1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/ScopeExit.h" 69 #include "llvm/ADT/Sequence.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/Analysis/AssumptionCache.h" 77 #include "llvm/Analysis/ConstantFolding.h" 78 #include "llvm/Analysis/InstructionSimplify.h" 79 #include "llvm/Analysis/LoopInfo.h" 80 #include "llvm/Analysis/MemoryBuiltins.h" 81 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 82 #include "llvm/Analysis/TargetLibraryInfo.h" 83 #include "llvm/Analysis/ValueTracking.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/Argument.h" 86 #include "llvm/IR/BasicBlock.h" 87 #include "llvm/IR/CFG.h" 88 #include "llvm/IR/Constant.h" 89 #include "llvm/IR/ConstantRange.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DerivedTypes.h" 93 #include "llvm/IR/Dominators.h" 94 #include "llvm/IR/Function.h" 95 #include "llvm/IR/GlobalAlias.h" 96 #include "llvm/IR/GlobalValue.h" 97 #include "llvm/IR/InstIterator.h" 98 #include "llvm/IR/InstrTypes.h" 99 #include "llvm/IR/Instruction.h" 100 #include "llvm/IR/Instructions.h" 101 #include "llvm/IR/IntrinsicInst.h" 102 #include "llvm/IR/Intrinsics.h" 103 #include "llvm/IR/LLVMContext.h" 104 #include "llvm/IR/Operator.h" 105 #include "llvm/IR/PatternMatch.h" 106 #include "llvm/IR/Type.h" 107 #include "llvm/IR/Use.h" 108 #include "llvm/IR/User.h" 109 #include "llvm/IR/Value.h" 110 #include "llvm/IR/Verifier.h" 111 #include "llvm/InitializePasses.h" 112 #include "llvm/Pass.h" 113 #include "llvm/Support/Casting.h" 114 #include "llvm/Support/CommandLine.h" 115 #include "llvm/Support/Compiler.h" 116 #include "llvm/Support/Debug.h" 117 #include "llvm/Support/ErrorHandling.h" 118 #include "llvm/Support/KnownBits.h" 119 #include "llvm/Support/SaveAndRestore.h" 120 #include "llvm/Support/raw_ostream.h" 121 #include <algorithm> 122 #include <cassert> 123 #include <climits> 124 #include <cstdint> 125 #include <cstdlib> 126 #include <map> 127 #include <memory> 128 #include <numeric> 129 #include <optional> 130 #include <tuple> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 using namespace PatternMatch; 136 137 #define DEBUG_TYPE "scalar-evolution" 138 139 STATISTIC(NumExitCountsComputed, 140 "Number of loop exits with predictable exit counts"); 141 STATISTIC(NumExitCountsNotComputed, 142 "Number of loop exits without predictable exit counts"); 143 STATISTIC(NumBruteForceTripCountsComputed, 144 "Number of loops with trip counts computed by force"); 145 146 #ifdef EXPENSIVE_CHECKS 147 bool llvm::VerifySCEV = true; 148 #else 149 bool llvm::VerifySCEV = false; 150 #endif 151 152 static cl::opt<unsigned> 153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 166 static cl::opt<bool> VerifyIR( 167 "scev-verify-ir", cl::Hidden, 168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 169 cl::init(false)); 170 171 static cl::opt<unsigned> MulOpsInlineThreshold( 172 "scev-mulops-inline-threshold", cl::Hidden, 173 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 174 cl::init(32)); 175 176 static cl::opt<unsigned> AddOpsInlineThreshold( 177 "scev-addops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining addition operands into a SCEV"), 179 cl::init(500)); 180 181 static cl::opt<unsigned> MaxSCEVCompareDepth( 182 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 184 cl::init(32)); 185 186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 189 cl::init(2)); 190 191 static cl::opt<unsigned> MaxValueCompareDepth( 192 "scalar-evolution-max-value-compare-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive value complexity comparisons"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> 197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive arithmetics"), 199 cl::init(32)); 200 201 static cl::opt<unsigned> MaxConstantEvolvingDepth( 202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 204 205 static cl::opt<unsigned> 206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 208 cl::init(8)); 209 210 static cl::opt<unsigned> 211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 212 cl::desc("Max coefficients in AddRec during evolving"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 217 cl::desc("Size of the expression which is considered huge"), 218 cl::init(4096)); 219 220 static cl::opt<unsigned> RangeIterThreshold( 221 "scev-range-iter-threshold", cl::Hidden, 222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"), 223 cl::init(32)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 239 "Phi strongly connected components"), 240 cl::init(8)); 241 242 static cl::opt<bool> 243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 244 cl::desc("Handle <= and >= in finite loops"), 245 cl::init(true)); 246 247 static cl::opt<bool> UseContextForNoWrapFlagInference( 248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, 249 cl::desc("Infer nuw/nsw flags using context where suitable"), 250 cl::init(true)); 251 252 //===----------------------------------------------------------------------===// 253 // SCEV class definitions 254 //===----------------------------------------------------------------------===// 255 256 //===----------------------------------------------------------------------===// 257 // Implementation of the SCEV class. 258 // 259 260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 261 LLVM_DUMP_METHOD void SCEV::dump() const { 262 print(dbgs()); 263 dbgs() << '\n'; 264 } 265 #endif 266 267 void SCEV::print(raw_ostream &OS) const { 268 switch (getSCEVType()) { 269 case scConstant: 270 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 271 return; 272 case scVScale: 273 OS << "vscale"; 274 return; 275 case scPtrToInt: { 276 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 277 const SCEV *Op = PtrToInt->getOperand(); 278 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 279 << *PtrToInt->getType() << ")"; 280 return; 281 } 282 case scTruncate: { 283 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 284 const SCEV *Op = Trunc->getOperand(); 285 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 286 << *Trunc->getType() << ")"; 287 return; 288 } 289 case scZeroExtend: { 290 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 291 const SCEV *Op = ZExt->getOperand(); 292 OS << "(zext " << *Op->getType() << " " << *Op << " to " 293 << *ZExt->getType() << ")"; 294 return; 295 } 296 case scSignExtend: { 297 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 298 const SCEV *Op = SExt->getOperand(); 299 OS << "(sext " << *Op->getType() << " " << *Op << " to " 300 << *SExt->getType() << ")"; 301 return; 302 } 303 case scAddRecExpr: { 304 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 305 OS << "{" << *AR->getOperand(0); 306 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 307 OS << ",+," << *AR->getOperand(i); 308 OS << "}<"; 309 if (AR->hasNoUnsignedWrap()) 310 OS << "nuw><"; 311 if (AR->hasNoSignedWrap()) 312 OS << "nsw><"; 313 if (AR->hasNoSelfWrap() && 314 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 315 OS << "nw><"; 316 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 317 OS << ">"; 318 return; 319 } 320 case scAddExpr: 321 case scMulExpr: 322 case scUMaxExpr: 323 case scSMaxExpr: 324 case scUMinExpr: 325 case scSMinExpr: 326 case scSequentialUMinExpr: { 327 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 328 const char *OpStr = nullptr; 329 switch (NAry->getSCEVType()) { 330 case scAddExpr: OpStr = " + "; break; 331 case scMulExpr: OpStr = " * "; break; 332 case scUMaxExpr: OpStr = " umax "; break; 333 case scSMaxExpr: OpStr = " smax "; break; 334 case scUMinExpr: 335 OpStr = " umin "; 336 break; 337 case scSMinExpr: 338 OpStr = " smin "; 339 break; 340 case scSequentialUMinExpr: 341 OpStr = " umin_seq "; 342 break; 343 default: 344 llvm_unreachable("There are no other nary expression types."); 345 } 346 OS << "("; 347 ListSeparator LS(OpStr); 348 for (const SCEV *Op : NAry->operands()) 349 OS << LS << *Op; 350 OS << ")"; 351 switch (NAry->getSCEVType()) { 352 case scAddExpr: 353 case scMulExpr: 354 if (NAry->hasNoUnsignedWrap()) 355 OS << "<nuw>"; 356 if (NAry->hasNoSignedWrap()) 357 OS << "<nsw>"; 358 break; 359 default: 360 // Nothing to print for other nary expressions. 361 break; 362 } 363 return; 364 } 365 case scUDivExpr: { 366 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 367 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 368 return; 369 } 370 case scUnknown: 371 cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false); 372 return; 373 case scCouldNotCompute: 374 OS << "***COULDNOTCOMPUTE***"; 375 return; 376 } 377 llvm_unreachable("Unknown SCEV kind!"); 378 } 379 380 Type *SCEV::getType() const { 381 switch (getSCEVType()) { 382 case scConstant: 383 return cast<SCEVConstant>(this)->getType(); 384 case scVScale: 385 return cast<SCEVVScale>(this)->getType(); 386 case scPtrToInt: 387 case scTruncate: 388 case scZeroExtend: 389 case scSignExtend: 390 return cast<SCEVCastExpr>(this)->getType(); 391 case scAddRecExpr: 392 return cast<SCEVAddRecExpr>(this)->getType(); 393 case scMulExpr: 394 return cast<SCEVMulExpr>(this)->getType(); 395 case scUMaxExpr: 396 case scSMaxExpr: 397 case scUMinExpr: 398 case scSMinExpr: 399 return cast<SCEVMinMaxExpr>(this)->getType(); 400 case scSequentialUMinExpr: 401 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 402 case scAddExpr: 403 return cast<SCEVAddExpr>(this)->getType(); 404 case scUDivExpr: 405 return cast<SCEVUDivExpr>(this)->getType(); 406 case scUnknown: 407 return cast<SCEVUnknown>(this)->getType(); 408 case scCouldNotCompute: 409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 410 } 411 llvm_unreachable("Unknown SCEV kind!"); 412 } 413 414 ArrayRef<const SCEV *> SCEV::operands() const { 415 switch (getSCEVType()) { 416 case scConstant: 417 case scVScale: 418 case scUnknown: 419 return {}; 420 case scPtrToInt: 421 case scTruncate: 422 case scZeroExtend: 423 case scSignExtend: 424 return cast<SCEVCastExpr>(this)->operands(); 425 case scAddRecExpr: 426 case scAddExpr: 427 case scMulExpr: 428 case scUMaxExpr: 429 case scSMaxExpr: 430 case scUMinExpr: 431 case scSMinExpr: 432 case scSequentialUMinExpr: 433 return cast<SCEVNAryExpr>(this)->operands(); 434 case scUDivExpr: 435 return cast<SCEVUDivExpr>(this)->operands(); 436 case scCouldNotCompute: 437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 438 } 439 llvm_unreachable("Unknown SCEV kind!"); 440 } 441 442 bool SCEV::isZero() const { 443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 444 return SC->getValue()->isZero(); 445 return false; 446 } 447 448 bool SCEV::isOne() const { 449 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 450 return SC->getValue()->isOne(); 451 return false; 452 } 453 454 bool SCEV::isAllOnesValue() const { 455 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 456 return SC->getValue()->isMinusOne(); 457 return false; 458 } 459 460 bool SCEV::isNonConstantNegative() const { 461 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 462 if (!Mul) return false; 463 464 // If there is a constant factor, it will be first. 465 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 466 if (!SC) return false; 467 468 // Return true if the value is negative, this matches things like (-42 * V). 469 return SC->getAPInt().isNegative(); 470 } 471 472 SCEVCouldNotCompute::SCEVCouldNotCompute() : 473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 474 475 bool SCEVCouldNotCompute::classof(const SCEV *S) { 476 return S->getSCEVType() == scCouldNotCompute; 477 } 478 479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 480 FoldingSetNodeID ID; 481 ID.AddInteger(scConstant); 482 ID.AddPointer(V); 483 void *IP = nullptr; 484 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 485 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 486 UniqueSCEVs.InsertNode(S, IP); 487 return S; 488 } 489 490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 491 return getConstant(ConstantInt::get(getContext(), Val)); 492 } 493 494 const SCEV * 495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 496 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 497 return getConstant(ConstantInt::get(ITy, V, isSigned)); 498 } 499 500 const SCEV *ScalarEvolution::getVScale(Type *Ty) { 501 FoldingSetNodeID ID; 502 ID.AddInteger(scVScale); 503 ID.AddPointer(Ty); 504 void *IP = nullptr; 505 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 506 return S; 507 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty); 508 UniqueSCEVs.InsertNode(S, IP); 509 return S; 510 } 511 512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 513 const SCEV *op, Type *ty) 514 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 515 516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 517 Type *ITy) 518 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 519 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 520 "Must be a non-bit-width-changing pointer-to-integer cast!"); 521 } 522 523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 524 SCEVTypes SCEVTy, const SCEV *op, 525 Type *ty) 526 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 527 528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 529 Type *ty) 530 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 531 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 532 "Cannot truncate non-integer value!"); 533 } 534 535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 536 const SCEV *op, Type *ty) 537 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 539 "Cannot zero extend non-integer value!"); 540 } 541 542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 543 const SCEV *op, Type *ty) 544 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 546 "Cannot sign extend non-integer value!"); 547 } 548 549 void SCEVUnknown::deleted() { 550 // Clear this SCEVUnknown from various maps. 551 SE->forgetMemoizedResults(this); 552 553 // Remove this SCEVUnknown from the uniquing map. 554 SE->UniqueSCEVs.RemoveNode(this); 555 556 // Release the value. 557 setValPtr(nullptr); 558 } 559 560 void SCEVUnknown::allUsesReplacedWith(Value *New) { 561 // Clear this SCEVUnknown from various maps. 562 SE->forgetMemoizedResults(this); 563 564 // Remove this SCEVUnknown from the uniquing map. 565 SE->UniqueSCEVs.RemoveNode(this); 566 567 // Replace the value pointer in case someone is still using this SCEVUnknown. 568 setValPtr(New); 569 } 570 571 //===----------------------------------------------------------------------===// 572 // SCEV Utilities 573 //===----------------------------------------------------------------------===// 574 575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 577 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 578 /// have been previously deemed to be "equally complex" by this routine. It is 579 /// intended to avoid exponential time complexity in cases like: 580 /// 581 /// %a = f(%x, %y) 582 /// %b = f(%a, %a) 583 /// %c = f(%b, %b) 584 /// 585 /// %d = f(%x, %y) 586 /// %e = f(%d, %d) 587 /// %f = f(%e, %e) 588 /// 589 /// CompareValueComplexity(%f, %c) 590 /// 591 /// Since we do not continue running this routine on expression trees once we 592 /// have seen unequal values, there is no need to track them in the cache. 593 static int 594 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 595 const LoopInfo *const LI, Value *LV, Value *RV, 596 unsigned Depth) { 597 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 598 return 0; 599 600 // Order pointer values after integer values. This helps SCEVExpander form 601 // GEPs. 602 bool LIsPointer = LV->getType()->isPointerTy(), 603 RIsPointer = RV->getType()->isPointerTy(); 604 if (LIsPointer != RIsPointer) 605 return (int)LIsPointer - (int)RIsPointer; 606 607 // Compare getValueID values. 608 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 609 if (LID != RID) 610 return (int)LID - (int)RID; 611 612 // Sort arguments by their position. 613 if (const auto *LA = dyn_cast<Argument>(LV)) { 614 const auto *RA = cast<Argument>(RV); 615 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 616 return (int)LArgNo - (int)RArgNo; 617 } 618 619 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 620 const auto *RGV = cast<GlobalValue>(RV); 621 622 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 623 auto LT = GV->getLinkage(); 624 return !(GlobalValue::isPrivateLinkage(LT) || 625 GlobalValue::isInternalLinkage(LT)); 626 }; 627 628 // Use the names to distinguish the two values, but only if the 629 // names are semantically important. 630 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 631 return LGV->getName().compare(RGV->getName()); 632 } 633 634 // For instructions, compare their loop depth, and their operand count. This 635 // is pretty loose. 636 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 637 const auto *RInst = cast<Instruction>(RV); 638 639 // Compare loop depths. 640 const BasicBlock *LParent = LInst->getParent(), 641 *RParent = RInst->getParent(); 642 if (LParent != RParent) { 643 unsigned LDepth = LI->getLoopDepth(LParent), 644 RDepth = LI->getLoopDepth(RParent); 645 if (LDepth != RDepth) 646 return (int)LDepth - (int)RDepth; 647 } 648 649 // Compare the number of operands. 650 unsigned LNumOps = LInst->getNumOperands(), 651 RNumOps = RInst->getNumOperands(); 652 if (LNumOps != RNumOps) 653 return (int)LNumOps - (int)RNumOps; 654 655 for (unsigned Idx : seq(LNumOps)) { 656 int Result = 657 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 658 RInst->getOperand(Idx), Depth + 1); 659 if (Result != 0) 660 return Result; 661 } 662 } 663 664 EqCacheValue.unionSets(LV, RV); 665 return 0; 666 } 667 668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 669 // than RHS, respectively. A three-way result allows recursive comparisons to be 670 // more efficient. 671 // If the max analysis depth was reached, return std::nullopt, assuming we do 672 // not know if they are equivalent for sure. 673 static std::optional<int> 674 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 675 EquivalenceClasses<const Value *> &EqCacheValue, 676 const LoopInfo *const LI, const SCEV *LHS, 677 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 678 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 679 if (LHS == RHS) 680 return 0; 681 682 // Primarily, sort the SCEVs by their getSCEVType(). 683 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 684 if (LType != RType) 685 return (int)LType - (int)RType; 686 687 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 688 return 0; 689 690 if (Depth > MaxSCEVCompareDepth) 691 return std::nullopt; 692 693 // Aside from the getSCEVType() ordering, the particular ordering 694 // isn't very important except that it's beneficial to be consistent, 695 // so that (a + b) and (b + a) don't end up as different expressions. 696 switch (LType) { 697 case scUnknown: { 698 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 699 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 700 701 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 702 RU->getValue(), Depth + 1); 703 if (X == 0) 704 EqCacheSCEV.unionSets(LHS, RHS); 705 return X; 706 } 707 708 case scConstant: { 709 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 710 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 711 712 // Compare constant values. 713 const APInt &LA = LC->getAPInt(); 714 const APInt &RA = RC->getAPInt(); 715 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 716 if (LBitWidth != RBitWidth) 717 return (int)LBitWidth - (int)RBitWidth; 718 return LA.ult(RA) ? -1 : 1; 719 } 720 721 case scVScale: { 722 const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType()); 723 const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType()); 724 return LTy->getBitWidth() - RTy->getBitWidth(); 725 } 726 727 case scAddRecExpr: { 728 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 729 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 730 731 // There is always a dominance between two recs that are used by one SCEV, 732 // so we can safely sort recs by loop header dominance. We require such 733 // order in getAddExpr. 734 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 735 if (LLoop != RLoop) { 736 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 737 assert(LHead != RHead && "Two loops share the same header?"); 738 if (DT.dominates(LHead, RHead)) 739 return 1; 740 assert(DT.dominates(RHead, LHead) && 741 "No dominance between recurrences used by one SCEV?"); 742 return -1; 743 } 744 745 [[fallthrough]]; 746 } 747 748 case scTruncate: 749 case scZeroExtend: 750 case scSignExtend: 751 case scPtrToInt: 752 case scAddExpr: 753 case scMulExpr: 754 case scUDivExpr: 755 case scSMaxExpr: 756 case scUMaxExpr: 757 case scSMinExpr: 758 case scUMinExpr: 759 case scSequentialUMinExpr: { 760 ArrayRef<const SCEV *> LOps = LHS->operands(); 761 ArrayRef<const SCEV *> ROps = RHS->operands(); 762 763 // Lexicographically compare n-ary-like expressions. 764 unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); 765 if (LNumOps != RNumOps) 766 return (int)LNumOps - (int)RNumOps; 767 768 for (unsigned i = 0; i != LNumOps; ++i) { 769 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i], 770 ROps[i], DT, Depth + 1); 771 if (X != 0) 772 return X; 773 } 774 EqCacheSCEV.unionSets(LHS, RHS); 775 return 0; 776 } 777 778 case scCouldNotCompute: 779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 780 } 781 llvm_unreachable("Unknown SCEV kind!"); 782 } 783 784 /// Given a list of SCEV objects, order them by their complexity, and group 785 /// objects of the same complexity together by value. When this routine is 786 /// finished, we know that any duplicates in the vector are consecutive and that 787 /// complexity is monotonically increasing. 788 /// 789 /// Note that we go take special precautions to ensure that we get deterministic 790 /// results from this routine. In other words, we don't want the results of 791 /// this to depend on where the addresses of various SCEV objects happened to 792 /// land in memory. 793 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 794 LoopInfo *LI, DominatorTree &DT) { 795 if (Ops.size() < 2) return; // Noop 796 797 EquivalenceClasses<const SCEV *> EqCacheSCEV; 798 EquivalenceClasses<const Value *> EqCacheValue; 799 800 // Whether LHS has provably less complexity than RHS. 801 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 802 auto Complexity = 803 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 804 return Complexity && *Complexity < 0; 805 }; 806 if (Ops.size() == 2) { 807 // This is the common case, which also happens to be trivially simple. 808 // Special case it. 809 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 810 if (IsLessComplex(RHS, LHS)) 811 std::swap(LHS, RHS); 812 return; 813 } 814 815 // Do the rough sort by complexity. 816 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 817 return IsLessComplex(LHS, RHS); 818 }); 819 820 // Now that we are sorted by complexity, group elements of the same 821 // complexity. Note that this is, at worst, N^2, but the vector is likely to 822 // be extremely short in practice. Note that we take this approach because we 823 // do not want to depend on the addresses of the objects we are grouping. 824 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 825 const SCEV *S = Ops[i]; 826 unsigned Complexity = S->getSCEVType(); 827 828 // If there are any objects of the same complexity and same value as this 829 // one, group them. 830 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 831 if (Ops[j] == S) { // Found a duplicate. 832 // Move it to immediately after i'th element. 833 std::swap(Ops[i+1], Ops[j]); 834 ++i; // no need to rescan it. 835 if (i == e-2) return; // Done! 836 } 837 } 838 } 839 } 840 841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 842 /// least HugeExprThreshold nodes). 843 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 844 return any_of(Ops, [](const SCEV *S) { 845 return S->getExpressionSize() >= HugeExprThreshold; 846 }); 847 } 848 849 //===----------------------------------------------------------------------===// 850 // Simple SCEV method implementations 851 //===----------------------------------------------------------------------===// 852 853 /// Compute BC(It, K). The result has width W. Assume, K > 0. 854 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 855 ScalarEvolution &SE, 856 Type *ResultTy) { 857 // Handle the simplest case efficiently. 858 if (K == 1) 859 return SE.getTruncateOrZeroExtend(It, ResultTy); 860 861 // We are using the following formula for BC(It, K): 862 // 863 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 864 // 865 // Suppose, W is the bitwidth of the return value. We must be prepared for 866 // overflow. Hence, we must assure that the result of our computation is 867 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 868 // safe in modular arithmetic. 869 // 870 // However, this code doesn't use exactly that formula; the formula it uses 871 // is something like the following, where T is the number of factors of 2 in 872 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 873 // exponentiation: 874 // 875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 876 // 877 // This formula is trivially equivalent to the previous formula. However, 878 // this formula can be implemented much more efficiently. The trick is that 879 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 880 // arithmetic. To do exact division in modular arithmetic, all we have 881 // to do is multiply by the inverse. Therefore, this step can be done at 882 // width W. 883 // 884 // The next issue is how to safely do the division by 2^T. The way this 885 // is done is by doing the multiplication step at a width of at least W + T 886 // bits. This way, the bottom W+T bits of the product are accurate. Then, 887 // when we perform the division by 2^T (which is equivalent to a right shift 888 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 889 // truncated out after the division by 2^T. 890 // 891 // In comparison to just directly using the first formula, this technique 892 // is much more efficient; using the first formula requires W * K bits, 893 // but this formula less than W + K bits. Also, the first formula requires 894 // a division step, whereas this formula only requires multiplies and shifts. 895 // 896 // It doesn't matter whether the subtraction step is done in the calculation 897 // width or the input iteration count's width; if the subtraction overflows, 898 // the result must be zero anyway. We prefer here to do it in the width of 899 // the induction variable because it helps a lot for certain cases; CodeGen 900 // isn't smart enough to ignore the overflow, which leads to much less 901 // efficient code if the width of the subtraction is wider than the native 902 // register width. 903 // 904 // (It's possible to not widen at all by pulling out factors of 2 before 905 // the multiplication; for example, K=2 can be calculated as 906 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 907 // extra arithmetic, so it's not an obvious win, and it gets 908 // much more complicated for K > 3.) 909 910 // Protection from insane SCEVs; this bound is conservative, 911 // but it probably doesn't matter. 912 if (K > 1000) 913 return SE.getCouldNotCompute(); 914 915 unsigned W = SE.getTypeSizeInBits(ResultTy); 916 917 // Calculate K! / 2^T and T; we divide out the factors of two before 918 // multiplying for calculating K! / 2^T to avoid overflow. 919 // Other overflow doesn't matter because we only care about the bottom 920 // W bits of the result. 921 APInt OddFactorial(W, 1); 922 unsigned T = 1; 923 for (unsigned i = 3; i <= K; ++i) { 924 APInt Mult(W, i); 925 unsigned TwoFactors = Mult.countr_zero(); 926 T += TwoFactors; 927 Mult.lshrInPlace(TwoFactors); 928 OddFactorial *= Mult; 929 } 930 931 // We need at least W + T bits for the multiplication step 932 unsigned CalculationBits = W + T; 933 934 // Calculate 2^T, at width T+W. 935 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 936 937 // Calculate the multiplicative inverse of K! / 2^T; 938 // this multiplication factor will perform the exact division by 939 // K! / 2^T. 940 APInt Mod = APInt::getSignedMinValue(W+1); 941 APInt MultiplyFactor = OddFactorial.zext(W+1); 942 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 943 MultiplyFactor = MultiplyFactor.trunc(W); 944 945 // Calculate the product, at width T+W 946 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 947 CalculationBits); 948 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 949 for (unsigned i = 1; i != K; ++i) { 950 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 951 Dividend = SE.getMulExpr(Dividend, 952 SE.getTruncateOrZeroExtend(S, CalculationTy)); 953 } 954 955 // Divide by 2^T 956 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 957 958 // Truncate the result, and divide by K! / 2^T. 959 960 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 961 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 962 } 963 964 /// Return the value of this chain of recurrences at the specified iteration 965 /// number. We can evaluate this recurrence by multiplying each element in the 966 /// chain by the binomial coefficient corresponding to it. In other words, we 967 /// can evaluate {A,+,B,+,C,+,D} as: 968 /// 969 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 970 /// 971 /// where BC(It, k) stands for binomial coefficient. 972 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 973 ScalarEvolution &SE) const { 974 return evaluateAtIteration(operands(), It, SE); 975 } 976 977 const SCEV * 978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 979 const SCEV *It, ScalarEvolution &SE) { 980 assert(Operands.size() > 0); 981 const SCEV *Result = Operands[0]; 982 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 983 // The computation is correct in the face of overflow provided that the 984 // multiplication is performed _after_ the evaluation of the binomial 985 // coefficient. 986 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 987 if (isa<SCEVCouldNotCompute>(Coeff)) 988 return Coeff; 989 990 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 991 } 992 return Result; 993 } 994 995 //===----------------------------------------------------------------------===// 996 // SCEV Expression folder implementations 997 //===----------------------------------------------------------------------===// 998 999 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1000 unsigned Depth) { 1001 assert(Depth <= 1 && 1002 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1003 1004 // We could be called with an integer-typed operands during SCEV rewrites. 1005 // Since the operand is an integer already, just perform zext/trunc/self cast. 1006 if (!Op->getType()->isPointerTy()) 1007 return Op; 1008 1009 // What would be an ID for such a SCEV cast expression? 1010 FoldingSetNodeID ID; 1011 ID.AddInteger(scPtrToInt); 1012 ID.AddPointer(Op); 1013 1014 void *IP = nullptr; 1015 1016 // Is there already an expression for such a cast? 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1018 return S; 1019 1020 // It isn't legal for optimizations to construct new ptrtoint expressions 1021 // for non-integral pointers. 1022 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1023 return getCouldNotCompute(); 1024 1025 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1026 1027 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1028 // is sufficiently wide to represent all possible pointer values. 1029 // We could theoretically teach SCEV to truncate wider pointers, but 1030 // that isn't implemented for now. 1031 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1032 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1033 return getCouldNotCompute(); 1034 1035 // If not, is this expression something we can't reduce any further? 1036 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1037 // Perform some basic constant folding. If the operand of the ptr2int cast 1038 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1039 // left as-is), but produce a zero constant. 1040 // NOTE: We could handle a more general case, but lack motivational cases. 1041 if (isa<ConstantPointerNull>(U->getValue())) 1042 return getZero(IntPtrTy); 1043 1044 // Create an explicit cast node. 1045 // We can reuse the existing insert position since if we get here, 1046 // we won't have made any changes which would invalidate it. 1047 SCEV *S = new (SCEVAllocator) 1048 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1049 UniqueSCEVs.InsertNode(S, IP); 1050 registerUser(S, Op); 1051 return S; 1052 } 1053 1054 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1055 "non-SCEVUnknown's."); 1056 1057 // Otherwise, we've got some expression that is more complex than just a 1058 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1059 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1060 // only, and the expressions must otherwise be integer-typed. 1061 // So sink the cast down to the SCEVUnknown's. 1062 1063 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1064 /// which computes a pointer-typed value, and rewrites the whole expression 1065 /// tree so that *all* the computations are done on integers, and the only 1066 /// pointer-typed operands in the expression are SCEVUnknown. 1067 class SCEVPtrToIntSinkingRewriter 1068 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1069 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1070 1071 public: 1072 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1073 1074 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1075 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1076 return Rewriter.visit(Scev); 1077 } 1078 1079 const SCEV *visit(const SCEV *S) { 1080 Type *STy = S->getType(); 1081 // If the expression is not pointer-typed, just keep it as-is. 1082 if (!STy->isPointerTy()) 1083 return S; 1084 // Else, recursively sink the cast down into it. 1085 return Base::visit(S); 1086 } 1087 1088 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1089 SmallVector<const SCEV *, 2> Operands; 1090 bool Changed = false; 1091 for (const auto *Op : Expr->operands()) { 1092 Operands.push_back(visit(Op)); 1093 Changed |= Op != Operands.back(); 1094 } 1095 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1096 } 1097 1098 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1099 SmallVector<const SCEV *, 2> Operands; 1100 bool Changed = false; 1101 for (const auto *Op : Expr->operands()) { 1102 Operands.push_back(visit(Op)); 1103 Changed |= Op != Operands.back(); 1104 } 1105 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1106 } 1107 1108 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1109 assert(Expr->getType()->isPointerTy() && 1110 "Should only reach pointer-typed SCEVUnknown's."); 1111 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1112 } 1113 }; 1114 1115 // And actually perform the cast sinking. 1116 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1117 assert(IntOp->getType()->isIntegerTy() && 1118 "We must have succeeded in sinking the cast, " 1119 "and ending up with an integer-typed expression!"); 1120 return IntOp; 1121 } 1122 1123 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1124 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1125 1126 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1127 if (isa<SCEVCouldNotCompute>(IntOp)) 1128 return IntOp; 1129 1130 return getTruncateOrZeroExtend(IntOp, Ty); 1131 } 1132 1133 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1134 unsigned Depth) { 1135 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1136 "This is not a truncating conversion!"); 1137 assert(isSCEVable(Ty) && 1138 "This is not a conversion to a SCEVable type!"); 1139 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1140 Ty = getEffectiveSCEVType(Ty); 1141 1142 FoldingSetNodeID ID; 1143 ID.AddInteger(scTruncate); 1144 ID.AddPointer(Op); 1145 ID.AddPointer(Ty); 1146 void *IP = nullptr; 1147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1148 1149 // Fold if the operand is constant. 1150 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1151 return getConstant( 1152 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1153 1154 // trunc(trunc(x)) --> trunc(x) 1155 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1156 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1157 1158 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1159 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1160 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1161 1162 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1163 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1164 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1165 1166 if (Depth > MaxCastDepth) { 1167 SCEV *S = 1168 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1169 UniqueSCEVs.InsertNode(S, IP); 1170 registerUser(S, Op); 1171 return S; 1172 } 1173 1174 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1175 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1176 // if after transforming we have at most one truncate, not counting truncates 1177 // that replace other casts. 1178 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1179 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1180 SmallVector<const SCEV *, 4> Operands; 1181 unsigned numTruncs = 0; 1182 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1183 ++i) { 1184 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1185 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1186 isa<SCEVTruncateExpr>(S)) 1187 numTruncs++; 1188 Operands.push_back(S); 1189 } 1190 if (numTruncs < 2) { 1191 if (isa<SCEVAddExpr>(Op)) 1192 return getAddExpr(Operands); 1193 if (isa<SCEVMulExpr>(Op)) 1194 return getMulExpr(Operands); 1195 llvm_unreachable("Unexpected SCEV type for Op."); 1196 } 1197 // Although we checked in the beginning that ID is not in the cache, it is 1198 // possible that during recursion and different modification ID was inserted 1199 // into the cache. So if we find it, just return it. 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1201 return S; 1202 } 1203 1204 // If the input value is a chrec scev, truncate the chrec's operands. 