHS) {
9712     if (isa<SCEVConstant>(RHS)) {
9713       std::swap(FoundLHS, FoundRHS);
9714       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9715     } else {
9716       std::swap(LHS, RHS);
9717       Pred = ICmpInst::getSwappedPredicate(Pred);
9718     }
9719   }
9720 
9721   // Check whether the found predicate is the same as the desired predicate.
9722   if (FoundPred == Pred)
9723     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9724 
9725   // Check whether swapping the found predicate makes it the same as the
9726   // desired predicate.
9727   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9728     if (isa<SCEVConstant>(RHS))
9729       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9730     else
9731       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9732                                    RHS, LHS, FoundLHS, FoundRHS);
9733   }
9734 
9735   // Unsigned comparison is the same as signed comparison when both the operands
9736   // are non-negative.
9737   if (CmpInst::isUnsigned(FoundPred) &&
9738       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9739       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9740     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9741 
9742   // Check if we can make progress by sharpening ranges.
9743   if (FoundPred == ICmpInst::ICMP_NE &&
9744       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9745 
9746     const SCEVConstant *C = nullptr;
9747     const SCEV *V = nullptr;
9748 
9749     if (isa<SCEVConstant>(FoundLHS)) {
9750       C = cast<SCEVConstant>(FoundLHS);
9751       V = FoundRHS;
9752     } else {
9753       C = cast<SCEVConstant>(FoundRHS);
9754       V = FoundLHS;
9755     }
9756 
9757     // The guarding predicate tells us that C != V. If the known range
9758     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9759     // range we consider has to correspond to same signedness as the
9760     // predicate we're interested in folding.
9761 
9762     APInt Min = ICmpInst::isSigned(Pred) ?
9763         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9764 
9765     if (Min == C->getAPInt()) {
9766       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9767       // This is true even if (Min + 1) wraps around -- in case of
9768       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9769 
9770       APInt SharperMin = Min + 1;
9771 
9772       switch (Pred) {
9773         case ICmpInst::ICMP_SGE:
9774         case ICmpInst::ICMP_UGE:
9775           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9776           // RHS, we're done.
9777           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9778                                     getConstant(SharperMin)))
9779             return true;
9780           LLVM_FALLTHROUGH;
9781 
9782         case ICmpInst::ICMP_SGT:
9783         case ICmpInst::ICMP_UGT:
9784           // We know from the range information that (V `Pred` Min ||
9785           // V == Min).  We know from the guarding condition that !(V
9786           // == Min).  This gives us
9787           //
9788           //       V `Pred` Min || V == Min && !(V == Min)
9789           //   =>  V `Pred` Min
9790           //
9791           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9792 
9793           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9794             return true;
9795           LLVM_FALLTHROUGH;
9796 
9797         default:
9798           // No change
9799           break;
9800       }
9801     }
9802   }
9803 
9804   // Check whether the actual condition is beyond sufficient.
9805   if (FoundPred == ICmpInst::ICMP_EQ)
9806     if (ICmpInst::isTrueWhenEqual(Pred))
9807       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9808         return true;
9809   if (Pred == ICmpInst::ICMP_NE)
9810     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9811       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9812         return true;
9813 
9814   // Otherwise assume the worst.
9815   return false;
9816 }
9817 
9818 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9819                                      const SCEV *&L, const SCEV *&R,
9820                                      SCEV::NoWrapFlags &Flags) {
9821   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9822   if (!AE || AE->getNumOperands() != 2)
9823     return false;
9824 
9825   L = AE->getOperand(0);
9826   R = AE->getOperand(1);
9827   Flags = AE->getNoWrapFlags();
9828   return true;
9829 }
9830 
9831 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9832                                                            const SCEV *Less) {
9833   // We avoid subtracting expressions here because this function is usually
9834   // fairly deep in the call stack (i.e. is called many times).
9835 
9836   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9837     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9838     const auto *MAR = cast<SCEVAddRecExpr>(More);
9839 
9840     if (LAR->getLoop() != MAR->getLoop())
9841       return None;
9842 
9843     // We look at affine expressions only; not for correctness but to keep
9844     // getStepRecurrence cheap.
9845     if (!LAR->isAffine() || !MAR->isAffine())
9846       return None;
9847 
9848     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9849       return None;
9850 
9851     Less = LAR->getStart();
9852     More = MAR->getStart();
9853 
9854     // fall through
9855   }
9856 
9857   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9858     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9859     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9860     return M - L;
9861   }
9862 
9863   SCEV::NoWrapFlags Flags;
9864   const SCEV *LLess = nullptr, *RLess = nullptr;
9865   const SCEV *LMore = nullptr, *RMore = nullptr;
9866   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9867   // Compare (X + C1) vs X.
9868   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9869     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9870       if (RLess == More)
9871         return -(C1->getAPInt());
9872 
9873   // Compare X vs (X + C2).
9874   if (splitBinaryAdd(More, LMore, RMore, Flags))
9875     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9876       if (RMore == Less)
9877         return C2->getAPInt();
9878 
9879   // Compare (X + C1) vs (X + C2).
9880   if (C1 && C2 && RLess == RMore)
9881     return C2->getAPInt() - C1->getAPInt();
9882 
9883   return None;
9884 }
9885 
9886 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9887     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9888     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9889   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9890     return false;
9891 
9892   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9893   if (!AddRecLHS)
9894     return false;
9895 
9896   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9897   if (!AddRecFoundLHS)
9898     return false;
9899 
9900   // We'd like to let SCEV reason about control dependencies, so we constrain
9901   // both the inequalities to be about add recurrences on the same loop.  This
9902   // way we can use isLoopEntryGuardedByCond later.
9903 
9904   const Loop *L = AddRecFoundLHS->getLoop();
9905   if (L != AddRecLHS->getLoop())
9906     return false;
9907 
9908   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9909   //
9910   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9911   //                                                                  ... (2)
9912   //
9913   // Informal proof for (2), assuming (1) [*]:
9914   //
9915   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9916   //
9917   // Then
9918   //
9919   //       FoundLHS s< FoundRHS s< INT_MIN - C
9920   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9921   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9922   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9923   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9924   // <=>  FoundLHS + C s< FoundRHS + C
9925   //
9926   // [*]: (1) can be proved by ruling out overflow.
9927   //
9928   // [**]: This can be proved by analyzing all the four possibilities:
9929   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9930   //    (A s>= 0, B s>= 0).
9931   //
9932   // Note:
9933   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9934   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9935   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9936   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9937   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9938   // C)".
9939 
9940   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9941   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9942   if (!LDiff || !RDiff || *LDiff != *RDiff)
9943     return false;
9944 
9945   if (LDiff->isMinValue())
9946     return true;
9947 
9948   APInt FoundRHSLimit;
9949 
9950   if (Pred == CmpInst::ICMP_ULT) {
9951     FoundRHSLimit = -(*RDiff);
9952   } else {
9953     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9954     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9955   }
9956 
9957   // Try to prove (1) or (2), as needed.
9958   return isAvailableAtLoopEntry(FoundRHS, L) &&
9959          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9960                                   getConstant(FoundRHSLimit));
9961 }
9962 
9963 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9964                                         const SCEV *LHS, const SCEV *RHS,
9965                                         const SCEV *FoundLHS,
9966                                         const SCEV *FoundRHS, unsigned Depth) {
9967   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9968 
9969   auto ClearOnExit = make_scope_exit([&]() {
9970     if (LPhi) {
9971       bool Erased = PendingMerges.erase(LPhi);
9972       assert(Erased && "Failed to erase LPhi!");
9973       (void)Erased;
9974     }
9975     if (RPhi) {
9976       bool Erased = PendingMerges.erase(RPhi);
9977       assert(Erased && "Failed to erase RPhi!");
9978       (void)Erased;
9979     }
9980   });
9981 
9982   // Find respective Phis and check that they are not being pending.
9983   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9984     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9985       if (!PendingMerges.insert(Phi).second)
9986         return false;
9987       LPhi = Phi;
9988     }
9989   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9990     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9991       // If we detect a loop of Phi nodes being processed by this method, for
9992       // example:
9993       //
9994       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9995       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9996       //
9997       // we don't want to deal with a case that complex, so return conservative
9998       // answer false.
9999       if (!PendingMerges.insert(Phi).second)
10000         return false;
10001       RPhi = Phi;
10002     }
10003 
10004   // If none of LHS, RHS is a Phi, nothing to do here.
10005   if (!LPhi && !RPhi)
10006     return false;
10007 
10008   // If there is a SCEVUnknown Phi we are interested in, make it left.
10009   if (!LPhi) {
10010     std::swap(LHS, RHS);
10011     std::swap(FoundLHS, FoundRHS);
10012     std::swap(LPhi, RPhi);
10013     Pred = ICmpInst::getSwappedPredicate(Pred);
10014   }
10015 
10016   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10017   const BasicBlock *LBB = LPhi->getParent();
10018   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10019 
10020   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10021     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10022            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10023            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10024   };
10025 
10026   if (RPhi && RPhi->getParent() == LBB) {
10027     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10028     // If we compare two Phis from the same block, and for each entry block
10029     // the predicate is true for incoming values from this block, then the
10030     // predicate is also true for the Phis.
10031     for (const BasicBlock *IncBB : predecessors(LBB)) {
10032       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10033       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10034       if (!ProvedEasily(L, R))
10035         return false;
10036     }
10037   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10038     // Case two: RHS is also a Phi from the same basic block, and it is an
10039     // AddRec. It means that there is a loop which has both AddRec and Unknown
10040     // PHIs, for it we can compare incoming values of AddRec from above the loop
10041     // and latch with their respective incoming values of LPhi.
10042     // TODO: Generalize to handle loops with many inputs in a header.
10043     if (LPhi->getNumIncomingValues() != 2) return false;
10044 
10045     auto *RLoop = RAR->getLoop();
10046     auto *Predecessor = RLoop->getLoopPredecessor();
10047     assert(Predecessor && "Loop with AddRec with no predecessor?");
10048     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10049     if (!ProvedEasily(L1, RAR->getStart()))
10050       return false;
10051     auto *Latch = RLoop->getLoopLatch();
10052     assert(Latch && "Loop with AddRec with no latch?");
10053     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10054     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10055       return false;
10056   } else {
10057     // In all other cases go over inputs of LHS and compare each of them to RHS,
10058     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10059     // At this point RHS is either a non-Phi, or it is a Phi from some block
10060     // different from LBB.
