1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 return Flags; 2394 } 2395 2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2397 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2398 } 2399 2400 /// Get a canonical add expression, or something simpler if possible. 2401 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2402 SCEV::NoWrapFlags OrigFlags, 2403 unsigned Depth) { 2404 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2405 "only nuw or nsw allowed"); 2406 assert(!Ops.empty() && "Cannot get empty add!"); 2407 if (Ops.size() == 1) return Ops[0]; 2408 #ifndef NDEBUG 2409 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2410 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2411 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2412 "SCEVAddExpr operand types don't match!"); 2413 unsigned NumPtrs = count_if( 2414 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2415 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2416 #endif 2417 2418 // Sort by complexity, this groups all similar expression types together. 2419 GroupByComplexity(Ops, &LI, DT); 2420 2421 // If there are any constants, fold them together. 2422 unsigned Idx = 0; 2423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2424 ++Idx; 2425 assert(Idx < Ops.size()); 2426 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2427 // We found two constants, fold them together! 2428 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2429 if (Ops.size() == 2) return Ops[0]; 2430 Ops.erase(Ops.begin()+1); // Erase the folded element 2431 LHSC = cast<SCEVConstant>(Ops[0]); 2432 } 2433 2434 // If we are left with a constant zero being added, strip it off. 2435 if (LHSC->getValue()->isZero()) { 2436 Ops.erase(Ops.begin()); 2437 --Idx; 2438 } 2439 2440 if (Ops.size() == 1) return Ops[0]; 2441 } 2442 2443 // Delay expensive flag strengthening until necessary. 2444 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2445 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2446 }; 2447 2448 // Limit recursion calls depth. 2449 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2450 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2451 2452 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2453 // Don't strengthen flags if we have no new information. 2454 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2455 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2456 Add->setNoWrapFlags(ComputeFlags(Ops)); 2457 return S; 2458 } 2459 2460 // Okay, check to see if the same value occurs in the operand list more than 2461 // once. If so, merge them together into an multiply expression. Since we 2462 // sorted the list, these values are required to be adjacent. 2463 Type *Ty = Ops[0]->getType(); 2464 bool FoundMatch = false; 2465 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2466 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2467 // Scan ahead to count how many equal operands there are. 2468 unsigned Count = 2; 2469 while (i+Count != e && Ops[i+Count] == Ops[i]) 2470 ++Count; 2471 // Merge the values into a multiply. 2472 const SCEV *Scale = getConstant(Ty, Count); 2473 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2474 if (Ops.size() == Count) 2475 return Mul; 2476 Ops[i] = Mul; 2477 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2478 --i; e -= Count - 1; 2479 FoundMatch = true; 2480 } 2481 if (FoundMatch) 2482 return getAddExpr(Ops, OrigFlags, Depth + 1); 2483 2484 // Check for truncates. If all the operands are truncated from the same 2485 // type, see if factoring out the truncate would permit the result to be 2486 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2487 // if the contents of the resulting outer trunc fold to something simple. 2488 auto FindTruncSrcType = [&]() -> Type * { 2489 // We're ultimately looking to fold an addrec of truncs and muls of only 2490 // constants and truncs, so if we find any other types of SCEV 2491 // as operands of the addrec then we bail and return nullptr here. 2492 // Otherwise, we return the type of the operand of a trunc that we find. 2493 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2494 return T->getOperand()->getType(); 2495 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2496 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2497 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2498 return T->getOperand()->getType(); 2499 } 2500 return nullptr; 2501 }; 2502 if (auto *SrcType = FindTruncSrcType()) { 2503 SmallVector<const SCEV *, 8> LargeOps; 2504 bool Ok = true; 2505 // Check all the operands to see if they can be represented in the 2506 // source type of the truncate. 2507 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2508 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2509 if (T->getOperand()->getType() != SrcType) { 2510 Ok = false; 2511 break; 2512 } 2513 LargeOps.push_back(T->getOperand()); 2514 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2515 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2516 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2517 SmallVector<const SCEV *, 8> LargeMulOps; 2518 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2519 if (const SCEVTruncateExpr *T = 2520 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2521 if (T->getOperand()->getType() != SrcType) { 2522 Ok = false; 2523 break; 2524 } 2525 LargeMulOps.push_back(T->getOperand()); 2526 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2527 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2528 } else { 2529 Ok = false; 2530 break; 2531 } 2532 } 2533 if (Ok) 2534 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2535 } else { 2536 Ok = false; 2537 break; 2538 } 2539 } 2540 if (Ok) { 2541 // Evaluate the expression in the larger type. 2542 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2543 // If it folds to something simple, use it. Otherwise, don't. 2544 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2545 return getTruncateExpr(Fold, Ty); 2546 } 2547 } 2548 2549 if (Ops.size() == 2) { 2550 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2551 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2552 // C1). 2553 const SCEV *A = Ops[0]; 2554 const SCEV *B = Ops[1]; 2555 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2556 auto *C = dyn_cast<SCEVConstant>(A); 2557 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2558 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2559 auto C2 = C->getAPInt(); 2560 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2561 2562 APInt ConstAdd = C1 + C2; 2563 auto AddFlags = AddExpr->getNoWrapFlags(); 2564 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2565 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNUW) == 2566 SCEV::FlagNUW && 2567 ConstAdd.ule(C1)) { 2568 PreservedFlags = 2569 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2570 } 2571 2572 // Adding a constant with the same sign and small magnitude is NSW, if the 2573 // original AddExpr was NSW. 2574 if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNSW) == 2575 SCEV::FlagNSW && 2576 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2577 ConstAdd.abs().ule(C1.abs())) { 2578 PreservedFlags = 2579 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2580 } 2581 2582 if (PreservedFlags != SCEV::FlagAnyWrap) { 2583 SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(), 2584 AddExpr->op_end()); 2585 NewOps[0] = getConstant(ConstAdd); 2586 return getAddExpr(NewOps, PreservedFlags); 2587 } 2588 } 2589 } 2590 2591 // Skip past any other cast SCEVs. 2592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2593 ++Idx; 2594 2595 // If there are add operands they would be next. 2596 if (Idx < Ops.size()) { 2597 bool DeletedAdd = false; 2598 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2599 // common NUW flag for expression after inlining. Other flags cannot be 2600 // preserved, because they may depend on the original order of operations. 2601 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2602 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2603 if (Ops.size() > AddOpsInlineThreshold || 2604 Add->getNumOperands() > AddOpsInlineThreshold) 2605 break; 2606 // If we have an add, expand the add operands onto the end of the operands 2607 // list. 2608 Ops.erase(Ops.begin()+Idx); 2609 Ops.append(Add->op_begin(), Add->op_end()); 2610 DeletedAdd = true; 2611 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2612 } 2613 2614 // If we deleted at least one add, we added operands to the end of the list, 2615 // and they are not necessarily sorted. Recurse to resort and resimplify 2616 // any operands we just acquired. 2617 if (DeletedAdd) 2618 return getAddExpr(Ops, CommonFlags, Depth + 1); 2619 } 2620 2621 // Skip over the add expression until we get to a multiply. 2622 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2623 ++Idx; 2624 2625 // Check to see if there are any folding opportunities present with 2626 // operands multiplied by constant values. 2627 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2628 uint64_t BitWidth = getTypeSizeInBits(Ty); 2629 DenseMap<const SCEV *, APInt> M; 2630 SmallVector<const SCEV *, 8> NewOps; 2631 APInt AccumulatedConstant(BitWidth, 0); 2632 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2633 Ops.data(), Ops.size(), 2634 APInt(BitWidth, 1), *this)) { 2635 struct APIntCompare { 2636 bool operator()(const APInt &LHS, const APInt &RHS) const { 2637 return LHS.ult(RHS); 2638 } 2639 }; 2640 2641 // Some interesting folding opportunity is present, so its worthwhile to 2642 // re-generate the operands list. Group the operands by constant scale, 2643 // to avoid multiplying by the same constant scale multiple times. 2644 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2645 for (const SCEV *NewOp : NewOps) 2646 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2647 // Re-generate the operands list. 2648 Ops.clear(); 2649 if (AccumulatedConstant != 0) 2650 Ops.push_back(getConstant(AccumulatedConstant)); 2651 for (auto &MulOp : MulOpLists) { 2652 if (MulOp.first == 1) { 2653 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2654 } else if (MulOp.first != 0) { 2655 Ops.push_back(getMulExpr( 2656 getConstant(MulOp.first), 2657 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2658 SCEV::FlagAnyWrap, Depth + 1)); 2659 } 2660 } 2661 if (Ops.empty()) 2662 return getZero(Ty); 2663 if (Ops.size() == 1) 2664 return Ops[0]; 2665 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2666 } 2667 } 2668 2669 // If we are adding something to a multiply expression, make sure the 2670 // something is not already an operand of the multiply. If so, merge it into 2671 // the multiply. 2672 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2673 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2674 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2675 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2676 if (isa<SCEVConstant>(MulOpSCEV)) 2677 continue; 2678 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2679 if (MulOpSCEV == Ops[AddOp]) { 2680 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2681 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2682 if (Mul->getNumOperands() != 2) { 2683 // If the multiply has more than two operands, we must get the 2684 // Y*Z term. 2685 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2686 Mul->op_begin()+MulOp); 2687 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2688 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2689 } 2690 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2691 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2692 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2693 SCEV::FlagAnyWrap, Depth + 1); 2694 if (Ops.size() == 2) return OuterMul; 2695 if (AddOp < Idx) { 2696 Ops.erase(Ops.begin()+AddOp); 2697 Ops.erase(Ops.begin()+Idx-1); 2698 } else { 2699 Ops.erase(Ops.begin()+Idx); 2700 Ops.erase(Ops.begin()+AddOp-1); 2701 } 2702 Ops.push_back(OuterMul); 2703 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2704 } 2705 2706 // Check this multiply against other multiplies being added together. 2707 for (unsigned OtherMulIdx = Idx+1; 2708 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2709 ++OtherMulIdx) { 2710 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2711 // If MulOp occurs in OtherMul, we can fold the two multiplies 2712 // together. 2713 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2714 OMulOp != e; ++OMulOp) 2715 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2716 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2717 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2718 if (Mul->getNumOperands() != 2) { 2719 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2720 Mul->op_begin()+MulOp); 2721 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2722 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2723 } 2724 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2725 if (OtherMul->getNumOperands() != 2) { 2726 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2727 OtherMul->op_begin()+OMulOp); 2728 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2729 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2730 } 2731 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2732 const SCEV *InnerMulSum = 2733 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2734 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2735 SCEV::FlagAnyWrap, Depth + 1); 2736 if (Ops.size() == 2) return OuterMul; 2737 Ops.erase(Ops.begin()+Idx); 2738 Ops.erase(Ops.begin()+OtherMulIdx-1); 2739 Ops.push_back(OuterMul); 2740 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2741 } 2742 } 2743 } 2744 } 2745 2746 // If there are any add recurrences in the operands list, see if any other 2747 // added values are loop invariant. If so, we can fold them into the 2748 // recurrence. 2749 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2750 ++Idx; 2751 2752 // Scan over all recurrences, trying to fold loop invariants into them. 2753 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2754 // Scan all of the other operands to this add and add them to the vector if 2755 // they are loop invariant w.r.t. the recurrence. 2756 SmallVector<const SCEV *, 8> LIOps; 2757 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2758 const Loop *AddRecLoop = AddRec->getLoop(); 2759 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2760 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2761 LIOps.push_back(Ops[i]); 2762 Ops.erase(Ops.begin()+i); 2763 --i; --e; 2764 } 2765 2766 // If we found some loop invariants, fold them into the recurrence. 2767 if (!LIOps.empty()) { 2768 // Compute nowrap flags for the addition of the loop-invariant ops and 2769 // the addrec. Temporarily push it as an operand for that purpose. 2770 LIOps.push_back(AddRec); 2771 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2772 LIOps.pop_back(); 2773 2774 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2775 LIOps.push_back(AddRec->getStart()); 2776 2777 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2778 // This follows from the fact that the no-wrap flags on the outer add 2779 // expression are applicable on the 0th iteration, when the add recurrence 2780 // will be equal to its start value. 2781 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2782 2783 // Build the new addrec. Propagate the NUW and NSW flags if both the 2784 // outer add and the inner addrec are guaranteed to have no overflow. 2785 // Always propagate NW. 2786 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2787 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2788 2789 // If all of the other operands were loop invariant, we are done. 2790 if (Ops.size() == 1) return NewRec; 2791 2792 // Otherwise, add the folded AddRec by the non-invariant parts. 2793 for (unsigned i = 0;; ++i) 2794 if (Ops[i] == AddRec) { 2795 Ops[i] = NewRec; 2796 break; 2797 } 2798 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2799 } 2800 2801 // Okay, if there weren't any loop invariants to be folded, check to see if 2802 // there are multiple AddRec's with the same loop induction variable being 2803 // added together. If so, we can fold them. 2804 for (unsigned OtherIdx = Idx+1; 2805 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2806 ++OtherIdx) { 2807 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2808 // so that the 1st found AddRecExpr is dominated by all others. 2809 assert(DT.dominates( 2810 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2811 AddRec->getLoop()->getHeader()) && 2812 "AddRecExprs are not sorted in reverse dominance order?"); 2813 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2814 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2815 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2816 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2817 ++OtherIdx) { 2818 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2819 if (OtherAddRec->getLoop() == AddRecLoop) { 2820 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2821 i != e; ++i) { 2822 if (i >= AddRecOps.size()) { 2823 AddRecOps.append(OtherAddRec->op_begin()+i, 2824 OtherAddRec->op_end()); 2825 break; 2826 } 2827 SmallVector<const SCEV *, 2> TwoOps = { 2828 AddRecOps[i], OtherAddRec->getOperand(i)}; 2829 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2830 } 2831 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2832 } 2833 } 2834 // Step size has changed, so we cannot guarantee no self-wraparound. 2835 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2836 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2837 } 2838 } 2839 2840 // Otherwise couldn't fold anything into this recurrence. Move onto the 2841 // next one. 2842 } 2843 2844 // Okay, it looks like we really DO need an add expr. Check to see if we 2845 // already have one, otherwise create a new one. 2846 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2847 } 2848 2849 const SCEV * 2850 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2851 SCEV::NoWrapFlags Flags) { 2852 FoldingSetNodeID ID; 2853 ID.AddInteger(scAddExpr); 2854 for (const SCEV *Op : Ops) 2855 ID.AddPointer(Op); 2856 void *IP = nullptr; 2857 SCEVAddExpr *S = 2858 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2859 if (!S) { 2860 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2861 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2862 S = new (SCEVAllocator) 2863 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2864 UniqueSCEVs.InsertNode(S, IP); 2865 addToLoopUseLists(S); 2866 } 2867 S->setNoWrapFlags(Flags); 2868 return S; 2869 } 2870 2871 const SCEV * 2872 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2873 const Loop *L, SCEV::NoWrapFlags Flags) { 2874 FoldingSetNodeID ID; 2875 ID.AddInteger(scAddRecExpr); 2876 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2877 ID.AddPointer(Ops[i]); 2878 ID.AddPointer(L); 2879 void *IP = nullptr; 2880 SCEVAddRecExpr *S = 2881 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2882 if (!S) { 2883 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2884 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2885 S = new (SCEVAllocator) 2886 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2887 UniqueSCEVs.InsertNode(S, IP); 2888 addToLoopUseLists(S); 2889 } 2890 setNoWrapFlags(S, Flags); 2891 return S; 2892 } 2893 2894 const SCEV * 2895 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2896 SCEV::NoWrapFlags Flags) { 2897 FoldingSetNodeID ID; 2898 ID.AddInteger(scMulExpr); 2899 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2900 ID.AddPointer(Ops[i]); 2901 void *IP = nullptr; 2902 SCEVMulExpr *S = 2903 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2904 if (!S) { 2905 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2906 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2907 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2908 O, Ops.size()); 2909 UniqueSCEVs.InsertNode(S, IP); 2910 addToLoopUseLists(S); 2911 } 2912 S->setNoWrapFlags(Flags); 2913 return S; 2914 } 2915 2916 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2917 uint64_t k = i*j; 2918 if (j > 1 && k / j != i) Overflow = true; 2919 return k; 2920 } 2921 2922 /// Compute the result of "n choose k", the binomial coefficient. If an 2923 /// intermediate computation overflows, Overflow will be set and the return will 2924 /// be garbage. Overflow is not cleared on absence of overflow. 2925 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2926 // We use the multiplicative formula: 2927 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2928 // At each iteration, we take the n-th term of the numeral and divide by the 2929 // (k-n)th term of the denominator. This division will always produce an 2930 // integral result, and helps reduce the chance of overflow in the 2931 // intermediate computations. However, we can still overflow even when the 2932 // final result would fit. 2933 2934 if (n == 0 || n == k) return 1; 2935 if (k > n) return 0; 2936 2937 if (k > n/2) 2938 k = n-k; 2939 2940 uint64_t r = 1; 2941 for (uint64_t i = 1; i <= k; ++i) { 2942 r = umul_ov(r, n-(i-1), Overflow); 2943 r /= i; 2944 } 2945 return r; 2946 } 2947 2948 /// Determine if any of the operands in this SCEV are a constant or if 2949 /// any of the add or multiply expressions in this SCEV contain a constant. 2950 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2951 struct FindConstantInAddMulChain { 2952 bool FoundConstant = false; 2953 2954 bool follow(const SCEV *S) { 2955 FoundConstant |= isa<SCEVConstant>(S); 2956 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2957 } 2958 2959 bool isDone() const { 2960 return FoundConstant; 2961 } 2962 }; 2963 2964 FindConstantInAddMulChain F; 2965 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2966 ST.visitAll(StartExpr); 2967 return F.FoundConstant; 2968 } 2969 2970 /// Get a canonical multiply expression, or something simpler if possible. 2971 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2972 SCEV::NoWrapFlags OrigFlags, 2973 unsigned Depth) { 2974 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2975 "only nuw or nsw allowed"); 2976 assert(!Ops.empty() && "Cannot get empty mul!"); 2977 if (Ops.size() == 1) return Ops[0]; 2978 #ifndef NDEBUG 2979 Type *ETy = Ops[0]->getType(); 2980 assert(!ETy->isPointerTy()); 2981 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2982 assert(Ops[i]->getType() == ETy && 2983 "SCEVMulExpr operand types don't match!"); 2984 #endif 2985 2986 // Sort by complexity, this groups all similar expression types together. 2987 GroupByComplexity(Ops, &LI, DT); 2988 2989 // If there are any constants, fold them together. 2990 unsigned Idx = 0; 2991 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2992 ++Idx; 2993 assert(Idx < Ops.size()); 2994 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2995 // We found two constants, fold them together! 2996 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2997 if (Ops.size() == 2) return Ops[0]; 2998 Ops.erase(Ops.begin()+1); // Erase the folded element 2999 LHSC = cast<SCEVConstant>(Ops[0]); 3000 } 3001 3002 // If we have a multiply of zero, it will always be zero. 3003 if (LHSC->getValue()->isZero()) 3004 return LHSC; 3005 3006 // If we are left with a constant one being multiplied, strip it off. 3007 if (LHSC->getValue()->isOne()) { 3008 Ops.erase(Ops.begin()); 3009 --Idx; 3010 } 3011 3012 if (Ops.size() == 1) 3013 return Ops[0]; 3014 } 3015 3016 // Delay expensive flag strengthening until necessary. 3017 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3018 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3019 }; 3020 3021 // Limit recursion calls depth. 3022 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3023 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3024 3025 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 3026 // Don't strengthen flags if we have no new information. 3027 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3028 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3029 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3030 return S; 3031 } 3032 3033 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3034 if (Ops.size() == 2) { 3035 // C1*(C2+V) -> C1*C2 + C1*V 3036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3037 // If any of Add's ops are Adds or Muls with a constant, apply this 3038 // transformation as well. 3039 // 3040 // TODO: There are some cases where this transformation is not 3041 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3042 // this transformation should be narrowed down. 3043 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3044 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3045 SCEV::FlagAnyWrap, Depth + 1), 3046 getMulExpr(LHSC, Add->getOperand(1), 3047 SCEV::FlagAnyWrap, Depth + 1), 3048 SCEV::FlagAnyWrap, Depth + 1); 3049 3050 if (Ops[0]->isAllOnesValue()) { 3051 // If we have a mul by -1 of an add, try distributing the -1 among the 3052 // add operands. 3053 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3054 SmallVector<const SCEV *, 4> NewOps; 3055 bool AnyFolded = false; 3056 for (const SCEV *AddOp : Add->operands()) { 3057 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3058 Depth + 1); 3059 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3060 NewOps.push_back(Mul); 3061 } 3062 if (AnyFolded) 3063 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3064 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3065 // Negation preserves a recurrence's no self-wrap property. 3066 SmallVector<const SCEV *, 4> Operands; 3067 for (const SCEV *AddRecOp : AddRec->operands()) 3068 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3069 Depth + 1)); 3070 3071 return getAddRecExpr(Operands, AddRec->getLoop(), 3072 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3073 } 3074 } 3075 } 3076 } 3077 3078 // Skip over the add expression until we get to a multiply. 3079 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3080 ++Idx; 3081 3082 // If there are mul operands inline them all into this expression. 3083 if (Idx < Ops.size()) { 3084 bool DeletedMul = false; 3085 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3086 if (Ops.size() > MulOpsInlineThreshold) 3087 break; 3088 // If we have an mul, expand the mul operands onto the end of the 3089 // operands list. 3090 Ops.erase(Ops.begin()+Idx); 3091 Ops.append(Mul->op_begin(), Mul->op_end()); 3092 DeletedMul = true; 3093 } 3094 3095 // If we deleted at least one mul, we added operands to the end of the 3096 // list, and they are not necessarily sorted. Recurse to resort and 3097 // resimplify any operands we just acquired. 3098 if (DeletedMul) 3099 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3100 } 3101 3102 // If there are any add recurrences in the operands list, see if any other 3103 // added values are loop invariant. If so, we can fold them into the 3104 // recurrence. 3105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3106 ++Idx; 3107 3108 // Scan over all recurrences, trying to fold loop invariants into them. 3109 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3110 // Scan all of the other operands to this mul and add them to the vector 3111 // if they are loop invariant w.r.t. the recurrence. 3112 SmallVector<const SCEV *, 8> LIOps; 3113 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3114 const Loop *AddRecLoop = AddRec->getLoop(); 3115 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3116 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3117 LIOps.push_back(Ops[i]); 3118 Ops.erase(Ops.begin()+i); 3119 --i; --e; 3120 } 3121 3122 // If we found some loop invariants, fold them into the recurrence. 3123 if (!LIOps.empty()) { 3124 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3125 SmallVector<const SCEV *, 4> NewOps; 3126 NewOps.reserve(AddRec->getNumOperands()); 3127 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3128 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3129 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3130 SCEV::FlagAnyWrap, Depth + 1)); 3131 3132 // Build the new addrec. Propagate the NUW and NSW flags if both the 3133 // outer mul and the inner addrec are guaranteed to have no overflow. 3134 // 3135 // No self-wrap cannot be guaranteed after changing the step size, but 3136 // will be inferred if either NUW or NSW is true. 3137 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3138 const SCEV *NewRec = getAddRecExpr( 3139 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3140 3141 // If all of the other operands were loop invariant, we are done. 3142 if (Ops.size() == 1) return NewRec; 3143 3144 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3145 for (unsigned i = 0;; ++i) 3146 if (Ops[i] == AddRec) { 3147 Ops[i] = NewRec; 3148 break; 3149 } 3150 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3151 } 3152 3153 // Okay, if there weren't any loop invariants to be folded, check to see 3154 // if there are multiple AddRec's with the same loop induction variable 3155 // being multiplied together. If so, we can fold them. 3156 3157 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3158 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3159 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3160 // ]]],+,...up to x=2n}. 3161 // Note that the arguments to choose() are always integers with values 3162 // known at compile time, never SCEV objects. 3163 // 3164 // The implementation avoids pointless extra computations when the two 3165 // addrec's are of different length (mathematically, it's equivalent to 3166 // an infinite stream of zeros on the right). 3167 bool OpsModified = false; 3168 for (unsigned OtherIdx = Idx+1; 3169 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3170 ++OtherIdx) { 3171 const SCEVAddRecExpr *OtherAddRec = 3172 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3173 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3174 continue; 3175 3176 // Limit max number of arguments to avoid creation of unreasonably big 3177 // SCEVAddRecs with very complex operands. 3178 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3179 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3180 continue; 3181 3182 bool Overflow = false; 3183 Type *Ty = AddRec->getType(); 3184 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3185 SmallVector<const SCEV*, 7> AddRecOps; 3186 for (int x = 0, xe = AddRec->getNumOperands() + 3187 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3188 SmallVector <const SCEV *, 7> SumOps; 3189 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3190 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3191 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3192 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3193 z < ze && !Overflow; ++z) { 3194 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3195 uint64_t Coeff; 3196 if (LargerThan64Bits) 3197 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3198 else 3199 Coeff = Coeff1*Coeff2; 3200 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3201 const SCEV *Term1 = AddRec->getOperand(y-z); 3202 const SCEV *Term2 = OtherAddRec->getOperand(z); 3203 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3204 SCEV::FlagAnyWrap, Depth + 1)); 3205 } 3206 } 3207 if (SumOps.empty()) 3208 SumOps.push_back(getZero(Ty)); 3209 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3210 } 3211 if (!Overflow) { 3212 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3213 SCEV::FlagAnyWrap); 3214 if (Ops.size() == 2) return NewAddRec; 3215 Ops[Idx] = NewAddRec; 3216 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3217 OpsModified = true; 3218 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3219 if (!AddRec) 3220 break; 3221 } 3222 } 3223 if (OpsModified) 3224 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3225 3226 // Otherwise couldn't fold anything into this recurrence. Move onto the 3227 // next one. 3228 } 3229 3230 // Okay, it looks like we really DO need an mul expr. Check to see if we 3231 // already have one, otherwise create a new one. 3232 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3233 } 3234 3235 /// Represents an unsigned remainder expression based on unsigned division. 3236 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3237 const SCEV *RHS) { 3238 assert(getEffectiveSCEVType(LHS->getType()) == 3239 getEffectiveSCEVType(RHS->getType()) && 3240 "SCEVURemExpr operand types don't match!"); 3241 3242 // Short-circuit easy cases 3243 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3244 // If constant is one, the result is trivial 3245 if (RHSC->getValue()->isOne()) 3246 return getZero(LHS->getType()); // X urem 1 --> 0 3247 3248 // If constant is a power of two, fold into a zext(trunc(LHS)). 3249 if (RHSC->getAPInt().isPowerOf2()) { 3250 Type *FullTy = LHS->getType(); 3251 Type *TruncTy = 3252 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3253 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3254 } 3255 } 3256 3257 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3258 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3259 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3260 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3261 } 3262 3263 /// Get a canonical unsigned division expression, or something simpler if 3264 /// possible. 3265 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3266 const SCEV *RHS) { 3267 assert(!LHS->getType()->isPointerTy() && 3268 "SCEVUDivExpr operand can't be pointer!"); 3269 assert(LHS->getType() == RHS->getType() && 3270 "SCEVUDivExpr operand types don't match!"); 3271 3272 FoldingSetNodeID ID; 3273 ID.AddInteger(scUDivExpr); 3274 ID.AddPointer(LHS); 3275 ID.AddPointer(RHS); 3276 void *IP = nullptr; 3277 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3278 return S; 3279 3280 // 0 udiv Y == 0 3281 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3282 if (LHSC->getValue()->isZero()) 3283 return LHS; 3284 3285 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3286 if (RHSC->getValue()->isOne()) 3287 return LHS; // X udiv 1 --> x 3288 // If the denominator is zero, the result of the udiv is undefined. Don't 3289 // try to analyze it, because the resolution chosen here may differ from 3290 // the resolution chosen in other parts of the compiler. 3291 if (!RHSC->getValue()->isZero()) { 3292 // Determine if the division can be folded into the operands of 3293 // its operands. 3294 // TODO: Generalize this to non-constants by using known-bits information. 3295 Type *Ty = LHS->getType(); 3296 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3297 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3298 // For non-power-of-two values, effectively round the value up to the 3299 // nearest power of two. 3300 if (!RHSC->getAPInt().isPowerOf2()) 3301 ++MaxShiftAmt; 3302 IntegerType *ExtTy = 3303 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3304 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3305 if (const SCEVConstant *Step = 3306 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3307 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3308 const APInt &StepInt = Step->getAPInt(); 3309 const APInt &DivInt = RHSC->getAPInt(); 3310 if (!StepInt.urem(DivInt) && 3311 getZeroExtendExpr(AR, ExtTy) == 3312 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3313 getZeroExtendExpr(Step, ExtTy), 3314 AR->getLoop(), SCEV::FlagAnyWrap)) { 3315 SmallVector<const SCEV *, 4> Operands; 3316 for (const SCEV *Op : AR->operands()) 3317 Operands.push_back(getUDivExpr(Op, RHS)); 3318 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3319 } 3320 /// Get a canonical UDivExpr for a recurrence. 3321 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3322 // We can currently only fold X%N if X is constant. 3323 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3324 if (StartC && !DivInt.urem(StepInt) && 3325 getZeroExtendExpr(AR, ExtTy) == 3326 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3327 getZeroExtendExpr(Step, ExtTy), 3328 AR->getLoop(), SCEV::FlagAnyWrap)) { 3329 const APInt &StartInt = StartC->getAPInt(); 3330 const APInt &StartRem = StartInt.urem(StepInt); 3331 if (StartRem != 0) { 3332 const SCEV *NewLHS = 3333 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3334 AR->getLoop(), SCEV::FlagNW); 3335 if (LHS != NewLHS) { 3336 LHS = NewLHS; 3337 3338 // Reset the ID to include the new LHS, and check if it is 3339 // already cached. 3340 ID.clear(); 3341 ID.AddInteger(scUDivExpr); 3342 ID.AddPointer(LHS); 3343 ID.AddPointer(RHS); 3344 IP = nullptr; 3345 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3346 return S; 3347 } 3348 } 3349 } 3350 } 3351 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3352 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3353 SmallVector<const SCEV *, 4> Operands; 3354 for (const SCEV *Op : M->operands()) 3355 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3356 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3357 // Find an operand that's safely divisible. 3358 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3359 const SCEV *Op = M->getOperand(i); 3360 const SCEV *Div = getUDivExpr(Op, RHSC); 3361 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3362 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3363 Operands[i] = Div; 3364 return getMulExpr(Operands); 3365 } 3366 } 3367 } 3368 3369 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3370 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3371 if (auto *DivisorConstant = 3372 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3373 bool Overflow = false; 3374 APInt NewRHS = 3375 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3376 if (Overflow) { 3377 return getConstant(RHSC->getType(), 0, false); 3378 } 3379 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3380 } 3381 } 3382 3383 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3384 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3385 SmallVector<const SCEV *, 4> Operands; 3386 for (const SCEV *Op : A->operands()) 3387 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3388 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3389 Operands.clear(); 3390 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3391 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3392 if (isa<SCEVUDivExpr>(Op) || 3393 getMulExpr(Op, RHS) != A->getOperand(i)) 3394 break; 3395 Operands.push_back(Op); 3396 } 3397 if (Operands.size() == A->getNumOperands()) 3398 return getAddExpr(Operands); 3399 } 3400 } 3401 3402 // Fold if both operands are constant. 3403 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3404 Constant *LHSCV = LHSC->getValue(); 3405 Constant *RHSCV = RHSC->getValue(); 3406 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3407 RHSCV))); 3408 } 3409 } 3410 } 3411 3412 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3413 // changes). Make sure we get a new one. 3414 IP = nullptr; 3415 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3416 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3417 LHS, RHS); 3418 UniqueSCEVs.InsertNode(S, IP); 3419 addToLoopUseLists(S); 3420 return S; 3421 } 3422 3423 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3424 APInt A = C1->getAPInt().abs(); 3425 APInt B = C2->getAPInt().abs(); 3426 uint32_t ABW = A.getBitWidth(); 3427 uint32_t BBW = B.getBitWidth(); 3428 3429 if (ABW > BBW) 3430 B = B.zext(ABW); 3431 else if (ABW < BBW) 3432 A = A.zext(BBW); 3433 3434 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3435 } 3436 3437 /// Get a canonical unsigned division expression, or something simpler if 3438 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3439 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3440 /// it's not exact because the udiv may be clearing bits. 3441 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3442 const SCEV *RHS) { 3443 // TODO: we could try to find factors in all sorts of things, but for now we 3444 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3445 // end of this file for inspiration. 3446 3447 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3448 if (!Mul || !Mul->hasNoUnsignedWrap()) 3449 return getUDivExpr(LHS, RHS); 3450 3451 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3452 // If the mulexpr multiplies by a constant, then that constant must be the 3453 // first element of the mulexpr. 3454 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3455 if (LHSCst == RHSCst) { 3456 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3457 return getMulExpr(Operands); 3458 } 3459 3460 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3461 // that there's a factor provided by one of the other terms. We need to 3462 // check. 3463 APInt Factor = gcd(LHSCst, RHSCst); 3464 if (!Factor.isIntN(1)) { 3465 LHSCst = 3466 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3467 RHSCst = 3468 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3469 SmallVector<const SCEV *, 2> Operands; 3470 Operands.push_back(LHSCst); 3471 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3472 LHS = getMulExpr(Operands); 3473 RHS = RHSCst; 3474 Mul = dyn_cast<SCEVMulExpr>(LHS); 3475 if (!Mul) 3476 return getUDivExactExpr(LHS, RHS); 3477 } 3478 } 3479 } 3480 3481 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3482 if (Mul->getOperand(i) == RHS) { 3483 SmallVector<const SCEV *, 2> Operands; 3484 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3485 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3486 return getMulExpr(Operands); 3487 } 3488 } 3489 3490 return getUDivExpr(LHS, RHS); 3491 } 3492 3493 /// Get an add recurrence expression for the specified loop. Simplify the 3494 /// expression as much as possible. 3495 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3496 const Loop *L, 3497 SCEV::NoWrapFlags Flags) { 3498 SmallVector<const SCEV *, 4> Operands; 3499 Operands.push_back(Start); 3500 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3501 if (StepChrec->getLoop() == L) { 3502 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3503 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3504 } 3505 3506 Operands.push_back(Step); 3507 return getAddRecExpr(Operands, L, Flags); 3508 } 3509 3510 /// Get an add recurrence expression for the specified loop. Simplify the 3511 /// expression as much as possible. 3512 const SCEV * 3513 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3514 const Loop *L, SCEV::NoWrapFlags Flags) { 3515 if (Operands.size() == 1) return Operands[0]; 3516 #ifndef NDEBUG 3517 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3518 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3519 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3520 "SCEVAddRecExpr operand types don't match!"); 3521 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3522 } 3523 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3524 assert(isLoopInvariant(Operands[i], L) && 3525 "SCEVAddRecExpr operand is not loop-invariant!"); 3526 #endif 3527 3528 if (Operands.back()->isZero()) { 3529 Operands.pop_back(); 3530 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3531 } 3532 3533 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3534 // use that information to infer NUW and NSW flags. However, computing a 3535 // BE count requires calling getAddRecExpr, so we may not yet have a 3536 // meaningful BE count at this point (and if we don't, we'd be stuck 3537 // with a SCEVCouldNotCompute as the cached BE count). 3538 3539 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3540 3541 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3542 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3543 const Loop *NestedLoop = NestedAR->getLoop(); 3544 if (L->contains(NestedLoop) 3545 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3546 : (!NestedLoop->contains(L) && 3547 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3548 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3549 Operands[0] = NestedAR->getStart(); 3550 // AddRecs require their operands be loop-invariant with respect to their 3551 // loops. Don't perform this transformation if it would break this 3552 // requirement. 3553 bool AllInvariant = all_of( 3554 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3555 3556 if (AllInvariant) { 3557 // Create a recurrence for the outer loop with the same step size. 3558 // 3559 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3560 // inner recurrence has the same property. 3561 SCEV::NoWrapFlags OuterFlags = 3562 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3563 3564 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3565 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3566 return isLoopInvariant(Op, NestedLoop); 3567 }); 3568 3569 if (AllInvariant) { 3570 // Ok, both add recurrences are valid after the transformation. 3571 // 3572 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3573 // the outer recurrence has the same property. 3574 SCEV::NoWrapFlags InnerFlags = 3575 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3576 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3577 } 3578 } 3579 // Reset Operands to its original state. 3580 Operands[0] = NestedAR; 3581 } 3582 } 3583 3584 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3585 // already have one, otherwise create a new one. 3586 return getOrCreateAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 const SCEV * 3590 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3591 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3592 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3593 // getSCEV(Base)->getType() has the same address space as Base->getType() 3594 // because SCEV::getType() preserves the address space. 3595 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3596 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3597 // instruction to its SCEV, because the Instruction may be guarded by control 3598 // flow and the no-overflow bits may not be valid for the expression in any 3599 // context. This can be fixed similarly to how these flags are handled for 3600 // adds. 3601 SCEV::NoWrapFlags OffsetWrap = 3602 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3603 3604 Type *CurTy = GEP->getType(); 3605 bool FirstIter = true; 3606 SmallVector<const SCEV *, 4> Offsets; 3607 for (const SCEV *IndexExpr : IndexExprs) { 3608 // Compute the (potentially symbolic) offset in bytes for this index. 3609 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3610 // For a struct, add the member offset. 3611 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3612 unsigned FieldNo = Index->getZExtValue(); 3613 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3614 Offsets.push_back(FieldOffset); 3615 3616 // Update CurTy to the type of the field at Index. 3617 CurTy = STy->getTypeAtIndex(Index); 3618 } else { 3619 // Update CurTy to its element type. 3620 if (FirstIter) { 3621 assert(isa<PointerType>(CurTy) && 3622 "The first index of a GEP indexes a pointer"); 3623 CurTy = GEP->getSourceElementType(); 3624 FirstIter = false; 3625 } else { 3626 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3627 } 3628 // For an array, add the element offset, explicitly scaled. 3629 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3630 // Getelementptr indices are signed. 3631 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3632 3633 // Multiply the index by the element size to compute the element offset. 3634 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3635 Offsets.push_back(LocalOffset); 3636 } 3637 } 3638 3639 // Handle degenerate case of GEP without offsets. 3640 if (Offsets.empty()) 3641 return BaseExpr; 3642 3643 // Add the offsets together, assuming nsw if inbounds. 3644 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3645 // Add the base address and the offset. We cannot use the nsw flag, as the 3646 // base address is unsigned. However, if we know that the offset is 3647 // non-negative, we can use nuw. 3648 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3649 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3650 return getAddExpr(BaseExpr, Offset, BaseWrap); 3651 } 3652 3653 std::tuple<SCEV *, FoldingSetNodeID, void *> 3654 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3655 ArrayRef<const SCEV *> Ops) { 3656 FoldingSetNodeID ID; 3657 void *IP = nullptr; 3658 ID.AddInteger(SCEVType); 3659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3660 ID.AddPointer(Ops[i]); 3661 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3662 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3663 } 3664 3665 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3666 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3667 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3668 } 3669 3670 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3671 SmallVectorImpl<const SCEV *> &Ops) { 3672 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3673 if (Ops.size() == 1) return Ops[0]; 3674 #ifndef NDEBUG 3675 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3676 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3677 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3678 "Operand types don't match!"); 3679 assert(Ops[0]->getType()->isPointerTy() == 3680 Ops[i]->getType()->isPointerTy() && 3681 "min/max should be consistently pointerish"); 3682 } 3683 #endif 3684 3685 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3686 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3687 3688 // Sort by complexity, this groups all similar expression types together. 3689 GroupByComplexity(Ops, &LI, DT); 3690 3691 // Check if we have created the same expression before. 3692 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3693 return S; 3694 } 3695 3696 // If there are any constants, fold them together. 3697 unsigned Idx = 0; 3698 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3699 ++Idx; 3700 assert(Idx < Ops.size()); 3701 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3702 if (Kind == scSMaxExpr) 3703 return APIntOps::smax(LHS, RHS); 3704 else if (Kind == scSMinExpr) 3705 return APIntOps::smin(LHS, RHS); 3706 else if (Kind == scUMaxExpr) 3707 return APIntOps::umax(LHS, RHS); 3708 else if (Kind == scUMinExpr) 3709 return APIntOps::umin(LHS, RHS); 3710 llvm_unreachable("Unknown SCEV min/max opcode"); 3711 }; 3712 3713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3714 // We found two constants, fold them together! 3715 ConstantInt *Fold = ConstantInt::get( 3716 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3717 Ops[0] = getConstant(Fold); 3718 Ops.erase(Ops.begin()+1); // Erase the folded element 3719 if (Ops.size() == 1) return Ops[0]; 3720 LHSC = cast<SCEVConstant>(Ops[0]); 3721 } 3722 3723 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3724 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3725 3726 if (IsMax ? IsMinV : IsMaxV) { 3727 // If we are left with a constant minimum(/maximum)-int, strip it off. 3728 Ops.erase(Ops.begin()); 3729 --Idx; 3730 } else if (IsMax ? IsMaxV : IsMinV) { 3731 // If we have a max(/min) with a constant maximum(/minimum)-int, 3732 // it will always be the extremum. 3733 return LHSC; 3734 } 3735 3736 if (Ops.size() == 1) return Ops[0]; 3737 } 3738 3739 // Find the first operation of the same kind 3740 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3741 ++Idx; 3742 3743 // Check to see if one of the operands is of the same kind. If so, expand its 3744 // operands onto our operand list, and recurse to simplify. 3745 if (Idx < Ops.size()) { 3746 bool DeletedAny = false; 3747 while (Ops[Idx]->getSCEVType() == Kind) { 3748 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3749 Ops.erase(Ops.begin()+Idx); 3750 Ops.append(SMME->op_begin(), SMME->op_end()); 3751 DeletedAny = true; 3752 } 3753 3754 if (DeletedAny) 3755 return getMinMaxExpr(Kind, Ops); 3756 } 3757 3758 // Okay, check to see if the same value occurs in the operand list twice. If 3759 // so, delete one. Since we sorted the list, these values are required to 3760 // be adjacent. 3761 llvm::CmpInst::Predicate GEPred = 3762 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3763 llvm::CmpInst::Predicate LEPred = 3764 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3765 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3766 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3767 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3768 if (Ops[i] == Ops[i + 1] || 3769 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3770 // X op Y op Y --> X op Y 3771 // X op Y --> X, if we know X, Y are ordered appropriately 3772 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3773 --i; 3774 --e; 3775 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3776 Ops[i + 1])) { 3777 // X op Y --> Y, if we know X, Y are ordered appropriately 3778 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3779 --i; 3780 --e; 3781 } 3782 } 3783 3784 if (Ops.size() == 1) return Ops[0]; 3785 3786 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3787 3788 // Okay, it looks like we really DO need an expr. Check to see if we 3789 // already have one, otherwise create a new one. 3790 const SCEV *ExistingSCEV; 3791 FoldingSetNodeID ID; 3792 void *IP; 3793 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3794 if (ExistingSCEV) 3795 return ExistingSCEV; 3796 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3797 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3798 SCEV *S = new (SCEVAllocator) 3799 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3800 3801 UniqueSCEVs.InsertNode(S, IP); 3802 addToLoopUseLists(S); 3803 return S; 3804 } 3805 3806 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3807 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3808 return getSMaxExpr(Ops); 3809 } 3810 3811 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3812 return getMinMaxExpr(scSMaxExpr, Ops); 3813 } 3814 3815 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3816 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3817 return getUMaxExpr(Ops); 3818 } 3819 3820 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3821 return getMinMaxExpr(scUMaxExpr, Ops); 3822 } 3823 3824 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3825 const SCEV *RHS) { 3826 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3827 return getSMinExpr(Ops); 3828 } 3829 3830 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3831 return getMinMaxExpr(scSMinExpr, Ops); 3832 } 3833 3834 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3835 const SCEV *RHS) { 3836 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3837 return getUMinExpr(Ops); 3838 } 3839 3840 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3841 return getMinMaxExpr(scUMinExpr, Ops); 3842 } 3843 3844 const SCEV * 3845 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3846 ScalableVectorType *ScalableTy) { 3847 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3848 Constant *One = ConstantInt::get(IntTy, 1); 3849 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3850 // Note that the expression we created is the final expression, we don't 3851 // want to simplify it any further Also, if we call a normal getSCEV(), 3852 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3853 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3854 } 3855 3856 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3857 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3858 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3859 // We can bypass creating a target-independent constant expression and then 3860 // folding it back into a ConstantInt. This is just a compile-time 3861 // optimization. 