1205 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1206 SmallVector<const SCEV *, 4> Operands; 1207 for (const SCEV *Op : AddRec->operands()) 1208 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1209 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1210 } 1211 1212 // Return zero if truncating to known zeros. 1213 uint32_t MinTrailingZeros = getMinTrailingZeros(Op); 1214 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1215 return getZero(Ty); 1216 1217 // The cast wasn't folded; create an explicit cast node. We can reuse 1218 // the existing insert position since if we get here, we won't have 1219 // made any changes which would invalidate it. 1220 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1221 Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 registerUser(S, Op); 1224 return S; 1225 } 1226 1227 // Get the limit of a recurrence such that incrementing by Step cannot cause 1228 // signed overflow as long as the value of the recurrence within the 1229 // loop does not exceed this limit before incrementing. 1230 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1231 ICmpInst::Predicate *Pred, 1232 ScalarEvolution *SE) { 1233 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1234 if (SE->isKnownPositive(Step)) { 1235 *Pred = ICmpInst::ICMP_SLT; 1236 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1237 SE->getSignedRangeMax(Step)); 1238 } 1239 if (SE->isKnownNegative(Step)) { 1240 *Pred = ICmpInst::ICMP_SGT; 1241 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1242 SE->getSignedRangeMin(Step)); 1243 } 1244 return nullptr; 1245 } 1246 1247 // Get the limit of a recurrence such that incrementing by Step cannot cause 1248 // unsigned overflow as long as the value of the recurrence within the loop does 1249 // not exceed this limit before incrementing. 1250 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1251 ICmpInst::Predicate *Pred, 1252 ScalarEvolution *SE) { 1253 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1254 *Pred = ICmpInst::ICMP_ULT; 1255 1256 return SE->getConstant(APInt::getMinValue(BitWidth) - 1257 SE->getUnsignedRangeMax(Step)); 1258 } 1259 1260 namespace { 1261 1262 struct ExtendOpTraitsBase { 1263 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1264 unsigned); 1265 }; 1266 1267 // Used to make code generic over signed and unsigned overflow. 1268 template <typename ExtendOp> struct ExtendOpTraits { 1269 // Members present: 1270 // 1271 // static const SCEV::NoWrapFlags WrapType; 1272 // 1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1274 // 1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1276 // ICmpInst::Predicate *Pred, 1277 // ScalarEvolution *SE); 1278 }; 1279 1280 template <> 1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1282 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1283 1284 static const GetExtendExprTy GetExtendExpr; 1285 1286 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1287 ICmpInst::Predicate *Pred, 1288 ScalarEvolution *SE) { 1289 return getSignedOverflowLimitForStep(Step, Pred, SE); 1290 } 1291 }; 1292 1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1294 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1295 1296 template <> 1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1299 1300 static const GetExtendExprTy GetExtendExpr; 1301 1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1306 } 1307 }; 1308 1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1310 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1311 1312 } // end anonymous namespace 1313 1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1319 // expression "Step + sext/zext(PreIncAR)" is congruent with 1320 // "sext/zext(PostIncAR)" 1321 template <typename ExtendOpTy> 1322 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1323 ScalarEvolution *SE, unsigned Depth) { 1324 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1325 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1326 1327 const Loop *L = AR->getLoop(); 1328 const SCEV *Start = AR->getStart(); 1329 const SCEV *Step = AR->getStepRecurrence(*SE); 1330 1331 // Check for a simple looking step prior to loop entry. 1332 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1333 if (!SA) 1334 return nullptr; 1335 1336 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1337 // subtraction is expensive. For this purpose, perform a quick and dirty 1338 // difference, by checking for Step in the operand list. Note, that 1339 // SA might have repeated ops, like %a + %a + ..., so only remove one. 1340 SmallVector<const SCEV *, 4> DiffOps(SA->operands()); 1341 for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It) 1342 if (*It == Step) { 1343 DiffOps.erase(It); 1344 break; 1345 } 1346 1347 if (DiffOps.size() == SA->getNumOperands()) 1348 return nullptr; 1349 1350 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1351 // `Step`: 1352 1353 // 1. NSW/NUW flags on the step increment. 1354 auto PreStartFlags = 1355 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1356 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1357 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1358 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1359 1360 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1361 // "S+X does not sign/unsign-overflow". 1362 // 1363 1364 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1365 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1366 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1367 return PreStart; 1368 1369 // 2. Direct overflow check on the step operation's expression. 1370 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1371 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1372 const SCEV *OperandExtendedStart = 1373 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1374 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1375 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1376 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1377 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1378 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1379 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1380 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1381 } 1382 return PreStart; 1383 } 1384 1385 // 3. Loop precondition. 1386 ICmpInst::Predicate Pred; 1387 const SCEV *OverflowLimit = 1388 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1389 1390 if (OverflowLimit && 1391 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1392 return PreStart; 1393 1394 return nullptr; 1395 } 1396 1397 // Get the normalized zero or sign extended expression for this AddRec's Start. 1398 template <typename ExtendOpTy> 1399 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1400 ScalarEvolution *SE, 1401 unsigned Depth) { 1402 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1403 1404 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1405 if (!PreStart) 1406 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1407 1408 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1409 Depth), 1410 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1411 } 1412 1413 // Try to prove away overflow by looking at "nearby" add recurrences. A 1414 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1415 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1416 // 1417 // Formally: 1418 // 1419 // {S,+,X} == {S-T,+,X} + T 1420 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1421 // 1422 // If ({S-T,+,X} + T) does not overflow ... (1) 1423 // 1424 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1425 // 1426 // If {S-T,+,X} does not overflow ... (2) 1427 // 1428 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1429 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1430 // 1431 // If (S-T)+T does not overflow ... (3) 1432 // 1433 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1434 // == {Ext(S),+,Ext(X)} == LHS 1435 // 1436 // Thus, if (1), (2) and (3) are true for some T, then 1437 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1438 // 1439 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1440 // does not overflow" restricted to the 0th iteration. Therefore we only need 1441 // to check for (1) and (2). 1442 // 1443 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1444 // is `Delta` (defined below). 1445 template <typename ExtendOpTy> 1446 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1447 const SCEV *Step, 1448 const Loop *L) { 1449 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1450 1451 // We restrict `Start` to a constant to prevent SCEV from spending too much 1452 // time here. It is correct (but more expensive) to continue with a 1453 // non-constant `Start` and do a general SCEV subtraction to compute 1454 // `PreStart` below. 1455 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1456 if (!StartC) 1457 return false; 1458 1459 APInt StartAI = StartC->getAPInt(); 1460 1461 for (unsigned Delta : {-2, -1, 1, 2}) { 1462 const SCEV *PreStart = getConstant(StartAI - Delta); 1463 1464 FoldingSetNodeID ID; 1465 ID.AddInteger(scAddRecExpr); 1466 ID.AddPointer(PreStart); 1467 ID.AddPointer(Step); 1468 ID.AddPointer(L); 1469 void *IP = nullptr; 1470 const auto *PreAR = 1471 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1472 1473 // Give up if we don't already have the add recurrence we need because 1474 // actually constructing an add recurrence is relatively expensive. 1475 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1476 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1477 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1478 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1479 DeltaS, &Pred, this); 1480 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1481 return true; 1482 } 1483 } 1484 1485 return false; 1486 } 1487 1488 // Finds an integer D for an expression (C + x + y + ...) such that the top 1489 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1490 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1491 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1492 // the (C + x + y + ...) expression is \p WholeAddExpr. 1493 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1494 const SCEVConstant *ConstantTerm, 1495 const SCEVAddExpr *WholeAddExpr) { 1496 const APInt &C = ConstantTerm->getAPInt(); 1497 const unsigned BitWidth = C.getBitWidth(); 1498 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1499 uint32_t TZ = BitWidth; 1500 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1501 TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I))); 1502 if (TZ) { 1503 // Set D to be as many least significant bits of C as possible while still 1504 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1505 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1506 } 1507 return APInt(BitWidth, 0); 1508 } 1509 1510 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1511 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1512 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1513 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1514 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1515 const APInt &ConstantStart, 1516 const SCEV *Step) { 1517 const unsigned BitWidth = ConstantStart.getBitWidth(); 1518 const uint32_t TZ = SE.getMinTrailingZeros(Step); 1519 if (TZ) 1520 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1521 : ConstantStart; 1522 return APInt(BitWidth, 0); 1523 } 1524 1525 static void insertFoldCacheEntry( 1526 const ScalarEvolution::FoldID &ID, const SCEV *S, 1527 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, 1528 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> 1529 &FoldCacheUser) { 1530 auto I = FoldCache.insert({ID, S}); 1531 if (!I.second) { 1532 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache 1533 // entry. 1534 auto &UserIDs = FoldCacheUser[I.first->second]; 1535 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs"); 1536 for (unsigned I = 0; I != UserIDs.size(); ++I) 1537 if (UserIDs[I] == ID) { 1538 std::swap(UserIDs[I], UserIDs.back()); 1539 break; 1540 } 1541 UserIDs.pop_back(); 1542 I.first->second = S; 1543 } 1544 auto R = FoldCacheUser.insert({S, {}}); 1545 R.first->second.push_back(ID); 1546 } 1547 1548 const SCEV * 1549 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1550 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1551 "This is not an extending conversion!"); 1552 assert(isSCEVable(Ty) && 1553 "This is not a conversion to a SCEVable type!"); 1554 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1555 Ty = getEffectiveSCEVType(Ty); 1556 1557 FoldID ID(scZeroExtend, Op, Ty); 1558 auto Iter = FoldCache.find(ID); 1559 if (Iter != FoldCache.end()) 1560 return Iter->second; 1561 1562 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); 1563 if (!isa<SCEVZeroExtendExpr>(S)) 1564 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1565 return S; 1566 } 1567 1568 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1569 unsigned Depth) { 1570 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1571 "This is not an extending conversion!"); 1572 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1573 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1574 1575 // Fold if the operand is constant. 1576 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1577 return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty))); 1578 1579 // zext(zext(x)) --> zext(x) 1580 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1581 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1582 1583 // Before doing any expensive analysis, check to see if we've already 1584 // computed a SCEV for this Op and Ty. 1585 FoldingSetNodeID ID; 1586 ID.AddInteger(scZeroExtend); 1587 ID.AddPointer(Op); 1588 ID.AddPointer(Ty); 1589 void *IP = nullptr; 1590 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1591 if (Depth > MaxCastDepth) { 1592 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1593 Op, Ty); 1594 UniqueSCEVs.InsertNode(S, IP); 1595 registerUser(S, Op); 1596 return S; 1597 } 1598 1599 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1600 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1601 // It's possible the bits taken off by the truncate were all zero bits. If 1602 // so, we should be able to simplify this further. 1603 const SCEV *X = ST->getOperand(); 1604 ConstantRange CR = getUnsignedRange(X); 1605 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1606 unsigned NewBits = getTypeSizeInBits(Ty); 1607 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1608 CR.zextOrTrunc(NewBits))) 1609 return getTruncateOrZeroExtend(X, Ty, Depth); 1610 } 1611 1612 // If the input value is a chrec scev, and we can prove that the value 1613 // did not overflow the old, smaller, value, we can zero extend all of the 1614 // operands (often constants). This allows analysis of something like 1615 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1617 if (AR->isAffine()) { 1618 const SCEV *Start = AR->getStart(); 1619 const SCEV *Step = AR->getStepRecurrence(*this); 1620 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1621 const Loop *L = AR->getLoop(); 1622 1623 // If we have special knowledge that this addrec won't overflow, 1624 // we don't need to do any further analysis. 1625 if (AR->hasNoUnsignedWrap()) { 1626 Start = 1627 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1628 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1629 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1630 } 1631 1632 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1633 // Note that this serves two purposes: It filters out loops that are 1634 // simply not analyzable, and it covers the case where this code is 1635 // being called from within backedge-taken count analysis, such that 1636 // attempting to ask for the backedge-taken count would likely result 1637 // in infinite recursion. In the later case, the analysis code will 1638 // cope with a conservative value, and it will take care to purge 1639 // that value once it has finished. 1640 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1641 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1642 // Manually compute the final value for AR, checking for overflow. 1643 1644 // Check whether the backedge-taken count can be losslessly casted to 1645 // the addrec's type. The count is always unsigned. 1646 const SCEV *CastedMaxBECount = 1647 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1648 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1649 CastedMaxBECount, MaxBECount->getType(), Depth); 1650 if (MaxBECount == RecastedMaxBECount) { 1651 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1652 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1653 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1654 SCEV::FlagAnyWrap, Depth + 1); 1655 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1656 SCEV::FlagAnyWrap, 1657 Depth + 1), 1658 WideTy, Depth + 1); 1659 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1660 const SCEV *WideMaxBECount = 1661 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1662 const SCEV *OperandExtendedAdd = 1663 getAddExpr(WideStart, 1664 getMulExpr(WideMaxBECount, 1665 getZeroExtendExpr(Step, WideTy, Depth + 1), 1666 SCEV::FlagAnyWrap, Depth + 1), 1667 SCEV::FlagAnyWrap, Depth + 1); 1668 if (ZAdd == OperandExtendedAdd) { 1669 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1670 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1671 // Return the expression with the addrec on the outside. 1672 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1673 Depth + 1); 1674 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1675 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1676 } 1677 // Similar to above, only this time treat the step value as signed. 1678 // This covers loops that count down. 1679 OperandExtendedAdd = 1680 getAddExpr(WideStart, 1681 getMulExpr(WideMaxBECount, 1682 getSignExtendExpr(Step, WideTy, Depth + 1), 1683 SCEV::FlagAnyWrap, Depth + 1), 1684 SCEV::FlagAnyWrap, Depth + 1); 1685 if (ZAdd == OperandExtendedAdd) { 1686 // Cache knowledge of AR NW, which is propagated to this AddRec. 1687 // Negative step causes unsigned wrap, but it still can't self-wrap. 1688 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1689 // Return the expression with the addrec on the outside. 1690 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1691 Depth + 1); 1692 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1693 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1694 } 1695 } 1696 } 1697 1698 // Normally, in the cases we can prove no-overflow via a 1699 // backedge guarding condition, we can also compute a backedge 1700 // taken count for the loop. The exceptions are assumptions and 1701 // guards present in the loop -- SCEV is not great at exploiting 1702 // these to compute max backedge taken counts, but can still use 1703 // these to prove lack of overflow. Use this fact to avoid 1704 // doing extra work that may not pay off. 1705 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1706 !AC.assumptions().empty()) { 1707 1708 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1709 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1710 if (AR->hasNoUnsignedWrap()) { 1711 // Same as nuw case above - duplicated here to avoid a compile time 1712 // issue. It's not clear that the order of checks does matter, but 1713 // it's one of two issue possible causes for a change which was 1714 // reverted. Be conservative for the moment. 1715 Start = 1716 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1717 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1718 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1719 } 1720 1721 // For a negative step, we can extend the operands iff doing so only 1722 // traverses values in the range zext([0,UINT_MAX]). 1723 if (isKnownNegative(Step)) { 1724 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1725 getSignedRangeMin(Step)); 1726 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1727 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1728 // Cache knowledge of AR NW, which is propagated to this 1729 // AddRec. Negative step causes unsigned wrap, but it 1730 // still can't self-wrap. 1731 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1732 // Return the expression with the addrec on the outside. 1733 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1734 Depth + 1); 1735 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1736 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1737 } 1738 } 1739 } 1740 1741 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1742 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1743 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1744 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1745 const APInt &C = SC->getAPInt(); 1746 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1747 if (D != 0) { 1748 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1749 const SCEV *SResidual = 1750 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1751 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1752 return getAddExpr(SZExtD, SZExtR, 1753 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1754 Depth + 1); 1755 } 1756 } 1757 1758 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1759 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1760 Start = 1761 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1762 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1763 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1764 } 1765 } 1766 1767 // zext(A % B) --> zext(A) % zext(B) 1768 { 1769 const SCEV *LHS; 1770 const SCEV *RHS; 1771 if (matchURem(Op, LHS, RHS)) 1772 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1773 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1774 } 1775 1776 // zext(A / B) --> zext(A) / zext(B). 1777 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1778 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1779 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1780 1781 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1782 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1783 if (SA->hasNoUnsignedWrap()) { 1784 // If the addition does not unsign overflow then we can, by definition, 1785 // commute the zero extension with the addition operation. 1786 SmallVector<const SCEV *, 4> Ops; 1787 for (const auto *Op : SA->operands()) 1788 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1789 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1790 } 1791 1792 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1793 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1794 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1795 // 1796 // Often address arithmetics contain expressions like 1797 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1798 // This transformation is useful while proving that such expressions are 1799 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1800 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1801 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1802 if (D != 0) { 1803 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1804 const SCEV *SResidual = 1805 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1806 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1807 return getAddExpr(SZExtD, SZExtR, 1808 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1809 Depth + 1); 1810 } 1811 } 1812 } 1813 1814 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1815 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1816 if (SM->hasNoUnsignedWrap()) { 1817 // If the multiply does not unsign overflow then we can, by definition, 1818 // commute the zero extension with the multiply operation. 1819 SmallVector<const SCEV *, 4> Ops; 1820 for (const auto *Op : SM->operands()) 1821 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1822 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1823 } 1824 1825 // zext(2^K * (trunc X to iN)) to iM -> 1826 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1827 // 1828 // Proof: 1829 // 1830 // zext(2^K * (trunc X to iN)) to iM 1831 // = zext((trunc X to iN) << K) to iM 1832 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1833 // (because shl removes the top K bits) 1834 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1835 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1836 // 1837 if (SM->getNumOperands() == 2) 1838 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1839 if (MulLHS->getAPInt().isPowerOf2()) 1840 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1841 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1842 MulLHS->getAPInt().logBase2(); 1843 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1844 return getMulExpr( 1845 getZeroExtendExpr(MulLHS, Ty), 1846 getZeroExtendExpr( 1847 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1848 SCEV::FlagNUW, Depth + 1); 1849 } 1850 } 1851 1852 // zext(umin(x, y)) -> umin(zext(x), zext(y)) 1853 // zext(umax(x, y)) -> umax(zext(x), zext(y)) 1854 if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) { 1855 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 1856 SmallVector<const SCEV *, 4> Operands; 1857 for (auto *Operand : MinMax->operands()) 1858 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1859 if (isa<SCEVUMinExpr>(MinMax)) 1860 return getUMinExpr(Operands); 1861 return getUMaxExpr(Operands); 1862 } 1863 1864 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) 1865 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) { 1866 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!"); 1867 SmallVector<const SCEV *, 4> Operands; 1868 for (auto *Operand : MinMax->operands()) 1869 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1870 return getUMinExpr(Operands, /*Sequential*/ true); 1871 } 1872 1873 // The cast wasn't folded; create an explicit cast node. 1874 // Recompute the insert position, as it may have been invalidated. 1875 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1876 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1877 Op, Ty); 1878 UniqueSCEVs.InsertNode(S, IP); 1879 registerUser(S, Op); 1880 return S; 1881 } 1882 1883 const SCEV * 1884 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1885 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1886 "This is not an extending conversion!"); 1887 assert(isSCEVable(Ty) && 1888 "This is not a conversion to a SCEVable type!"); 1889 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1890 Ty = getEffectiveSCEVType(Ty); 1891 1892 FoldID ID(scSignExtend, Op, Ty); 1893 auto Iter = FoldCache.find(ID); 1894 if (Iter != FoldCache.end()) 1895 return Iter->second; 1896 1897 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); 1898 if (!isa<SCEVSignExtendExpr>(S)) 1899 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1900 return S; 1901 } 1902 1903 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1904 unsigned Depth) { 1905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1906 "This is not an extending conversion!"); 1907 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1908 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1909 Ty = getEffectiveSCEVType(Ty); 1910 1911 // Fold if the operand is constant. 1912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1913 return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty))); 1914 1915 // sext(sext(x)) --> sext(x) 1916 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1917 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1918 1919 // sext(zext(x)) --> zext(x) 1920 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1921 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1922 1923 // Before doing any expensive analysis, check to see if we've already 1924 // computed a SCEV for this Op and Ty. 1925 FoldingSetNodeID ID; 1926 ID.AddInteger(scSignExtend); 1927 ID.AddPointer(Op); 1928 ID.AddPointer(Ty); 1929 void *IP = nullptr; 1930 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1931 // Limit recursion depth. 1932 if (Depth > MaxCastDepth) { 1933 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1934 Op, Ty); 1935 UniqueSCEVs.InsertNode(S, IP); 1936 registerUser(S, Op); 1937 return S; 1938 } 1939 1940 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1941 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1942 // It's possible the bits taken off by the truncate were all sign bits. If 1943 // so, we should be able to simplify this further. 1944 const SCEV *X = ST->getOperand(); 1945 ConstantRange CR = getSignedRange(X); 1946 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1947 unsigned NewBits = getTypeSizeInBits(Ty); 1948 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1949 CR.sextOrTrunc(NewBits))) 1950 return getTruncateOrSignExtend(X, Ty, Depth); 1951 } 1952 1953 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1954 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1955 if (SA->hasNoSignedWrap()) { 1956 // If the addition does not sign overflow then we can, by definition, 1957 // commute the sign extension with the addition operation. 1958 SmallVector<const SCEV *, 4> Ops; 1959 for (const auto *Op : SA->operands()) 1960 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1961 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1962 } 1963 1964 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1965 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1966 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1967 // 1968 // For instance, this will bring two seemingly different expressions: 1969 // 1 + sext(5 + 20 * %x + 24 * %y) and 1970 // sext(6 + 20 * %x + 24 * %y) 1971 // to the same form: 1972 // 2 + sext(4 + 20 * %x + 24 * %y) 1973 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1974 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1975 if (D != 0) { 1976 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1977 const SCEV *SResidual = 1978 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1979 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1980 return getAddExpr(SSExtD, SSExtR, 1981 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1982 Depth + 1); 1983 } 1984 } 1985 } 1986 // If the input value is a chrec scev, and we can prove that the value 1987 // did not overflow the old, smaller, value, we can sign extend all of the 1988 // operands (often constants). This allows analysis of something like 1989 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1990 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1991 if (AR->isAffine()) { 1992 const SCEV *Start = AR->getStart(); 1993 const SCEV *Step = AR->getStepRecurrence(*this); 1994 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1995 const Loop *L = AR->getLoop(); 1996 1997 // If we have special knowledge that this addrec won't overflow, 1998 // we don't need to do any further analysis. 1999 if (AR->hasNoSignedWrap()) { 2000 Start = 2001 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2002 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2003 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2004 } 2005 2006 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2007 // Note that this serves two purposes: It filters out loops that are 2008 // simply not analyzable, and it covers the case where this code is 2009 // being called from within backedge-taken count analysis, such that 2010 // attempting to ask for the backedge-taken count would likely result 2011 // in infinite recursion. In the later case, the analysis code will 2012 // cope with a conservative value, and it will take care to purge 2013 // that value once it has finished. 2014 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2015 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2016 // Manually compute the final value for AR, checking for 2017 // overflow. 2018 2019 // Check whether the backedge-taken count can be losslessly casted to 2020 // the addrec's type. The count is always unsigned. 2021 const SCEV *CastedMaxBECount = 2022 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2023 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2024 CastedMaxBECount, MaxBECount->getType(), Depth); 2025 if (MaxBECount == RecastedMaxBECount) { 2026 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2027 // Check whether Start+Step*MaxBECount has no signed overflow. 2028 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2029 SCEV::FlagAnyWrap, Depth + 1); 2030 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2031 SCEV::FlagAnyWrap, 2032 Depth + 1), 2033 WideTy, Depth + 1); 2034 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2035 const SCEV *WideMaxBECount = 2036 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2037 const SCEV *OperandExtendedAdd = 2038 getAddExpr(WideStart, 2039 getMulExpr(WideMaxBECount, 2040 getSignExtendExpr(Step, WideTy, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1), 2042 SCEV::FlagAnyWrap, Depth + 1); 2043 if (SAdd == OperandExtendedAdd) { 2044 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2045 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2046 // Return the expression with the addrec on the outside. 2047 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2048 Depth + 1); 2049 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2050 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2051 } 2052 // Similar to above, only this time treat the step value as unsigned. 2053 // This covers loops that count up with an unsigned step. 2054 OperandExtendedAdd = 2055 getAddExpr(WideStart, 2056 getMulExpr(WideMaxBECount, 2057 getZeroExtendExpr(Step, WideTy, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1), 2059 SCEV::FlagAnyWrap, Depth + 1); 2060 if (SAdd == OperandExtendedAdd) { 2061 // If AR wraps around then 2062 // 2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2064 // => SAdd != OperandExtendedAdd 2065 // 2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2067 // (SAdd == OperandExtendedAdd => AR is NW) 2068 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2070 2071 // Return the expression with the addrec on the outside. 2072 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2073 Depth + 1); 2074 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2075 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2076 } 2077 } 2078 } 2079 2080 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2081 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2082 if (AR->hasNoSignedWrap()) { 2083 // Same as nsw case above - duplicated here to avoid a compile time 2084 // issue. It's not clear that the order of checks does matter, but 2085 // it's one of two issue possible causes for a change which was 2086 // reverted. Be conservative for the moment. 2087 Start = 2088 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2089 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2090 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2091 } 2092 2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2094 // if D + (C - D + Step * n) could be proven to not signed wrap 2095 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2097 const APInt &C = SC->getAPInt(); 2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2099 if (D != 0) { 2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2101 const SCEV *SResidual = 2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2104 return getAddExpr(SSExtD, SSExtR, 2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2106 Depth + 1); 2107 } 2108 } 2109 2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2112 Start = 2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2114 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2115 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2116 } 2117 } 2118 2119 // If the input value is provably positive and we could not simplify 2120 // away the sext build a zext instead. 2121 if (isKnownNonNegative(Op)) 2122 return getZeroExtendExpr(Op, Ty, Depth + 1); 2123 2124 // sext(smin(x, y)) -> smin(sext(x), sext(y)) 2125 // sext(smax(x, y)) -> smax(sext(x), sext(y)) 2126 if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) { 2127 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 2128 SmallVector<const SCEV *, 4> Operands; 2129 for (auto *Operand : MinMax->operands()) 2130 Operands.push_back(getSignExtendExpr(Operand, Ty)); 2131 if (isa<SCEVSMinExpr>(MinMax)) 2132 return getSMinExpr(Operands); 2133 return getSMaxExpr(Operands); 2134 } 2135 2136 // The cast wasn't folded; create an explicit cast node. 2137 // Recompute the insert position, as it may have been invalidated. 2138 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2139 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2140 Op, Ty); 2141 UniqueSCEVs.InsertNode(S, IP); 2142 registerUser(S, { Op }); 2143 return S; 2144 } 2145 2146 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2147 Type *Ty) { 2148 switch (Kind) { 2149 case scTruncate: 2150 return getTruncateExpr(Op, Ty); 2151 case scZeroExtend: 2152 return getZeroExtendExpr(Op, Ty); 2153 case scSignExtend: 2154 return getSignExtendExpr(Op, Ty); 2155 case scPtrToInt: 2156 return getPtrToIntExpr(Op, Ty); 2157 default: 2158 llvm_unreachable("Not a SCEV cast expression!"); 2159 } 2160 } 2161 2162 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2163 /// unspecified bits out to the given type. 2164 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2165 Type *Ty) { 2166 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2167 "This is not an extending conversion!"); 2168 assert(isSCEVable(Ty) && 2169 "This is not a conversion to a SCEVable type!"); 2170 Ty = getEffectiveSCEVType(Ty); 2171 2172 // Sign-extend negative constants. 2173 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2174 if (SC->getAPInt().isNegative()) 2175 return getSignExtendExpr(Op, Ty); 2176 2177 // Peel off a truncate cast. 2178 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2179 const SCEV *NewOp = T->getOperand(); 2180 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2181 return getAnyExtendExpr(NewOp, Ty); 2182 return getTruncateOrNoop(NewOp, Ty); 2183 } 2184 2185 // Next try a zext cast. If the cast is folded, use it. 2186 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2187 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2188 return ZExt; 2189 2190 // Next try a sext cast. If the cast is folded, use it. 2191 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2192 if (!isa<SCEVSignExtendExpr>(SExt)) 2193 return SExt; 2194 2195 // Force the cast to be folded into the operands of an addrec. 