10061     for (const BasicBlock *IncBB : predecessors(LBB)) {
10062       // Check that RHS is available in this block.
10063       if (!dominates(RHS, IncBB))
10064         return false;
10065       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10066       if (!ProvedEasily(L, RHS))
10067         return false;
10068     }
10069   }
10070   return true;
10071 }
10072 
10073 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10074                                             const SCEV *LHS, const SCEV *RHS,
10075                                             const SCEV *FoundLHS,
10076                                             const SCEV *FoundRHS) {
10077   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10078     return true;
10079 
10080   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10081     return true;
10082 
10083   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10084                                      FoundLHS, FoundRHS) ||
10085          // ~x < ~y --> x > y
10086          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10087                                      getNotSCEV(FoundRHS),
10088                                      getNotSCEV(FoundLHS));
10089 }
10090 
10091 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10092 template <typename MinMaxExprType>
10093 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10094                                  const SCEV *Candidate) {
10095   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10096   if (!MinMaxExpr)
10097     return false;
10098 
10099   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10100 }
10101 
10102 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10103                                            ICmpInst::Predicate Pred,
10104                                            const SCEV *LHS, const SCEV *RHS) {
10105   // If both sides are affine addrecs for the same loop, with equal
10106   // steps, and we know the recurrences don't wrap, then we only
10107   // need to check the predicate on the starting values.
10108 
10109   if (!ICmpInst::isRelational(Pred))
10110     return false;
10111 
10112   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10113   if (!LAR)
10114     return false;
10115   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10116   if (!RAR)
10117     return false;
10118   if (LAR->getLoop() != RAR->getLoop())
10119     return false;
10120   if (!LAR->isAffine() || !RAR->isAffine())
10121     return false;
10122 
10123   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10124     return false;
10125 
10126   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10127                          SCEV::FlagNSW : SCEV::FlagNUW;
10128   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10129     return false;
10130 
10131   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10132 }
10133 
10134 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10135 /// expression?
10136 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10137                                         ICmpInst::Predicate Pred,
10138                                         const SCEV *LHS, const SCEV *RHS) {
10139   switch (Pred) {
10140   default:
10141     return false;
10142 
10143   case ICmpInst::ICMP_SGE:
10144     std::swap(LHS, RHS);
10145     LLVM_FALLTHROUGH;
10146   case ICmpInst::ICMP_SLE:
10147     return
10148         // min(A, ...) <= A
10149         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10150         // A <= max(A, ...)
10151         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10152 
10153   case ICmpInst::ICMP_UGE:
10154     std::swap(LHS, RHS);
10155     LLVM_FALLTHROUGH;
10156   case ICmpInst::ICMP_ULE:
10157     return
10158         // min(A, ...) <= A
10159         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10160         // A <= max(A, ...)
10161         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10162   }
10163 
10164   llvm_unreachable("covered switch fell through?!");
10165 }
10166 
10167 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10168                                              const SCEV *LHS, const SCEV *RHS,
10169                                              const SCEV *FoundLHS,
10170                                              const SCEV *FoundRHS,
10171                                              unsigned Depth) {
10172   assert(getTypeSizeInBits(LHS->getType()) ==
10173              getTypeSizeInBits(RHS->getType()) &&
10174          "LHS and RHS have different sizes?");
10175   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10176              getTypeSizeInBits(FoundRHS->getType()) &&
10177          "FoundLHS and FoundRHS have different sizes?");
10178   // We want to avoid hurting the compile time with analysis of too big trees.
10179   if (Depth > MaxSCEVOperationsImplicationDepth)
10180     return false;
10181   // We only want to work with ICMP_SGT comparison so far.
10182   // TODO: Extend to ICMP_UGT?
10183   if (Pred == ICmpInst::ICMP_SLT) {
10184     Pred = ICmpInst::ICMP_SGT;
10185     std::swap(LHS, RHS);
10186     std::swap(FoundLHS, FoundRHS);
10187   }
10188   if (Pred != ICmpInst::ICMP_SGT)
10189     return false;
10190 
10191   auto GetOpFromSExt = [&](const SCEV *S) {
10192     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10193       return Ext->getOperand();
10194     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10195     // the constant in some cases.
10196     return S;
10197   };
10198 
10199   // Acquire values from extensions.
10200   auto *OrigLHS = LHS;
10201   auto *OrigFoundLHS = FoundLHS;
10202   LHS = GetOpFromSExt(LHS);
10203   FoundLHS = GetOpFromSExt(FoundLHS);
10204 
10205   // Is the SGT predicate can be proved trivially or using the found context.
10206   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10207     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10208            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10209                                   FoundRHS, Depth + 1);
10210   };
10211 
10212   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10213     // We want to avoid creation of any new non-constant SCEV. Since we are
10214     // going to compare the operands to RHS, we should be certain that we don't
10215     // need any size extensions for this. So let's decline all cases when the
10216     // sizes of types of LHS and RHS do not match.
10217     // TODO: Maybe try to get RHS from sext to catch more cases?
10218     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10219       return false;
10220 
10221     // Should not overflow.
10222     if (!LHSAddExpr->hasNoSignedWrap())
10223       return false;
10224 
10225     auto *LL = LHSAddExpr->getOperand(0);
10226     auto *LR = LHSAddExpr->getOperand(1);
10227     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10228 
10229     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10230     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10231       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10232     };
10233     // Try to prove the following rule:
10234     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10235     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10236     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10237       return true;
10238   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10239     Value *LL, *LR;
10240     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10241 
10242     using namespace llvm::PatternMatch;
10243 
10244     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10245       // Rules for division.
10246       // We are going to perform some comparisons with Denominator and its
10247       // derivative expressions. In general case, creating a SCEV for it may
10248       // lead to a complex analysis of the entire graph, and in particular it
10249       // can request trip count recalculation for the same loop. This would
10250       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10251       // this, we only want to create SCEVs that are constants in this section.
10252       // So we bail if Denominator is not a constant.
10253       if (!isa<ConstantInt>(LR))
10254         return false;
10255 
10256       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10257 
10258       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10259       // then a SCEV for the numerator already exists and matches with FoundLHS.
10260       auto *Numerator = getExistingSCEV(LL);
10261       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10262         return false;
10263 
10264       // Make sure that the numerator matches with FoundLHS and the denominator
10265       // is positive.
10266       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10267         return false;
10268 
10269       auto *DTy = Denominator->getType();
10270       auto *FRHSTy = FoundRHS->getType();
10271       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10272         // One of types is a pointer and another one is not. We cannot extend
10273         // them properly to a wider type, so let us just reject this case.
10274         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10275         // to avoid this check.
10276         return false;
10277 
10278       // Given that:
10279       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10280       auto *WTy = getWiderType(DTy, FRHSTy);
10281       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10282       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10283 
10284       // Try to prove the following rule:
10285       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10286       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10287       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10288       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10289       if (isKnownNonPositive(RHS) &&
10290           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10291         return true;
10292 
10293       // Try to prove the following rule:
10294       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10295       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10296       // If we divide it by Denominator > 2, then:
10297       // 1. If FoundLHS is negative, then the result is 0.
10298       // 2. If FoundLHS is non-negative, then the result is non-negative.
10299       // Anyways, the result is non-negative.
10300       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10301       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10302       if (isKnownNegative(RHS) &&
10303           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10304         return true;
10305     }
10306   }
10307 
10308   // If our expression contained SCEVUnknown Phis, and we split it down and now
10309   // need to prove something for them, try to prove the predicate for every
10310   // possible incoming values of those Phis.
10311   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10312     return true;
10313 
10314   return false;
10315 }
10316 
10317 bool
10318 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10319                                            const SCEV *LHS, const SCEV *RHS) {
10320   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10321          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10322          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10323          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10324 }
10325 
10326 bool
10327 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10328                                              const SCEV *LHS, const SCEV *RHS,
10329                                              const SCEV *FoundLHS,
10330                                              const SCEV *FoundRHS) {
10331   switch (Pred) {
10332   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10333   case ICmpInst::ICMP_EQ:
10334   case ICmpInst::ICMP_NE:
10335     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10336       return true;
10337     break;
10338   case ICmpInst::ICMP_SLT:
10339   case ICmpInst::ICMP_SLE:
10340     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10341         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10342       return true;
10343     break;
10344   case ICmpInst::ICMP_SGT:
10345   case ICmpInst::ICMP_SGE:
10346     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10347         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10348       return true;
10349     break;
10350   case ICmpInst::ICMP_ULT:
10351   case ICmpInst::ICMP_ULE:
10352     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10353         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10354       return true;
10355     break;
10356   case ICmpInst::ICMP_UGT:
10357   case ICmpInst::ICMP_UGE:
10358     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10359         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10360       return true;
10361     break;
10362   }
10363 
10364   // Maybe it can be proved via operations?
10365   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10366     return true;
10367 
10368   return false;
10369 }
10370 
10371 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10372                                                      const SCEV *LHS,
10373                                                      const SCEV *RHS,
10374                                                      const SCEV *FoundLHS,
10375                                                      const SCEV *FoundRHS) {
10376   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10377     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10378     // reduce the compile time impact of this optimization.
10379     return false;
10380 
10381   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10382   if (!Addend)
10383     return false;
10384 
10385   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10386 
10387   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10388   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10389   ConstantRange FoundLHSRange =
10390       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10391 
10392   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10393   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10394 
10395   // We can also compute the range of values for `LHS` that satisfy the
10396   // consequent, "`LHS` `Pred` `RHS`":
10397   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10398   ConstantRange SatisfyingLHSRange =
10399       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10400 
10401   // The antecedent implies the consequent if every value of `LHS` that
10402   // satisfies the antecedent also satisfies the consequent.