3862 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3863 } 3864 3865 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3866 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3867 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3868 // We can bypass creating a target-independent constant expression and then 3869 // folding it back into a ConstantInt. This is just a compile-time 3870 // optimization. 3871 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3872 } 3873 3874 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3875 StructType *STy, 3876 unsigned FieldNo) { 3877 // We can bypass creating a target-independent constant expression and then 3878 // folding it back into a ConstantInt. This is just a compile-time 3879 // optimization. 3880 return getConstant( 3881 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3882 } 3883 3884 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3885 // Don't attempt to do anything other than create a SCEVUnknown object 3886 // here. createSCEV only calls getUnknown after checking for all other 3887 // interesting possibilities, and any other code that calls getUnknown 3888 // is doing so in order to hide a value from SCEV canonicalization. 3889 3890 FoldingSetNodeID ID; 3891 ID.AddInteger(scUnknown); 3892 ID.AddPointer(V); 3893 void *IP = nullptr; 3894 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3895 assert(cast<SCEVUnknown>(S)->getValue() == V && 3896 "Stale SCEVUnknown in uniquing map!"); 3897 return S; 3898 } 3899 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3900 FirstUnknown); 3901 FirstUnknown = cast<SCEVUnknown>(S); 3902 UniqueSCEVs.InsertNode(S, IP); 3903 return S; 3904 } 3905 3906 //===----------------------------------------------------------------------===// 3907 // Basic SCEV Analysis and PHI Idiom Recognition Code 3908 // 3909 3910 /// Test if values of the given type are analyzable within the SCEV 3911 /// framework. This primarily includes integer types, and it can optionally 3912 /// include pointer types if the ScalarEvolution class has access to 3913 /// target-specific information. 3914 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3915 // Integers and pointers are always SCEVable. 3916 return Ty->isIntOrPtrTy(); 3917 } 3918 3919 /// Return the size in bits of the specified type, for which isSCEVable must 3920 /// return true. 3921 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3922 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3923 if (Ty->isPointerTy()) 3924 return getDataLayout().getIndexTypeSizeInBits(Ty); 3925 return getDataLayout().getTypeSizeInBits(Ty); 3926 } 3927 3928 /// Return a type with the same bitwidth as the given type and which represents 3929 /// how SCEV will treat the given type, for which isSCEVable must return 3930 /// true. For pointer types, this is the pointer index sized integer type. 3931 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3932 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3933 3934 if (Ty->isIntegerTy()) 3935 return Ty; 3936 3937 // The only other support type is pointer. 3938 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3939 return getDataLayout().getIndexType(Ty); 3940 } 3941 3942 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3943 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3944 } 3945 3946 const SCEV *ScalarEvolution::getCouldNotCompute() { 3947 return CouldNotCompute.get(); 3948 } 3949 3950 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3951 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3952 auto *SU = dyn_cast<SCEVUnknown>(S); 3953 return SU && SU->getValue() == nullptr; 3954 }); 3955 3956 return !ContainsNulls; 3957 } 3958 3959 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3960 HasRecMapType::iterator I = HasRecMap.find(S); 3961 if (I != HasRecMap.end()) 3962 return I->second; 3963 3964 bool FoundAddRec = 3965 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3966 HasRecMap.insert({S, FoundAddRec}); 3967 return FoundAddRec; 3968 } 3969 3970 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3971 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3972 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3973 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3974 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3975 if (!Add) 3976 return {S, nullptr}; 3977 3978 if (Add->getNumOperands() != 2) 3979 return {S, nullptr}; 3980 3981 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3982 if (!ConstOp) 3983 return {S, nullptr}; 3984 3985 return {Add->getOperand(1), ConstOp->getValue()}; 3986 } 3987 3988 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3989 /// by the value and offset from any ValueOffsetPair in the set. 3990 ScalarEvolution::ValueOffsetPairSetVector * 3991 ScalarEvolution::getSCEVValues(const SCEV *S) { 3992 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3993 if (SI == ExprValueMap.end()) 3994 return nullptr; 3995 #ifndef NDEBUG 3996 if (VerifySCEVMap) { 3997 // Check there is no dangling Value in the set returned. 3998 for (const auto &VE : SI->second) 3999 assert(ValueExprMap.count(VE.first)); 4000 } 4001 #endif 4002 return &SI->second; 4003 } 4004 4005 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4006 /// cannot be used separately. eraseValueFromMap should be used to remove 4007 /// V from ValueExprMap and ExprValueMap at the same time. 4008 void ScalarEvolution::eraseValueFromMap(Value *V) { 4009 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4010 if (I != ValueExprMap.end()) { 4011 const SCEV *S = I->second; 4012 // Remove {V, 0} from the set of ExprValueMap[S] 4013 if (auto *SV = getSCEVValues(S)) 4014 SV->remove({V, nullptr}); 4015 4016 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4017 const SCEV *Stripped; 4018 ConstantInt *Offset; 4019 std::tie(Stripped, Offset) = splitAddExpr(S); 4020 if (Offset != nullptr) { 4021 if (auto *SV = getSCEVValues(Stripped)) 4022 SV->remove({V, Offset}); 4023 } 4024 ValueExprMap.erase(V); 4025 } 4026 } 4027 4028 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4029 /// TODO: In reality it is better to check the poison recursively 4030 /// but this is better than nothing. 4031 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4032 if (auto *I = dyn_cast<Instruction>(V)) { 4033 if (isa<OverflowingBinaryOperator>(I)) { 4034 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4035 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4036 return true; 4037 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4038 return true; 4039 } 4040 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4041 return true; 4042 } 4043 return false; 4044 } 4045 4046 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4047 /// create a new one. 4048 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4049 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4050 4051 const SCEV *S = getExistingSCEV(V); 4052 if (S == nullptr) { 4053 S = createSCEV(V); 4054 // During PHI resolution, it is possible to create two SCEVs for the same 4055 // V, so it is needed to double check whether V->S is inserted into 4056 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4057 std::pair<ValueExprMapType::iterator, bool> Pair = 4058 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4059 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4060 ExprValueMap[S].insert({V, nullptr}); 4061 4062 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4063 // ExprValueMap. 4064 const SCEV *Stripped = S; 4065 ConstantInt *Offset = nullptr; 4066 std::tie(Stripped, Offset) = splitAddExpr(S); 4067 // If stripped is SCEVUnknown, don't bother to save 4068 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4069 // increase the complexity of the expansion code. 4070 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4071 // because it may generate add/sub instead of GEP in SCEV expansion. 4072 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4073 !isa<GetElementPtrInst>(V)) 4074 ExprValueMap[Stripped].insert({V, Offset}); 4075 } 4076 } 4077 return S; 4078 } 4079 4080 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4081 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4082 4083 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4084 if (I != ValueExprMap.end()) { 4085 const SCEV *S = I->second; 4086 if (checkValidity(S)) 4087 return S; 4088 eraseValueFromMap(V); 4089 forgetMemoizedResults(S); 4090 } 4091 return nullptr; 4092 } 4093 4094 /// Return a SCEV corresponding to -V = -1*V 4095 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4096 SCEV::NoWrapFlags Flags) { 4097 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4098 return getConstant( 4099 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4100 4101 Type *Ty = V->getType(); 4102 Ty = getEffectiveSCEVType(Ty); 4103 return getMulExpr(V, getMinusOne(Ty), Flags); 4104 } 4105 4106 /// If Expr computes ~A, return A else return nullptr 4107 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4108 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4109 if (!Add || Add->getNumOperands() != 2 || 4110 !Add->getOperand(0)->isAllOnesValue()) 4111 return nullptr; 4112 4113 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4114 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4115 !AddRHS->getOperand(0)->isAllOnesValue()) 4116 return nullptr; 4117 4118 return AddRHS->getOperand(1); 4119 } 4120 4121 /// Return a SCEV corresponding to ~V = -1-V 4122 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4123 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4124 return getConstant( 4125 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4126 4127 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4128 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4129 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4130 SmallVector<const SCEV *, 2> MatchedOperands; 4131 for (const SCEV *Operand : MME->operands()) { 4132 const SCEV *Matched = MatchNotExpr(Operand); 4133 if (!Matched) 4134 return (const SCEV *)nullptr; 4135 MatchedOperands.push_back(Matched); 4136 } 4137 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4138 MatchedOperands); 4139 }; 4140 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4141 return Replaced; 4142 } 4143 4144 Type *Ty = V->getType(); 4145 Ty = getEffectiveSCEVType(Ty); 4146 return getMinusSCEV(getMinusOne(Ty), V); 4147 } 4148 4149 /// Compute an expression equivalent to S - getPointerBase(S). 4150 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) { 4151 assert(P->getType()->isPointerTy()); 4152 4153 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4154 // The base of an AddRec is the first operand. 4155 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4156 Ops[0] = removePointerBase(SE, Ops[0]); 4157 // Don't try to transfer nowrap flags for now. We could in some cases 4158 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4159 return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4160 } 4161 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4162 // The base of an Add is the pointer operand. 4163 SmallVector<const SCEV *> Ops{Add->operands()}; 4164 const SCEV **PtrOp = nullptr; 4165 for (const SCEV *&AddOp : Ops) { 4166 if (AddOp->getType()->isPointerTy()) { 4167 // If we find an Add with multiple pointer operands, treat it as a 4168 // pointer base to be consistent with getPointerBase. Eventually 4169 // we should be able to assert this is impossible. 4170 if (PtrOp) 4171 return SE->getZero(P->getType()); 4172 PtrOp = &AddOp; 4173 } 4174 } 4175 *PtrOp = removePointerBase(SE, *PtrOp); 4176 // Don't try to transfer nowrap flags for now. We could in some cases 4177 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4178 return SE->getAddExpr(Ops); 4179 } 4180 // Any other expression must be a pointer base. 4181 return SE->getZero(P->getType()); 4182 } 4183 4184 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4185 SCEV::NoWrapFlags Flags, 4186 unsigned Depth) { 4187 // Fast path: X - X --> 0. 4188 if (LHS == RHS) 4189 return getZero(LHS->getType()); 4190 4191 // If we subtract two pointers with different pointer bases, bail. 4192 // Eventually, we're going to add an assertion to getMulExpr that we 4193 // can't multiply by a pointer. 4194 if (RHS->getType()->isPointerTy()) { 4195 if (!LHS->getType()->isPointerTy() || 4196 getPointerBase(LHS) != getPointerBase(RHS)) 4197 return getCouldNotCompute(); 4198 LHS = removePointerBase(this, LHS); 4199 RHS = removePointerBase(this, RHS); 4200 } 4201 4202 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4203 // makes it so that we cannot make much use of NUW. 4204 auto AddFlags = SCEV::FlagAnyWrap; 4205 const bool RHSIsNotMinSigned = 4206 !getSignedRangeMin(RHS).isMinSignedValue(); 4207 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4208 // Let M be the minimum representable signed value. Then (-1)*RHS 4209 // signed-wraps if and only if RHS is M. That can happen even for 4210 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4211 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4212 // (-1)*RHS, we need to prove that RHS != M. 4213 // 4214 // If LHS is non-negative and we know that LHS - RHS does not 4215 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4216 // either by proving that RHS > M or that LHS >= 0. 4217 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4218 AddFlags = SCEV::FlagNSW; 4219 } 4220 } 4221 4222 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4223 // RHS is NSW and LHS >= 0. 4224 // 4225 // The difficulty here is that the NSW flag may have been proven 4226 // relative to a loop that is to be found in a recurrence in LHS and 4227 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4228 // larger scope than intended. 4229 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4230 4231 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4232 } 4233 4234 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4235 unsigned Depth) { 4236 Type *SrcTy = V->getType(); 4237 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4238 "Cannot truncate or zero extend with non-integer arguments!"); 4239 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4240 return V; // No conversion 4241 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4242 return getTruncateExpr(V, Ty, Depth); 4243 return getZeroExtendExpr(V, Ty, Depth); 4244 } 4245 4246 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4247 unsigned Depth) { 4248 Type *SrcTy = V->getType(); 4249 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4250 "Cannot truncate or zero extend with non-integer arguments!"); 4251 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4252 return V; // No conversion 4253 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4254 return getTruncateExpr(V, Ty, Depth); 4255 return getSignExtendExpr(V, Ty, Depth); 4256 } 4257 4258 const SCEV * 4259 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4260 Type *SrcTy = V->getType(); 4261 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4262 "Cannot noop or zero extend with non-integer arguments!"); 4263 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4264 "getNoopOrZeroExtend cannot truncate!"); 4265 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4266 return V; // No conversion 4267 return getZeroExtendExpr(V, Ty); 4268 } 4269 4270 const SCEV * 4271 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4272 Type *SrcTy = V->getType(); 4273 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4274 "Cannot noop or sign extend with non-integer arguments!"); 4275 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4276 "getNoopOrSignExtend cannot truncate!"); 4277 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4278 return V; // No conversion 4279 return getSignExtendExpr(V, Ty); 4280 } 4281 4282 const SCEV * 4283 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4284 Type *SrcTy = V->getType(); 4285 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4286 "Cannot noop or any extend with non-integer arguments!"); 4287 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4288 "getNoopOrAnyExtend cannot truncate!"); 4289 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4290 return V; // No conversion 4291 return getAnyExtendExpr(V, Ty); 4292 } 4293 4294 const SCEV * 4295 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4296 Type *SrcTy = V->getType(); 4297 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4298 "Cannot truncate or noop with non-integer arguments!"); 4299 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4300 "getTruncateOrNoop cannot extend!"); 4301 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4302 return V; // No conversion 4303 return getTruncateExpr(V, Ty); 4304 } 4305 4306 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4307 const SCEV *RHS) { 4308 const SCEV *PromotedLHS = LHS; 4309 const SCEV *PromotedRHS = RHS; 4310 4311 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4312 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4313 else 4314 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4315 4316 return getUMaxExpr(PromotedLHS, PromotedRHS); 4317 } 4318 4319 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4320 const SCEV *RHS) { 4321 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4322 return getUMinFromMismatchedTypes(Ops); 4323 } 4324 4325 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4326 SmallVectorImpl<const SCEV *> &Ops) { 4327 assert(!Ops.empty() && "At least one operand must be!"); 4328 // Trivial case. 4329 if (Ops.size() == 1) 4330 return Ops[0]; 4331 4332 // Find the max type first. 4333 Type *MaxType = nullptr; 4334 for (auto *S : Ops) 4335 if (MaxType) 4336 MaxType = getWiderType(MaxType, S->getType()); 4337 else 4338 MaxType = S->getType(); 4339 assert(MaxType && "Failed to find maximum type!"); 4340 4341 // Extend all ops to max type. 4342 SmallVector<const SCEV *, 2> PromotedOps; 4343 for (auto *S : Ops) 4344 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4345 4346 // Generate umin. 4347 return getUMinExpr(PromotedOps); 4348 } 4349 4350 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4351 // A pointer operand may evaluate to a nonpointer expression, such as null. 4352 if (!V->getType()->isPointerTy()) 4353 return V; 4354 4355 while (true) { 4356 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4357 V = AddRec->getStart(); 4358 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4359 const SCEV *PtrOp = nullptr; 4360 for (const SCEV *AddOp : Add->operands()) { 4361 if (AddOp->getType()->isPointerTy()) { 4362 // Cannot find the base of an expression with multiple pointer ops. 4363 if (PtrOp) 4364 return V; 4365 PtrOp = AddOp; 4366 } 4367 } 4368 if (!PtrOp) // All operands were non-pointer. 4369 return V; 4370 V = PtrOp; 4371 } else // Not something we can look further into. 4372 return V; 4373 } 4374 } 4375 4376 /// Push users of the given Instruction onto the given Worklist. 4377 static void 4378 PushDefUseChildren(Instruction *I, 4379 SmallVectorImpl<Instruction *> &Worklist) { 4380 // Push the def-use children onto the Worklist stack. 4381 for (User *U : I->users()) 4382 Worklist.push_back(cast<Instruction>(U)); 4383 } 4384 4385 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4386 SmallVector<Instruction *, 16> Worklist; 4387 PushDefUseChildren(PN, Worklist); 4388 4389 SmallPtrSet<Instruction *, 8> Visited; 4390 Visited.insert(PN); 4391 while (!Worklist.empty()) { 4392 Instruction *I = Worklist.pop_back_val(); 4393 if (!Visited.insert(I).second) 4394 continue; 4395 4396 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4397 if (It != ValueExprMap.end()) { 4398 const SCEV *Old = It->second; 4399 4400 // Short-circuit the def-use traversal if the symbolic name 4401 // ceases to appear in expressions. 4402 if (Old != SymName && !hasOperand(Old, SymName)) 4403 continue; 4404 4405 // SCEVUnknown for a PHI either means that it has an unrecognized 4406 // structure, it's a PHI that's in the progress of being computed 4407 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4408 // additional loop trip count information isn't going to change anything. 4409 // In the second case, createNodeForPHI will perform the necessary 4410 // updates on its own when it gets to that point. In the third, we do 4411 // want to forget the SCEVUnknown. 4412 if (!isa<PHINode>(I) || 4413 !isa<SCEVUnknown>(Old) || 4414 (I != PN && Old == SymName)) { 4415 eraseValueFromMap(It->first); 4416 forgetMemoizedResults(Old); 4417 } 4418 } 4419 4420 PushDefUseChildren(I, Worklist); 4421 } 4422 } 4423 4424 namespace { 4425 4426 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4427 /// expression in case its Loop is L. If it is not L then 4428 /// if IgnoreOtherLoops is true then use AddRec itself 4429 /// otherwise rewrite cannot be done. 4430 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4431 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4432 public: 4433 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4434 bool IgnoreOtherLoops = true) { 4435 SCEVInitRewriter Rewriter(L, SE); 4436 const SCEV *Result = Rewriter.visit(S); 4437 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4438 return SE.getCouldNotCompute(); 4439 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4440 ? SE.getCouldNotCompute() 4441 : Result; 4442 } 4443 4444 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4445 if (!SE.isLoopInvariant(Expr, L)) 4446 SeenLoopVariantSCEVUnknown = true; 4447 return Expr; 4448 } 4449 4450 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4451 // Only re-write AddRecExprs for this loop. 4452 if (Expr->getLoop() == L) 4453 return Expr->getStart(); 4454 SeenOtherLoops = true; 4455 return Expr; 4456 } 4457 4458 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4459 4460 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4461 4462 private: 4463 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4464 : SCEVRewriteVisitor(SE), L(L) {} 4465 4466 const Loop *L; 4467 bool SeenLoopVariantSCEVUnknown = false; 4468 bool SeenOtherLoops = false; 4469 }; 4470 4471 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4472 /// increment expression in case its Loop is L. If it is not L then 4473 /// use AddRec itself. 4474 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4475 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4476 public: 4477 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4478 SCEVPostIncRewriter Rewriter(L, SE); 4479 const SCEV *Result = Rewriter.visit(S); 4480 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4481 ? SE.getCouldNotCompute() 4482 : Result; 4483 } 4484 4485 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4486 if (!SE.isLoopInvariant(Expr, L)) 4487 SeenLoopVariantSCEVUnknown = true; 4488 return Expr; 4489 } 4490 4491 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4492 // Only re-write AddRecExprs for this loop. 4493 if (Expr->getLoop() == L) 4494 return Expr->getPostIncExpr(SE); 4495 SeenOtherLoops = true; 4496 return Expr; 4497 } 4498 4499 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4500 4501 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4502 4503 private: 4504 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4505 : SCEVRewriteVisitor(SE), L(L) {} 4506 4507 const Loop *L; 4508 bool SeenLoopVariantSCEVUnknown = false; 4509 bool SeenOtherLoops = false; 4510 }; 4511 4512 /// This class evaluates the compare condition by matching it against the 4513 /// condition of loop latch. If there is a match we assume a true value 4514 /// for the condition while building SCEV nodes. 4515 class SCEVBackedgeConditionFolder 4516 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4517 public: 4518 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4519 ScalarEvolution &SE) { 4520 bool IsPosBECond = false; 4521 Value *BECond = nullptr; 4522 if (BasicBlock *Latch = L->getLoopLatch()) { 4523 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4524 if (BI && BI->isConditional()) { 4525 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4526 "Both outgoing branches should not target same header!"); 4527 BECond = BI->getCondition(); 4528 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4529 } else { 4530 return S; 4531 } 4532 } 4533 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4534 return Rewriter.visit(S); 4535 } 4536 4537 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4538 const SCEV *Result = Expr; 4539 bool InvariantF = SE.isLoopInvariant(Expr, L); 4540 4541 if (!InvariantF) { 4542 Instruction *I = cast<Instruction>(Expr->getValue()); 4543 switch (I->getOpcode()) { 4544 case Instruction::Select: { 4545 SelectInst *SI = cast<SelectInst>(I); 4546 Optional<const SCEV *> Res = 4547 compareWithBackedgeCondition(SI->getCondition()); 4548 if (Res.hasValue()) { 4549 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4550 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4551 } 4552 break; 4553 } 4554 default: { 4555 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4556 if (Res.hasValue()) 4557 Result = Res.getValue(); 4558 break; 4559 } 4560 } 4561 } 4562 return Result; 4563 } 4564 4565 private: 4566 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4567 bool IsPosBECond, ScalarEvolution &SE) 4568 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4569 IsPositiveBECond(IsPosBECond) {} 4570 4571 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4572 4573 const Loop *L; 4574 /// Loop back condition. 4575 Value *BackedgeCond = nullptr; 4576 /// Set to true if loop back is on positive branch condition. 4577 bool IsPositiveBECond; 4578 }; 4579 4580 Optional<const SCEV *> 4581 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4582 4583 // If value matches the backedge condition for loop latch, 4584 // then return a constant evolution node based on loopback 4585 // branch taken. 4586 if (BackedgeCond == IC) 4587 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4588 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4589 return None; 4590 } 4591 4592 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4593 public: 4594 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4595 ScalarEvolution &SE) { 4596 SCEVShiftRewriter Rewriter(L, SE); 4597 const SCEV *Result = Rewriter.visit(S); 4598 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4599 } 4600 4601 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4602 // Only allow AddRecExprs for this loop. 4603 if (!SE.isLoopInvariant(Expr, L)) 4604 Valid = false; 4605 return Expr; 4606 } 4607 4608 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4609 if (Expr->getLoop() == L && Expr->isAffine()) 4610 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4611 Valid = false; 4612 return Expr; 4613 } 4614 4615 bool isValid() { return Valid; } 4616 4617 private: 4618 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4619 : SCEVRewriteVisitor(SE), L(L) {} 4620 4621 const Loop *L; 4622 bool Valid = true; 4623 }; 4624 4625 } // end anonymous namespace 4626 4627 SCEV::NoWrapFlags 4628 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4629 if (!AR->isAffine()) 4630 return SCEV::FlagAnyWrap; 4631 4632 using OBO = OverflowingBinaryOperator; 4633 4634 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4635 4636 if (!AR->hasNoSignedWrap()) { 4637 ConstantRange AddRecRange = getSignedRange(AR); 4638 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4639 4640 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4641 Instruction::Add, IncRange, OBO::NoSignedWrap); 4642 if (NSWRegion.contains(AddRecRange)) 4643 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4644 } 4645 4646 if (!AR->hasNoUnsignedWrap()) { 4647 ConstantRange AddRecRange = getUnsignedRange(AR); 4648 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4649 4650 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4651 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4652 if (NUWRegion.contains(AddRecRange)) 4653 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4654 } 4655 4656 return Result; 4657 } 4658 4659 SCEV::NoWrapFlags 4660 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4661 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4662 4663 if (AR->hasNoSignedWrap()) 4664 return Result; 4665 4666 if (!AR->isAffine()) 4667 return Result; 4668 4669 const SCEV *Step = AR->getStepRecurrence(*this); 4670 const Loop *L = AR->getLoop(); 4671 4672 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4673 // Note that this serves two purposes: It filters out loops that are 4674 // simply not analyzable, and it covers the case where this code is 4675 // being called from within backedge-taken count analysis, such that 4676 // attempting to ask for the backedge-taken count would likely result 4677 // in infinite recursion. In the later case, the analysis code will 4678 // cope with a conservative value, and it will take care to purge 4679 // that value once it has finished. 4680 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4681 4682 // Normally, in the cases we can prove no-overflow via a 4683 // backedge guarding condition, we can also compute a backedge 4684 // taken count for the loop. The exceptions are assumptions and 4685 // guards present in the loop -- SCEV is not great at exploiting 4686 // these to compute max backedge taken counts, but can still use 4687 // these to prove lack of overflow. Use this fact to avoid 4688 // doing extra work that may not pay off. 4689 4690 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4691 AC.assumptions().empty()) 4692 return Result; 4693 4694 // If the backedge is guarded by a comparison with the pre-inc value the 4695 // addrec is safe. Also, if the entry is guarded by a comparison with the 4696 // start value and the backedge is guarded by a comparison with the post-inc 4697 // value, the addrec is safe. 4698 ICmpInst::Predicate Pred; 4699 const SCEV *OverflowLimit = 4700 getSignedOverflowLimitForStep(Step, &Pred, this); 4701 if (OverflowLimit && 4702 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4703 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4704 Result = setFlags(Result, SCEV::FlagNSW); 4705 } 4706 return Result; 4707 } 4708 SCEV::NoWrapFlags 4709 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4710 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4711 4712 if (AR->hasNoUnsignedWrap()) 4713 return Result; 4714 4715 if (!AR->isAffine()) 4716 return Result; 4717 4718 const SCEV *Step = AR->getStepRecurrence(*this); 4719 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4720 const Loop *L = AR->getLoop(); 4721 4722 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4723 // Note that this serves two purposes: It filters out loops that are 4724 // simply not analyzable, and it covers the case where this code is 4725 // being called from within backedge-taken count analysis, such that 4726 // attempting to ask for the backedge-taken count would likely result 4727 // in infinite recursion. In the later case, the analysis code will 4728 // cope with a conservative value, and it will take care to purge 4729 // that value once it has finished. 4730 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4731 4732 // Normally, in the cases we can prove no-overflow via a 4733 // backedge guarding condition, we can also compute a backedge 4734 // taken count for the loop. The exceptions are assumptions and 4735 // guards present in the loop -- SCEV is not great at exploiting 4736 // these to compute max backedge taken counts, but can still use 4737 // these to prove lack of overflow. Use this fact to avoid 4738 // doing extra work that may not pay off. 4739 4740 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4741 AC.assumptions().empty()) 4742 return Result; 4743 4744 // If the backedge is guarded by a comparison with the pre-inc value the 4745 // addrec is safe. Also, if the entry is guarded by a comparison with the 4746 // start value and the backedge is guarded by a comparison with the post-inc 4747 // value, the addrec is safe. 4748 if (isKnownPositive(Step)) { 4749 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4750 getUnsignedRangeMax(Step)); 4751 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4752 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4753 Result = setFlags(Result, SCEV::FlagNUW); 4754 } 4755 } 4756 4757 return Result; 4758 } 4759 4760 namespace { 4761 4762 /// Represents an abstract binary operation. This may exist as a 4763 /// normal instruction or constant expression, or may have been 4764 /// derived from an expression tree. 4765 struct BinaryOp { 4766 unsigned Opcode; 4767 Value *LHS; 4768 Value *RHS; 4769 bool IsNSW = false; 4770 bool IsNUW = false; 4771 4772 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4773 /// constant expression. 4774 Operator *Op = nullptr; 4775 4776 explicit BinaryOp(Operator *Op) 4777 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4778 Op(Op) { 4779 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4780 IsNSW = OBO->hasNoSignedWrap(); 4781 IsNUW = OBO->hasNoUnsignedWrap(); 4782 } 4783 } 4784 4785 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4786 bool IsNUW = false) 4787 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4788 }; 4789 4790 } // end anonymous namespace 4791 4792 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4793 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4794 auto *Op = dyn_cast<Operator>(V); 4795 if (!Op) 4796 return None; 4797 4798 // Implementation detail: all the cleverness here should happen without 4799 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4800 // SCEV expressions when possible, and we should not break that. 4801 4802 switch (Op->getOpcode()) { 4803 case Instruction::Add: 4804 case Instruction::Sub: 4805 case Instruction::Mul: 4806 case Instruction::UDiv: 4807 case Instruction::URem: 4808 case Instruction::And: 4809 case Instruction::Or: 4810 case Instruction::AShr: 4811 case Instruction::Shl: 4812 return BinaryOp(Op); 4813 4814 case Instruction::Xor: 4815 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4816 // If the RHS of the xor is a signmask, then this is just an add. 4817 // Instcombine turns add of signmask into xor as a strength reduction step. 4818 if (RHSC->getValue().isSignMask()) 4819 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4820 return BinaryOp(Op); 4821 4822 case Instruction::LShr: 4823 // Turn logical shift right of a constant into a unsigned divide. 4824 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4825 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4826 4827 // If the shift count is not less than the bitwidth, the result of 4828 // the shift is undefined. Don't try to analyze it, because the 4829 // resolution chosen here may differ from the resolution chosen in 4830 // other parts of the compiler. 4831 if (SA->getValue().ult(BitWidth)) { 4832 Constant *X = 4833 ConstantInt::get(SA->getContext(), 4834 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4835 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4836 } 4837 } 4838 return BinaryOp(Op); 4839 4840 case Instruction::ExtractValue: { 4841 auto *EVI = cast<ExtractValueInst>(Op); 4842 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4843 break; 4844 4845 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4846 if (!WO) 4847 break; 4848 4849 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4850 bool Signed = WO->isSigned(); 4851 // TODO: Should add nuw/nsw flags for mul as well. 4852 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4853 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4854 4855 // Now that we know that all uses of the arithmetic-result component of 4856 // CI are guarded by the overflow check, we can go ahead and pretend 4857 // that the arithmetic is non-overflowing. 4858 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4859 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4860 } 4861 4862 default: 4863 break; 4864 } 4865 4866 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4867 // semantics as a Sub, return a binary sub expression. 4868 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4869 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4870 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4871 4872 return None; 4873 } 4874 4875 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4876 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4877 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4878 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4879 /// follows one of the following patterns: 4880 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4881 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4882 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4883 /// we return the type of the truncation operation, and indicate whether the 4884 /// truncated type should be treated as signed/unsigned by setting 4885 /// \p Signed to true/false, respectively. 4886 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4887 bool &Signed, ScalarEvolution &SE) { 4888 // The case where Op == SymbolicPHI (that is, with no type conversions on 4889 // the way) is handled by the regular add recurrence creating logic and 4890 // would have already been triggered in createAddRecForPHI. Reaching it here 4891 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4892 // because one of the other operands of the SCEVAddExpr updating this PHI is 4893 // not invariant). 4894 // 4895 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4896 // this case predicates that allow us to prove that Op == SymbolicPHI will 4897 // be added. 4898 if (Op == SymbolicPHI) 4899 return nullptr; 4900 4901 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4902 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4903 if (SourceBits != NewBits) 4904 return nullptr; 4905 4906 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4907 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4908 if (!SExt && !ZExt) 4909 return nullptr; 4910 const SCEVTruncateExpr *Trunc = 4911 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4912 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4913 if (!Trunc) 4914 return nullptr; 4915 const SCEV *X = Trunc->getOperand(); 4916 if (X != SymbolicPHI) 4917 return nullptr; 4918 Signed = SExt != nullptr; 4919 return Trunc->getType(); 4920 } 4921 4922 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4923 if (!PN->getType()->isIntegerTy()) 4924 return nullptr; 4925 const Loop *L = LI.getLoopFor(PN->getParent()); 4926 if (!L || L->getHeader() != PN->getParent()) 4927 return nullptr; 4928 return L; 4929 } 4930 4931 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4932 // computation that updates the phi follows the following pattern: 4933 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4934 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4935 // If so, try to see if it can be rewritten as an AddRecExpr under some 4936 // Predicates. If successful, return them as a pair. Also cache the results 4937 // of the analysis. 4938 // 4939 // Example usage scenario: 4940 // Say the Rewriter is called for the following SCEV: 4941 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4942 // where: 4943 // %X = phi i64 (%Start, %BEValue) 4944 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4945 // and call this function with %SymbolicPHI = %X. 4946 // 4947 // The analysis will find that the value coming around the backedge has 4948 // the following SCEV: 4949 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4950 // Upon concluding that this matches the desired pattern, the function 4951 // will return the pair {NewAddRec, SmallPredsVec} where: 4952 // NewAddRec = {%Start,+,%Step} 4953 // SmallPredsVec = {P1, P2, P3} as follows: 4954 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4955 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4956 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4957 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4958 // under the predicates {P1,P2,P3}. 4959 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4960 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4961 // 4962 // TODO's: 4963 // 4964 // 1) Extend the Induction descriptor to also support inductions that involve 4965 // casts: When needed (namely, when we are called in the context of the 4966 // vectorizer induction analysis), a Set of cast instructions will be 4967 // populated by this method, and provided back to isInductionPHI. This is 4968 // needed to allow the vectorizer to properly record them to be ignored by 4969 // the cost model and to avoid vectorizing them (otherwise these casts, 4970 // which are redundant under the runtime overflow checks, will be 4971 // vectorized, which can be costly). 4972 // 4973 // 2) Support additional induction/PHISCEV patterns: We also want to support 4974 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4975 // after the induction update operation (the induction increment): 4976 // 4977 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4978 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4979 // 4980 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4981 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4982 // 4983 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4984 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4985 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4986 SmallVector<const SCEVPredicate *, 3> Predicates; 4987 4988 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4989 // return an AddRec expression under some predicate. 4990 4991 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4992 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4993 assert(L && "Expecting an integer loop header phi"); 4994 4995 // The loop may have multiple entrances or multiple exits; we can analyze 4996 // this phi as an addrec if it has a unique entry value and a unique 4997 // backedge value. 4998 Value *BEValueV = nullptr, *StartValueV = nullptr; 4999 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5000 Value *V = PN->getIncomingValue(i); 5001 if (L->contains(PN->getIncomingBlock(i))) { 5002 if (!BEValueV) { 5003 BEValueV = V; 5004 } else if (BEValueV != V) { 5005 BEValueV = nullptr; 5006 break; 5007 } 5008 } else if (!StartValueV) { 5009 StartValueV = V; 5010 } else if (StartValueV != V) { 5011 StartValueV = nullptr; 5012 break; 5013 } 5014 } 5015 if (!BEValueV || !StartValueV) 5016 return None; 5017 5018 const SCEV *BEValue = getSCEV(BEValueV); 5019 5020 // If the value coming around the backedge is an add with the symbolic 5021 // value we just inserted, possibly with casts that we can ignore under 5022 // an appropriate runtime guard, then we found a simple induction variable! 5023 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5024 if (!Add) 5025 return None; 5026 5027 // If there is a single occurrence of the symbolic value, possibly 5028 // casted, replace it with a recurrence. 5029 unsigned FoundIndex = Add->getNumOperands(); 5030 Type *TruncTy = nullptr; 5031 bool Signed; 5032 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5033 if ((TruncTy = 5034 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5035 if (FoundIndex == e) { 5036 FoundIndex = i; 5037 break; 5038 } 5039 5040 if (FoundIndex == Add->getNumOperands()) 5041 return None; 5042 5043 // Create an add with everything but the specified operand. 5044 SmallVector<const SCEV *, 8> Ops; 5045 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5046 if (i != FoundIndex) 5047 Ops.push_back(Add->getOperand(i)); 5048 const SCEV *Accum = getAddExpr(Ops); 5049 5050 // The runtime checks will not be valid if the step amount is 5051 // varying inside the loop. 5052 if (!isLoopInvariant(Accum, L)) 5053 return None; 5054 5055 // *** Part2: Create the predicates 5056 5057 // Analysis was successful: we have a phi-with-cast pattern for which we 5058 // can return an AddRec expression under the following predicates: 5059 // 5060 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5061 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5062 // P2: An Equal predicate that guarantees that 5063 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5064 // P3: An Equal predicate that guarantees that 5065 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5066 // 5067 // As we next prove, the above predicates guarantee that: 5068 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5069 // 5070 // 5071 // More formally, we want to prove that: 5072 // Expr(i+1) = Start + (i+1) * Accum 5073 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5074 // 5075 // Given that: 5076 // 1) Expr(0) = Start 5077 // 2) Expr(1) = Start + Accum 5078 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5079 // 3) Induction hypothesis (step i): 5080 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5081 // 5082 // Proof: 5083 // Expr(i+1) = 5084 // = Start + (i+1)*Accum 5085 // = (Start + i*Accum) + Accum 5086 // = Expr(i) + Accum 5087 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5088 // :: from step i 5089 // 5090 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5091 // 5092 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5093 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5094 // + Accum :: from P3 5095 // 5096 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5097 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5098 // 5099 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5100 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5101 // 5102 // By induction, the same applies to all iterations 1<=i<n: 5103 // 5104 5105 // Create a truncated addrec for which we will add a no overflow check (P1). 5106 const SCEV *StartVal = getSCEV(StartValueV); 5107 const SCEV *PHISCEV = 5108 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5109 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5110 5111 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5112 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5113 // will be constant. 5114 // 5115 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5116 // add P1. 5117 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5118 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5119 Signed ? SCEVWrapPredicate::IncrementNSSW 5120 : SCEVWrapPredicate::IncrementNUSW; 5121 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5122 Predicates.push_back(AddRecPred); 5123 } 5124 5125 // Create the Equal Predicates P2,P3: 5126 5127 // It is possible that the predicates P2 and/or P3 are computable at 5128 // compile time due to StartVal and/or Accum being constants. 5129 // If either one is, then we can check that now and escape if either P2 5130 // or P3 is false. 5131 5132 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5133 // for each of StartVal and Accum 5134 auto getExtendedExpr = [&](const SCEV *Expr, 5135 bool CreateSignExtend) -> const SCEV * { 5136 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5137 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5138 const SCEV *ExtendedExpr = 5139 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5140 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5141 return ExtendedExpr; 5142 }; 5143 5144 // Given: 5145 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5146 // = getExtendedExpr(Expr) 5147 // Determine whether the predicate P: Expr == ExtendedExpr 5148 // is known to be false at compile time 5149 auto PredIsKnownFalse = [&](const SCEV *Expr, 5150 const SCEV *ExtendedExpr) -> bool { 5151 return Expr != ExtendedExpr && 5152 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5153 }; 5154 5155 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5156 if (PredIsKnownFalse(StartVal, StartExtended)) { 5157 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5158 return None; 5159 } 5160 5161 // The Step is always Signed (because the overflow checks are either 5162 // NSSW or NUSW) 5163 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5164 if (PredIsKnownFalse(Accum, AccumExtended)) { 5165 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5166 return None; 5167 } 5168 5169 auto AppendPredicate = [&](const SCEV *Expr, 5170 const SCEV *ExtendedExpr) -> void { 5171 if (Expr != ExtendedExpr && 5172 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5173 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5174 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5175 Predicates.push_back(Pred); 5176 } 5177 }; 5178 5179 AppendPredicate(StartVal, StartExtended); 5180 AppendPredicate(Accum, AccumExtended); 5181 5182 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5183 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5184 // into NewAR if it will also add the runtime overflow checks specified in 5185 // Predicates. 5186 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5187 5188 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5189 std::make_pair(NewAR, Predicates); 5190 // Remember the result of the analysis for this SCEV at this locayyytion. 5191 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5192 return PredRewrite; 5193 } 5194 5195 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5196 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5197 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5198 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5199 if (!L) 5200 return None; 5201 5202 // Check to see if we already analyzed this PHI. 5203 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5204 if (I != PredicatedSCEVRewrites.end()) { 5205 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5206 I->second; 5207 // Analysis was done before and failed to create an AddRec: 5208 if (Rewrite.first == SymbolicPHI) 5209 return None; 5210 // Analysis was done before and succeeded to create an AddRec under 5211 // a predicate: 5212 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5213 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5214 return Rewrite; 5215 } 5216 5217 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5218 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5219 5220 // Record in the cache that the analysis failed 5221 if (!Rewrite) { 5222 SmallVector<const SCEVPredicate *, 3> Predicates; 5223 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5224 return None; 5225 } 5226 5227 return Rewrite; 5228 } 5229 5230 // FIXME: This utility is currently required because the Rewriter currently 5231 // does not rewrite this expression: 5232 // {0, +, (sext ix (trunc iy to ix) to iy)} 5233 // into {0, +, %step}, 5234 // even when the following Equal predicate exists: 5235 // "%step == (sext ix (trunc iy to ix) to iy)". 5236 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5237 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5238 if (AR1 == AR2) 5239 return true; 5240 5241 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5242 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5243 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5244 return false; 5245 return true; 5246 }; 5247 5248 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5249 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5250 return false; 5251 return true; 5252 } 5253 5254 /// A helper function for createAddRecFromPHI to handle simple cases. 5255 /// 5256 /// This function tries to find an AddRec expression for the simplest (yet most 5257 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5258 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5259 /// technique for finding the AddRec expression. 5260 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5261 Value *BEValueV, 5262 Value *StartValueV) { 5263 const Loop *L = LI.getLoopFor(PN->getParent()); 5264 assert(L && L->getHeader() == PN->getParent()); 5265 assert(BEValueV && StartValueV); 5266 5267 auto BO = MatchBinaryOp(BEValueV, DT); 5268 if (!BO) 5269 return nullptr; 5270 5271 if (BO->Opcode != Instruction::Add) 5272 return nullptr; 5273 5274 const SCEV *Accum = nullptr; 5275 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5276 Accum = getSCEV(BO->RHS); 5277 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5278 Accum = getSCEV(BO->LHS); 5279 5280 if (!Accum) 5281 return nullptr; 5282 5283 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5284 if (BO->IsNUW) 5285 Flags = setFlags(Flags, SCEV::FlagNUW); 5286 if (BO->IsNSW) 5287 Flags = setFlags(Flags, SCEV::FlagNSW); 5288 5289 const SCEV *StartVal = getSCEV(StartValueV); 5290 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5291 5292 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5293 5294 // We can add Flags to the post-inc expression only if we 5295 // know that it is *undefined behavior* for BEValueV to 5296 // overflow. 5297 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5298 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5299 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5300 5301 return PHISCEV; 5302 } 5303 5304 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5305 const Loop *L = LI.getLoopFor(PN->getParent()); 5306 if (!L || L->getHeader() != PN->getParent()) 5307 return nullptr; 5308 5309 // The loop may have multiple entrances or multiple exits; we can analyze 5310 // this phi as an addrec if it has a unique entry value and a unique 5311 // backedge value. 