2196 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2197 SmallVector<const SCEV *, 4> Ops; 2198 for (const SCEV *Op : AR->operands()) 2199 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2200 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2201 } 2202 2203 // If the expression is obviously signed, use the sext cast value. 2204 if (isa<SCEVSMaxExpr>(Op)) 2205 return SExt; 2206 2207 // Absent any other information, use the zext cast value. 2208 return ZExt; 2209 } 2210 2211 /// Process the given Ops list, which is a list of operands to be added under 2212 /// the given scale, update the given map. This is a helper function for 2213 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2214 /// that would form an add expression like this: 2215 /// 2216 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2217 /// 2218 /// where A and B are constants, update the map with these values: 2219 /// 2220 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2221 /// 2222 /// and add 13 + A*B*29 to AccumulatedConstant. 2223 /// This will allow getAddRecExpr to produce this: 2224 /// 2225 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2226 /// 2227 /// This form often exposes folding opportunities that are hidden in 2228 /// the original operand list. 2229 /// 2230 /// Return true iff it appears that any interesting folding opportunities 2231 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2232 /// the common case where no interesting opportunities are present, and 2233 /// is also used as a check to avoid infinite recursion. 2234 static bool 2235 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2236 SmallVectorImpl<const SCEV *> &NewOps, 2237 APInt &AccumulatedConstant, 2238 ArrayRef<const SCEV *> Ops, const APInt &Scale, 2239 ScalarEvolution &SE) { 2240 bool Interesting = false; 2241 2242 // Iterate over the add operands. They are sorted, with constants first. 2243 unsigned i = 0; 2244 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2245 ++i; 2246 // Pull a buried constant out to the outside. 2247 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2248 Interesting = true; 2249 AccumulatedConstant += Scale * C->getAPInt(); 2250 } 2251 2252 // Next comes everything else. We're especially interested in multiplies 2253 // here, but they're in the middle, so just visit the rest with one loop. 2254 for (; i != Ops.size(); ++i) { 2255 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2256 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2257 APInt NewScale = 2258 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2259 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2260 // A multiplication of a constant with another add; recurse. 2261 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2262 Interesting |= 2263 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2264 Add->operands(), NewScale, SE); 2265 } else { 2266 // A multiplication of a constant with some other value. Update 2267 // the map. 2268 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2269 const SCEV *Key = SE.getMulExpr(MulOps); 2270 auto Pair = M.insert({Key, NewScale}); 2271 if (Pair.second) { 2272 NewOps.push_back(Pair.first->first); 2273 } else { 2274 Pair.first->second += NewScale; 2275 // The map already had an entry for this value, which may indicate 2276 // a folding opportunity. 2277 Interesting = true; 2278 } 2279 } 2280 } else { 2281 // An ordinary operand. Update the map. 2282 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2283 M.insert({Ops[i], Scale}); 2284 if (Pair.second) { 2285 NewOps.push_back(Pair.first->first); 2286 } else { 2287 Pair.first->second += Scale; 2288 // The map already had an entry for this value, which may indicate 2289 // a folding opportunity. 2290 Interesting = true; 2291 } 2292 } 2293 } 2294 2295 return Interesting; 2296 } 2297 2298 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2299 const SCEV *LHS, const SCEV *RHS, 2300 const Instruction *CtxI) { 2301 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2302 SCEV::NoWrapFlags, unsigned); 2303 switch (BinOp) { 2304 default: 2305 llvm_unreachable("Unsupported binary op"); 2306 case Instruction::Add: 2307 Operation = &ScalarEvolution::getAddExpr; 2308 break; 2309 case Instruction::Sub: 2310 Operation = &ScalarEvolution::getMinusSCEV; 2311 break; 2312 case Instruction::Mul: 2313 Operation = &ScalarEvolution::getMulExpr; 2314 break; 2315 } 2316 2317 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2318 Signed ? &ScalarEvolution::getSignExtendExpr 2319 : &ScalarEvolution::getZeroExtendExpr; 2320 2321 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2322 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2323 auto *WideTy = 2324 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2325 2326 const SCEV *A = (this->*Extension)( 2327 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2328 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2329 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2330 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2331 if (A == B) 2332 return true; 2333 // Can we use context to prove the fact we need? 2334 if (!CtxI) 2335 return false; 2336 // TODO: Support mul. 2337 if (BinOp == Instruction::Mul) 2338 return false; 2339 auto *RHSC = dyn_cast<SCEVConstant>(RHS); 2340 // TODO: Lift this limitation. 2341 if (!RHSC) 2342 return false; 2343 APInt C = RHSC->getAPInt(); 2344 unsigned NumBits = C.getBitWidth(); 2345 bool IsSub = (BinOp == Instruction::Sub); 2346 bool IsNegativeConst = (Signed && C.isNegative()); 2347 // Compute the direction and magnitude by which we need to check overflow. 2348 bool OverflowDown = IsSub ^ IsNegativeConst; 2349 APInt Magnitude = C; 2350 if (IsNegativeConst) { 2351 if (C == APInt::getSignedMinValue(NumBits)) 2352 // TODO: SINT_MIN on inversion gives the same negative value, we don't 2353 // want to deal with that. 2354 return false; 2355 Magnitude = -C; 2356 } 2357 2358 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 2359 if (OverflowDown) { 2360 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. 2361 APInt Min = Signed ? APInt::getSignedMinValue(NumBits) 2362 : APInt::getMinValue(NumBits); 2363 APInt Limit = Min + Magnitude; 2364 return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI); 2365 } else { 2366 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. 2367 APInt Max = Signed ? APInt::getSignedMaxValue(NumBits) 2368 : APInt::getMaxValue(NumBits); 2369 APInt Limit = Max - Magnitude; 2370 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); 2371 } 2372 } 2373 2374 std::optional<SCEV::NoWrapFlags> 2375 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2376 const OverflowingBinaryOperator *OBO) { 2377 // It cannot be done any better. 2378 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2379 return std::nullopt; 2380 2381 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2382 2383 if (OBO->hasNoUnsignedWrap()) 2384 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2385 if (OBO->hasNoSignedWrap()) 2386 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2387 2388 bool Deduced = false; 2389 2390 if (OBO->getOpcode() != Instruction::Add && 2391 OBO->getOpcode() != Instruction::Sub && 2392 OBO->getOpcode() != Instruction::Mul) 2393 return std::nullopt; 2394 2395 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2396 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2397 2398 const Instruction *CtxI = 2399 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; 2400 if (!OBO->hasNoUnsignedWrap() && 2401 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2402 /* Signed */ false, LHS, RHS, CtxI)) { 2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2404 Deduced = true; 2405 } 2406 2407 if (!OBO->hasNoSignedWrap() && 2408 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2409 /* Signed */ true, LHS, RHS, CtxI)) { 2410 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2411 Deduced = true; 2412 } 2413 2414 if (Deduced) 2415 return Flags; 2416 return std::nullopt; 2417 } 2418 2419 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2420 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2421 // can't-overflow flags for the operation if possible. 2422 static SCEV::NoWrapFlags 2423 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2424 const ArrayRef<const SCEV *> Ops, 2425 SCEV::NoWrapFlags Flags) { 2426 using namespace std::placeholders; 2427 2428 using OBO = OverflowingBinaryOperator; 2429 2430 bool CanAnalyze = 2431 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2432 (void)CanAnalyze; 2433 assert(CanAnalyze && "don't call from other places!"); 2434 2435 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2436 SCEV::NoWrapFlags SignOrUnsignWrap = 2437 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2438 2439 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2440 auto IsKnownNonNegative = [&](const SCEV *S) { 2441 return SE->isKnownNonNegative(S); 2442 }; 2443 2444 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2445 Flags = 2446 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2447 2448 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2449 2450 if (SignOrUnsignWrap != SignOrUnsignMask && 2451 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2452 isa<SCEVConstant>(Ops[0])) { 2453 2454 auto Opcode = [&] { 2455 switch (Type) { 2456 case scAddExpr: 2457 return Instruction::Add; 2458 case scMulExpr: 2459 return Instruction::Mul; 2460 default: 2461 llvm_unreachable("Unexpected SCEV op."); 2462 } 2463 }(); 2464 2465 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2466 2467 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2468 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2469 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2470 Opcode, C, OBO::NoSignedWrap); 2471 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2472 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2473 } 2474 2475 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2476 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2477 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2478 Opcode, C, OBO::NoUnsignedWrap); 2479 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2480 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2481 } 2482 } 2483 2484 // <0,+,nonnegative><nw> is also nuw 2485 // TODO: Add corresponding nsw case 2486 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2487 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2488 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2489 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2490 2491 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2492 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2493 Ops.size() == 2) { 2494 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2495 if (UDiv->getOperand(1) == Ops[1]) 2496 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2497 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2498 if (UDiv->getOperand(1) == Ops[0]) 2499 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2500 } 2501 2502 return Flags; 2503 } 2504 2505 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2506 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2507 } 2508 2509 /// Get a canonical add expression, or something simpler if possible. 2510 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2511 SCEV::NoWrapFlags OrigFlags, 2512 unsigned Depth) { 2513 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2514 "only nuw or nsw allowed"); 2515 assert(!Ops.empty() && "Cannot get empty add!"); 2516 if (Ops.size() == 1) return Ops[0]; 2517 #ifndef NDEBUG 2518 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2519 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2520 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2521 "SCEVAddExpr operand types don't match!"); 2522 unsigned NumPtrs = count_if( 2523 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2524 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2525 #endif 2526 2527 // Sort by complexity, this groups all similar expression types together. 2528 GroupByComplexity(Ops, &LI, DT); 2529 2530 // If there are any constants, fold them together. 2531 unsigned Idx = 0; 2532 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2533 ++Idx; 2534 assert(Idx < Ops.size()); 2535 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2536 // We found two constants, fold them together! 2537 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2538 if (Ops.size() == 2) return Ops[0]; 2539 Ops.erase(Ops.begin()+1); // Erase the folded element 2540 LHSC = cast<SCEVConstant>(Ops[0]); 2541 } 2542 2543 // If we are left with a constant zero being added, strip it off. 2544 if (LHSC->getValue()->isZero()) { 2545 Ops.erase(Ops.begin()); 2546 --Idx; 2547 } 2548 2549 if (Ops.size() == 1) return Ops[0]; 2550 } 2551 2552 // Delay expensive flag strengthening until necessary. 2553 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2554 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2555 }; 2556 2557 // Limit recursion calls depth. 2558 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2559 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2560 2561 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2562 // Don't strengthen flags if we have no new information. 2563 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2564 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2565 Add->setNoWrapFlags(ComputeFlags(Ops)); 2566 return S; 2567 } 2568 2569 // Okay, check to see if the same value occurs in the operand list more than 2570 // once. If so, merge them together into an multiply expression. Since we 2571 // sorted the list, these values are required to be adjacent. 2572 Type *Ty = Ops[0]->getType(); 2573 bool FoundMatch = false; 2574 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2575 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2576 // Scan ahead to count how many equal operands there are. 2577 unsigned Count = 2; 2578 while (i+Count != e && Ops[i+Count] == Ops[i]) 2579 ++Count; 2580 // Merge the values into a multiply. 2581 const SCEV *Scale = getConstant(Ty, Count); 2582 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2583 if (Ops.size() == Count) 2584 return Mul; 2585 Ops[i] = Mul; 2586 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2587 --i; e -= Count - 1; 2588 FoundMatch = true; 2589 } 2590 if (FoundMatch) 2591 return getAddExpr(Ops, OrigFlags, Depth + 1); 2592 2593 // Check for truncates. If all the operands are truncated from the same 2594 // type, see if factoring out the truncate would permit the result to be 2595 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2596 // if the contents of the resulting outer trunc fold to something simple. 2597 auto FindTruncSrcType = [&]() -> Type * { 2598 // We're ultimately looking to fold an addrec of truncs and muls of only 2599 // constants and truncs, so if we find any other types of SCEV 2600 // as operands of the addrec then we bail and return nullptr here. 2601 // Otherwise, we return the type of the operand of a trunc that we find. 2602 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2603 return T->getOperand()->getType(); 2604 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2605 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2606 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2607 return T->getOperand()->getType(); 2608 } 2609 return nullptr; 2610 }; 2611 if (auto *SrcType = FindTruncSrcType()) { 2612 SmallVector<const SCEV *, 8> LargeOps; 2613 bool Ok = true; 2614 // Check all the operands to see if they can be represented in the 2615 // source type of the truncate. 2616 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2617 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2618 if (T->getOperand()->getType() != SrcType) { 2619 Ok = false; 2620 break; 2621 } 2622 LargeOps.push_back(T->getOperand()); 2623 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2624 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2625 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2626 SmallVector<const SCEV *, 8> LargeMulOps; 2627 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2628 if (const SCEVTruncateExpr *T = 2629 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2630 if (T->getOperand()->getType() != SrcType) { 2631 Ok = false; 2632 break; 2633 } 2634 LargeMulOps.push_back(T->getOperand()); 2635 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2636 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2637 } else { 2638 Ok = false; 2639 break; 2640 } 2641 } 2642 if (Ok) 2643 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2644 } else { 2645 Ok = false; 2646 break; 2647 } 2648 } 2649 if (Ok) { 2650 // Evaluate the expression in the larger type. 2651 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2652 // If it folds to something simple, use it. Otherwise, don't. 2653 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2654 return getTruncateExpr(Fold, Ty); 2655 } 2656 } 2657 2658 if (Ops.size() == 2) { 2659 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2660 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2661 // C1). 2662 const SCEV *A = Ops[0]; 2663 const SCEV *B = Ops[1]; 2664 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2665 auto *C = dyn_cast<SCEVConstant>(A); 2666 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2667 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2668 auto C2 = C->getAPInt(); 2669 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2670 2671 APInt ConstAdd = C1 + C2; 2672 auto AddFlags = AddExpr->getNoWrapFlags(); 2673 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2674 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2675 ConstAdd.ule(C1)) { 2676 PreservedFlags = 2677 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2678 } 2679 2680 // Adding a constant with the same sign and small magnitude is NSW, if the 2681 // original AddExpr was NSW. 2682 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2683 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2684 ConstAdd.abs().ule(C1.abs())) { 2685 PreservedFlags = 2686 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2687 } 2688 2689 if (PreservedFlags != SCEV::FlagAnyWrap) { 2690 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2691 NewOps[0] = getConstant(ConstAdd); 2692 return getAddExpr(NewOps, PreservedFlags); 2693 } 2694 } 2695 } 2696 2697 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2698 if (Ops.size() == 2) { 2699 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2700 if (Mul && Mul->getNumOperands() == 2 && 2701 Mul->getOperand(0)->isAllOnesValue()) { 2702 const SCEV *X; 2703 const SCEV *Y; 2704 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2705 return getMulExpr(Y, getUDivExpr(X, Y)); 2706 } 2707 } 2708 } 2709 2710 // Skip past any other cast SCEVs. 2711 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2712 ++Idx; 2713 2714 // If there are add operands they would be next. 2715 if (Idx < Ops.size()) { 2716 bool DeletedAdd = false; 2717 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2718 // common NUW flag for expression after inlining. Other flags cannot be 2719 // preserved, because they may depend on the original order of operations. 2720 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2721 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2722 if (Ops.size() > AddOpsInlineThreshold || 2723 Add->getNumOperands() > AddOpsInlineThreshold) 2724 break; 2725 // If we have an add, expand the add operands onto the end of the operands 2726 // list. 2727 Ops.erase(Ops.begin()+Idx); 2728 append_range(Ops, Add->operands()); 2729 DeletedAdd = true; 2730 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2731 } 2732 2733 // If we deleted at least one add, we added operands to the end of the list, 2734 // and they are not necessarily sorted. Recurse to resort and resimplify 2735 // any operands we just acquired. 2736 if (DeletedAdd) 2737 return getAddExpr(Ops, CommonFlags, Depth + 1); 2738 } 2739 2740 // Skip over the add expression until we get to a multiply. 2741 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2742 ++Idx; 2743 2744 // Check to see if there are any folding opportunities present with 2745 // operands multiplied by constant values. 2746 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2747 uint64_t BitWidth = getTypeSizeInBits(Ty); 2748 DenseMap<const SCEV *, APInt> M; 2749 SmallVector<const SCEV *, 8> NewOps; 2750 APInt AccumulatedConstant(BitWidth, 0); 2751 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2752 Ops, APInt(BitWidth, 1), *this)) { 2753 struct APIntCompare { 2754 bool operator()(const APInt &LHS, const APInt &RHS) const { 2755 return LHS.ult(RHS); 2756 } 2757 }; 2758 2759 // Some interesting folding opportunity is present, so its worthwhile to 2760 // re-generate the operands list. Group the operands by constant scale, 2761 // to avoid multiplying by the same constant scale multiple times. 2762 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2763 for (const SCEV *NewOp : NewOps) 2764 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2765 // Re-generate the operands list. 2766 Ops.clear(); 2767 if (AccumulatedConstant != 0) 2768 Ops.push_back(getConstant(AccumulatedConstant)); 2769 for (auto &MulOp : MulOpLists) { 2770 if (MulOp.first == 1) { 2771 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2772 } else if (MulOp.first != 0) { 2773 Ops.push_back(getMulExpr( 2774 getConstant(MulOp.first), 2775 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2776 SCEV::FlagAnyWrap, Depth + 1)); 2777 } 2778 } 2779 if (Ops.empty()) 2780 return getZero(Ty); 2781 if (Ops.size() == 1) 2782 return Ops[0]; 2783 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2784 } 2785 } 2786 2787 // If we are adding something to a multiply expression, make sure the 2788 // something is not already an operand of the multiply. If so, merge it into 2789 // the multiply. 2790 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2791 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2792 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2793 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2794 if (isa<SCEVConstant>(MulOpSCEV)) 2795 continue; 2796 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2797 if (MulOpSCEV == Ops[AddOp]) { 2798 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2799 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2800 if (Mul->getNumOperands() != 2) { 2801 // If the multiply has more than two operands, we must get the 2802 // Y*Z term. 2803 SmallVector<const SCEV *, 4> MulOps( 2804 Mul->operands().take_front(MulOp)); 2805 append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); 2806 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2807 } 2808 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2809 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2810 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2811 SCEV::FlagAnyWrap, Depth + 1); 2812 if (Ops.size() == 2) return OuterMul; 2813 if (AddOp < Idx) { 2814 Ops.erase(Ops.begin()+AddOp); 2815 Ops.erase(Ops.begin()+Idx-1); 2816 } else { 2817 Ops.erase(Ops.begin()+Idx); 2818 Ops.erase(Ops.begin()+AddOp-1); 2819 } 2820 Ops.push_back(OuterMul); 2821 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2822 } 2823 2824 // Check this multiply against other multiplies being added together. 2825 for (unsigned OtherMulIdx = Idx+1; 2826 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2827 ++OtherMulIdx) { 2828 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2829 // If MulOp occurs in OtherMul, we can fold the two multiplies 2830 // together. 2831 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2832 OMulOp != e; ++OMulOp) 2833 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2834 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2835 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2836 if (Mul->getNumOperands() != 2) { 2837 SmallVector<const SCEV *, 4> MulOps( 2838 Mul->operands().take_front(MulOp)); 2839 append_range(MulOps, Mul->operands().drop_front(MulOp+1)); 2840 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2841 } 2842 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2843 if (OtherMul->getNumOperands() != 2) { 2844 SmallVector<const SCEV *, 4> MulOps( 2845 OtherMul->operands().take_front(OMulOp)); 2846 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); 2847 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2848 } 2849 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2850 const SCEV *InnerMulSum = 2851 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2852 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2853 SCEV::FlagAnyWrap, Depth + 1); 2854 if (Ops.size() == 2) return OuterMul; 2855 Ops.erase(Ops.begin()+Idx); 2856 Ops.erase(Ops.begin()+OtherMulIdx-1); 2857 Ops.push_back(OuterMul); 2858 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2859 } 2860 } 2861 } 2862 } 2863 2864 // If there are any add recurrences in the operands list, see if any other 2865 // added values are loop invariant. If so, we can fold them into the 2866 // recurrence. 2867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2868 ++Idx; 2869 2870 // Scan over all recurrences, trying to fold loop invariants into them. 2871 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2872 // Scan all of the other operands to this add and add them to the vector if 2873 // they are loop invariant w.r.t. the recurrence. 2874 SmallVector<const SCEV *, 8> LIOps; 2875 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2876 const Loop *AddRecLoop = AddRec->getLoop(); 2877 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2878 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2879 LIOps.push_back(Ops[i]); 2880 Ops.erase(Ops.begin()+i); 2881 --i; --e; 2882 } 2883 2884 // If we found some loop invariants, fold them into the recurrence. 2885 if (!LIOps.empty()) { 2886 // Compute nowrap flags for the addition of the loop-invariant ops and 2887 // the addrec. Temporarily push it as an operand for that purpose. These 2888 // flags are valid in the scope of the addrec only. 2889 LIOps.push_back(AddRec); 2890 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2891 LIOps.pop_back(); 2892 2893 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2894 LIOps.push_back(AddRec->getStart()); 2895 2896 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2897 2898 // It is not in general safe to propagate flags valid on an add within 2899 // the addrec scope to one outside it. We must prove that the inner 2900 // scope is guaranteed to execute if the outer one does to be able to 2901 // safely propagate. We know the program is undefined if poison is 2902 // produced on the inner scoped addrec. We also know that *for this use* 2903 // the outer scoped add can't overflow (because of the flags we just 2904 // computed for the inner scoped add) without the program being undefined. 2905 // Proving that entry to the outer scope neccesitates entry to the inner 2906 // scope, thus proves the program undefined if the flags would be violated 2907 // in the outer scope. 2908 SCEV::NoWrapFlags AddFlags = Flags; 2909 if (AddFlags != SCEV::FlagAnyWrap) { 2910 auto *DefI = getDefiningScopeBound(LIOps); 2911 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2912 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2913 AddFlags = SCEV::FlagAnyWrap; 2914 } 2915 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2916 2917 // Build the new addrec. Propagate the NUW and NSW flags if both the 2918 // outer add and the inner addrec are guaranteed to have no overflow. 2919 // Always propagate NW. 2920 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2921 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2922 2923 // If all of the other operands were loop invariant, we are done. 2924 if (Ops.size() == 1) return NewRec; 2925 2926 // Otherwise, add the folded AddRec by the non-invariant parts. 2927 for (unsigned i = 0;; ++i) 2928 if (Ops[i] == AddRec) { 2929 Ops[i] = NewRec; 2930 break; 2931 } 2932 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2933 } 2934 2935 // Okay, if there weren't any loop invariants to be folded, check to see if 2936 // there are multiple AddRec's with the same loop induction variable being 2937 // added together. If so, we can fold them. 2938 for (unsigned OtherIdx = Idx+1; 2939 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2940 ++OtherIdx) { 2941 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2942 // so that the 1st found AddRecExpr is dominated by all others. 2943 assert(DT.dominates( 2944 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2945 AddRec->getLoop()->getHeader()) && 2946 "AddRecExprs are not sorted in reverse dominance order?"); 2947 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2948 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2949 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2950 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2951 ++OtherIdx) { 2952 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2953 if (OtherAddRec->getLoop() == AddRecLoop) { 2954 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2955 i != e; ++i) { 2956 if (i >= AddRecOps.size()) { 2957 append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); 2958 break; 2959 } 2960 SmallVector<const SCEV *, 2> TwoOps = { 2961 AddRecOps[i], OtherAddRec->getOperand(i)}; 2962 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2963 } 2964 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2965 } 2966 } 2967 // Step size has changed, so we cannot guarantee no self-wraparound. 2968 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2969 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2970 } 2971 } 2972 2973 // Otherwise couldn't fold anything into this recurrence. Move onto the 2974 // next one. 2975 } 2976 2977 // Okay, it looks like we really DO need an add expr. Check to see if we 2978 // already have one, otherwise create a new one. 2979 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2980 } 2981 2982 const SCEV * 2983 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2984 SCEV::NoWrapFlags Flags) { 2985 FoldingSetNodeID ID; 2986 ID.AddInteger(scAddExpr); 2987 for (const SCEV *Op : Ops) 2988 ID.AddPointer(Op); 2989 void *IP = nullptr; 2990 SCEVAddExpr *S = 2991 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2992 if (!S) { 2993 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2994 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2995 S = new (SCEVAllocator) 2996 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2997 UniqueSCEVs.InsertNode(S, IP); 2998 registerUser(S, Ops); 2999 } 3000 S->setNoWrapFlags(Flags); 3001 return S; 3002 } 3003 3004 const SCEV * 3005 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 3006 const Loop *L, SCEV::NoWrapFlags Flags) { 3007 FoldingSetNodeID ID; 3008 ID.AddInteger(scAddRecExpr); 3009 for (const SCEV *Op : Ops) 3010 ID.AddPointer(Op); 3011 ID.AddPointer(L); 3012 void *IP = nullptr; 3013 SCEVAddRecExpr *S = 3014 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3015 if (!S) { 3016 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3017 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3018 S = new (SCEVAllocator) 3019 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 3020 UniqueSCEVs.InsertNode(S, IP); 3021 LoopUsers[L].push_back(S); 3022 registerUser(S, Ops); 3023 } 3024 setNoWrapFlags(S, Flags); 3025 return S; 3026 } 3027 3028 const SCEV * 3029 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 3030 SCEV::NoWrapFlags Flags) { 3031 FoldingSetNodeID ID; 3032 ID.AddInteger(scMulExpr); 3033 for (const SCEV *Op : Ops) 3034 ID.AddPointer(Op); 3035 void *IP = nullptr; 3036 SCEVMulExpr *S = 3037 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3038 if (!S) { 3039 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3040 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3041 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 3042 O, Ops.size()); 3043 UniqueSCEVs.InsertNode(S, IP); 3044 registerUser(S, Ops); 3045 } 3046 S->setNoWrapFlags(Flags); 3047 return S; 3048 } 3049 3050 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 3051 uint64_t k = i*j; 3052 if (j > 1 && k / j != i) Overflow = true; 3053 return k; 3054 } 3055 3056 /// Compute the result of "n choose k", the binomial coefficient. If an 3057 /// intermediate computation overflows, Overflow will be set and the return will 3058 /// be garbage. Overflow is not cleared on absence of overflow. 3059 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3060 // We use the multiplicative formula: 3061 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3062 // At each iteration, we take the n-th term of the numeral and divide by the 3063 // (k-n)th term of the denominator. This division will always produce an 3064 // integral result, and helps reduce the chance of overflow in the 3065 // intermediate computations. However, we can still overflow even when the 3066 // final result would fit. 3067 3068 if (n == 0 || n == k) return 1; 3069 if (k > n) return 0; 3070 3071 if (k > n/2) 3072 k = n-k; 3073 3074 uint64_t r = 1; 3075 for (uint64_t i = 1; i <= k; ++i) { 3076 r = umul_ov(r, n-(i-1), Overflow); 3077 r /= i; 3078 } 3079 return r; 3080 } 3081 3082 /// Determine if any of the operands in this SCEV are a constant or if 3083 /// any of the add or multiply expressions in this SCEV contain a constant. 3084 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3085 struct FindConstantInAddMulChain { 3086 bool FoundConstant = false; 3087 3088 bool follow(const SCEV *S) { 3089 FoundConstant |= isa<SCEVConstant>(S); 3090 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3091 } 3092 3093 bool isDone() const { 3094 return FoundConstant; 3095 } 3096 }; 3097 3098 FindConstantInAddMulChain F; 3099 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3100 ST.visitAll(StartExpr); 3101 return F.FoundConstant; 3102 } 3103 3104 /// Get a canonical multiply expression, or something simpler if possible. 3105 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3106 SCEV::NoWrapFlags OrigFlags, 3107 unsigned Depth) { 3108 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3109 "only nuw or nsw allowed"); 3110 assert(!Ops.empty() && "Cannot get empty mul!"); 3111 if (Ops.size() == 1) return Ops[0]; 3112 #ifndef NDEBUG 3113 Type *ETy = Ops[0]->getType(); 3114 assert(!ETy->isPointerTy()); 3115 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3116 assert(Ops[i]->getType() == ETy && 3117 "SCEVMulExpr operand types don't match!"); 3118 #endif 3119 3120 // Sort by complexity, this groups all similar expression types together. 3121 GroupByComplexity(Ops, &LI, DT); 3122 3123 // If there are any constants, fold them together. 3124 unsigned Idx = 0; 3125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3126 ++Idx; 3127 assert(Idx < Ops.size()); 3128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3129 // We found two constants, fold them together! 3130 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3131 if (Ops.size() == 2) return Ops[0]; 3132 Ops.erase(Ops.begin()+1); // Erase the folded element 3133 LHSC = cast<SCEVConstant>(Ops[0]); 3134 } 3135 3136 // If we have a multiply of zero, it will always be zero. 3137 if (LHSC->getValue()->isZero()) 3138 return LHSC; 3139 3140 // If we are left with a constant one being multiplied, strip it off. 3141 if (LHSC->getValue()->isOne()) { 3142 Ops.erase(Ops.begin()); 3143 --Idx; 3144 } 3145 3146 if (Ops.size() == 1) 3147 return Ops[0]; 3148 } 3149 3150 // Delay expensive flag strengthening until necessary. 3151 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3152 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3153 }; 3154 3155 // Limit recursion calls depth. 3156 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3157 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3158 3159 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3160 // Don't strengthen flags if we have no new information. 3161 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3162 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3163 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3164 return S; 3165 } 3166 3167 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3168 if (Ops.size() == 2) { 3169 // C1*(C2+V) -> C1*C2 + C1*V 3170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3171 // If any of Add's ops are Adds or Muls with a constant, apply this 3172 // transformation as well. 3173 // 3174 // TODO: There are some cases where this transformation is not 3175 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3176 // this transformation should be narrowed down. 3177 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3178 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3179 SCEV::FlagAnyWrap, Depth + 1); 3180 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3181 SCEV::FlagAnyWrap, Depth + 1); 3182 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3183 } 3184 3185 if (Ops[0]->isAllOnesValue()) { 3186 // If we have a mul by -1 of an add, try distributing the -1 among the 3187 // add operands. 3188 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3189 SmallVector<const SCEV *, 4> NewOps; 3190 bool AnyFolded = false; 3191 for (const SCEV *AddOp : Add->operands()) { 3192 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3193 Depth + 1); 3194 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3195 NewOps.push_back(Mul); 3196 } 3197 if (AnyFolded) 3198 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3199 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3200 // Negation preserves a recurrence's no self-wrap property. 