10403   return SatisfyingLHSRange.contains(LHSRange);
10404 }
10405 
10406 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10407                                          bool IsSigned, bool NoWrap) {
10408   assert(isKnownPositive(Stride) && "Positive stride expected!");
10409 
10410   if (NoWrap) return false;
10411 
10412   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10413   const SCEV *One = getOne(Stride->getType());
10414 
10415   if (IsSigned) {
10416     APInt MaxRHS = getSignedRangeMax(RHS);
10417     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10418     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10419 
10420     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10421     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10422   }
10423 
10424   APInt MaxRHS = getUnsignedRangeMax(RHS);
10425   APInt MaxValue = APInt::getMaxValue(BitWidth);
10426   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10427 
10428   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10429   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10430 }
10431 
10432 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10433                                          bool IsSigned, bool NoWrap) {
10434   if (NoWrap) return false;
10435 
10436   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10437   const SCEV *One = getOne(Stride->getType());
10438 
10439   if (IsSigned) {
10440     APInt MinRHS = getSignedRangeMin(RHS);
10441     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10442     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10443 
10444     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10445     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10446   }
10447 
10448   APInt MinRHS = getUnsignedRangeMin(RHS);
10449   APInt MinValue = APInt::getMinValue(BitWidth);
10450   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10451 
10452   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10453   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10454 }
10455 
10456 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10457                                             bool Equality) {
10458   const SCEV *One = getOne(Step->getType());
10459   Delta = Equality ? getAddExpr(Delta, Step)
10460                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10461   return getUDivExpr(Delta, Step);
10462 }
10463 
10464 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10465                                                     const SCEV *Stride,
10466                                                     const SCEV *End,
10467                                                     unsigned BitWidth,
10468                                                     bool IsSigned) {
10469 
10470   assert(!isKnownNonPositive(Stride) &&
10471          "Stride is expected strictly positive!");
10472   // Calculate the maximum backedge count based on the range of values
10473   // permitted by Start, End, and Stride.
10474   const SCEV *MaxBECount;
10475   APInt MinStart =
10476       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10477 
10478   APInt StrideForMaxBECount =
10479       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10480 
10481   // We already know that the stride is positive, so we paper over conservatism
10482   // in our range computation by forcing StrideForMaxBECount to be at least one.
10483   // In theory this is unnecessary, but we expect MaxBECount to be a
10484   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10485   // is nothing to constant fold it to).
10486   APInt One(BitWidth, 1, IsSigned);
10487   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10488 
10489   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10490                             : APInt::getMaxValue(BitWidth);
10491   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10492 
10493   // Although End can be a MAX expression we estimate MaxEnd considering only
10494   // the case End = RHS of the loop termination condition. This is safe because
10495   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10496   // taken count.
10497   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10498                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10499 
10500   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10501                               getConstant(StrideForMaxBECount) /* Step */,
10502                               false /* Equality */);
10503 
10504   return MaxBECount;
10505 }
10506 
10507 ScalarEvolution::ExitLimit
10508 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10509                                   const Loop *L, bool IsSigned,
10510                                   bool ControlsExit, bool AllowPredicates) {
10511   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10512 
10513   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10514   bool PredicatedIV = false;
10515 
10516   if (!IV && AllowPredicates) {
10517     // Try to make this an AddRec using runtime tests, in the first X
10518     // iterations of this loop, where X is the SCEV expression found by the
10519     // algorithm below.
10520     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10521     PredicatedIV = true;
10522   }
10523 
10524   // Avoid weird loops
10525   if (!IV || IV->getLoop() != L || !IV->isAffine())
10526     return getCouldNotCompute();
10527 
10528   bool NoWrap = ControlsExit &&
10529                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10530 
10531   const SCEV *Stride = IV->getStepRecurrence(*this);
10532 
10533   bool PositiveStride = isKnownPositive(Stride);
10534 
10535   // Avoid negative or zero stride values.
10536   if (!PositiveStride) {
10537     // We can compute the correct backedge taken count for loops with unknown
10538     // strides if we can prove that the loop is not an infinite loop with side
10539     // effects. Here's the loop structure we are trying to handle -
10540     //
10541     // i = start
10542     // do {
10543     //   A[i] = i;
10544     //   i += s;
10545     // } while (i < end);
10546     //
10547     // The backedge taken count for such loops is evaluated as -
10548     // (max(end, start + stride) - start - 1) /u stride
10549     //
10550     // The additional preconditions that we need to check to prove correctness
10551     // of the above formula is as follows -
10552     //
10553     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10554     //    NoWrap flag).
10555     // b) loop is single exit with no side effects.
10556     //
10557     //
10558     // Precondition a) implies that if the stride is negative, this is a single
10559     // trip loop. The backedge taken count formula reduces to zero in this case.
10560     //
10561     // Precondition b) implies that the unknown stride cannot be zero otherwise
10562     // we have UB.
10563     //
10564     // The positive stride case is the same as isKnownPositive(Stride) returning
10565     // true (original behavior of the function).
10566     //
10567     // We want to make sure that the stride is truly unknown as there are edge
10568     // cases where ScalarEvolution propagates no wrap flags to the
10569     // post-increment/decrement IV even though the increment/decrement operation
10570     // itself is wrapping. The computed backedge taken count may be wrong in
10571     // such cases. This is prevented by checking that the stride is not known to
10572     // be either positive or non-positive. For example, no wrap flags are
10573     // propagated to the post-increment IV of this loop with a trip count of 2 -
10574     //
10575     // unsigned char i;
10576     // for(i=127; i<128; i+=129)
10577     //   A[i] = i;
10578     //
10579     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10580         !loopHasNoSideEffects(L))
10581       return getCouldNotCompute();
10582   } else if (!Stride->isOne() &&
10583              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10584     // Avoid proven overflow cases: this will ensure that the backedge taken
10585     // count will not generate any unsigned overflow. Relaxed no-overflow
10586     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10587     // undefined behaviors like the case of C language.
10588     return getCouldNotCompute();
10589 
10590   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10591                                       : ICmpInst::ICMP_ULT;
10592   const SCEV *Start = IV->getStart();
10593   const SCEV *End = RHS;
10594   // When the RHS is not invariant, we do not know the end bound of the loop and
10595   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10596   // calculate the MaxBECount, given the start, stride and max value for the end
10597   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10598   // checked above).
10599   if (!isLoopInvariant(RHS, L)) {
10600     const SCEV *MaxBECount = computeMaxBECountForLT(
10601         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10602     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10603                      false /*MaxOrZero*/, Predicates);
10604   }
10605   // If the backedge is taken at least once, then it will be taken
10606   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10607   // is the LHS value of the less-than comparison the first time it is evaluated
10608   // and End is the RHS.
10609   const SCEV *BECountIfBackedgeTaken =
10610     computeBECount(getMinusSCEV(End, Start), Stride, false);
10611   // If the loop entry is guarded by the result of the backedge test of the
10612   // first loop iteration, then we know the backedge will be taken at least
10613   // once and so the backedge taken count is as above. If not then we use the
10614   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10615   // as if the backedge is taken at least once max(End,Start) is End and so the
10616   // result is as above, and if not max(End,Start) is Start so we get a backedge
10617   // count of zero.
10618   const SCEV *BECount;
10619   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10620     BECount = BECountIfBackedgeTaken;
10621   else {
10622     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10623     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10624   }
10625 
10626   const SCEV *MaxBECount;
10627   bool MaxOrZero = false;
10628   if (isa<SCEVConstant>(BECount))
10629     MaxBECount = BECount;
10630   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10631     // If we know exactly how many times the backedge will be taken if it's
10632     // taken at least once, then the backedge count will either be that or
10633     // zero.
10634     MaxBECount = BECountIfBackedgeTaken;
10635     MaxOrZero = true;
10636   } else {
10637     MaxBECount = computeMaxBECountForLT(
10638         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10639   }
10640 
10641   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10642       !isa<SCEVCouldNotCompute>(BECount))
10643     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10644 
10645   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10646 }
10647 
10648 ScalarEvolution::ExitLimit
10649 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10650                                      const Loop *L, bool IsSigned,
10651                                      bool ControlsExit, bool AllowPredicates) {
10652   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10653   // We handle only IV > Invariant
10654   if (!isLoopInvariant(RHS, L))
10655     return getCouldNotCompute();
10656 
10657   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10658   if (!IV && AllowPredicates)
10659     // Try to make this an AddRec using runtime tests, in the first X
10660     // iterations of this loop, where X is the SCEV expression found by the
10661     // algorithm below.
10662     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10663 
10664   // Avoid weird loops
10665   if (!IV || IV->getLoop() != L || !IV->isAffine())
10666     return getCouldNotCompute();
10667 
10668   bool NoWrap = ControlsExit &&
10669                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10670 
10671   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10672 
10673   // Avoid negative or zero stride values
10674   if (!isKnownPositive(Stride))
10675     return getCouldNotCompute();
10676 
10677   // Avoid proven overflow cases: this will ensure that the backedge taken count
10678   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10679   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10680   // behaviors like the case of C language.
10681   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10682     return getCouldNotCompute();
10683 
10684   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10685                                       : ICmpInst::ICMP_UGT;
10686 
10687   const SCEV *Start = IV->getStart();
10688   const SCEV *End = RHS;
10689   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10690     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10691 
10692   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10693 
10694   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10695                             : getUnsignedRangeMax(Start);
10696 
10697   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10698                              : getUnsignedRangeMin(Stride);
10699 
10700   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10701   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10702                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10703 
10704   // Although End can be a MIN expression we estimate MinEnd considering only
10705   // the case End = RHS. This is safe because in the other case (Start - End)
10706   // is zero, leading to a zero maximum backedge taken count.
10707   APInt MinEnd =
10708     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10709              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10710 
10711   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10712                                ? BECount
10713                                : computeBECount(getConstant(MaxStart - MinEnd),
10714                                                 getConstant(MinStride), false);
10715 
10716   if (isa<SCEVCouldNotCompute>(MaxBECount))
10717     MaxBECount = BECount;
10718 
10719   return ExitLimit(BECount, MaxBECount, false, Predicates);
10720 }
10721 
10722 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10723                                                     ScalarEvolution &SE) const {
10724   if (Range.isFullSet())  // Infinite loop.
10725     return SE.getCouldNotCompute();
10726 
10727   // If the start is a non-zero constant, shift the range to simplify things.