5312 Value *BEValueV = nullptr, *StartValueV = nullptr; 5313 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5314 Value *V = PN->getIncomingValue(i); 5315 if (L->contains(PN->getIncomingBlock(i))) { 5316 if (!BEValueV) { 5317 BEValueV = V; 5318 } else if (BEValueV != V) { 5319 BEValueV = nullptr; 5320 break; 5321 } 5322 } else if (!StartValueV) { 5323 StartValueV = V; 5324 } else if (StartValueV != V) { 5325 StartValueV = nullptr; 5326 break; 5327 } 5328 } 5329 if (!BEValueV || !StartValueV) 5330 return nullptr; 5331 5332 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5333 "PHI node already processed?"); 5334 5335 // First, try to find AddRec expression without creating a fictituos symbolic 5336 // value for PN. 5337 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5338 return S; 5339 5340 // Handle PHI node value symbolically. 5341 const SCEV *SymbolicName = getUnknown(PN); 5342 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5343 5344 // Using this symbolic name for the PHI, analyze the value coming around 5345 // the back-edge. 5346 const SCEV *BEValue = getSCEV(BEValueV); 5347 5348 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5349 // has a special value for the first iteration of the loop. 5350 5351 // If the value coming around the backedge is an add with the symbolic 5352 // value we just inserted, then we found a simple induction variable! 5353 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5354 // If there is a single occurrence of the symbolic value, replace it 5355 // with a recurrence. 5356 unsigned FoundIndex = Add->getNumOperands(); 5357 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5358 if (Add->getOperand(i) == SymbolicName) 5359 if (FoundIndex == e) { 5360 FoundIndex = i; 5361 break; 5362 } 5363 5364 if (FoundIndex != Add->getNumOperands()) { 5365 // Create an add with everything but the specified operand. 5366 SmallVector<const SCEV *, 8> Ops; 5367 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5368 if (i != FoundIndex) 5369 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5370 L, *this)); 5371 const SCEV *Accum = getAddExpr(Ops); 5372 5373 // This is not a valid addrec if the step amount is varying each 5374 // loop iteration, but is not itself an addrec in this loop. 5375 if (isLoopInvariant(Accum, L) || 5376 (isa<SCEVAddRecExpr>(Accum) && 5377 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5378 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5379 5380 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5381 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5382 if (BO->IsNUW) 5383 Flags = setFlags(Flags, SCEV::FlagNUW); 5384 if (BO->IsNSW) 5385 Flags = setFlags(Flags, SCEV::FlagNSW); 5386 } 5387 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5388 // If the increment is an inbounds GEP, then we know the address 5389 // space cannot be wrapped around. We cannot make any guarantee 5390 // about signed or unsigned overflow because pointers are 5391 // unsigned but we may have a negative index from the base 5392 // pointer. We can guarantee that no unsigned wrap occurs if the 5393 // indices form a positive value. 5394 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5395 Flags = setFlags(Flags, SCEV::FlagNW); 5396 5397 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5398 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5399 Flags = setFlags(Flags, SCEV::FlagNUW); 5400 } 5401 5402 // We cannot transfer nuw and nsw flags from subtraction 5403 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5404 // for instance. 5405 } 5406 5407 const SCEV *StartVal = getSCEV(StartValueV); 5408 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5409 5410 // Okay, for the entire analysis of this edge we assumed the PHI 5411 // to be symbolic. We now need to go back and purge all of the 5412 // entries for the scalars that use the symbolic expression. 5413 forgetSymbolicName(PN, SymbolicName); 5414 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5415 5416 // We can add Flags to the post-inc expression only if we 5417 // know that it is *undefined behavior* for BEValueV to 5418 // overflow. 5419 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5420 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5421 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5422 5423 return PHISCEV; 5424 } 5425 } 5426 } else { 5427 // Otherwise, this could be a loop like this: 5428 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5429 // In this case, j = {1,+,1} and BEValue is j. 5430 // Because the other in-value of i (0) fits the evolution of BEValue 5431 // i really is an addrec evolution. 5432 // 5433 // We can generalize this saying that i is the shifted value of BEValue 5434 // by one iteration: 5435 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5436 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5437 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5438 if (Shifted != getCouldNotCompute() && 5439 Start != getCouldNotCompute()) { 5440 const SCEV *StartVal = getSCEV(StartValueV); 5441 if (Start == StartVal) { 5442 // Okay, for the entire analysis of this edge we assumed the PHI 5443 // to be symbolic. We now need to go back and purge all of the 5444 // entries for the scalars that use the symbolic expression. 5445 forgetSymbolicName(PN, SymbolicName); 5446 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5447 return Shifted; 5448 } 5449 } 5450 } 5451 5452 // Remove the temporary PHI node SCEV that has been inserted while intending 5453 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5454 // as it will prevent later (possibly simpler) SCEV expressions to be added 5455 // to the ValueExprMap. 5456 eraseValueFromMap(PN); 5457 5458 return nullptr; 5459 } 5460 5461 // Checks if the SCEV S is available at BB. S is considered available at BB 5462 // if S can be materialized at BB without introducing a fault. 5463 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5464 BasicBlock *BB) { 5465 struct CheckAvailable { 5466 bool TraversalDone = false; 5467 bool Available = true; 5468 5469 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5470 BasicBlock *BB = nullptr; 5471 DominatorTree &DT; 5472 5473 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5474 : L(L), BB(BB), DT(DT) {} 5475 5476 bool setUnavailable() { 5477 TraversalDone = true; 5478 Available = false; 5479 return false; 5480 } 5481 5482 bool follow(const SCEV *S) { 5483 switch (S->getSCEVType()) { 5484 case scConstant: 5485 case scPtrToInt: 5486 case scTruncate: 5487 case scZeroExtend: 5488 case scSignExtend: 5489 case scAddExpr: 5490 case scMulExpr: 5491 case scUMaxExpr: 5492 case scSMaxExpr: 5493 case scUMinExpr: 5494 case scSMinExpr: 5495 // These expressions are available if their operand(s) is/are. 5496 return true; 5497 5498 case scAddRecExpr: { 5499 // We allow add recurrences that are on the loop BB is in, or some 5500 // outer loop. This guarantees availability because the value of the 5501 // add recurrence at BB is simply the "current" value of the induction 5502 // variable. We can relax this in the future; for instance an add 5503 // recurrence on a sibling dominating loop is also available at BB. 5504 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5505 if (L && (ARLoop == L || ARLoop->contains(L))) 5506 return true; 5507 5508 return setUnavailable(); 5509 } 5510 5511 case scUnknown: { 5512 // For SCEVUnknown, we check for simple dominance. 5513 const auto *SU = cast<SCEVUnknown>(S); 5514 Value *V = SU->getValue(); 5515 5516 if (isa<Argument>(V)) 5517 return false; 5518 5519 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5520 return false; 5521 5522 return setUnavailable(); 5523 } 5524 5525 case scUDivExpr: 5526 case scCouldNotCompute: 5527 // We do not try to smart about these at all. 5528 return setUnavailable(); 5529 } 5530 llvm_unreachable("Unknown SCEV kind!"); 5531 } 5532 5533 bool isDone() { return TraversalDone; } 5534 }; 5535 5536 CheckAvailable CA(L, BB, DT); 5537 SCEVTraversal<CheckAvailable> ST(CA); 5538 5539 ST.visitAll(S); 5540 return CA.Available; 5541 } 5542 5543 // Try to match a control flow sequence that branches out at BI and merges back 5544 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5545 // match. 5546 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5547 Value *&C, Value *&LHS, Value *&RHS) { 5548 C = BI->getCondition(); 5549 5550 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5551 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5552 5553 if (!LeftEdge.isSingleEdge()) 5554 return false; 5555 5556 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5557 5558 Use &LeftUse = Merge->getOperandUse(0); 5559 Use &RightUse = Merge->getOperandUse(1); 5560 5561 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5562 LHS = LeftUse; 5563 RHS = RightUse; 5564 return true; 5565 } 5566 5567 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5568 LHS = RightUse; 5569 RHS = LeftUse; 5570 return true; 5571 } 5572 5573 return false; 5574 } 5575 5576 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5577 auto IsReachable = 5578 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5579 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5580 const Loop *L = LI.getLoopFor(PN->getParent()); 5581 5582 // We don't want to break LCSSA, even in a SCEV expression tree. 5583 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5584 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5585 return nullptr; 5586 5587 // Try to match 5588 // 5589 // br %cond, label %left, label %right 5590 // left: 5591 // br label %merge 5592 // right: 5593 // br label %merge 5594 // merge: 5595 // V = phi [ %x, %left ], [ %y, %right ] 5596 // 5597 // as "select %cond, %x, %y" 5598 5599 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5600 assert(IDom && "At least the entry block should dominate PN"); 5601 5602 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5603 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5604 5605 if (BI && BI->isConditional() && 5606 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5607 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5608 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5609 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5610 } 5611 5612 return nullptr; 5613 } 5614 5615 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5616 if (const SCEV *S = createAddRecFromPHI(PN)) 5617 return S; 5618 5619 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5620 return S; 5621 5622 // If the PHI has a single incoming value, follow that value, unless the 5623 // PHI's incoming blocks are in a different loop, in which case doing so 5624 // risks breaking LCSSA form. Instcombine would normally zap these, but 5625 // it doesn't have DominatorTree information, so it may miss cases. 5626 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5627 if (LI.replacementPreservesLCSSAForm(PN, V)) 5628 return getSCEV(V); 5629 5630 // If it's not a loop phi, we can't handle it yet. 5631 return getUnknown(PN); 5632 } 5633 5634 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5635 Value *Cond, 5636 Value *TrueVal, 5637 Value *FalseVal) { 5638 // Handle "constant" branch or select. This can occur for instance when a 5639 // loop pass transforms an inner loop and moves on to process the outer loop. 5640 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5641 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5642 5643 // Try to match some simple smax or umax patterns. 5644 auto *ICI = dyn_cast<ICmpInst>(Cond); 5645 if (!ICI) 5646 return getUnknown(I); 5647 5648 Value *LHS = ICI->getOperand(0); 5649 Value *RHS = ICI->getOperand(1); 5650 5651 switch (ICI->getPredicate()) { 5652 case ICmpInst::ICMP_SLT: 5653 case ICmpInst::ICMP_SLE: 5654 case ICmpInst::ICMP_ULT: 5655 case ICmpInst::ICMP_ULE: 5656 std::swap(LHS, RHS); 5657 LLVM_FALLTHROUGH; 5658 case ICmpInst::ICMP_SGT: 5659 case ICmpInst::ICMP_SGE: 5660 case ICmpInst::ICMP_UGT: 5661 case ICmpInst::ICMP_UGE: 5662 // a > b ? a+x : b+x -> max(a, b)+x 5663 // a > b ? b+x : a+x -> min(a, b)+x 5664 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5665 bool Signed = ICI->isSigned(); 5666 const SCEV *LA = getSCEV(TrueVal); 5667 const SCEV *RA = getSCEV(FalseVal); 5668 const SCEV *LS = getSCEV(LHS); 5669 const SCEV *RS = getSCEV(RHS); 5670 if (LA->getType()->isPointerTy()) { 5671 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5672 // Need to make sure we can't produce weird expressions involving 5673 // negated pointers. 5674 if (LA == LS && RA == RS) 5675 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5676 if (LA == RS && RA == LS) 5677 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5678 } 5679 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5680 if (Op->getType()->isPointerTy()) { 5681 Op = getLosslessPtrToIntExpr(Op); 5682 if (isa<SCEVCouldNotCompute>(Op)) 5683 return Op; 5684 } 5685 if (Signed) 5686 Op = getNoopOrSignExtend(Op, I->getType()); 5687 else 5688 Op = getNoopOrZeroExtend(Op, I->getType()); 5689 return Op; 5690 }; 5691 LS = CoerceOperand(LS); 5692 RS = CoerceOperand(RS); 5693 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5694 break; 5695 const SCEV *LDiff = getMinusSCEV(LA, LS); 5696 const SCEV *RDiff = getMinusSCEV(RA, RS); 5697 if (LDiff == RDiff) 5698 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5699 LDiff); 5700 LDiff = getMinusSCEV(LA, RS); 5701 RDiff = getMinusSCEV(RA, LS); 5702 if (LDiff == RDiff) 5703 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5704 LDiff); 5705 } 5706 break; 5707 case ICmpInst::ICMP_NE: 5708 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5709 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5710 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5711 const SCEV *One = getOne(I->getType()); 5712 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5713 const SCEV *LA = getSCEV(TrueVal); 5714 const SCEV *RA = getSCEV(FalseVal); 5715 const SCEV *LDiff = getMinusSCEV(LA, LS); 5716 const SCEV *RDiff = getMinusSCEV(RA, One); 5717 if (LDiff == RDiff) 5718 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5719 } 5720 break; 5721 case ICmpInst::ICMP_EQ: 5722 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5723 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5724 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5725 const SCEV *One = getOne(I->getType()); 5726 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5727 const SCEV *LA = getSCEV(TrueVal); 5728 const SCEV *RA = getSCEV(FalseVal); 5729 const SCEV *LDiff = getMinusSCEV(LA, One); 5730 const SCEV *RDiff = getMinusSCEV(RA, LS); 5731 if (LDiff == RDiff) 5732 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5733 } 5734 break; 5735 default: 5736 break; 5737 } 5738 5739 return getUnknown(I); 5740 } 5741 5742 /// Expand GEP instructions into add and multiply operations. This allows them 5743 /// to be analyzed by regular SCEV code. 5744 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5745 // Don't attempt to analyze GEPs over unsized objects. 5746 if (!GEP->getSourceElementType()->isSized()) 5747 return getUnknown(GEP); 5748 5749 SmallVector<const SCEV *, 4> IndexExprs; 5750 for (Value *Index : GEP->indices()) 5751 IndexExprs.push_back(getSCEV(Index)); 5752 return getGEPExpr(GEP, IndexExprs); 5753 } 5754 5755 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5756 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5757 return C->getAPInt().countTrailingZeros(); 5758 5759 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5760 return GetMinTrailingZeros(I->getOperand()); 5761 5762 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5763 return std::min(GetMinTrailingZeros(T->getOperand()), 5764 (uint32_t)getTypeSizeInBits(T->getType())); 5765 5766 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5767 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5768 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5769 ? getTypeSizeInBits(E->getType()) 5770 : OpRes; 5771 } 5772 5773 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5774 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5775 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5776 ? getTypeSizeInBits(E->getType()) 5777 : OpRes; 5778 } 5779 5780 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5781 // The result is the min of all operands results. 5782 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5783 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5784 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5785 return MinOpRes; 5786 } 5787 5788 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5789 // The result is the sum of all operands results. 5790 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5791 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5792 for (unsigned i = 1, e = M->getNumOperands(); 5793 SumOpRes != BitWidth && i != e; ++i) 5794 SumOpRes = 5795 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5796 return SumOpRes; 5797 } 5798 5799 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5800 // The result is the min of all operands results. 5801 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5802 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5803 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5804 return MinOpRes; 5805 } 5806 5807 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5808 // The result is the min of all operands results. 5809 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5810 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5811 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5812 return MinOpRes; 5813 } 5814 5815 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5816 // The result is the min of all operands results. 5817 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5818 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5819 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5820 return MinOpRes; 5821 } 5822 5823 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5824 // For a SCEVUnknown, ask ValueTracking. 5825 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5826 return Known.countMinTrailingZeros(); 5827 } 5828 5829 // SCEVUDivExpr 5830 return 0; 5831 } 5832 5833 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5834 auto I = MinTrailingZerosCache.find(S); 5835 if (I != MinTrailingZerosCache.end()) 5836 return I->second; 5837 5838 uint32_t Result = GetMinTrailingZerosImpl(S); 5839 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5840 assert(InsertPair.second && "Should insert a new key"); 5841 return InsertPair.first->second; 5842 } 5843 5844 /// Helper method to assign a range to V from metadata present in the IR. 5845 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5846 if (Instruction *I = dyn_cast<Instruction>(V)) 5847 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5848 return getConstantRangeFromMetadata(*MD); 5849 5850 return None; 5851 } 5852 5853 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5854 SCEV::NoWrapFlags Flags) { 5855 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5856 AddRec->setNoWrapFlags(Flags); 5857 UnsignedRanges.erase(AddRec); 5858 SignedRanges.erase(AddRec); 5859 } 5860 } 5861 5862 ConstantRange ScalarEvolution:: 5863 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5864 const DataLayout &DL = getDataLayout(); 5865 5866 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5867 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5868 5869 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5870 // use information about the trip count to improve our available range. Note 5871 // that the trip count independent cases are already handled by known bits. 5872 // WARNING: The definition of recurrence used here is subtly different than 5873 // the one used by AddRec (and thus most of this file). Step is allowed to 5874 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5875 // and other addrecs in the same loop (for non-affine addrecs). The code 5876 // below intentionally handles the case where step is not loop invariant. 5877 auto *P = dyn_cast<PHINode>(U->getValue()); 5878 if (!P) 5879 return FullSet; 5880 5881 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5882 // even the values that are not available in these blocks may come from them, 5883 // and this leads to false-positive recurrence test. 5884 for (auto *Pred : predecessors(P->getParent())) 5885 if (!DT.isReachableFromEntry(Pred)) 5886 return FullSet; 5887 5888 BinaryOperator *BO; 5889 Value *Start, *Step; 5890 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5891 return FullSet; 5892 5893 // If we found a recurrence in reachable code, we must be in a loop. Note 5894 // that BO might be in some subloop of L, and that's completely okay. 5895 auto *L = LI.getLoopFor(P->getParent()); 5896 assert(L && L->getHeader() == P->getParent()); 5897 if (!L->contains(BO->getParent())) 5898 // NOTE: This bailout should be an assert instead. However, asserting 5899 // the condition here exposes a case where LoopFusion is querying SCEV 5900 // with malformed loop information during the midst of the transform. 5901 // There doesn't appear to be an obvious fix, so for the moment bailout 5902 // until the caller issue can be fixed. PR49566 tracks the bug. 5903 return FullSet; 5904 5905 // TODO: Extend to other opcodes such as mul, and div 5906 switch (BO->getOpcode()) { 5907 default: 5908 return FullSet; 5909 case Instruction::AShr: 5910 case Instruction::LShr: 5911 case Instruction::Shl: 5912 break; 5913 }; 5914 5915 if (BO->getOperand(0) != P) 5916 // TODO: Handle the power function forms some day. 5917 return FullSet; 5918 5919 unsigned TC = getSmallConstantMaxTripCount(L); 5920 if (!TC || TC >= BitWidth) 5921 return FullSet; 5922 5923 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5924 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5925 assert(KnownStart.getBitWidth() == BitWidth && 5926 KnownStep.getBitWidth() == BitWidth); 5927 5928 // Compute total shift amount, being careful of overflow and bitwidths. 5929 auto MaxShiftAmt = KnownStep.getMaxValue(); 5930 APInt TCAP(BitWidth, TC-1); 5931 bool Overflow = false; 5932 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5933 if (Overflow) 5934 return FullSet; 5935 5936 switch (BO->getOpcode()) { 5937 default: 5938 llvm_unreachable("filtered out above"); 5939 case Instruction::AShr: { 5940 // For each ashr, three cases: 5941 // shift = 0 => unchanged value 5942 // saturation => 0 or -1 5943 // other => a value closer to zero (of the same sign) 5944 // Thus, the end value is closer to zero than the start. 5945 auto KnownEnd = KnownBits::ashr(KnownStart, 5946 KnownBits::makeConstant(TotalShift)); 5947 if (KnownStart.isNonNegative()) 5948 // Analogous to lshr (simply not yet canonicalized) 5949 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5950 KnownStart.getMaxValue() + 1); 5951 if (KnownStart.isNegative()) 5952 // End >=u Start && End <=s Start 5953 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5954 KnownEnd.getMaxValue() + 1); 5955 break; 5956 } 5957 case Instruction::LShr: { 5958 // For each lshr, three cases: 5959 // shift = 0 => unchanged value 5960 // saturation => 0 5961 // other => a smaller positive number 5962 // Thus, the low end of the unsigned range is the last value produced. 5963 auto KnownEnd = KnownBits::lshr(KnownStart, 5964 KnownBits::makeConstant(TotalShift)); 5965 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5966 KnownStart.getMaxValue() + 1); 5967 } 5968 case Instruction::Shl: { 5969 // Iff no bits are shifted out, value increases on every shift. 5970 auto KnownEnd = KnownBits::shl(KnownStart, 5971 KnownBits::makeConstant(TotalShift)); 5972 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5973 return ConstantRange(KnownStart.getMinValue(), 5974 KnownEnd.getMaxValue() + 1); 5975 break; 5976 } 5977 }; 5978 return FullSet; 5979 } 5980 5981 /// Determine the range for a particular SCEV. If SignHint is 5982 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5983 /// with a "cleaner" unsigned (resp. signed) representation. 5984 const ConstantRange & 5985 ScalarEvolution::getRangeRef(const SCEV *S, 5986 ScalarEvolution::RangeSignHint SignHint) { 5987 DenseMap<const SCEV *, ConstantRange> &Cache = 5988 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5989 : SignedRanges; 5990 ConstantRange::PreferredRangeType RangeType = 5991 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5992 ? ConstantRange::Unsigned : ConstantRange::Signed; 5993 5994 // See if we've computed this range already. 5995 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5996 if (I != Cache.end()) 5997 return I->second; 5998 5999 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6000 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6001 6002 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6003 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6004 using OBO = OverflowingBinaryOperator; 6005 6006 // If the value has known zeros, the maximum value will have those known zeros 6007 // as well. 6008 uint32_t TZ = GetMinTrailingZeros(S); 6009 if (TZ != 0) { 6010 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6011 ConservativeResult = 6012 ConstantRange(APInt::getMinValue(BitWidth), 6013 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6014 else 6015 ConservativeResult = ConstantRange( 6016 APInt::getSignedMinValue(BitWidth), 6017 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6018 } 6019 6020 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6021 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6022 unsigned WrapType = OBO::AnyWrap; 6023 if (Add->hasNoSignedWrap()) 6024 WrapType |= OBO::NoSignedWrap; 6025 if (Add->hasNoUnsignedWrap()) 6026 WrapType |= OBO::NoUnsignedWrap; 6027 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6028 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6029 WrapType, RangeType); 6030 return setRange(Add, SignHint, 6031 ConservativeResult.intersectWith(X, RangeType)); 6032 } 6033 6034 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6035 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6036 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6037 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6038 return setRange(Mul, SignHint, 6039 ConservativeResult.intersectWith(X, RangeType)); 6040 } 6041 6042 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6043 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6044 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6045 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6046 return setRange(SMax, SignHint, 6047 ConservativeResult.intersectWith(X, RangeType)); 6048 } 6049 6050 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6051 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6052 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6053 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6054 return setRange(UMax, SignHint, 6055 ConservativeResult.intersectWith(X, RangeType)); 6056 } 6057 6058 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6059 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6060 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6061 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6062 return setRange(SMin, SignHint, 6063 ConservativeResult.intersectWith(X, RangeType)); 6064 } 6065 6066 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6067 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6068 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6069 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6070 return setRange(UMin, SignHint, 6071 ConservativeResult.intersectWith(X, RangeType)); 6072 } 6073 6074 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6075 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6076 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6077 return setRange(UDiv, SignHint, 6078 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6079 } 6080 6081 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6082 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6083 return setRange(ZExt, SignHint, 6084 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6085 RangeType)); 6086 } 6087 6088 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6089 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6090 return setRange(SExt, SignHint, 6091 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6092 RangeType)); 6093 } 6094 6095 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6096 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6097 return setRange(PtrToInt, SignHint, X); 6098 } 6099 6100 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6101 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6102 return setRange(Trunc, SignHint, 6103 ConservativeResult.intersectWith(X.truncate(BitWidth), 6104 RangeType)); 6105 } 6106 6107 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6108 // If there's no unsigned wrap, the value will never be less than its 6109 // initial value. 6110 if (AddRec->hasNoUnsignedWrap()) { 6111 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6112 if (!UnsignedMinValue.isNullValue()) 6113 ConservativeResult = ConservativeResult.intersectWith( 6114 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6115 } 6116 6117 // If there's no signed wrap, and all the operands except initial value have 6118 // the same sign or zero, the value won't ever be: 6119 // 1: smaller than initial value if operands are non negative, 6120 // 2: bigger than initial value if operands are non positive. 6121 // For both cases, value can not cross signed min/max boundary. 6122 if (AddRec->hasNoSignedWrap()) { 6123 bool AllNonNeg = true; 6124 bool AllNonPos = true; 6125 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6126 if (!isKnownNonNegative(AddRec->getOperand(i))) 6127 AllNonNeg = false; 6128 if (!isKnownNonPositive(AddRec->getOperand(i))) 6129 AllNonPos = false; 6130 } 6131 if (AllNonNeg) 6132 ConservativeResult = ConservativeResult.intersectWith( 6133 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6134 APInt::getSignedMinValue(BitWidth)), 6135 RangeType); 6136 else if (AllNonPos) 6137 ConservativeResult = ConservativeResult.intersectWith( 6138 ConstantRange::getNonEmpty( 6139 APInt::getSignedMinValue(BitWidth), 6140 getSignedRangeMax(AddRec->getStart()) + 1), 6141 RangeType); 6142 } 6143 6144 // TODO: non-affine addrec 6145 if (AddRec->isAffine()) { 6146 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6147 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6148 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6149 auto RangeFromAffine = getRangeForAffineAR( 6150 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6151 BitWidth); 6152 ConservativeResult = 6153 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6154 6155 auto RangeFromFactoring = getRangeViaFactoring( 6156 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6157 BitWidth); 6158 ConservativeResult = 6159 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6160 } 6161 6162 // Now try symbolic BE count and more powerful methods. 6163 if (UseExpensiveRangeSharpening) { 6164 const SCEV *SymbolicMaxBECount = 6165 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6166 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6167 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6168 AddRec->hasNoSelfWrap()) { 6169 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6170 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6171 ConservativeResult = 6172 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6173 } 6174 } 6175 } 6176 6177 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6178 } 6179 6180 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6181 6182 // Check if the IR explicitly contains !range metadata. 6183 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6184 if (MDRange.hasValue()) 6185 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6186 RangeType); 6187 6188 // Use facts about recurrences in the underlying IR. Note that add 6189 // recurrences are AddRecExprs and thus don't hit this path. This 6190 // primarily handles shift recurrences. 6191 auto CR = getRangeForUnknownRecurrence(U); 6192 ConservativeResult = ConservativeResult.intersectWith(CR); 6193 6194 // See if ValueTracking can give us a useful range. 6195 const DataLayout &DL = getDataLayout(); 6196 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6197 if (Known.getBitWidth() != BitWidth) 6198 Known = Known.zextOrTrunc(BitWidth); 6199 6200 // ValueTracking may be able to compute a tighter result for the number of 6201 // sign bits than for the value of those sign bits. 6202 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6203 if (U->getType()->isPointerTy()) { 6204 // If the pointer size is larger than the index size type, this can cause 6205 // NS to be larger than BitWidth. So compensate for this. 6206 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6207 int ptrIdxDiff = ptrSize - BitWidth; 6208 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6209 NS -= ptrIdxDiff; 6210 } 6211 6212 if (NS > 1) { 6213 // If we know any of the sign bits, we know all of the sign bits. 6214 if (!Known.Zero.getHiBits(NS).isNullValue()) 6215 Known.Zero.setHighBits(NS); 6216 if (!Known.One.getHiBits(NS).isNullValue()) 6217 Known.One.setHighBits(NS); 6218 } 6219 6220 if (Known.getMinValue() != Known.getMaxValue() + 1) 6221 ConservativeResult = ConservativeResult.intersectWith( 6222 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6223 RangeType); 6224 if (NS > 1) 6225 ConservativeResult = ConservativeResult.intersectWith( 6226 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6227 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6228 RangeType); 6229 6230 // A range of Phi is a subset of union of all ranges of its input. 6231 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6232 // Make sure that we do not run over cycled Phis. 6233 if (PendingPhiRanges.insert(Phi).second) { 6234 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6235 for (auto &Op : Phi->operands()) { 6236 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6237 RangeFromOps = RangeFromOps.unionWith(OpRange); 6238 // No point to continue if we already have a full set. 6239 if (RangeFromOps.isFullSet()) 6240 break; 6241 } 6242 ConservativeResult = 6243 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6244 bool Erased = PendingPhiRanges.erase(Phi); 6245 assert(Erased && "Failed to erase Phi properly?"); 6246 (void) Erased; 6247 } 6248 } 6249 6250 return setRange(U, SignHint, std::move(ConservativeResult)); 6251 } 6252 6253 return setRange(S, SignHint, std::move(ConservativeResult)); 6254 } 6255 6256 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6257 // values that the expression can take. Initially, the expression has a value 6258 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6259 // argument defines if we treat Step as signed or unsigned. 6260 static ConstantRange getRangeForAffineARHelper(APInt Step, 6261 const ConstantRange &StartRange, 6262 const APInt &MaxBECount, 6263 unsigned BitWidth, bool Signed) { 6264 // If either Step or MaxBECount is 0, then the expression won't change, and we 6265 // just need to return the initial range. 6266 if (Step == 0 || MaxBECount == 0) 6267 return StartRange; 6268 6269 // If we don't know anything about the initial value (i.e. StartRange is 6270 // FullRange), then we don't know anything about the final range either. 6271 // Return FullRange. 6272 if (StartRange.isFullSet()) 6273 return ConstantRange::getFull(BitWidth); 6274 6275 // If Step is signed and negative, then we use its absolute value, but we also 6276 // note that we're moving in the opposite direction. 6277 bool Descending = Signed && Step.isNegative(); 6278 6279 if (Signed) 6280 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6281 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6282 // This equations hold true due to the well-defined wrap-around behavior of 6283 // APInt. 6284 Step = Step.abs(); 6285 6286 // Check if Offset is more than full span of BitWidth. If it is, the 6287 // expression is guaranteed to overflow. 6288 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6289 return ConstantRange::getFull(BitWidth); 6290 6291 // Offset is by how much the expression can change. Checks above guarantee no 6292 // overflow here. 6293 APInt Offset = Step * MaxBECount; 6294 6295 // Minimum value of the final range will match the minimal value of StartRange 6296 // if the expression is increasing and will be decreased by Offset otherwise. 6297 // Maximum value of the final range will match the maximal value of StartRange 6298 // if the expression is decreasing and will be increased by Offset otherwise. 6299 APInt StartLower = StartRange.getLower(); 6300 APInt StartUpper = StartRange.getUpper() - 1; 6301 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6302 : (StartUpper + std::move(Offset)); 6303 6304 // It's possible that the new minimum/maximum value will fall into the initial 6305 // range (due to wrap around). This means that the expression can take any 6306 // value in this bitwidth, and we have to return full range. 6307 if (StartRange.contains(MovedBoundary)) 6308 return ConstantRange::getFull(BitWidth); 6309 6310 APInt NewLower = 6311 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6312 APInt NewUpper = 6313 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6314 NewUpper += 1; 6315 6316 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6317 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6318 } 6319 6320 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6321 const SCEV *Step, 6322 const SCEV *MaxBECount, 6323 unsigned BitWidth) { 6324 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6325 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6326 "Precondition!"); 6327 6328 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6329 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6330 6331 // First, consider step signed. 6332 ConstantRange StartSRange = getSignedRange(Start); 6333 ConstantRange StepSRange = getSignedRange(Step); 6334 6335 // If Step can be both positive and negative, we need to find ranges for the 6336 // maximum absolute step values in both directions and union them. 6337 ConstantRange SR = 6338 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6339 MaxBECountValue, BitWidth, /* Signed = */ true); 6340 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6341 StartSRange, MaxBECountValue, 6342 BitWidth, /* Signed = */ true)); 6343 6344 // Next, consider step unsigned. 6345 ConstantRange UR = getRangeForAffineARHelper( 6346 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6347 MaxBECountValue, BitWidth, /* Signed = */ false); 6348 6349 // Finally, intersect signed and unsigned ranges. 6350 return SR.intersectWith(UR, ConstantRange::Smallest); 6351 } 6352 6353 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6354 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6355 ScalarEvolution::RangeSignHint SignHint) { 6356 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6357 assert(AddRec->hasNoSelfWrap() && 6358 "This only works for non-self-wrapping AddRecs!"); 6359 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6360 const SCEV *Step = AddRec->getStepRecurrence(*this); 6361 // Only deal with constant step to save compile time. 6362 if (!isa<SCEVConstant>(Step)) 6363 return ConstantRange::getFull(BitWidth); 6364 // Let's make sure that we can prove that we do not self-wrap during 6365 // MaxBECount iterations. We need this because MaxBECount is a maximum 6366 // iteration count estimate, and we might infer nw from some exit for which we 6367 // do not know max exit count (or any other side reasoning). 6368 // TODO: Turn into assert at some point. 6369 if (getTypeSizeInBits(MaxBECount->getType()) > 6370 getTypeSizeInBits(AddRec->getType())) 6371 return ConstantRange::getFull(BitWidth); 6372 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6373 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6374 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6375 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6376 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6377 MaxItersWithoutWrap)) 6378 return ConstantRange::getFull(BitWidth); 6379 6380 ICmpInst::Predicate LEPred = 6381 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6382 ICmpInst::Predicate GEPred = 6383 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6384 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6385 6386 // We know that there is no self-wrap. Let's take Start and End values and 6387 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6388 // the iteration. They either lie inside the range [Min(Start, End), 6389 // Max(Start, End)] or outside it: 6390 // 6391 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6392 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6393 // 6394 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6395 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6396 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6397 // Start <= End and step is positive, or Start >= End and step is negative. 6398 const SCEV *Start = AddRec->getStart(); 6399 ConstantRange StartRange = getRangeRef(Start, SignHint); 6400 ConstantRange EndRange = getRangeRef(End, SignHint); 6401 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6402 // If they already cover full iteration space, we will know nothing useful 6403 // even if we prove what we want to prove. 6404 if (RangeBetween.isFullSet()) 6405 return RangeBetween; 6406 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6407 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6408 : RangeBetween.isWrappedSet(); 6409 if (IsWrappedSet) 6410 return ConstantRange::getFull(BitWidth); 6411 6412 if (isKnownPositive(Step) && 6413 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6414 return RangeBetween; 6415 else if (isKnownNegative(Step) && 6416 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6417 return RangeBetween; 6418 return ConstantRange::getFull(BitWidth); 6419 } 6420 6421 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6422 const SCEV *Step, 6423 const SCEV *MaxBECount, 6424 unsigned BitWidth) { 6425 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6426 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6427 6428 struct SelectPattern { 6429 Value *Condition = nullptr; 6430 APInt TrueValue; 6431 APInt FalseValue; 6432 6433 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6434 const SCEV *S) { 6435 Optional<unsigned> CastOp; 6436 APInt Offset(BitWidth, 0); 6437 6438 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6439 "Should be!"); 6440 6441 // Peel off a constant offset: 6442 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6443 // In the future we could consider being smarter here and handle 6444 // {Start+Step,+,Step} too. 6445 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6446 return; 6447 6448 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6449 S = SA->getOperand(1); 6450 } 6451 6452 // Peel off a cast operation 6453 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6454 CastOp = SCast->getSCEVType(); 6455 S = SCast->getOperand(); 6456 } 6457 6458 using namespace llvm::PatternMatch; 6459 6460 auto *SU = dyn_cast<SCEVUnknown>(S); 6461 const APInt *TrueVal, *FalseVal; 6462 if (!SU || 6463 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6464 m_APInt(FalseVal)))) { 6465 Condition = nullptr; 6466 return; 6467 } 6468 6469 TrueValue = *TrueVal; 6470 FalseValue = *FalseVal; 6471 6472 // Re-apply the cast we peeled off earlier 6473 if (CastOp.hasValue()) 6474 switch (*CastOp) { 6475 default: 6476 llvm_unreachable("Unknown SCEV cast type!"); 6477 6478 case scTruncate: 6479 TrueValue = TrueValue.trunc(BitWidth); 6480 FalseValue = FalseValue.trunc(BitWidth); 6481 break; 6482 case scZeroExtend: 6483 TrueValue = TrueValue.zext(BitWidth); 6484 FalseValue = FalseValue.zext(BitWidth); 6485 break; 6486 case scSignExtend: 6487 TrueValue = TrueValue.sext(BitWidth); 6488 FalseValue = FalseValue.sext(BitWidth); 6489 break; 6490 } 6491 6492 // Re-apply the constant offset we peeled off earlier 6493 TrueValue += Offset; 6494 FalseValue += Offset; 6495 } 6496 6497 bool isRecognized() { return Condition != nullptr; } 6498 }; 6499 6500 SelectPattern StartPattern(*this, BitWidth, Start); 6501 if (!StartPattern.isRecognized()) 6502 return ConstantRange::getFull(BitWidth); 6503 6504 SelectPattern StepPattern(*this, BitWidth, Step); 6505 if (!StepPattern.isRecognized()) 6506 return ConstantRange::getFull(BitWidth); 6507 6508 if (StartPattern.Condition != StepPattern.Condition) { 6509 // We don't handle this case today; but we could, by considering four 6510 // possibilities below instead of two. I'm not sure if there are cases where 6511 // that will help over what getRange already does, though. 6512 return ConstantRange::getFull(BitWidth); 6513 } 6514 6515 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6516 // construct arbitrary general SCEV expressions here. This function is called 6517 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6518 // say) can end up caching a suboptimal value. 6519 6520 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6521 // C2352 and C2512 (otherwise it isn't needed). 6522 6523 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6524 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6525 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6526 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6527 6528 ConstantRange TrueRange = 6529 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6530 ConstantRange FalseRange = 6531 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6532 6533 return TrueRange.unionWith(FalseRange); 6534 } 6535 6536 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6537 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6538 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6539 6540 // Return early if there are no flags to propagate to the SCEV. 6541 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6542 if (BinOp->hasNoUnsignedWrap()) 6543 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6544 if (BinOp->hasNoSignedWrap()) 6545 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6546 if (Flags == SCEV::FlagAnyWrap) 6547 return SCEV::FlagAnyWrap; 6548 6549 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6550 } 6551 6552 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6553 // Here we check that I is in the header of the innermost loop containing I, 6554 // since we only deal with instructions in the loop header. The actual loop we 6555 // need to check later will come from an add recurrence, but getting that 6556 // requires computing the SCEV of the operands, which can be expensive. This 6557 // check we can do cheaply to rule out some cases early. 6558 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6559 if (InnermostContainingLoop == nullptr || 6560 InnermostContainingLoop->getHeader() != I->getParent()) 6561 return false; 6562 6563 // Only proceed if we can prove that I does not yield poison. 6564 if (!programUndefinedIfPoison(I)) 6565 return false; 6566 6567 // At this point we know that if I is executed, then it does not wrap 6568 // according to at least one of NSW or NUW. If I is not executed, then we do 6569 // not know if the calculation that I represents would wrap. Multiple 6570 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6571 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6572 // derived from other instructions that map to the same SCEV. We cannot make 6573 // that guarantee for cases where I is not executed. So we need to find the 6574 // loop that I is considered in relation to and prove that I is executed for 6575 // every iteration of that loop. That implies that the value that I 6576 // calculates does not wrap anywhere in the loop, so then we can apply the 6577 // flags to the SCEV. 6578 // 6579 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6580 // from different loops, so that we know which loop to prove that I is 6581 // executed in. 6582 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6583 // I could be an extractvalue from a call to an overflow intrinsic. 6584 // TODO: We can do better here in some cases. 6585 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6586 return false; 6587 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6588 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6589 bool AllOtherOpsLoopInvariant = true; 6590 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6591 ++OtherOpIndex) { 6592 if (OtherOpIndex != OpIndex) { 6593 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6594 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6595 AllOtherOpsLoopInvariant = false; 6596 break; 6597 } 6598 } 6599 } 6600 if (AllOtherOpsLoopInvariant && 6601 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6602 return true; 6603 } 6604 } 6605 return false; 6606 } 6607 6608 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6609 // If we know that \c I can never be poison period, then that's enough. 6610 if (isSCEVExprNeverPoison(I)) 6611 return true; 6612 6613 // For an add recurrence specifically, we assume that infinite loops without 6614 // side effects are undefined behavior, and then reason as follows: 6615 // 6616 // If the add recurrence is poison in any iteration, it is poison on all 6617 // future iterations (since incrementing poison yields poison). If the result 6618 // of the add recurrence is fed into the loop latch condition and the loop 6619 // does not contain any throws or exiting blocks other than the latch, we now 6620 // have the ability to "choose" whether the backedge is taken or not (by 6621 // choosing a sufficiently evil value for the poison feeding into the branch) 6622 // for every iteration including and after the one in which \p I first became 6623 // poison. There are two possibilities (let's call the iteration in which \p 6624 // I first became poison as K): 6625 // 6626 // 1. In the set of iterations including and after K, the loop body executes 6627 // no side effects. In this case executing the backege an infinte number 6628 // of times will yield undefined behavior. 6629 // 6630 // 2. In the set of iterations including and after K, the loop body executes 6631 // at least one side effect. In this case, that specific instance of side 6632 // effect is control dependent on poison, which also yields undefined 6633 // behavior. 6634 6635 auto *ExitingBB = L->getExitingBlock(); 6636 auto *LatchBB = L->getLoopLatch(); 6637 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6638 return false; 6639 6640 SmallPtrSet<const Instruction *, 16> Pushed; 6641 SmallVector<const Instruction *, 8> PoisonStack; 6642 6643 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6644 // things that are known to be poison under that assumption go on the 6645 // PoisonStack. 6646 Pushed.insert(I); 6647 PoisonStack.push_back(I); 6648 6649 bool LatchControlDependentOnPoison = false; 6650 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6651 const Instruction *Poison = PoisonStack.pop_back_val(); 6652 6653 for (auto *PoisonUser : Poison->users()) { 6654 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6655 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6656 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6657 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6658 assert(BI->isConditional() && "Only possibility!"); 6659 if (BI->getParent() == LatchBB) { 6660 LatchControlDependentOnPoison = true; 6661 break; 6662 } 6663 } 6664 } 6665 } 6666 6667 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6668 } 6669 6670 ScalarEvolution::LoopProperties 6671 ScalarEvolution::getLoopProperties(const Loop *L) { 6672 using LoopProperties = ScalarEvolution::LoopProperties; 6673 6674 auto Itr = LoopPropertiesCache.find(L); 6675 if (Itr == LoopPropertiesCache.end()) { 6676 auto HasSideEffects = [](Instruction *I) { 6677 if (auto *SI = dyn_cast<StoreInst>(I)) 6678 return !SI->isSimple(); 6679 6680 return I->mayThrow() || I->mayWriteToMemory(); 6681 }; 6682 6683 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6684 /*HasNoSideEffects*/ true}; 6685 6686 for (auto *BB : L->getBlocks()) 6687 for (auto &I : *BB) { 6688 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6689 LP.HasNoAbnormalExits = false; 6690 if (HasSideEffects(&I)) 6691 LP.HasNoSideEffects = false; 6692 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6693 break; // We're already as pessimistic as we can get. 6694 } 6695 6696 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6697 assert(InsertPair.second && "We just checked!"); 6698 Itr = InsertPair.first; 6699 } 6700 6701 return Itr->second; 6702 } 6703 6704 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6705 // A mustprogress loop without side effects must be finite. 6706 // TODO: The check used here is very conservative. It's only *specific* 6707 // side effects which are well defined in infinite loops. 6708 return isMustProgress(L) && loopHasNoSideEffects(L); 6709 } 6710 6711 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6712 if (!isSCEVable(V->getType())) 6713 return getUnknown(V); 6714 6715 if (Instruction *I = dyn_cast<Instruction>(V)) { 6716 // Don't attempt to analyze instructions in blocks that aren't 6717 // reachable. Such instructions don't matter, and they aren't required 6718 // to obey basic rules for definitions dominating uses which this 6719 // analysis depends on. 6720 if (!DT.isReachableFromEntry(I->getParent())) 6721 return getUnknown(UndefValue::get(V->getType())); 6722 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6723 return getConstant(CI); 6724 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6725 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6726 else if (!isa<ConstantExpr>(V)) 6727 return getUnknown(V); 6728 6729 Operator *U = cast<Operator>(V); 6730 if (auto BO = MatchBinaryOp(U, DT)) { 6731 switch (BO->Opcode) { 6732 case Instruction::Add: { 6733 // The simple thing to do would be to just call getSCEV on both operands 6734 // and call getAddExpr with the result. However if we're looking at a 6735 // bunch of things all added together, this can be quite inefficient, 6736 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6737 // Instead, gather up all the operands and make a single getAddExpr call. 6738 // LLVM IR canonical form means we need only traverse the left operands. 