3201 SmallVector<const SCEV *, 4> Operands; 3202 for (const SCEV *AddRecOp : AddRec->operands()) 3203 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3204 Depth + 1)); 3205 // Let M be the minimum representable signed value. AddRec with nsw 3206 // multiplied by -1 can have signed overflow if and only if it takes a 3207 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the 3208 // maximum signed value. In all other cases signed overflow is 3209 // impossible. 3210 auto FlagsMask = SCEV::FlagNW; 3211 if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) { 3212 auto MinInt = 3213 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType())); 3214 if (getSignedRangeMin(AddRec) != MinInt) 3215 FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW); 3216 } 3217 return getAddRecExpr(Operands, AddRec->getLoop(), 3218 AddRec->getNoWrapFlags(FlagsMask)); 3219 } 3220 } 3221 } 3222 } 3223 3224 // Skip over the add expression until we get to a multiply. 3225 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3226 ++Idx; 3227 3228 // If there are mul operands inline them all into this expression. 3229 if (Idx < Ops.size()) { 3230 bool DeletedMul = false; 3231 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3232 if (Ops.size() > MulOpsInlineThreshold) 3233 break; 3234 // If we have an mul, expand the mul operands onto the end of the 3235 // operands list. 3236 Ops.erase(Ops.begin()+Idx); 3237 append_range(Ops, Mul->operands()); 3238 DeletedMul = true; 3239 } 3240 3241 // If we deleted at least one mul, we added operands to the end of the 3242 // list, and they are not necessarily sorted. Recurse to resort and 3243 // resimplify any operands we just acquired. 3244 if (DeletedMul) 3245 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3246 } 3247 3248 // If there are any add recurrences in the operands list, see if any other 3249 // added values are loop invariant. If so, we can fold them into the 3250 // recurrence. 3251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3252 ++Idx; 3253 3254 // Scan over all recurrences, trying to fold loop invariants into them. 3255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3256 // Scan all of the other operands to this mul and add them to the vector 3257 // if they are loop invariant w.r.t. the recurrence. 3258 SmallVector<const SCEV *, 8> LIOps; 3259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3260 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3261 if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) { 3262 LIOps.push_back(Ops[i]); 3263 Ops.erase(Ops.begin()+i); 3264 --i; --e; 3265 } 3266 3267 // If we found some loop invariants, fold them into the recurrence. 3268 if (!LIOps.empty()) { 3269 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3270 SmallVector<const SCEV *, 4> NewOps; 3271 NewOps.reserve(AddRec->getNumOperands()); 3272 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3273 3274 // If both the mul and addrec are nuw, we can preserve nuw. 3275 // If both the mul and addrec are nsw, we can only preserve nsw if either 3276 // a) they are also nuw, or 3277 // b) all multiplications of addrec operands with scale are nsw. 3278 SCEV::NoWrapFlags Flags = 3279 AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec})); 3280 3281 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3282 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3283 SCEV::FlagAnyWrap, Depth + 1)); 3284 3285 if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) { 3286 ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3287 Instruction::Mul, getSignedRange(Scale), 3288 OverflowingBinaryOperator::NoSignedWrap); 3289 if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i)))) 3290 Flags = clearFlags(Flags, SCEV::FlagNSW); 3291 } 3292 } 3293 3294 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags); 3295 3296 // If all of the other operands were loop invariant, we are done. 3297 if (Ops.size() == 1) return NewRec; 3298 3299 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3300 for (unsigned i = 0;; ++i) 3301 if (Ops[i] == AddRec) { 3302 Ops[i] = NewRec; 3303 break; 3304 } 3305 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3306 } 3307 3308 // Okay, if there weren't any loop invariants to be folded, check to see 3309 // if there are multiple AddRec's with the same loop induction variable 3310 // being multiplied together. If so, we can fold them. 3311 3312 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3313 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3314 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3315 // ]]],+,...up to x=2n}. 3316 // Note that the arguments to choose() are always integers with values 3317 // known at compile time, never SCEV objects. 3318 // 3319 // The implementation avoids pointless extra computations when the two 3320 // addrec's are of different length (mathematically, it's equivalent to 3321 // an infinite stream of zeros on the right). 3322 bool OpsModified = false; 3323 for (unsigned OtherIdx = Idx+1; 3324 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3325 ++OtherIdx) { 3326 const SCEVAddRecExpr *OtherAddRec = 3327 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3328 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) 3329 continue; 3330 3331 // Limit max number of arguments to avoid creation of unreasonably big 3332 // SCEVAddRecs with very complex operands. 3333 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3334 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3335 continue; 3336 3337 bool Overflow = false; 3338 Type *Ty = AddRec->getType(); 3339 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3340 SmallVector<const SCEV*, 7> AddRecOps; 3341 for (int x = 0, xe = AddRec->getNumOperands() + 3342 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3343 SmallVector <const SCEV *, 7> SumOps; 3344 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3345 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3346 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3347 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3348 z < ze && !Overflow; ++z) { 3349 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3350 uint64_t Coeff; 3351 if (LargerThan64Bits) 3352 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3353 else 3354 Coeff = Coeff1*Coeff2; 3355 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3356 const SCEV *Term1 = AddRec->getOperand(y-z); 3357 const SCEV *Term2 = OtherAddRec->getOperand(z); 3358 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3359 SCEV::FlagAnyWrap, Depth + 1)); 3360 } 3361 } 3362 if (SumOps.empty()) 3363 SumOps.push_back(getZero(Ty)); 3364 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3365 } 3366 if (!Overflow) { 3367 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 3368 SCEV::FlagAnyWrap); 3369 if (Ops.size() == 2) return NewAddRec; 3370 Ops[Idx] = NewAddRec; 3371 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3372 OpsModified = true; 3373 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3374 if (!AddRec) 3375 break; 3376 } 3377 } 3378 if (OpsModified) 3379 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3380 3381 // Otherwise couldn't fold anything into this recurrence. Move onto the 3382 // next one. 3383 } 3384 3385 // Okay, it looks like we really DO need an mul expr. Check to see if we 3386 // already have one, otherwise create a new one. 3387 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3388 } 3389 3390 /// Represents an unsigned remainder expression based on unsigned division. 3391 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3392 const SCEV *RHS) { 3393 assert(getEffectiveSCEVType(LHS->getType()) == 3394 getEffectiveSCEVType(RHS->getType()) && 3395 "SCEVURemExpr operand types don't match!"); 3396 3397 // Short-circuit easy cases 3398 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3399 // If constant is one, the result is trivial 3400 if (RHSC->getValue()->isOne()) 3401 return getZero(LHS->getType()); // X urem 1 --> 0 3402 3403 // If constant is a power of two, fold into a zext(trunc(LHS)). 3404 if (RHSC->getAPInt().isPowerOf2()) { 3405 Type *FullTy = LHS->getType(); 3406 Type *TruncTy = 3407 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3408 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3409 } 3410 } 3411 3412 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3413 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3414 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3415 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3416 } 3417 3418 /// Get a canonical unsigned division expression, or something simpler if 3419 /// possible. 3420 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3421 const SCEV *RHS) { 3422 assert(!LHS->getType()->isPointerTy() && 3423 "SCEVUDivExpr operand can't be pointer!"); 3424 assert(LHS->getType() == RHS->getType() && 3425 "SCEVUDivExpr operand types don't match!"); 3426 3427 FoldingSetNodeID ID; 3428 ID.AddInteger(scUDivExpr); 3429 ID.AddPointer(LHS); 3430 ID.AddPointer(RHS); 3431 void *IP = nullptr; 3432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3433 return S; 3434 3435 // 0 udiv Y == 0 3436 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3437 if (LHSC->getValue()->isZero()) 3438 return LHS; 3439 3440 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3441 if (RHSC->getValue()->isOne()) 3442 return LHS; // X udiv 1 --> x 3443 // If the denominator is zero, the result of the udiv is undefined. Don't 3444 // try to analyze it, because the resolution chosen here may differ from 3445 // the resolution chosen in other parts of the compiler. 3446 if (!RHSC->getValue()->isZero()) { 3447 // Determine if the division can be folded into the operands of 3448 // its operands. 3449 // TODO: Generalize this to non-constants by using known-bits information. 3450 Type *Ty = LHS->getType(); 3451 unsigned LZ = RHSC->getAPInt().countl_zero(); 3452 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3453 // For non-power-of-two values, effectively round the value up to the 3454 // nearest power of two. 3455 if (!RHSC->getAPInt().isPowerOf2()) 3456 ++MaxShiftAmt; 3457 IntegerType *ExtTy = 3458 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3459 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3460 if (const SCEVConstant *Step = 3461 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3462 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3463 const APInt &StepInt = Step->getAPInt(); 3464 const APInt &DivInt = RHSC->getAPInt(); 3465 if (!StepInt.urem(DivInt) && 3466 getZeroExtendExpr(AR, ExtTy) == 3467 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3468 getZeroExtendExpr(Step, ExtTy), 3469 AR->getLoop(), SCEV::FlagAnyWrap)) { 3470 SmallVector<const SCEV *, 4> Operands; 3471 for (const SCEV *Op : AR->operands()) 3472 Operands.push_back(getUDivExpr(Op, RHS)); 3473 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3474 } 3475 /// Get a canonical UDivExpr for a recurrence. 3476 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3477 // We can currently only fold X%N if X is constant. 3478 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3479 if (StartC && !DivInt.urem(StepInt) && 3480 getZeroExtendExpr(AR, ExtTy) == 3481 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3482 getZeroExtendExpr(Step, ExtTy), 3483 AR->getLoop(), SCEV::FlagAnyWrap)) { 3484 const APInt &StartInt = StartC->getAPInt(); 3485 const APInt &StartRem = StartInt.urem(StepInt); 3486 if (StartRem != 0) { 3487 const SCEV *NewLHS = 3488 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3489 AR->getLoop(), SCEV::FlagNW); 3490 if (LHS != NewLHS) { 3491 LHS = NewLHS; 3492 3493 // Reset the ID to include the new LHS, and check if it is 3494 // already cached. 3495 ID.clear(); 3496 ID.AddInteger(scUDivExpr); 3497 ID.AddPointer(LHS); 3498 ID.AddPointer(RHS); 3499 IP = nullptr; 3500 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3501 return S; 3502 } 3503 } 3504 } 3505 } 3506 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3507 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3508 SmallVector<const SCEV *, 4> Operands; 3509 for (const SCEV *Op : M->operands()) 3510 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3511 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3512 // Find an operand that's safely divisible. 3513 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3514 const SCEV *Op = M->getOperand(i); 3515 const SCEV *Div = getUDivExpr(Op, RHSC); 3516 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3517 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3518 Operands[i] = Div; 3519 return getMulExpr(Operands); 3520 } 3521 } 3522 } 3523 3524 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3525 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3526 if (auto *DivisorConstant = 3527 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3528 bool Overflow = false; 3529 APInt NewRHS = 3530 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3531 if (Overflow) { 3532 return getConstant(RHSC->getType(), 0, false); 3533 } 3534 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3535 } 3536 } 3537 3538 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3539 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3540 SmallVector<const SCEV *, 4> Operands; 3541 for (const SCEV *Op : A->operands()) 3542 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3543 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3544 Operands.clear(); 3545 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3546 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3547 if (isa<SCEVUDivExpr>(Op) || 3548 getMulExpr(Op, RHS) != A->getOperand(i)) 3549 break; 3550 Operands.push_back(Op); 3551 } 3552 if (Operands.size() == A->getNumOperands()) 3553 return getAddExpr(Operands); 3554 } 3555 } 3556 3557 // Fold if both operands are constant. 3558 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3559 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3560 } 3561 } 3562 3563 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3564 // changes). Make sure we get a new one. 3565 IP = nullptr; 3566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3567 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3568 LHS, RHS); 3569 UniqueSCEVs.InsertNode(S, IP); 3570 registerUser(S, {LHS, RHS}); 3571 return S; 3572 } 3573 3574 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3575 APInt A = C1->getAPInt().abs(); 3576 APInt B = C2->getAPInt().abs(); 3577 uint32_t ABW = A.getBitWidth(); 3578 uint32_t BBW = B.getBitWidth(); 3579 3580 if (ABW > BBW) 3581 B = B.zext(ABW); 3582 else if (ABW < BBW) 3583 A = A.zext(BBW); 3584 3585 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3586 } 3587 3588 /// Get a canonical unsigned division expression, or something simpler if 3589 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3590 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3591 /// it's not exact because the udiv may be clearing bits. 3592 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3593 const SCEV *RHS) { 3594 // TODO: we could try to find factors in all sorts of things, but for now we 3595 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3596 // end of this file for inspiration. 3597 3598 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3599 if (!Mul || !Mul->hasNoUnsignedWrap()) 3600 return getUDivExpr(LHS, RHS); 3601 3602 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3603 // If the mulexpr multiplies by a constant, then that constant must be the 3604 // first element of the mulexpr. 3605 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3606 if (LHSCst == RHSCst) { 3607 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3608 return getMulExpr(Operands); 3609 } 3610 3611 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3612 // that there's a factor provided by one of the other terms. We need to 3613 // check. 3614 APInt Factor = gcd(LHSCst, RHSCst); 3615 if (!Factor.isIntN(1)) { 3616 LHSCst = 3617 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3618 RHSCst = 3619 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3620 SmallVector<const SCEV *, 2> Operands; 3621 Operands.push_back(LHSCst); 3622 append_range(Operands, Mul->operands().drop_front()); 3623 LHS = getMulExpr(Operands); 3624 RHS = RHSCst; 3625 Mul = dyn_cast<SCEVMulExpr>(LHS); 3626 if (!Mul) 3627 return getUDivExactExpr(LHS, RHS); 3628 } 3629 } 3630 } 3631 3632 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3633 if (Mul->getOperand(i) == RHS) { 3634 SmallVector<const SCEV *, 2> Operands; 3635 append_range(Operands, Mul->operands().take_front(i)); 3636 append_range(Operands, Mul->operands().drop_front(i + 1)); 3637 return getMulExpr(Operands); 3638 } 3639 } 3640 3641 return getUDivExpr(LHS, RHS); 3642 } 3643 3644 /// Get an add recurrence expression for the specified loop. Simplify the 3645 /// expression as much as possible. 3646 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3647 const Loop *L, 3648 SCEV::NoWrapFlags Flags) { 3649 SmallVector<const SCEV *, 4> Operands; 3650 Operands.push_back(Start); 3651 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3652 if (StepChrec->getLoop() == L) { 3653 append_range(Operands, StepChrec->operands()); 3654 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3655 } 3656 3657 Operands.push_back(Step); 3658 return getAddRecExpr(Operands, L, Flags); 3659 } 3660 3661 /// Get an add recurrence expression for the specified loop. Simplify the 3662 /// expression as much as possible. 3663 const SCEV * 3664 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3665 const Loop *L, SCEV::NoWrapFlags Flags) { 3666 if (Operands.size() == 1) return Operands[0]; 3667 #ifndef NDEBUG 3668 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3669 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3670 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3671 "SCEVAddRecExpr operand types don't match!"); 3672 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3673 } 3674 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3675 assert(isAvailableAtLoopEntry(Operands[i], L) && 3676 "SCEVAddRecExpr operand is not available at loop entry!"); 3677 #endif 3678 3679 if (Operands.back()->isZero()) { 3680 Operands.pop_back(); 3681 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3682 } 3683 3684 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3685 // use that information to infer NUW and NSW flags. However, computing a 3686 // BE count requires calling getAddRecExpr, so we may not yet have a 3687 // meaningful BE count at this point (and if we don't, we'd be stuck 3688 // with a SCEVCouldNotCompute as the cached BE count). 3689 3690 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3691 3692 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3693 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3694 const Loop *NestedLoop = NestedAR->getLoop(); 3695 if (L->contains(NestedLoop) 3696 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3697 : (!NestedLoop->contains(L) && 3698 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3699 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3700 Operands[0] = NestedAR->getStart(); 3701 // AddRecs require their operands be loop-invariant with respect to their 3702 // loops. Don't perform this transformation if it would break this 3703 // requirement. 3704 bool AllInvariant = all_of( 3705 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3706 3707 if (AllInvariant) { 3708 // Create a recurrence for the outer loop with the same step size. 3709 // 3710 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3711 // inner recurrence has the same property. 3712 SCEV::NoWrapFlags OuterFlags = 3713 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3714 3715 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3716 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3717 return isLoopInvariant(Op, NestedLoop); 3718 }); 3719 3720 if (AllInvariant) { 3721 // Ok, both add recurrences are valid after the transformation. 3722 // 3723 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3724 // the outer recurrence has the same property. 3725 SCEV::NoWrapFlags InnerFlags = 3726 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3727 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3728 } 3729 } 3730 // Reset Operands to its original state. 3731 Operands[0] = NestedAR; 3732 } 3733 } 3734 3735 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3736 // already have one, otherwise create a new one. 3737 return getOrCreateAddRecExpr(Operands, L, Flags); 3738 } 3739 3740 const SCEV * 3741 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3742 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3743 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3744 // getSCEV(Base)->getType() has the same address space as Base->getType() 3745 // because SCEV::getType() preserves the address space. 3746 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3747 const bool AssumeInBoundsFlags = [&]() { 3748 if (!GEP->isInBounds()) 3749 return false; 3750 3751 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3752 // but to do that, we have to ensure that said flag is valid in the entire 3753 // defined scope of the SCEV. 3754 auto *GEPI = dyn_cast<Instruction>(GEP); 3755 // TODO: non-instructions have global scope. We might be able to prove 3756 // some global scope cases 3757 return GEPI && isSCEVExprNeverPoison(GEPI); 3758 }(); 3759 3760 SCEV::NoWrapFlags OffsetWrap = 3761 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3762 3763 Type *CurTy = GEP->getType(); 3764 bool FirstIter = true; 3765 SmallVector<const SCEV *, 4> Offsets; 3766 for (const SCEV *IndexExpr : IndexExprs) { 3767 // Compute the (potentially symbolic) offset in bytes for this index. 3768 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3769 // For a struct, add the member offset. 3770 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3771 unsigned FieldNo = Index->getZExtValue(); 3772 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3773 Offsets.push_back(FieldOffset); 3774 3775 // Update CurTy to the type of the field at Index. 3776 CurTy = STy->getTypeAtIndex(Index); 3777 } else { 3778 // Update CurTy to its element type. 3779 if (FirstIter) { 3780 assert(isa<PointerType>(CurTy) && 3781 "The first index of a GEP indexes a pointer"); 3782 CurTy = GEP->getSourceElementType(); 3783 FirstIter = false; 3784 } else { 3785 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3786 } 3787 // For an array, add the element offset, explicitly scaled. 3788 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3789 // Getelementptr indices are signed. 3790 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3791 3792 // Multiply the index by the element size to compute the element offset. 3793 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3794 Offsets.push_back(LocalOffset); 3795 } 3796 } 3797 3798 // Handle degenerate case of GEP without offsets. 3799 if (Offsets.empty()) 3800 return BaseExpr; 3801 3802 // Add the offsets together, assuming nsw if inbounds. 3803 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3804 // Add the base address and the offset. We cannot use the nsw flag, as the 3805 // base address is unsigned. However, if we know that the offset is 3806 // non-negative, we can use nuw. 3807 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3808 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3809 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3810 assert(BaseExpr->getType() == GEPExpr->getType() && 3811 "GEP should not change type mid-flight."); 3812 return GEPExpr; 3813 } 3814 3815 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3816 ArrayRef<const SCEV *> Ops) { 3817 FoldingSetNodeID ID; 3818 ID.AddInteger(SCEVType); 3819 for (const SCEV *Op : Ops) 3820 ID.AddPointer(Op); 3821 void *IP = nullptr; 3822 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3823 } 3824 3825 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3826 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3827 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3828 } 3829 3830 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3831 SmallVectorImpl<const SCEV *> &Ops) { 3832 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3833 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3834 if (Ops.size() == 1) return Ops[0]; 3835 #ifndef NDEBUG 3836 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3837 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3838 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3839 "Operand types don't match!"); 3840 assert(Ops[0]->getType()->isPointerTy() == 3841 Ops[i]->getType()->isPointerTy() && 3842 "min/max should be consistently pointerish"); 3843 } 3844 #endif 3845 3846 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3847 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3848 3849 // Sort by complexity, this groups all similar expression types together. 3850 GroupByComplexity(Ops, &LI, DT); 3851 3852 // Check if we have created the same expression before. 3853 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3854 return S; 3855 } 3856 3857 // If there are any constants, fold them together. 3858 unsigned Idx = 0; 3859 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3860 ++Idx; 3861 assert(Idx < Ops.size()); 3862 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3863 switch (Kind) { 3864 case scSMaxExpr: 3865 return APIntOps::smax(LHS, RHS); 3866 case scSMinExpr: 3867 return APIntOps::smin(LHS, RHS); 3868 case scUMaxExpr: 3869 return APIntOps::umax(LHS, RHS); 3870 case scUMinExpr: 3871 return APIntOps::umin(LHS, RHS); 3872 default: 3873 llvm_unreachable("Unknown SCEV min/max opcode"); 3874 } 3875 }; 3876 3877 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3878 // We found two constants, fold them together! 3879 ConstantInt *Fold = ConstantInt::get( 3880 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3881 Ops[0] = getConstant(Fold); 3882 Ops.erase(Ops.begin()+1); // Erase the folded element 3883 if (Ops.size() == 1) return Ops[0]; 3884 LHSC = cast<SCEVConstant>(Ops[0]); 3885 } 3886 3887 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3888 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3889 3890 if (IsMax ? IsMinV : IsMaxV) { 3891 // If we are left with a constant minimum(/maximum)-int, strip it off. 3892 Ops.erase(Ops.begin()); 3893 --Idx; 3894 } else if (IsMax ? IsMaxV : IsMinV) { 3895 // If we have a max(/min) with a constant maximum(/minimum)-int, 3896 // it will always be the extremum. 3897 return LHSC; 3898 } 3899 3900 if (Ops.size() == 1) return Ops[0]; 3901 } 3902 3903 // Find the first operation of the same kind 3904 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3905 ++Idx; 3906 3907 // Check to see if one of the operands is of the same kind. If so, expand its 3908 // operands onto our operand list, and recurse to simplify. 3909 if (Idx < Ops.size()) { 3910 bool DeletedAny = false; 3911 while (Ops[Idx]->getSCEVType() == Kind) { 3912 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3913 Ops.erase(Ops.begin()+Idx); 3914 append_range(Ops, SMME->operands()); 3915 DeletedAny = true; 3916 } 3917 3918 if (DeletedAny) 3919 return getMinMaxExpr(Kind, Ops); 3920 } 3921 3922 // Okay, check to see if the same value occurs in the operand list twice. If 3923 // so, delete one. Since we sorted the list, these values are required to 3924 // be adjacent. 3925 llvm::CmpInst::Predicate GEPred = 3926 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3927 llvm::CmpInst::Predicate LEPred = 3928 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3929 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3930 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3931 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3932 if (Ops[i] == Ops[i + 1] || 3933 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3934 // X op Y op Y --> X op Y 3935 // X op Y --> X, if we know X, Y are ordered appropriately 3936 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3937 --i; 3938 --e; 3939 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3940 Ops[i + 1])) { 3941 // X op Y --> Y, if we know X, Y are ordered appropriately 3942 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3943 --i; 3944 --e; 3945 } 3946 } 3947 3948 if (Ops.size() == 1) return Ops[0]; 3949 3950 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3951 3952 // Okay, it looks like we really DO need an expr. Check to see if we 3953 // already have one, otherwise create a new one. 3954 FoldingSetNodeID ID; 3955 ID.AddInteger(Kind); 3956 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3957 ID.AddPointer(Ops[i]); 3958 void *IP = nullptr; 3959 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3960 if (ExistingSCEV) 3961 return ExistingSCEV; 3962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3963 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3964 SCEV *S = new (SCEVAllocator) 3965 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3966 3967 UniqueSCEVs.InsertNode(S, IP); 3968 registerUser(S, Ops); 3969 return S; 3970 } 3971 3972 namespace { 3973 3974 class SCEVSequentialMinMaxDeduplicatingVisitor final 3975 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3976 std::optional<const SCEV *>> { 3977 using RetVal = std::optional<const SCEV *>; 3978 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3979 3980 ScalarEvolution &SE; 3981 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3982 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3983 SmallPtrSet<const SCEV *, 16> SeenOps; 3984 3985 bool canRecurseInto(SCEVTypes Kind) const { 3986 // We can only recurse into the SCEV expression of the same effective type 3987 // as the type of our root SCEV expression. 3988 return RootKind == Kind || NonSequentialRootKind == Kind; 3989 }; 3990 3991 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3992 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3993 "Only for min/max expressions."); 3994 SCEVTypes Kind = S->getSCEVType(); 3995 3996 if (!canRecurseInto(Kind)) 3997 return S; 3998 3999 auto *NAry = cast<SCEVNAryExpr>(S); 4000 SmallVector<const SCEV *> NewOps; 4001 bool Changed = visit(Kind, NAry->operands(), NewOps); 4002 4003 if (!Changed) 4004 return S; 4005 if (NewOps.empty()) 4006 return std::nullopt; 4007 4008 return isa<SCEVSequentialMinMaxExpr>(S) 4009 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 4010 : SE.getMinMaxExpr(Kind, NewOps); 4011 } 4012 4013 RetVal visit(const SCEV *S) { 4014 // Has the whole operand been seen already? 4015 if (!SeenOps.insert(S).second) 4016 return std::nullopt; 4017 return Base::visit(S); 4018 } 4019 4020 public: 4021 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 4022 SCEVTypes RootKind) 4023 : SE(SE), RootKind(RootKind), 4024 NonSequentialRootKind( 4025 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 4026 RootKind)) {} 4027 4028 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 4029 SmallVectorImpl<const SCEV *> &NewOps) { 4030 bool Changed = false; 4031 SmallVector<const SCEV *> Ops; 4032 Ops.reserve(OrigOps.size()); 4033 4034 for (const SCEV *Op : OrigOps) { 4035 RetVal NewOp = visit(Op); 4036 if (NewOp != Op) 4037 Changed = true; 4038 if (NewOp) 4039 Ops.emplace_back(*NewOp); 4040 } 4041 4042 if (Changed) 4043 NewOps = std::move(Ops); 4044 return Changed; 4045 } 4046 4047 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 4048 4049 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } 4050 4051 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 4052 4053 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 4054 4055 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 4056 4057 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 4058 4059 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 4060 4061 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 4062 4063 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 4064 4065 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 4066 4067 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 4068 return visitAnyMinMaxExpr(Expr); 4069 } 4070 4071 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 4072 return visitAnyMinMaxExpr(Expr); 4073 } 4074 4075 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4076 return visitAnyMinMaxExpr(Expr); 4077 } 4078 4079 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4080 return visitAnyMinMaxExpr(Expr); 4081 } 4082 4083 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4084 return visitAnyMinMaxExpr(Expr); 4085 } 4086 4087 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4088 4089 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4090 }; 4091 4092 } // namespace 4093 4094 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { 4095 switch (Kind) { 4096 case scConstant: 4097 case scVScale: 4098 case scTruncate: 4099 case scZeroExtend: 4100 case scSignExtend: 4101 case scPtrToInt: 4102 case scAddExpr: 4103 case scMulExpr: 4104 case scUDivExpr: 4105 case scAddRecExpr: 4106 case scUMaxExpr: 4107 case scSMaxExpr: 4108 case scUMinExpr: 4109 case scSMinExpr: 4110 case scUnknown: 4111 // If any operand is poison, the whole expression is poison. 4112 return true; 4113 case scSequentialUMinExpr: 4114 // FIXME: if the *first* operand is poison, the whole expression is poison. 4115 return false; // Pessimistically, say that it does not propagate poison. 4116 case scCouldNotCompute: 4117 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4118 } 4119 llvm_unreachable("Unknown SCEV kind!"); 4120 } 4121 4122 namespace { 4123 // The only way poison may be introduced in a SCEV expression is from a 4124 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4125 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4126 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4127 // 4128 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4129 // with the notable exception of umin_seq, where only poison from the first 4130 // operand is (unconditionally) propagated. 4131 struct SCEVPoisonCollector { 4132 bool LookThroughMaybePoisonBlocking; 4133 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison; 4134 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) 4135 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} 4136 4137 bool follow(const SCEV *S) { 4138 if (!LookThroughMaybePoisonBlocking && 4139 !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) 4140 return false; 4141 4142 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4143 if (!isGuaranteedNotToBePoison(SU->getValue())) 4144 MaybePoison.insert(SU); 4145 } 4146 return true; 4147 } 4148 bool isDone() const { return false; } 4149 }; 4150 } // namespace 4151 4152 /// Return true if V is poison given that AssumedPoison is already poison. 4153 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4154 // First collect all SCEVs that might result in AssumedPoison to be poison. 4155 // We need to look through potentially poison-blocking operations here, 4156 // because we want to find all SCEVs that *might* result in poison, not only 4157 // those that are *required* to. 4158 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); 4159 visitAll(AssumedPoison, PC1); 4160 4161 // AssumedPoison is never poison. As the assumption is false, the implication 4162 // is true. Don't bother walking the other SCEV in this case. 4163 if (PC1.MaybePoison.empty()) 4164 return true; 4165 4166 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4167 // as well. We cannot look through potentially poison-blocking operations 4168 // here, as their arguments only *may* make the result poison. 4169 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); 4170 visitAll(S, PC2); 4171 4172 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4173 // it will also make S poison by being part of PC2.MaybePoison. 4174 return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) { 4175 return PC2.MaybePoison.contains(S); 4176 }); 4177 } 4178 4179 void ScalarEvolution::getPoisonGeneratingValues( 4180 SmallPtrSetImpl<const Value *> &Result, const SCEV *S) { 4181 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false); 4182 visitAll(S, PC); 4183 for (const SCEVUnknown *SU : PC.MaybePoison) 4184 Result.insert(SU->getValue()); 4185 } 4186 4187 const SCEV * 4188 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4189 SmallVectorImpl<const SCEV *> &Ops) { 4190 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4191 "Not a SCEVSequentialMinMaxExpr!"); 4192 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4193 if (Ops.size() == 1) 4194 return Ops[0]; 4195 #ifndef NDEBUG 4196 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4197 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4198 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4199 "Operand types don't match!"); 4200 assert(Ops[0]->getType()->isPointerTy() == 4201 Ops[i]->getType()->isPointerTy() && 4202 "min/max should be consistently pointerish"); 4203 } 4204 #endif 4205 4206 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4207 // so we can *NOT* do any kind of sorting of the expressions! 4208 4209 // Check if we have created the same expression before. 4210 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4211 return S; 4212 4213 // FIXME: there are *some* simplifications that we can do here. 4214 4215 // Keep only the first instance of an operand. 4216 { 4217 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4218 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4219 if (Changed) 4220 return getSequentialMinMaxExpr(Kind, Ops); 4221 } 4222 4223 // Check to see if one of the operands is of the same kind. If so, expand its 4224 // operands onto our operand list, and recurse to simplify. 4225 { 4226 unsigned Idx = 0; 4227 bool DeletedAny = false; 4228 while (Idx < Ops.size()) { 4229 if (Ops[Idx]->getSCEVType() != Kind) { 4230 ++Idx; 4231 continue; 4232 } 4233 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4234 Ops.erase(Ops.begin() + Idx); 4235 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), 4236 SMME->operands().end()); 4237 DeletedAny = true; 4238 } 4239 4240 if (DeletedAny) 4241 return getSequentialMinMaxExpr(Kind, Ops); 4242 } 4243 4244 const SCEV *SaturationPoint; 4245 ICmpInst::Predicate Pred; 4246 switch (Kind) { 4247 case scSequentialUMinExpr: 4248 SaturationPoint = getZero(Ops[0]->getType()); 4249 Pred = ICmpInst::ICMP_ULE; 4250 break; 4251 default: 4252 llvm_unreachable("Not a sequential min/max type."); 4253 } 4254 4255 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4256 // We can replace %x umin_seq %y with %x umin %y if either: 4257 // * %y being poison implies %x is also poison. 