10728   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10729     if (!SC->getValue()->isZero()) {
10730       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10731       Operands[0] = SE.getZero(SC->getType());
10732       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10733                                              getNoWrapFlags(FlagNW));
10734       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10735         return ShiftedAddRec->getNumIterationsInRange(
10736             Range.subtract(SC->getAPInt()), SE);
10737       // This is strange and shouldn't happen.
10738       return SE.getCouldNotCompute();
10739     }
10740 
10741   // The only time we can solve this is when we have all constant indices.
10742   // Otherwise, we cannot determine the overflow conditions.
10743   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10744     return SE.getCouldNotCompute();
10745 
10746   // Okay at this point we know that all elements of the chrec are constants and
10747   // that the start element is zero.
10748 
10749   // First check to see if the range contains zero.  If not, the first
10750   // iteration exits.
10751   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10752   if (!Range.contains(APInt(BitWidth, 0)))
10753     return SE.getZero(getType());
10754 
10755   if (isAffine()) {
10756     // If this is an affine expression then we have this situation:
10757     //   Solve {0,+,A} in Range  ===  Ax in Range
10758 
10759     // We know that zero is in the range.  If A is positive then we know that
10760     // the upper value of the range must be the first possible exit value.
10761     // If A is negative then the lower of the range is the last possible loop
10762     // value.  Also note that we already checked for a full range.
10763     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10764     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10765 
10766     // The exit value should be (End+A)/A.
10767     APInt ExitVal = (End + A).udiv(A);
10768     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10769 
10770     // Evaluate at the exit value.  If we really did fall out of the valid
10771     // range, then we computed our trip count, otherwise wrap around or other
10772     // things must have happened.
10773     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10774     if (Range.contains(Val->getValue()))
10775       return SE.getCouldNotCompute();  // Something strange happened
10776 
10777     // Ensure that the previous value is in the range.  This is a sanity check.
10778     assert(Range.contains(
10779            EvaluateConstantChrecAtConstant(this,
10780            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10781            "Linear scev computation is off in a bad way!");
10782     return SE.getConstant(ExitValue);
10783   }
10784 
10785   if (isQuadratic()) {
10786     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10787       return SE.getConstant(S.getValue());
10788   }
10789 
10790   return SE.getCouldNotCompute();
10791 }
10792 
10793 const SCEVAddRecExpr *
10794 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10795   assert(getNumOperands() > 1 && "AddRec with zero step?");
10796   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10797   // but in this case we cannot guarantee that the value returned will be an
10798   // AddRec because SCEV does not have a fixed point where it stops
10799   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10800   // may happen if we reach arithmetic depth limit while simplifying. So we
10801   // construct the returned value explicitly.
10802   SmallVector<const SCEV *, 3> Ops;
10803   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10804   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10805   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10806     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10807   // We know that the last operand is not a constant zero (otherwise it would
10808   // have been popped out earlier). This guarantees us that if the result has
10809   // the same last operand, then it will also not be popped out, meaning that
10810   // the returned value will be an AddRec.
10811   const SCEV *Last = getOperand(getNumOperands() - 1);
10812   assert(!Last->isZero() && "Recurrency with zero step?");
10813   Ops.push_back(Last);
10814   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10815                                                SCEV::FlagAnyWrap));
10816 }
10817 
10818 // Return true when S contains at least an undef value.
10819 static inline bool containsUndefs(const SCEV *S) {
10820   return SCEVExprContains(S, [](const SCEV *S) {
10821     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10822       return isa<UndefValue>(SU->getValue());
10823     return false;
10824   });
10825 }
10826 
10827 namespace {
10828 
10829 // Collect all steps of SCEV expressions.
10830 struct SCEVCollectStrides {
10831   ScalarEvolution &SE;
10832   SmallVectorImpl<const SCEV *> &Strides;
10833 
10834   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10835       : SE(SE), Strides(S) {}
10836 
10837   bool follow(const SCEV *S) {
10838     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10839       Strides.push_back(AR->getStepRecurrence(SE));
10840     return true;
10841   }
10842 
10843   bool isDone() const { return false; }
10844 };
10845 
10846 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10847 struct SCEVCollectTerms {
10848   SmallVectorImpl<const SCEV *> &Terms;
10849 
10850   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10851 
10852   bool follow(const SCEV *S) {
10853     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10854         isa<SCEVSignExtendExpr>(S)) {
10855       if (!containsUndefs(S))
10856         Terms.push_back(S);
10857 
10858       // Stop recursion: once we collected a term, do not walk its operands.
10859       return false;
10860     }
10861 
10862     // Keep looking.
10863     return true;
10864   }
10865 
10866   bool isDone() const { return false; }
10867 };
10868 
10869 // Check if a SCEV contains an AddRecExpr.
10870 struct SCEVHasAddRec {
10871   bool &ContainsAddRec;
10872 
10873   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10874     ContainsAddRec = false;
10875   }
10876 
10877   bool follow(const SCEV *S) {
10878     if (isa<SCEVAddRecExpr>(S)) {
10879       ContainsAddRec = true;
10880 
10881       // Stop recursion: once we collected a term, do not walk its operands.
10882       return false;
10883     }
10884 
10885     // Keep looking.
10886     return true;
10887   }
10888 
10889   bool isDone() const { return false; }
10890 };
10891 
10892 // Find factors that are multiplied with an expression that (possibly as a
10893 // subexpression) contains an AddRecExpr. In the expression:
10894 //
10895 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10896 //
10897 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10898 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10899 // parameters as they form a product with an induction variable.
10900 //
10901 // This collector expects all array size parameters to be in the same MulExpr.
10902 // It might be necessary to later add support for collecting parameters that are
10903 // spread over different nested MulExpr.
10904 struct SCEVCollectAddRecMultiplies {
10905   SmallVectorImpl<const SCEV *> &Terms;
10906   ScalarEvolution &SE;
10907 
10908   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10909       : Terms(T), SE(SE) {}
10910 
10911   bool follow(const SCEV *S) {
10912     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10913       bool HasAddRec = false;
10914       SmallVector<const SCEV *, 0> Operands;
10915       for (auto Op : Mul->operands()) {
10916         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10917         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10918           Operands.push_back(Op);
10919         } else if (Unknown) {
10920           HasAddRec = true;
10921         } else {
10922           bool ContainsAddRec;
10923           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10924           visitAll(Op, ContiansAddRec);
10925           HasAddRec |= ContainsAddRec;
10926         }
10927       }
10928       if (Operands.size() == 0)
10929         return true;
10930 
10931       if (!HasAddRec)
10932         return false;
10933 
10934       Terms.push_back(SE.getMulExpr(Operands));
10935       // Stop recursion: once we collected a term, do not walk its operands.
10936       return false;
10937     }
10938 
10939     // Keep looking.
10940     return true;
10941   }
10942 
10943   bool isDone() const { return false; }
10944 };
10945 
10946 } // end anonymous namespace
10947 
10948 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10949 /// two places:
10950 ///   1) The strides of AddRec expressions.
10951 ///   2) Unknowns that are multiplied with AddRec expressions.
10952 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10953     SmallVectorImpl<const SCEV *> &Terms) {
10954   SmallVector<const SCEV *, 4> Strides;
10955   SCEVCollectStrides StrideCollector(*this, Strides);
10956   visitAll(Expr, StrideCollector);
10957 
10958   LLVM_DEBUG({
10959     dbgs() << "Strides:\n";
10960     for (const SCEV *S : Strides)
10961       dbgs() << *S << "\n";
10962   });
10963 
10964   for (const SCEV *S : Strides) {
10965     SCEVCollectTerms TermCollector(Terms);
10966     visitAll(S, TermCollector);
10967   }
10968 
10969   LLVM_DEBUG({
10970     dbgs() << "Terms:\n";
10971     for (const SCEV *T : Terms)
10972       dbgs() << *T << "\n";
10973   });
10974 
10975   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10976   visitAll(Expr, MulCollector);
10977 }
10978 
10979 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10980                                    SmallVectorImpl<const SCEV *> &Terms,
10981                                    SmallVectorImpl<const SCEV *> &Sizes) {
10982   int Last = Terms.size() - 1;
10983   const SCEV *Step = Terms[Last];
10984 
10985   // End of recursion.
10986   if (Last == 0) {
10987     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10988       SmallVector<const SCEV *, 2> Qs;
10989       for (const SCEV *Op : M->operands())
10990         if (!isa<SCEVConstant>(Op))
10991           Qs.push_back(Op);
10992 
10993       Step = SE.getMulExpr(Qs);
10994     }
10995 
10996     Sizes.push_back(Step);
10997     return true;
10998   }
10999 
11000   for (const SCEV *&Term : Terms) {
11001     // Normalize the terms before the next call to findArrayDimensionsRec.
11002     const SCEV *Q, *R;
11003     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11004 
11005     // Bail out when GCD does not evenly divide one of the terms.
11006     if (!R->isZero())
11007       return false;
11008 
11009     Term = Q;
11010   }
11011 
11012   // Remove all SCEVConstants.
11013   Terms.erase(
11014       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11015       Terms.end());
11016 
11017   if (Terms.size() > 0)
11018     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11019       return false;
11020 
11021   Sizes.push_back(Step);
11022   return true;
11023 }
11024 
11025 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11026 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11027   for (const SCEV *T : Terms)
11028     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11029       return true;
11030   return false;
11031 }
11032 
11033 // Return the number of product terms in S.
11034 static inline int numberOfTerms(const SCEV *S) {
11035   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11036     return Expr->getNumOperands();
11037   return 1;
11038 }
11039 
11040 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11041   if (isa<SCEVConstant>(T))
11042     return nullptr;
11043 
11044   if (isa<SCEVUnknown>(T))
11045     return T;
11046 
11047   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11048     SmallVector<const SCEV *, 2> Factors;
11049     for (const SCEV *Op : M->operands())
11050       if (!isa<SCEVConstant>(Op))
11051         Factors.push_back(Op);
11052 
11053     return SE.getMulExpr(Factors);
11054   }
11055 
11056   return T;
11057 }
11058 
11059 /// Return the size of an element read or written by Inst.