6739 SmallVector<const SCEV *, 4> AddOps; 6740 do { 6741 if (BO->Op) { 6742 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6743 AddOps.push_back(OpSCEV); 6744 break; 6745 } 6746 6747 // If a NUW or NSW flag can be applied to the SCEV for this 6748 // addition, then compute the SCEV for this addition by itself 6749 // with a separate call to getAddExpr. We need to do that 6750 // instead of pushing the operands of the addition onto AddOps, 6751 // since the flags are only known to apply to this particular 6752 // addition - they may not apply to other additions that can be 6753 // formed with operands from AddOps. 6754 const SCEV *RHS = getSCEV(BO->RHS); 6755 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6756 if (Flags != SCEV::FlagAnyWrap) { 6757 const SCEV *LHS = getSCEV(BO->LHS); 6758 if (BO->Opcode == Instruction::Sub) 6759 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6760 else 6761 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6762 break; 6763 } 6764 } 6765 6766 if (BO->Opcode == Instruction::Sub) 6767 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6768 else 6769 AddOps.push_back(getSCEV(BO->RHS)); 6770 6771 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6772 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6773 NewBO->Opcode != Instruction::Sub)) { 6774 AddOps.push_back(getSCEV(BO->LHS)); 6775 break; 6776 } 6777 BO = NewBO; 6778 } while (true); 6779 6780 return getAddExpr(AddOps); 6781 } 6782 6783 case Instruction::Mul: { 6784 SmallVector<const SCEV *, 4> MulOps; 6785 do { 6786 if (BO->Op) { 6787 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6788 MulOps.push_back(OpSCEV); 6789 break; 6790 } 6791 6792 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6793 if (Flags != SCEV::FlagAnyWrap) { 6794 MulOps.push_back( 6795 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6796 break; 6797 } 6798 } 6799 6800 MulOps.push_back(getSCEV(BO->RHS)); 6801 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6802 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6803 MulOps.push_back(getSCEV(BO->LHS)); 6804 break; 6805 } 6806 BO = NewBO; 6807 } while (true); 6808 6809 return getMulExpr(MulOps); 6810 } 6811 case Instruction::UDiv: 6812 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6813 case Instruction::URem: 6814 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6815 case Instruction::Sub: { 6816 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6817 if (BO->Op) 6818 Flags = getNoWrapFlagsFromUB(BO->Op); 6819 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6820 } 6821 case Instruction::And: 6822 // For an expression like x&255 that merely masks off the high bits, 6823 // use zext(trunc(x)) as the SCEV expression. 6824 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6825 if (CI->isZero()) 6826 return getSCEV(BO->RHS); 6827 if (CI->isMinusOne()) 6828 return getSCEV(BO->LHS); 6829 const APInt &A = CI->getValue(); 6830 6831 // Instcombine's ShrinkDemandedConstant may strip bits out of 6832 // constants, obscuring what would otherwise be a low-bits mask. 6833 // Use computeKnownBits to compute what ShrinkDemandedConstant 6834 // knew about to reconstruct a low-bits mask value. 6835 unsigned LZ = A.countLeadingZeros(); 6836 unsigned TZ = A.countTrailingZeros(); 6837 unsigned BitWidth = A.getBitWidth(); 6838 KnownBits Known(BitWidth); 6839 computeKnownBits(BO->LHS, Known, getDataLayout(), 6840 0, &AC, nullptr, &DT); 6841 6842 APInt EffectiveMask = 6843 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6844 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6845 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6846 const SCEV *LHS = getSCEV(BO->LHS); 6847 const SCEV *ShiftedLHS = nullptr; 6848 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6849 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6850 // For an expression like (x * 8) & 8, simplify the multiply. 6851 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6852 unsigned GCD = std::min(MulZeros, TZ); 6853 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6854 SmallVector<const SCEV*, 4> MulOps; 6855 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6856 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6857 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6858 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6859 } 6860 } 6861 if (!ShiftedLHS) 6862 ShiftedLHS = getUDivExpr(LHS, MulCount); 6863 return getMulExpr( 6864 getZeroExtendExpr( 6865 getTruncateExpr(ShiftedLHS, 6866 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6867 BO->LHS->getType()), 6868 MulCount); 6869 } 6870 } 6871 break; 6872 6873 case Instruction::Or: 6874 // If the RHS of the Or is a constant, we may have something like: 6875 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6876 // optimizations will transparently handle this case. 6877 // 6878 // In order for this transformation to be safe, the LHS must be of the 6879 // form X*(2^n) and the Or constant must be less than 2^n. 6880 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6881 const SCEV *LHS = getSCEV(BO->LHS); 6882 const APInt &CIVal = CI->getValue(); 6883 if (GetMinTrailingZeros(LHS) >= 6884 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6885 // Build a plain add SCEV. 6886 return getAddExpr(LHS, getSCEV(CI), 6887 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6888 } 6889 } 6890 break; 6891 6892 case Instruction::Xor: 6893 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6894 // If the RHS of xor is -1, then this is a not operation. 6895 if (CI->isMinusOne()) 6896 return getNotSCEV(getSCEV(BO->LHS)); 6897 6898 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6899 // This is a variant of the check for xor with -1, and it handles 6900 // the case where instcombine has trimmed non-demanded bits out 6901 // of an xor with -1. 6902 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6903 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6904 if (LBO->getOpcode() == Instruction::And && 6905 LCI->getValue() == CI->getValue()) 6906 if (const SCEVZeroExtendExpr *Z = 6907 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6908 Type *UTy = BO->LHS->getType(); 6909 const SCEV *Z0 = Z->getOperand(); 6910 Type *Z0Ty = Z0->getType(); 6911 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6912 6913 // If C is a low-bits mask, the zero extend is serving to 6914 // mask off the high bits. Complement the operand and 6915 // re-apply the zext. 6916 if (CI->getValue().isMask(Z0TySize)) 6917 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6918 6919 // If C is a single bit, it may be in the sign-bit position 6920 // before the zero-extend. In this case, represent the xor 6921 // using an add, which is equivalent, and re-apply the zext. 6922 APInt Trunc = CI->getValue().trunc(Z0TySize); 6923 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6924 Trunc.isSignMask()) 6925 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6926 UTy); 6927 } 6928 } 6929 break; 6930 6931 case Instruction::Shl: 6932 // Turn shift left of a constant amount into a multiply. 6933 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6934 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6935 6936 // If the shift count is not less than the bitwidth, the result of 6937 // the shift is undefined. Don't try to analyze it, because the 6938 // resolution chosen here may differ from the resolution chosen in 6939 // other parts of the compiler. 6940 if (SA->getValue().uge(BitWidth)) 6941 break; 6942 6943 // We can safely preserve the nuw flag in all cases. It's also safe to 6944 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6945 // requires special handling. It can be preserved as long as we're not 6946 // left shifting by bitwidth - 1. 6947 auto Flags = SCEV::FlagAnyWrap; 6948 if (BO->Op) { 6949 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6950 if ((MulFlags & SCEV::FlagNSW) && 6951 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6952 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6953 if (MulFlags & SCEV::FlagNUW) 6954 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6955 } 6956 6957 Constant *X = ConstantInt::get( 6958 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6959 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6960 } 6961 break; 6962 6963 case Instruction::AShr: { 6964 // AShr X, C, where C is a constant. 6965 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6966 if (!CI) 6967 break; 6968 6969 Type *OuterTy = BO->LHS->getType(); 6970 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6971 // If the shift count is not less than the bitwidth, the result of 6972 // the shift is undefined. Don't try to analyze it, because the 6973 // resolution chosen here may differ from the resolution chosen in 6974 // other parts of the compiler. 6975 if (CI->getValue().uge(BitWidth)) 6976 break; 6977 6978 if (CI->isZero()) 6979 return getSCEV(BO->LHS); // shift by zero --> noop 6980 6981 uint64_t AShrAmt = CI->getZExtValue(); 6982 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6983 6984 Operator *L = dyn_cast<Operator>(BO->LHS); 6985 if (L && L->getOpcode() == Instruction::Shl) { 6986 // X = Shl A, n 6987 // Y = AShr X, m 6988 // Both n and m are constant. 6989 6990 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6991 if (L->getOperand(1) == BO->RHS) 6992 // For a two-shift sext-inreg, i.e. n = m, 6993 // use sext(trunc(x)) as the SCEV expression. 6994 return getSignExtendExpr( 6995 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6996 6997 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6998 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6999 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7000 if (ShlAmt > AShrAmt) { 7001 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7002 // expression. We already checked that ShlAmt < BitWidth, so 7003 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7004 // ShlAmt - AShrAmt < Amt. 7005 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7006 ShlAmt - AShrAmt); 7007 return getSignExtendExpr( 7008 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7009 getConstant(Mul)), OuterTy); 7010 } 7011 } 7012 } 7013 break; 7014 } 7015 } 7016 } 7017 7018 switch (U->getOpcode()) { 7019 case Instruction::Trunc: 7020 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7021 7022 case Instruction::ZExt: 7023 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7024 7025 case Instruction::SExt: 7026 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7027 // The NSW flag of a subtract does not always survive the conversion to 7028 // A + (-1)*B. By pushing sign extension onto its operands we are much 7029 // more likely to preserve NSW and allow later AddRec optimisations. 7030 // 7031 // NOTE: This is effectively duplicating this logic from getSignExtend: 7032 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7033 // but by that point the NSW information has potentially been lost. 7034 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7035 Type *Ty = U->getType(); 7036 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7037 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7038 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7039 } 7040 } 7041 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7042 7043 case Instruction::BitCast: 7044 // BitCasts are no-op casts so we just eliminate the cast. 7045 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7046 return getSCEV(U->getOperand(0)); 7047 break; 7048 7049 case Instruction::PtrToInt: { 7050 // Pointer to integer cast is straight-forward, so do model it. 7051 const SCEV *Op = getSCEV(U->getOperand(0)); 7052 Type *DstIntTy = U->getType(); 7053 // But only if effective SCEV (integer) type is wide enough to represent 7054 // all possible pointer values. 7055 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7056 if (isa<SCEVCouldNotCompute>(IntOp)) 7057 return getUnknown(V); 7058 return IntOp; 7059 } 7060 case Instruction::IntToPtr: 7061 // Just don't deal with inttoptr casts. 7062 return getUnknown(V); 7063 7064 case Instruction::SDiv: 7065 // If both operands are non-negative, this is just an udiv. 7066 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7067 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7068 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7069 break; 7070 7071 case Instruction::SRem: 7072 // If both operands are non-negative, this is just an urem. 7073 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7074 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7075 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7076 break; 7077 7078 case Instruction::GetElementPtr: 7079 return createNodeForGEP(cast<GEPOperator>(U)); 7080 7081 case Instruction::PHI: 7082 return createNodeForPHI(cast<PHINode>(U)); 7083 7084 case Instruction::Select: 7085 // U can also be a select constant expr, which let fall through. Since 7086 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7087 // constant expressions cannot have instructions as operands, we'd have 7088 // returned getUnknown for a select constant expressions anyway. 7089 if (isa<Instruction>(U)) 7090 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7091 U->getOperand(1), U->getOperand(2)); 7092 break; 7093 7094 case Instruction::Call: 7095 case Instruction::Invoke: 7096 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7097 return getSCEV(RV); 7098 7099 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7100 switch (II->getIntrinsicID()) { 7101 case Intrinsic::abs: 7102 return getAbsExpr( 7103 getSCEV(II->getArgOperand(0)), 7104 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7105 case Intrinsic::umax: 7106 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7107 getSCEV(II->getArgOperand(1))); 7108 case Intrinsic::umin: 7109 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7110 getSCEV(II->getArgOperand(1))); 7111 case Intrinsic::smax: 7112 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7113 getSCEV(II->getArgOperand(1))); 7114 case Intrinsic::smin: 7115 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7116 getSCEV(II->getArgOperand(1))); 7117 case Intrinsic::usub_sat: { 7118 const SCEV *X = getSCEV(II->getArgOperand(0)); 7119 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7120 const SCEV *ClampedY = getUMinExpr(X, Y); 7121 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7122 } 7123 case Intrinsic::uadd_sat: { 7124 const SCEV *X = getSCEV(II->getArgOperand(0)); 7125 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7126 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7127 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7128 } 7129 case Intrinsic::start_loop_iterations: 7130 // A start_loop_iterations is just equivalent to the first operand for 7131 // SCEV purposes. 7132 return getSCEV(II->getArgOperand(0)); 7133 default: 7134 break; 7135 } 7136 } 7137 break; 7138 } 7139 7140 return getUnknown(V); 7141 } 7142 7143 //===----------------------------------------------------------------------===// 7144 // Iteration Count Computation Code 7145 // 7146 7147 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7148 // Get the trip count from the BE count by adding 1. Overflow, results 7149 // in zero which means "unknown". 7150 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7151 } 7152 7153 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7154 if (!ExitCount) 7155 return 0; 7156 7157 ConstantInt *ExitConst = ExitCount->getValue(); 7158 7159 // Guard against huge trip counts. 7160 if (ExitConst->getValue().getActiveBits() > 32) 7161 return 0; 7162 7163 // In case of integer overflow, this returns 0, which is correct. 7164 return ((unsigned)ExitConst->getZExtValue()) + 1; 7165 } 7166 7167 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7168 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7169 return getConstantTripCount(ExitCount); 7170 } 7171 7172 unsigned 7173 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7174 const BasicBlock *ExitingBlock) { 7175 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7176 assert(L->isLoopExiting(ExitingBlock) && 7177 "Exiting block must actually branch out of the loop!"); 7178 const SCEVConstant *ExitCount = 7179 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7180 return getConstantTripCount(ExitCount); 7181 } 7182 7183 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7184 const auto *MaxExitCount = 7185 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7186 return getConstantTripCount(MaxExitCount); 7187 } 7188 7189 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7190 SmallVector<BasicBlock *, 8> ExitingBlocks; 7191 L->getExitingBlocks(ExitingBlocks); 7192 7193 Optional<unsigned> Res = None; 7194 for (auto *ExitingBB : ExitingBlocks) { 7195 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7196 if (!Res) 7197 Res = Multiple; 7198 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7199 } 7200 return Res.getValueOr(1); 7201 } 7202 7203 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7204 const SCEV *ExitCount) { 7205 if (ExitCount == getCouldNotCompute()) 7206 return 1; 7207 7208 // Get the trip count 7209 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7210 7211 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7212 if (!TC) 7213 // Attempt to factor more general cases. Returns the greatest power of 7214 // two divisor. If overflow happens, the trip count expression is still 7215 // divisible by the greatest power of 2 divisor returned. 7216 return 1U << std::min((uint32_t)31, 7217 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7218 7219 ConstantInt *Result = TC->getValue(); 7220 7221 // Guard against huge trip counts (this requires checking 7222 // for zero to handle the case where the trip count == -1 and the 7223 // addition wraps). 7224 if (!Result || Result->getValue().getActiveBits() > 32 || 7225 Result->getValue().getActiveBits() == 0) 7226 return 1; 7227 7228 return (unsigned)Result->getZExtValue(); 7229 } 7230 7231 /// Returns the largest constant divisor of the trip count of this loop as a 7232 /// normal unsigned value, if possible. This means that the actual trip count is 7233 /// always a multiple of the returned value (don't forget the trip count could 7234 /// very well be zero as well!). 7235 /// 7236 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7237 /// multiple of a constant (which is also the case if the trip count is simply 7238 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7239 /// if the trip count is very large (>= 2^32). 7240 /// 7241 /// As explained in the comments for getSmallConstantTripCount, this assumes 7242 /// that control exits the loop via ExitingBlock. 7243 unsigned 7244 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7245 const BasicBlock *ExitingBlock) { 7246 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7247 assert(L->isLoopExiting(ExitingBlock) && 7248 "Exiting block must actually branch out of the loop!"); 7249 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7250 return getSmallConstantTripMultiple(L, ExitCount); 7251 } 7252 7253 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7254 const BasicBlock *ExitingBlock, 7255 ExitCountKind Kind) { 7256 switch (Kind) { 7257 case Exact: 7258 case SymbolicMaximum: 7259 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7260 case ConstantMaximum: 7261 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7262 }; 7263 llvm_unreachable("Invalid ExitCountKind!"); 7264 } 7265 7266 const SCEV * 7267 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7268 SCEVUnionPredicate &Preds) { 7269 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7270 } 7271 7272 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7273 ExitCountKind Kind) { 7274 switch (Kind) { 7275 case Exact: 7276 return getBackedgeTakenInfo(L).getExact(L, this); 7277 case ConstantMaximum: 7278 return getBackedgeTakenInfo(L).getConstantMax(this); 7279 case SymbolicMaximum: 7280 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7281 }; 7282 llvm_unreachable("Invalid ExitCountKind!"); 7283 } 7284 7285 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7286 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7287 } 7288 7289 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7290 static void 7291 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7292 BasicBlock *Header = L->getHeader(); 7293 7294 // Push all Loop-header PHIs onto the Worklist stack. 7295 for (PHINode &PN : Header->phis()) 7296 Worklist.push_back(&PN); 7297 } 7298 7299 const ScalarEvolution::BackedgeTakenInfo & 7300 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7301 auto &BTI = getBackedgeTakenInfo(L); 7302 if (BTI.hasFullInfo()) 7303 return BTI; 7304 7305 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7306 7307 if (!Pair.second) 7308 return Pair.first->second; 7309 7310 BackedgeTakenInfo Result = 7311 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7312 7313 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7314 } 7315 7316 ScalarEvolution::BackedgeTakenInfo & 7317 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7318 // Initially insert an invalid entry for this loop. If the insertion 7319 // succeeds, proceed to actually compute a backedge-taken count and 7320 // update the value. The temporary CouldNotCompute value tells SCEV 7321 // code elsewhere that it shouldn't attempt to request a new 7322 // backedge-taken count, which could result in infinite recursion. 7323 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7324 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7325 if (!Pair.second) 7326 return Pair.first->second; 7327 7328 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7329 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7330 // must be cleared in this scope. 7331 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7332 7333 // In product build, there are no usage of statistic. 7334 (void)NumTripCountsComputed; 7335 (void)NumTripCountsNotComputed; 7336 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7337 const SCEV *BEExact = Result.getExact(L, this); 7338 if (BEExact != getCouldNotCompute()) { 7339 assert(isLoopInvariant(BEExact, L) && 7340 isLoopInvariant(Result.getConstantMax(this), L) && 7341 "Computed backedge-taken count isn't loop invariant for loop!"); 7342 ++NumTripCountsComputed; 7343 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7344 isa<PHINode>(L->getHeader()->begin())) { 7345 // Only count loops that have phi nodes as not being computable. 7346 ++NumTripCountsNotComputed; 7347 } 7348 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7349 7350 // Now that we know more about the trip count for this loop, forget any 7351 // existing SCEV values for PHI nodes in this loop since they are only 7352 // conservative estimates made without the benefit of trip count 7353 // information. This is similar to the code in forgetLoop, except that 7354 // it handles SCEVUnknown PHI nodes specially. 7355 if (Result.hasAnyInfo()) { 7356 SmallVector<Instruction *, 16> Worklist; 7357 PushLoopPHIs(L, Worklist); 7358 7359 SmallPtrSet<Instruction *, 8> Discovered; 7360 while (!Worklist.empty()) { 7361 Instruction *I = Worklist.pop_back_val(); 7362 7363 ValueExprMapType::iterator It = 7364 ValueExprMap.find_as(static_cast<Value *>(I)); 7365 if (It != ValueExprMap.end()) { 7366 const SCEV *Old = It->second; 7367 7368 // SCEVUnknown for a PHI either means that it has an unrecognized 7369 // structure, or it's a PHI that's in the progress of being computed 7370 // by createNodeForPHI. In the former case, additional loop trip 7371 // count information isn't going to change anything. In the later 7372 // case, createNodeForPHI will perform the necessary updates on its 7373 // own when it gets to that point. 7374 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7375 eraseValueFromMap(It->first); 7376 forgetMemoizedResults(Old); 7377 } 7378 if (PHINode *PN = dyn_cast<PHINode>(I)) 7379 ConstantEvolutionLoopExitValue.erase(PN); 7380 } 7381 7382 // Since we don't need to invalidate anything for correctness and we're 7383 // only invalidating to make SCEV's results more precise, we get to stop 7384 // early to avoid invalidating too much. This is especially important in 7385 // cases like: 7386 // 7387 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7388 // loop0: 7389 // %pn0 = phi 7390 // ... 7391 // loop1: 7392 // %pn1 = phi 7393 // ... 7394 // 7395 // where both loop0 and loop1's backedge taken count uses the SCEV 7396 // expression for %v. If we don't have the early stop below then in cases 7397 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7398 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7399 // count for loop1, effectively nullifying SCEV's trip count cache. 7400 for (auto *U : I->users()) 7401 if (auto *I = dyn_cast<Instruction>(U)) { 7402 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7403 if (LoopForUser && L->contains(LoopForUser) && 7404 Discovered.insert(I).second) 7405 Worklist.push_back(I); 7406 } 7407 } 7408 } 7409 7410 // Re-lookup the insert position, since the call to 7411 // computeBackedgeTakenCount above could result in a 7412 // recusive call to getBackedgeTakenInfo (on a different 7413 // loop), which would invalidate the iterator computed 7414 // earlier. 7415 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7416 } 7417 7418 void ScalarEvolution::forgetAllLoops() { 7419 // This method is intended to forget all info about loops. It should 7420 // invalidate caches as if the following happened: 7421 // - The trip counts of all loops have changed arbitrarily 7422 // - Every llvm::Value has been updated in place to produce a different 7423 // result. 7424 BackedgeTakenCounts.clear(); 7425 PredicatedBackedgeTakenCounts.clear(); 7426 LoopPropertiesCache.clear(); 7427 ConstantEvolutionLoopExitValue.clear(); 7428 ValueExprMap.clear(); 7429 ValuesAtScopes.clear(); 7430 LoopDispositions.clear(); 7431 BlockDispositions.clear(); 7432 UnsignedRanges.clear(); 7433 SignedRanges.clear(); 7434 ExprValueMap.clear(); 7435 HasRecMap.clear(); 7436 MinTrailingZerosCache.clear(); 7437 PredicatedSCEVRewrites.clear(); 7438 } 7439 7440 void ScalarEvolution::forgetLoop(const Loop *L) { 7441 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7442 SmallVector<Instruction *, 32> Worklist; 7443 SmallPtrSet<Instruction *, 16> Visited; 7444 7445 // Iterate over all the loops and sub-loops to drop SCEV information. 7446 while (!LoopWorklist.empty()) { 7447 auto *CurrL = LoopWorklist.pop_back_val(); 7448 7449 // Drop any stored trip count value. 7450 BackedgeTakenCounts.erase(CurrL); 7451 PredicatedBackedgeTakenCounts.erase(CurrL); 7452 7453 // Drop information about predicated SCEV rewrites for this loop. 7454 for (auto I = PredicatedSCEVRewrites.begin(); 7455 I != PredicatedSCEVRewrites.end();) { 7456 std::pair<const SCEV *, const Loop *> Entry = I->first; 7457 if (Entry.second == CurrL) 7458 PredicatedSCEVRewrites.erase(I++); 7459 else 7460 ++I; 7461 } 7462 7463 auto LoopUsersItr = LoopUsers.find(CurrL); 7464 if (LoopUsersItr != LoopUsers.end()) { 7465 for (auto *S : LoopUsersItr->second) 7466 forgetMemoizedResults(S); 7467 LoopUsers.erase(LoopUsersItr); 7468 } 7469 7470 // Drop information about expressions based on loop-header PHIs. 7471 PushLoopPHIs(CurrL, Worklist); 7472 7473 while (!Worklist.empty()) { 7474 Instruction *I = Worklist.pop_back_val(); 7475 if (!Visited.insert(I).second) 7476 continue; 7477 7478 ValueExprMapType::iterator It = 7479 ValueExprMap.find_as(static_cast<Value *>(I)); 7480 if (It != ValueExprMap.end()) { 7481 eraseValueFromMap(It->first); 7482 forgetMemoizedResults(It->second); 7483 if (PHINode *PN = dyn_cast<PHINode>(I)) 7484 ConstantEvolutionLoopExitValue.erase(PN); 7485 } 7486 7487 PushDefUseChildren(I, Worklist); 7488 } 7489 7490 LoopPropertiesCache.erase(CurrL); 7491 // Forget all contained loops too, to avoid dangling entries in the 7492 // ValuesAtScopes map. 7493 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7494 } 7495 } 7496 7497 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7498 while (Loop *Parent = L->getParentLoop()) 7499 L = Parent; 7500 forgetLoop(L); 7501 } 7502 7503 void ScalarEvolution::forgetValue(Value *V) { 7504 Instruction *I = dyn_cast<Instruction>(V); 7505 if (!I) return; 7506 7507 // Drop information about expressions based on loop-header PHIs. 7508 SmallVector<Instruction *, 16> Worklist; 7509 Worklist.push_back(I); 7510 7511 SmallPtrSet<Instruction *, 8> Visited; 7512 while (!Worklist.empty()) { 7513 I = Worklist.pop_back_val(); 7514 if (!Visited.insert(I).second) 7515 continue; 7516 7517 ValueExprMapType::iterator It = 7518 ValueExprMap.find_as(static_cast<Value *>(I)); 7519 if (It != ValueExprMap.end()) { 7520 eraseValueFromMap(It->first); 7521 forgetMemoizedResults(It->second); 7522 if (PHINode *PN = dyn_cast<PHINode>(I)) 7523 ConstantEvolutionLoopExitValue.erase(PN); 7524 } 7525 7526 PushDefUseChildren(I, Worklist); 7527 } 7528 } 7529 7530 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7531 LoopDispositions.clear(); 7532 } 7533 7534 /// Get the exact loop backedge taken count considering all loop exits. A 7535 /// computable result can only be returned for loops with all exiting blocks 7536 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7537 /// is never skipped. This is a valid assumption as long as the loop exits via 7538 /// that test. For precise results, it is the caller's responsibility to specify 7539 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7540 const SCEV * 7541 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7542 SCEVUnionPredicate *Preds) const { 7543 // If any exits were not computable, the loop is not computable. 7544 if (!isComplete() || ExitNotTaken.empty()) 7545 return SE->getCouldNotCompute(); 7546 7547 const BasicBlock *Latch = L->getLoopLatch(); 7548 // All exiting blocks we have collected must dominate the only backedge. 7549 if (!Latch) 7550 return SE->getCouldNotCompute(); 7551 7552 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7553 // count is simply a minimum out of all these calculated exit counts. 7554 SmallVector<const SCEV *, 2> Ops; 7555 for (auto &ENT : ExitNotTaken) { 7556 const SCEV *BECount = ENT.ExactNotTaken; 7557 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7558 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7559 "We should only have known counts for exiting blocks that dominate " 7560 "latch!"); 7561 7562 Ops.push_back(BECount); 7563 7564 if (Preds && !ENT.hasAlwaysTruePredicate()) 7565 Preds->add(ENT.Predicate.get()); 7566 7567 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7568 "Predicate should be always true!"); 7569 } 7570 7571 return SE->getUMinFromMismatchedTypes(Ops); 7572 } 7573 7574 /// Get the exact not taken count for this loop exit. 7575 const SCEV * 7576 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7577 ScalarEvolution *SE) const { 7578 for (auto &ENT : ExitNotTaken) 7579 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7580 return ENT.ExactNotTaken; 7581 7582 return SE->getCouldNotCompute(); 7583 } 7584 7585 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7586 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7587 for (auto &ENT : ExitNotTaken) 7588 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7589 return ENT.MaxNotTaken; 7590 7591 return SE->getCouldNotCompute(); 7592 } 7593 7594 /// getConstantMax - Get the constant max backedge taken count for the loop. 7595 const SCEV * 7596 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7597 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7598 return !ENT.hasAlwaysTruePredicate(); 7599 }; 7600 7601 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7602 return SE->getCouldNotCompute(); 7603 7604 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7605 isa<SCEVConstant>(getConstantMax())) && 7606 "No point in having a non-constant max backedge taken count!"); 7607 return getConstantMax(); 7608 } 7609 7610 const SCEV * 7611 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7612 ScalarEvolution *SE) { 7613 if (!SymbolicMax) 7614 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7615 return SymbolicMax; 7616 } 7617 7618 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7619 ScalarEvolution *SE) const { 7620 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7621 return !ENT.hasAlwaysTruePredicate(); 7622 }; 7623 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7624 } 7625 7626 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7627 return Operands.contains(S); 7628 } 7629 7630 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7631 : ExitLimit(E, E, false, None) { 7632 } 7633 7634 ScalarEvolution::ExitLimit::ExitLimit( 7635 const SCEV *E, const SCEV *M, bool MaxOrZero, 7636 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7637 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7638 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7639 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7640 "Exact is not allowed to be less precise than Max"); 7641 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7642 isa<SCEVConstant>(MaxNotTaken)) && 7643 "No point in having a non-constant max backedge taken count!"); 7644 for (auto *PredSet : PredSetList) 7645 for (auto *P : *PredSet) 7646 addPredicate(P); 7647 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7648 "Backedge count should be int"); 7649 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7650 "Max backedge count should be int"); 7651 } 7652 7653 ScalarEvolution::ExitLimit::ExitLimit( 7654 const SCEV *E, const SCEV *M, bool MaxOrZero, 7655 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7656 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7657 } 7658 7659 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7660 bool MaxOrZero) 7661 : ExitLimit(E, M, MaxOrZero, None) { 7662 } 7663 7664 class SCEVRecordOperands { 7665 SmallPtrSetImpl<const SCEV *> &Operands; 7666 7667 public: 7668 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7669 : Operands(Operands) {} 7670 bool follow(const SCEV *S) { 7671 Operands.insert(S); 7672 return true; 7673 } 7674 bool isDone() { return false; } 7675 }; 7676 7677 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7678 /// computable exit into a persistent ExitNotTakenInfo array. 7679 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7680 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7681 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7682 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7683 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7684 7685 ExitNotTaken.reserve(ExitCounts.size()); 7686 std::transform( 7687 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7688 [&](const EdgeExitInfo &EEI) { 7689 BasicBlock *ExitBB = EEI.first; 7690 const ExitLimit &EL = EEI.second; 7691 if (EL.Predicates.empty()) 7692 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7693 nullptr); 7694 7695 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7696 for (auto *Pred : EL.Predicates) 7697 Predicate->add(Pred); 7698 7699 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7700 std::move(Predicate)); 7701 }); 7702 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7703 isa<SCEVConstant>(ConstantMax)) && 7704 "No point in having a non-constant max backedge taken count!"); 7705 7706 SCEVRecordOperands RecordOperands(Operands); 7707 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7708 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7709 ST.visitAll(ConstantMax); 7710 for (auto &ENT : ExitNotTaken) 7711 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7712 ST.visitAll(ENT.ExactNotTaken); 7713 } 7714 7715 /// Compute the number of times the backedge of the specified loop will execute. 7716 ScalarEvolution::BackedgeTakenInfo 7717 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7718 bool AllowPredicates) { 7719 SmallVector<BasicBlock *, 8> ExitingBlocks; 7720 L->getExitingBlocks(ExitingBlocks); 7721 7722 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7723 7724 SmallVector<EdgeExitInfo, 4> ExitCounts; 7725 bool CouldComputeBECount = true; 7726 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7727 const SCEV *MustExitMaxBECount = nullptr; 7728 const SCEV *MayExitMaxBECount = nullptr; 7729 bool MustExitMaxOrZero = false; 7730 7731 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7732 // and compute maxBECount. 7733 // Do a union of all the predicates here. 7734 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7735 BasicBlock *ExitBB = ExitingBlocks[i]; 7736 7737 // We canonicalize untaken exits to br (constant), ignore them so that 7738 // proving an exit untaken doesn't negatively impact our ability to reason 7739 // about the loop as whole. 7740 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7741 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7742 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7743 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7744 continue; 7745 } 7746 7747 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7748 7749 assert((AllowPredicates || EL.Predicates.empty()) && 7750 "Predicated exit limit when predicates are not allowed!"); 7751 7752 // 1. For each exit that can be computed, add an entry to ExitCounts. 7753 // CouldComputeBECount is true only if all exits can be computed. 7754 if (EL.ExactNotTaken == getCouldNotCompute()) 7755 // We couldn't compute an exact value for this exit, so 7756 // we won't be able to compute an exact value for the loop. 7757 CouldComputeBECount = false; 7758 else 7759 ExitCounts.emplace_back(ExitBB, EL); 7760 7761 // 2. Derive the loop's MaxBECount from each exit's max number of 7762 // non-exiting iterations. Partition the loop exits into two kinds: 7763 // LoopMustExits and LoopMayExits. 7764 // 7765 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7766 // is a LoopMayExit. If any computable LoopMustExit is found, then 7767 // MaxBECount is the minimum EL.MaxNotTaken of computable 7768 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7769 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7770 // computable EL.MaxNotTaken. 7771 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7772 DT.dominates(ExitBB, Latch)) { 7773 if (!MustExitMaxBECount) { 7774 MustExitMaxBECount = EL.MaxNotTaken; 7775 MustExitMaxOrZero = EL.MaxOrZero; 7776 } else { 7777 MustExitMaxBECount = 7778 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7779 } 7780 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7781 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7782 MayExitMaxBECount = EL.MaxNotTaken; 7783 else { 7784 MayExitMaxBECount = 7785 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7786 } 7787 } 7788 } 7789 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7790 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7791 // The loop backedge will be taken the maximum or zero times if there's 7792 // a single exit that must be taken the maximum or zero times. 7793 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7794 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7795 MaxBECount, MaxOrZero); 7796 } 7797 7798 ScalarEvolution::ExitLimit 7799 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7800 bool AllowPredicates) { 7801 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7802 // If our exiting block does not dominate the latch, then its connection with 7803 // loop's exit limit may be far from trivial. 7804 const BasicBlock *Latch = L->getLoopLatch(); 7805 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7806 return getCouldNotCompute(); 7807 7808 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7809 Instruction *Term = ExitingBlock->getTerminator(); 7810 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7811 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7812 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7813 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7814 "It should have one successor in loop and one exit block!"); 7815 // Proceed to the next level to examine the exit condition expression. 7816 return computeExitLimitFromCond( 7817 L, BI->getCondition(), ExitIfTrue, 7818 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7819 } 7820 7821 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7822 // For switch, make sure that there is a single exit from the loop. 7823 BasicBlock *Exit = nullptr; 7824 for (auto *SBB : successors(ExitingBlock)) 7825 if (!L->contains(SBB)) { 7826 if (Exit) // Multiple exit successors. 7827 return getCouldNotCompute(); 7828 Exit = SBB; 7829 } 7830 assert(Exit && "Exiting block must have at least one exit"); 7831 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7832 /*ControlsExit=*/IsOnlyExit); 7833 } 7834 7835 return getCouldNotCompute(); 7836 } 7837 7838 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7839 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7840 bool ControlsExit, bool AllowPredicates) { 7841 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7842 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7843 ControlsExit, AllowPredicates); 7844 } 7845 7846 Optional<ScalarEvolution::ExitLimit> 7847 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7848 bool ExitIfTrue, bool ControlsExit, 7849 bool AllowPredicates) { 7850 (void)this->L; 7851 (void)this->ExitIfTrue; 7852 (void)this->AllowPredicates; 7853 7854 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7855 this->AllowPredicates == AllowPredicates && 7856 "Variance in assumed invariant key components!"); 7857 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7858 if (Itr == TripCountMap.end()) 7859 return None; 7860 return Itr->second; 7861 } 7862 7863 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7864 bool ExitIfTrue, 7865 bool ControlsExit, 7866 bool AllowPredicates, 7867 const ExitLimit &EL) { 7868 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7869 this->AllowPredicates == AllowPredicates && 7870 "Variance in assumed invariant key components!"); 7871 7872 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7873 assert(InsertResult.second && "Expected successful insertion!"); 7874 (void)InsertResult; 7875 (void)ExitIfTrue; 7876 } 7877 7878 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7879 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7880 bool ControlsExit, bool AllowPredicates) { 7881 7882 if (auto MaybeEL = 7883 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7884 return *MaybeEL; 7885 7886 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7887 ControlsExit, AllowPredicates); 7888 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7889 return EL; 7890 } 7891 7892 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7893 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7894 bool ControlsExit, bool AllowPredicates) { 7895 // Handle BinOp conditions (And, Or). 7896 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7897 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7898 return *LimitFromBinOp; 7899 7900 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7901 // Proceed to the next level to examine the icmp. 7902 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7903 ExitLimit EL = 7904 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7905 if (EL.hasFullInfo() || !AllowPredicates) 7906 return EL; 7907 7908 // Try again, but use SCEV predicates this time. 7909 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7910 /*AllowPredicates=*/true); 7911 } 7912 7913 // Check for a constant condition. These are normally stripped out by 7914 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7915 // preserve the CFG and is temporarily leaving constant conditions 7916 // in place. 7917 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7918 if (ExitIfTrue == !CI->getZExtValue()) 7919 // The backedge is always taken. 7920 return getCouldNotCompute(); 7921 else 7922 // The backedge is never taken. 7923 return getZero(CI->getType()); 7924 } 7925 7926 // If it's not an integer or pointer comparison then compute it the hard way. 7927 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7928 } 7929 7930 Optional<ScalarEvolution::ExitLimit> 7931 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7932 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7933 bool ControlsExit, bool AllowPredicates) { 7934 // Check if the controlling expression for this loop is an And or Or. 7935 Value *Op0, *Op1; 7936 bool IsAnd = false; 7937 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7938 IsAnd = true; 7939 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7940 IsAnd = false; 7941 else 7942 return None; 7943 7944 // EitherMayExit is true in these two cases: 7945 // br (and Op0 Op1), loop, exit 7946 // br (or Op0 Op1), exit, loop 7947 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7948 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7949 ControlsExit && !EitherMayExit, 7950 AllowPredicates); 7951 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7952 ControlsExit && !EitherMayExit, 7953 AllowPredicates); 7954 7955 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7956 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7957 if (isa<ConstantInt>(Op1)) 7958 return Op1 == NeutralElement ? EL0 : EL1; 7959 if (isa<ConstantInt>(Op0)) 7960 return Op0 == NeutralElement ? EL1 : EL0; 7961 7962 const SCEV *BECount = getCouldNotCompute(); 7963 const SCEV *MaxBECount = getCouldNotCompute(); 7964 if (EitherMayExit) { 7965 // Both conditions must be same for the loop to continue executing. 7966 // Choose the less conservative count. 7967 // If ExitCond is a short-circuit form (select), using 7968 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7969 // To see the detailed examples, please see 7970 // test/Analysis/ScalarEvolution/exit-count-select.ll 7971 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7972 if (!PoisonSafe) 7973 // Even if ExitCond is select, we can safely derive BECount using both 7974 // EL0 and EL1 in these cases: 7975 // (1) EL0.ExactNotTaken is non-zero 7976 // (2) EL1.ExactNotTaken is non-poison 7977 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7978 // it cannot be umin(0, ..)) 7979 // The PoisonSafe assignment below is simplified and the assertion after 7980 // BECount calculation fully guarantees the condition (3). 7981 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7982 isa<SCEVConstant>(EL1.ExactNotTaken); 7983 if (EL0.ExactNotTaken != getCouldNotCompute() && 7984 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7985 BECount = 7986 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7987 7988 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7989 // it should have been simplified to zero (see the condition (3) above) 7990 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7991 BECount->isZero()); 7992 } 7993 if (EL0.MaxNotTaken == getCouldNotCompute()) 7994 MaxBECount = EL1.MaxNotTaken; 7995 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7996 MaxBECount = EL0.MaxNotTaken; 7997 else 7998 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7999 } else { 8000 // Both conditions must be same at the same time for the loop to exit. 8001 // For now, be conservative. 8002 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8003 BECount = EL0.ExactNotTaken; 8004 } 8005 8006 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8007 // to be more aggressive when computing BECount than when computing 8008 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8009 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8010 // to not. 8011 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8012 !isa<SCEVCouldNotCompute>(BECount)) 8013 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8014 8015 return ExitLimit(BECount, MaxBECount, false, 8016 { &EL0.Predicates, &EL1.Predicates }); 8017 } 8018 8019 ScalarEvolution::ExitLimit 8020 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8021 ICmpInst *ExitCond, 8022 bool ExitIfTrue, 8023 bool ControlsExit, 8024 bool AllowPredicates) { 8025 // If the condition was exit on true, convert the condition to exit on false 8026 ICmpInst::Predicate Pred; 8027 if (!ExitIfTrue) 8028 Pred = ExitCond->getPredicate(); 8029 else 8030 Pred = ExitCond->getInversePredicate(); 8031 const ICmpInst::Predicate OriginalPred = Pred; 8032 8033 // Handle common loops like: for (X = "string"; *X; ++X) 8034 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8035 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8036 ExitLimit ItCnt = 8037 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8038 if (ItCnt.hasAnyInfo()) 8039 return ItCnt; 8040 } 8041 8042 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8043 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8044 8045 // Try to evaluate any dependencies out of the loop. 8046 LHS = getSCEVAtScope(LHS, L); 8047 RHS = getSCEVAtScope(RHS, L); 8048 8049 // At this point, we would like to compute how many iterations of the 8050 // loop the predicate will return true for these inputs. 8051 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8052 // If there is a loop-invariant, force it into the RHS. 8053 std::swap(LHS, RHS); 8054 Pred = ICmpInst::getSwappedPredicate(Pred); 8055 } 8056 8057 // Simplify the operands before analyzing them. 8058 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8059 8060 // If we have a comparison of a chrec against a constant, try to use value 8061 // ranges to answer this query. 8062 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8063 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8064 if (AddRec->getLoop() == L) { 8065 // Form the constant range. 8066 ConstantRange CompRange = 8067 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8068 8069 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8070 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8071 } 8072 8073 switch (Pred) { 8074 case ICmpInst::ICMP_NE: { // while (X != Y) 8075 // Convert to: while (X-Y != 0) 8076 if (LHS->getType()->isPointerTy()) { 8077 LHS = getLosslessPtrToIntExpr(LHS); 8078 if (isa<SCEVCouldNotCompute>(LHS)) 8079 return LHS; 8080 } 8081 if (RHS->getType()->isPointerTy()) { 8082 RHS = getLosslessPtrToIntExpr(RHS); 8083 if (isa<SCEVCouldNotCompute>(RHS)) 8084 return RHS; 8085 } 8086 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8087 AllowPredicates); 8088 if (EL.hasAnyInfo()) return EL; 8089 break; 8090 } 8091 case ICmpInst::ICMP_EQ: { // while (X == Y) 8092 // Convert to: while (X-Y == 0) 8093 if (LHS->getType()->isPointerTy()) { 8094 LHS = getLosslessPtrToIntExpr(LHS); 8095 if (isa<SCEVCouldNotCompute>(LHS)) 8096 return LHS; 8097 } 8098 if (RHS->getType()->isPointerTy()) { 8099 RHS = getLosslessPtrToIntExpr(RHS); 8100 if (isa<SCEVCouldNotCompute>(RHS)) 8101 return RHS; 8102 } 8103 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8104 if (EL.hasAnyInfo()) return EL; 8105 break; 8106 } 8107 case ICmpInst::ICMP_SLT: 8108 case ICmpInst::ICMP_ULT: { // while (X < Y) 8109 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8110 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8111 AllowPredicates); 8112 if (EL.hasAnyInfo()) return EL; 8113 break; 8114 } 8115 case ICmpInst::ICMP_SGT: 8116 case ICmpInst::ICMP_UGT: { // while (X > Y) 8117 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8118 ExitLimit EL = 8119 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8120 AllowPredicates); 8121 if (EL.hasAnyInfo()) return EL; 8122 break; 8123 } 8124 default: 8125 break; 8126 } 8127 8128 auto *ExhaustiveCount = 8129 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8130 8131 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8132 return ExhaustiveCount; 8133 8134 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8135 ExitCond->getOperand(1), L, OriginalPred); 8136 } 8137 8138 ScalarEvolution::ExitLimit 8139 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8140 SwitchInst *Switch, 8141 BasicBlock *ExitingBlock, 8142 bool ControlsExit) { 8143 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8144 8145 // Give up if the exit is the default dest of a switch. 8146 if (Switch->getDefaultDest() == ExitingBlock) 8147 return getCouldNotCompute(); 8148 8149 assert(L->contains(Switch->getDefaultDest()) && 8150 "Default case must not exit the loop!"); 8151 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8152 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8153 8154 // while (X != Y) --> while (X-Y != 0) 8155 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8156 if (EL.hasAnyInfo()) 8157 return EL; 8158 8159 return getCouldNotCompute(); 8160 } 8161 8162 static ConstantInt * 8163 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8164 ScalarEvolution &SE) { 8165 const SCEV *InVal = SE.getConstant(C); 8166 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8167 assert(isa<SCEVConstant>(Val) && 8168 "Evaluation of SCEV at constant didn't fold correctly?"); 8169 return cast<SCEVConstant>(Val)->getValue(); 8170 } 8171 8172 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8173 /// compute the backedge execution count. 8174 ScalarEvolution::ExitLimit 8175 ScalarEvolution::computeLoadConstantCompareExitLimit( 8176 LoadInst *LI, 8177 Constant *RHS, 8178 const Loop *L, 8179 ICmpInst::Predicate predicate) { 8180 if (LI->isVolatile()) return getCouldNotCompute(); 8181 8182 // Check to see if the loaded pointer is a getelementptr of a global. 8183 // TODO: Use SCEV instead of manually grubbing with GEPs. 8184 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8185 if (!GEP) return getCouldNotCompute(); 8186 8187 // Make sure that it is really a constant global we are gepping, with an 8188 // initializer, and make sure the first IDX is really 0. 8189 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8190 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8191 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8192 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8193 return getCouldNotCompute(); 8194 8195 // Okay, we allow one non-constant index into the GEP instruction. 