4258 // * %x cannot be the saturating value (e.g. zero for umin). 4259 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4260 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4261 SaturationPoint)) { 4262 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4263 Ops[i - 1] = getMinMaxExpr( 4264 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4265 SeqOps); 4266 Ops.erase(Ops.begin() + i); 4267 return getSequentialMinMaxExpr(Kind, Ops); 4268 } 4269 // Fold %x umin_seq %y to %x if %x ule %y. 4270 // TODO: We might be able to prove the predicate for a later operand. 4271 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4272 Ops.erase(Ops.begin() + i); 4273 return getSequentialMinMaxExpr(Kind, Ops); 4274 } 4275 } 4276 4277 // Okay, it looks like we really DO need an expr. Check to see if we 4278 // already have one, otherwise create a new one. 4279 FoldingSetNodeID ID; 4280 ID.AddInteger(Kind); 4281 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4282 ID.AddPointer(Ops[i]); 4283 void *IP = nullptr; 4284 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4285 if (ExistingSCEV) 4286 return ExistingSCEV; 4287 4288 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4289 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4290 SCEV *S = new (SCEVAllocator) 4291 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4292 4293 UniqueSCEVs.InsertNode(S, IP); 4294 registerUser(S, Ops); 4295 return S; 4296 } 4297 4298 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4299 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4300 return getSMaxExpr(Ops); 4301 } 4302 4303 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4304 return getMinMaxExpr(scSMaxExpr, Ops); 4305 } 4306 4307 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4308 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4309 return getUMaxExpr(Ops); 4310 } 4311 4312 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4313 return getMinMaxExpr(scUMaxExpr, Ops); 4314 } 4315 4316 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4317 const SCEV *RHS) { 4318 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4319 return getSMinExpr(Ops); 4320 } 4321 4322 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4323 return getMinMaxExpr(scSMinExpr, Ops); 4324 } 4325 4326 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4327 bool Sequential) { 4328 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4329 return getUMinExpr(Ops, Sequential); 4330 } 4331 4332 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4333 bool Sequential) { 4334 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4335 : getMinMaxExpr(scUMinExpr, Ops); 4336 } 4337 4338 const SCEV * 4339 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { 4340 const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue()); 4341 if (Size.isScalable()) 4342 Res = getMulExpr(Res, getVScale(IntTy)); 4343 return Res; 4344 } 4345 4346 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4347 return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4348 } 4349 4350 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4351 return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4352 } 4353 4354 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4355 StructType *STy, 4356 unsigned FieldNo) { 4357 // We can bypass creating a target-independent constant expression and then 4358 // folding it back into a ConstantInt. This is just a compile-time 4359 // optimization. 4360 const StructLayout *SL = getDataLayout().getStructLayout(STy); 4361 assert(!SL->getSizeInBits().isScalable() && 4362 "Cannot get offset for structure containing scalable vector types"); 4363 return getConstant(IntTy, SL->getElementOffset(FieldNo)); 4364 } 4365 4366 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4367 // Don't attempt to do anything other than create a SCEVUnknown object 4368 // here. createSCEV only calls getUnknown after checking for all other 4369 // interesting possibilities, and any other code that calls getUnknown 4370 // is doing so in order to hide a value from SCEV canonicalization. 4371 4372 FoldingSetNodeID ID; 4373 ID.AddInteger(scUnknown); 4374 ID.AddPointer(V); 4375 void *IP = nullptr; 4376 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4377 assert(cast<SCEVUnknown>(S)->getValue() == V && 4378 "Stale SCEVUnknown in uniquing map!"); 4379 return S; 4380 } 4381 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4382 FirstUnknown); 4383 FirstUnknown = cast<SCEVUnknown>(S); 4384 UniqueSCEVs.InsertNode(S, IP); 4385 return S; 4386 } 4387 4388 //===----------------------------------------------------------------------===// 4389 // Basic SCEV Analysis and PHI Idiom Recognition Code 4390 // 4391 4392 /// Test if values of the given type are analyzable within the SCEV 4393 /// framework. This primarily includes integer types, and it can optionally 4394 /// include pointer types if the ScalarEvolution class has access to 4395 /// target-specific information. 4396 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4397 // Integers and pointers are always SCEVable. 4398 return Ty->isIntOrPtrTy(); 4399 } 4400 4401 /// Return the size in bits of the specified type, for which isSCEVable must 4402 /// return true. 4403 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4404 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4405 if (Ty->isPointerTy()) 4406 return getDataLayout().getIndexTypeSizeInBits(Ty); 4407 return getDataLayout().getTypeSizeInBits(Ty); 4408 } 4409 4410 /// Return a type with the same bitwidth as the given type and which represents 4411 /// how SCEV will treat the given type, for which isSCEVable must return 4412 /// true. For pointer types, this is the pointer index sized integer type. 4413 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4414 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4415 4416 if (Ty->isIntegerTy()) 4417 return Ty; 4418 4419 // The only other support type is pointer. 4420 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4421 return getDataLayout().getIndexType(Ty); 4422 } 4423 4424 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4425 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4426 } 4427 4428 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A, 4429 const SCEV *B) { 4430 /// For a valid use point to exist, the defining scope of one operand 4431 /// must dominate the other. 4432 bool PreciseA, PreciseB; 4433 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4434 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4435 if (!PreciseA || !PreciseB) 4436 // Can't tell. 4437 return false; 4438 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4439 DT.dominates(ScopeB, ScopeA); 4440 } 4441 4442 const SCEV *ScalarEvolution::getCouldNotCompute() { 4443 return CouldNotCompute.get(); 4444 } 4445 4446 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4447 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4448 auto *SU = dyn_cast<SCEVUnknown>(S); 4449 return SU && SU->getValue() == nullptr; 4450 }); 4451 4452 return !ContainsNulls; 4453 } 4454 4455 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4456 HasRecMapType::iterator I = HasRecMap.find(S); 4457 if (I != HasRecMap.end()) 4458 return I->second; 4459 4460 bool FoundAddRec = 4461 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4462 HasRecMap.insert({S, FoundAddRec}); 4463 return FoundAddRec; 4464 } 4465 4466 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4467 /// by the value and offset from any ValueOffsetPair in the set. 4468 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4469 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4470 if (SI == ExprValueMap.end()) 4471 return std::nullopt; 4472 return SI->second.getArrayRef(); 4473 } 4474 4475 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4476 /// cannot be used separately. eraseValueFromMap should be used to remove 4477 /// V from ValueExprMap and ExprValueMap at the same time. 4478 void ScalarEvolution::eraseValueFromMap(Value *V) { 4479 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4480 if (I != ValueExprMap.end()) { 4481 auto EVIt = ExprValueMap.find(I->second); 4482 bool Removed = EVIt->second.remove(V); 4483 (void) Removed; 4484 assert(Removed && "Value not in ExprValueMap?"); 4485 ValueExprMap.erase(I); 4486 } 4487 } 4488 4489 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4490 // A recursive query may have already computed the SCEV. It should be 4491 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4492 // inferred nowrap flags. 4493 auto It = ValueExprMap.find_as(V); 4494 if (It == ValueExprMap.end()) { 4495 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4496 ExprValueMap[S].insert(V); 4497 } 4498 } 4499 4500 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4501 /// create a new one. 4502 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4503 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4504 4505 if (const SCEV *S = getExistingSCEV(V)) 4506 return S; 4507 return createSCEVIter(V); 4508 } 4509 4510 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4511 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4512 4513 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4514 if (I != ValueExprMap.end()) { 4515 const SCEV *S = I->second; 4516 assert(checkValidity(S) && 4517 "existing SCEV has not been properly invalidated"); 4518 return S; 4519 } 4520 return nullptr; 4521 } 4522 4523 /// Return a SCEV corresponding to -V = -1*V 4524 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4525 SCEV::NoWrapFlags Flags) { 4526 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4527 return getConstant( 4528 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4529 4530 Type *Ty = V->getType(); 4531 Ty = getEffectiveSCEVType(Ty); 4532 return getMulExpr(V, getMinusOne(Ty), Flags); 4533 } 4534 4535 /// If Expr computes ~A, return A else return nullptr 4536 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4537 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4538 if (!Add || Add->getNumOperands() != 2 || 4539 !Add->getOperand(0)->isAllOnesValue()) 4540 return nullptr; 4541 4542 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4543 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4544 !AddRHS->getOperand(0)->isAllOnesValue()) 4545 return nullptr; 4546 4547 return AddRHS->getOperand(1); 4548 } 4549 4550 /// Return a SCEV corresponding to ~V = -1-V 4551 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4552 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4553 4554 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4555 return getConstant( 4556 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4557 4558 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4559 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4560 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4561 SmallVector<const SCEV *, 2> MatchedOperands; 4562 for (const SCEV *Operand : MME->operands()) { 4563 const SCEV *Matched = MatchNotExpr(Operand); 4564 if (!Matched) 4565 return (const SCEV *)nullptr; 4566 MatchedOperands.push_back(Matched); 4567 } 4568 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4569 MatchedOperands); 4570 }; 4571 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4572 return Replaced; 4573 } 4574 4575 Type *Ty = V->getType(); 4576 Ty = getEffectiveSCEVType(Ty); 4577 return getMinusSCEV(getMinusOne(Ty), V); 4578 } 4579 4580 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4581 assert(P->getType()->isPointerTy()); 4582 4583 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4584 // The base of an AddRec is the first operand. 4585 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4586 Ops[0] = removePointerBase(Ops[0]); 4587 // Don't try to transfer nowrap flags for now. We could in some cases 4588 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4589 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4590 } 4591 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4592 // The base of an Add is the pointer operand. 4593 SmallVector<const SCEV *> Ops{Add->operands()}; 4594 const SCEV **PtrOp = nullptr; 4595 for (const SCEV *&AddOp : Ops) { 4596 if (AddOp->getType()->isPointerTy()) { 4597 assert(!PtrOp && "Cannot have multiple pointer ops"); 4598 PtrOp = &AddOp; 4599 } 4600 } 4601 *PtrOp = removePointerBase(*PtrOp); 4602 // Don't try to transfer nowrap flags for now. We could in some cases 4603 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4604 return getAddExpr(Ops); 4605 } 4606 // Any other expression must be a pointer base. 4607 return getZero(P->getType()); 4608 } 4609 4610 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4611 SCEV::NoWrapFlags Flags, 4612 unsigned Depth) { 4613 // Fast path: X - X --> 0. 4614 if (LHS == RHS) 4615 return getZero(LHS->getType()); 4616 4617 // If we subtract two pointers with different pointer bases, bail. 4618 // Eventually, we're going to add an assertion to getMulExpr that we 4619 // can't multiply by a pointer. 4620 if (RHS->getType()->isPointerTy()) { 4621 if (!LHS->getType()->isPointerTy() || 4622 getPointerBase(LHS) != getPointerBase(RHS)) 4623 return getCouldNotCompute(); 4624 LHS = removePointerBase(LHS); 4625 RHS = removePointerBase(RHS); 4626 } 4627 4628 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4629 // makes it so that we cannot make much use of NUW. 4630 auto AddFlags = SCEV::FlagAnyWrap; 4631 const bool RHSIsNotMinSigned = 4632 !getSignedRangeMin(RHS).isMinSignedValue(); 4633 if (hasFlags(Flags, SCEV::FlagNSW)) { 4634 // Let M be the minimum representable signed value. Then (-1)*RHS 4635 // signed-wraps if and only if RHS is M. That can happen even for 4636 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4637 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4638 // (-1)*RHS, we need to prove that RHS != M. 4639 // 4640 // If LHS is non-negative and we know that LHS - RHS does not 4641 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4642 // either by proving that RHS > M or that LHS >= 0. 4643 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4644 AddFlags = SCEV::FlagNSW; 4645 } 4646 } 4647 4648 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4649 // RHS is NSW and LHS >= 0. 4650 // 4651 // The difficulty here is that the NSW flag may have been proven 4652 // relative to a loop that is to be found in a recurrence in LHS and 4653 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4654 // larger scope than intended. 4655 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4656 4657 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4658 } 4659 4660 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4661 unsigned Depth) { 4662 Type *SrcTy = V->getType(); 4663 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4664 "Cannot truncate or zero extend with non-integer arguments!"); 4665 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4666 return V; // No conversion 4667 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4668 return getTruncateExpr(V, Ty, Depth); 4669 return getZeroExtendExpr(V, Ty, Depth); 4670 } 4671 4672 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4673 unsigned Depth) { 4674 Type *SrcTy = V->getType(); 4675 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4676 "Cannot truncate or zero extend with non-integer arguments!"); 4677 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4678 return V; // No conversion 4679 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4680 return getTruncateExpr(V, Ty, Depth); 4681 return getSignExtendExpr(V, Ty, Depth); 4682 } 4683 4684 const SCEV * 4685 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4686 Type *SrcTy = V->getType(); 4687 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4688 "Cannot noop or zero extend with non-integer arguments!"); 4689 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4690 "getNoopOrZeroExtend cannot truncate!"); 4691 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4692 return V; // No conversion 4693 return getZeroExtendExpr(V, Ty); 4694 } 4695 4696 const SCEV * 4697 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4698 Type *SrcTy = V->getType(); 4699 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4700 "Cannot noop or sign extend with non-integer arguments!"); 4701 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4702 "getNoopOrSignExtend cannot truncate!"); 4703 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4704 return V; // No conversion 4705 return getSignExtendExpr(V, Ty); 4706 } 4707 4708 const SCEV * 4709 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4710 Type *SrcTy = V->getType(); 4711 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4712 "Cannot noop or any extend with non-integer arguments!"); 4713 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4714 "getNoopOrAnyExtend cannot truncate!"); 4715 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4716 return V; // No conversion 4717 return getAnyExtendExpr(V, Ty); 4718 } 4719 4720 const SCEV * 4721 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4722 Type *SrcTy = V->getType(); 4723 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4724 "Cannot truncate or noop with non-integer arguments!"); 4725 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4726 "getTruncateOrNoop cannot extend!"); 4727 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4728 return V; // No conversion 4729 return getTruncateExpr(V, Ty); 4730 } 4731 4732 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4733 const SCEV *RHS) { 4734 const SCEV *PromotedLHS = LHS; 4735 const SCEV *PromotedRHS = RHS; 4736 4737 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4738 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4739 else 4740 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4741 4742 return getUMaxExpr(PromotedLHS, PromotedRHS); 4743 } 4744 4745 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4746 const SCEV *RHS, 4747 bool Sequential) { 4748 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4749 return getUMinFromMismatchedTypes(Ops, Sequential); 4750 } 4751 4752 const SCEV * 4753 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4754 bool Sequential) { 4755 assert(!Ops.empty() && "At least one operand must be!"); 4756 // Trivial case. 4757 if (Ops.size() == 1) 4758 return Ops[0]; 4759 4760 // Find the max type first. 4761 Type *MaxType = nullptr; 4762 for (const auto *S : Ops) 4763 if (MaxType) 4764 MaxType = getWiderType(MaxType, S->getType()); 4765 else 4766 MaxType = S->getType(); 4767 assert(MaxType && "Failed to find maximum type!"); 4768 4769 // Extend all ops to max type. 4770 SmallVector<const SCEV *, 2> PromotedOps; 4771 for (const auto *S : Ops) 4772 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4773 4774 // Generate umin. 4775 return getUMinExpr(PromotedOps, Sequential); 4776 } 4777 4778 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4779 // A pointer operand may evaluate to a nonpointer expression, such as null. 4780 if (!V->getType()->isPointerTy()) 4781 return V; 4782 4783 while (true) { 4784 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4785 V = AddRec->getStart(); 4786 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4787 const SCEV *PtrOp = nullptr; 4788 for (const SCEV *AddOp : Add->operands()) { 4789 if (AddOp->getType()->isPointerTy()) { 4790 assert(!PtrOp && "Cannot have multiple pointer ops"); 4791 PtrOp = AddOp; 4792 } 4793 } 4794 assert(PtrOp && "Must have pointer op"); 4795 V = PtrOp; 4796 } else // Not something we can look further into. 4797 return V; 4798 } 4799 } 4800 4801 /// Push users of the given Instruction onto the given Worklist. 4802 static void PushDefUseChildren(Instruction *I, 4803 SmallVectorImpl<Instruction *> &Worklist, 4804 SmallPtrSetImpl<Instruction *> &Visited) { 4805 // Push the def-use children onto the Worklist stack. 4806 for (User *U : I->users()) { 4807 auto *UserInsn = cast<Instruction>(U); 4808 if (Visited.insert(UserInsn).second) 4809 Worklist.push_back(UserInsn); 4810 } 4811 } 4812 4813 namespace { 4814 4815 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4816 /// expression in case its Loop is L. If it is not L then 4817 /// if IgnoreOtherLoops is true then use AddRec itself 4818 /// otherwise rewrite cannot be done. 4819 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4820 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4821 public: 4822 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4823 bool IgnoreOtherLoops = true) { 4824 SCEVInitRewriter Rewriter(L, SE); 4825 const SCEV *Result = Rewriter.visit(S); 4826 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4827 return SE.getCouldNotCompute(); 4828 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4829 ? SE.getCouldNotCompute() 4830 : Result; 4831 } 4832 4833 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4834 if (!SE.isLoopInvariant(Expr, L)) 4835 SeenLoopVariantSCEVUnknown = true; 4836 return Expr; 4837 } 4838 4839 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4840 // Only re-write AddRecExprs for this loop. 4841 if (Expr->getLoop() == L) 4842 return Expr->getStart(); 4843 SeenOtherLoops = true; 4844 return Expr; 4845 } 4846 4847 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4848 4849 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4850 4851 private: 4852 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4853 : SCEVRewriteVisitor(SE), L(L) {} 4854 4855 const Loop *L; 4856 bool SeenLoopVariantSCEVUnknown = false; 4857 bool SeenOtherLoops = false; 4858 }; 4859 4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4861 /// increment expression in case its Loop is L. If it is not L then 4862 /// use AddRec itself. 4863 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4864 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4865 public: 4866 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4867 SCEVPostIncRewriter Rewriter(L, SE); 4868 const SCEV *Result = Rewriter.visit(S); 4869 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4870 ? SE.getCouldNotCompute() 4871 : Result; 4872 } 4873 4874 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4875 if (!SE.isLoopInvariant(Expr, L)) 4876 SeenLoopVariantSCEVUnknown = true; 4877 return Expr; 4878 } 4879 4880 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4881 // Only re-write AddRecExprs for this loop. 4882 if (Expr->getLoop() == L) 4883 return Expr->getPostIncExpr(SE); 4884 SeenOtherLoops = true; 4885 return Expr; 4886 } 4887 4888 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4889 4890 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4891 4892 private: 4893 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4894 : SCEVRewriteVisitor(SE), L(L) {} 4895 4896 const Loop *L; 4897 bool SeenLoopVariantSCEVUnknown = false; 4898 bool SeenOtherLoops = false; 4899 }; 4900 4901 /// This class evaluates the compare condition by matching it against the 4902 /// condition of loop latch. If there is a match we assume a true value 4903 /// for the condition while building SCEV nodes. 4904 class SCEVBackedgeConditionFolder 4905 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4906 public: 4907 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4908 ScalarEvolution &SE) { 4909 bool IsPosBECond = false; 4910 Value *BECond = nullptr; 4911 if (BasicBlock *Latch = L->getLoopLatch()) { 4912 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4913 if (BI && BI->isConditional()) { 4914 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4915 "Both outgoing branches should not target same header!"); 4916 BECond = BI->getCondition(); 4917 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4918 } else { 4919 return S; 4920 } 4921 } 4922 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4923 return Rewriter.visit(S); 4924 } 4925 4926 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4927 const SCEV *Result = Expr; 4928 bool InvariantF = SE.isLoopInvariant(Expr, L); 4929 4930 if (!InvariantF) { 4931 Instruction *I = cast<Instruction>(Expr->getValue()); 4932 switch (I->getOpcode()) { 4933 case Instruction::Select: { 4934 SelectInst *SI = cast<SelectInst>(I); 4935 std::optional<const SCEV *> Res = 4936 compareWithBackedgeCondition(SI->getCondition()); 4937 if (Res) { 4938 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); 4939 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4940 } 4941 break; 4942 } 4943 default: { 4944 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4945 if (Res) 4946 Result = *Res; 4947 break; 4948 } 4949 } 4950 } 4951 return Result; 4952 } 4953 4954 private: 4955 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4956 bool IsPosBECond, ScalarEvolution &SE) 4957 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4958 IsPositiveBECond(IsPosBECond) {} 4959 4960 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4961 4962 const Loop *L; 4963 /// Loop back condition. 4964 Value *BackedgeCond = nullptr; 4965 /// Set to true if loop back is on positive branch condition. 4966 bool IsPositiveBECond; 4967 }; 4968 4969 std::optional<const SCEV *> 4970 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4971 4972 // If value matches the backedge condition for loop latch, 4973 // then return a constant evolution node based on loopback 4974 // branch taken. 4975 if (BackedgeCond == IC) 4976 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4977 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4978 return std::nullopt; 4979 } 4980 4981 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4982 public: 4983 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4984 ScalarEvolution &SE) { 4985 SCEVShiftRewriter Rewriter(L, SE); 4986 const SCEV *Result = Rewriter.visit(S); 4987 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4988 } 4989 4990 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4991 // Only allow AddRecExprs for this loop. 4992 if (!SE.isLoopInvariant(Expr, L)) 4993 Valid = false; 4994 return Expr; 4995 } 4996 4997 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4998 if (Expr->getLoop() == L && Expr->isAffine()) 4999 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 5000 Valid = false; 5001 return Expr; 5002 } 5003 5004 bool isValid() { return Valid; } 5005 5006 private: 5007 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 5008 : SCEVRewriteVisitor(SE), L(L) {} 5009 5010 const Loop *L; 5011 bool Valid = true; 5012 }; 5013 5014 } // end anonymous namespace 5015 5016 SCEV::NoWrapFlags 5017 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 5018 if (!AR->isAffine()) 5019 return SCEV::FlagAnyWrap; 5020 5021 using OBO = OverflowingBinaryOperator; 5022 5023 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 5024 5025 if (!AR->hasNoSelfWrap()) { 5026 const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop()); 5027 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) { 5028 ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this)); 5029 const APInt &BECountAP = BECountMax->getAPInt(); 5030 unsigned NoOverflowBitWidth = 5031 BECountAP.getActiveBits() + StepCR.getMinSignedBits(); 5032 if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType())) 5033 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW); 5034 } 5035 } 5036 5037 if (!AR->hasNoSignedWrap()) { 5038 ConstantRange AddRecRange = getSignedRange(AR); 5039 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 5040 5041 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5042 Instruction::Add, IncRange, OBO::NoSignedWrap); 5043 if (NSWRegion.contains(AddRecRange)) 5044 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 5045 } 5046 5047 if (!AR->hasNoUnsignedWrap()) { 5048 ConstantRange AddRecRange = getUnsignedRange(AR); 5049 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 5050 5051 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5052 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 5053 if (NUWRegion.contains(AddRecRange)) 5054 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 5055 } 5056 5057 return Result; 5058 } 5059 5060 SCEV::NoWrapFlags 5061 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5062 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5063 5064 if (AR->hasNoSignedWrap()) 5065 return Result; 5066 5067 if (!AR->isAffine()) 5068 return Result; 5069 5070 // This function can be expensive, only try to prove NSW once per AddRec. 5071 if (!SignedWrapViaInductionTried.insert(AR).second) 5072 return Result; 5073 5074 const SCEV *Step = AR->getStepRecurrence(*this); 5075 const Loop *L = AR->getLoop(); 5076 5077 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5078 // Note that this serves two purposes: It filters out loops that are 5079 // simply not analyzable, and it covers the case where this code is 5080 // being called from within backedge-taken count analysis, such that 5081 // attempting to ask for the backedge-taken count would likely result 5082 // in infinite recursion. In the later case, the analysis code will 5083 // cope with a conservative value, and it will take care to purge 5084 // that value once it has finished. 5085 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5086 5087 // Normally, in the cases we can prove no-overflow via a 5088 // backedge guarding condition, we can also compute a backedge 5089 // taken count for the loop. The exceptions are assumptions and 5090 // guards present in the loop -- SCEV is not great at exploiting 5091 // these to compute max backedge taken counts, but can still use 5092 // these to prove lack of overflow. Use this fact to avoid 5093 // doing extra work that may not pay off. 5094 5095 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5096 AC.assumptions().empty()) 5097 return Result; 5098 5099 // If the backedge is guarded by a comparison with the pre-inc value the 5100 // addrec is safe. Also, if the entry is guarded by a comparison with the 5101 // start value and the backedge is guarded by a comparison with the post-inc 5102 // value, the addrec is safe. 5103 ICmpInst::Predicate Pred; 5104 const SCEV *OverflowLimit = 5105 getSignedOverflowLimitForStep(Step, &Pred, this); 5106 if (OverflowLimit && 5107 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5108 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5109 Result = setFlags(Result, SCEV::FlagNSW); 5110 } 5111 return Result; 5112 } 5113 SCEV::NoWrapFlags 5114 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5115 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5116 5117 if (AR->hasNoUnsignedWrap()) 5118 return Result; 5119 5120 if (!AR->isAffine()) 5121 return Result; 5122 5123 // This function can be expensive, only try to prove NUW once per AddRec. 5124 if (!UnsignedWrapViaInductionTried.insert(AR).second) 5125 return Result; 5126 5127 const SCEV *Step = AR->getStepRecurrence(*this); 5128 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5129 const Loop *L = AR->getLoop(); 5130 5131 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5132 // Note that this serves two purposes: It filters out loops that are 5133 // simply not analyzable, and it covers the case where this code is 5134 // being called from within backedge-taken count analysis, such that 5135 // attempting to ask for the backedge-taken count would likely result 5136 // in infinite recursion. In the later case, the analysis code will 5137 // cope with a conservative value, and it will take care to purge 5138 // that value once it has finished. 5139 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5140 5141 // Normally, in the cases we can prove no-overflow via a 5142 // backedge guarding condition, we can also compute a backedge 5143 // taken count for the loop. The exceptions are assumptions and 5144 // guards present in the loop -- SCEV is not great at exploiting 5145 // these to compute max backedge taken counts, but can still use 5146 // these to prove lack of overflow. Use this fact to avoid 5147 // doing extra work that may not pay off. 5148 5149 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5150 AC.assumptions().empty()) 5151 return Result; 5152 5153 // If the backedge is guarded by a comparison with the pre-inc value the 5154 // addrec is safe. Also, if the entry is guarded by a comparison with the 5155 // start value and the backedge is guarded by a comparison with the post-inc 5156 // value, the addrec is safe. 5157 if (isKnownPositive(Step)) { 5158 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5159 getUnsignedRangeMax(Step)); 5160 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5161 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5162 Result = setFlags(Result, SCEV::FlagNUW); 5163 } 5164 } 5165 5166 return Result; 5167 } 5168 5169 namespace { 5170 5171 /// Represents an abstract binary operation. This may exist as a 5172 /// normal instruction or constant expression, or may have been 5173 /// derived from an expression tree. 5174 struct BinaryOp { 5175 unsigned Opcode; 5176 Value *LHS; 5177 Value *RHS; 5178 bool IsNSW = false; 5179 bool IsNUW = false; 5180 5181 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5182 /// constant expression. 5183 Operator *Op = nullptr; 5184 5185 explicit BinaryOp(Operator *Op) 5186 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5187 Op(Op) { 5188 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5189 IsNSW = OBO->hasNoSignedWrap(); 5190 IsNUW = OBO->hasNoUnsignedWrap(); 5191 } 5192 } 5193 5194 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5195 bool IsNUW = false) 5196 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5197 }; 5198 5199 } // end anonymous namespace 5200 5201 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. 5202 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, 5203 AssumptionCache &AC, 5204 const DominatorTree &DT, 5205 const Instruction *CxtI) { 5206 auto *Op = dyn_cast<Operator>(V); 5207 if (!Op) 5208 return std::nullopt; 5209 5210 // Implementation detail: all the cleverness here should happen without 5211 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5212 // SCEV expressions when possible, and we should not break that. 5213 5214 switch (Op->getOpcode()) { 5215 case Instruction::Add: 5216 case Instruction::Sub: 5217 case Instruction::Mul: 5218 case Instruction::UDiv: 5219 case Instruction::URem: 5220 case Instruction::And: 5221 case Instruction::AShr: 5222 case Instruction::Shl: 5223 return BinaryOp(Op); 5224 5225 case Instruction::Or: { 5226 // Convert or disjoint into add nuw nsw. 5227 if (cast<PossiblyDisjointInst>(Op)->isDisjoint()) 5228 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), 5229 /*IsNSW=*/true, /*IsNUW=*/true); 5230 return BinaryOp(Op); 5231 } 5232 5233 case Instruction::Xor: 5234 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5235 // If the RHS of the xor is a signmask, then this is just an add. 5236 // Instcombine turns add of signmask into xor as a strength reduction step. 5237 if (RHSC->getValue().isSignMask()) 5238 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5239 // Binary `xor` is a bit-wise `add`. 5240 if (V->getType()->isIntegerTy(1)) 5241 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5242 return BinaryOp(Op); 5243 5244 case Instruction::LShr: 5245 // Turn logical shift right of a constant into a unsigned divide. 5246 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5247 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5248 5249 // If the shift count is not less than the bitwidth, the result of 5250 // the shift is undefined. Don't try to analyze it, because the 5251 // resolution chosen here may differ from the resolution chosen in 5252 // other parts of the compiler. 5253 if (SA->getValue().ult(BitWidth)) { 5254 Constant *X = 5255 ConstantInt::get(SA->getContext(), 5256 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5257 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5258 } 5259 } 5260 return BinaryOp(Op); 5261 5262 case Instruction::ExtractValue: { 5263 auto *EVI = cast<ExtractValueInst>(Op); 5264 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5265 break; 5266 5267 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5268 if (!WO) 5269 break; 5270 5271 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5272 bool Signed = WO->isSigned(); 5273 // TODO: Should add nuw/nsw flags for mul as well. 5274 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5275 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5276 5277 // Now that we know that all uses of the arithmetic-result component of 5278 // CI are guarded by the overflow check, we can go ahead and pretend 5279 // that the arithmetic is non-overflowing. 5280 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5281 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5282 } 5283 5284 default: 5285 break; 5286 } 5287 5288 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5289 // semantics as a Sub, return a binary sub expression. 5290 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5291 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5292 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5293 5294 return std::nullopt; 5295 } 5296 5297 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5298 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5299 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5300 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5301 /// follows one of the following patterns: 5302 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5303 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5304 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5305 /// we return the type of the truncation operation, and indicate whether the 5306 /// truncated type should be treated as signed/unsigned by setting 5307 /// \p Signed to true/false, respectively. 