11060 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11061   Type *Ty;
11062   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11063     Ty = Store->getValueOperand()->getType();
11064   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11065     Ty = Load->getType();
11066   else
11067     return nullptr;
11068 
11069   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11070   return getSizeOfExpr(ETy, Ty);
11071 }
11072 
11073 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11074                                           SmallVectorImpl<const SCEV *> &Sizes,
11075                                           const SCEV *ElementSize) {
11076   if (Terms.size() < 1 || !ElementSize)
11077     return;
11078 
11079   // Early return when Terms do not contain parameters: we do not delinearize
11080   // non parametric SCEVs.
11081   if (!containsParameters(Terms))
11082     return;
11083 
11084   LLVM_DEBUG({
11085     dbgs() << "Terms:\n";
11086     for (const SCEV *T : Terms)
11087       dbgs() << *T << "\n";
11088   });
11089 
11090   // Remove duplicates.
11091   array_pod_sort(Terms.begin(), Terms.end());
11092   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11093 
11094   // Put larger terms first.
11095   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11096     return numberOfTerms(LHS) > numberOfTerms(RHS);
11097   });
11098 
11099   // Try to divide all terms by the element size. If term is not divisible by
11100   // element size, proceed with the original term.
11101   for (const SCEV *&Term : Terms) {
11102     const SCEV *Q, *R;
11103     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11104     if (!Q->isZero())
11105       Term = Q;
11106   }
11107 
11108   SmallVector<const SCEV *, 4> NewTerms;
11109 
11110   // Remove constant factors.
11111   for (const SCEV *T : Terms)
11112     if (const SCEV *NewT = removeConstantFactors(*this, T))
11113       NewTerms.push_back(NewT);
11114 
11115   LLVM_DEBUG({
11116     dbgs() << "Terms after sorting:\n";
11117     for (const SCEV *T : NewTerms)
11118       dbgs() << *T << "\n";
11119   });
11120 
11121   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11122     Sizes.clear();
11123     return;
11124   }
11125 
11126   // The last element to be pushed into Sizes is the size of an element.
11127   Sizes.push_back(ElementSize);
11128 
11129   LLVM_DEBUG({
11130     dbgs() << "Sizes:\n";
11131     for (const SCEV *S : Sizes)
11132       dbgs() << *S << "\n";
11133   });
11134 }
11135 
11136 void ScalarEvolution::computeAccessFunctions(
11137     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11138     SmallVectorImpl<const SCEV *> &Sizes) {
11139   // Early exit in case this SCEV is not an affine multivariate function.
11140   if (Sizes.empty())
11141     return;
11142 
11143   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11144     if (!AR->isAffine())
11145       return;
11146 
11147   const SCEV *Res = Expr;
11148   int Last = Sizes.size() - 1;
11149   for (int i = Last; i >= 0; i--) {
11150     const SCEV *Q, *R;
11151     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11152 
11153     LLVM_DEBUG({
11154       dbgs() << "Res: " << *Res << "\n";
11155       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11156       dbgs() << "Res divided by Sizes[i]:\n";
11157       dbgs() << "Quotient: " << *Q << "\n";
11158       dbgs() << "Remainder: " << *R << "\n";
11159     });
11160 
11161     Res = Q;
11162 
11163     // Do not record the last subscript corresponding to the size of elements in
11164     // the array.
11165     if (i == Last) {
11166 
11167       // Bail out if the remainder is too complex.
11168       if (isa<SCEVAddRecExpr>(R)) {
11169         Subscripts.clear();
11170         Sizes.clear();
11171         return;
11172       }
11173 
11174       continue;
11175     }
11176 
11177     // Record the access function for the current subscript.
11178     Subscripts.push_back(R);
11179   }
11180 
11181   // Also push in last position the remainder of the last division: it will be
11182   // the access function of the innermost dimension.
11183   Subscripts.push_back(Res);
11184 
11185   std::reverse(Subscripts.begin(), Subscripts.end());
11186 
11187   LLVM_DEBUG({
11188     dbgs() << "Subscripts:\n";
11189     for (const SCEV *S : Subscripts)
11190       dbgs() << *S << "\n";
11191   });
11192 }
11193 
11194 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11195 /// sizes of an array access. Returns the remainder of the delinearization that
11196 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11197 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11198 /// expressions in the stride and base of a SCEV corresponding to the
11199 /// computation of a GCD (greatest common divisor) of base and stride.  When
11200 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11201 ///
11202 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11203 ///
11204 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11205 ///
11206 ///    for (long i = 0; i < n; i++)
11207 ///      for (long j = 0; j < m; j++)
11208 ///        for (long k = 0; k < o; k++)
11209 ///          A[i][j][k] = 1.0;
11210 ///  }
11211 ///
11212 /// the delinearization input is the following AddRec SCEV:
11213 ///
11214 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11215 ///
11216 /// From this SCEV, we are able to say that the base offset of the access is %A
11217 /// because it appears as an offset that does not divide any of the strides in
11218 /// the loops:
11219 ///
11220 ///  CHECK: Base offset: %A
11221 ///
11222 /// and then SCEV->delinearize determines the size of some of the dimensions of
11223 /// the array as these are the multiples by which the strides are happening:
11224 ///
11225 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11226 ///
11227 /// Note that the outermost dimension remains of UnknownSize because there are
11228 /// no strides that would help identifying the size of the last dimension: when
11229 /// the array has been statically allocated, one could compute the size of that
11230 /// dimension by dividing the overall size of the array by the size of the known
11231 /// dimensions: %m * %o * 8.
11232 ///
11233 /// Finally delinearize provides the access functions for the array reference
11234 /// that does correspond to A[i][j][k] of the above C testcase:
11235 ///
11236 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11237 ///
11238 /// The testcases are checking the output of a function pass:
11239 /// DelinearizationPass that walks through all loads and stores of a function
11240 /// asking for the SCEV of the memory access with respect to all enclosing
11241 /// loops, calling SCEV->delinearize on that and printing the results.
11242 void ScalarEvolution::delinearize(const SCEV *Expr,
11243                                  SmallVectorImpl<const SCEV *> &Subscripts,
11244                                  SmallVectorImpl<const SCEV *> &Sizes,
11245                                  const SCEV *ElementSize) {
11246   // First step: collect parametric terms.
11247   SmallVector<const SCEV *, 4> Terms;
11248   collectParametricTerms(Expr, Terms);
11249 
11250   if (Terms.empty())
11251     return;
11252 
11253   // Second step: find subscript sizes.
11254   findArrayDimensions(Terms, Sizes, ElementSize);
11255 
11256   if (Sizes.empty())
11257     return;
11258 
11259   // Third step: compute the access functions for each subscript.
11260   computeAccessFunctions(Expr, Subscripts, Sizes);
11261 
11262   if (Subscripts.empty())
11263     return;
11264 
11265   LLVM_DEBUG({
11266     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11267     dbgs() << "ArrayDecl[UnknownSize]";
11268     for (const SCEV *S : Sizes)
11269       dbgs() << "[" << *S << "]";
11270 
11271     dbgs() << "\nArrayRef";
11272     for (const SCEV *S : Subscripts)
11273       dbgs() << "[" << *S << "]";
11274     dbgs() << "\n";
11275   });
11276 }
11277 
11278 //===----------------------------------------------------------------------===//
11279 //                   SCEVCallbackVH Class Implementation
11280 //===----------------------------------------------------------------------===//
11281 
11282 void ScalarEvolution::SCEVCallbackVH::deleted() {
11283   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11284   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11285     SE->ConstantEvolutionLoopExitValue.erase(PN);
11286   SE->eraseValueFromMap(getValPtr());
11287   // this now dangles!
11288 }
11289 
11290 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11291   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11292 
11293   // Forget all the expressions associated with users of the old value,
11294   // so that future queries will recompute the expressions using the new
11295   // value.
11296   Value *Old = getValPtr();
11297   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11298   SmallPtrSet<User *, 8> Visited;
11299   while (!Worklist.empty()) {
11300     User *U = Worklist.pop_back_val();
11301     // Deleting the Old value will cause this to dangle. Postpone
11302     // that until everything else is done.
11303     if (U == Old)
11304       continue;
11305     if (!Visited.insert(U).second)
11306       continue;
11307     if (PHINode *PN = dyn_cast<PHINode>(U))
11308       SE->ConstantEvolutionLoopExitValue.erase(PN);
11309     SE->eraseValueFromMap(U);
11310     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11311   }
11312   // Delete the Old value.
11313   if (PHINode *PN = dyn_cast<PHINode>(Old))
11314     SE->ConstantEvolutionLoopExitValue.erase(PN);
11315   SE->eraseValueFromMap(Old);
11316   // this now dangles!
11317 }
11318 
11319 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11320   : CallbackVH(V), SE(se) {}
11321 
11322 //===----------------------------------------------------------------------===//
11323 //                   ScalarEvolution Class Implementation
11324 //===----------------------------------------------------------------------===//
11325 
11326 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11327                                  AssumptionCache &AC, DominatorTree &DT,
11328                                  LoopInfo &LI)
11329     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11330       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11331       LoopDispositions(64), BlockDispositions(64) {
11332   // To use guards for proving predicates, we need to scan every instruction in
11333   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11334   // time if the IR does not actually contain any calls to
11335   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11336   //
11337   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11338   // to _add_ guards to the module when there weren't any before, and wants
11339   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11340   // efficient in lieu of being smart in that rather obscure case.
11341 
11342   auto *GuardDecl = F.getParent()->getFunction(
11343       Intrinsic::getName(Intrinsic::experimental_guard));
11344   HasGuards = GuardDecl && !GuardDecl->use_empty();
11345 }
11346 
11347 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11348     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11349       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11350       ValueExprMap(std::move(Arg.ValueExprMap)),
11351       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11352       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11353       PendingMerges(std::move(Arg.PendingMerges)),
11354       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11355       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11356       PredicatedBackedgeTakenCounts(
11357           std::move(Arg.PredicatedBackedgeTakenCounts)),
11358       ConstantEvolutionLoopExitValue(
11359           std::move(Arg.ConstantEvolutionLoopExitValue)),
11360       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11361       LoopDispositions(std::move(Arg.LoopDispositions)),
11362       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11363       BlockDispositions(std::move(Arg.BlockDispositions)),
11364       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11365       SignedRanges(std::move(Arg.SignedRanges)),
11366       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11367       UniquePreds(std::move(Arg.UniquePreds)),
11368       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11369       LoopUsers(std::move(Arg.LoopUsers)),
11370       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11371       FirstUnknown(Arg.FirstUnknown) {
11372   Arg.FirstUnknown = nullptr;
11373 }
11374 
11375 ScalarEvolution::~ScalarEvolution() {
11376   // Iterate through all the SCEVUnknown instances and call their
11377   // destructors, so that they release their references to their values.