8196 Value *VarIdx = nullptr; 8197 std::vector<Constant*> Indexes; 8198 unsigned VarIdxNum = 0; 8199 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8200 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8201 Indexes.push_back(CI); 8202 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8203 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8204 VarIdx = GEP->getOperand(i); 8205 VarIdxNum = i-2; 8206 Indexes.push_back(nullptr); 8207 } 8208 8209 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8210 if (!VarIdx) 8211 return getCouldNotCompute(); 8212 8213 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8214 // Check to see if X is a loop variant variable value now. 8215 const SCEV *Idx = getSCEV(VarIdx); 8216 Idx = getSCEVAtScope(Idx, L); 8217 8218 // We can only recognize very limited forms of loop index expressions, in 8219 // particular, only affine AddRec's like {C1,+,C2}<L>. 8220 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8221 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8222 isLoopInvariant(IdxExpr, L) || 8223 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8224 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8225 return getCouldNotCompute(); 8226 8227 unsigned MaxSteps = MaxBruteForceIterations; 8228 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8229 ConstantInt *ItCst = ConstantInt::get( 8230 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8231 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8232 8233 // Form the GEP offset. 8234 Indexes[VarIdxNum] = Val; 8235 8236 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8237 Indexes); 8238 if (!Result) break; // Cannot compute! 8239 8240 // Evaluate the condition for this iteration. 8241 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8242 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8243 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8244 ++NumArrayLenItCounts; 8245 return getConstant(ItCst); // Found terminating iteration! 8246 } 8247 } 8248 return getCouldNotCompute(); 8249 } 8250 8251 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8252 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8253 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8254 if (!RHS) 8255 return getCouldNotCompute(); 8256 8257 const BasicBlock *Latch = L->getLoopLatch(); 8258 if (!Latch) 8259 return getCouldNotCompute(); 8260 8261 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8262 if (!Predecessor) 8263 return getCouldNotCompute(); 8264 8265 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8266 // Return LHS in OutLHS and shift_opt in OutOpCode. 8267 auto MatchPositiveShift = 8268 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8269 8270 using namespace PatternMatch; 8271 8272 ConstantInt *ShiftAmt; 8273 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8274 OutOpCode = Instruction::LShr; 8275 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8276 OutOpCode = Instruction::AShr; 8277 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8278 OutOpCode = Instruction::Shl; 8279 else 8280 return false; 8281 8282 return ShiftAmt->getValue().isStrictlyPositive(); 8283 }; 8284 8285 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8286 // 8287 // loop: 8288 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8289 // %iv.shifted = lshr i32 %iv, <positive constant> 8290 // 8291 // Return true on a successful match. Return the corresponding PHI node (%iv 8292 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8293 auto MatchShiftRecurrence = 8294 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8295 Optional<Instruction::BinaryOps> PostShiftOpCode; 8296 8297 { 8298 Instruction::BinaryOps OpC; 8299 Value *V; 8300 8301 // If we encounter a shift instruction, "peel off" the shift operation, 8302 // and remember that we did so. Later when we inspect %iv's backedge 8303 // value, we will make sure that the backedge value uses the same 8304 // operation. 8305 // 8306 // Note: the peeled shift operation does not have to be the same 8307 // instruction as the one feeding into the PHI's backedge value. We only 8308 // really care about it being the same *kind* of shift instruction -- 8309 // that's all that is required for our later inferences to hold. 8310 if (MatchPositiveShift(LHS, V, OpC)) { 8311 PostShiftOpCode = OpC; 8312 LHS = V; 8313 } 8314 } 8315 8316 PNOut = dyn_cast<PHINode>(LHS); 8317 if (!PNOut || PNOut->getParent() != L->getHeader()) 8318 return false; 8319 8320 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8321 Value *OpLHS; 8322 8323 return 8324 // The backedge value for the PHI node must be a shift by a positive 8325 // amount 8326 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8327 8328 // of the PHI node itself 8329 OpLHS == PNOut && 8330 8331 // and the kind of shift should be match the kind of shift we peeled 8332 // off, if any. 8333 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8334 }; 8335 8336 PHINode *PN; 8337 Instruction::BinaryOps OpCode; 8338 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8339 return getCouldNotCompute(); 8340 8341 const DataLayout &DL = getDataLayout(); 8342 8343 // The key rationale for this optimization is that for some kinds of shift 8344 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8345 // within a finite number of iterations. If the condition guarding the 8346 // backedge (in the sense that the backedge is taken if the condition is true) 8347 // is false for the value the shift recurrence stabilizes to, then we know 8348 // that the backedge is taken only a finite number of times. 8349 8350 ConstantInt *StableValue = nullptr; 8351 switch (OpCode) { 8352 default: 8353 llvm_unreachable("Impossible case!"); 8354 8355 case Instruction::AShr: { 8356 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8357 // bitwidth(K) iterations. 8358 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8359 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8360 Predecessor->getTerminator(), &DT); 8361 auto *Ty = cast<IntegerType>(RHS->getType()); 8362 if (Known.isNonNegative()) 8363 StableValue = ConstantInt::get(Ty, 0); 8364 else if (Known.isNegative()) 8365 StableValue = ConstantInt::get(Ty, -1, true); 8366 else 8367 return getCouldNotCompute(); 8368 8369 break; 8370 } 8371 case Instruction::LShr: 8372 case Instruction::Shl: 8373 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8374 // stabilize to 0 in at most bitwidth(K) iterations. 8375 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8376 break; 8377 } 8378 8379 auto *Result = 8380 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8381 assert(Result->getType()->isIntegerTy(1) && 8382 "Otherwise cannot be an operand to a branch instruction"); 8383 8384 if (Result->isZeroValue()) { 8385 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8386 const SCEV *UpperBound = 8387 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8388 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8389 } 8390 8391 return getCouldNotCompute(); 8392 } 8393 8394 /// Return true if we can constant fold an instruction of the specified type, 8395 /// assuming that all operands were constants. 8396 static bool CanConstantFold(const Instruction *I) { 8397 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8398 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8399 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8400 return true; 8401 8402 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8403 if (const Function *F = CI->getCalledFunction()) 8404 return canConstantFoldCallTo(CI, F); 8405 return false; 8406 } 8407 8408 /// Determine whether this instruction can constant evolve within this loop 8409 /// assuming its operands can all constant evolve. 8410 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8411 // An instruction outside of the loop can't be derived from a loop PHI. 8412 if (!L->contains(I)) return false; 8413 8414 if (isa<PHINode>(I)) { 8415 // We don't currently keep track of the control flow needed to evaluate 8416 // PHIs, so we cannot handle PHIs inside of loops. 8417 return L->getHeader() == I->getParent(); 8418 } 8419 8420 // If we won't be able to constant fold this expression even if the operands 8421 // are constants, bail early. 8422 return CanConstantFold(I); 8423 } 8424 8425 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8426 /// recursing through each instruction operand until reaching a loop header phi. 8427 static PHINode * 8428 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8429 DenseMap<Instruction *, PHINode *> &PHIMap, 8430 unsigned Depth) { 8431 if (Depth > MaxConstantEvolvingDepth) 8432 return nullptr; 8433 8434 // Otherwise, we can evaluate this instruction if all of its operands are 8435 // constant or derived from a PHI node themselves. 8436 PHINode *PHI = nullptr; 8437 for (Value *Op : UseInst->operands()) { 8438 if (isa<Constant>(Op)) continue; 8439 8440 Instruction *OpInst = dyn_cast<Instruction>(Op); 8441 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8442 8443 PHINode *P = dyn_cast<PHINode>(OpInst); 8444 if (!P) 8445 // If this operand is already visited, reuse the prior result. 8446 // We may have P != PHI if this is the deepest point at which the 8447 // inconsistent paths meet. 8448 P = PHIMap.lookup(OpInst); 8449 if (!P) { 8450 // Recurse and memoize the results, whether a phi is found or not. 8451 // This recursive call invalidates pointers into PHIMap. 8452 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8453 PHIMap[OpInst] = P; 8454 } 8455 if (!P) 8456 return nullptr; // Not evolving from PHI 8457 if (PHI && PHI != P) 8458 return nullptr; // Evolving from multiple different PHIs. 8459 PHI = P; 8460 } 8461 // This is a expression evolving from a constant PHI! 8462 return PHI; 8463 } 8464 8465 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8466 /// in the loop that V is derived from. We allow arbitrary operations along the 8467 /// way, but the operands of an operation must either be constants or a value 8468 /// derived from a constant PHI. If this expression does not fit with these 8469 /// constraints, return null. 8470 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8471 Instruction *I = dyn_cast<Instruction>(V); 8472 if (!I || !canConstantEvolve(I, L)) return nullptr; 8473 8474 if (PHINode *PN = dyn_cast<PHINode>(I)) 8475 return PN; 8476 8477 // Record non-constant instructions contained by the loop. 8478 DenseMap<Instruction *, PHINode *> PHIMap; 8479 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8480 } 8481 8482 /// EvaluateExpression - Given an expression that passes the 8483 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8484 /// in the loop has the value PHIVal. If we can't fold this expression for some 8485 /// reason, return null. 8486 static Constant *EvaluateExpression(Value *V, const Loop *L, 8487 DenseMap<Instruction *, Constant *> &Vals, 8488 const DataLayout &DL, 8489 const TargetLibraryInfo *TLI) { 8490 // Convenient constant check, but redundant for recursive calls. 8491 if (Constant *C = dyn_cast<Constant>(V)) return C; 8492 Instruction *I = dyn_cast<Instruction>(V); 8493 if (!I) return nullptr; 8494 8495 if (Constant *C = Vals.lookup(I)) return C; 8496 8497 // An instruction inside the loop depends on a value outside the loop that we 8498 // weren't given a mapping for, or a value such as a call inside the loop. 8499 if (!canConstantEvolve(I, L)) return nullptr; 8500 8501 // An unmapped PHI can be due to a branch or another loop inside this loop, 8502 // or due to this not being the initial iteration through a loop where we 8503 // couldn't compute the evolution of this particular PHI last time. 8504 if (isa<PHINode>(I)) return nullptr; 8505 8506 std::vector<Constant*> Operands(I->getNumOperands()); 8507 8508 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8509 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8510 if (!Operand) { 8511 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8512 if (!Operands[i]) return nullptr; 8513 continue; 8514 } 8515 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8516 Vals[Operand] = C; 8517 if (!C) return nullptr; 8518 Operands[i] = C; 8519 } 8520 8521 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8522 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8523 Operands[1], DL, TLI); 8524 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8525 if (!LI->isVolatile()) 8526 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8527 } 8528 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8529 } 8530 8531 8532 // If every incoming value to PN except the one for BB is a specific Constant, 8533 // return that, else return nullptr. 8534 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8535 Constant *IncomingVal = nullptr; 8536 8537 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8538 if (PN->getIncomingBlock(i) == BB) 8539 continue; 8540 8541 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8542 if (!CurrentVal) 8543 return nullptr; 8544 8545 if (IncomingVal != CurrentVal) { 8546 if (IncomingVal) 8547 return nullptr; 8548 IncomingVal = CurrentVal; 8549 } 8550 } 8551 8552 return IncomingVal; 8553 } 8554 8555 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8556 /// in the header of its containing loop, we know the loop executes a 8557 /// constant number of times, and the PHI node is just a recurrence 8558 /// involving constants, fold it. 8559 Constant * 8560 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8561 const APInt &BEs, 8562 const Loop *L) { 8563 auto I = ConstantEvolutionLoopExitValue.find(PN); 8564 if (I != ConstantEvolutionLoopExitValue.end()) 8565 return I->second; 8566 8567 if (BEs.ugt(MaxBruteForceIterations)) 8568 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8569 8570 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8571 8572 DenseMap<Instruction *, Constant *> CurrentIterVals; 8573 BasicBlock *Header = L->getHeader(); 8574 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8575 8576 BasicBlock *Latch = L->getLoopLatch(); 8577 if (!Latch) 8578 return nullptr; 8579 8580 for (PHINode &PHI : Header->phis()) { 8581 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8582 CurrentIterVals[&PHI] = StartCST; 8583 } 8584 if (!CurrentIterVals.count(PN)) 8585 return RetVal = nullptr; 8586 8587 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8588 8589 // Execute the loop symbolically to determine the exit value. 8590 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8591 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8592 8593 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8594 unsigned IterationNum = 0; 8595 const DataLayout &DL = getDataLayout(); 8596 for (; ; ++IterationNum) { 8597 if (IterationNum == NumIterations) 8598 return RetVal = CurrentIterVals[PN]; // Got exit value! 8599 8600 // Compute the value of the PHIs for the next iteration. 8601 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8602 DenseMap<Instruction *, Constant *> NextIterVals; 8603 Constant *NextPHI = 8604 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8605 if (!NextPHI) 8606 return nullptr; // Couldn't evaluate! 8607 NextIterVals[PN] = NextPHI; 8608 8609 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8610 8611 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8612 // cease to be able to evaluate one of them or if they stop evolving, 8613 // because that doesn't necessarily prevent us from computing PN. 8614 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8615 for (const auto &I : CurrentIterVals) { 8616 PHINode *PHI = dyn_cast<PHINode>(I.first); 8617 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8618 PHIsToCompute.emplace_back(PHI, I.second); 8619 } 8620 // We use two distinct loops because EvaluateExpression may invalidate any 8621 // iterators into CurrentIterVals. 8622 for (const auto &I : PHIsToCompute) { 8623 PHINode *PHI = I.first; 8624 Constant *&NextPHI = NextIterVals[PHI]; 8625 if (!NextPHI) { // Not already computed. 8626 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8627 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8628 } 8629 if (NextPHI != I.second) 8630 StoppedEvolving = false; 8631 } 8632 8633 // If all entries in CurrentIterVals == NextIterVals then we can stop 8634 // iterating, the loop can't continue to change. 8635 if (StoppedEvolving) 8636 return RetVal = CurrentIterVals[PN]; 8637 8638 CurrentIterVals.swap(NextIterVals); 8639 } 8640 } 8641 8642 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8643 Value *Cond, 8644 bool ExitWhen) { 8645 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8646 if (!PN) return getCouldNotCompute(); 8647 8648 // If the loop is canonicalized, the PHI will have exactly two entries. 8649 // That's the only form we support here. 8650 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8651 8652 DenseMap<Instruction *, Constant *> CurrentIterVals; 8653 BasicBlock *Header = L->getHeader(); 8654 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8655 8656 BasicBlock *Latch = L->getLoopLatch(); 8657 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8658 8659 for (PHINode &PHI : Header->phis()) { 8660 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8661 CurrentIterVals[&PHI] = StartCST; 8662 } 8663 if (!CurrentIterVals.count(PN)) 8664 return getCouldNotCompute(); 8665 8666 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8667 // the loop symbolically to determine when the condition gets a value of 8668 // "ExitWhen". 8669 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8670 const DataLayout &DL = getDataLayout(); 8671 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8672 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8673 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8674 8675 // Couldn't symbolically evaluate. 8676 if (!CondVal) return getCouldNotCompute(); 8677 8678 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8679 ++NumBruteForceTripCountsComputed; 8680 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8681 } 8682 8683 // Update all the PHI nodes for the next iteration. 8684 DenseMap<Instruction *, Constant *> NextIterVals; 8685 8686 // Create a list of which PHIs we need to compute. We want to do this before 8687 // calling EvaluateExpression on them because that may invalidate iterators 8688 // into CurrentIterVals. 8689 SmallVector<PHINode *, 8> PHIsToCompute; 8690 for (const auto &I : CurrentIterVals) { 8691 PHINode *PHI = dyn_cast<PHINode>(I.first); 8692 if (!PHI || PHI->getParent() != Header) continue; 8693 PHIsToCompute.push_back(PHI); 8694 } 8695 for (PHINode *PHI : PHIsToCompute) { 8696 Constant *&NextPHI = NextIterVals[PHI]; 8697 if (NextPHI) continue; // Already computed! 8698 8699 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8700 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8701 } 8702 CurrentIterVals.swap(NextIterVals); 8703 } 8704 8705 // Too many iterations were needed to evaluate. 8706 return getCouldNotCompute(); 8707 } 8708 8709 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8710 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8711 ValuesAtScopes[V]; 8712 // Check to see if we've folded this expression at this loop before. 8713 for (auto &LS : Values) 8714 if (LS.first == L) 8715 return LS.second ? LS.second : V; 8716 8717 Values.emplace_back(L, nullptr); 8718 8719 // Otherwise compute it. 8720 const SCEV *C = computeSCEVAtScope(V, L); 8721 for (auto &LS : reverse(ValuesAtScopes[V])) 8722 if (LS.first == L) { 8723 LS.second = C; 8724 break; 8725 } 8726 return C; 8727 } 8728 8729 /// This builds up a Constant using the ConstantExpr interface. That way, we 8730 /// will return Constants for objects which aren't represented by a 8731 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8732 /// Returns NULL if the SCEV isn't representable as a Constant. 8733 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8734 switch (V->getSCEVType()) { 8735 case scCouldNotCompute: 8736 case scAddRecExpr: 8737 return nullptr; 8738 case scConstant: 8739 return cast<SCEVConstant>(V)->getValue(); 8740 case scUnknown: 8741 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8742 case scSignExtend: { 8743 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8744 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8745 return ConstantExpr::getSExt(CastOp, SS->getType()); 8746 return nullptr; 8747 } 8748 case scZeroExtend: { 8749 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8750 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8751 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8752 return nullptr; 8753 } 8754 case scPtrToInt: { 8755 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8756 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8757 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8758 8759 return nullptr; 8760 } 8761 case scTruncate: { 8762 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8763 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8764 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8765 return nullptr; 8766 } 8767 case scAddExpr: { 8768 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8769 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8770 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8771 unsigned AS = PTy->getAddressSpace(); 8772 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8773 C = ConstantExpr::getBitCast(C, DestPtrTy); 8774 } 8775 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8776 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8777 if (!C2) 8778 return nullptr; 8779 8780 // First pointer! 8781 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8782 unsigned AS = C2->getType()->getPointerAddressSpace(); 8783 std::swap(C, C2); 8784 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8785 // The offsets have been converted to bytes. We can add bytes to an 8786 // i8* by GEP with the byte count in the first index. 8787 C = ConstantExpr::getBitCast(C, DestPtrTy); 8788 } 8789 8790 // Don't bother trying to sum two pointers. We probably can't 8791 // statically compute a load that results from it anyway. 8792 if (C2->getType()->isPointerTy()) 8793 return nullptr; 8794 8795 if (C->getType()->isPointerTy()) { 8796 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8797 C, C2); 8798 } else { 8799 C = ConstantExpr::getAdd(C, C2); 8800 } 8801 } 8802 return C; 8803 } 8804 return nullptr; 8805 } 8806 case scMulExpr: { 8807 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8808 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8809 // Don't bother with pointers at all. 8810 if (C->getType()->isPointerTy()) 8811 return nullptr; 8812 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8813 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8814 if (!C2 || C2->getType()->isPointerTy()) 8815 return nullptr; 8816 C = ConstantExpr::getMul(C, C2); 8817 } 8818 return C; 8819 } 8820 return nullptr; 8821 } 8822 case scUDivExpr: { 8823 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8824 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8825 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8826 if (LHS->getType() == RHS->getType()) 8827 return ConstantExpr::getUDiv(LHS, RHS); 8828 return nullptr; 8829 } 8830 case scSMaxExpr: 8831 case scUMaxExpr: 8832 case scSMinExpr: 8833 case scUMinExpr: 8834 return nullptr; // TODO: smax, umax, smin, umax. 8835 } 8836 llvm_unreachable("Unknown SCEV kind!"); 8837 } 8838 8839 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8840 if (isa<SCEVConstant>(V)) return V; 8841 8842 // If this instruction is evolved from a constant-evolving PHI, compute the 8843 // exit value from the loop without using SCEVs. 8844 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8845 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8846 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8847 const Loop *CurrLoop = this->LI[I->getParent()]; 8848 // Looking for loop exit value. 8849 if (CurrLoop && CurrLoop->getParentLoop() == L && 8850 PN->getParent() == CurrLoop->getHeader()) { 8851 // Okay, there is no closed form solution for the PHI node. Check 8852 // to see if the loop that contains it has a known backedge-taken 8853 // count. If so, we may be able to force computation of the exit 8854 // value. 8855 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8856 // This trivial case can show up in some degenerate cases where 8857 // the incoming IR has not yet been fully simplified. 8858 if (BackedgeTakenCount->isZero()) { 8859 Value *InitValue = nullptr; 8860 bool MultipleInitValues = false; 8861 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8862 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8863 if (!InitValue) 8864 InitValue = PN->getIncomingValue(i); 8865 else if (InitValue != PN->getIncomingValue(i)) { 8866 MultipleInitValues = true; 8867 break; 8868 } 8869 } 8870 } 8871 if (!MultipleInitValues && InitValue) 8872 return getSCEV(InitValue); 8873 } 8874 // Do we have a loop invariant value flowing around the backedge 8875 // for a loop which must execute the backedge? 8876 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8877 isKnownPositive(BackedgeTakenCount) && 8878 PN->getNumIncomingValues() == 2) { 8879 8880 unsigned InLoopPred = 8881 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8882 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8883 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8884 return getSCEV(BackedgeVal); 8885 } 8886 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8887 // Okay, we know how many times the containing loop executes. If 8888 // this is a constant evolving PHI node, get the final value at 8889 // the specified iteration number. 8890 Constant *RV = getConstantEvolutionLoopExitValue( 8891 PN, BTCC->getAPInt(), CurrLoop); 8892 if (RV) return getSCEV(RV); 8893 } 8894 } 8895 8896 // If there is a single-input Phi, evaluate it at our scope. If we can 8897 // prove that this replacement does not break LCSSA form, use new value. 8898 if (PN->getNumOperands() == 1) { 8899 const SCEV *Input = getSCEV(PN->getOperand(0)); 8900 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8901 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8902 // for the simplest case just support constants. 8903 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8904 } 8905 } 8906 8907 // Okay, this is an expression that we cannot symbolically evaluate 8908 // into a SCEV. Check to see if it's possible to symbolically evaluate 8909 // the arguments into constants, and if so, try to constant propagate the 8910 // result. This is particularly useful for computing loop exit values. 8911 if (CanConstantFold(I)) { 8912 SmallVector<Constant *, 4> Operands; 8913 bool MadeImprovement = false; 8914 for (Value *Op : I->operands()) { 8915 if (Constant *C = dyn_cast<Constant>(Op)) { 8916 Operands.push_back(C); 8917 continue; 8918 } 8919 8920 // If any of the operands is non-constant and if they are 8921 // non-integer and non-pointer, don't even try to analyze them 8922 // with scev techniques. 8923 if (!isSCEVable(Op->getType())) 8924 return V; 8925 8926 const SCEV *OrigV = getSCEV(Op); 8927 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8928 MadeImprovement |= OrigV != OpV; 8929 8930 Constant *C = BuildConstantFromSCEV(OpV); 8931 if (!C) return V; 8932 if (C->getType() != Op->getType()) 8933 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8934 Op->getType(), 8935 false), 8936 C, Op->getType()); 8937 Operands.push_back(C); 8938 } 8939 8940 // Check to see if getSCEVAtScope actually made an improvement. 8941 if (MadeImprovement) { 8942 Constant *C = nullptr; 8943 const DataLayout &DL = getDataLayout(); 8944 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8945 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8946 Operands[1], DL, &TLI); 8947 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8948 if (!Load->isVolatile()) 8949 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8950 DL); 8951 } else 8952 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8953 if (!C) return V; 8954 return getSCEV(C); 8955 } 8956 } 8957 } 8958 8959 // This is some other type of SCEVUnknown, just return it. 8960 return V; 8961 } 8962 8963 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8964 // Avoid performing the look-up in the common case where the specified 8965 // expression has no loop-variant portions. 8966 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8967 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8968 if (OpAtScope != Comm->getOperand(i)) { 8969 // Okay, at least one of these operands is loop variant but might be 8970 // foldable. Build a new instance of the folded commutative expression. 8971 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8972 Comm->op_begin()+i); 8973 NewOps.push_back(OpAtScope); 8974 8975 for (++i; i != e; ++i) { 8976 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8977 NewOps.push_back(OpAtScope); 8978 } 8979 if (isa<SCEVAddExpr>(Comm)) 8980 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8981 if (isa<SCEVMulExpr>(Comm)) 8982 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8983 if (isa<SCEVMinMaxExpr>(Comm)) 8984 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8985 llvm_unreachable("Unknown commutative SCEV type!"); 8986 } 8987 } 8988 // If we got here, all operands are loop invariant. 8989 return Comm; 8990 } 8991 8992 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8993 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8994 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8995 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8996 return Div; // must be loop invariant 8997 return getUDivExpr(LHS, RHS); 8998 } 8999 9000 // If this is a loop recurrence for a loop that does not contain L, then we 9001 // are dealing with the final value computed by the loop. 9002 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9003 // First, attempt to evaluate each operand. 9004 // Avoid performing the look-up in the common case where the specified 9005 // expression has no loop-variant portions. 9006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9007 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9008 if (OpAtScope == AddRec->getOperand(i)) 9009 continue; 9010 9011 // Okay, at least one of these operands is loop variant but might be 9012 // foldable. Build a new instance of the folded commutative expression. 9013 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9014 AddRec->op_begin()+i); 9015 NewOps.push_back(OpAtScope); 9016 for (++i; i != e; ++i) 9017 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9018 9019 const SCEV *FoldedRec = 9020 getAddRecExpr(NewOps, AddRec->getLoop(), 9021 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9022 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9023 // The addrec may be folded to a nonrecurrence, for example, if the 9024 // induction variable is multiplied by zero after constant folding. Go 9025 // ahead and return the folded value. 9026 if (!AddRec) 9027 return FoldedRec; 9028 break; 9029 } 9030 9031 // If the scope is outside the addrec's loop, evaluate it by using the 9032 // loop exit value of the addrec. 9033 if (!AddRec->getLoop()->contains(L)) { 9034 // To evaluate this recurrence, we need to know how many times the AddRec 9035 // loop iterates. Compute this now. 9036 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9037 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9038 9039 // Then, evaluate the AddRec. 9040 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9041 } 9042 9043 return AddRec; 9044 } 9045 9046 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9047 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9048 if (Op == Cast->getOperand()) 9049 return Cast; // must be loop invariant 9050 return getZeroExtendExpr(Op, Cast->getType()); 9051 } 9052 9053 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9054 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9055 if (Op == Cast->getOperand()) 9056 return Cast; // must be loop invariant 9057 return getSignExtendExpr(Op, Cast->getType()); 9058 } 9059 9060 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9061 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9062 if (Op == Cast->getOperand()) 9063 return Cast; // must be loop invariant 9064 return getTruncateExpr(Op, Cast->getType()); 9065 } 9066 9067 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9068 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9069 if (Op == Cast->getOperand()) 9070 return Cast; // must be loop invariant 9071 return getPtrToIntExpr(Op, Cast->getType()); 9072 } 9073 9074 llvm_unreachable("Unknown SCEV type!"); 9075 } 9076 9077 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9078 return getSCEVAtScope(getSCEV(V), L); 9079 } 9080 9081 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9082 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9083 return stripInjectiveFunctions(ZExt->getOperand()); 9084 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9085 return stripInjectiveFunctions(SExt->getOperand()); 9086 return S; 9087 } 9088 9089 /// Finds the minimum unsigned root of the following equation: 9090 /// 9091 /// A * X = B (mod N) 9092 /// 9093 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9094 /// A and B isn't important. 9095 /// 9096 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9097 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9098 ScalarEvolution &SE) { 9099 uint32_t BW = A.getBitWidth(); 9100 assert(BW == SE.getTypeSizeInBits(B->getType())); 9101 assert(A != 0 && "A must be non-zero."); 9102 9103 // 1. D = gcd(A, N) 9104 // 9105 // The gcd of A and N may have only one prime factor: 2. The number of 9106 // trailing zeros in A is its multiplicity 9107 uint32_t Mult2 = A.countTrailingZeros(); 9108 // D = 2^Mult2 9109 9110 // 2. Check if B is divisible by D. 9111 // 9112 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9113 // is not less than multiplicity of this prime factor for D. 9114 if (SE.GetMinTrailingZeros(B) < Mult2) 9115 return SE.getCouldNotCompute(); 9116 9117 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9118 // modulo (N / D). 9119 // 9120 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9121 // (N / D) in general. The inverse itself always fits into BW bits, though, 9122 // so we immediately truncate it. 9123 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9124 APInt Mod(BW + 1, 0); 9125 Mod.setBit(BW - Mult2); // Mod = N / D 9126 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9127 9128 // 4. Compute the minimum unsigned root of the equation: 9129 // I * (B / D) mod (N / D) 9130 // To simplify the computation, we factor out the divide by D: 9131 // (I * B mod N) / D 9132 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9133 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9134 } 9135 9136 /// For a given quadratic addrec, generate coefficients of the corresponding 9137 /// quadratic equation, multiplied by a common value to ensure that they are 9138 /// integers. 9139 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9140 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9141 /// were multiplied by, and BitWidth is the bit width of the original addrec 9142 /// coefficients. 9143 /// This function returns None if the addrec coefficients are not compile- 9144 /// time constants. 9145 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9146 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9147 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9148 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9149 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9150 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9151 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9152 << *AddRec << '\n'); 9153 9154 // We currently can only solve this if the coefficients are constants. 9155 if (!LC || !MC || !NC) { 9156 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9157 return None; 9158 } 9159 9160 APInt L = LC->getAPInt(); 9161 APInt M = MC->getAPInt(); 9162 APInt N = NC->getAPInt(); 9163 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9164 9165 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9166 unsigned NewWidth = BitWidth + 1; 9167 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9168 << BitWidth << '\n'); 9169 // The sign-extension (as opposed to a zero-extension) here matches the 9170 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9171 N = N.sext(NewWidth); 9172 M = M.sext(NewWidth); 9173 L = L.sext(NewWidth); 9174 9175 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9176 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9177 // L+M, L+2M+N, L+3M+3N, ... 9178 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9179 // 9180 // The equation Acc = 0 is then 9181 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9182 // In a quadratic form it becomes: 9183 // N n^2 + (2M-N) n + 2L = 0. 9184 9185 APInt A = N; 9186 APInt B = 2 * M - A; 9187 APInt C = 2 * L; 9188 APInt T = APInt(NewWidth, 2); 9189 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9190 << "x + " << C << ", coeff bw: " << NewWidth 9191 << ", multiplied by " << T << '\n'); 9192 return std::make_tuple(A, B, C, T, BitWidth); 9193 } 9194 9195 /// Helper function to compare optional APInts: 9196 /// (a) if X and Y both exist, return min(X, Y), 9197 /// (b) if neither X nor Y exist, return None, 9198 /// (c) if exactly one of X and Y exists, return that value. 9199 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9200 if (X.hasValue() && Y.hasValue()) { 9201 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9202 APInt XW = X->sextOrSelf(W); 9203 APInt YW = Y->sextOrSelf(W); 9204 return XW.slt(YW) ? *X : *Y; 9205 } 9206 if (!X.hasValue() && !Y.hasValue()) 9207 return None; 9208 return X.hasValue() ? *X : *Y; 9209 } 9210 9211 /// Helper function to truncate an optional APInt to a given BitWidth. 9212 /// When solving addrec-related equations, it is preferable to return a value 9213 /// that has the same bit width as the original addrec's coefficients. If the 9214 /// solution fits in the original bit width, truncate it (except for i1). 9215 /// Returning a value of a different bit width may inhibit some optimizations. 9216 /// 9217 /// In general, a solution to a quadratic equation generated from an addrec 9218 /// may require BW+1 bits, where BW is the bit width of the addrec's 9219 /// coefficients. The reason is that the coefficients of the quadratic 9220 /// equation are BW+1 bits wide (to avoid truncation when converting from 9221 /// the addrec to the equation). 9222 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9223 if (!X.hasValue()) 9224 return None; 9225 unsigned W = X->getBitWidth(); 9226 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9227 return X->trunc(BitWidth); 9228 return X; 9229 } 9230 9231 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9232 /// iterations. The values L, M, N are assumed to be signed, and they 9233 /// should all have the same bit widths. 9234 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9235 /// where BW is the bit width of the addrec's coefficients. 9236 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9237 /// returned as such, otherwise the bit width of the returned value may 9238 /// be greater than BW. 9239 /// 9240 /// This function returns None if 9241 /// (a) the addrec coefficients are not constant, or 9242 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9243 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9244 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9245 static Optional<APInt> 9246 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9247 APInt A, B, C, M; 9248 unsigned BitWidth; 9249 auto T = GetQuadraticEquation(AddRec); 9250 if (!T.hasValue()) 9251 return None; 9252 9253 std::tie(A, B, C, M, BitWidth) = *T; 9254 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9255 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9256 if (!X.hasValue()) 9257 return None; 9258 9259 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9260 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9261 if (!V->isZero()) 9262 return None; 9263 9264 return TruncIfPossible(X, BitWidth); 9265 } 9266 9267 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9268 /// iterations. The values M, N are assumed to be signed, and they 9269 /// should all have the same bit widths. 9270 /// Find the least n such that c(n) does not belong to the given range, 9271 /// while c(n-1) does. 9272 /// 9273 /// This function returns None if 9274 /// (a) the addrec coefficients are not constant, or 9275 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9276 /// bounds of the range. 9277 static Optional<APInt> 9278 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9279 const ConstantRange &Range, ScalarEvolution &SE) { 9280 assert(AddRec->getOperand(0)->isZero() && 9281 "Starting value of addrec should be 0"); 9282 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9283 << Range << ", addrec " << *AddRec << '\n'); 9284 // This case is handled in getNumIterationsInRange. Here we can assume that 9285 // we start in the range. 9286 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9287 "Addrec's initial value should be in range"); 9288 9289 APInt A, B, C, M; 9290 unsigned BitWidth; 9291 auto T = GetQuadraticEquation(AddRec); 9292 if (!T.hasValue()) 9293 return None; 9294 9295 // Be careful about the return value: there can be two reasons for not 9296 // returning an actual number. First, if no solutions to the equations 9297 // were found, and second, if the solutions don't leave the given range. 9298 // The first case means that the actual solution is "unknown", the second 9299 // means that it's known, but not valid. If the solution is unknown, we 9300 // cannot make any conclusions. 9301 // Return a pair: the optional solution and a flag indicating if the 9302 // solution was found. 9303 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9304 // Solve for signed overflow and unsigned overflow, pick the lower 9305 // solution. 9306 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9307 << Bound << " (before multiplying by " << M << ")\n"); 9308 Bound *= M; // The quadratic equation multiplier. 9309 9310 Optional<APInt> SO = None; 9311 if (BitWidth > 1) { 9312 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9313 "signed overflow\n"); 9314 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9315 } 9316 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9317 "unsigned overflow\n"); 9318 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9319 BitWidth+1); 9320 9321 auto LeavesRange = [&] (const APInt &X) { 9322 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9323 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9324 if (Range.contains(V0->getValue())) 9325 return false; 9326 // X should be at least 1, so X-1 is non-negative. 9327 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9328 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9329 if (Range.contains(V1->getValue())) 9330 return true; 9331 return false; 9332 }; 9333 9334 // If SolveQuadraticEquationWrap returns None, it means that there can 9335 // be a solution, but the function failed to find it. We cannot treat it 9336 // as "no solution". 9337 if (!SO.hasValue() || !UO.hasValue()) 9338 return { None, false }; 9339 9340 // Check the smaller value first to see if it leaves the range. 9341 // At this point, both SO and UO must have values. 9342 Optional<APInt> Min = MinOptional(SO, UO); 9343 if (LeavesRange(*Min)) 9344 return { Min, true }; 9345 Optional<APInt> Max = Min == SO ? UO : SO; 9346 if (LeavesRange(*Max)) 9347 return { Max, true }; 9348 9349 // Solutions were found, but were eliminated, hence the "true". 9350 return { None, true }; 9351 }; 9352 9353 std::tie(A, B, C, M, BitWidth) = *T; 9354 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9355 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9356 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9357 auto SL = SolveForBoundary(Lower); 9358 auto SU = SolveForBoundary(Upper); 9359 // If any of the solutions was unknown, no meaninigful conclusions can 9360 // be made. 9361 if (!SL.second || !SU.second) 9362 return None; 9363 9364 // Claim: The correct solution is not some value between Min and Max. 9365 // 9366 // Justification: Assuming that Min and Max are different values, one of 9367 // them is when the first signed overflow happens, the other is when the 9368 // first unsigned overflow happens. Crossing the range boundary is only 9369 // possible via an overflow (treating 0 as a special case of it, modeling 9370 // an overflow as crossing k*2^W for some k). 9371 // 9372 // The interesting case here is when Min was eliminated as an invalid 9373 // solution, but Max was not. The argument is that if there was another 9374 // overflow between Min and Max, it would also have been eliminated if 9375 // it was considered. 9376 // 9377 // For a given boundary, it is possible to have two overflows of the same 9378 // type (signed/unsigned) without having the other type in between: this 9379 // can happen when the vertex of the parabola is between the iterations 9380 // corresponding to the overflows. This is only possible when the two 9381 // overflows cross k*2^W for the same k. In such case, if the second one 9382 // left the range (and was the first one to do so), the first overflow 9383 // would have to enter the range, which would mean that either we had left 9384 // the range before or that we started outside of it. Both of these cases 9385 // are contradictions. 9386 // 9387 // Claim: In the case where SolveForBoundary returns None, the correct 9388 // solution is not some value between the Max for this boundary and the 9389 // Min of the other boundary. 9390 // 9391 // Justification: Assume that we had such Max_A and Min_B corresponding 9392 // to range boundaries A and B and such that Max_A < Min_B. If there was 9393 // a solution between Max_A and Min_B, it would have to be caused by an 9394 // overflow corresponding to either A or B. It cannot correspond to B, 9395 // since Min_B is the first occurrence of such an overflow. If it 9396 // corresponded to A, it would have to be either a signed or an unsigned 9397 // overflow that is larger than both eliminated overflows for A. But 9398 // between the eliminated overflows and this overflow, the values would 9399 // cover the entire value space, thus crossing the other boundary, which 9400 // is a contradiction. 9401 9402 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9403 } 9404 9405 ScalarEvolution::ExitLimit 9406 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9407 bool AllowPredicates) { 9408 9409 // This is only used for loops with a "x != y" exit test. The exit condition 9410 // is now expressed as a single expression, V = x-y. So the exit test is 9411 // effectively V != 0. We know and take advantage of the fact that this 9412 // expression only being used in a comparison by zero context. 9413 9414 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9415 // If the value is a constant 9416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9417 // If the value is already zero, the branch will execute zero times. 9418 if (C->getValue()->isZero()) return C; 9419 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9420 } 9421 9422 const SCEVAddRecExpr *AddRec = 9423 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9424 9425 if (!AddRec && AllowPredicates) 9426 // Try to make this an AddRec using runtime tests, in the first X 9427 // iterations of this loop, where X is the SCEV expression found by the 9428 // algorithm below. 9429 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9430 9431 if (!AddRec || AddRec->getLoop() != L) 9432 return getCouldNotCompute(); 9433 9434 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9435 // the quadratic equation to solve it. 9436 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9437 // We can only use this value if the chrec ends up with an exact zero 9438 // value at this index. When solving for "X*X != 5", for example, we 9439 // should not accept a root of 2. 9440 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9441 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9442 return ExitLimit(R, R, false, Predicates); 9443 } 9444 return getCouldNotCompute(); 9445 } 9446 9447 // Otherwise we can only handle this if it is affine. 9448 if (!AddRec->isAffine()) 9449 return getCouldNotCompute(); 9450 9451 // If this is an affine expression, the execution count of this branch is 9452 // the minimum unsigned root of the following equation: 9453 // 9454 // Start + Step*N = 0 (mod 2^BW) 9455 // 9456 // equivalent to: 9457 // 9458 // Step*N = -Start (mod 2^BW) 9459 // 9460 // where BW is the common bit width of Start and Step. 9461 9462 // Get the initial value for the loop. 9463 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9464 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9465 9466 // For now we handle only constant steps. 9467 // 9468 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9469 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9470 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9471 // We have not yet seen any such cases. 9472 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9473 if (!StepC || StepC->getValue()->isZero()) 9474 return getCouldNotCompute(); 9475 9476 // For positive steps (counting up until unsigned overflow): 9477 // N = -Start/Step (as unsigned) 9478 // For negative steps (counting down to zero): 9479 // N = Start/-Step 9480 // First compute the unsigned distance from zero in the direction of Step. 9481 bool CountDown = StepC->getAPInt().isNegative(); 9482 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9483 9484 // Handle unitary steps, which cannot wraparound. 9485 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9486 // N = Distance (as unsigned) 9487 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9488 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9489 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9490 if (MaxBECountBase.ult(MaxBECount)) 9491 MaxBECount = MaxBECountBase; 9492 9493 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9494 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9495 // case, and see if we can improve the bound. 9496 // 9497 // Explicitly handling this here is necessary because getUnsignedRange 9498 // isn't context-sensitive; it doesn't know that we only care about the 9499 // range inside the loop. 9500 const SCEV *Zero = getZero(Distance->getType()); 9501 const SCEV *One = getOne(Distance->getType()); 9502 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9503 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9504 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9505 // as "unsigned_max(Distance + 1) - 1". 9506 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9507 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9508 } 9509 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9510 } 9511 9512 // If the condition controls loop exit (the loop exits only if the expression 9513 // is true) and the addition is no-wrap we can use unsigned divide to 9514 // compute the backedge count. In this case, the step may not divide the 9515 // distance, but we don't care because if the condition is "missed" the loop 9516 // will have undefined behavior due to wrapping. 9517 if (ControlsExit && AddRec->hasNoSelfWrap() && 9518 loopHasNoAbnormalExits(AddRec->getLoop())) { 9519 const SCEV *Exact = 9520 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9521 const SCEV *Max = getCouldNotCompute(); 9522 if (Exact != getCouldNotCompute()) { 9523 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9524 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9525 if (BaseMaxInt.ult(MaxInt)) 9526 Max = getConstant(BaseMaxInt); 9527 else 9528 Max = getConstant(MaxInt); 9529 } 9530 return ExitLimit(Exact, Max, false, Predicates); 9531 } 9532 9533 // Solve the general equation. 9534 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9535 getNegativeSCEV(Start), *this); 9536 const SCEV *M = E == getCouldNotCompute() 9537 ? E 9538 : getConstant(getUnsignedRangeMax(E)); 9539 return ExitLimit(E, M, false, Predicates); 9540 } 9541 9542 ScalarEvolution::ExitLimit 9543 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9544 // Loops that look like: while (X == 0) are very strange indeed. We don't 9545 // handle them yet except for the trivial case. This could be expanded in the 9546 // future as needed. 9547 9548 // If the value is a constant, check to see if it is known to be non-zero 9549 // already. If so, the backedge will execute zero times. 9550 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9551 if (!C->getValue()->isZero()) 9552 return getZero(C->getType()); 9553 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9554 } 9555 9556 // We could implement others, but I really doubt anyone writes loops like 9557 // this, and if they did, they would already be constant folded. 9558 return getCouldNotCompute(); 9559 } 9560 9561 std::pair<const BasicBlock *, const BasicBlock *> 9562 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9563 const { 9564 // If the block has a unique predecessor, then there is no path from the 9565 // predecessor to the block that does not go through the direct edge 9566 // from the predecessor to the block. 9567 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9568 return {Pred, BB}; 9569 9570 // A loop's header is defined to be a block that dominates the loop. 9571 // If the header has a unique predecessor outside the loop, it must be 9572 // a block that has exactly one successor that can reach the loop. 9573 if (const Loop *L = LI.getLoopFor(BB)) 9574 return {L->getLoopPredecessor(), L->getHeader()}; 9575 9576 return {nullptr, nullptr}; 9577 } 9578 9579 /// SCEV structural equivalence is usually sufficient for testing whether two 9580 /// expressions are equal, however for the purposes of looking for a condition 9581 /// guarding a loop, it can be useful to be a little more general, since a 9582 /// front-end may have replicated the controlling expression. 9583 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9584 // Quick check to see if they are the same SCEV. 9585 if (A == B) return true; 9586 9587 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9588 // Not all instructions that are "identical" compute the same value. For 9589 // instance, two distinct alloca instructions allocating the same type are 9590 // identical and do not read memory; but compute distinct values. 