5308 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5309 bool &Signed, ScalarEvolution &SE) { 5310 // The case where Op == SymbolicPHI (that is, with no type conversions on 5311 // the way) is handled by the regular add recurrence creating logic and 5312 // would have already been triggered in createAddRecForPHI. Reaching it here 5313 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5314 // because one of the other operands of the SCEVAddExpr updating this PHI is 5315 // not invariant). 5316 // 5317 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5318 // this case predicates that allow us to prove that Op == SymbolicPHI will 5319 // be added. 5320 if (Op == SymbolicPHI) 5321 return nullptr; 5322 5323 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5324 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5325 if (SourceBits != NewBits) 5326 return nullptr; 5327 5328 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5329 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5330 if (!SExt && !ZExt) 5331 return nullptr; 5332 const SCEVTruncateExpr *Trunc = 5333 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5334 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5335 if (!Trunc) 5336 return nullptr; 5337 const SCEV *X = Trunc->getOperand(); 5338 if (X != SymbolicPHI) 5339 return nullptr; 5340 Signed = SExt != nullptr; 5341 return Trunc->getType(); 5342 } 5343 5344 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5345 if (!PN->getType()->isIntegerTy()) 5346 return nullptr; 5347 const Loop *L = LI.getLoopFor(PN->getParent()); 5348 if (!L || L->getHeader() != PN->getParent()) 5349 return nullptr; 5350 return L; 5351 } 5352 5353 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5354 // computation that updates the phi follows the following pattern: 5355 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5356 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5357 // If so, try to see if it can be rewritten as an AddRecExpr under some 5358 // Predicates. If successful, return them as a pair. Also cache the results 5359 // of the analysis. 5360 // 5361 // Example usage scenario: 5362 // Say the Rewriter is called for the following SCEV: 5363 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5364 // where: 5365 // %X = phi i64 (%Start, %BEValue) 5366 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5367 // and call this function with %SymbolicPHI = %X. 5368 // 5369 // The analysis will find that the value coming around the backedge has 5370 // the following SCEV: 5371 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5372 // Upon concluding that this matches the desired pattern, the function 5373 // will return the pair {NewAddRec, SmallPredsVec} where: 5374 // NewAddRec = {%Start,+,%Step} 5375 // SmallPredsVec = {P1, P2, P3} as follows: 5376 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5377 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5378 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5379 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5380 // under the predicates {P1,P2,P3}. 5381 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5382 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5383 // 5384 // TODO's: 5385 // 5386 // 1) Extend the Induction descriptor to also support inductions that involve 5387 // casts: When needed (namely, when we are called in the context of the 5388 // vectorizer induction analysis), a Set of cast instructions will be 5389 // populated by this method, and provided back to isInductionPHI. This is 5390 // needed to allow the vectorizer to properly record them to be ignored by 5391 // the cost model and to avoid vectorizing them (otherwise these casts, 5392 // which are redundant under the runtime overflow checks, will be 5393 // vectorized, which can be costly). 5394 // 5395 // 2) Support additional induction/PHISCEV patterns: We also want to support 5396 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5397 // after the induction update operation (the induction increment): 5398 // 5399 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5400 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5401 // 5402 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5403 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5404 // 5405 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5406 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5407 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5408 SmallVector<const SCEVPredicate *, 3> Predicates; 5409 5410 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5411 // return an AddRec expression under some predicate. 5412 5413 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5414 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5415 assert(L && "Expecting an integer loop header phi"); 5416 5417 // The loop may have multiple entrances or multiple exits; we can analyze 5418 // this phi as an addrec if it has a unique entry value and a unique 5419 // backedge value. 5420 Value *BEValueV = nullptr, *StartValueV = nullptr; 5421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5422 Value *V = PN->getIncomingValue(i); 5423 if (L->contains(PN->getIncomingBlock(i))) { 5424 if (!BEValueV) { 5425 BEValueV = V; 5426 } else if (BEValueV != V) { 5427 BEValueV = nullptr; 5428 break; 5429 } 5430 } else if (!StartValueV) { 5431 StartValueV = V; 5432 } else if (StartValueV != V) { 5433 StartValueV = nullptr; 5434 break; 5435 } 5436 } 5437 if (!BEValueV || !StartValueV) 5438 return std::nullopt; 5439 5440 const SCEV *BEValue = getSCEV(BEValueV); 5441 5442 // If the value coming around the backedge is an add with the symbolic 5443 // value we just inserted, possibly with casts that we can ignore under 5444 // an appropriate runtime guard, then we found a simple induction variable! 5445 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5446 if (!Add) 5447 return std::nullopt; 5448 5449 // If there is a single occurrence of the symbolic value, possibly 5450 // casted, replace it with a recurrence. 5451 unsigned FoundIndex = Add->getNumOperands(); 5452 Type *TruncTy = nullptr; 5453 bool Signed; 5454 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5455 if ((TruncTy = 5456 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5457 if (FoundIndex == e) { 5458 FoundIndex = i; 5459 break; 5460 } 5461 5462 if (FoundIndex == Add->getNumOperands()) 5463 return std::nullopt; 5464 5465 // Create an add with everything but the specified operand. 5466 SmallVector<const SCEV *, 8> Ops; 5467 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5468 if (i != FoundIndex) 5469 Ops.push_back(Add->getOperand(i)); 5470 const SCEV *Accum = getAddExpr(Ops); 5471 5472 // The runtime checks will not be valid if the step amount is 5473 // varying inside the loop. 5474 if (!isLoopInvariant(Accum, L)) 5475 return std::nullopt; 5476 5477 // *** Part2: Create the predicates 5478 5479 // Analysis was successful: we have a phi-with-cast pattern for which we 5480 // can return an AddRec expression under the following predicates: 5481 // 5482 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5483 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5484 // P2: An Equal predicate that guarantees that 5485 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5486 // P3: An Equal predicate that guarantees that 5487 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5488 // 5489 // As we next prove, the above predicates guarantee that: 5490 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5491 // 5492 // 5493 // More formally, we want to prove that: 5494 // Expr(i+1) = Start + (i+1) * Accum 5495 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5496 // 5497 // Given that: 5498 // 1) Expr(0) = Start 5499 // 2) Expr(1) = Start + Accum 5500 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5501 // 3) Induction hypothesis (step i): 5502 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5503 // 5504 // Proof: 5505 // Expr(i+1) = 5506 // = Start + (i+1)*Accum 5507 // = (Start + i*Accum) + Accum 5508 // = Expr(i) + Accum 5509 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5510 // :: from step i 5511 // 5512 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5513 // 5514 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5515 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5516 // + Accum :: from P3 5517 // 5518 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5519 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5520 // 5521 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5522 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5523 // 5524 // By induction, the same applies to all iterations 1<=i<n: 5525 // 5526 5527 // Create a truncated addrec for which we will add a no overflow check (P1). 5528 const SCEV *StartVal = getSCEV(StartValueV); 5529 const SCEV *PHISCEV = 5530 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5531 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5532 5533 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5534 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5535 // will be constant. 5536 // 5537 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5538 // add P1. 5539 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5540 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5541 Signed ? SCEVWrapPredicate::IncrementNSSW 5542 : SCEVWrapPredicate::IncrementNUSW; 5543 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5544 Predicates.push_back(AddRecPred); 5545 } 5546 5547 // Create the Equal Predicates P2,P3: 5548 5549 // It is possible that the predicates P2 and/or P3 are computable at 5550 // compile time due to StartVal and/or Accum being constants. 5551 // If either one is, then we can check that now and escape if either P2 5552 // or P3 is false. 5553 5554 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5555 // for each of StartVal and Accum 5556 auto getExtendedExpr = [&](const SCEV *Expr, 5557 bool CreateSignExtend) -> const SCEV * { 5558 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5559 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5560 const SCEV *ExtendedExpr = 5561 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5562 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5563 return ExtendedExpr; 5564 }; 5565 5566 // Given: 5567 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5568 // = getExtendedExpr(Expr) 5569 // Determine whether the predicate P: Expr == ExtendedExpr 5570 // is known to be false at compile time 5571 auto PredIsKnownFalse = [&](const SCEV *Expr, 5572 const SCEV *ExtendedExpr) -> bool { 5573 return Expr != ExtendedExpr && 5574 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5575 }; 5576 5577 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5578 if (PredIsKnownFalse(StartVal, StartExtended)) { 5579 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5580 return std::nullopt; 5581 } 5582 5583 // The Step is always Signed (because the overflow checks are either 5584 // NSSW or NUSW) 5585 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5586 if (PredIsKnownFalse(Accum, AccumExtended)) { 5587 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5588 return std::nullopt; 5589 } 5590 5591 auto AppendPredicate = [&](const SCEV *Expr, 5592 const SCEV *ExtendedExpr) -> void { 5593 if (Expr != ExtendedExpr && 5594 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5595 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5596 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5597 Predicates.push_back(Pred); 5598 } 5599 }; 5600 5601 AppendPredicate(StartVal, StartExtended); 5602 AppendPredicate(Accum, AccumExtended); 5603 5604 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5605 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5606 // into NewAR if it will also add the runtime overflow checks specified in 5607 // Predicates. 5608 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5609 5610 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5611 std::make_pair(NewAR, Predicates); 5612 // Remember the result of the analysis for this SCEV at this locayyytion. 5613 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5614 return PredRewrite; 5615 } 5616 5617 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5618 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5619 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5620 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5621 if (!L) 5622 return std::nullopt; 5623 5624 // Check to see if we already analyzed this PHI. 5625 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5626 if (I != PredicatedSCEVRewrites.end()) { 5627 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5628 I->second; 5629 // Analysis was done before and failed to create an AddRec: 5630 if (Rewrite.first == SymbolicPHI) 5631 return std::nullopt; 5632 // Analysis was done before and succeeded to create an AddRec under 5633 // a predicate: 5634 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5635 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5636 return Rewrite; 5637 } 5638 5639 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5640 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5641 5642 // Record in the cache that the analysis failed 5643 if (!Rewrite) { 5644 SmallVector<const SCEVPredicate *, 3> Predicates; 5645 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5646 return std::nullopt; 5647 } 5648 5649 return Rewrite; 5650 } 5651 5652 // FIXME: This utility is currently required because the Rewriter currently 5653 // does not rewrite this expression: 5654 // {0, +, (sext ix (trunc iy to ix) to iy)} 5655 // into {0, +, %step}, 5656 // even when the following Equal predicate exists: 5657 // "%step == (sext ix (trunc iy to ix) to iy)". 5658 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5659 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5660 if (AR1 == AR2) 5661 return true; 5662 5663 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5664 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5665 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5666 return false; 5667 return true; 5668 }; 5669 5670 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5671 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5672 return false; 5673 return true; 5674 } 5675 5676 /// A helper function for createAddRecFromPHI to handle simple cases. 5677 /// 5678 /// This function tries to find an AddRec expression for the simplest (yet most 5679 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5680 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5681 /// technique for finding the AddRec expression. 5682 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5683 Value *BEValueV, 5684 Value *StartValueV) { 5685 const Loop *L = LI.getLoopFor(PN->getParent()); 5686 assert(L && L->getHeader() == PN->getParent()); 5687 assert(BEValueV && StartValueV); 5688 5689 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); 5690 if (!BO) 5691 return nullptr; 5692 5693 if (BO->Opcode != Instruction::Add) 5694 return nullptr; 5695 5696 const SCEV *Accum = nullptr; 5697 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5698 Accum = getSCEV(BO->RHS); 5699 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5700 Accum = getSCEV(BO->LHS); 5701 5702 if (!Accum) 5703 return nullptr; 5704 5705 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5706 if (BO->IsNUW) 5707 Flags = setFlags(Flags, SCEV::FlagNUW); 5708 if (BO->IsNSW) 5709 Flags = setFlags(Flags, SCEV::FlagNSW); 5710 5711 const SCEV *StartVal = getSCEV(StartValueV); 5712 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5713 insertValueToMap(PN, PHISCEV); 5714 5715 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5716 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5717 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5718 proveNoWrapViaConstantRanges(AR))); 5719 } 5720 5721 // We can add Flags to the post-inc expression only if we 5722 // know that it is *undefined behavior* for BEValueV to 5723 // overflow. 5724 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5725 assert(isLoopInvariant(Accum, L) && 5726 "Accum is defined outside L, but is not invariant?"); 5727 if (isAddRecNeverPoison(BEInst, L)) 5728 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5729 } 5730 5731 return PHISCEV; 5732 } 5733 5734 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5735 const Loop *L = LI.getLoopFor(PN->getParent()); 5736 if (!L || L->getHeader() != PN->getParent()) 5737 return nullptr; 5738 5739 // The loop may have multiple entrances or multiple exits; we can analyze 5740 // this phi as an addrec if it has a unique entry value and a unique 5741 // backedge value. 5742 Value *BEValueV = nullptr, *StartValueV = nullptr; 5743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5744 Value *V = PN->getIncomingValue(i); 5745 if (L->contains(PN->getIncomingBlock(i))) { 5746 if (!BEValueV) { 5747 BEValueV = V; 5748 } else if (BEValueV != V) { 5749 BEValueV = nullptr; 5750 break; 5751 } 5752 } else if (!StartValueV) { 5753 StartValueV = V; 5754 } else if (StartValueV != V) { 5755 StartValueV = nullptr; 5756 break; 5757 } 5758 } 5759 if (!BEValueV || !StartValueV) 5760 return nullptr; 5761 5762 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5763 "PHI node already processed?"); 5764 5765 // First, try to find AddRec expression without creating a fictituos symbolic 5766 // value for PN. 5767 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5768 return S; 5769 5770 // Handle PHI node value symbolically. 5771 const SCEV *SymbolicName = getUnknown(PN); 5772 insertValueToMap(PN, SymbolicName); 5773 5774 // Using this symbolic name for the PHI, analyze the value coming around 5775 // the back-edge. 5776 const SCEV *BEValue = getSCEV(BEValueV); 5777 5778 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5779 // has a special value for the first iteration of the loop. 5780 5781 // If the value coming around the backedge is an add with the symbolic 5782 // value we just inserted, then we found a simple induction variable! 5783 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5784 // If there is a single occurrence of the symbolic value, replace it 5785 // with a recurrence. 5786 unsigned FoundIndex = Add->getNumOperands(); 5787 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5788 if (Add->getOperand(i) == SymbolicName) 5789 if (FoundIndex == e) { 5790 FoundIndex = i; 5791 break; 5792 } 5793 5794 if (FoundIndex != Add->getNumOperands()) { 5795 // Create an add with everything but the specified operand. 5796 SmallVector<const SCEV *, 8> Ops; 5797 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5798 if (i != FoundIndex) 5799 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5800 L, *this)); 5801 const SCEV *Accum = getAddExpr(Ops); 5802 5803 // This is not a valid addrec if the step amount is varying each 5804 // loop iteration, but is not itself an addrec in this loop. 5805 if (isLoopInvariant(Accum, L) || 5806 (isa<SCEVAddRecExpr>(Accum) && 5807 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5808 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5809 5810 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { 5811 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5812 if (BO->IsNUW) 5813 Flags = setFlags(Flags, SCEV::FlagNUW); 5814 if (BO->IsNSW) 5815 Flags = setFlags(Flags, SCEV::FlagNSW); 5816 } 5817 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5818 // If the increment is an inbounds GEP, then we know the address 5819 // space cannot be wrapped around. We cannot make any guarantee 5820 // about signed or unsigned overflow because pointers are 5821 // unsigned but we may have a negative index from the base 5822 // pointer. We can guarantee that no unsigned wrap occurs if the 5823 // indices form a positive value. 5824 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5825 Flags = setFlags(Flags, SCEV::FlagNW); 5826 if (isKnownPositive(Accum)) 5827 Flags = setFlags(Flags, SCEV::FlagNUW); 5828 } 5829 5830 // We cannot transfer nuw and nsw flags from subtraction 5831 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5832 // for instance. 5833 } 5834 5835 const SCEV *StartVal = getSCEV(StartValueV); 5836 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5837 5838 // Okay, for the entire analysis of this edge we assumed the PHI 5839 // to be symbolic. We now need to go back and purge all of the 5840 // entries for the scalars that use the symbolic expression. 5841 forgetMemoizedResults(SymbolicName); 5842 insertValueToMap(PN, PHISCEV); 5843 5844 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5845 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5846 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5847 proveNoWrapViaConstantRanges(AR))); 5848 } 5849 5850 // We can add Flags to the post-inc expression only if we 5851 // know that it is *undefined behavior* for BEValueV to 5852 // overflow. 5853 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5854 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5855 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5856 5857 return PHISCEV; 5858 } 5859 } 5860 } else { 5861 // Otherwise, this could be a loop like this: 5862 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5863 // In this case, j = {1,+,1} and BEValue is j. 5864 // Because the other in-value of i (0) fits the evolution of BEValue 5865 // i really is an addrec evolution. 5866 // 5867 // We can generalize this saying that i is the shifted value of BEValue 5868 // by one iteration: 5869 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5870 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5871 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5872 if (Shifted != getCouldNotCompute() && 5873 Start != getCouldNotCompute()) { 5874 const SCEV *StartVal = getSCEV(StartValueV); 5875 if (Start == StartVal) { 5876 // Okay, for the entire analysis of this edge we assumed the PHI 5877 // to be symbolic. We now need to go back and purge all of the 5878 // entries for the scalars that use the symbolic expression. 5879 forgetMemoizedResults(SymbolicName); 5880 insertValueToMap(PN, Shifted); 5881 return Shifted; 5882 } 5883 } 5884 } 5885 5886 // Remove the temporary PHI node SCEV that has been inserted while intending 5887 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5888 // as it will prevent later (possibly simpler) SCEV expressions to be added 5889 // to the ValueExprMap. 5890 eraseValueFromMap(PN); 5891 5892 return nullptr; 5893 } 5894 5895 // Try to match a control flow sequence that branches out at BI and merges back 5896 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5897 // match. 5898 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5899 Value *&C, Value *&LHS, Value *&RHS) { 5900 C = BI->getCondition(); 5901 5902 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5903 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5904 5905 if (!LeftEdge.isSingleEdge()) 5906 return false; 5907 5908 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5909 5910 Use &LeftUse = Merge->getOperandUse(0); 5911 Use &RightUse = Merge->getOperandUse(1); 5912 5913 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5914 LHS = LeftUse; 5915 RHS = RightUse; 5916 return true; 5917 } 5918 5919 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5920 LHS = RightUse; 5921 RHS = LeftUse; 5922 return true; 5923 } 5924 5925 return false; 5926 } 5927 5928 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5929 auto IsReachable = 5930 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5931 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5932 // Try to match 5933 // 5934 // br %cond, label %left, label %right 5935 // left: 5936 // br label %merge 5937 // right: 5938 // br label %merge 5939 // merge: 5940 // V = phi [ %x, %left ], [ %y, %right ] 5941 // 5942 // as "select %cond, %x, %y" 5943 5944 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5945 assert(IDom && "At least the entry block should dominate PN"); 5946 5947 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5948 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5949 5950 if (BI && BI->isConditional() && 5951 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5952 properlyDominates(getSCEV(LHS), PN->getParent()) && 5953 properlyDominates(getSCEV(RHS), PN->getParent())) 5954 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5955 } 5956 5957 return nullptr; 5958 } 5959 5960 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5961 if (const SCEV *S = createAddRecFromPHI(PN)) 5962 return S; 5963 5964 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5965 return getSCEV(V); 5966 5967 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5968 return S; 5969 5970 // If it's not a loop phi, we can't handle it yet. 5971 return getUnknown(PN); 5972 } 5973 5974 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5975 SCEVTypes RootKind) { 5976 struct FindClosure { 5977 const SCEV *OperandToFind; 5978 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5979 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5980 5981 bool Found = false; 5982 5983 bool canRecurseInto(SCEVTypes Kind) const { 5984 // We can only recurse into the SCEV expression of the same effective type 5985 // as the type of our root SCEV expression, and into zero-extensions. 5986 return RootKind == Kind || NonSequentialRootKind == Kind || 5987 scZeroExtend == Kind; 5988 }; 5989 5990 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5991 : OperandToFind(OperandToFind), RootKind(RootKind), 5992 NonSequentialRootKind( 5993 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5994 RootKind)) {} 5995 5996 bool follow(const SCEV *S) { 5997 Found = S == OperandToFind; 5998 5999 return !isDone() && canRecurseInto(S->getSCEVType()); 6000 } 6001 6002 bool isDone() const { return Found; } 6003 }; 6004 6005 FindClosure FC(OperandToFind, RootKind); 6006 visitAll(Root, FC); 6007 return FC.Found; 6008 } 6009 6010 std::optional<const SCEV *> 6011 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, 6012 ICmpInst *Cond, 6013 Value *TrueVal, 6014 Value *FalseVal) { 6015 // Try to match some simple smax or umax patterns. 6016 auto *ICI = Cond; 6017 6018 Value *LHS = ICI->getOperand(0); 6019 Value *RHS = ICI->getOperand(1); 6020 6021 switch (ICI->getPredicate()) { 6022 case ICmpInst::ICMP_SLT: 6023 case ICmpInst::ICMP_SLE: 6024 case ICmpInst::ICMP_ULT: 6025 case ICmpInst::ICMP_ULE: 6026 std::swap(LHS, RHS); 6027 [[fallthrough]]; 6028 case ICmpInst::ICMP_SGT: 6029 case ICmpInst::ICMP_SGE: 6030 case ICmpInst::ICMP_UGT: 6031 case ICmpInst::ICMP_UGE: 6032 // a > b ? a+x : b+x -> max(a, b)+x 6033 // a > b ? b+x : a+x -> min(a, b)+x 6034 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { 6035 bool Signed = ICI->isSigned(); 6036 const SCEV *LA = getSCEV(TrueVal); 6037 const SCEV *RA = getSCEV(FalseVal); 6038 const SCEV *LS = getSCEV(LHS); 6039 const SCEV *RS = getSCEV(RHS); 6040 if (LA->getType()->isPointerTy()) { 6041 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6042 // Need to make sure we can't produce weird expressions involving 6043 // negated pointers. 6044 if (LA == LS && RA == RS) 6045 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6046 if (LA == RS && RA == LS) 6047 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6048 } 6049 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6050 if (Op->getType()->isPointerTy()) { 6051 Op = getLosslessPtrToIntExpr(Op); 6052 if (isa<SCEVCouldNotCompute>(Op)) 6053 return Op; 6054 } 6055 if (Signed) 6056 Op = getNoopOrSignExtend(Op, Ty); 6057 else 6058 Op = getNoopOrZeroExtend(Op, Ty); 6059 return Op; 6060 }; 6061 LS = CoerceOperand(LS); 6062 RS = CoerceOperand(RS); 6063 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6064 break; 6065 const SCEV *LDiff = getMinusSCEV(LA, LS); 6066 const SCEV *RDiff = getMinusSCEV(RA, RS); 6067 if (LDiff == RDiff) 6068 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6069 LDiff); 6070 LDiff = getMinusSCEV(LA, RS); 6071 RDiff = getMinusSCEV(RA, LS); 6072 if (LDiff == RDiff) 6073 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6074 LDiff); 6075 } 6076 break; 6077 case ICmpInst::ICMP_NE: 6078 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6079 std::swap(TrueVal, FalseVal); 6080 [[fallthrough]]; 6081 case ICmpInst::ICMP_EQ: 6082 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6083 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && 6084 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6085 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); 6086 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6087 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6088 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6089 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6090 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6091 return getAddExpr(getUMaxExpr(X, C), Y); 6092 } 6093 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6094 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6095 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6096 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6097 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6098 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6099 const SCEV *X = getSCEV(LHS); 6100 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6101 X = ZExt->getOperand(); 6102 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { 6103 const SCEV *FalseValExpr = getSCEV(FalseVal); 6104 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6105 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, 6106 /*Sequential=*/true); 6107 } 6108 } 6109 break; 6110 default: 6111 break; 6112 } 6113 6114 return std::nullopt; 6115 } 6116 6117 static std::optional<const SCEV *> 6118 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6119 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6120 assert(CondExpr->getType()->isIntegerTy(1) && 6121 TrueExpr->getType() == FalseExpr->getType() && 6122 TrueExpr->getType()->isIntegerTy(1) && 6123 "Unexpected operands of a select."); 6124 6125 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6126 // --> C + (umin_seq cond, x - C) 6127 // 6128 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6129 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6130 // --> C + (umin_seq ~cond, x - C) 6131 6132 // FIXME: while we can't legally model the case where both of the hands 6133 // are fully variable, we only require that the *difference* is constant. 6134 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6135 return std::nullopt; 6136 6137 const SCEV *X, *C; 6138 if (isa<SCEVConstant>(TrueExpr)) { 6139 CondExpr = SE->getNotSCEV(CondExpr); 6140 X = FalseExpr; 6141 C = TrueExpr; 6142 } else { 6143 X = TrueExpr; 6144 C = FalseExpr; 6145 } 6146 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6147 /*Sequential=*/true)); 6148 } 6149 6150 static std::optional<const SCEV *> 6151 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, 6152 Value *FalseVal) { 6153 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6154 return std::nullopt; 6155 6156 const auto *SECond = SE->getSCEV(Cond); 6157 const auto *SETrue = SE->getSCEV(TrueVal); 6158 const auto *SEFalse = SE->getSCEV(FalseVal); 6159 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6160 } 6161 6162 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6163 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6164 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6165 assert(TrueVal->getType() == FalseVal->getType() && 6166 V->getType() == TrueVal->getType() && 6167 "Types of select hands and of the result must match."); 6168 6169 // For now, only deal with i1-typed `select`s. 6170 if (!V->getType()->isIntegerTy(1)) 6171 return getUnknown(V); 6172 6173 if (std::optional<const SCEV *> S = 6174 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6175 return *S; 6176 6177 return getUnknown(V); 6178 } 6179 6180 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6181 Value *TrueVal, 6182 Value *FalseVal) { 6183 // Handle "constant" branch or select. This can occur for instance when a 6184 // loop pass transforms an inner loop and moves on to process the outer loop. 6185 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6186 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6187 6188 if (auto *I = dyn_cast<Instruction>(V)) { 6189 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6190 if (std::optional<const SCEV *> S = 6191 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, 6192 TrueVal, FalseVal)) 6193 return *S; 6194 } 6195 } 6196 6197 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6198 } 6199 6200 /// Expand GEP instructions into add and multiply operations. This allows them 6201 /// to be analyzed by regular SCEV code. 6202 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6203 assert(GEP->getSourceElementType()->isSized() && 6204 "GEP source element type must be sized"); 6205 6206 SmallVector<const SCEV *, 4> IndexExprs; 6207 for (Value *Index : GEP->indices()) 6208 IndexExprs.push_back(getSCEV(Index)); 6209 return getGEPExpr(GEP, IndexExprs); 6210 } 6211 6212 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { 6213 uint64_t BitWidth = getTypeSizeInBits(S->getType()); 6214 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { 6215 return TrailingZeros >= BitWidth 6216 ? APInt::getZero(BitWidth) 6217 : APInt::getOneBitSet(BitWidth, TrailingZeros); 6218 }; 6219 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { 6220 // The result is GCD of all operands results. 6221 APInt Res = getConstantMultiple(N->getOperand(0)); 6222 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) 6223 Res = APIntOps::GreatestCommonDivisor( 6224 Res, getConstantMultiple(N->getOperand(I))); 6225 return Res; 6226 }; 6227 6228 switch (S->getSCEVType()) { 6229 case scConstant: 6230 return cast<SCEVConstant>(S)->getAPInt(); 6231 case scPtrToInt: 6232 return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand()); 6233 case scUDivExpr: 6234 case scVScale: 6235 return APInt(BitWidth, 1); 6236 case scTruncate: { 6237 // Only multiples that are a power of 2 will hold after truncation. 6238 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); 6239 uint32_t TZ = getMinTrailingZeros(T->getOperand()); 6240 return GetShiftedByZeros(TZ); 6241 } 6242 case scZeroExtend: { 6243 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S); 6244 return getConstantMultiple(Z->getOperand()).zext(BitWidth); 6245 } 6246 case scSignExtend: { 6247 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); 6248 return getConstantMultiple(E->getOperand()).sext(BitWidth); 6249 } 6250 case scMulExpr: { 6251 const SCEVMulExpr *M = cast<SCEVMulExpr>(S); 6252 if (M->hasNoUnsignedWrap()) { 6253 // The result is the product of all operand results. 6254 APInt Res = getConstantMultiple(M->getOperand(0)); 6255 for (const SCEV *Operand : M->operands().drop_front()) 6256 Res = Res * getConstantMultiple(Operand); 6257 return Res; 6258 } 6259 6260 // If there are no wrap guarentees, find the trailing zeros, which is the 6261 // sum of trailing zeros for all its operands. 6262 uint32_t TZ = 0; 6263 for (const SCEV *Operand : M->operands()) 6264 TZ += getMinTrailingZeros(Operand); 6265 return GetShiftedByZeros(TZ); 6266 } 6267 case scAddExpr: 6268 case scAddRecExpr: { 6269 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S); 6270 if (N->hasNoUnsignedWrap()) 6271 return GetGCDMultiple(N); 6272 // Find the trailing bits, which is the minimum of its operands. 6273 uint32_t TZ = getMinTrailingZeros(N->getOperand(0)); 6274 for (const SCEV *Operand : N->operands().drop_front()) 6275 TZ = std::min(TZ, getMinTrailingZeros(Operand)); 6276 return GetShiftedByZeros(TZ); 6277 } 6278 case scUMaxExpr: 6279 case scSMaxExpr: 6280 case scUMinExpr: 6281 case scSMinExpr: 6282 case scSequentialUMinExpr: 6283 return GetGCDMultiple(cast<SCEVNAryExpr>(S)); 6284 case scUnknown: { 6285 // ask ValueTracking for known bits 6286 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6287 unsigned Known = 6288 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT) 6289 .countMinTrailingZeros(); 6290 return GetShiftedByZeros(Known); 6291 } 6292 case scCouldNotCompute: 6293 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6294 } 6295 llvm_unreachable("Unknown SCEV kind!"); 6296 } 6297 6298 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { 6299 auto I = ConstantMultipleCache.find(S); 6300 if (I != ConstantMultipleCache.end()) 6301 return I->second; 6302 6303 APInt Result = getConstantMultipleImpl(S); 6304 auto InsertPair = ConstantMultipleCache.insert({S, Result}); 6305 assert(InsertPair.second && "Should insert a new key"); 6306 return InsertPair.first->second; 6307 } 6308 6309 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { 6310 APInt Multiple = getConstantMultiple(S); 6311 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; 6312 } 6313 6314 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { 6315 return std::min(getConstantMultiple(S).countTrailingZeros(), 6316 (unsigned)getTypeSizeInBits(S->getType())); 6317 } 6318 6319 /// Helper method to assign a range to V from metadata present in the IR. 6320 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6321 if (Instruction *I = dyn_cast<Instruction>(V)) 6322 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6323 return getConstantRangeFromMetadata(*MD); 6324 6325 return std::nullopt; 6326 } 6327 6328 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6329 SCEV::NoWrapFlags Flags) { 6330 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6331 AddRec->setNoWrapFlags(Flags); 6332 UnsignedRanges.erase(AddRec); 6333 SignedRanges.erase(AddRec); 6334 ConstantMultipleCache.erase(AddRec); 6335 } 6336 } 6337 6338 ConstantRange ScalarEvolution:: 6339 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6340 const DataLayout &DL = getDataLayout(); 6341 6342 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6343 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6344 6345 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6346 // use information about the trip count to improve our available range. Note 6347 // that the trip count independent cases are already handled by known bits. 6348 // WARNING: The definition of recurrence used here is subtly different than 6349 // the one used by AddRec (and thus most of this file). Step is allowed to 6350 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6351 // and other addrecs in the same loop (for non-affine addrecs). The code 6352 // below intentionally handles the case where step is not loop invariant. 