11378   for (SCEVUnknown *U = FirstUnknown; U;) {
11379     SCEVUnknown *Tmp = U;
11380     U = U->Next;
11381     Tmp->~SCEVUnknown();
11382   }
11383   FirstUnknown = nullptr;
11384 
11385   ExprValueMap.clear();
11386   ValueExprMap.clear();
11387   HasRecMap.clear();
11388 
11389   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11390   // that a loop had multiple computable exits.
11391   for (auto &BTCI : BackedgeTakenCounts)
11392     BTCI.second.clear();
11393   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11394     BTCI.second.clear();
11395 
11396   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11397   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11398   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11399   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11400   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11401 }
11402 
11403 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11404   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11405 }
11406 
11407 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11408                           const Loop *L) {
11409   // Print all inner loops first
11410   for (Loop *I : *L)
11411     PrintLoopInfo(OS, SE, I);
11412 
11413   OS << "Loop ";
11414   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11415   OS << ": ";
11416 
11417   SmallVector<BasicBlock *, 8> ExitingBlocks;
11418   L->getExitingBlocks(ExitingBlocks);
11419   if (ExitingBlocks.size() != 1)
11420     OS << "<multiple exits> ";
11421 
11422   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11423     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11424   else
11425     OS << "Unpredictable backedge-taken count.\n";
11426 
11427   if (ExitingBlocks.size() > 1)
11428     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11429       OS << "  exit count for " << ExitingBlock->getName() << ": "
11430          << *SE->getExitCount(L, ExitingBlock) << "\n";
11431     }
11432 
11433   OS << "Loop ";
11434   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11435   OS << ": ";
11436 
11437   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11438     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11439     if (SE->isBackedgeTakenCountMaxOrZero(L))
11440       OS << ", actual taken count either this or zero.";
11441   } else {
11442     OS << "Unpredictable max backedge-taken count. ";
11443   }
11444 
11445   OS << "\n"
11446         "Loop ";
11447   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11448   OS << ": ";
11449 
11450   SCEVUnionPredicate Pred;
11451   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11452   if (!isa<SCEVCouldNotCompute>(PBT)) {
11453     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11454     OS << " Predicates:\n";
11455     Pred.print(OS, 4);
11456   } else {
11457     OS << "Unpredictable predicated backedge-taken count. ";
11458   }
11459   OS << "\n";
11460 
11461   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11462     OS << "Loop ";
11463     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11464     OS << ": ";
11465     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11466   }
11467 }
11468 
11469 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11470   switch (LD) {
11471   case ScalarEvolution::LoopVariant:
11472     return "Variant";
11473   case ScalarEvolution::LoopInvariant:
11474     return "Invariant";
11475   case ScalarEvolution::LoopComputable:
11476     return "Computable";
11477   }
11478   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11479 }
11480 
11481 void ScalarEvolution::print(raw_ostream &OS) const {
11482   // ScalarEvolution's implementation of the print method is to print
11483   // out SCEV values of all instructions that are interesting. Doing
11484   // this potentially causes it to create new SCEV objects though,
11485   // which technically conflicts with the const qualifier. This isn't
11486   // observable from outside the class though, so casting away the
11487   // const isn't dangerous.
11488   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11489 
11490   OS << "Classifying expressions for: ";
11491   F.printAsOperand(OS, /*PrintType=*/false);
11492   OS << "\n";
11493   for (Instruction &I : instructions(F))
11494     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11495       OS << I << '\n';
11496       OS << "  -->  ";
11497       const SCEV *SV = SE.getSCEV(&I);
11498       SV->print(OS);
11499       if (!isa<SCEVCouldNotCompute>(SV)) {
11500         OS << " U: ";
11501         SE.getUnsignedRange(SV).print(OS);
11502         OS << " S: ";
11503         SE.getSignedRange(SV).print(OS);
11504       }
11505 
11506       const Loop *L = LI.getLoopFor(I.getParent());
11507 
11508       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11509       if (AtUse != SV) {
11510         OS << "  -->  ";
11511         AtUse->print(OS);
11512         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11513           OS << " U: ";
11514           SE.getUnsignedRange(AtUse).print(OS);
11515           OS << " S: ";
11516           SE.getSignedRange(AtUse).print(OS);
11517         }
11518       }
11519 
11520       if (L) {
11521         OS << "\t\t" "Exits: ";
11522         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11523         if (!SE.isLoopInvariant(ExitValue, L)) {
11524           OS << "<<Unknown>>";
11525         } else {
11526           OS << *ExitValue;
11527         }
11528 
11529         bool First = true;
11530         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11531           if (First) {
11532             OS << "\t\t" "LoopDispositions: { ";
11533             First = false;
11534           } else {
11535             OS << ", ";
11536           }
11537 
11538           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11539           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11540         }
11541 
11542         for (auto *InnerL : depth_first(L)) {
11543           if (InnerL == L)
11544             continue;
11545           if (First) {
11546             OS << "\t\t" "LoopDispositions: { ";
11547             First = false;
11548           } else {
11549             OS << ", ";
11550           }
11551 
11552           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11553           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11554         }
11555 
11556         OS << " }";
11557       }
11558 
11559       OS << "\n";
11560     }
11561 
11562   OS << "Determining loop execution counts for: ";
11563   F.printAsOperand(OS, /*PrintType=*/false);
11564   OS << "\n";
11565   for (Loop *I : LI)
11566     PrintLoopInfo(OS, &SE, I);
11567 }
11568 
11569 ScalarEvolution::LoopDisposition
11570 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11571   auto &Values = LoopDispositions[S];
11572   for (auto &V : Values) {
11573     if (V.getPointer() == L)
11574       return V.getInt();
11575   }
11576   Values.emplace_back(L, LoopVariant);
11577   LoopDisposition D = computeLoopDisposition(S, L);
11578   auto &Values2 = LoopDispositions[S];
11579   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11580     if (V.getPointer() == L) {
11581       V.setInt(D);
11582       break;
11583     }
11584   }
11585   return D;
11586 }
11587 
11588 ScalarEvolution::LoopDisposition
11589 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11590   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11591   case scConstant:
11592     return LoopInvariant;
11593   case scTruncate:
11594   case scZeroExtend:
11595   case scSignExtend:
11596     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11597   case scAddRecExpr: {
11598     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11599 
11600     // If L is the addrec's loop, it's computable.
11601     if (AR->getLoop() == L)
11602       return LoopComputable;
11603 
11604     // Add recurrences are never invariant in the function-body (null loop).
11605     if (!L)
11606       return LoopVariant;
11607 
11608     // Everything that is not defined at loop entry is variant.
11609     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11610       return LoopVariant;
11611     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11612            " dominate the contained loop's header?");
11613 
11614     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11615     if (AR->getLoop()->contains(L))
11616       return LoopInvariant;
11617 
11618     // This recurrence is variant w.r.t. L if any of its operands
11619     // are variant.
11620     for (auto *Op : AR->operands())
11621       if (!isLoopInvariant(Op, L))
11622         return LoopVariant;
11623 
11624     // Otherwise it's loop-invariant.
11625     return LoopInvariant;
11626   }
11627   case scAddExpr:
11628   case scMulExpr:
11629   case scUMaxExpr:
11630   case scSMaxExpr:
11631   case scUMinExpr:
11632   case scSMinExpr: {
11633     bool HasVarying = false;
11634     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11635       LoopDisposition D = getLoopDisposition(Op, L);
11636       if (D == LoopVariant)
11637         return LoopVariant;
11638       if (D == LoopComputable)
11639         HasVarying = true;
11640     }
11641     return HasVarying ? LoopComputable : LoopInvariant;
11642   }
11643   case scUDivExpr: {
11644     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11645     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11646     if (LD == LoopVariant)
11647       return LoopVariant;
11648     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11649     if (RD == LoopVariant)
11650       return LoopVariant;
11651     return (LD == LoopInvariant && RD == LoopInvariant) ?
11652            LoopInvariant : LoopComputable;
11653   }
11654   case scUnknown:
11655     // All non-instruction values are loop invariant.  All instructions are loop
11656     // invariant if they are not contained in the specified loop.
11657     // Instructions are never considered invariant in the function body
11658     // (null loop) because they are defined within the "loop".
11659     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11660       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11661     return LoopInvariant;
11662   case scCouldNotCompute:
11663     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11664   }
11665   llvm_unreachable("Unknown SCEV kind!");
11666 }
11667 
11668 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11669   return getLoopDisposition(S, L) == LoopInvariant;
11670 }
11671 
11672 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11673   return getLoopDisposition(S, L) == LoopComputable;
11674 }
11675 
11676 ScalarEvolution::BlockDisposition
11677 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11678   auto &Values = BlockDispositions[S];
11679   for (auto &V : Values) {
11680     if (V.getPointer() == BB)
11681       return V.getInt();
11682   }
11683   Values.emplace_back(BB, DoesNotDominateBlock);
11684   BlockDisposition D = computeBlockDisposition(S, BB);
11685   auto &Values2 = BlockDispositions[S];
11686   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11687     if (V.getPointer() == BB) {
11688       V.setInt(D);
11689       break;
11690     }
11691   }
11692   return D;
11693 }
11694 
11695 ScalarEvolution::BlockDisposition
11696 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11697   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11698   case scConstant:
11699     return ProperlyDominatesBlock;
11700   case scTruncate:
11701   case scZeroExtend:
11702   case scSignExtend:
11703     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11704   case scAddRecExpr: {
11705     // This uses a "dominates" query instead of "properly dominates" query
11706     // to test for proper dominance too, because the instruction which
11707     // produces the addrec's value is a PHI, and a PHI effectively properly
11708     // dominates its entire containing block.
11709     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11710     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11711       return DoesNotDominateBlock;
11712 
11713     // Fall through into SCEVNAryExpr handling.