9591 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9592 }; 9593 9594 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9595 // two different instructions with the same value. Check for this case. 9596 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9597 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9598 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9599 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9600 if (ComputesEqualValues(AI, BI)) 9601 return true; 9602 9603 // Otherwise assume they may have a different value. 9604 return false; 9605 } 9606 9607 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9608 const SCEV *&LHS, const SCEV *&RHS, 9609 unsigned Depth) { 9610 bool Changed = false; 9611 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9612 // '0 != 0'. 9613 auto TrivialCase = [&](bool TriviallyTrue) { 9614 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9615 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9616 return true; 9617 }; 9618 // If we hit the max recursion limit bail out. 9619 if (Depth >= 3) 9620 return false; 9621 9622 // Canonicalize a constant to the right side. 9623 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9624 // Check for both operands constant. 9625 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9626 if (ConstantExpr::getICmp(Pred, 9627 LHSC->getValue(), 9628 RHSC->getValue())->isNullValue()) 9629 return TrivialCase(false); 9630 else 9631 return TrivialCase(true); 9632 } 9633 // Otherwise swap the operands to put the constant on the right. 9634 std::swap(LHS, RHS); 9635 Pred = ICmpInst::getSwappedPredicate(Pred); 9636 Changed = true; 9637 } 9638 9639 // If we're comparing an addrec with a value which is loop-invariant in the 9640 // addrec's loop, put the addrec on the left. Also make a dominance check, 9641 // as both operands could be addrecs loop-invariant in each other's loop. 9642 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9643 const Loop *L = AR->getLoop(); 9644 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9645 std::swap(LHS, RHS); 9646 Pred = ICmpInst::getSwappedPredicate(Pred); 9647 Changed = true; 9648 } 9649 } 9650 9651 // If there's a constant operand, canonicalize comparisons with boundary 9652 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9653 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9654 const APInt &RA = RC->getAPInt(); 9655 9656 bool SimplifiedByConstantRange = false; 9657 9658 if (!ICmpInst::isEquality(Pred)) { 9659 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9660 if (ExactCR.isFullSet()) 9661 return TrivialCase(true); 9662 else if (ExactCR.isEmptySet()) 9663 return TrivialCase(false); 9664 9665 APInt NewRHS; 9666 CmpInst::Predicate NewPred; 9667 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9668 ICmpInst::isEquality(NewPred)) { 9669 // We were able to convert an inequality to an equality. 9670 Pred = NewPred; 9671 RHS = getConstant(NewRHS); 9672 Changed = SimplifiedByConstantRange = true; 9673 } 9674 } 9675 9676 if (!SimplifiedByConstantRange) { 9677 switch (Pred) { 9678 default: 9679 break; 9680 case ICmpInst::ICMP_EQ: 9681 case ICmpInst::ICMP_NE: 9682 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9683 if (!RA) 9684 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9685 if (const SCEVMulExpr *ME = 9686 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9687 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9688 ME->getOperand(0)->isAllOnesValue()) { 9689 RHS = AE->getOperand(1); 9690 LHS = ME->getOperand(1); 9691 Changed = true; 9692 } 9693 break; 9694 9695 9696 // The "Should have been caught earlier!" messages refer to the fact 9697 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9698 // should have fired on the corresponding cases, and canonicalized the 9699 // check to trivial case. 9700 9701 case ICmpInst::ICMP_UGE: 9702 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9703 Pred = ICmpInst::ICMP_UGT; 9704 RHS = getConstant(RA - 1); 9705 Changed = true; 9706 break; 9707 case ICmpInst::ICMP_ULE: 9708 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9709 Pred = ICmpInst::ICMP_ULT; 9710 RHS = getConstant(RA + 1); 9711 Changed = true; 9712 break; 9713 case ICmpInst::ICMP_SGE: 9714 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9715 Pred = ICmpInst::ICMP_SGT; 9716 RHS = getConstant(RA - 1); 9717 Changed = true; 9718 break; 9719 case ICmpInst::ICMP_SLE: 9720 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9721 Pred = ICmpInst::ICMP_SLT; 9722 RHS = getConstant(RA + 1); 9723 Changed = true; 9724 break; 9725 } 9726 } 9727 } 9728 9729 // Check for obvious equality. 9730 if (HasSameValue(LHS, RHS)) { 9731 if (ICmpInst::isTrueWhenEqual(Pred)) 9732 return TrivialCase(true); 9733 if (ICmpInst::isFalseWhenEqual(Pred)) 9734 return TrivialCase(false); 9735 } 9736 9737 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9738 // adding or subtracting 1 from one of the operands. 9739 switch (Pred) { 9740 case ICmpInst::ICMP_SLE: 9741 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9742 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9743 SCEV::FlagNSW); 9744 Pred = ICmpInst::ICMP_SLT; 9745 Changed = true; 9746 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9747 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9748 SCEV::FlagNSW); 9749 Pred = ICmpInst::ICMP_SLT; 9750 Changed = true; 9751 } 9752 break; 9753 case ICmpInst::ICMP_SGE: 9754 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9755 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9756 SCEV::FlagNSW); 9757 Pred = ICmpInst::ICMP_SGT; 9758 Changed = true; 9759 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9760 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9761 SCEV::FlagNSW); 9762 Pred = ICmpInst::ICMP_SGT; 9763 Changed = true; 9764 } 9765 break; 9766 case ICmpInst::ICMP_ULE: 9767 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9768 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9769 SCEV::FlagNUW); 9770 Pred = ICmpInst::ICMP_ULT; 9771 Changed = true; 9772 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9773 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9774 Pred = ICmpInst::ICMP_ULT; 9775 Changed = true; 9776 } 9777 break; 9778 case ICmpInst::ICMP_UGE: 9779 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9780 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9781 Pred = ICmpInst::ICMP_UGT; 9782 Changed = true; 9783 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9784 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9785 SCEV::FlagNUW); 9786 Pred = ICmpInst::ICMP_UGT; 9787 Changed = true; 9788 } 9789 break; 9790 default: 9791 break; 9792 } 9793 9794 // TODO: More simplifications are possible here. 9795 9796 // Recursively simplify until we either hit a recursion limit or nothing 9797 // changes. 9798 if (Changed) 9799 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9800 9801 return Changed; 9802 } 9803 9804 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9805 return getSignedRangeMax(S).isNegative(); 9806 } 9807 9808 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9809 return getSignedRangeMin(S).isStrictlyPositive(); 9810 } 9811 9812 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9813 return !getSignedRangeMin(S).isNegative(); 9814 } 9815 9816 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9817 return !getSignedRangeMax(S).isStrictlyPositive(); 9818 } 9819 9820 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9821 return getUnsignedRangeMin(S) != 0; 9822 } 9823 9824 std::pair<const SCEV *, const SCEV *> 9825 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9826 // Compute SCEV on entry of loop L. 9827 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9828 if (Start == getCouldNotCompute()) 9829 return { Start, Start }; 9830 // Compute post increment SCEV for loop L. 9831 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9832 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9833 return { Start, PostInc }; 9834 } 9835 9836 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9837 const SCEV *LHS, const SCEV *RHS) { 9838 // First collect all loops. 9839 SmallPtrSet<const Loop *, 8> LoopsUsed; 9840 getUsedLoops(LHS, LoopsUsed); 9841 getUsedLoops(RHS, LoopsUsed); 9842 9843 if (LoopsUsed.empty()) 9844 return false; 9845 9846 // Domination relationship must be a linear order on collected loops. 9847 #ifndef NDEBUG 9848 for (auto *L1 : LoopsUsed) 9849 for (auto *L2 : LoopsUsed) 9850 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9851 DT.dominates(L2->getHeader(), L1->getHeader())) && 9852 "Domination relationship is not a linear order"); 9853 #endif 9854 9855 const Loop *MDL = 9856 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9857 [&](const Loop *L1, const Loop *L2) { 9858 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9859 }); 9860 9861 // Get init and post increment value for LHS. 9862 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9863 // if LHS contains unknown non-invariant SCEV then bail out. 9864 if (SplitLHS.first == getCouldNotCompute()) 9865 return false; 9866 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9867 // Get init and post increment value for RHS. 9868 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9869 // if RHS contains unknown non-invariant SCEV then bail out. 9870 if (SplitRHS.first == getCouldNotCompute()) 9871 return false; 9872 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9873 // It is possible that init SCEV contains an invariant load but it does 9874 // not dominate MDL and is not available at MDL loop entry, so we should 9875 // check it here. 9876 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9877 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9878 return false; 9879 9880 // It seems backedge guard check is faster than entry one so in some cases 9881 // it can speed up whole estimation by short circuit 9882 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9883 SplitRHS.second) && 9884 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9885 } 9886 9887 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9888 const SCEV *LHS, const SCEV *RHS) { 9889 // Canonicalize the inputs first. 9890 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9891 9892 if (isKnownViaInduction(Pred, LHS, RHS)) 9893 return true; 9894 9895 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9896 return true; 9897 9898 // Otherwise see what can be done with some simple reasoning. 9899 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9900 } 9901 9902 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9903 const SCEV *LHS, 9904 const SCEV *RHS) { 9905 if (isKnownPredicate(Pred, LHS, RHS)) 9906 return true; 9907 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9908 return false; 9909 return None; 9910 } 9911 9912 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9913 const SCEV *LHS, const SCEV *RHS, 9914 const Instruction *Context) { 9915 // TODO: Analyze guards and assumes from Context's block. 9916 return isKnownPredicate(Pred, LHS, RHS) || 9917 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9918 } 9919 9920 Optional<bool> 9921 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9922 const SCEV *RHS, 9923 const Instruction *Context) { 9924 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9925 if (KnownWithoutContext) 9926 return KnownWithoutContext; 9927 9928 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9929 return true; 9930 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9931 ICmpInst::getInversePredicate(Pred), 9932 LHS, RHS)) 9933 return false; 9934 return None; 9935 } 9936 9937 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9938 const SCEVAddRecExpr *LHS, 9939 const SCEV *RHS) { 9940 const Loop *L = LHS->getLoop(); 9941 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9942 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9943 } 9944 9945 Optional<ScalarEvolution::MonotonicPredicateType> 9946 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9947 ICmpInst::Predicate Pred) { 9948 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9949 9950 #ifndef NDEBUG 9951 // Verify an invariant: inverting the predicate should turn a monotonically 9952 // increasing change to a monotonically decreasing one, and vice versa. 9953 if (Result) { 9954 auto ResultSwapped = 9955 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9956 9957 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9958 assert(ResultSwapped.getValue() != Result.getValue() && 9959 "monotonicity should flip as we flip the predicate"); 9960 } 9961 #endif 9962 9963 return Result; 9964 } 9965 9966 Optional<ScalarEvolution::MonotonicPredicateType> 9967 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9968 ICmpInst::Predicate Pred) { 9969 // A zero step value for LHS means the induction variable is essentially a 9970 // loop invariant value. We don't really depend on the predicate actually 9971 // flipping from false to true (for increasing predicates, and the other way 9972 // around for decreasing predicates), all we care about is that *if* the 9973 // predicate changes then it only changes from false to true. 9974 // 9975 // A zero step value in itself is not very useful, but there may be places 9976 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9977 // as general as possible. 9978 9979 // Only handle LE/LT/GE/GT predicates. 9980 if (!ICmpInst::isRelational(Pred)) 9981 return None; 9982 9983 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9984 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9985 "Should be greater or less!"); 9986 9987 // Check that AR does not wrap. 9988 if (ICmpInst::isUnsigned(Pred)) { 9989 if (!LHS->hasNoUnsignedWrap()) 9990 return None; 9991 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9992 } else { 9993 assert(ICmpInst::isSigned(Pred) && 9994 "Relational predicate is either signed or unsigned!"); 9995 if (!LHS->hasNoSignedWrap()) 9996 return None; 9997 9998 const SCEV *Step = LHS->getStepRecurrence(*this); 9999 10000 if (isKnownNonNegative(Step)) 10001 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10002 10003 if (isKnownNonPositive(Step)) 10004 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10005 10006 return None; 10007 } 10008 } 10009 10010 Optional<ScalarEvolution::LoopInvariantPredicate> 10011 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10012 const SCEV *LHS, const SCEV *RHS, 10013 const Loop *L) { 10014 10015 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10016 if (!isLoopInvariant(RHS, L)) { 10017 if (!isLoopInvariant(LHS, L)) 10018 return None; 10019 10020 std::swap(LHS, RHS); 10021 Pred = ICmpInst::getSwappedPredicate(Pred); 10022 } 10023 10024 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10025 if (!ArLHS || ArLHS->getLoop() != L) 10026 return None; 10027 10028 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10029 if (!MonotonicType) 10030 return None; 10031 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10032 // true as the loop iterates, and the backedge is control dependent on 10033 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10034 // 10035 // * if the predicate was false in the first iteration then the predicate 10036 // is never evaluated again, since the loop exits without taking the 10037 // backedge. 10038 // * if the predicate was true in the first iteration then it will 10039 // continue to be true for all future iterations since it is 10040 // monotonically increasing. 10041 // 10042 // For both the above possibilities, we can replace the loop varying 10043 // predicate with its value on the first iteration of the loop (which is 10044 // loop invariant). 10045 // 10046 // A similar reasoning applies for a monotonically decreasing predicate, by 10047 // replacing true with false and false with true in the above two bullets. 10048 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10049 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10050 10051 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10052 return None; 10053 10054 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10055 } 10056 10057 Optional<ScalarEvolution::LoopInvariantPredicate> 10058 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10059 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10060 const Instruction *Context, const SCEV *MaxIter) { 10061 // Try to prove the following set of facts: 10062 // - The predicate is monotonic in the iteration space. 10063 // - If the check does not fail on the 1st iteration: 10064 // - No overflow will happen during first MaxIter iterations; 10065 // - It will not fail on the MaxIter'th iteration. 10066 // If the check does fail on the 1st iteration, we leave the loop and no 10067 // other checks matter. 10068 10069 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10070 if (!isLoopInvariant(RHS, L)) { 10071 if (!isLoopInvariant(LHS, L)) 10072 return None; 10073 10074 std::swap(LHS, RHS); 10075 Pred = ICmpInst::getSwappedPredicate(Pred); 10076 } 10077 10078 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10079 if (!AR || AR->getLoop() != L) 10080 return None; 10081 10082 // The predicate must be relational (i.e. <, <=, >=, >). 10083 if (!ICmpInst::isRelational(Pred)) 10084 return None; 10085 10086 // TODO: Support steps other than +/- 1. 10087 const SCEV *Step = AR->getStepRecurrence(*this); 10088 auto *One = getOne(Step->getType()); 10089 auto *MinusOne = getNegativeSCEV(One); 10090 if (Step != One && Step != MinusOne) 10091 return None; 10092 10093 // Type mismatch here means that MaxIter is potentially larger than max 10094 // unsigned value in start type, which mean we cannot prove no wrap for the 10095 // indvar. 10096 if (AR->getType() != MaxIter->getType()) 10097 return None; 10098 10099 // Value of IV on suggested last iteration. 10100 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10101 // Does it still meet the requirement? 10102 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10103 return None; 10104 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10105 // not exceed max unsigned value of this type), this effectively proves 10106 // that there is no wrap during the iteration. To prove that there is no 10107 // signed/unsigned wrap, we need to check that 10108 // Start <= Last for step = 1 or Start >= Last for step = -1. 10109 ICmpInst::Predicate NoOverflowPred = 10110 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10111 if (Step == MinusOne) 10112 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10113 const SCEV *Start = AR->getStart(); 10114 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 10115 return None; 10116 10117 // Everything is fine. 10118 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10119 } 10120 10121 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10122 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10123 if (HasSameValue(LHS, RHS)) 10124 return ICmpInst::isTrueWhenEqual(Pred); 10125 10126 // This code is split out from isKnownPredicate because it is called from 10127 // within isLoopEntryGuardedByCond. 10128 10129 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10130 const ConstantRange &RangeRHS) { 10131 return RangeLHS.icmp(Pred, RangeRHS); 10132 }; 10133 10134 // The check at the top of the function catches the case where the values are 10135 // known to be equal. 10136 if (Pred == CmpInst::ICMP_EQ) 10137 return false; 10138 10139 if (Pred == CmpInst::ICMP_NE) { 10140 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10141 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10142 return true; 10143 auto *Diff = getMinusSCEV(LHS, RHS); 10144 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10145 } 10146 10147 if (CmpInst::isSigned(Pred)) 10148 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10149 10150 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10151 } 10152 10153 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10154 const SCEV *LHS, 10155 const SCEV *RHS) { 10156 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10157 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10158 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10159 // OutC1 and OutC2. 10160 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10161 APInt &OutC1, APInt &OutC2, 10162 SCEV::NoWrapFlags ExpectedFlags) { 10163 const SCEV *XNonConstOp, *XConstOp; 10164 const SCEV *YNonConstOp, *YConstOp; 10165 SCEV::NoWrapFlags XFlagsPresent; 10166 SCEV::NoWrapFlags YFlagsPresent; 10167 10168 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10169 XConstOp = getZero(X->getType()); 10170 XNonConstOp = X; 10171 XFlagsPresent = ExpectedFlags; 10172 } 10173 if (!isa<SCEVConstant>(XConstOp) || 10174 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10175 return false; 10176 10177 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10178 YConstOp = getZero(Y->getType()); 10179 YNonConstOp = Y; 10180 YFlagsPresent = ExpectedFlags; 10181 } 10182 10183 if (!isa<SCEVConstant>(YConstOp) || 10184 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10185 return false; 10186 10187 if (YNonConstOp != XNonConstOp) 10188 return false; 10189 10190 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10191 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10192 10193 return true; 10194 }; 10195 10196 APInt C1; 10197 APInt C2; 10198 10199 switch (Pred) { 10200 default: 10201 break; 10202 10203 case ICmpInst::ICMP_SGE: 10204 std::swap(LHS, RHS); 10205 LLVM_FALLTHROUGH; 10206 case ICmpInst::ICMP_SLE: 10207 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10208 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10209 return true; 10210 10211 break; 10212 10213 case ICmpInst::ICMP_SGT: 10214 std::swap(LHS, RHS); 10215 LLVM_FALLTHROUGH; 10216 case ICmpInst::ICMP_SLT: 10217 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10218 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10219 return true; 10220 10221 break; 10222 10223 case ICmpInst::ICMP_UGE: 10224 std::swap(LHS, RHS); 10225 LLVM_FALLTHROUGH; 10226 case ICmpInst::ICMP_ULE: 10227 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10228 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10229 return true; 10230 10231 break; 10232 10233 case ICmpInst::ICMP_UGT: 10234 std::swap(LHS, RHS); 10235 LLVM_FALLTHROUGH; 10236 case ICmpInst::ICMP_ULT: 10237 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10238 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10239 return true; 10240 break; 10241 } 10242 10243 return false; 10244 } 10245 10246 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10247 const SCEV *LHS, 10248 const SCEV *RHS) { 10249 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10250 return false; 10251 10252 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10253 // the stack can result in exponential time complexity. 10254 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10255 10256 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10257 // 10258 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10259 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10260 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10261 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10262 // use isKnownPredicate later if needed. 10263 return isKnownNonNegative(RHS) && 10264 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10265 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10266 } 10267 10268 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10269 ICmpInst::Predicate Pred, 10270 const SCEV *LHS, const SCEV *RHS) { 10271 // No need to even try if we know the module has no guards. 10272 if (!HasGuards) 10273 return false; 10274 10275 return any_of(*BB, [&](const Instruction &I) { 10276 using namespace llvm::PatternMatch; 10277 10278 Value *Condition; 10279 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10280 m_Value(Condition))) && 10281 isImpliedCond(Pred, LHS, RHS, Condition, false); 10282 }); 10283 } 10284 10285 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10286 /// protected by a conditional between LHS and RHS. This is used to 10287 /// to eliminate casts. 10288 bool 10289 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10290 ICmpInst::Predicate Pred, 10291 const SCEV *LHS, const SCEV *RHS) { 10292 // Interpret a null as meaning no loop, where there is obviously no guard 10293 // (interprocedural conditions notwithstanding). 10294 if (!L) return true; 10295 10296 if (VerifyIR) 10297 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10298 "This cannot be done on broken IR!"); 10299 10300 10301 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10302 return true; 10303 10304 BasicBlock *Latch = L->getLoopLatch(); 10305 if (!Latch) 10306 return false; 10307 10308 BranchInst *LoopContinuePredicate = 10309 dyn_cast<BranchInst>(Latch->getTerminator()); 10310 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10311 isImpliedCond(Pred, LHS, RHS, 10312 LoopContinuePredicate->getCondition(), 10313 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10314 return true; 10315 10316 // We don't want more than one activation of the following loops on the stack 10317 // -- that can lead to O(n!) time complexity. 10318 if (WalkingBEDominatingConds) 10319 return false; 10320 10321 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10322 10323 // See if we can exploit a trip count to prove the predicate. 10324 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10325 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10326 if (LatchBECount != getCouldNotCompute()) { 10327 // We know that Latch branches back to the loop header exactly 10328 // LatchBECount times. This means the backdege condition at Latch is 10329 // equivalent to "{0,+,1} u< LatchBECount". 10330 Type *Ty = LatchBECount->getType(); 10331 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10332 const SCEV *LoopCounter = 10333 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10334 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10335 LatchBECount)) 10336 return true; 10337 } 10338 10339 // Check conditions due to any @llvm.assume intrinsics. 10340 for (auto &AssumeVH : AC.assumptions()) { 10341 if (!AssumeVH) 10342 continue; 10343 auto *CI = cast<CallInst>(AssumeVH); 10344 if (!DT.dominates(CI, Latch->getTerminator())) 10345 continue; 10346 10347 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10348 return true; 10349 } 10350 10351 // If the loop is not reachable from the entry block, we risk running into an 10352 // infinite loop as we walk up into the dom tree. These loops do not matter 10353 // anyway, so we just return a conservative answer when we see them. 10354 if (!DT.isReachableFromEntry(L->getHeader())) 10355 return false; 10356 10357 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10358 return true; 10359 10360 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10361 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10362 assert(DTN && "should reach the loop header before reaching the root!"); 10363 10364 BasicBlock *BB = DTN->getBlock(); 10365 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10366 return true; 10367 10368 BasicBlock *PBB = BB->getSinglePredecessor(); 10369 if (!PBB) 10370 continue; 10371 10372 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10373 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10374 continue; 10375 10376 Value *Condition = ContinuePredicate->getCondition(); 10377 10378 // If we have an edge `E` within the loop body that dominates the only 10379 // latch, the condition guarding `E` also guards the backedge. This 10380 // reasoning works only for loops with a single latch. 10381 10382 BasicBlockEdge DominatingEdge(PBB, BB); 10383 if (DominatingEdge.isSingleEdge()) { 10384 // We're constructively (and conservatively) enumerating edges within the 10385 // loop body that dominate the latch. The dominator tree better agree 10386 // with us on this: 10387 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10388 10389 if (isImpliedCond(Pred, LHS, RHS, Condition, 10390 BB != ContinuePredicate->getSuccessor(0))) 10391 return true; 10392 } 10393 } 10394 10395 return false; 10396 } 10397 10398 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10399 ICmpInst::Predicate Pred, 10400 const SCEV *LHS, 10401 const SCEV *RHS) { 10402 if (VerifyIR) 10403 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10404 "This cannot be done on broken IR!"); 10405 10406 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10407 // the facts (a >= b && a != b) separately. A typical situation is when the 10408 // non-strict comparison is known from ranges and non-equality is known from 10409 // dominating predicates. If we are proving strict comparison, we always try 10410 // to prove non-equality and non-strict comparison separately. 10411 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10412 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10413 bool ProvedNonStrictComparison = false; 10414 bool ProvedNonEquality = false; 10415 10416 auto SplitAndProve = 10417 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10418 if (!ProvedNonStrictComparison) 10419 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10420 if (!ProvedNonEquality) 10421 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10422 if (ProvedNonStrictComparison && ProvedNonEquality) 10423 return true; 10424 return false; 10425 }; 10426 10427 if (ProvingStrictComparison) { 10428 auto ProofFn = [&](ICmpInst::Predicate P) { 10429 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10430 }; 10431 if (SplitAndProve(ProofFn)) 10432 return true; 10433 } 10434 10435 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10436 auto ProveViaGuard = [&](const BasicBlock *Block) { 10437 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10438 return true; 10439 if (ProvingStrictComparison) { 10440 auto ProofFn = [&](ICmpInst::Predicate P) { 10441 return isImpliedViaGuard(Block, P, LHS, RHS); 10442 }; 10443 if (SplitAndProve(ProofFn)) 10444 return true; 10445 } 10446 return false; 10447 }; 10448 10449 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10450 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10451 const Instruction *Context = &BB->front(); 10452 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10453 return true; 10454 if (ProvingStrictComparison) { 10455 auto ProofFn = [&](ICmpInst::Predicate P) { 10456 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10457 }; 10458 if (SplitAndProve(ProofFn)) 10459 return true; 10460 } 10461 return false; 10462 }; 10463 10464 // Starting at the block's predecessor, climb up the predecessor chain, as long 10465 // as there are predecessors that can be found that have unique successors 10466 // leading to the original block. 10467 const Loop *ContainingLoop = LI.getLoopFor(BB); 10468 const BasicBlock *PredBB; 10469 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10470 PredBB = ContainingLoop->getLoopPredecessor(); 10471 else 10472 PredBB = BB->getSinglePredecessor(); 10473 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10474 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10475 if (ProveViaGuard(Pair.first)) 10476 return true; 10477 10478 const BranchInst *LoopEntryPredicate = 10479 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10480 if (!LoopEntryPredicate || 10481 LoopEntryPredicate->isUnconditional()) 10482 continue; 10483 10484 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10485 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10486 return true; 10487 } 10488 10489 // Check conditions due to any @llvm.assume intrinsics. 10490 for (auto &AssumeVH : AC.assumptions()) { 10491 if (!AssumeVH) 10492 continue; 10493 auto *CI = cast<CallInst>(AssumeVH); 10494 if (!DT.dominates(CI, BB)) 10495 continue; 10496 10497 if (ProveViaCond(CI->getArgOperand(0), false)) 10498 return true; 10499 } 10500 10501 return false; 10502 } 10503 10504 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10505 ICmpInst::Predicate Pred, 10506 const SCEV *LHS, 10507 const SCEV *RHS) { 10508 // Interpret a null as meaning no loop, where there is obviously no guard 10509 // (interprocedural conditions notwithstanding). 10510 if (!L) 10511 return false; 10512 10513 // Both LHS and RHS must be available at loop entry. 10514 assert(isAvailableAtLoopEntry(LHS, L) && 10515 "LHS is not available at Loop Entry"); 10516 assert(isAvailableAtLoopEntry(RHS, L) && 10517 "RHS is not available at Loop Entry"); 10518 10519 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10520 return true; 10521 10522 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10523 } 10524 10525 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10526 const SCEV *RHS, 10527 const Value *FoundCondValue, bool Inverse, 10528 const Instruction *Context) { 10529 // False conditions implies anything. Do not bother analyzing it further. 10530 if (FoundCondValue == 10531 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10532 return true; 10533 10534 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10535 return false; 10536 10537 auto ClearOnExit = 10538 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10539 10540 // Recursively handle And and Or conditions. 10541 const Value *Op0, *Op1; 10542 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10543 if (!Inverse) 10544 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10545 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10546 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10547 if (Inverse) 10548 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10549 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10550 } 10551 10552 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10553 if (!ICI) return false; 10554 10555 // Now that we found a conditional branch that dominates the loop or controls 10556 // the loop latch. Check to see if it is the comparison we are looking for. 10557 ICmpInst::Predicate FoundPred; 10558 if (Inverse) 10559 FoundPred = ICI->getInversePredicate(); 10560 else 10561 FoundPred = ICI->getPredicate(); 10562 10563 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10564 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10565 10566 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10567 } 10568 10569 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10570 const SCEV *RHS, 10571 ICmpInst::Predicate FoundPred, 10572 const SCEV *FoundLHS, const SCEV *FoundRHS, 10573 const Instruction *Context) { 10574 // Balance the types. 10575 if (getTypeSizeInBits(LHS->getType()) < 10576 getTypeSizeInBits(FoundLHS->getType())) { 10577 // For unsigned and equality predicates, try to prove that both found 10578 // operands fit into narrow unsigned range. If so, try to prove facts in 10579 // narrow types. 10580 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10581 auto *NarrowType = LHS->getType(); 10582 auto *WideType = FoundLHS->getType(); 10583 auto BitWidth = getTypeSizeInBits(NarrowType); 10584 const SCEV *MaxValue = getZeroExtendExpr( 10585 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10586 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10587 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10588 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10589 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10590 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10591 TruncFoundRHS, Context)) 10592 return true; 10593 } 10594 } 10595 10596 if (LHS->getType()->isPointerTy()) 10597 return false; 10598 if (CmpInst::isSigned(Pred)) { 10599 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10600 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10601 } else { 10602 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10603 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10604 } 10605 } else if (getTypeSizeInBits(LHS->getType()) > 10606 getTypeSizeInBits(FoundLHS->getType())) { 10607 if (FoundLHS->getType()->isPointerTy()) 10608 return false; 10609 if (CmpInst::isSigned(FoundPred)) { 10610 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10611 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10612 } else { 10613 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10614 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10615 } 10616 } 10617 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10618 FoundRHS, Context); 10619 } 10620 10621 bool ScalarEvolution::isImpliedCondBalancedTypes( 10622 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10623 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10624 const Instruction *Context) { 10625 assert(getTypeSizeInBits(LHS->getType()) == 10626 getTypeSizeInBits(FoundLHS->getType()) && 10627 "Types should be balanced!"); 10628 // Canonicalize the query to match the way instcombine will have 10629 // canonicalized the comparison. 10630 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10631 if (LHS == RHS) 10632 return CmpInst::isTrueWhenEqual(Pred); 10633 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10634 if (FoundLHS == FoundRHS) 10635 return CmpInst::isFalseWhenEqual(FoundPred); 10636 10637 // Check to see if we can make the LHS or RHS match. 10638 if (LHS == FoundRHS || RHS == FoundLHS) { 10639 if (isa<SCEVConstant>(RHS)) { 10640 std::swap(FoundLHS, FoundRHS); 10641 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10642 } else { 10643 std::swap(LHS, RHS); 10644 Pred = ICmpInst::getSwappedPredicate(Pred); 10645 } 10646 } 10647 10648 // Check whether the found predicate is the same as the desired predicate. 10649 if (FoundPred == Pred) 10650 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10651 10652 // Check whether swapping the found predicate makes it the same as the 10653 // desired predicate. 10654 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10655 // We can write the implication 10656 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10657 // using one of the following ways: 10658 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10659 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10660 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10661 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10662 // Forms 1. and 2. require swapping the operands of one condition. Don't 10663 // do this if it would break canonical constant/addrec ordering. 10664 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10665 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10666 Context); 10667 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10668 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10669 10670 // Don't try to getNotSCEV pointers. 10671 if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy()) 10672 return false; 10673 10674 // There's no clear preference between forms 3. and 4., try both. 10675 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10676 FoundLHS, FoundRHS, Context) || 10677 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10678 getNotSCEV(FoundRHS), Context); 10679 } 10680 10681 // Unsigned comparison is the same as signed comparison when both the operands 10682 // are non-negative. 10683 if (CmpInst::isUnsigned(FoundPred) && 10684 CmpInst::getSignedPredicate(FoundPred) == Pred && 10685 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10686 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10687 10688 // Check if we can make progress by sharpening ranges. 10689 if (FoundPred == ICmpInst::ICMP_NE && 10690 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10691 10692 const SCEVConstant *C = nullptr; 10693 const SCEV *V = nullptr; 10694 10695 if (isa<SCEVConstant>(FoundLHS)) { 10696 C = cast<SCEVConstant>(FoundLHS); 10697 V = FoundRHS; 10698 } else { 10699 C = cast<SCEVConstant>(FoundRHS); 10700 V = FoundLHS; 10701 } 10702 10703 // The guarding predicate tells us that C != V. If the known range 10704 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10705 // range we consider has to correspond to same signedness as the 10706 // predicate we're interested in folding. 10707 10708 APInt Min = ICmpInst::isSigned(Pred) ? 10709 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10710 10711 if (Min == C->getAPInt()) { 10712 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10713 // This is true even if (Min + 1) wraps around -- in case of 10714 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10715 10716 APInt SharperMin = Min + 1; 10717 10718 switch (Pred) { 10719 case ICmpInst::ICMP_SGE: 10720 case ICmpInst::ICMP_UGE: 10721 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10722 // RHS, we're done. 10723 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10724 Context)) 10725 return true; 10726 LLVM_FALLTHROUGH; 10727 10728 case ICmpInst::ICMP_SGT: 10729 case ICmpInst::ICMP_UGT: 10730 // We know from the range information that (V `Pred` Min || 10731 // V == Min). We know from the guarding condition that !(V 10732 // == Min). This gives us 10733 // 10734 // V `Pred` Min || V == Min && !(V == Min) 10735 // => V `Pred` Min 10736 // 10737 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10738 10739 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10740 Context)) 10741 return true; 10742 break; 10743 10744 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10745 case ICmpInst::ICMP_SLE: 10746 case ICmpInst::ICMP_ULE: 10747 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10748 LHS, V, getConstant(SharperMin), Context)) 10749 return true; 10750 LLVM_FALLTHROUGH; 10751 10752 case ICmpInst::ICMP_SLT: 10753 case ICmpInst::ICMP_ULT: 10754 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10755 LHS, V, getConstant(Min), Context)) 10756 return true; 10757 break; 10758 10759 default: 10760 // No change 10761 break; 10762 } 10763 } 10764 } 10765 10766 // Check whether the actual condition is beyond sufficient. 10767 if (FoundPred == ICmpInst::ICMP_EQ) 10768 if (ICmpInst::isTrueWhenEqual(Pred)) 10769 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10770 return true; 10771 if (Pred == ICmpInst::ICMP_NE) 10772 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10773 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10774 Context)) 10775 return true; 10776 10777 // Otherwise assume the worst. 10778 return false; 10779 } 10780 10781 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10782 const SCEV *&L, const SCEV *&R, 10783 SCEV::NoWrapFlags &Flags) { 10784 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10785 if (!AE || AE->getNumOperands() != 2) 10786 return false; 10787 10788 L = AE->getOperand(0); 10789 R = AE->getOperand(1); 10790 Flags = AE->getNoWrapFlags(); 10791 return true; 10792 } 10793 10794 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10795 const SCEV *Less) { 10796 // We avoid subtracting expressions here because this function is usually 10797 // fairly deep in the call stack (i.e. is called many times). 10798 10799 // X - X = 0. 10800 if (More == Less) 10801 return APInt(getTypeSizeInBits(More->getType()), 0); 10802 10803 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10804 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10805 const auto *MAR = cast<SCEVAddRecExpr>(More); 10806 10807 if (LAR->getLoop() != MAR->getLoop()) 10808 return None; 10809 10810 // We look at affine expressions only; not for correctness but to keep 10811 // getStepRecurrence cheap. 10812 if (!LAR->isAffine() || !MAR->isAffine()) 10813 return None; 10814 10815 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10816 return None; 10817 10818 Less = LAR->getStart(); 10819 More = MAR->getStart(); 10820 10821 // fall through 10822 } 10823 10824 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10825 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10826 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10827 return M - L; 10828 } 10829 10830 SCEV::NoWrapFlags Flags; 10831 const SCEV *LLess = nullptr, *RLess = nullptr; 10832 const SCEV *LMore = nullptr, *RMore = nullptr; 10833 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10834 // Compare (X + C1) vs X. 10835 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10836 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10837 if (RLess == More) 10838 return -(C1->getAPInt()); 10839 10840 // Compare X vs (X + C2). 10841 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10842 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10843 if (RMore == Less) 10844 return C2->getAPInt(); 10845 10846 // Compare (X + C1) vs (X + C2). 10847 if (C1 && C2 && RLess == RMore) 10848 return C2->getAPInt() - C1->getAPInt(); 10849 10850 return None; 10851 } 10852 10853 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10854 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10855 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10856 // Try to recognize the following pattern: 10857 // 10858 // FoundRHS = ... 10859 // ... 10860 // loop: 10861 // FoundLHS = {Start,+,W} 10862 // context_bb: // Basic block from the same loop 10863 // known(Pred, FoundLHS, FoundRHS) 10864 // 10865 // If some predicate is known in the context of a loop, it is also known on 10866 // each iteration of this loop, including the first iteration. Therefore, in 10867 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10868 // prove the original pred using this fact. 10869 if (!Context) 10870 return false; 10871 const BasicBlock *ContextBB = Context->getParent(); 10872 // Make sure AR varies in the context block. 10873 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10874 const Loop *L = AR->getLoop(); 10875 // Make sure that context belongs to the loop and executes on 1st iteration 10876 // (if it ever executes at all). 10877 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10878 return false; 10879 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10880 return false; 10881 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10882 } 10883 10884 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10885 const Loop *L = AR->getLoop(); 10886 // Make sure that context belongs to the loop and executes on 1st iteration 10887 // (if it ever executes at all). 10888 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10889 return false; 10890 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10891 return false; 10892 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10893 } 10894 10895 return false; 10896 } 10897 10898 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10899 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10900 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10901 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10902 return false; 10903 10904 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10905 if (!AddRecLHS) 10906 return false; 10907 10908 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10909 if (!AddRecFoundLHS) 10910 return false; 10911 10912 // We'd like to let SCEV reason about control dependencies, so we constrain 10913 // both the inequalities to be about add recurrences on the same loop. This 10914 // way we can use isLoopEntryGuardedByCond later. 10915 10916 const Loop *L = AddRecFoundLHS->getLoop(); 10917 if (L != AddRecLHS->getLoop()) 10918 return false; 10919 10920 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10921 // 10922 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10923 // ... (2) 10924 // 10925 // Informal proof for (2), assuming (1) [*]: 10926 // 10927 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10928 // 10929 // Then 10930 // 10931 // FoundLHS s< FoundRHS s< INT_MIN - C 10932 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10933 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10934 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10935 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10936 // <=> FoundLHS + C s< FoundRHS + C 10937 // 10938 // [*]: (1) can be proved by ruling out overflow. 10939 // 10940 // [**]: This can be proved by analyzing all the four possibilities: 10941 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10942 // (A s>= 0, B s>= 0). 10943 // 10944 // Note: 10945 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10946 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10947 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10948 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10949 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10950 // C)". 10951 10952 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10953 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10954 if (!LDiff || !RDiff || *LDiff != *RDiff) 10955 return false; 10956 10957 if (LDiff->isMinValue()) 10958 return true; 10959 10960 APInt FoundRHSLimit; 10961 10962 if (Pred == CmpInst::ICMP_ULT) { 10963 FoundRHSLimit = -(*RDiff); 10964 } else { 10965 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10966 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10967 } 10968 10969 // Try to prove (1) or (2), as needed. 10970 return isAvailableAtLoopEntry(FoundRHS, L) && 10971 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10972 getConstant(FoundRHSLimit)); 10973 } 10974 10975 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10976 const SCEV *LHS, const SCEV *RHS, 10977 const SCEV *FoundLHS, 10978 const SCEV *FoundRHS, unsigned Depth) { 10979 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10980 10981 auto ClearOnExit = make_scope_exit([&]() { 10982 if (LPhi) { 10983 bool Erased = PendingMerges.erase(LPhi); 10984 assert(Erased && "Failed to erase LPhi!"); 10985 (void)Erased; 10986 } 10987 if (RPhi) { 10988 bool Erased = PendingMerges.erase(RPhi); 10989 assert(Erased && "Failed to erase RPhi!"); 10990 (void)Erased; 10991 } 10992 }); 10993 10994 // Find respective Phis and check that they are not being pending. 10995 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10996 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10997 if (!PendingMerges.insert(Phi).second) 10998 return false; 10999 LPhi = Phi; 11000 } 11001 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11002 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11003 // If we detect a loop of Phi nodes being processed by this method, for 11004 // example: 11005 // 11006 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11007 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11008 // 11009 // we don't want to deal with a case that complex, so return conservative 11010 // answer false. 11011 if (!PendingMerges.insert(Phi).second) 11012 return false; 11013 RPhi = Phi; 11014 } 11015 11016 // If none of LHS, RHS is a Phi, nothing to do here. 11017 if (!LPhi && !RPhi) 11018 return false; 11019 11020 // If there is a SCEVUnknown Phi we are interested in, make it left. 11021 if (!LPhi) { 11022 std::swap(LHS, RHS); 11023 std::swap(FoundLHS, FoundRHS); 11024 std::swap(LPhi, RPhi); 11025 Pred = ICmpInst::getSwappedPredicate(Pred); 11026 } 11027 11028 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11029 const BasicBlock *LBB = LPhi->getParent(); 11030 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11031 11032 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11033 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11034 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11035 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11036 }; 11037 11038 if (RPhi && RPhi->getParent() == LBB) { 11039 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11040 // If we compare two Phis from the same block, and for each entry block 11041 // the predicate is true for incoming values from this block, then the 11042 // predicate is also true for the Phis. 11043 for (const BasicBlock *IncBB : predecessors(LBB)) { 11044 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11045 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11046 if (!ProvedEasily(L, R)) 11047 return false; 11048 } 11049 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11050 // Case two: RHS is also a Phi from the same basic block, and it is an 11051 // AddRec. It means that there is a loop which has both AddRec and Unknown 11052 // PHIs, for it we can compare incoming values of AddRec from above the loop 11053 // and latch with their respective incoming values of LPhi. 11054 // TODO: Generalize to handle loops with many inputs in a header. 11055 if (LPhi->getNumIncomingValues() != 2) return false; 11056 11057 auto *RLoop = RAR->getLoop(); 11058 auto *Predecessor = RLoop->getLoopPredecessor(); 11059 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11060 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11061 if (!ProvedEasily(L1, RAR->getStart())) 11062 return false; 11063 auto *Latch = RLoop->getLoopLatch(); 11064 assert(Latch && "Loop with AddRec with no latch?"); 11065 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11066 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11067 return false; 11068 } else { 11069 // In all other cases go over inputs of LHS and compare each of them to RHS, 11070 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11071 // At this point RHS is either a non-Phi, or it is a Phi from some block 11072 // different from LBB. 11073 for (const BasicBlock *IncBB : predecessors(LBB)) { 11074 // Check that RHS is available in this block. 11075 if (!dominates(RHS, IncBB)) 11076 return false; 11077 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11078 // Make sure L does not refer to a value from a potentially previous 11079 // iteration of a loop. 11080 if (!properlyDominates(L, IncBB)) 11081 return false; 11082 if (!ProvedEasily(L, RHS)) 11083 return false; 11084 } 11085 } 11086 return true; 11087 } 11088 11089 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11090 const SCEV *LHS, const SCEV *RHS, 11091 const SCEV *FoundLHS, 11092 const SCEV *FoundRHS, 11093 const Instruction *Context) { 11094 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11095 return true; 11096 11097 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11098 return true; 11099 11100 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11101 Context)) 11102 return true; 11103 11104 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11105 FoundLHS, FoundRHS); 11106 } 11107 11108 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11109 template <typename MinMaxExprType> 11110 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11111 const SCEV *Candidate) { 11112 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11113 if (!MinMaxExpr) 11114 return false; 11115 11116 return is_contained(MinMaxExpr->operands(), Candidate); 11117 } 11118 11119 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11120 ICmpInst::Predicate Pred, 11121 const SCEV *LHS, const SCEV *RHS) { 11122 // If both sides are affine addrecs for the same loop, with equal 11123 // steps, and we know the recurrences don't wrap, then we only 11124 // need to check the predicate on the starting values. 