6353 auto *P = dyn_cast<PHINode>(U->getValue()); 6354 if (!P) 6355 return FullSet; 6356 6357 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6358 // even the values that are not available in these blocks may come from them, 6359 // and this leads to false-positive recurrence test. 6360 for (auto *Pred : predecessors(P->getParent())) 6361 if (!DT.isReachableFromEntry(Pred)) 6362 return FullSet; 6363 6364 BinaryOperator *BO; 6365 Value *Start, *Step; 6366 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6367 return FullSet; 6368 6369 // If we found a recurrence in reachable code, we must be in a loop. Note 6370 // that BO might be in some subloop of L, and that's completely okay. 6371 auto *L = LI.getLoopFor(P->getParent()); 6372 assert(L && L->getHeader() == P->getParent()); 6373 if (!L->contains(BO->getParent())) 6374 // NOTE: This bailout should be an assert instead. However, asserting 6375 // the condition here exposes a case where LoopFusion is querying SCEV 6376 // with malformed loop information during the midst of the transform. 6377 // There doesn't appear to be an obvious fix, so for the moment bailout 6378 // until the caller issue can be fixed. PR49566 tracks the bug. 6379 return FullSet; 6380 6381 // TODO: Extend to other opcodes such as mul, and div 6382 switch (BO->getOpcode()) { 6383 default: 6384 return FullSet; 6385 case Instruction::AShr: 6386 case Instruction::LShr: 6387 case Instruction::Shl: 6388 break; 6389 }; 6390 6391 if (BO->getOperand(0) != P) 6392 // TODO: Handle the power function forms some day. 6393 return FullSet; 6394 6395 unsigned TC = getSmallConstantMaxTripCount(L); 6396 if (!TC || TC >= BitWidth) 6397 return FullSet; 6398 6399 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6400 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6401 assert(KnownStart.getBitWidth() == BitWidth && 6402 KnownStep.getBitWidth() == BitWidth); 6403 6404 // Compute total shift amount, being careful of overflow and bitwidths. 6405 auto MaxShiftAmt = KnownStep.getMaxValue(); 6406 APInt TCAP(BitWidth, TC-1); 6407 bool Overflow = false; 6408 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6409 if (Overflow) 6410 return FullSet; 6411 6412 switch (BO->getOpcode()) { 6413 default: 6414 llvm_unreachable("filtered out above"); 6415 case Instruction::AShr: { 6416 // For each ashr, three cases: 6417 // shift = 0 => unchanged value 6418 // saturation => 0 or -1 6419 // other => a value closer to zero (of the same sign) 6420 // Thus, the end value is closer to zero than the start. 6421 auto KnownEnd = KnownBits::ashr(KnownStart, 6422 KnownBits::makeConstant(TotalShift)); 6423 if (KnownStart.isNonNegative()) 6424 // Analogous to lshr (simply not yet canonicalized) 6425 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6426 KnownStart.getMaxValue() + 1); 6427 if (KnownStart.isNegative()) 6428 // End >=u Start && End <=s Start 6429 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6430 KnownEnd.getMaxValue() + 1); 6431 break; 6432 } 6433 case Instruction::LShr: { 6434 // For each lshr, three cases: 6435 // shift = 0 => unchanged value 6436 // saturation => 0 6437 // other => a smaller positive number 6438 // Thus, the low end of the unsigned range is the last value produced. 6439 auto KnownEnd = KnownBits::lshr(KnownStart, 6440 KnownBits::makeConstant(TotalShift)); 6441 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6442 KnownStart.getMaxValue() + 1); 6443 } 6444 case Instruction::Shl: { 6445 // Iff no bits are shifted out, value increases on every shift. 6446 auto KnownEnd = KnownBits::shl(KnownStart, 6447 KnownBits::makeConstant(TotalShift)); 6448 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6449 return ConstantRange(KnownStart.getMinValue(), 6450 KnownEnd.getMaxValue() + 1); 6451 break; 6452 } 6453 }; 6454 return FullSet; 6455 } 6456 6457 const ConstantRange & 6458 ScalarEvolution::getRangeRefIter(const SCEV *S, 6459 ScalarEvolution::RangeSignHint SignHint) { 6460 DenseMap<const SCEV *, ConstantRange> &Cache = 6461 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6462 : SignedRanges; 6463 SmallVector<const SCEV *> WorkList; 6464 SmallPtrSet<const SCEV *, 8> Seen; 6465 6466 // Add Expr to the worklist, if Expr is either an N-ary expression or a 6467 // SCEVUnknown PHI node. 6468 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { 6469 if (!Seen.insert(Expr).second) 6470 return; 6471 if (Cache.contains(Expr)) 6472 return; 6473 switch (Expr->getSCEVType()) { 6474 case scUnknown: 6475 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) 6476 break; 6477 [[fallthrough]]; 6478 case scConstant: 6479 case scVScale: 6480 case scTruncate: 6481 case scZeroExtend: 6482 case scSignExtend: 6483 case scPtrToInt: 6484 case scAddExpr: 6485 case scMulExpr: 6486 case scUDivExpr: 6487 case scAddRecExpr: 6488 case scUMaxExpr: 6489 case scSMaxExpr: 6490 case scUMinExpr: 6491 case scSMinExpr: 6492 case scSequentialUMinExpr: 6493 WorkList.push_back(Expr); 6494 break; 6495 case scCouldNotCompute: 6496 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6497 } 6498 }; 6499 AddToWorklist(S); 6500 6501 // Build worklist by queuing operands of N-ary expressions and phi nodes. 6502 for (unsigned I = 0; I != WorkList.size(); ++I) { 6503 const SCEV *P = WorkList[I]; 6504 auto *UnknownS = dyn_cast<SCEVUnknown>(P); 6505 // If it is not a `SCEVUnknown`, just recurse into operands. 6506 if (!UnknownS) { 6507 for (const SCEV *Op : P->operands()) 6508 AddToWorklist(Op); 6509 continue; 6510 } 6511 // `SCEVUnknown`'s require special treatment. 6512 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { 6513 if (!PendingPhiRangesIter.insert(P).second) 6514 continue; 6515 for (auto &Op : reverse(P->operands())) 6516 AddToWorklist(getSCEV(Op)); 6517 } 6518 } 6519 6520 if (!WorkList.empty()) { 6521 // Use getRangeRef to compute ranges for items in the worklist in reverse 6522 // order. This will force ranges for earlier operands to be computed before 6523 // their users in most cases. 6524 for (const SCEV *P : reverse(drop_begin(WorkList))) { 6525 getRangeRef(P, SignHint); 6526 6527 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) 6528 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) 6529 PendingPhiRangesIter.erase(P); 6530 } 6531 } 6532 6533 return getRangeRef(S, SignHint, 0); 6534 } 6535 6536 /// Determine the range for a particular SCEV. If SignHint is 6537 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6538 /// with a "cleaner" unsigned (resp. signed) representation. 6539 const ConstantRange &ScalarEvolution::getRangeRef( 6540 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { 6541 DenseMap<const SCEV *, ConstantRange> &Cache = 6542 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6543 : SignedRanges; 6544 ConstantRange::PreferredRangeType RangeType = 6545 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6546 : ConstantRange::Signed; 6547 6548 // See if we've computed this range already. 6549 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6550 if (I != Cache.end()) 6551 return I->second; 6552 6553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6554 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6555 6556 // Switch to iteratively computing the range for S, if it is part of a deeply 6557 // nested expression. 6558 if (Depth > RangeIterThreshold) 6559 return getRangeRefIter(S, SignHint); 6560 6561 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6562 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6563 using OBO = OverflowingBinaryOperator; 6564 6565 // If the value has known zeros, the maximum value will have those known zeros 6566 // as well. 6567 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 6568 APInt Multiple = getNonZeroConstantMultiple(S); 6569 APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple); 6570 if (!Remainder.isZero()) 6571 ConservativeResult = 6572 ConstantRange(APInt::getMinValue(BitWidth), 6573 APInt::getMaxValue(BitWidth) - Remainder + 1); 6574 } 6575 else { 6576 uint32_t TZ = getMinTrailingZeros(S); 6577 if (TZ != 0) { 6578 ConservativeResult = ConstantRange( 6579 APInt::getSignedMinValue(BitWidth), 6580 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6581 } 6582 } 6583 6584 switch (S->getSCEVType()) { 6585 case scConstant: 6586 llvm_unreachable("Already handled above."); 6587 case scVScale: 6588 return setRange(S, SignHint, getVScaleRange(&F, BitWidth)); 6589 case scTruncate: { 6590 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); 6591 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); 6592 return setRange( 6593 Trunc, SignHint, 6594 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); 6595 } 6596 case scZeroExtend: { 6597 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); 6598 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); 6599 return setRange( 6600 ZExt, SignHint, 6601 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); 6602 } 6603 case scSignExtend: { 6604 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); 6605 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); 6606 return setRange( 6607 SExt, SignHint, 6608 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); 6609 } 6610 case scPtrToInt: { 6611 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); 6612 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); 6613 return setRange(PtrToInt, SignHint, X); 6614 } 6615 case scAddExpr: { 6616 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 6617 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); 6618 unsigned WrapType = OBO::AnyWrap; 6619 if (Add->hasNoSignedWrap()) 6620 WrapType |= OBO::NoSignedWrap; 6621 if (Add->hasNoUnsignedWrap()) 6622 WrapType |= OBO::NoUnsignedWrap; 6623 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6624 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1), 6625 WrapType, RangeType); 6626 return setRange(Add, SignHint, 6627 ConservativeResult.intersectWith(X, RangeType)); 6628 } 6629 case scMulExpr: { 6630 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); 6631 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); 6632 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6633 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1)); 6634 return setRange(Mul, SignHint, 6635 ConservativeResult.intersectWith(X, RangeType)); 6636 } 6637 case scUDivExpr: { 6638 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6639 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); 6640 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); 6641 return setRange(UDiv, SignHint, 6642 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6643 } 6644 case scAddRecExpr: { 6645 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); 6646 // If there's no unsigned wrap, the value will never be less than its 6647 // initial value. 6648 if (AddRec->hasNoUnsignedWrap()) { 6649 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6650 if (!UnsignedMinValue.isZero()) 6651 ConservativeResult = ConservativeResult.intersectWith( 6652 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6653 } 6654 6655 // If there's no signed wrap, and all the operands except initial value have 6656 // the same sign or zero, the value won't ever be: 6657 // 1: smaller than initial value if operands are non negative, 6658 // 2: bigger than initial value if operands are non positive. 6659 // For both cases, value can not cross signed min/max boundary. 6660 if (AddRec->hasNoSignedWrap()) { 6661 bool AllNonNeg = true; 6662 bool AllNonPos = true; 6663 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6664 if (!isKnownNonNegative(AddRec->getOperand(i))) 6665 AllNonNeg = false; 6666 if (!isKnownNonPositive(AddRec->getOperand(i))) 6667 AllNonPos = false; 6668 } 6669 if (AllNonNeg) 6670 ConservativeResult = ConservativeResult.intersectWith( 6671 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6672 APInt::getSignedMinValue(BitWidth)), 6673 RangeType); 6674 else if (AllNonPos) 6675 ConservativeResult = ConservativeResult.intersectWith( 6676 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 6677 getSignedRangeMax(AddRec->getStart()) + 6678 1), 6679 RangeType); 6680 } 6681 6682 // TODO: non-affine addrec 6683 if (AddRec->isAffine()) { 6684 const SCEV *MaxBEScev = 6685 getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6686 if (!isa<SCEVCouldNotCompute>(MaxBEScev)) { 6687 APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt(); 6688 6689 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if 6690 // MaxBECount's active bits are all <= AddRec's bit width. 6691 if (MaxBECount.getBitWidth() > BitWidth && 6692 MaxBECount.getActiveBits() <= BitWidth) 6693 MaxBECount = MaxBECount.trunc(BitWidth); 6694 else if (MaxBECount.getBitWidth() < BitWidth) 6695 MaxBECount = MaxBECount.zext(BitWidth); 6696 6697 if (MaxBECount.getBitWidth() == BitWidth) { 6698 auto RangeFromAffine = getRangeForAffineAR( 6699 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6700 ConservativeResult = 6701 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6702 6703 auto RangeFromFactoring = getRangeViaFactoring( 6704 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6705 ConservativeResult = 6706 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6707 } 6708 } 6709 6710 // Now try symbolic BE count and more powerful methods. 6711 if (UseExpensiveRangeSharpening) { 6712 const SCEV *SymbolicMaxBECount = 6713 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6714 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6715 getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth && 6716 AddRec->hasNoSelfWrap()) { 6717 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6718 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6719 ConservativeResult = 6720 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6721 } 6722 } 6723 } 6724 6725 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6726 } 6727 case scUMaxExpr: 6728 case scSMaxExpr: 6729 case scUMinExpr: 6730 case scSMinExpr: 6731 case scSequentialUMinExpr: { 6732 Intrinsic::ID ID; 6733 switch (S->getSCEVType()) { 6734 case scUMaxExpr: 6735 ID = Intrinsic::umax; 6736 break; 6737 case scSMaxExpr: 6738 ID = Intrinsic::smax; 6739 break; 6740 case scUMinExpr: 6741 case scSequentialUMinExpr: 6742 ID = Intrinsic::umin; 6743 break; 6744 case scSMinExpr: 6745 ID = Intrinsic::smin; 6746 break; 6747 default: 6748 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6749 } 6750 6751 const auto *NAry = cast<SCEVNAryExpr>(S); 6752 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); 6753 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6754 X = X.intrinsic( 6755 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); 6756 return setRange(S, SignHint, 6757 ConservativeResult.intersectWith(X, RangeType)); 6758 } 6759 case scUnknown: { 6760 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6761 Value *V = U->getValue(); 6762 6763 // Check if the IR explicitly contains !range metadata. 6764 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); 6765 if (MDRange) 6766 ConservativeResult = 6767 ConservativeResult.intersectWith(*MDRange, RangeType); 6768 6769 // Use facts about recurrences in the underlying IR. Note that add 6770 // recurrences are AddRecExprs and thus don't hit this path. This 6771 // primarily handles shift recurrences. 6772 auto CR = getRangeForUnknownRecurrence(U); 6773 ConservativeResult = ConservativeResult.intersectWith(CR); 6774 6775 // See if ValueTracking can give us a useful range. 6776 const DataLayout &DL = getDataLayout(); 6777 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT); 6778 if (Known.getBitWidth() != BitWidth) 6779 Known = Known.zextOrTrunc(BitWidth); 6780 6781 // ValueTracking may be able to compute a tighter result for the number of 6782 // sign bits than for the value of those sign bits. 6783 unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT); 6784 if (U->getType()->isPointerTy()) { 6785 // If the pointer size is larger than the index size type, this can cause 6786 // NS to be larger than BitWidth. So compensate for this. 6787 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6788 int ptrIdxDiff = ptrSize - BitWidth; 6789 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6790 NS -= ptrIdxDiff; 6791 } 6792 6793 if (NS > 1) { 6794 // If we know any of the sign bits, we know all of the sign bits. 6795 if (!Known.Zero.getHiBits(NS).isZero()) 6796 Known.Zero.setHighBits(NS); 6797 if (!Known.One.getHiBits(NS).isZero()) 6798 Known.One.setHighBits(NS); 6799 } 6800 6801 if (Known.getMinValue() != Known.getMaxValue() + 1) 6802 ConservativeResult = ConservativeResult.intersectWith( 6803 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6804 RangeType); 6805 if (NS > 1) 6806 ConservativeResult = ConservativeResult.intersectWith( 6807 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6808 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6809 RangeType); 6810 6811 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { 6812 // Strengthen the range if the underlying IR value is a 6813 // global/alloca/heap allocation using the size of the object. 6814 ObjectSizeOpts Opts; 6815 Opts.RoundToAlign = false; 6816 Opts.NullIsUnknownSize = true; 6817 uint64_t ObjSize; 6818 if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) || 6819 isAllocationFn(V, &TLI)) && 6820 getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) { 6821 // The highest address the object can start is ObjSize bytes before the 6822 // end (unsigned max value). If this value is not a multiple of the 6823 // alignment, the last possible start value is the next lowest multiple 6824 // of the alignment. Note: The computations below cannot overflow, 6825 // because if they would there's no possible start address for the 6826 // object. 6827 APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize); 6828 uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); 6829 uint64_t Rem = MaxVal.urem(Align); 6830 MaxVal -= APInt(BitWidth, Rem); 6831 APInt MinVal = APInt::getZero(BitWidth); 6832 if (llvm::isKnownNonZero(V, DL)) 6833 MinVal = Align; 6834 ConservativeResult = ConservativeResult.intersectWith( 6835 ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType); 6836 } 6837 } 6838 6839 // A range of Phi is a subset of union of all ranges of its input. 6840 if (PHINode *Phi = dyn_cast<PHINode>(V)) { 6841 // Make sure that we do not run over cycled Phis. 6842 if (PendingPhiRanges.insert(Phi).second) { 6843 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6844 6845 for (const auto &Op : Phi->operands()) { 6846 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); 6847 RangeFromOps = RangeFromOps.unionWith(OpRange); 6848 // No point to continue if we already have a full set. 6849 if (RangeFromOps.isFullSet()) 6850 break; 6851 } 6852 ConservativeResult = 6853 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6854 bool Erased = PendingPhiRanges.erase(Phi); 6855 assert(Erased && "Failed to erase Phi properly?"); 6856 (void)Erased; 6857 } 6858 } 6859 6860 // vscale can't be equal to zero 6861 if (const auto *II = dyn_cast<IntrinsicInst>(V)) 6862 if (II->getIntrinsicID() == Intrinsic::vscale) { 6863 ConstantRange Disallowed = APInt::getZero(BitWidth); 6864 ConservativeResult = ConservativeResult.difference(Disallowed); 6865 } 6866 6867 return setRange(U, SignHint, std::move(ConservativeResult)); 6868 } 6869 case scCouldNotCompute: 6870 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6871 } 6872 6873 return setRange(S, SignHint, std::move(ConservativeResult)); 6874 } 6875 6876 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6877 // values that the expression can take. Initially, the expression has a value 6878 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6879 // argument defines if we treat Step as signed or unsigned. 6880 static ConstantRange getRangeForAffineARHelper(APInt Step, 6881 const ConstantRange &StartRange, 6882 const APInt &MaxBECount, 6883 bool Signed) { 6884 unsigned BitWidth = Step.getBitWidth(); 6885 assert(BitWidth == StartRange.getBitWidth() && 6886 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths"); 6887 // If either Step or MaxBECount is 0, then the expression won't change, and we 6888 // just need to return the initial range. 6889 if (Step == 0 || MaxBECount == 0) 6890 return StartRange; 6891 6892 // If we don't know anything about the initial value (i.e. StartRange is 6893 // FullRange), then we don't know anything about the final range either. 6894 // Return FullRange. 6895 if (StartRange.isFullSet()) 6896 return ConstantRange::getFull(BitWidth); 6897 6898 // If Step is signed and negative, then we use its absolute value, but we also 6899 // note that we're moving in the opposite direction. 6900 bool Descending = Signed && Step.isNegative(); 6901 6902 if (Signed) 6903 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6904 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6905 // This equations hold true due to the well-defined wrap-around behavior of 6906 // APInt. 6907 Step = Step.abs(); 6908 6909 // Check if Offset is more than full span of BitWidth. If it is, the 6910 // expression is guaranteed to overflow. 6911 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6912 return ConstantRange::getFull(BitWidth); 6913 6914 // Offset is by how much the expression can change. Checks above guarantee no 6915 // overflow here. 6916 APInt Offset = Step * MaxBECount; 6917 6918 // Minimum value of the final range will match the minimal value of StartRange 6919 // if the expression is increasing and will be decreased by Offset otherwise. 6920 // Maximum value of the final range will match the maximal value of StartRange 6921 // if the expression is decreasing and will be increased by Offset otherwise. 6922 APInt StartLower = StartRange.getLower(); 6923 APInt StartUpper = StartRange.getUpper() - 1; 6924 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6925 : (StartUpper + std::move(Offset)); 6926 6927 // It's possible that the new minimum/maximum value will fall into the initial 6928 // range (due to wrap around). This means that the expression can take any 6929 // value in this bitwidth, and we have to return full range. 6930 if (StartRange.contains(MovedBoundary)) 6931 return ConstantRange::getFull(BitWidth); 6932 6933 APInt NewLower = 6934 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6935 APInt NewUpper = 6936 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6937 NewUpper += 1; 6938 6939 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6940 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6941 } 6942 6943 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6944 const SCEV *Step, 6945 const APInt &MaxBECount) { 6946 assert(getTypeSizeInBits(Start->getType()) == 6947 getTypeSizeInBits(Step->getType()) && 6948 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && 6949 "mismatched bit widths"); 6950 6951 // First, consider step signed. 6952 ConstantRange StartSRange = getSignedRange(Start); 6953 ConstantRange StepSRange = getSignedRange(Step); 6954 6955 // If Step can be both positive and negative, we need to find ranges for the 6956 // maximum absolute step values in both directions and union them. 6957 ConstantRange SR = getRangeForAffineARHelper( 6958 StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true); 6959 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6960 StartSRange, MaxBECount, 6961 /* Signed = */ true)); 6962 6963 // Next, consider step unsigned. 6964 ConstantRange UR = getRangeForAffineARHelper( 6965 getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount, 6966 /* Signed = */ false); 6967 6968 // Finally, intersect signed and unsigned ranges. 6969 return SR.intersectWith(UR, ConstantRange::Smallest); 6970 } 6971 6972 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6973 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6974 ScalarEvolution::RangeSignHint SignHint) { 6975 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6976 assert(AddRec->hasNoSelfWrap() && 6977 "This only works for non-self-wrapping AddRecs!"); 6978 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6979 const SCEV *Step = AddRec->getStepRecurrence(*this); 6980 // Only deal with constant step to save compile time. 6981 if (!isa<SCEVConstant>(Step)) 6982 return ConstantRange::getFull(BitWidth); 6983 // Let's make sure that we can prove that we do not self-wrap during 6984 // MaxBECount iterations. We need this because MaxBECount is a maximum 6985 // iteration count estimate, and we might infer nw from some exit for which we 6986 // do not know max exit count (or any other side reasoning). 6987 // TODO: Turn into assert at some point. 6988 if (getTypeSizeInBits(MaxBECount->getType()) > 6989 getTypeSizeInBits(AddRec->getType())) 6990 return ConstantRange::getFull(BitWidth); 6991 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6992 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6993 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6994 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6995 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6996 MaxItersWithoutWrap)) 6997 return ConstantRange::getFull(BitWidth); 6998 6999 ICmpInst::Predicate LEPred = 7000 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 7001 ICmpInst::Predicate GEPred = 7002 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 7003 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 7004 7005 // We know that there is no self-wrap. Let's take Start and End values and 7006 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 7007 // the iteration. They either lie inside the range [Min(Start, End), 7008 // Max(Start, End)] or outside it: 7009 // 7010 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 7011 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 7012 // 7013 // No self wrap flag guarantees that the intermediate values cannot be BOTH 7014 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 7015 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 7016 // Start <= End and step is positive, or Start >= End and step is negative. 7017 const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop()); 7018 ConstantRange StartRange = getRangeRef(Start, SignHint); 7019 ConstantRange EndRange = getRangeRef(End, SignHint); 7020 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 7021 // If they already cover full iteration space, we will know nothing useful 7022 // even if we prove what we want to prove. 7023 if (RangeBetween.isFullSet()) 7024 return RangeBetween; 7025 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 7026 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 7027 : RangeBetween.isWrappedSet(); 7028 if (IsWrappedSet) 7029 return ConstantRange::getFull(BitWidth); 7030 7031 if (isKnownPositive(Step) && 7032 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 7033 return RangeBetween; 7034 if (isKnownNegative(Step) && 7035 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 7036 return RangeBetween; 7037 return ConstantRange::getFull(BitWidth); 7038 } 7039 7040 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 7041 const SCEV *Step, 7042 const APInt &MaxBECount) { 7043 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 7044 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 7045 7046 unsigned BitWidth = MaxBECount.getBitWidth(); 7047 assert(getTypeSizeInBits(Start->getType()) == BitWidth && 7048 getTypeSizeInBits(Step->getType()) == BitWidth && 7049 "mismatched bit widths"); 7050 7051 struct SelectPattern { 7052 Value *Condition = nullptr; 7053 APInt TrueValue; 7054 APInt FalseValue; 7055 7056 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 7057 const SCEV *S) { 7058 std::optional<unsigned> CastOp; 7059 APInt Offset(BitWidth, 0); 7060 7061 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 7062 "Should be!"); 7063 7064 // Peel off a constant offset: 7065 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 7066 // In the future we could consider being smarter here and handle 7067 // {Start+Step,+,Step} too. 7068 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 7069 return; 7070 7071 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 7072 S = SA->getOperand(1); 7073 } 7074 7075 // Peel off a cast operation 7076 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 7077 CastOp = SCast->getSCEVType(); 7078 S = SCast->getOperand(); 7079 } 7080 7081 using namespace llvm::PatternMatch; 7082 7083 auto *SU = dyn_cast<SCEVUnknown>(S); 7084 const APInt *TrueVal, *FalseVal; 7085 if (!SU || 7086 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 7087 m_APInt(FalseVal)))) { 7088 Condition = nullptr; 7089 return; 7090 } 7091 7092 TrueValue = *TrueVal; 7093 FalseValue = *FalseVal; 7094 7095 // Re-apply the cast we peeled off earlier 7096 if (CastOp) 7097 switch (*CastOp) { 7098 default: 7099 llvm_unreachable("Unknown SCEV cast type!"); 7100 7101 case scTruncate: 7102 TrueValue = TrueValue.trunc(BitWidth); 7103 FalseValue = FalseValue.trunc(BitWidth); 7104 break; 7105 case scZeroExtend: 7106 TrueValue = TrueValue.zext(BitWidth); 7107 FalseValue = FalseValue.zext(BitWidth); 7108 break; 7109 case scSignExtend: 7110 TrueValue = TrueValue.sext(BitWidth); 7111 FalseValue = FalseValue.sext(BitWidth); 7112 break; 7113 } 7114 7115 // Re-apply the constant offset we peeled off earlier 7116 TrueValue += Offset; 7117 FalseValue += Offset; 7118 } 7119 7120 bool isRecognized() { return Condition != nullptr; } 7121 }; 7122 7123 SelectPattern StartPattern(*this, BitWidth, Start); 7124 if (!StartPattern.isRecognized()) 7125 return ConstantRange::getFull(BitWidth); 7126 7127 SelectPattern StepPattern(*this, BitWidth, Step); 7128 if (!StepPattern.isRecognized()) 7129 return ConstantRange::getFull(BitWidth); 7130 7131 if (StartPattern.Condition != StepPattern.Condition) { 7132 // We don't handle this case today; but we could, by considering four 7133 // possibilities below instead of two. I'm not sure if there are cases where 7134 // that will help over what getRange already does, though. 7135 return ConstantRange::getFull(BitWidth); 7136 } 7137 7138 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 7139 // construct arbitrary general SCEV expressions here. This function is called 7140 // from deep in the call stack, and calling getSCEV (on a sext instruction, 7141 // say) can end up caching a suboptimal value. 7142 7143 // FIXME: without the explicit `this` receiver below, MSVC errors out with 7144 // C2352 and C2512 (otherwise it isn't needed). 7145 7146 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 7147 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 7148 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 7149 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 7150 7151 ConstantRange TrueRange = 7152 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount); 7153 ConstantRange FalseRange = 7154 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount); 7155 7156 return TrueRange.unionWith(FalseRange); 7157 } 7158 7159 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 7160 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 7161 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 7162 7163 // Return early if there are no flags to propagate to the SCEV. 7164 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7165 if (BinOp->hasNoUnsignedWrap()) 7166 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 7167 if (BinOp->hasNoSignedWrap()) 7168 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 7169 if (Flags == SCEV::FlagAnyWrap) 7170 return SCEV::FlagAnyWrap; 7171 7172 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7173 } 7174 7175 const Instruction * 7176 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7177 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7178 return &*AddRec->getLoop()->getHeader()->begin(); 7179 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7180 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7181 return I; 7182 return nullptr; 7183 } 7184 7185 const Instruction * 7186 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7187 bool &Precise) { 7188 Precise = true; 7189 // Do a bounded search of the def relation of the requested SCEVs. 7190 SmallSet<const SCEV *, 16> Visited; 7191 SmallVector<const SCEV *> Worklist; 7192 auto pushOp = [&](const SCEV *S) { 7193 if (!Visited.insert(S).second) 7194 return; 7195 // Threshold of 30 here is arbitrary. 7196 if (Visited.size() > 30) { 7197 Precise = false; 7198 return; 7199 } 7200 Worklist.push_back(S); 7201 }; 7202 7203 for (const auto *S : Ops) 7204 pushOp(S); 7205 7206 const Instruction *Bound = nullptr; 7207 while (!Worklist.empty()) { 7208 auto *S = Worklist.pop_back_val(); 7209 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7210 if (!Bound || DT.dominates(Bound, DefI)) 7211 Bound = DefI; 7212 } else { 7213 for (const auto *Op : S->operands()) 7214 pushOp(Op); 7215 } 7216 } 7217 return Bound ? Bound : &*F.getEntryBlock().begin(); 7218 } 7219 7220 const Instruction * 7221 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7222 bool Discard; 7223 return getDefiningScopeBound(Ops, Discard); 7224 } 7225 7226 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7227 const Instruction *B) { 7228 if (A->getParent() == B->getParent() && 7229 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7230 B->getIterator())) 7231 return true; 7232 7233 auto *BLoop = LI.getLoopFor(B->getParent()); 7234 if (BLoop && BLoop->getHeader() == B->getParent() && 7235 BLoop->getLoopPreheader() == A->getParent() && 7236 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7237 A->getParent()->end()) && 7238 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7239 B->getIterator())) 7240 return true; 7241 return false; 7242 } 7243 7244 7245 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7246 // Only proceed if we can prove that I does not yield poison. 7247 if (!programUndefinedIfPoison(I)) 7248 return false; 7249 7250 // At this point we know that if I is executed, then it does not wrap 7251 // according to at least one of NSW or NUW. If I is not executed, then we do 7252 // not know if the calculation that I represents would wrap. Multiple 7253 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7254 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7255 // derived from other instructions that map to the same SCEV. We cannot make 7256 // that guarantee for cases where I is not executed. So we need to find a 7257 // upper bound on the defining scope for the SCEV, and prove that I is 7258 // executed every time we enter that scope. When the bounding scope is a 7259 // loop (the common case), this is equivalent to proving I executes on every 7260 // iteration of that loop. 7261 SmallVector<const SCEV *> SCEVOps; 7262 for (const Use &Op : I->operands()) { 7263 // I could be an extractvalue from a call to an overflow intrinsic. 7264 // TODO: We can do better here in some cases. 7265 if (isSCEVable(Op->getType())) 7266 SCEVOps.push_back(getSCEV(Op)); 7267 } 7268 auto *DefI = getDefiningScopeBound(SCEVOps); 7269 return isGuaranteedToTransferExecutionTo(DefI, I); 7270 } 7271 7272 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7273 // If we know that \c I can never be poison period, then that's enough. 7274 if (isSCEVExprNeverPoison(I)) 7275 return true; 7276 7277 // If the loop only has one exit, then we know that, if the loop is entered, 7278 // any instruction dominating that exit will be executed. If any such 7279 // instruction would result in UB, the addrec cannot be poison. 7280 // 7281 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but 7282 // also handles uses outside the loop header (they just need to dominate the 7283 // single exit). 7284 7285 auto *ExitingBB = L->getExitingBlock(); 7286 if (!ExitingBB || !loopHasNoAbnormalExits(L)) 7287 return false; 7288 7289 SmallPtrSet<const Value *, 16> KnownPoison; 7290 SmallVector<const Instruction *, 8> Worklist; 7291 7292 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7293 // things that are known to be poison under that assumption go on the 7294 // Worklist. 7295 KnownPoison.insert(I); 7296 Worklist.push_back(I); 7297 7298 while (!Worklist.empty()) { 7299 const Instruction *Poison = Worklist.pop_back_val(); 7300 7301 for (const Use &U : Poison->uses()) { 7302 const Instruction *PoisonUser = cast<Instruction>(U.getUser()); 7303 if (mustTriggerUB(PoisonUser, KnownPoison) && 7304 DT.dominates(PoisonUser->getParent(), ExitingBB)) 7305 return true; 7306 7307 if (propagatesPoison(U) && L->contains(PoisonUser)) 7308 if (KnownPoison.insert(PoisonUser).second) 7309 Worklist.push_back(PoisonUser); 7310 } 7311 } 7312 7313 return false; 7314 } 7315 7316 ScalarEvolution::LoopProperties 7317 ScalarEvolution::getLoopProperties(const Loop *L) { 7318 using LoopProperties = ScalarEvolution::LoopProperties; 7319 7320 auto Itr = LoopPropertiesCache.find(L); 7321 if (Itr == LoopPropertiesCache.end()) { 7322 auto HasSideEffects = [](Instruction *I) { 7323 if (auto *SI = dyn_cast<StoreInst>(I)) 7324 return !SI->isSimple(); 7325 7326 return I->mayThrow() || I->mayWriteToMemory(); 7327 }; 7328 7329 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7330 /*HasNoSideEffects*/ true}; 7331 7332 for (auto *BB : L->getBlocks()) 7333 for (auto &I : *BB) { 7334 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7335 LP.HasNoAbnormalExits = false; 7336 if (HasSideEffects(&I)) 7337 LP.HasNoSideEffects = false; 7338 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7339 break; // We're already as pessimistic as we can get. 7340 } 7341 7342 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7343 assert(InsertPair.second && "We just checked!"); 7344 Itr = InsertPair.first; 7345 } 7346 7347 return Itr->second; 7348 } 7349 7350 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7351 // A mustprogress loop without side effects must be finite. 7352 // TODO: The check used here is very conservative. It's only *specific* 7353 // side effects which are well defined in infinite loops. 