11714     LLVM_FALLTHROUGH;
11715   }
11716   case scAddExpr:
11717   case scMulExpr:
11718   case scUMaxExpr:
11719   case scSMaxExpr:
11720   case scUMinExpr:
11721   case scSMinExpr: {
11722     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11723     bool Proper = true;
11724     for (const SCEV *NAryOp : NAry->operands()) {
11725       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11726       if (D == DoesNotDominateBlock)
11727         return DoesNotDominateBlock;
11728       if (D == DominatesBlock)
11729         Proper = false;
11730     }
11731     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11732   }
11733   case scUDivExpr: {
11734     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11735     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11736     BlockDisposition LD = getBlockDisposition(LHS, BB);
11737     if (LD == DoesNotDominateBlock)
11738       return DoesNotDominateBlock;
11739     BlockDisposition RD = getBlockDisposition(RHS, BB);
11740     if (RD == DoesNotDominateBlock)
11741       return DoesNotDominateBlock;
11742     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11743       ProperlyDominatesBlock : DominatesBlock;
11744   }
11745   case scUnknown:
11746     if (Instruction *I =
11747           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11748       if (I->getParent() == BB)
11749         return DominatesBlock;
11750       if (DT.properlyDominates(I->getParent(), BB))
11751         return ProperlyDominatesBlock;
11752       return DoesNotDominateBlock;
11753     }
11754     return ProperlyDominatesBlock;
11755   case scCouldNotCompute:
11756     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11757   }
11758   llvm_unreachable("Unknown SCEV kind!");
11759 }
11760 
11761 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11762   return getBlockDisposition(S, BB) >= DominatesBlock;
11763 }
11764 
11765 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11766   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11767 }
11768 
11769 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11770   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11771 }
11772 
11773 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11774   auto IsS = [&](const SCEV *X) { return S == X; };
11775   auto ContainsS = [&](const SCEV *X) {
11776     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11777   };
11778   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11779 }
11780 
11781 void
11782 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11783   ValuesAtScopes.erase(S);
11784   LoopDispositions.erase(S);
11785   BlockDispositions.erase(S);
11786   UnsignedRanges.erase(S);
11787   SignedRanges.erase(S);
11788   ExprValueMap.erase(S);
11789   HasRecMap.erase(S);
11790   MinTrailingZerosCache.erase(S);
11791 
11792   for (auto I = PredicatedSCEVRewrites.begin();
11793        I != PredicatedSCEVRewrites.end();) {
11794     std::pair<const SCEV *, const Loop *> Entry = I->first;
11795     if (Entry.first == S)
11796       PredicatedSCEVRewrites.erase(I++);
11797     else
11798       ++I;
11799   }
11800 
11801   auto RemoveSCEVFromBackedgeMap =
11802       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11803         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11804           BackedgeTakenInfo &BEInfo = I->second;
11805           if (BEInfo.hasOperand(S, this)) {
11806             BEInfo.clear();
11807             Map.erase(I++);
11808           } else
11809             ++I;
11810         }
11811       };
11812 
11813   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11814   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11815 }
11816 
11817 void
11818 ScalarEvolution::getUsedLoops(const SCEV *S,
11819                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11820   struct FindUsedLoops {
11821     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11822         : LoopsUsed(LoopsUsed) {}
11823     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11824     bool follow(const SCEV *S) {
11825       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11826         LoopsUsed.insert(AR->getLoop());
11827       return true;
11828     }
11829 
11830     bool isDone() const { return false; }
11831   };
11832 
11833   FindUsedLoops F(LoopsUsed);
11834   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11835 }
11836 
11837 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11838   SmallPtrSet<const Loop *, 8> LoopsUsed;
11839   getUsedLoops(S, LoopsUsed);
11840   for (auto *L : LoopsUsed)
11841     LoopUsers[L].push_back(S);
11842 }
11843 
11844 void ScalarEvolution::verify() const {
11845   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11846   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11847 
11848   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11849 
11850   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11851   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11852     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11853 
11854     const SCEV *visitConstant(const SCEVConstant *Constant) {
11855       return SE.getConstant(Constant->getAPInt());
11856     }
11857 
11858     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11859       return SE.getUnknown(Expr->getValue());
11860     }
11861 
11862     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11863       return SE.getCouldNotCompute();
11864     }
11865   };
11866 
11867   SCEVMapper SCM(SE2);
11868 
11869   while (!LoopStack.empty()) {
11870     auto *L = LoopStack.pop_back_val();
11871     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11872 
11873     auto *CurBECount = SCM.visit(
11874         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11875     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11876 
11877     if (CurBECount == SE2.getCouldNotCompute() ||
11878         NewBECount == SE2.getCouldNotCompute()) {
11879       // NB! This situation is legal, but is very suspicious -- whatever pass
11880       // change the loop to make a trip count go from could not compute to
11881       // computable or vice-versa *should have* invalidated SCEV.  However, we
11882       // choose not to assert here (for now) since we don't want false
11883       // positives.
11884       continue;
11885     }
11886 
11887     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11888       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11889       // not propagate undef aggressively).  This means we can (and do) fail
11890       // verification in cases where a transform makes the trip count of a loop
11891       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11892       // both cases the loop iterates "undef" times, but SCEV thinks we
11893       // increased the trip count of the loop by 1 incorrectly.
11894       continue;
11895     }
11896 
11897     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11898         SE.getTypeSizeInBits(NewBECount->getType()))
11899       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11900     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11901              SE.getTypeSizeInBits(NewBECount->getType()))
11902       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11903 
11904     auto *ConstantDelta =
11905         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11906 
11907     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11908       dbgs() << "Trip Count Changed!\n";
11909       dbgs() << "Old: " << *CurBECount << "\n";
11910       dbgs() << "New: " << *NewBECount << "\n";
11911       dbgs() << "Delta: " << *ConstantDelta << "\n";
11912       std::abort();
11913     }
11914   }
11915 }
11916 
11917 bool ScalarEvolution::invalidate(
11918     Function &F, const PreservedAnalyses &PA,
11919     FunctionAnalysisManager::Invalidator &Inv) {
11920   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11921   // of its dependencies is invalidated.
11922   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11923   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11924          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11925          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11926          Inv.invalidate<LoopAnalysis>(F, PA);
11927 }
11928 
11929 AnalysisKey ScalarEvolutionAnalysis::Key;
11930 
11931 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11932                                              FunctionAnalysisManager &AM) {
11933   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11934                          AM.getResult<AssumptionAnalysis>(F),
11935                          AM.getResult<DominatorTreeAnalysis>(F),
11936                          AM.getResult<LoopAnalysis>(F));
11937 }
11938 
11939 PreservedAnalyses
11940 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11941   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11942   return PreservedAnalyses::all();
11943 }
11944 
11945 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11946                       "Scalar Evolution Analysis", false, true)
11947 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11948 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11949 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11950 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11951 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11952                     "Scalar Evolution Analysis", false, true)
11953 
11954 char ScalarEvolutionWrapperPass::ID = 0;
11955 
11956 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11957   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11958 }
11959 
11960 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11961   SE.reset(new ScalarEvolution(
11962       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11963       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11964       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11965       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11966   return false;
11967 }
11968 
11969 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11970 
11971 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11972   SE->print(OS);
11973 }
11974 
11975 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11976   if (!VerifySCEV)
11977     return;
11978 
11979   SE->verify();
11980 }
11981 
11982 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11983   AU.setPreservesAll();
11984   AU.addRequiredTransitive<AssumptionCacheTracker>();
11985   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11986   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11987   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11988 }
11989 
11990 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11991                                                         const SCEV *RHS) {
11992   FoldingSetNodeID ID;
11993   assert(LHS->getType() == RHS->getType() &&
11994          "Type mismatch between LHS and RHS");
11995   // Unique this node based on the arguments
11996   ID.AddInteger(SCEVPredicate::P_Equal);
11997   ID.AddPointer(LHS);
11998   ID.AddPointer(RHS);
11999   void *IP = nullptr;
12000   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12001     return S;
12002   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12003       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12004   UniquePreds.InsertNode(Eq, IP);
12005   return Eq;
12006 }
12007 
12008 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12009     const SCEVAddRecExpr *AR,
12010     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12011   FoldingSetNodeID ID;
12012   // Unique this node based on the arguments
12013   ID.AddInteger(SCEVPredicate::P_Wrap);
12014   ID.AddPointer(AR);
12015   ID.AddInteger(AddedFlags);
12016   void *IP = nullptr;
12017   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12018     return S;
12019   auto *OF = new (SCEVAllocator)
12020       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12021   UniquePreds.InsertNode(OF, IP);
12022   return OF;
12023 }
12024 
12025 namespace {
12026 
12027 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12028 public:
12029 
12030   /// Rewrites \p S in the context of a loop L and the SCEV predication
12031   /// infrastructure.
12032   ///
12033   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12034   /// equivalences present in \p Pred.
12035   ///
12036   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12037   /// \p NewPreds such that the result will be an AddRecExpr.
12038   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12039                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12040                              SCEVUnionPredicate *Pred) {
12041     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12042     return Rewriter.visit(S);
12043   }
12044 
12045   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12046     if (Pred) {
12047       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12048       for (auto *Pred : ExprPreds)
12049         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12050           if (IPred->getLHS() == Expr)
12051             return IPred->getRHS();
12052     }
12053     return convertToAddRecWithPreds(Expr);
12054   }
12055 
12056   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12057     const SCEV *Operand = visit(Expr->getOperand());
12058     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12059     if (AR && AR->getLoop() == L && AR->isAffine()) {
12060       // This couldn't be folded because the operand didn't have the nuw
12061       // flag. Add the nusw flag as an assumption that we could make.
12062       const SCEV *Step = AR->getStepRecurrence(SE);
12063       Type *Ty = Expr->getType();
12064       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12065         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12066                                 SE.getSignExtendExpr(Step, Ty), L,
12067                                 AR->getNoWrapFlags());
12068     }
12069     return SE.getZeroExtendExpr(Operand, Expr->getType());
12070   }
12071 
12072   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12073     const SCEV *Operand = visit(Expr->getOperand());
12074     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12075     if (AR && AR->getLoop() == L && AR->isAffine()) {
12076       // This couldn't be folded because the operand didn't have the nsw
12077       // flag. Add the nssw flag as an assumption that we could make.