11125 11126 if (!ICmpInst::isRelational(Pred)) 11127 return false; 11128 11129 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11130 if (!LAR) 11131 return false; 11132 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11133 if (!RAR) 11134 return false; 11135 if (LAR->getLoop() != RAR->getLoop()) 11136 return false; 11137 if (!LAR->isAffine() || !RAR->isAffine()) 11138 return false; 11139 11140 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11141 return false; 11142 11143 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11144 SCEV::FlagNSW : SCEV::FlagNUW; 11145 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11146 return false; 11147 11148 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11149 } 11150 11151 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11152 /// expression? 11153 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11154 ICmpInst::Predicate Pred, 11155 const SCEV *LHS, const SCEV *RHS) { 11156 switch (Pred) { 11157 default: 11158 return false; 11159 11160 case ICmpInst::ICMP_SGE: 11161 std::swap(LHS, RHS); 11162 LLVM_FALLTHROUGH; 11163 case ICmpInst::ICMP_SLE: 11164 return 11165 // min(A, ...) <= A 11166 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11167 // A <= max(A, ...) 11168 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11169 11170 case ICmpInst::ICMP_UGE: 11171 std::swap(LHS, RHS); 11172 LLVM_FALLTHROUGH; 11173 case ICmpInst::ICMP_ULE: 11174 return 11175 // min(A, ...) <= A 11176 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11177 // A <= max(A, ...) 11178 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11179 } 11180 11181 llvm_unreachable("covered switch fell through?!"); 11182 } 11183 11184 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11185 const SCEV *LHS, const SCEV *RHS, 11186 const SCEV *FoundLHS, 11187 const SCEV *FoundRHS, 11188 unsigned Depth) { 11189 assert(getTypeSizeInBits(LHS->getType()) == 11190 getTypeSizeInBits(RHS->getType()) && 11191 "LHS and RHS have different sizes?"); 11192 assert(getTypeSizeInBits(FoundLHS->getType()) == 11193 getTypeSizeInBits(FoundRHS->getType()) && 11194 "FoundLHS and FoundRHS have different sizes?"); 11195 // We want to avoid hurting the compile time with analysis of too big trees. 11196 if (Depth > MaxSCEVOperationsImplicationDepth) 11197 return false; 11198 11199 // We only want to work with GT comparison so far. 11200 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11201 Pred = CmpInst::getSwappedPredicate(Pred); 11202 std::swap(LHS, RHS); 11203 std::swap(FoundLHS, FoundRHS); 11204 } 11205 11206 // For unsigned, try to reduce it to corresponding signed comparison. 11207 if (Pred == ICmpInst::ICMP_UGT) 11208 // We can replace unsigned predicate with its signed counterpart if all 11209 // involved values are non-negative. 11210 // TODO: We could have better support for unsigned. 11211 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11212 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11213 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11214 // use this fact to prove that LHS and RHS are non-negative. 11215 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11216 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11217 FoundRHS) && 11218 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11219 FoundRHS)) 11220 Pred = ICmpInst::ICMP_SGT; 11221 } 11222 11223 if (Pred != ICmpInst::ICMP_SGT) 11224 return false; 11225 11226 auto GetOpFromSExt = [&](const SCEV *S) { 11227 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11228 return Ext->getOperand(); 11229 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11230 // the constant in some cases. 11231 return S; 11232 }; 11233 11234 // Acquire values from extensions. 11235 auto *OrigLHS = LHS; 11236 auto *OrigFoundLHS = FoundLHS; 11237 LHS = GetOpFromSExt(LHS); 11238 FoundLHS = GetOpFromSExt(FoundLHS); 11239 11240 // Is the SGT predicate can be proved trivially or using the found context. 11241 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11242 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11243 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11244 FoundRHS, Depth + 1); 11245 }; 11246 11247 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11248 // We want to avoid creation of any new non-constant SCEV. Since we are 11249 // going to compare the operands to RHS, we should be certain that we don't 11250 // need any size extensions for this. So let's decline all cases when the 11251 // sizes of types of LHS and RHS do not match. 11252 // TODO: Maybe try to get RHS from sext to catch more cases? 11253 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11254 return false; 11255 11256 // Should not overflow. 11257 if (!LHSAddExpr->hasNoSignedWrap()) 11258 return false; 11259 11260 auto *LL = LHSAddExpr->getOperand(0); 11261 auto *LR = LHSAddExpr->getOperand(1); 11262 auto *MinusOne = getMinusOne(RHS->getType()); 11263 11264 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11265 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11266 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11267 }; 11268 // Try to prove the following rule: 11269 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11270 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11271 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11272 return true; 11273 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11274 Value *LL, *LR; 11275 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11276 11277 using namespace llvm::PatternMatch; 11278 11279 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11280 // Rules for division. 11281 // We are going to perform some comparisons with Denominator and its 11282 // derivative expressions. In general case, creating a SCEV for it may 11283 // lead to a complex analysis of the entire graph, and in particular it 11284 // can request trip count recalculation for the same loop. This would 11285 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11286 // this, we only want to create SCEVs that are constants in this section. 11287 // So we bail if Denominator is not a constant. 11288 if (!isa<ConstantInt>(LR)) 11289 return false; 11290 11291 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11292 11293 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11294 // then a SCEV for the numerator already exists and matches with FoundLHS. 11295 auto *Numerator = getExistingSCEV(LL); 11296 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11297 return false; 11298 11299 // Make sure that the numerator matches with FoundLHS and the denominator 11300 // is positive. 11301 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11302 return false; 11303 11304 auto *DTy = Denominator->getType(); 11305 auto *FRHSTy = FoundRHS->getType(); 11306 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11307 // One of types is a pointer and another one is not. We cannot extend 11308 // them properly to a wider type, so let us just reject this case. 11309 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11310 // to avoid this check. 11311 return false; 11312 11313 // Given that: 11314 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11315 auto *WTy = getWiderType(DTy, FRHSTy); 11316 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11317 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11318 11319 // Try to prove the following rule: 11320 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11321 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11322 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11323 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11324 if (isKnownNonPositive(RHS) && 11325 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11326 return true; 11327 11328 // Try to prove the following rule: 11329 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11330 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11331 // If we divide it by Denominator > 2, then: 11332 // 1. If FoundLHS is negative, then the result is 0. 11333 // 2. If FoundLHS is non-negative, then the result is non-negative. 11334 // Anyways, the result is non-negative. 11335 auto *MinusOne = getMinusOne(WTy); 11336 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11337 if (isKnownNegative(RHS) && 11338 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11339 return true; 11340 } 11341 } 11342 11343 // If our expression contained SCEVUnknown Phis, and we split it down and now 11344 // need to prove something for them, try to prove the predicate for every 11345 // possible incoming values of those Phis. 11346 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11347 return true; 11348 11349 return false; 11350 } 11351 11352 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11353 const SCEV *LHS, const SCEV *RHS) { 11354 // zext x u<= sext x, sext x s<= zext x 11355 switch (Pred) { 11356 case ICmpInst::ICMP_SGE: 11357 std::swap(LHS, RHS); 11358 LLVM_FALLTHROUGH; 11359 case ICmpInst::ICMP_SLE: { 11360 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11361 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11362 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11363 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11364 return true; 11365 break; 11366 } 11367 case ICmpInst::ICMP_UGE: 11368 std::swap(LHS, RHS); 11369 LLVM_FALLTHROUGH; 11370 case ICmpInst::ICMP_ULE: { 11371 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11372 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11373 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11374 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11375 return true; 11376 break; 11377 } 11378 default: 11379 break; 11380 }; 11381 return false; 11382 } 11383 11384 bool 11385 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11386 const SCEV *LHS, const SCEV *RHS) { 11387 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11388 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11389 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11390 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11391 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11392 } 11393 11394 bool 11395 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11396 const SCEV *LHS, const SCEV *RHS, 11397 const SCEV *FoundLHS, 11398 const SCEV *FoundRHS) { 11399 switch (Pred) { 11400 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11401 case ICmpInst::ICMP_EQ: 11402 case ICmpInst::ICMP_NE: 11403 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11404 return true; 11405 break; 11406 case ICmpInst::ICMP_SLT: 11407 case ICmpInst::ICMP_SLE: 11408 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11409 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11410 return true; 11411 break; 11412 case ICmpInst::ICMP_SGT: 11413 case ICmpInst::ICMP_SGE: 11414 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11415 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11416 return true; 11417 break; 11418 case ICmpInst::ICMP_ULT: 11419 case ICmpInst::ICMP_ULE: 11420 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11421 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11422 return true; 11423 break; 11424 case ICmpInst::ICMP_UGT: 11425 case ICmpInst::ICMP_UGE: 11426 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11427 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11428 return true; 11429 break; 11430 } 11431 11432 // Maybe it can be proved via operations? 11433 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11434 return true; 11435 11436 return false; 11437 } 11438 11439 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11440 const SCEV *LHS, 11441 const SCEV *RHS, 11442 const SCEV *FoundLHS, 11443 const SCEV *FoundRHS) { 11444 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11445 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11446 // reduce the compile time impact of this optimization. 11447 return false; 11448 11449 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11450 if (!Addend) 11451 return false; 11452 11453 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11454 11455 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11456 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11457 ConstantRange FoundLHSRange = 11458 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11459 11460 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11461 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11462 11463 // We can also compute the range of values for `LHS` that satisfy the 11464 // consequent, "`LHS` `Pred` `RHS`": 11465 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11466 // The antecedent implies the consequent if every value of `LHS` that 11467 // satisfies the antecedent also satisfies the consequent. 11468 return LHSRange.icmp(Pred, ConstRHS); 11469 } 11470 11471 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11472 bool IsSigned) { 11473 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11474 11475 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11476 const SCEV *One = getOne(Stride->getType()); 11477 11478 if (IsSigned) { 11479 APInt MaxRHS = getSignedRangeMax(RHS); 11480 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11481 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11482 11483 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11484 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11485 } 11486 11487 APInt MaxRHS = getUnsignedRangeMax(RHS); 11488 APInt MaxValue = APInt::getMaxValue(BitWidth); 11489 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11490 11491 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11492 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11493 } 11494 11495 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11496 bool IsSigned) { 11497 11498 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11499 const SCEV *One = getOne(Stride->getType()); 11500 11501 if (IsSigned) { 11502 APInt MinRHS = getSignedRangeMin(RHS); 11503 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11504 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11505 11506 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11507 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11508 } 11509 11510 APInt MinRHS = getUnsignedRangeMin(RHS); 11511 APInt MinValue = APInt::getMinValue(BitWidth); 11512 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11513 11514 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11515 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11516 } 11517 11518 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11519 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11520 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11521 // expression fixes the case of N=0. 11522 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11523 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11524 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11525 } 11526 11527 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11528 const SCEV *Stride, 11529 const SCEV *End, 11530 unsigned BitWidth, 11531 bool IsSigned) { 11532 // The logic in this function assumes we can represent a positive stride. 11533 // If we can't, the backedge-taken count must be zero. 11534 if (IsSigned && BitWidth == 1) 11535 return getZero(Stride->getType()); 11536 11537 // Calculate the maximum backedge count based on the range of values 11538 // permitted by Start, End, and Stride. 11539 APInt MinStart = 11540 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11541 11542 APInt MinStride = 11543 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11544 11545 // We assume either the stride is positive, or the backedge-taken count 11546 // is zero. So force StrideForMaxBECount to be at least one. 11547 APInt One(BitWidth, 1); 11548 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11549 : APIntOps::umax(One, MinStride); 11550 11551 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11552 : APInt::getMaxValue(BitWidth); 11553 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11554 11555 // Although End can be a MAX expression we estimate MaxEnd considering only 11556 // the case End = RHS of the loop termination condition. This is safe because 11557 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11558 // taken count. 11559 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11560 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11561 11562 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11563 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11564 : APIntOps::umax(MaxEnd, MinStart); 11565 11566 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11567 getConstant(StrideForMaxBECount) /* Step */); 11568 } 11569 11570 ScalarEvolution::ExitLimit 11571 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11572 const Loop *L, bool IsSigned, 11573 bool ControlsExit, bool AllowPredicates) { 11574 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11575 11576 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11577 bool PredicatedIV = false; 11578 11579 if (!IV && AllowPredicates) { 11580 // Try to make this an AddRec using runtime tests, in the first X 11581 // iterations of this loop, where X is the SCEV expression found by the 11582 // algorithm below. 11583 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11584 PredicatedIV = true; 11585 } 11586 11587 // Avoid weird loops 11588 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11589 return getCouldNotCompute(); 11590 11591 // A precondition of this method is that the condition being analyzed 11592 // reaches an exiting branch which dominates the latch. Given that, we can 11593 // assume that an increment which violates the nowrap specification and 11594 // produces poison must cause undefined behavior when the resulting poison 11595 // value is branched upon and thus we can conclude that the backedge is 11596 // taken no more often than would be required to produce that poison value. 11597 // Note that a well defined loop can exit on the iteration which violates 11598 // the nowrap specification if there is another exit (either explicit or 11599 // implicit/exceptional) which causes the loop to execute before the 11600 // exiting instruction we're analyzing would trigger UB. 11601 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11602 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11603 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11604 11605 const SCEV *Stride = IV->getStepRecurrence(*this); 11606 11607 bool PositiveStride = isKnownPositive(Stride); 11608 11609 // Avoid negative or zero stride values. 11610 if (!PositiveStride) { 11611 // We can compute the correct backedge taken count for loops with unknown 11612 // strides if we can prove that the loop is not an infinite loop with side 11613 // effects. Here's the loop structure we are trying to handle - 11614 // 11615 // i = start 11616 // do { 11617 // A[i] = i; 11618 // i += s; 11619 // } while (i < end); 11620 // 11621 // The backedge taken count for such loops is evaluated as - 11622 // (max(end, start + stride) - start - 1) /u stride 11623 // 11624 // The additional preconditions that we need to check to prove correctness 11625 // of the above formula is as follows - 11626 // 11627 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11628 // NoWrap flag). 11629 // b) loop is single exit with no side effects. 11630 // 11631 // 11632 // Precondition a) implies that if the stride is negative, this is a single 11633 // trip loop. The backedge taken count formula reduces to zero in this case. 11634 // 11635 // Precondition b) implies that if rhs is invariant in L, then unknown 11636 // stride being zero means the backedge can't be taken without UB. 11637 // 11638 // The positive stride case is the same as isKnownPositive(Stride) returning 11639 // true (original behavior of the function). 11640 // 11641 // We want to make sure that the stride is truly unknown as there are edge 11642 // cases where ScalarEvolution propagates no wrap flags to the 11643 // post-increment/decrement IV even though the increment/decrement operation 11644 // itself is wrapping. The computed backedge taken count may be wrong in 11645 // such cases. This is prevented by checking that the stride is not known to 11646 // be either positive or non-positive. For example, no wrap flags are 11647 // propagated to the post-increment IV of this loop with a trip count of 2 - 11648 // 11649 // unsigned char i; 11650 // for(i=127; i<128; i+=129) 11651 // A[i] = i; 11652 // 11653 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11654 !loopIsFiniteByAssumption(L)) 11655 return getCouldNotCompute(); 11656 11657 if (!isKnownNonZero(Stride)) { 11658 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11659 // if it might eventually be greater than start and if so, on which 11660 // iteration. We can't even produce a useful upper bound. 11661 if (!isLoopInvariant(RHS, L)) 11662 return getCouldNotCompute(); 11663 11664 // We allow a potentially zero stride, but we need to divide by stride 11665 // below. Since the loop can't be infinite and this check must control 11666 // the sole exit, we can infer the exit must be taken on the first 11667 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11668 // we know the numerator in the divides below must be zero, so we can 11669 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11670 // and produce the right result. 11671 // FIXME: Handle the case where Stride is poison? 11672 auto wouldZeroStrideBeUB = [&]() { 11673 // Proof by contradiction. Suppose the stride were zero. If we can 11674 // prove that the backedge *is* taken on the first iteration, then since 11675 // we know this condition controls the sole exit, we must have an 11676 // infinite loop. We can't have a (well defined) infinite loop per 11677 // check just above. 11678 // Note: The (Start - Stride) term is used to get the start' term from 11679 // (start' + stride,+,stride). Remember that we only care about the 11680 // result of this expression when stride == 0 at runtime. 11681 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11682 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11683 }; 11684 if (!wouldZeroStrideBeUB()) { 11685 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11686 } 11687 } 11688 } else if (!Stride->isOne() && !NoWrap) { 11689 auto isUBOnWrap = [&]() { 11690 // Can we prove this loop *must* be UB if overflow of IV occurs? 11691 // Reasoning goes as follows: 11692 // * Suppose the IV did self wrap. 11693 // * If Stride evenly divides the iteration space, then once wrap 11694 // occurs, the loop must revisit the same values. 11695 // * We know that RHS is invariant, and that none of those values 11696 // caused this exit to be taken previously. Thus, this exit is 11697 // dynamically dead. 11698 // * If this is the sole exit, then a dead exit implies the loop 11699 // must be infinite if there are no abnormal exits. 11700 // * If the loop were infinite, then it must either not be mustprogress 11701 // or have side effects. Otherwise, it must be UB. 11702 // * It can't (by assumption), be UB so we have contradicted our 11703 // premise and can conclude the IV did not in fact self-wrap. 11704 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11705 // follows trivially from the fact that every (un)signed-wrapped, but 11706 // not self-wrapped value must be LT than the last value before 11707 // (un)signed wrap. Since we know that last value didn't exit, nor 11708 // will any smaller one. 11709 11710 if (!isLoopInvariant(RHS, L)) 11711 return false; 11712 11713 auto *StrideC = dyn_cast<SCEVConstant>(Stride); 11714 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11715 return false; 11716 11717 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11718 return false; 11719 11720 return loopIsFiniteByAssumption(L); 11721 }; 11722 11723 // Avoid proven overflow cases: this will ensure that the backedge taken 11724 // count will not generate any unsigned overflow. Relaxed no-overflow 11725 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11726 // undefined behaviors like the case of C language. 11727 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11728 return getCouldNotCompute(); 11729 } 11730 11731 // On all paths just preceeding, we established the following invariant: 11732 // IV can be assumed not to overflow up to and including the exiting 11733 // iteration. We proved this in one of two ways: 11734 // 1) We can show overflow doesn't occur before the exiting iteration 11735 // 1a) canIVOverflowOnLT, and b) step of one 11736 // 2) We can show that if overflow occurs, the loop must execute UB 11737 // before any possible exit. 11738 // Note that we have not yet proved RHS invariant (in general). 11739 11740 const SCEV *Start = IV->getStart(); 11741 11742 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11743 // Use integer-typed versions for actual computation. 11744 const SCEV *OrigStart = Start; 11745 const SCEV *OrigRHS = RHS; 11746 if (Start->getType()->isPointerTy()) { 11747 Start = getLosslessPtrToIntExpr(Start); 11748 if (isa<SCEVCouldNotCompute>(Start)) 11749 return Start; 11750 } 11751 if (RHS->getType()->isPointerTy()) { 11752 RHS = getLosslessPtrToIntExpr(RHS); 11753 if (isa<SCEVCouldNotCompute>(RHS)) 11754 return RHS; 11755 } 11756 11757 // When the RHS is not invariant, we do not know the end bound of the loop and 11758 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11759 // calculate the MaxBECount, given the start, stride and max value for the end 11760 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11761 // checked above). 11762 if (!isLoopInvariant(RHS, L)) { 11763 const SCEV *MaxBECount = computeMaxBECountForLT( 11764 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11765 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11766 false /*MaxOrZero*/, Predicates); 11767 } 11768 11769 // We use the expression (max(End,Start)-Start)/Stride to describe the 11770 // backedge count, as if the backedge is taken at least once max(End,Start) 11771 // is End and so the result is as above, and if not max(End,Start) is Start 11772 // so we get a backedge count of zero. 11773 const SCEV *BECount = nullptr; 11774 auto *StartMinusStride = getMinusSCEV(OrigStart, Stride); 11775 // Can we prove (max(RHS,Start) > Start - Stride? 11776 if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) && 11777 isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) { 11778 // In this case, we can use a refined formula for computing backedge taken 11779 // count. The general formula remains: 11780 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11781 // We want to use the alternate formula: 11782 // "((End - 1) - (Start - Stride)) /u Stride" 11783 // Let's do a quick case analysis to show these are equivalent under 11784 // our precondition that max(RHS,Start) > Start - Stride. 11785 // * For RHS <= Start, the backedge-taken count must be zero. 11786 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11787 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11788 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11789 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11790 // this to the stride of 1 case. 11791 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11792 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11793 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11794 // "((RHS - (Start - Stride) - 1) /u Stride". 11795 // Our preconditions trivially imply no overflow in that form. 11796 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11797 const SCEV *Numerator = 11798 getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride); 11799 if (!isa<SCEVCouldNotCompute>(Numerator)) { 11800 BECount = getUDivExpr(Numerator, Stride); 11801 } 11802 } 11803 11804 const SCEV *BECountIfBackedgeTaken = nullptr; 11805 if (!BECount) { 11806 auto canProveRHSGreaterThanEqualStart = [&]() { 11807 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11808 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11809 return true; 11810 11811 // (RHS > Start - 1) implies RHS >= Start. 11812 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11813 // "Start - 1" doesn't overflow. 11814 // * For signed comparison, if Start - 1 does overflow, it's equal 11815 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11816 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11817 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11818 // 11819 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11820 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11821 auto *StartMinusOne = getAddExpr(OrigStart, 11822 getMinusOne(OrigStart->getType())); 11823 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11824 }; 11825 11826 // If we know that RHS >= Start in the context of loop, then we know that 11827 // max(RHS, Start) = RHS at this point. 11828 const SCEV *End; 11829 if (canProveRHSGreaterThanEqualStart()) { 11830 End = RHS; 11831 } else { 11832 // If RHS < Start, the backedge will be taken zero times. So in 11833 // general, we can write the backedge-taken count as: 11834 // 11835 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 11836 // 11837 // We convert it to the following to make it more convenient for SCEV: 11838 // 11839 // ceil(max(RHS, Start) - Start) / Stride 11840 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11841 11842 // See what would happen if we assume the backedge is taken. This is 11843 // used to compute MaxBECount. 11844 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 11845 } 11846 11847 // At this point, we know: 11848 // 11849 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 11850 // 2. The index variable doesn't overflow. 11851 // 11852 // Therefore, we know N exists such that 11853 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 11854 // doesn't overflow. 11855 // 11856 // Using this information, try to prove whether the addition in 11857 // "(Start - End) + (Stride - 1)" has unsigned overflow. 11858 const SCEV *One = getOne(Stride->getType()); 11859 bool MayAddOverflow = [&] { 11860 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 11861 if (StrideC->getAPInt().isPowerOf2()) { 11862 // Suppose Stride is a power of two, and Start/End are unsigned 11863 // integers. Let UMAX be the largest representable unsigned 11864 // integer. 11865 // 11866 // By the preconditions of this function, we know 11867 // "(Start + Stride * N) >= End", and this doesn't overflow. 11868 // As a formula: 11869 // 11870 // End <= (Start + Stride * N) <= UMAX 11871 // 11872 // Subtracting Start from all the terms: 11873 // 11874 // End - Start <= Stride * N <= UMAX - Start 11875 // 11876 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 11877 // 11878 // End - Start <= Stride * N <= UMAX 11879 // 11880 // Stride * N is a multiple of Stride. Therefore, 11881 // 11882 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 11883 // 11884 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 11885 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 11886 // 11887 // End - Start <= Stride * N <= UMAX - Stride - 1 11888 // 11889 // Dropping the middle term: 11890 // 11891 // End - Start <= UMAX - Stride - 1 11892 // 11893 // Adding Stride - 1 to both sides: 11894 // 11895 // (End - Start) + (Stride - 1) <= UMAX 11896 // 11897 // In other words, the addition doesn't have unsigned overflow. 11898 // 11899 // A similar proof works if we treat Start/End as signed values. 11900 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 11901 // use signed max instead of unsigned max. Note that we're trying 11902 // to prove a lack of unsigned overflow in either case. 11903 return false; 11904 } 11905 } 11906 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 11907 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 11908 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 11909 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 11910 // 11911 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 11912 return false; 11913 } 11914 return true; 11915 }(); 11916 11917 const SCEV *Delta = getMinusSCEV(End, Start); 11918 if (!MayAddOverflow) { 11919 // floor((D + (S - 1)) / S) 11920 // We prefer this formulation if it's legal because it's fewer operations. 11921 BECount = 11922 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 11923 } else { 11924 BECount = getUDivCeilSCEV(Delta, Stride); 11925 } 11926 } 11927 11928 const SCEV *MaxBECount; 11929 bool MaxOrZero = false; 11930 if (isa<SCEVConstant>(BECount)) { 11931 MaxBECount = BECount; 11932 } else if (BECountIfBackedgeTaken && 11933 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11934 // If we know exactly how many times the backedge will be taken if it's 11935 // taken at least once, then the backedge count will either be that or 11936 // zero. 11937 MaxBECount = BECountIfBackedgeTaken; 11938 MaxOrZero = true; 11939 } else { 11940 MaxBECount = computeMaxBECountForLT( 11941 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11942 } 11943 11944 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11945 !isa<SCEVCouldNotCompute>(BECount)) 11946 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11947 11948 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11949 } 11950 11951 ScalarEvolution::ExitLimit 11952 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11953 const Loop *L, bool IsSigned, 11954 bool ControlsExit, bool AllowPredicates) { 11955 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11956 // We handle only IV > Invariant 11957 if (!isLoopInvariant(RHS, L)) 11958 return getCouldNotCompute(); 11959 11960 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11961 if (!IV && AllowPredicates) 11962 // Try to make this an AddRec using runtime tests, in the first X 11963 // iterations of this loop, where X is the SCEV expression found by the 11964 // algorithm below. 11965 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11966 11967 // Avoid weird loops 11968 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11969 return getCouldNotCompute(); 11970 11971 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11972 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11973 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11974 11975 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11976 11977 // Avoid negative or zero stride values 11978 if (!isKnownPositive(Stride)) 11979 return getCouldNotCompute(); 11980 11981 // Avoid proven overflow cases: this will ensure that the backedge taken count 11982 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11983 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11984 // behaviors like the case of C language. 11985 if (!Stride->isOne() && !NoWrap) 11986 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 11987 return getCouldNotCompute(); 11988 11989 const SCEV *Start = IV->getStart(); 11990 const SCEV *End = RHS; 11991 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11992 // If we know that Start >= RHS in the context of loop, then we know that 11993 // min(RHS, Start) = RHS at this point. 11994 if (isLoopEntryGuardedByCond( 11995 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11996 End = RHS; 11997 else 11998 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11999 } 12000 12001 if (Start->getType()->isPointerTy()) { 12002 Start = getLosslessPtrToIntExpr(Start); 12003 if (isa<SCEVCouldNotCompute>(Start)) 12004 return Start; 12005 } 12006 if (End->getType()->isPointerTy()) { 12007 End = getLosslessPtrToIntExpr(End); 12008 if (isa<SCEVCouldNotCompute>(End)) 12009 return End; 12010 } 12011 12012 // Compute ((Start - End) + (Stride - 1)) / Stride. 12013 // FIXME: This can overflow. Holding off on fixing this for now; 12014 // howManyGreaterThans will hopefully be gone soon. 12015 const SCEV *One = getOne(Stride->getType()); 12016 const SCEV *BECount = getUDivExpr( 12017 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12018 12019 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12020 : getUnsignedRangeMax(Start); 12021 12022 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12023 : getUnsignedRangeMin(Stride); 12024 12025 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12026 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12027 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12028 12029 // Although End can be a MIN expression we estimate MinEnd considering only 12030 // the case End = RHS. This is safe because in the other case (Start - End) 12031 // is zero, leading to a zero maximum backedge taken count. 12032 APInt MinEnd = 12033 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12034 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12035 12036 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12037 ? BECount 12038 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12039 getConstant(MinStride)); 12040 12041 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12042 MaxBECount = BECount; 12043 12044 return ExitLimit(BECount, MaxBECount, false, Predicates); 12045 } 12046 12047 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12048 ScalarEvolution &SE) const { 12049 if (Range.isFullSet()) // Infinite loop. 12050 return SE.getCouldNotCompute(); 12051 12052 // If the start is a non-zero constant, shift the range to simplify things. 12053 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12054 if (!SC->getValue()->isZero()) { 12055 SmallVector<const SCEV *, 4> Operands(operands()); 12056 Operands[0] = SE.getZero(SC->getType()); 12057 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12058 getNoWrapFlags(FlagNW)); 12059 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12060 return ShiftedAddRec->getNumIterationsInRange( 12061 Range.subtract(SC->getAPInt()), SE); 12062 // This is strange and shouldn't happen. 12063 return SE.getCouldNotCompute(); 12064 } 12065 12066 // The only time we can solve this is when we have all constant indices. 12067 // Otherwise, we cannot determine the overflow conditions. 12068 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12069 return SE.getCouldNotCompute(); 12070 12071 // Okay at this point we know that all elements of the chrec are constants and 12072 // that the start element is zero. 12073 12074 // First check to see if the range contains zero. If not, the first 12075 // iteration exits. 12076 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12077 if (!Range.contains(APInt(BitWidth, 0))) 12078 return SE.getZero(getType()); 12079 12080 if (isAffine()) { 12081 // If this is an affine expression then we have this situation: 12082 // Solve {0,+,A} in Range === Ax in Range 12083 12084 // We know that zero is in the range. If A is positive then we know that 12085 // the upper value of the range must be the first possible exit value. 12086 // If A is negative then the lower of the range is the last possible loop 12087 // value. Also note that we already checked for a full range. 12088 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12089 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12090 12091 // The exit value should be (End+A)/A. 12092 APInt ExitVal = (End + A).udiv(A); 12093 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12094 12095 // Evaluate at the exit value. If we really did fall out of the valid 12096 // range, then we computed our trip count, otherwise wrap around or other 12097 // things must have happened. 12098 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12099 if (Range.contains(Val->getValue())) 12100 return SE.getCouldNotCompute(); // Something strange happened 12101 12102 // Ensure that the previous value is in the range. This is a sanity check. 12103 assert(Range.contains( 12104 EvaluateConstantChrecAtConstant(this, 12105 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12106 "Linear scev computation is off in a bad way!"); 12107 return SE.getConstant(ExitValue); 12108 } 12109 12110 if (isQuadratic()) { 12111 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12112 return SE.getConstant(S.getValue()); 12113 } 12114 12115 return SE.getCouldNotCompute(); 12116 } 12117 12118 const SCEVAddRecExpr * 12119 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12120 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12121 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12122 // but in this case we cannot guarantee that the value returned will be an 12123 // AddRec because SCEV does not have a fixed point where it stops 12124 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12125 // may happen if we reach arithmetic depth limit while simplifying. So we 12126 // construct the returned value explicitly. 12127 SmallVector<const SCEV *, 3> Ops; 12128 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12129 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12130 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12131 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12132 // We know that the last operand is not a constant zero (otherwise it would 12133 // have been popped out earlier). This guarantees us that if the result has 12134 // the same last operand, then it will also not be popped out, meaning that 12135 // the returned value will be an AddRec. 12136 const SCEV *Last = getOperand(getNumOperands() - 1); 12137 assert(!Last->isZero() && "Recurrency with zero step?"); 12138 Ops.push_back(Last); 12139 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12140 SCEV::FlagAnyWrap)); 12141 } 12142 12143 // Return true when S contains at least an undef value. 12144 static inline bool containsUndefs(const SCEV *S) { 12145 return SCEVExprContains(S, [](const SCEV *S) { 12146 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12147 return isa<UndefValue>(SU->getValue()); 12148 return false; 12149 }); 12150 } 12151 12152 namespace { 12153 12154 // Collect all steps of SCEV expressions. 12155 struct SCEVCollectStrides { 12156 ScalarEvolution &SE; 12157 SmallVectorImpl<const SCEV *> &Strides; 12158 12159 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 12160 : SE(SE), Strides(S) {} 12161 12162 bool follow(const SCEV *S) { 12163 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 12164 Strides.push_back(AR->getStepRecurrence(SE)); 12165 return true; 12166 } 12167 12168 bool isDone() const { return false; } 12169 }; 12170 12171 // Collect all SCEVUnknown and SCEVMulExpr expressions. 12172 struct SCEVCollectTerms { 12173 SmallVectorImpl<const SCEV *> &Terms; 12174 12175 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 12176 12177 bool follow(const SCEV *S) { 12178 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 12179 isa<SCEVSignExtendExpr>(S)) { 12180 if (!containsUndefs(S)) 12181 Terms.push_back(S); 12182 12183 // Stop recursion: once we collected a term, do not walk its operands. 12184 return false; 12185 } 12186 12187 // Keep looking. 12188 return true; 12189 } 12190 12191 bool isDone() const { return false; } 12192 }; 12193 12194 // Check if a SCEV contains an AddRecExpr. 12195 struct SCEVHasAddRec { 12196 bool &ContainsAddRec; 12197 12198 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 12199 ContainsAddRec = false; 12200 } 12201 12202 bool follow(const SCEV *S) { 12203 if (isa<SCEVAddRecExpr>(S)) { 12204 ContainsAddRec = true; 12205 12206 // Stop recursion: once we collected a term, do not walk its operands. 12207 return false; 12208 } 12209 12210 // Keep looking. 12211 return true; 12212 } 12213 12214 bool isDone() const { return false; } 12215 }; 12216 12217 // Find factors that are multiplied with an expression that (possibly as a 12218 // subexpression) contains an AddRecExpr. In the expression: 12219 // 12220 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 12221 // 12222 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 12223 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 12224 // parameters as they form a product with an induction variable. 12225 // 12226 // This collector expects all array size parameters to be in the same MulExpr. 12227 // It might be necessary to later add support for collecting parameters that are 12228 // spread over different nested MulExpr. 12229 struct SCEVCollectAddRecMultiplies { 12230 SmallVectorImpl<const SCEV *> &Terms; 12231 ScalarEvolution &SE; 12232 12233 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 12234 : Terms(T), SE(SE) {} 12235 12236 bool follow(const SCEV *S) { 12237 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 12238 bool HasAddRec = false; 12239 SmallVector<const SCEV *, 0> Operands; 12240 for (auto Op : Mul->operands()) { 12241 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 12242 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 12243 Operands.push_back(Op); 12244 } else if (Unknown) { 12245 HasAddRec = true; 12246 } else { 12247 bool ContainsAddRec = false; 12248 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 12249 visitAll(Op, ContiansAddRec); 12250 HasAddRec |= ContainsAddRec; 12251 } 12252 } 12253 if (Operands.size() == 0) 12254 return true; 12255 12256 if (!HasAddRec) 12257 return false; 12258 12259 Terms.push_back(SE.getMulExpr(Operands)); 12260 // Stop recursion: once we collected a term, do not walk its operands. 12261 return false; 12262 } 12263 12264 // Keep looking. 12265 return true; 12266 } 12267 12268 bool isDone() const { return false; } 12269 }; 12270 12271 } // end anonymous namespace 12272 12273 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 12274 /// two places: 12275 /// 1) The strides of AddRec expressions. 12276 /// 2) Unknowns that are multiplied with AddRec expressions. 12277 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 12278 SmallVectorImpl<const SCEV *> &Terms) { 12279 SmallVector<const SCEV *, 4> Strides; 12280 SCEVCollectStrides StrideCollector(*this, Strides); 12281 visitAll(Expr, StrideCollector); 12282 12283 LLVM_DEBUG({ 12284 dbgs() << "Strides:\n"; 12285 for (const SCEV *S : Strides) 12286 dbgs() << *S << "\n"; 12287 }); 12288 12289 for (const SCEV *S : Strides) { 12290 SCEVCollectTerms TermCollector(Terms); 12291 visitAll(S, TermCollector); 12292 } 12293 12294 LLVM_DEBUG({ 12295 dbgs() << "Terms:\n"; 12296 for (const SCEV *T : Terms) 12297 dbgs() << *T << "\n"; 12298 }); 12299 12300 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 12301 visitAll(Expr, MulCollector); 12302 } 12303 12304 static bool findArrayDimensionsRec(ScalarEvolution &SE, 12305 SmallVectorImpl<const SCEV *> &Terms, 12306 SmallVectorImpl<const SCEV *> &Sizes) { 12307 int Last = Terms.size() - 1; 12308 const SCEV *Step = Terms[Last]; 12309 12310 // End of recursion. 12311 if (Last == 0) { 12312 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 12313 SmallVector<const SCEV *, 2> Qs; 12314 for (const SCEV *Op : M->operands()) 12315 if (!isa<SCEVConstant>(Op)) 12316 Qs.push_back(Op); 12317 12318 Step = SE.getMulExpr(Qs); 12319 } 12320 12321 Sizes.push_back(Step); 12322 return true; 12323 } 12324 12325 for (const SCEV *&Term : Terms) { 12326 // Normalize the terms before the next call to findArrayDimensionsRec. 12327 const SCEV *Q, *R; 12328 SCEVDivision::divide(SE, Term, Step, &Q, &R); 12329 12330 // Bail out when GCD does not evenly divide one of the terms. 12331 if (!R->isZero()) 12332 return false; 12333 12334 Term = Q; 12335 } 12336 12337 // Remove all SCEVConstants. 12338 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 12339 12340 if (Terms.size() > 0) 12341 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 12342 return false; 12343 12344 Sizes.push_back(Step); 12345 return true; 12346 } 12347 12348 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 12349 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 12350 for (const SCEV *T : Terms) 12351 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 12352 return true; 12353 12354 return false; 12355 } 12356 12357 // Return the number of product terms in S. 12358 static inline int numberOfTerms(const SCEV *S) { 12359 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 12360 return Expr->getNumOperands(); 12361 return 1; 12362 } 12363 12364 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 12365 if (isa<SCEVConstant>(T)) 12366 return nullptr; 12367 12368 if (isa<SCEVUnknown>(T)) 12369 return T; 12370 12371 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 12372 SmallVector<const SCEV *, 2> Factors; 12373 for (const SCEV *Op : M->operands()) 12374 if (!isa<SCEVConstant>(Op)) 12375 Factors.push_back(Op); 12376 12377 return SE.getMulExpr(Factors); 12378 } 12379 12380 return T; 12381 } 12382 12383 /// Return the size of an element read or written by Inst. 12384 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12385 Type *Ty; 12386 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12387 Ty = Store->getValueOperand()->getType(); 12388 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12389 Ty = Load->getType(); 12390 else 12391 return nullptr; 12392 12393 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12394 return getSizeOfExpr(ETy, Ty); 12395 } 12396 12397 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 12398 SmallVectorImpl<const SCEV *> &Sizes, 12399 const SCEV *ElementSize) { 12400 if (Terms.size() < 1 || !ElementSize) 12401 return; 12402 12403 // Early return when Terms do not contain parameters: we do not delinearize 12404 // non parametric SCEVs. 12405 if (!containsParameters(Terms)) 12406 return; 12407 12408 LLVM_DEBUG({ 12409 dbgs() << "Terms:\n"; 12410 for (const SCEV *T : Terms) 12411 dbgs() << *T << "\n"; 12412 }); 12413 12414 // Remove duplicates. 12415 array_pod_sort(Terms.begin(), Terms.end()); 12416 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 12417 12418 // Put larger terms first. 12419 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 12420 return numberOfTerms(LHS) > numberOfTerms(RHS); 12421 }); 12422 12423 // Try to divide all terms by the element size. If term is not divisible by 12424 // element size, proceed with the original term. 12425 for (const SCEV *&Term : Terms) { 12426 const SCEV *Q, *R; 12427 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 12428 if (!Q->isZero()) 12429 Term = Q; 12430 } 12431 12432 SmallVector<const SCEV *, 4> NewTerms; 12433 12434 // Remove constant factors. 12435 for (const SCEV *T : Terms) 12436 if (const SCEV *NewT = removeConstantFactors(*this, T)) 12437 NewTerms.push_back(NewT); 12438 12439 LLVM_DEBUG({ 12440 dbgs() << "Terms after sorting:\n"; 12441 for (const SCEV *T : NewTerms) 12442 dbgs() << *T << "\n"; 12443 }); 12444 12445 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 12446 Sizes.clear(); 12447 return; 12448 } 12449 12450 // The last element to be pushed into Sizes is the size of an element. 12451 Sizes.push_back(ElementSize); 12452 12453 LLVM_DEBUG({ 12454 dbgs() << "Sizes:\n"; 12455 for (const SCEV *S : Sizes) 12456 dbgs() << *S << "\n"; 12457 }); 12458 } 12459 12460 void ScalarEvolution::computeAccessFunctions( 12461 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 12462 SmallVectorImpl<const SCEV *> &Sizes) { 12463 // Early exit in case this SCEV is not an affine multivariate function. 12464 if (Sizes.empty()) 12465 return; 12466 12467 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 12468 if (!AR->isAffine()) 12469 return; 12470 12471 const SCEV *Res = Expr; 12472 int Last = Sizes.size() - 1; 12473 for (int i = Last; i >= 0; i--) { 12474 const SCEV *Q, *R; 12475 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 12476 12477 LLVM_DEBUG({ 12478 dbgs() << "Res: " << *Res << "\n"; 12479 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 12480 dbgs() << "Res divided by Sizes[i]:\n"; 12481 dbgs() << "Quotient: " << *Q << "\n"; 12482 dbgs() << "Remainder: " << *R << "\n"; 12483 }); 12484 12485 Res = Q; 12486 12487 // Do not record the last subscript corresponding to the size of elements in 12488 // the array. 12489 if (i == Last) { 12490 12491 // Bail out if the remainder is too complex. 12492 if (isa<SCEVAddRecExpr>(R)) { 12493 Subscripts.clear(); 12494 Sizes.clear(); 12495 return; 12496 } 12497 12498 continue; 12499 } 12500 12501 // Record the access function for the current subscript. 12502 Subscripts.push_back(R); 12503 } 12504 12505 // Also push in last position the remainder of the last division: it will be 12506 // the access function of the innermost dimension. 12507 Subscripts.push_back(Res); 12508 12509 std::reverse(Subscripts.begin(), Subscripts.end()); 12510 12511 LLVM_DEBUG({ 12512 dbgs() << "Subscripts:\n"; 12513 for (const SCEV *S : Subscripts) 12514 dbgs() << *S << "\n"; 12515 }); 12516 } 12517 12518 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 12519 /// sizes of an array access. Returns the remainder of the delinearization that 12520 /// is the offset start of the array. The SCEV->delinearize algorithm computes 12521 /// the multiples of SCEV coefficients: that is a pattern matching of sub 12522 /// expressions in the stride and base of a SCEV corresponding to the 12523 /// computation of a GCD (greatest common divisor) of base and stride. When 12524 /// SCEV->delinearize fails, it returns the SCEV unchanged. 12525 /// 12526 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 12527 /// 12528 /// void foo(long n, long m, long o, double A[n][m][o]) { 12529 /// 12530 /// for (long i = 0; i < n; i++) 12531 /// for (long j = 0; j < m; j++) 12532 /// for (long k = 0; k < o; k++) 12533 /// A[i][j][k] = 1.0; 12534 /// } 12535 /// 12536 /// the delinearization input is the following AddRec SCEV: 12537 /// 12538 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12539 /// 12540 /// From this SCEV, we are able to say that the base offset of the access is %A 12541 /// because it appears as an offset that does not divide any of the strides in 12542 /// the loops: 12543 /// 12544 /// CHECK: Base offset: %A 12545 /// 12546 /// and then SCEV->delinearize determines the size of some of the dimensions of 12547 /// the array as these are the multiples by which the strides are happening: 12548 /// 12549 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12550 /// 12551 /// Note that the outermost dimension remains of UnknownSize because there are 12552 /// no strides that would help identifying the size of the last dimension: when 12553 /// the array has been statically allocated, one could compute the size of that 12554 /// dimension by dividing the overall size of the array by the size of the known 12555 /// dimensions: %m * %o * 8. 