12078       const SCEV *Step = AR->getStepRecurrence(SE);
12079       Type *Ty = Expr->getType();
12080       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12081         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12082                                 SE.getSignExtendExpr(Step, Ty), L,
12083                                 AR->getNoWrapFlags());
12084     }
12085     return SE.getSignExtendExpr(Operand, Expr->getType());
12086   }
12087 
12088 private:
12089   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12090                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12091                         SCEVUnionPredicate *Pred)
12092       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12093 
12094   bool addOverflowAssumption(const SCEVPredicate *P) {
12095     if (!NewPreds) {
12096       // Check if we've already made this assumption.
12097       return Pred && Pred->implies(P);
12098     }
12099     NewPreds->insert(P);
12100     return true;
12101   }
12102 
12103   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12104                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12105     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12106     return addOverflowAssumption(A);
12107   }
12108 
12109   // If \p Expr represents a PHINode, we try to see if it can be represented
12110   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12111   // to add this predicate as a runtime overflow check, we return the AddRec.
12112   // If \p Expr does not meet these conditions (is not a PHI node, or we
12113   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12114   // return \p Expr.
12115   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12116     if (!isa<PHINode>(Expr->getValue()))
12117       return Expr;
12118     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12119     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12120     if (!PredicatedRewrite)
12121       return Expr;
12122     for (auto *P : PredicatedRewrite->second){
12123       // Wrap predicates from outer loops are not supported.
12124       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12125         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12126         if (L != AR->getLoop())
12127           return Expr;
12128       }
12129       if (!addOverflowAssumption(P))
12130         return Expr;
12131     }
12132     return PredicatedRewrite->first;
12133   }
12134 
12135   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12136   SCEVUnionPredicate *Pred;
12137   const Loop *L;
12138 };
12139 
12140 } // end anonymous namespace
12141 
12142 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12143                                                    SCEVUnionPredicate &Preds) {
12144   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12145 }
12146 
12147 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12148     const SCEV *S, const Loop *L,
12149     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12150   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12151   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12152   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12153 
12154   if (!AddRec)
12155     return nullptr;
12156 
12157   // Since the transformation was successful, we can now transfer the SCEV
12158   // predicates.
12159   for (auto *P : TransformPreds)
12160     Preds.insert(P);
12161 
12162   return AddRec;
12163 }
12164 
12165 /// SCEV predicates
12166 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12167                              SCEVPredicateKind Kind)
12168     : FastID(ID), Kind(Kind) {}
12169 
12170 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12171                                        const SCEV *LHS, const SCEV *RHS)
12172     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12173   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12174   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12175 }
12176 
12177 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12178   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12179 
12180   if (!Op)
12181     return false;
12182 
12183   return Op->LHS == LHS && Op->RHS == RHS;
12184 }
12185 
12186 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12187 
12188 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12189 
12190 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12191   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12192 }
12193 
12194 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12195                                      const SCEVAddRecExpr *AR,
12196                                      IncrementWrapFlags Flags)
12197     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12198 
12199 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12200 
12201 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12202   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12203 
12204   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12205 }
12206 
12207 bool SCEVWrapPredicate::isAlwaysTrue() const {
12208   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12209   IncrementWrapFlags IFlags = Flags;
12210 
12211   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12212     IFlags = clearFlags(IFlags, IncrementNSSW);
12213 
12214   return IFlags == IncrementAnyWrap;
12215 }
12216 
12217 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12218   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12219   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12220     OS << "<nusw>";
12221   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12222     OS << "<nssw>";
12223   OS << "\n";
12224 }
12225 
12226 SCEVWrapPredicate::IncrementWrapFlags
12227 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12228                                    ScalarEvolution &SE) {
12229   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12230   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12231 
12232   // We can safely transfer the NSW flag as NSSW.
12233   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12234     ImpliedFlags = IncrementNSSW;
12235 
12236   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12237     // If the increment is positive, the SCEV NUW flag will also imply the
12238     // WrapPredicate NUSW flag.
12239     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12240       if (Step->getValue()->getValue().isNonNegative())
12241         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12242   }
12243 
12244   return ImpliedFlags;
12245 }
12246 
12247 /// Union predicates don't get cached so create a dummy set ID for it.
12248 SCEVUnionPredicate::SCEVUnionPredicate()
12249     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12250 
12251 bool SCEVUnionPredicate::isAlwaysTrue() const {
12252   return all_of(Preds,
12253                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12254 }
12255 
12256 ArrayRef<const SCEVPredicate *>
12257 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12258   auto I = SCEVToPreds.find(Expr);
12259   if (I == SCEVToPreds.end())
12260     return ArrayRef<const SCEVPredicate *>();
12261   return I->second;
12262 }
12263 
12264 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12265   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12266     return all_of(Set->Preds,
12267                   [this](const SCEVPredicate *I) { return this->implies(I); });
12268 
12269   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12270   if (ScevPredsIt == SCEVToPreds.end())
12271     return false;
12272   auto &SCEVPreds = ScevPredsIt->second;
12273 
12274   return any_of(SCEVPreds,
12275                 [N](const SCEVPredicate *I) { return I->implies(N); });
12276 }
12277 
12278 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12279 
12280 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12281   for (auto Pred : Preds)
12282     Pred->print(OS, Depth);
12283 }
12284 
12285 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12286   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12287     for (auto Pred : Set->Preds)
12288       add(Pred);
12289     return;
12290   }
12291 
12292   if (implies(N))
12293     return;
12294 
12295   const SCEV *Key = N->getExpr();
12296   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12297                 " associated expression!");
12298 
12299   SCEVToPreds[Key].push_back(N);
12300   Preds.push_back(N);
12301 }
12302 
12303 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12304                                                      Loop &L)
12305     : SE(SE), L(L) {}
12306 
12307 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12308   const SCEV *Expr = SE.getSCEV(V);
12309   RewriteEntry &Entry = RewriteMap[Expr];
12310 
12311   // If we already have an entry and the version matches, return it.
12312   if (Entry.second && Generation == Entry.first)
12313     return Entry.second;
12314 
12315   // We found an entry but it's stale. Rewrite the stale entry
12316   // according to the current predicate.
12317   if (Entry.second)
12318     Expr = Entry.second;
12319 
12320   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12321   Entry = {Generation, NewSCEV};
12322 
12323   return NewSCEV;
12324 }
12325 
12326 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12327   if (!BackedgeCount) {
12328     SCEVUnionPredicate BackedgePred;
12329     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12330     addPredicate(BackedgePred);
12331   }
12332   return BackedgeCount;
12333 }
12334 
12335 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12336   if (Preds.implies(&Pred))
12337     return;
12338   Preds.add(&Pred);
12339   updateGeneration();
12340 }
12341 
12342 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12343   return Preds;
12344 }
12345 
12346 void PredicatedScalarEvolution::updateGeneration() {
12347   // If the generation number wrapped recompute everything.
12348   if (++Generation == 0) {
12349     for (auto &II : RewriteMap) {
12350       const SCEV *Rewritten = II.second.second;
12351       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12352     }
12353   }
12354 }
12355 
12356 void PredicatedScalarEvolution::setNoOverflow(
12357     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12358   const SCEV *Expr = getSCEV(V);
12359   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12360 
12361   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12362 
12363   // Clear the statically implied flags.
12364   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12365   addPredicate(*SE.getWrapPredicate(AR, Flags));
12366 
12367   auto II = FlagsMap.insert({V, Flags});
12368   if (!II.second)
12369     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12370 }
12371 
12372 bool PredicatedScalarEvolution::hasNoOverflow(
12373     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12374   const SCEV *Expr = getSCEV(V);
12375   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12376 
12377   Flags = SCEVWrapPredicate::clearFlags(
12378       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12379 
12380   auto II = FlagsMap.find(V);
12381 
12382   if (II != FlagsMap.end())
12383     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12384 
12385   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12386 }
12387 
12388 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12389   const SCEV *Expr = this->getSCEV(V);
12390   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12391   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12392 
12393   if (!New)
12394     return nullptr;
12395 
12396   for (auto *P : NewPreds)
12397     Preds.add(P);
12398 
12399   updateGeneration();
12400   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12401   return New;
12402 }
12403 
12404 PredicatedScalarEvolution::PredicatedScalarEvolution(
12405     const PredicatedScalarEvolution &Init)
12406     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12407       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12408   for (const auto &I : Init.FlagsMap)
12409     FlagsMap.insert(I);
12410 }
12411 
12412 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12413   // For each block.
12414   for (auto *BB : L.getBlocks())
12415     for (auto &I : *BB) {
12416       if (!SE.isSCEVable(I.getType()))
12417         continue;
12418 
12419       auto *Expr = SE.getSCEV(&I);
12420       auto II = RewriteMap.find(Expr);
12421 
12422       if (II == RewriteMap.end())
12423         continue;
12424 
12425       // Don't print things that are not interesting.
12426       if (II->second.second == Expr)
12427         continue;
12428 
12429       OS.indent(Depth) << "[PSE]" << I << ":\n";
12430       OS.indent(Depth + 2) << *Expr << "\n";
12431       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12432     }
12433 }
12434 
12435 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12436 // arbitrary expressions.
12437 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12438 // 4, A / B becomes X / 8).
12439 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12440                                 const SCEV *&RHS) {
12441   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12442   if (Add == nullptr || Add->getNumOperands() != 2)
12443     return false;
12444 
12445   const SCEV *A = Add->getOperand(1);
12446   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12447 
12448   if (Mul == nullptr)
12449     return false;
12450 
12451   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12452     // (SomeExpr + (-(SomeExpr / B) * B)).
12453     if (Expr == getURemExpr(A, B)) {
12454       LHS = A;
12455       RHS = B;
12456       return true;
12457     }
12458     return false;
12459   };
12460 
12461   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12462   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12463     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12464            MatchURemWithDivisor(Mul->getOperand(2));
12465 
12466   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12467   if (Mul->getNumOperands() == 2)
12468     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12469            MatchURemWithDivisor(Mul->getOperand(0)) ||
12470            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12471            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12472   return false;
12473 }
12474