12556 /// 12557 /// Finally delinearize provides the access functions for the array reference 12558 /// that does correspond to A[i][j][k] of the above C testcase: 12559 /// 12560 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12561 /// 12562 /// The testcases are checking the output of a function pass: 12563 /// DelinearizationPass that walks through all loads and stores of a function 12564 /// asking for the SCEV of the memory access with respect to all enclosing 12565 /// loops, calling SCEV->delinearize on that and printing the results. 12566 void ScalarEvolution::delinearize(const SCEV *Expr, 12567 SmallVectorImpl<const SCEV *> &Subscripts, 12568 SmallVectorImpl<const SCEV *> &Sizes, 12569 const SCEV *ElementSize) { 12570 // First step: collect parametric terms. 12571 SmallVector<const SCEV *, 4> Terms; 12572 collectParametricTerms(Expr, Terms); 12573 12574 if (Terms.empty()) 12575 return; 12576 12577 // Second step: find subscript sizes. 12578 findArrayDimensions(Terms, Sizes, ElementSize); 12579 12580 if (Sizes.empty()) 12581 return; 12582 12583 // Third step: compute the access functions for each subscript. 12584 computeAccessFunctions(Expr, Subscripts, Sizes); 12585 12586 if (Subscripts.empty()) 12587 return; 12588 12589 LLVM_DEBUG({ 12590 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12591 dbgs() << "ArrayDecl[UnknownSize]"; 12592 for (const SCEV *S : Sizes) 12593 dbgs() << "[" << *S << "]"; 12594 12595 dbgs() << "\nArrayRef"; 12596 for (const SCEV *S : Subscripts) 12597 dbgs() << "[" << *S << "]"; 12598 dbgs() << "\n"; 12599 }); 12600 } 12601 12602 bool ScalarEvolution::getIndexExpressionsFromGEP( 12603 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12604 SmallVectorImpl<int> &Sizes) { 12605 assert(Subscripts.empty() && Sizes.empty() && 12606 "Expected output lists to be empty on entry to this function."); 12607 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12608 Type *Ty = nullptr; 12609 bool DroppedFirstDim = false; 12610 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12611 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12612 if (i == 1) { 12613 Ty = GEP->getSourceElementType(); 12614 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12615 if (Const->getValue()->isZero()) { 12616 DroppedFirstDim = true; 12617 continue; 12618 } 12619 Subscripts.push_back(Expr); 12620 continue; 12621 } 12622 12623 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12624 if (!ArrayTy) { 12625 Subscripts.clear(); 12626 Sizes.clear(); 12627 return false; 12628 } 12629 12630 Subscripts.push_back(Expr); 12631 if (!(DroppedFirstDim && i == 2)) 12632 Sizes.push_back(ArrayTy->getNumElements()); 12633 12634 Ty = ArrayTy->getElementType(); 12635 } 12636 return !Subscripts.empty(); 12637 } 12638 12639 //===----------------------------------------------------------------------===// 12640 // SCEVCallbackVH Class Implementation 12641 //===----------------------------------------------------------------------===// 12642 12643 void ScalarEvolution::SCEVCallbackVH::deleted() { 12644 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12645 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12646 SE->ConstantEvolutionLoopExitValue.erase(PN); 12647 SE->eraseValueFromMap(getValPtr()); 12648 // this now dangles! 12649 } 12650 12651 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12652 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12653 12654 // Forget all the expressions associated with users of the old value, 12655 // so that future queries will recompute the expressions using the new 12656 // value. 12657 Value *Old = getValPtr(); 12658 SmallVector<User *, 16> Worklist(Old->users()); 12659 SmallPtrSet<User *, 8> Visited; 12660 while (!Worklist.empty()) { 12661 User *U = Worklist.pop_back_val(); 12662 // Deleting the Old value will cause this to dangle. Postpone 12663 // that until everything else is done. 12664 if (U == Old) 12665 continue; 12666 if (!Visited.insert(U).second) 12667 continue; 12668 if (PHINode *PN = dyn_cast<PHINode>(U)) 12669 SE->ConstantEvolutionLoopExitValue.erase(PN); 12670 SE->eraseValueFromMap(U); 12671 llvm::append_range(Worklist, U->users()); 12672 } 12673 // Delete the Old value. 12674 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12675 SE->ConstantEvolutionLoopExitValue.erase(PN); 12676 SE->eraseValueFromMap(Old); 12677 // this now dangles! 12678 } 12679 12680 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12681 : CallbackVH(V), SE(se) {} 12682 12683 //===----------------------------------------------------------------------===// 12684 // ScalarEvolution Class Implementation 12685 //===----------------------------------------------------------------------===// 12686 12687 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12688 AssumptionCache &AC, DominatorTree &DT, 12689 LoopInfo &LI) 12690 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12691 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12692 LoopDispositions(64), BlockDispositions(64) { 12693 // To use guards for proving predicates, we need to scan every instruction in 12694 // relevant basic blocks, and not just terminators. Doing this is a waste of 12695 // time if the IR does not actually contain any calls to 12696 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12697 // 12698 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12699 // to _add_ guards to the module when there weren't any before, and wants 12700 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12701 // efficient in lieu of being smart in that rather obscure case. 12702 12703 auto *GuardDecl = F.getParent()->getFunction( 12704 Intrinsic::getName(Intrinsic::experimental_guard)); 12705 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12706 } 12707 12708 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12709 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12710 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12711 ValueExprMap(std::move(Arg.ValueExprMap)), 12712 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12713 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12714 PendingMerges(std::move(Arg.PendingMerges)), 12715 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12716 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12717 PredicatedBackedgeTakenCounts( 12718 std::move(Arg.PredicatedBackedgeTakenCounts)), 12719 ConstantEvolutionLoopExitValue( 12720 std::move(Arg.ConstantEvolutionLoopExitValue)), 12721 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12722 LoopDispositions(std::move(Arg.LoopDispositions)), 12723 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12724 BlockDispositions(std::move(Arg.BlockDispositions)), 12725 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12726 SignedRanges(std::move(Arg.SignedRanges)), 12727 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12728 UniquePreds(std::move(Arg.UniquePreds)), 12729 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12730 LoopUsers(std::move(Arg.LoopUsers)), 12731 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12732 FirstUnknown(Arg.FirstUnknown) { 12733 Arg.FirstUnknown = nullptr; 12734 } 12735 12736 ScalarEvolution::~ScalarEvolution() { 12737 // Iterate through all the SCEVUnknown instances and call their 12738 // destructors, so that they release their references to their values. 12739 for (SCEVUnknown *U = FirstUnknown; U;) { 12740 SCEVUnknown *Tmp = U; 12741 U = U->Next; 12742 Tmp->~SCEVUnknown(); 12743 } 12744 FirstUnknown = nullptr; 12745 12746 ExprValueMap.clear(); 12747 ValueExprMap.clear(); 12748 HasRecMap.clear(); 12749 BackedgeTakenCounts.clear(); 12750 PredicatedBackedgeTakenCounts.clear(); 12751 12752 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12753 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12754 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12755 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12756 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12757 } 12758 12759 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12760 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12761 } 12762 12763 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12764 const Loop *L) { 12765 // Print all inner loops first 12766 for (Loop *I : *L) 12767 PrintLoopInfo(OS, SE, I); 12768 12769 OS << "Loop "; 12770 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12771 OS << ": "; 12772 12773 SmallVector<BasicBlock *, 8> ExitingBlocks; 12774 L->getExitingBlocks(ExitingBlocks); 12775 if (ExitingBlocks.size() != 1) 12776 OS << "<multiple exits> "; 12777 12778 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12779 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12780 else 12781 OS << "Unpredictable backedge-taken count.\n"; 12782 12783 if (ExitingBlocks.size() > 1) 12784 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12785 OS << " exit count for " << ExitingBlock->getName() << ": " 12786 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12787 } 12788 12789 OS << "Loop "; 12790 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12791 OS << ": "; 12792 12793 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12794 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12795 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12796 OS << ", actual taken count either this or zero."; 12797 } else { 12798 OS << "Unpredictable max backedge-taken count. "; 12799 } 12800 12801 OS << "\n" 12802 "Loop "; 12803 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12804 OS << ": "; 12805 12806 SCEVUnionPredicate Pred; 12807 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12808 if (!isa<SCEVCouldNotCompute>(PBT)) { 12809 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12810 OS << " Predicates:\n"; 12811 Pred.print(OS, 4); 12812 } else { 12813 OS << "Unpredictable predicated backedge-taken count. "; 12814 } 12815 OS << "\n"; 12816 12817 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12818 OS << "Loop "; 12819 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12820 OS << ": "; 12821 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12822 } 12823 } 12824 12825 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12826 switch (LD) { 12827 case ScalarEvolution::LoopVariant: 12828 return "Variant"; 12829 case ScalarEvolution::LoopInvariant: 12830 return "Invariant"; 12831 case ScalarEvolution::LoopComputable: 12832 return "Computable"; 12833 } 12834 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12835 } 12836 12837 void ScalarEvolution::print(raw_ostream &OS) const { 12838 // ScalarEvolution's implementation of the print method is to print 12839 // out SCEV values of all instructions that are interesting. Doing 12840 // this potentially causes it to create new SCEV objects though, 12841 // which technically conflicts with the const qualifier. This isn't 12842 // observable from outside the class though, so casting away the 12843 // const isn't dangerous. 12844 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12845 12846 if (ClassifyExpressions) { 12847 OS << "Classifying expressions for: "; 12848 F.printAsOperand(OS, /*PrintType=*/false); 12849 OS << "\n"; 12850 for (Instruction &I : instructions(F)) 12851 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12852 OS << I << '\n'; 12853 OS << " --> "; 12854 const SCEV *SV = SE.getSCEV(&I); 12855 SV->print(OS); 12856 if (!isa<SCEVCouldNotCompute>(SV)) { 12857 OS << " U: "; 12858 SE.getUnsignedRange(SV).print(OS); 12859 OS << " S: "; 12860 SE.getSignedRange(SV).print(OS); 12861 } 12862 12863 const Loop *L = LI.getLoopFor(I.getParent()); 12864 12865 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12866 if (AtUse != SV) { 12867 OS << " --> "; 12868 AtUse->print(OS); 12869 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12870 OS << " U: "; 12871 SE.getUnsignedRange(AtUse).print(OS); 12872 OS << " S: "; 12873 SE.getSignedRange(AtUse).print(OS); 12874 } 12875 } 12876 12877 if (L) { 12878 OS << "\t\t" "Exits: "; 12879 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12880 if (!SE.isLoopInvariant(ExitValue, L)) { 12881 OS << "<<Unknown>>"; 12882 } else { 12883 OS << *ExitValue; 12884 } 12885 12886 bool First = true; 12887 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12888 if (First) { 12889 OS << "\t\t" "LoopDispositions: { "; 12890 First = false; 12891 } else { 12892 OS << ", "; 12893 } 12894 12895 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12896 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12897 } 12898 12899 for (auto *InnerL : depth_first(L)) { 12900 if (InnerL == L) 12901 continue; 12902 if (First) { 12903 OS << "\t\t" "LoopDispositions: { "; 12904 First = false; 12905 } else { 12906 OS << ", "; 12907 } 12908 12909 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12910 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12911 } 12912 12913 OS << " }"; 12914 } 12915 12916 OS << "\n"; 12917 } 12918 } 12919 12920 OS << "Determining loop execution counts for: "; 12921 F.printAsOperand(OS, /*PrintType=*/false); 12922 OS << "\n"; 12923 for (Loop *I : LI) 12924 PrintLoopInfo(OS, &SE, I); 12925 } 12926 12927 ScalarEvolution::LoopDisposition 12928 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12929 auto &Values = LoopDispositions[S]; 12930 for (auto &V : Values) { 12931 if (V.getPointer() == L) 12932 return V.getInt(); 12933 } 12934 Values.emplace_back(L, LoopVariant); 12935 LoopDisposition D = computeLoopDisposition(S, L); 12936 auto &Values2 = LoopDispositions[S]; 12937 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12938 if (V.getPointer() == L) { 12939 V.setInt(D); 12940 break; 12941 } 12942 } 12943 return D; 12944 } 12945 12946 ScalarEvolution::LoopDisposition 12947 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12948 switch (S->getSCEVType()) { 12949 case scConstant: 12950 return LoopInvariant; 12951 case scPtrToInt: 12952 case scTruncate: 12953 case scZeroExtend: 12954 case scSignExtend: 12955 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12956 case scAddRecExpr: { 12957 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12958 12959 // If L is the addrec's loop, it's computable. 12960 if (AR->getLoop() == L) 12961 return LoopComputable; 12962 12963 // Add recurrences are never invariant in the function-body (null loop). 12964 if (!L) 12965 return LoopVariant; 12966 12967 // Everything that is not defined at loop entry is variant. 12968 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12969 return LoopVariant; 12970 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12971 " dominate the contained loop's header?"); 12972 12973 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12974 if (AR->getLoop()->contains(L)) 12975 return LoopInvariant; 12976 12977 // This recurrence is variant w.r.t. L if any of its operands 12978 // are variant. 12979 for (auto *Op : AR->operands()) 12980 if (!isLoopInvariant(Op, L)) 12981 return LoopVariant; 12982 12983 // Otherwise it's loop-invariant. 12984 return LoopInvariant; 12985 } 12986 case scAddExpr: 12987 case scMulExpr: 12988 case scUMaxExpr: 12989 case scSMaxExpr: 12990 case scUMinExpr: 12991 case scSMinExpr: { 12992 bool HasVarying = false; 12993 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12994 LoopDisposition D = getLoopDisposition(Op, L); 12995 if (D == LoopVariant) 12996 return LoopVariant; 12997 if (D == LoopComputable) 12998 HasVarying = true; 12999 } 13000 return HasVarying ? LoopComputable : LoopInvariant; 13001 } 13002 case scUDivExpr: { 13003 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13004 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13005 if (LD == LoopVariant) 13006 return LoopVariant; 13007 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13008 if (RD == LoopVariant) 13009 return LoopVariant; 13010 return (LD == LoopInvariant && RD == LoopInvariant) ? 13011 LoopInvariant : LoopComputable; 13012 } 13013 case scUnknown: 13014 // All non-instruction values are loop invariant. All instructions are loop 13015 // invariant if they are not contained in the specified loop. 13016 // Instructions are never considered invariant in the function body 13017 // (null loop) because they are defined within the "loop". 13018 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13019 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13020 return LoopInvariant; 13021 case scCouldNotCompute: 13022 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13023 } 13024 llvm_unreachable("Unknown SCEV kind!"); 13025 } 13026 13027 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13028 return getLoopDisposition(S, L) == LoopInvariant; 13029 } 13030 13031 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13032 return getLoopDisposition(S, L) == LoopComputable; 13033 } 13034 13035 ScalarEvolution::BlockDisposition 13036 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13037 auto &Values = BlockDispositions[S]; 13038 for (auto &V : Values) { 13039 if (V.getPointer() == BB) 13040 return V.getInt(); 13041 } 13042 Values.emplace_back(BB, DoesNotDominateBlock); 13043 BlockDisposition D = computeBlockDisposition(S, BB); 13044 auto &Values2 = BlockDispositions[S]; 13045 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 13046 if (V.getPointer() == BB) { 13047 V.setInt(D); 13048 break; 13049 } 13050 } 13051 return D; 13052 } 13053 13054 ScalarEvolution::BlockDisposition 13055 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13056 switch (S->getSCEVType()) { 13057 case scConstant: 13058 return ProperlyDominatesBlock; 13059 case scPtrToInt: 13060 case scTruncate: 13061 case scZeroExtend: 13062 case scSignExtend: 13063 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13064 case scAddRecExpr: { 13065 // This uses a "dominates" query instead of "properly dominates" query 13066 // to test for proper dominance too, because the instruction which 13067 // produces the addrec's value is a PHI, and a PHI effectively properly 13068 // dominates its entire containing block. 13069 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13070 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13071 return DoesNotDominateBlock; 13072 13073 // Fall through into SCEVNAryExpr handling. 13074 LLVM_FALLTHROUGH; 13075 } 13076 case scAddExpr: 13077 case scMulExpr: 13078 case scUMaxExpr: 13079 case scSMaxExpr: 13080 case scUMinExpr: 13081 case scSMinExpr: { 13082 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13083 bool Proper = true; 13084 for (const SCEV *NAryOp : NAry->operands()) { 13085 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13086 if (D == DoesNotDominateBlock) 13087 return DoesNotDominateBlock; 13088 if (D == DominatesBlock) 13089 Proper = false; 13090 } 13091 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13092 } 13093 case scUDivExpr: { 13094 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13095 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13096 BlockDisposition LD = getBlockDisposition(LHS, BB); 13097 if (LD == DoesNotDominateBlock) 13098 return DoesNotDominateBlock; 13099 BlockDisposition RD = getBlockDisposition(RHS, BB); 13100 if (RD == DoesNotDominateBlock) 13101 return DoesNotDominateBlock; 13102 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13103 ProperlyDominatesBlock : DominatesBlock; 13104 } 13105 case scUnknown: 13106 if (Instruction *I = 13107 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13108 if (I->getParent() == BB) 13109 return DominatesBlock; 13110 if (DT.properlyDominates(I->getParent(), BB)) 13111 return ProperlyDominatesBlock; 13112 return DoesNotDominateBlock; 13113 } 13114 return ProperlyDominatesBlock; 13115 case scCouldNotCompute: 13116 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13117 } 13118 llvm_unreachable("Unknown SCEV kind!"); 13119 } 13120 13121 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13122 return getBlockDisposition(S, BB) >= DominatesBlock; 13123 } 13124 13125 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13126 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13127 } 13128 13129 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13130 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13131 } 13132 13133 void 13134 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 13135 ValuesAtScopes.erase(S); 13136 LoopDispositions.erase(S); 13137 BlockDispositions.erase(S); 13138 UnsignedRanges.erase(S); 13139 SignedRanges.erase(S); 13140 ExprValueMap.erase(S); 13141 HasRecMap.erase(S); 13142 MinTrailingZerosCache.erase(S); 13143 13144 for (auto I = PredicatedSCEVRewrites.begin(); 13145 I != PredicatedSCEVRewrites.end();) { 13146 std::pair<const SCEV *, const Loop *> Entry = I->first; 13147 if (Entry.first == S) 13148 PredicatedSCEVRewrites.erase(I++); 13149 else 13150 ++I; 13151 } 13152 13153 auto RemoveSCEVFromBackedgeMap = 13154 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 13155 for (auto I = Map.begin(), E = Map.end(); I != E;) { 13156 BackedgeTakenInfo &BEInfo = I->second; 13157 if (BEInfo.hasOperand(S)) 13158 Map.erase(I++); 13159 else 13160 ++I; 13161 } 13162 }; 13163 13164 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 13165 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 13166 } 13167 13168 void 13169 ScalarEvolution::getUsedLoops(const SCEV *S, 13170 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13171 struct FindUsedLoops { 13172 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13173 : LoopsUsed(LoopsUsed) {} 13174 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13175 bool follow(const SCEV *S) { 13176 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13177 LoopsUsed.insert(AR->getLoop()); 13178 return true; 13179 } 13180 13181 bool isDone() const { return false; } 13182 }; 13183 13184 FindUsedLoops F(LoopsUsed); 13185 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13186 } 13187 13188 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 13189 SmallPtrSet<const Loop *, 8> LoopsUsed; 13190 getUsedLoops(S, LoopsUsed); 13191 for (auto *L : LoopsUsed) 13192 LoopUsers[L].push_back(S); 13193 } 13194 13195 void ScalarEvolution::verify() const { 13196 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13197 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13198 13199 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13200 13201 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13202 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13203 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13204 13205 const SCEV *visitConstant(const SCEVConstant *Constant) { 13206 return SE.getConstant(Constant->getAPInt()); 13207 } 13208 13209 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13210 return SE.getUnknown(Expr->getValue()); 13211 } 13212 13213 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13214 return SE.getCouldNotCompute(); 13215 } 13216 }; 13217 13218 SCEVMapper SCM(SE2); 13219 13220 while (!LoopStack.empty()) { 13221 auto *L = LoopStack.pop_back_val(); 13222 llvm::append_range(LoopStack, *L); 13223 13224 auto *CurBECount = SCM.visit( 13225 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13226 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13227 13228 if (CurBECount == SE2.getCouldNotCompute() || 13229 NewBECount == SE2.getCouldNotCompute()) { 13230 // NB! This situation is legal, but is very suspicious -- whatever pass 13231 // change the loop to make a trip count go from could not compute to 13232 // computable or vice-versa *should have* invalidated SCEV. However, we 13233 // choose not to assert here (for now) since we don't want false 13234 // positives. 13235 continue; 13236 } 13237 13238 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13239 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13240 // not propagate undef aggressively). This means we can (and do) fail 13241 // verification in cases where a transform makes the trip count of a loop 13242 // go from "undef" to "undef+1" (say). The transform is fine, since in 13243 // both cases the loop iterates "undef" times, but SCEV thinks we 13244 // increased the trip count of the loop by 1 incorrectly. 13245 continue; 13246 } 13247 13248 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13249 SE.getTypeSizeInBits(NewBECount->getType())) 13250 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13251 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13252 SE.getTypeSizeInBits(NewBECount->getType())) 13253 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13254 13255 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13256 13257 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13258 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13259 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13260 dbgs() << "Old: " << *CurBECount << "\n"; 13261 dbgs() << "New: " << *NewBECount << "\n"; 13262 dbgs() << "Delta: " << *Delta << "\n"; 13263 std::abort(); 13264 } 13265 } 13266 13267 // Collect all valid loops currently in LoopInfo. 13268 SmallPtrSet<Loop *, 32> ValidLoops; 13269 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13270 while (!Worklist.empty()) { 13271 Loop *L = Worklist.pop_back_val(); 13272 if (ValidLoops.contains(L)) 13273 continue; 13274 ValidLoops.insert(L); 13275 Worklist.append(L->begin(), L->end()); 13276 } 13277 // Check for SCEV expressions referencing invalid/deleted loops. 13278 for (auto &KV : ValueExprMap) { 13279 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13280 if (!AR) 13281 continue; 13282 assert(ValidLoops.contains(AR->getLoop()) && 13283 "AddRec references invalid loop"); 13284 } 13285 } 13286 13287 bool ScalarEvolution::invalidate( 13288 Function &F, const PreservedAnalyses &PA, 13289 FunctionAnalysisManager::Invalidator &Inv) { 13290 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13291 // of its dependencies is invalidated. 13292 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13293 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13294 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13295 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13296 Inv.invalidate<LoopAnalysis>(F, PA); 13297 } 13298 13299 AnalysisKey ScalarEvolutionAnalysis::Key; 13300 13301 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13302 FunctionAnalysisManager &AM) { 13303 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13304 AM.getResult<AssumptionAnalysis>(F), 13305 AM.getResult<DominatorTreeAnalysis>(F), 13306 AM.getResult<LoopAnalysis>(F)); 13307 } 13308 13309 PreservedAnalyses 13310 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13311 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13312 return PreservedAnalyses::all(); 13313 } 13314 13315 PreservedAnalyses 13316 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13317 // For compatibility with opt's -analyze feature under legacy pass manager 13318 // which was not ported to NPM. This keeps tests using 13319 // update_analyze_test_checks.py working. 13320 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13321 << F.getName() << "':\n"; 13322 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13323 return PreservedAnalyses::all(); 13324 } 13325 13326 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13327 "Scalar Evolution Analysis", false, true) 13328 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13329 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13330 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13331 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13332 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13333 "Scalar Evolution Analysis", false, true) 13334 13335 char ScalarEvolutionWrapperPass::ID = 0; 13336 13337 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13338 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13339 } 13340 13341 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13342 SE.reset(new ScalarEvolution( 13343 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13344 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13345 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13346 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13347 return false; 13348 } 13349 13350 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13351 13352 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13353 SE->print(OS); 13354 } 13355 13356 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13357 if (!VerifySCEV) 13358 return; 13359 13360 SE->verify(); 13361 } 13362 13363 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13364 AU.setPreservesAll(); 13365 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13366 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13367 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13368 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13369 } 13370 13371 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13372 const SCEV *RHS) { 13373 FoldingSetNodeID ID; 13374 assert(LHS->getType() == RHS->getType() && 13375 "Type mismatch between LHS and RHS"); 13376 // Unique this node based on the arguments 13377 ID.AddInteger(SCEVPredicate::P_Equal); 13378 ID.AddPointer(LHS); 13379 ID.AddPointer(RHS); 13380 void *IP = nullptr; 13381 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13382 return S; 13383 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13384 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13385 UniquePreds.InsertNode(Eq, IP); 13386 return Eq; 13387 } 13388 13389 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13390 const SCEVAddRecExpr *AR, 13391 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13392 FoldingSetNodeID ID; 13393 // Unique this node based on the arguments 13394 ID.AddInteger(SCEVPredicate::P_Wrap); 13395 ID.AddPointer(AR); 13396 ID.AddInteger(AddedFlags); 13397 void *IP = nullptr; 13398 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13399 return S; 13400 auto *OF = new (SCEVAllocator) 13401 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13402 UniquePreds.InsertNode(OF, IP); 13403 return OF; 13404 } 13405 13406 namespace { 13407 13408 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13409 public: 13410 13411 /// Rewrites \p S in the context of a loop L and the SCEV predication 13412 /// infrastructure. 13413 /// 13414 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13415 /// equivalences present in \p Pred. 13416 /// 13417 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13418 /// \p NewPreds such that the result will be an AddRecExpr. 13419 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13420 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13421 SCEVUnionPredicate *Pred) { 13422 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13423 return Rewriter.visit(S); 13424 } 13425 13426 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13427 if (Pred) { 13428 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13429 for (auto *Pred : ExprPreds) 13430 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13431 if (IPred->getLHS() == Expr) 13432 return IPred->getRHS(); 13433 } 13434 return convertToAddRecWithPreds(Expr); 13435 } 13436 13437 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13438 const SCEV *Operand = visit(Expr->getOperand()); 13439 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13440 if (AR && AR->getLoop() == L && AR->isAffine()) { 13441 // This couldn't be folded because the operand didn't have the nuw 13442 // flag. Add the nusw flag as an assumption that we could make. 13443 const SCEV *Step = AR->getStepRecurrence(SE); 13444 Type *Ty = Expr->getType(); 13445 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13446 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13447 SE.getSignExtendExpr(Step, Ty), L, 13448 AR->getNoWrapFlags()); 13449 } 13450 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13451 } 13452 13453 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13454 const SCEV *Operand = visit(Expr->getOperand()); 13455 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13456 if (AR && AR->getLoop() == L && AR->isAffine()) { 13457 // This couldn't be folded because the operand didn't have the nsw 13458 // flag. Add the nssw flag as an assumption that we could make. 13459 const SCEV *Step = AR->getStepRecurrence(SE); 13460 Type *Ty = Expr->getType(); 13461 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13462 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13463 SE.getSignExtendExpr(Step, Ty), L, 13464 AR->getNoWrapFlags()); 13465 } 13466 return SE.getSignExtendExpr(Operand, Expr->getType()); 13467 } 13468 13469 private: 13470 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13471 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13472 SCEVUnionPredicate *Pred) 13473 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13474 13475 bool addOverflowAssumption(const SCEVPredicate *P) { 13476 if (!NewPreds) { 13477 // Check if we've already made this assumption. 13478 return Pred && Pred->implies(P); 13479 } 13480 NewPreds->insert(P); 13481 return true; 13482 } 13483 13484 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13485 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13486 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13487 return addOverflowAssumption(A); 13488 } 13489 13490 // If \p Expr represents a PHINode, we try to see if it can be represented 13491 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13492 // to add this predicate as a runtime overflow check, we return the AddRec. 13493 // If \p Expr does not meet these conditions (is not a PHI node, or we 13494 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13495 // return \p Expr. 13496 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13497 if (!isa<PHINode>(Expr->getValue())) 13498 return Expr; 13499 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13500 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13501 if (!PredicatedRewrite) 13502 return Expr; 13503 for (auto *P : PredicatedRewrite->second){ 13504 // Wrap predicates from outer loops are not supported. 13505 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13506 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13507 if (L != AR->getLoop()) 13508 return Expr; 13509 } 13510 if (!addOverflowAssumption(P)) 13511 return Expr; 13512 } 13513 return PredicatedRewrite->first; 13514 } 13515 13516 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13517 SCEVUnionPredicate *Pred; 13518 const Loop *L; 13519 }; 13520 13521 } // end anonymous namespace 13522 13523 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13524 SCEVUnionPredicate &Preds) { 13525 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13526 } 13527 13528 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13529 const SCEV *S, const Loop *L, 13530 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13531 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13532 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13533 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13534 13535 if (!AddRec) 13536 return nullptr; 13537 13538 // Since the transformation was successful, we can now transfer the SCEV 13539 // predicates. 13540 for (auto *P : TransformPreds) 13541 Preds.insert(P); 13542 13543 return AddRec; 13544 } 13545 13546 /// SCEV predicates 13547 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13548 SCEVPredicateKind Kind) 13549 : FastID(ID), Kind(Kind) {} 13550 13551 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13552 const SCEV *LHS, const SCEV *RHS) 13553 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13554 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13555 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13556 } 13557 13558 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13559 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13560 13561 if (!Op) 13562 return false; 13563 13564 return Op->LHS == LHS && Op->RHS == RHS; 13565 } 13566 13567 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13568 13569 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13570 13571 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13572 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13573 } 13574 13575 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13576 const SCEVAddRecExpr *AR, 13577 IncrementWrapFlags Flags) 13578 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13579 13580 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13581 13582 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13583 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13584 13585 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13586 } 13587 13588 bool SCEVWrapPredicate::isAlwaysTrue() const { 13589 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13590 IncrementWrapFlags IFlags = Flags; 13591 13592 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13593 IFlags = clearFlags(IFlags, IncrementNSSW); 13594 13595 return IFlags == IncrementAnyWrap; 13596 } 13597 13598 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13599 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13600 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13601 OS << "<nusw>"; 13602 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13603 OS << "<nssw>"; 13604 OS << "\n"; 13605 } 13606 13607 SCEVWrapPredicate::IncrementWrapFlags 13608 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13609 ScalarEvolution &SE) { 13610 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13611 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13612 13613 // We can safely transfer the NSW flag as NSSW. 13614 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13615 ImpliedFlags = IncrementNSSW; 13616 13617 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13618 // If the increment is positive, the SCEV NUW flag will also imply the 13619 // WrapPredicate NUSW flag. 13620 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13621 if (Step->getValue()->getValue().isNonNegative()) 13622 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13623 } 13624 13625 return ImpliedFlags; 13626 } 13627 13628 /// Union predicates don't get cached so create a dummy set ID for it. 13629 SCEVUnionPredicate::SCEVUnionPredicate() 13630 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13631 13632 bool SCEVUnionPredicate::isAlwaysTrue() const { 13633 return all_of(Preds, 13634 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13635 } 13636 13637 ArrayRef<const SCEVPredicate *> 13638 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13639 auto I = SCEVToPreds.find(Expr); 13640 if (I == SCEVToPreds.end()) 13641 return ArrayRef<const SCEVPredicate *>(); 13642 return I->second; 13643 } 13644 13645 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13646 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13647 return all_of(Set->Preds, 13648 [this](const SCEVPredicate *I) { return this->implies(I); }); 13649 13650 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13651 if (ScevPredsIt == SCEVToPreds.end()) 13652 return false; 13653 auto &SCEVPreds = ScevPredsIt->second; 13654 13655 return any_of(SCEVPreds, 13656 [N](const SCEVPredicate *I) { return I->implies(N); }); 13657 } 13658 13659 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13660 13661 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13662 for (auto Pred : Preds) 13663 Pred->print(OS, Depth); 13664 } 13665 13666 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13667 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13668 for (auto Pred : Set->Preds) 13669 add(Pred); 13670 return; 13671 } 13672 13673 if (implies(N)) 13674 return; 13675 13676 const SCEV *Key = N->getExpr(); 13677 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13678 " associated expression!"); 13679 13680 SCEVToPreds[Key].push_back(N); 13681 Preds.push_back(N); 13682 } 13683 13684 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13685 Loop &L) 13686 : SE(SE), L(L) {} 13687 13688 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13689 const SCEV *Expr = SE.getSCEV(V); 13690 RewriteEntry &Entry = RewriteMap[Expr]; 13691 13692 // If we already have an entry and the version matches, return it. 13693 if (Entry.second && Generation == Entry.first) 13694 return Entry.second; 13695 13696 // We found an entry but it's stale. Rewrite the stale entry 13697 // according to the current predicate. 13698 if (Entry.second) 13699 Expr = Entry.second; 13700 13701 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13702 Entry = {Generation, NewSCEV}; 13703 13704 return NewSCEV; 13705 } 13706 13707 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13708 if (!BackedgeCount) { 13709 SCEVUnionPredicate BackedgePred; 13710 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13711 addPredicate(BackedgePred); 13712 } 13713 return BackedgeCount; 13714 } 13715 13716 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13717 if (Preds.implies(&Pred)) 13718 return; 13719 Preds.add(&Pred); 13720 updateGeneration(); 13721 } 13722 13723 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13724 return Preds; 13725 } 13726 13727 void PredicatedScalarEvolution::updateGeneration() { 13728 // If the generation number wrapped recompute everything. 13729 if (++Generation == 0) { 13730 for (auto &II : RewriteMap) { 13731 const SCEV *Rewritten = II.second.second; 13732 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13733 } 13734 } 13735 } 13736 13737 void PredicatedScalarEvolution::setNoOverflow( 13738 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13739 const SCEV *Expr = getSCEV(V); 13740 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13741 13742 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13743 13744 // Clear the statically implied flags. 13745 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13746 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13747 13748 auto II = FlagsMap.insert({V, Flags}); 13749 if (!II.second) 13750 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13751 } 13752 13753 bool PredicatedScalarEvolution::hasNoOverflow( 13754 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13755 const SCEV *Expr = getSCEV(V); 13756 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13757 13758 Flags = SCEVWrapPredicate::clearFlags( 13759 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13760 13761 auto II = FlagsMap.find(V); 13762 13763 if (II != FlagsMap.end()) 13764 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13765 13766 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13767 } 13768 13769 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13770 const SCEV *Expr = this->getSCEV(V); 13771 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13772 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13773 13774 if (!New) 13775 return nullptr; 13776 13777 for (auto *P : NewPreds) 13778 Preds.add(P); 13779 13780 updateGeneration(); 13781 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13782 return New; 13783 } 13784 13785 PredicatedScalarEvolution::PredicatedScalarEvolution( 13786 const PredicatedScalarEvolution &Init) 13787 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13788 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13789 for (auto I : Init.FlagsMap) 13790 FlagsMap.insert(I); 13791 } 13792 13793 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13794 // For each block. 13795 for (auto *BB : L.getBlocks()) 13796 for (auto &I : *BB) { 13797 if (!SE.isSCEVable(I.getType())) 13798 continue; 13799 13800 auto *Expr = SE.getSCEV(&I); 13801 auto II = RewriteMap.find(Expr); 13802 13803 if (II == RewriteMap.end()) 13804 continue; 13805 13806 // Don't print things that are not interesting. 13807 if (II->second.second == Expr) 13808 continue; 13809 13810 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13811 OS.indent(Depth + 2) << *Expr << "\n"; 13812 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13813 } 13814 } 13815 13816 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13817 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13818 // for URem with constant power-of-2 second operands. 13819 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13820 // 4, A / B becomes X / 8). 13821 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13822 const SCEV *&RHS) { 13823 // Try to match 'zext (trunc A to iB) to iY', which is used 13824 // for URem with constant power-of-2 second operands. Make sure the size of 13825 // the operand A matches the size of the whole expressions. 13826 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13827 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13828 LHS = Trunc->getOperand(); 13829 // Bail out if the type of the LHS is larger than the type of the 13830 // expression for now. 13831 if (getTypeSizeInBits(LHS->getType()) > 13832 getTypeSizeInBits(Expr->getType())) 13833 return false; 13834 if (LHS->getType() != Expr->getType()) 13835 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13836 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13837 << getTypeSizeInBits(Trunc->getType())); 13838 return true; 13839 } 13840 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13841 if (Add == nullptr || Add->getNumOperands() != 2) 13842 return false; 13843 13844 const SCEV *A = Add->getOperand(1); 13845 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13846 13847 if (Mul == nullptr) 13848 return false; 13849 13850 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13851 // (SomeExpr + (-(SomeExpr / B) * B)). 13852 if (Expr == getURemExpr(A, B)) { 13853 LHS = A; 13854 RHS = B; 13855 return true; 13856 } 13857 return false; 13858 }; 13859 13860 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13861 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13862 return MatchURemWithDivisor(Mul->getOperand(1)) || 13863 MatchURemWithDivisor(Mul->getOperand(2)); 13864 13865 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13866 if (Mul->getNumOperands() == 2) 13867 return MatchURemWithDivisor(Mul->getOperand(1)) || 13868 MatchURemWithDivisor(Mul->getOperand(0)) || 13869 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13870 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13871 return false; 13872 } 13873 13874 const SCEV * 13875 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13876 SmallVector<BasicBlock*, 16> ExitingBlocks; 13877 L->getExitingBlocks(ExitingBlocks); 13878 13879 // Form an expression for the maximum exit count possible for this loop. We 13880 // merge the max and exact information to approximate a version of 13881 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13882 SmallVector<const SCEV*, 4> ExitCounts; 13883 for (BasicBlock *ExitingBB : ExitingBlocks) { 13884 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13885 if (isa<SCEVCouldNotCompute>(ExitCount)) 13886 ExitCount = getExitCount(L, ExitingBB, 13887 ScalarEvolution::ConstantMaximum); 13888 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13889 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13890 "We should only have known counts for exiting blocks that " 13891 "dominate latch!"); 13892 ExitCounts.push_back(ExitCount); 13893 } 13894 } 13895 if (ExitCounts.empty()) 13896 return getCouldNotCompute(); 13897 return getUMinFromMismatchedTypes(ExitCounts); 13898 } 13899 13900 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13901 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13902 /// we cannot guarantee that the replacement is loop invariant in the loop of 13903 /// the AddRec. 13904 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13905 ValueToSCEVMapTy ⤅ 13906 13907 public: 13908 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13909 : SCEVRewriteVisitor(SE), Map(M) {} 13910 13911 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13912 13913 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13914 auto I = Map.find(Expr->getValue()); 13915 if (I == Map.end()) 13916 return Expr; 13917 return I->second; 13918 } 13919 }; 13920 13921 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13922 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13923 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13924 // If we have LHS == 0, check if LHS is computing a property of some unknown 13925 // SCEV %v which we can rewrite %v to express explicitly. 13926 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13927 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13928 RHSC->getValue()->isNullValue()) { 13929 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13930 // explicitly express that. 13931 const SCEV *URemLHS = nullptr; 13932 const SCEV *URemRHS = nullptr; 13933 if (matchURem(LHS, URemLHS, URemRHS)) { 13934 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13935 Value *V = LHSUnknown->getValue(); 13936 auto Multiple = 13937 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13938 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13939 RewriteMap[V] = Multiple; 13940 return; 13941 } 13942 } 13943 } 13944 13945 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13946 std::swap(LHS, RHS); 13947 Predicate = CmpInst::getSwappedPredicate(Predicate); 13948 } 13949 13950 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13951 // create this form when combining two checks of the form (X u< C2 + C1) and 13952 // (X >=u C1). 13953 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13954 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13955 if (!AddExpr || AddExpr->getNumOperands() != 2) 13956 return false; 13957 13958 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13959 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13960 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13961 if (!C1 || !C2 || !LHSUnknown) 13962 return false; 13963 13964 auto ExactRegion = 13965 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13966 .sub(C1->getAPInt()); 13967 13968 // Bail out, unless we have a non-wrapping, monotonic range. 13969 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13970 return false; 13971 auto I = RewriteMap.find(LHSUnknown->getValue()); 13972 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13973 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13974 getConstant(ExactRegion.getUnsignedMin()), 13975 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13976 return true; 13977 }; 13978 if (MatchRangeCheckIdiom()) 13979 return; 13980 13981 // For now, limit to conditions that provide information about unknown 13982 // expressions. RHS also cannot contain add recurrences. 13983 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13984 if (!LHSUnknown || containsAddRecurrence(RHS)) 13985 return; 13986 13987 // Check whether LHS has already been rewritten. In that case we want to 13988 // chain further rewrites onto the already rewritten value. 13989 auto I = RewriteMap.find(LHSUnknown->getValue()); 13990 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13991 const SCEV *RewrittenRHS = nullptr; 13992 switch (Predicate) { 13993 case CmpInst::ICMP_ULT: 13994 RewrittenRHS = 13995 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13996 break; 13997 case CmpInst::ICMP_SLT: 13998 RewrittenRHS = 13999 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14000 break; 14001 case CmpInst::ICMP_ULE: 14002 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14003 break; 14004 case CmpInst::ICMP_SLE: 14005 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14006 break; 14007 case CmpInst::ICMP_UGT: 14008 RewrittenRHS = 14009 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14010 break; 14011 case CmpInst::ICMP_SGT: 14012 RewrittenRHS = 14013 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14014 break; 14015 case CmpInst::ICMP_UGE: 14016 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14017 break; 14018 case CmpInst::ICMP_SGE: 14019 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14020 break; 14021 case CmpInst::ICMP_EQ: 14022 if (isa<SCEVConstant>(RHS)) 14023 RewrittenRHS = RHS; 14024 break; 14025 case CmpInst::ICMP_NE: 14026 if (isa<SCEVConstant>(RHS) && 14027 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14028 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14029 break; 14030 default: 14031 break; 14032 } 14033 14034 if (RewrittenRHS) 14035 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 14036 }; 14037 // Starting at the loop predecessor, climb up the predecessor chain, as long 14038 // as there are predecessors that can be found that have unique successors 14039 // leading to the original header. 14040 // TODO: share this logic with isLoopEntryGuardedByCond. 14041 ValueToSCEVMapTy RewriteMap; 14042 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14043 L->getLoopPredecessor(), L->getHeader()); 14044 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14045 14046 const BranchInst *LoopEntryPredicate = 14047 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14048 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14049 continue; 14050 14051 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 14052 SmallVector<Value *, 8> Worklist; 14053 SmallPtrSet<Value *, 8> Visited; 14054 Worklist.push_back(LoopEntryPredicate->getCondition()); 14055 while (!Worklist.empty()) { 14056 Value *Cond = Worklist.pop_back_val(); 14057 if (!Visited.insert(Cond).second) 14058 continue; 14059 14060 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14061 auto Predicate = 14062 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14063 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14064 getSCEV(Cmp->getOperand(1)), RewriteMap); 14065 continue; 14066 } 14067 14068 Value *L, *R; 14069 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14070 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14071 Worklist.push_back(L); 14072 Worklist.push_back(R); 14073 } 14074 } 14075 } 14076 14077 // Also collect information from assumptions dominating the loop. 14078 for (auto &AssumeVH : AC.assumptions()) { 14079 if (!AssumeVH) 14080 continue; 14081 auto *AssumeI = cast<CallInst>(AssumeVH); 14082 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14083 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14084 continue; 14085 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14086 getSCEV(Cmp->getOperand(1)), RewriteMap); 14087 } 14088 14089 if (RewriteMap.empty()) 14090 return Expr; 14091 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14092 return Rewriter.visit(Expr); 14093 } 14094