7354 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7355 } 7356 7357 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7358 // Worklist item with a Value and a bool indicating whether all operands have 7359 // been visited already. 7360 using PointerTy = PointerIntPair<Value *, 1, bool>; 7361 SmallVector<PointerTy> Stack; 7362 7363 Stack.emplace_back(V, true); 7364 Stack.emplace_back(V, false); 7365 while (!Stack.empty()) { 7366 auto E = Stack.pop_back_val(); 7367 Value *CurV = E.getPointer(); 7368 7369 if (getExistingSCEV(CurV)) 7370 continue; 7371 7372 SmallVector<Value *> Ops; 7373 const SCEV *CreatedSCEV = nullptr; 7374 // If all operands have been visited already, create the SCEV. 7375 if (E.getInt()) { 7376 CreatedSCEV = createSCEV(CurV); 7377 } else { 7378 // Otherwise get the operands we need to create SCEV's for before creating 7379 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7380 // just use it. 7381 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7382 } 7383 7384 if (CreatedSCEV) { 7385 insertValueToMap(CurV, CreatedSCEV); 7386 } else { 7387 // Queue CurV for SCEV creation, followed by its's operands which need to 7388 // be constructed first. 7389 Stack.emplace_back(CurV, true); 7390 for (Value *Op : Ops) 7391 Stack.emplace_back(Op, false); 7392 } 7393 } 7394 7395 return getExistingSCEV(V); 7396 } 7397 7398 const SCEV * 7399 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7400 if (!isSCEVable(V->getType())) 7401 return getUnknown(V); 7402 7403 if (Instruction *I = dyn_cast<Instruction>(V)) { 7404 // Don't attempt to analyze instructions in blocks that aren't 7405 // reachable. Such instructions don't matter, and they aren't required 7406 // to obey basic rules for definitions dominating uses which this 7407 // analysis depends on. 7408 if (!DT.isReachableFromEntry(I->getParent())) 7409 return getUnknown(PoisonValue::get(V->getType())); 7410 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7411 return getConstant(CI); 7412 else if (isa<GlobalAlias>(V)) 7413 return getUnknown(V); 7414 else if (!isa<ConstantExpr>(V)) 7415 return getUnknown(V); 7416 7417 Operator *U = cast<Operator>(V); 7418 if (auto BO = 7419 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7420 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7421 switch (BO->Opcode) { 7422 case Instruction::Add: 7423 case Instruction::Mul: { 7424 // For additions and multiplications, traverse add/mul chains for which we 7425 // can potentially create a single SCEV, to reduce the number of 7426 // get{Add,Mul}Expr calls. 7427 do { 7428 if (BO->Op) { 7429 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7430 Ops.push_back(BO->Op); 7431 break; 7432 } 7433 } 7434 Ops.push_back(BO->RHS); 7435 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7436 dyn_cast<Instruction>(V)); 7437 if (!NewBO || 7438 (BO->Opcode == Instruction::Add && 7439 (NewBO->Opcode != Instruction::Add && 7440 NewBO->Opcode != Instruction::Sub)) || 7441 (BO->Opcode == Instruction::Mul && 7442 NewBO->Opcode != Instruction::Mul)) { 7443 Ops.push_back(BO->LHS); 7444 break; 7445 } 7446 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions 7447 // requires a SCEV for the LHS. 7448 if (BO->Op && (BO->IsNSW || BO->IsNUW)) { 7449 auto *I = dyn_cast<Instruction>(BO->Op); 7450 if (I && programUndefinedIfPoison(I)) { 7451 Ops.push_back(BO->LHS); 7452 break; 7453 } 7454 } 7455 BO = NewBO; 7456 } while (true); 7457 return nullptr; 7458 } 7459 case Instruction::Sub: 7460 case Instruction::UDiv: 7461 case Instruction::URem: 7462 break; 7463 case Instruction::AShr: 7464 case Instruction::Shl: 7465 case Instruction::Xor: 7466 if (!IsConstArg) 7467 return nullptr; 7468 break; 7469 case Instruction::And: 7470 case Instruction::Or: 7471 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1)) 7472 return nullptr; 7473 break; 7474 case Instruction::LShr: 7475 return getUnknown(V); 7476 default: 7477 llvm_unreachable("Unhandled binop"); 7478 break; 7479 } 7480 7481 Ops.push_back(BO->LHS); 7482 Ops.push_back(BO->RHS); 7483 return nullptr; 7484 } 7485 7486 switch (U->getOpcode()) { 7487 case Instruction::Trunc: 7488 case Instruction::ZExt: 7489 case Instruction::SExt: 7490 case Instruction::PtrToInt: 7491 Ops.push_back(U->getOperand(0)); 7492 return nullptr; 7493 7494 case Instruction::BitCast: 7495 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7496 Ops.push_back(U->getOperand(0)); 7497 return nullptr; 7498 } 7499 return getUnknown(V); 7500 7501 case Instruction::SDiv: 7502 case Instruction::SRem: 7503 Ops.push_back(U->getOperand(0)); 7504 Ops.push_back(U->getOperand(1)); 7505 return nullptr; 7506 7507 case Instruction::GetElementPtr: 7508 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7509 "GEP source element type must be sized"); 7510 for (Value *Index : U->operands()) 7511 Ops.push_back(Index); 7512 return nullptr; 7513 7514 case Instruction::IntToPtr: 7515 return getUnknown(V); 7516 7517 case Instruction::PHI: 7518 // Keep constructing SCEVs' for phis recursively for now. 7519 return nullptr; 7520 7521 case Instruction::Select: { 7522 // Check if U is a select that can be simplified to a SCEVUnknown. 7523 auto CanSimplifyToUnknown = [this, U]() { 7524 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7525 return false; 7526 7527 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7528 if (!ICI) 7529 return false; 7530 Value *LHS = ICI->getOperand(0); 7531 Value *RHS = ICI->getOperand(1); 7532 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7533 ICI->getPredicate() == CmpInst::ICMP_NE) { 7534 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7535 return true; 7536 } else if (getTypeSizeInBits(LHS->getType()) > 7537 getTypeSizeInBits(U->getType())) 7538 return true; 7539 return false; 7540 }; 7541 if (CanSimplifyToUnknown()) 7542 return getUnknown(U); 7543 7544 for (Value *Inc : U->operands()) 7545 Ops.push_back(Inc); 7546 return nullptr; 7547 break; 7548 } 7549 case Instruction::Call: 7550 case Instruction::Invoke: 7551 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7552 Ops.push_back(RV); 7553 return nullptr; 7554 } 7555 7556 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7557 switch (II->getIntrinsicID()) { 7558 case Intrinsic::abs: 7559 Ops.push_back(II->getArgOperand(0)); 7560 return nullptr; 7561 case Intrinsic::umax: 7562 case Intrinsic::umin: 7563 case Intrinsic::smax: 7564 case Intrinsic::smin: 7565 case Intrinsic::usub_sat: 7566 case Intrinsic::uadd_sat: 7567 Ops.push_back(II->getArgOperand(0)); 7568 Ops.push_back(II->getArgOperand(1)); 7569 return nullptr; 7570 case Intrinsic::start_loop_iterations: 7571 case Intrinsic::annotation: 7572 case Intrinsic::ptr_annotation: 7573 Ops.push_back(II->getArgOperand(0)); 7574 return nullptr; 7575 default: 7576 break; 7577 } 7578 } 7579 break; 7580 } 7581 7582 return nullptr; 7583 } 7584 7585 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7586 if (!isSCEVable(V->getType())) 7587 return getUnknown(V); 7588 7589 if (Instruction *I = dyn_cast<Instruction>(V)) { 7590 // Don't attempt to analyze instructions in blocks that aren't 7591 // reachable. Such instructions don't matter, and they aren't required 7592 // to obey basic rules for definitions dominating uses which this 7593 // analysis depends on. 7594 if (!DT.isReachableFromEntry(I->getParent())) 7595 return getUnknown(PoisonValue::get(V->getType())); 7596 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7597 return getConstant(CI); 7598 else if (isa<GlobalAlias>(V)) 7599 return getUnknown(V); 7600 else if (!isa<ConstantExpr>(V)) 7601 return getUnknown(V); 7602 7603 const SCEV *LHS; 7604 const SCEV *RHS; 7605 7606 Operator *U = cast<Operator>(V); 7607 if (auto BO = 7608 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7609 switch (BO->Opcode) { 7610 case Instruction::Add: { 7611 // The simple thing to do would be to just call getSCEV on both operands 7612 // and call getAddExpr with the result. However if we're looking at a 7613 // bunch of things all added together, this can be quite inefficient, 7614 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7615 // Instead, gather up all the operands and make a single getAddExpr call. 7616 // LLVM IR canonical form means we need only traverse the left operands. 7617 SmallVector<const SCEV *, 4> AddOps; 7618 do { 7619 if (BO->Op) { 7620 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7621 AddOps.push_back(OpSCEV); 7622 break; 7623 } 7624 7625 // If a NUW or NSW flag can be applied to the SCEV for this 7626 // addition, then compute the SCEV for this addition by itself 7627 // with a separate call to getAddExpr. We need to do that 7628 // instead of pushing the operands of the addition onto AddOps, 7629 // since the flags are only known to apply to this particular 7630 // addition - they may not apply to other additions that can be 7631 // formed with operands from AddOps. 7632 const SCEV *RHS = getSCEV(BO->RHS); 7633 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7634 if (Flags != SCEV::FlagAnyWrap) { 7635 const SCEV *LHS = getSCEV(BO->LHS); 7636 if (BO->Opcode == Instruction::Sub) 7637 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7638 else 7639 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7640 break; 7641 } 7642 } 7643 7644 if (BO->Opcode == Instruction::Sub) 7645 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7646 else 7647 AddOps.push_back(getSCEV(BO->RHS)); 7648 7649 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7650 dyn_cast<Instruction>(V)); 7651 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7652 NewBO->Opcode != Instruction::Sub)) { 7653 AddOps.push_back(getSCEV(BO->LHS)); 7654 break; 7655 } 7656 BO = NewBO; 7657 } while (true); 7658 7659 return getAddExpr(AddOps); 7660 } 7661 7662 case Instruction::Mul: { 7663 SmallVector<const SCEV *, 4> MulOps; 7664 do { 7665 if (BO->Op) { 7666 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7667 MulOps.push_back(OpSCEV); 7668 break; 7669 } 7670 7671 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7672 if (Flags != SCEV::FlagAnyWrap) { 7673 LHS = getSCEV(BO->LHS); 7674 RHS = getSCEV(BO->RHS); 7675 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7676 break; 7677 } 7678 } 7679 7680 MulOps.push_back(getSCEV(BO->RHS)); 7681 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7682 dyn_cast<Instruction>(V)); 7683 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7684 MulOps.push_back(getSCEV(BO->LHS)); 7685 break; 7686 } 7687 BO = NewBO; 7688 } while (true); 7689 7690 return getMulExpr(MulOps); 7691 } 7692 case Instruction::UDiv: 7693 LHS = getSCEV(BO->LHS); 7694 RHS = getSCEV(BO->RHS); 7695 return getUDivExpr(LHS, RHS); 7696 case Instruction::URem: 7697 LHS = getSCEV(BO->LHS); 7698 RHS = getSCEV(BO->RHS); 7699 return getURemExpr(LHS, RHS); 7700 case Instruction::Sub: { 7701 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7702 if (BO->Op) 7703 Flags = getNoWrapFlagsFromUB(BO->Op); 7704 LHS = getSCEV(BO->LHS); 7705 RHS = getSCEV(BO->RHS); 7706 return getMinusSCEV(LHS, RHS, Flags); 7707 } 7708 case Instruction::And: 7709 // For an expression like x&255 that merely masks off the high bits, 7710 // use zext(trunc(x)) as the SCEV expression. 7711 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7712 if (CI->isZero()) 7713 return getSCEV(BO->RHS); 7714 if (CI->isMinusOne()) 7715 return getSCEV(BO->LHS); 7716 const APInt &A = CI->getValue(); 7717 7718 // Instcombine's ShrinkDemandedConstant may strip bits out of 7719 // constants, obscuring what would otherwise be a low-bits mask. 7720 // Use computeKnownBits to compute what ShrinkDemandedConstant 7721 // knew about to reconstruct a low-bits mask value. 7722 unsigned LZ = A.countl_zero(); 7723 unsigned TZ = A.countr_zero(); 7724 unsigned BitWidth = A.getBitWidth(); 7725 KnownBits Known(BitWidth); 7726 computeKnownBits(BO->LHS, Known, getDataLayout(), 7727 0, &AC, nullptr, &DT); 7728 7729 APInt EffectiveMask = 7730 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7731 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7732 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7733 const SCEV *LHS = getSCEV(BO->LHS); 7734 const SCEV *ShiftedLHS = nullptr; 7735 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7736 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7737 // For an expression like (x * 8) & 8, simplify the multiply. 7738 unsigned MulZeros = OpC->getAPInt().countr_zero(); 7739 unsigned GCD = std::min(MulZeros, TZ); 7740 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7741 SmallVector<const SCEV*, 4> MulOps; 7742 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7743 append_range(MulOps, LHSMul->operands().drop_front()); 7744 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7745 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7746 } 7747 } 7748 if (!ShiftedLHS) 7749 ShiftedLHS = getUDivExpr(LHS, MulCount); 7750 return getMulExpr( 7751 getZeroExtendExpr( 7752 getTruncateExpr(ShiftedLHS, 7753 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7754 BO->LHS->getType()), 7755 MulCount); 7756 } 7757 } 7758 // Binary `and` is a bit-wise `umin`. 7759 if (BO->LHS->getType()->isIntegerTy(1)) { 7760 LHS = getSCEV(BO->LHS); 7761 RHS = getSCEV(BO->RHS); 7762 return getUMinExpr(LHS, RHS); 7763 } 7764 break; 7765 7766 case Instruction::Or: 7767 // Binary `or` is a bit-wise `umax`. 7768 if (BO->LHS->getType()->isIntegerTy(1)) { 7769 LHS = getSCEV(BO->LHS); 7770 RHS = getSCEV(BO->RHS); 7771 return getUMaxExpr(LHS, RHS); 7772 } 7773 break; 7774 7775 case Instruction::Xor: 7776 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7777 // If the RHS of xor is -1, then this is a not operation. 7778 if (CI->isMinusOne()) 7779 return getNotSCEV(getSCEV(BO->LHS)); 7780 7781 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7782 // This is a variant of the check for xor with -1, and it handles 7783 // the case where instcombine has trimmed non-demanded bits out 7784 // of an xor with -1. 7785 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7786 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7787 if (LBO->getOpcode() == Instruction::And && 7788 LCI->getValue() == CI->getValue()) 7789 if (const SCEVZeroExtendExpr *Z = 7790 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7791 Type *UTy = BO->LHS->getType(); 7792 const SCEV *Z0 = Z->getOperand(); 7793 Type *Z0Ty = Z0->getType(); 7794 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7795 7796 // If C is a low-bits mask, the zero extend is serving to 7797 // mask off the high bits. Complement the operand and 7798 // re-apply the zext. 7799 if (CI->getValue().isMask(Z0TySize)) 7800 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7801 7802 // If C is a single bit, it may be in the sign-bit position 7803 // before the zero-extend. In this case, represent the xor 7804 // using an add, which is equivalent, and re-apply the zext. 7805 APInt Trunc = CI->getValue().trunc(Z0TySize); 7806 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7807 Trunc.isSignMask()) 7808 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7809 UTy); 7810 } 7811 } 7812 break; 7813 7814 case Instruction::Shl: 7815 // Turn shift left of a constant amount into a multiply. 7816 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7817 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7818 7819 // If the shift count is not less than the bitwidth, the result of 7820 // the shift is undefined. Don't try to analyze it, because the 7821 // resolution chosen here may differ from the resolution chosen in 7822 // other parts of the compiler. 7823 if (SA->getValue().uge(BitWidth)) 7824 break; 7825 7826 // We can safely preserve the nuw flag in all cases. It's also safe to 7827 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7828 // requires special handling. It can be preserved as long as we're not 7829 // left shifting by bitwidth - 1. 7830 auto Flags = SCEV::FlagAnyWrap; 7831 if (BO->Op) { 7832 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7833 if ((MulFlags & SCEV::FlagNSW) && 7834 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7835 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7836 if (MulFlags & SCEV::FlagNUW) 7837 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7838 } 7839 7840 ConstantInt *X = ConstantInt::get( 7841 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7842 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7843 } 7844 break; 7845 7846 case Instruction::AShr: 7847 // AShr X, C, where C is a constant. 7848 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7849 if (!CI) 7850 break; 7851 7852 Type *OuterTy = BO->LHS->getType(); 7853 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7854 // If the shift count is not less than the bitwidth, the result of 7855 // the shift is undefined. Don't try to analyze it, because the 7856 // resolution chosen here may differ from the resolution chosen in 7857 // other parts of the compiler. 7858 if (CI->getValue().uge(BitWidth)) 7859 break; 7860 7861 if (CI->isZero()) 7862 return getSCEV(BO->LHS); // shift by zero --> noop 7863 7864 uint64_t AShrAmt = CI->getZExtValue(); 7865 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7866 7867 Operator *L = dyn_cast<Operator>(BO->LHS); 7868 const SCEV *AddTruncateExpr = nullptr; 7869 ConstantInt *ShlAmtCI = nullptr; 7870 const SCEV *AddConstant = nullptr; 7871 7872 if (L && L->getOpcode() == Instruction::Add) { 7873 // X = Shl A, n 7874 // Y = Add X, c 7875 // Z = AShr Y, m 7876 // n, c and m are constants. 7877 7878 Operator *LShift = dyn_cast<Operator>(L->getOperand(0)); 7879 ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7880 if (LShift && LShift->getOpcode() == Instruction::Shl) { 7881 if (AddOperandCI) { 7882 const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0)); 7883 ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1)); 7884 // since we truncate to TruncTy, the AddConstant should be of the 7885 // same type, so create a new Constant with type same as TruncTy. 7886 // Also, the Add constant should be shifted right by AShr amount. 7887 APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt); 7888 AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt)); 7889 // we model the expression as sext(add(trunc(A), c << n)), since the 7890 // sext(trunc) part is already handled below, we create a 7891 // AddExpr(TruncExp) which will be used later. 7892 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 7893 } 7894 } 7895 } else if (L && L->getOpcode() == Instruction::Shl) { 7896 // X = Shl A, n 7897 // Y = AShr X, m 7898 // Both n and m are constant. 7899 7900 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7901 ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7902 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 7903 } 7904 7905 if (AddTruncateExpr && ShlAmtCI) { 7906 // We can merge the two given cases into a single SCEV statement, 7907 // incase n = m, the mul expression will be 2^0, so it gets resolved to 7908 // a simpler case. The following code handles the two cases: 7909 // 7910 // 1) For a two-shift sext-inreg, i.e. n = m, 7911 // use sext(trunc(x)) as the SCEV expression. 7912 // 7913 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7914 // expression. We already checked that ShlAmt < BitWidth, so 7915 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7916 // ShlAmt - AShrAmt < Amt. 7917 const APInt &ShlAmt = ShlAmtCI->getValue(); 7918 if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) { 7919 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7920 ShlAmtCI->getZExtValue() - AShrAmt); 7921 const SCEV *CompositeExpr = 7922 getMulExpr(AddTruncateExpr, getConstant(Mul)); 7923 if (L->getOpcode() != Instruction::Shl) 7924 CompositeExpr = getAddExpr(CompositeExpr, AddConstant); 7925 7926 return getSignExtendExpr(CompositeExpr, OuterTy); 7927 } 7928 } 7929 break; 7930 } 7931 } 7932 7933 switch (U->getOpcode()) { 7934 case Instruction::Trunc: 7935 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7936 7937 case Instruction::ZExt: 7938 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7939 7940 case Instruction::SExt: 7941 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, 7942 dyn_cast<Instruction>(V))) { 7943 // The NSW flag of a subtract does not always survive the conversion to 7944 // A + (-1)*B. By pushing sign extension onto its operands we are much 7945 // more likely to preserve NSW and allow later AddRec optimisations. 7946 // 7947 // NOTE: This is effectively duplicating this logic from getSignExtend: 7948 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7949 // but by that point the NSW information has potentially been lost. 7950 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7951 Type *Ty = U->getType(); 7952 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7953 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7954 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7955 } 7956 } 7957 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7958 7959 case Instruction::BitCast: 7960 // BitCasts are no-op casts so we just eliminate the cast. 7961 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7962 return getSCEV(U->getOperand(0)); 7963 break; 7964 7965 case Instruction::PtrToInt: { 7966 // Pointer to integer cast is straight-forward, so do model it. 7967 const SCEV *Op = getSCEV(U->getOperand(0)); 7968 Type *DstIntTy = U->getType(); 7969 // But only if effective SCEV (integer) type is wide enough to represent 7970 // all possible pointer values. 7971 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7972 if (isa<SCEVCouldNotCompute>(IntOp)) 7973 return getUnknown(V); 7974 return IntOp; 7975 } 7976 case Instruction::IntToPtr: 7977 // Just don't deal with inttoptr casts. 7978 return getUnknown(V); 7979 7980 case Instruction::SDiv: 7981 // If both operands are non-negative, this is just an udiv. 7982 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7983 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7984 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7985 break; 7986 7987 case Instruction::SRem: 7988 // If both operands are non-negative, this is just an urem. 7989 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7990 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7991 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7992 break; 7993 7994 case Instruction::GetElementPtr: 7995 return createNodeForGEP(cast<GEPOperator>(U)); 7996 7997 case Instruction::PHI: 7998 return createNodeForPHI(cast<PHINode>(U)); 7999 8000 case Instruction::Select: 8001 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 8002 U->getOperand(2)); 8003 8004 case Instruction::Call: 8005 case Instruction::Invoke: 8006 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 8007 return getSCEV(RV); 8008 8009 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 8010 switch (II->getIntrinsicID()) { 8011 case Intrinsic::abs: 8012 return getAbsExpr( 8013 getSCEV(II->getArgOperand(0)), 8014 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 8015 case Intrinsic::umax: 8016 LHS = getSCEV(II->getArgOperand(0)); 8017 RHS = getSCEV(II->getArgOperand(1)); 8018 return getUMaxExpr(LHS, RHS); 8019 case Intrinsic::umin: 8020 LHS = getSCEV(II->getArgOperand(0)); 8021 RHS = getSCEV(II->getArgOperand(1)); 8022 return getUMinExpr(LHS, RHS); 8023 case Intrinsic::smax: 8024 LHS = getSCEV(II->getArgOperand(0)); 8025 RHS = getSCEV(II->getArgOperand(1)); 8026 return getSMaxExpr(LHS, RHS); 8027 case Intrinsic::smin: 8028 LHS = getSCEV(II->getArgOperand(0)); 8029 RHS = getSCEV(II->getArgOperand(1)); 8030 return getSMinExpr(LHS, RHS); 8031 case Intrinsic::usub_sat: { 8032 const SCEV *X = getSCEV(II->getArgOperand(0)); 8033 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8034 const SCEV *ClampedY = getUMinExpr(X, Y); 8035 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 8036 } 8037 case Intrinsic::uadd_sat: { 8038 const SCEV *X = getSCEV(II->getArgOperand(0)); 8039 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8040 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 8041 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 8042 } 8043 case Intrinsic::start_loop_iterations: 8044 case Intrinsic::annotation: 8045 case Intrinsic::ptr_annotation: 8046 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 8047 // just eqivalent to the first operand for SCEV purposes. 8048 return getSCEV(II->getArgOperand(0)); 8049 case Intrinsic::vscale: 8050 return getVScale(II->getType()); 8051 default: 8052 break; 8053 } 8054 } 8055 break; 8056 } 8057 8058 return getUnknown(V); 8059 } 8060 8061 //===----------------------------------------------------------------------===// 8062 // Iteration Count Computation Code 8063 // 8064 8065 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 8066 if (isa<SCEVCouldNotCompute>(ExitCount)) 8067 return getCouldNotCompute(); 8068 8069 auto *ExitCountType = ExitCount->getType(); 8070 assert(ExitCountType->isIntegerTy()); 8071 auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(), 8072 1 + ExitCountType->getScalarSizeInBits()); 8073 return getTripCountFromExitCount(ExitCount, EvalTy, nullptr); 8074 } 8075 8076 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 8077 Type *EvalTy, 8078 const Loop *L) { 8079 if (isa<SCEVCouldNotCompute>(ExitCount)) 8080 return getCouldNotCompute(); 8081 8082 unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType()); 8083 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); 8084 8085 auto CanAddOneWithoutOverflow = [&]() { 8086 ConstantRange ExitCountRange = 8087 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED); 8088 if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize))) 8089 return true; 8090 8091 return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, 8092 getMinusOne(ExitCount->getType())); 8093 }; 8094 8095 // If we need to zero extend the backedge count, check if we can add one to 8096 // it prior to zero extending without overflow. Provided this is safe, it 8097 // allows better simplification of the +1. 8098 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) 8099 return getZeroExtendExpr( 8100 getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy); 8101 8102 // Get the total trip count from the count by adding 1. This may wrap. 8103 return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy)); 8104 } 8105 8106 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 8107 if (!ExitCount) 8108 return 0; 8109 8110 ConstantInt *ExitConst = ExitCount->getValue(); 8111 8112 // Guard against huge trip counts. 8113 if (ExitConst->getValue().getActiveBits() > 32) 8114 return 0; 8115 8116 // In case of integer overflow, this returns 0, which is correct. 8117 return ((unsigned)ExitConst->getZExtValue()) + 1; 8118 } 8119 8120 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 8121 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 8122 return getConstantTripCount(ExitCount); 8123 } 8124 8125 unsigned 8126 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 8127 const BasicBlock *ExitingBlock) { 8128 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8129 assert(L->isLoopExiting(ExitingBlock) && 8130 "Exiting block must actually branch out of the loop!"); 8131 const SCEVConstant *ExitCount = 8132 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 8133 return getConstantTripCount(ExitCount); 8134 } 8135 8136 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 8137 const auto *MaxExitCount = 8138 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 8139 return getConstantTripCount(MaxExitCount); 8140 } 8141 8142 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8143 SmallVector<BasicBlock *, 8> ExitingBlocks; 8144 L->getExitingBlocks(ExitingBlocks); 8145 8146 std::optional<unsigned> Res; 8147 for (auto *ExitingBB : ExitingBlocks) { 8148 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8149 if (!Res) 8150 Res = Multiple; 8151 Res = (unsigned)std::gcd(*Res, Multiple); 8152 } 8153 return Res.value_or(1); 8154 } 8155 8156 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8157 const SCEV *ExitCount) { 8158 if (ExitCount == getCouldNotCompute()) 8159 return 1; 8160 8161 // Get the trip count 8162 const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L)); 8163 8164 APInt Multiple = getNonZeroConstantMultiple(TCExpr); 8165 // If a trip multiple is huge (>=2^32), the trip count is still divisible by 8166 // the greatest power of 2 divisor less than 2^32. 8167 return Multiple.getActiveBits() > 32 8168 ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros()) 8169 : (unsigned)Multiple.zextOrTrunc(32).getZExtValue(); 8170 } 8171 8172 /// Returns the largest constant divisor of the trip count of this loop as a 8173 /// normal unsigned value, if possible. This means that the actual trip count is 8174 /// always a multiple of the returned value (don't forget the trip count could 8175 /// very well be zero as well!). 8176 /// 8177 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8178 /// multiple of a constant (which is also the case if the trip count is simply 8179 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8180 /// if the trip count is very large (>= 2^32). 8181 /// 8182 /// As explained in the comments for getSmallConstantTripCount, this assumes 8183 /// that control exits the loop via ExitingBlock. 8184 unsigned 8185 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8186 const BasicBlock *ExitingBlock) { 8187 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8188 assert(L->isLoopExiting(ExitingBlock) && 8189 "Exiting block must actually branch out of the loop!"); 8190 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8191 return getSmallConstantTripMultiple(L, ExitCount); 8192 } 8193 8194 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8195 const BasicBlock *ExitingBlock, 8196 ExitCountKind Kind) { 8197 switch (Kind) { 8198 case Exact: 8199 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8200 case SymbolicMaximum: 8201 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); 8202 case ConstantMaximum: 8203 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8204 }; 8205 llvm_unreachable("Invalid ExitCountKind!"); 8206 } 8207 8208 const SCEV * 8209 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8210 SmallVector<const SCEVPredicate *, 4> &Preds) { 8211 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8212 } 8213 8214 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8215 ExitCountKind Kind) { 8216 switch (Kind) { 8217 case Exact: 8218 return getBackedgeTakenInfo(L).getExact(L, this); 8219 case ConstantMaximum: 8220 return getBackedgeTakenInfo(L).getConstantMax(this); 8221 case SymbolicMaximum: 8222 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8223 }; 8224 llvm_unreachable("Invalid ExitCountKind!"); 8225 } 8226 8227 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8228 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8229 } 8230 8231 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8232 static void PushLoopPHIs(const Loop *L, 8233 SmallVectorImpl<Instruction *> &Worklist, 8234 SmallPtrSetImpl<Instruction *> &Visited) { 8235 BasicBlock *Header = L->getHeader(); 8236 8237 // Push all Loop-header PHIs onto the Worklist stack. 8238 for (PHINode &PN : Header->phis()) 8239 if (Visited.insert(&PN).second) 8240 Worklist.push_back(&PN); 8241 } 8242 8243 const ScalarEvolution::BackedgeTakenInfo & 8244 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8245 auto &BTI = getBackedgeTakenInfo(L); 8246 if (BTI.hasFullInfo()) 8247 return BTI; 8248 8249 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8250 8251 if (!Pair.second) 8252 return Pair.first->second; 8253 8254 BackedgeTakenInfo Result = 8255 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8256 8257 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8258 } 8259 8260 ScalarEvolution::BackedgeTakenInfo & 8261 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8262 // Initially insert an invalid entry for this loop. If the insertion 8263 // succeeds, proceed to actually compute a backedge-taken count and 8264 // update the value. The temporary CouldNotCompute value tells SCEV 8265 // code elsewhere that it shouldn't attempt to request a new 8266 // backedge-taken count, which could result in infinite recursion. 8267 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8268 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8269 if (!Pair.second) 8270 return Pair.first->second; 8271 8272 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8273 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8274 // must be cleared in this scope. 8275 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8276 8277 // Now that we know more about the trip count for this loop, forget any 8278 // existing SCEV values for PHI nodes in this loop since they are only 8279 // conservative estimates made without the benefit of trip count 8280 // information. This invalidation is not necessary for correctness, and is 8281 // only done to produce more precise results. 8282 if (Result.hasAnyInfo()) { 8283 // Invalidate any expression using an addrec in this loop. 8284 SmallVector<const SCEV *, 8> ToForget; 8285 auto LoopUsersIt = LoopUsers.find(L); 8286 if (LoopUsersIt != LoopUsers.end()) 8287 append_range(ToForget, LoopUsersIt->second); 8288 forgetMemoizedResults(ToForget); 8289 8290 // Invalidate constant-evolved loop header phis. 8291 for (PHINode &PN : L->getHeader()->phis()) 8292 ConstantEvolutionLoopExitValue.erase(&PN); 8293 } 8294 8295 // Re-lookup the insert position, since the call to 8296 // computeBackedgeTakenCount above could result in a 8297 // recusive call to getBackedgeTakenInfo (on a different 8298 // loop), which would invalidate the iterator computed 8299 // earlier. 8300 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8301 } 8302 8303 void ScalarEvolution::forgetAllLoops() { 8304 // This method is intended to forget all info about loops. It should 8305 // invalidate caches as if the following happened: 8306 // - The trip counts of all loops have changed arbitrarily 8307 // - Every llvm::Value has been updated in place to produce a different 8308 // result. 8309 BackedgeTakenCounts.clear(); 8310 PredicatedBackedgeTakenCounts.clear(); 8311 BECountUsers.clear(); 8312 LoopPropertiesCache.clear(); 8313 ConstantEvolutionLoopExitValue.clear(); 8314 ValueExprMap.clear(); 8315 ValuesAtScopes.clear(); 8316 ValuesAtScopesUsers.clear(); 8317 LoopDispositions.clear(); 8318 BlockDispositions.clear(); 8319 UnsignedRanges.clear(); 8320 SignedRanges.clear(); 8321 ExprValueMap.clear(); 8322 HasRecMap.clear(); 8323 ConstantMultipleCache.clear(); 8324 PredicatedSCEVRewrites.clear(); 8325 FoldCache.clear(); 8326 FoldCacheUser.clear(); 8327 } 8328 void ScalarEvolution::visitAndClearUsers( 8329 SmallVectorImpl<Instruction *> &Worklist, 8330 SmallPtrSetImpl<Instruction *> &Visited, 8331 SmallVectorImpl<const SCEV *> &ToForget) { 8332 while (!Worklist.empty()) { 8333 Instruction *I = Worklist.pop_back_val(); 8334 if (!isSCEVable(I->getType())) 8335 continue; 8336 8337 ValueExprMapType::iterator It = 8338 ValueExprMap.find_as(static_cast<Value *>(I)); 8339 if (It != ValueExprMap.end()) { 8340 eraseValueFromMap(It->first); 8341 ToForget.push_back(It->second); 8342 if (PHINode *PN = dyn_cast<PHINode>(I)) 8343 ConstantEvolutionLoopExitValue.erase(PN); 8344 } 8345 8346 PushDefUseChildren(I, Worklist, Visited); 8347 } 8348 } 8349 8350 void ScalarEvolution::forgetLoop(const Loop *L) { 8351 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8352 SmallVector<Instruction *, 32> Worklist; 8353 SmallPtrSet<Instruction *, 16> Visited; 8354 SmallVector<const SCEV *, 16> ToForget; 8355 8356 // Iterate over all the loops and sub-loops to drop SCEV information. 8357 while (!LoopWorklist.empty()) { 8358 auto *CurrL = LoopWorklist.pop_back_val(); 8359 8360 // Drop any stored trip count value. 8361 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8362 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8363 8364 // Drop information about predicated SCEV rewrites for this loop. 8365 for (auto I = PredicatedSCEVRewrites.begin(); 8366 I != PredicatedSCEVRewrites.end();) { 8367 std::pair<const SCEV *, const Loop *> Entry = I->first; 8368 if (Entry.second == CurrL) 8369 PredicatedSCEVRewrites.erase(I++); 8370 else 8371 ++I; 8372 } 8373 8374 auto LoopUsersItr = LoopUsers.find(CurrL); 8375 if (LoopUsersItr != LoopUsers.end()) { 8376 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8377 LoopUsersItr->second.end()); 8378 } 8379 8380 // Drop information about expressions based on loop-header PHIs. 8381 PushLoopPHIs(CurrL, Worklist, Visited); 8382 visitAndClearUsers(Worklist, Visited, ToForget); 8383 8384 LoopPropertiesCache.erase(CurrL); 8385 // Forget all contained loops too, to avoid dangling entries in the 8386 // ValuesAtScopes map. 8387 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8388 } 8389 forgetMemoizedResults(ToForget); 8390 } 8391 8392 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8393 forgetLoop(L->getOutermostLoop()); 8394 } 8395 8396 void ScalarEvolution::forgetValue(Value *V) { 8397 Instruction *I = dyn_cast<Instruction>(V); 8398 if (!I) return; 8399 8400 // Drop information about expressions based on loop-header PHIs. 8401 SmallVector<Instruction *, 16> Worklist; 8402 SmallPtrSet<Instruction *, 8> Visited; 8403 SmallVector<const SCEV *, 8> ToForget; 8404 Worklist.push_back(I); 8405 Visited.insert(I); 8406 visitAndClearUsers(Worklist, Visited, ToForget); 8407 8408 forgetMemoizedResults(ToForget); 8409 } 8410 8411 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) { 8412 if (!isSCEVable(V->getType())) 8413 return; 8414 8415 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's 8416 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an 8417 // extra predecessor is added, this is no longer valid. Find all Unknowns and 8418 // AddRecs defined in the loop and invalidate any SCEV's making use of them. 8419 if (const SCEV *S = getExistingSCEV(V)) { 8420 struct InvalidationRootCollector { 8421 Loop *L; 8422 SmallVector<const SCEV *, 8> Roots; 8423 8424 InvalidationRootCollector(Loop *L) : L(L) {} 8425 8426 bool follow(const SCEV *S) { 8427 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 8428 if (auto *I = dyn_cast<Instruction>(SU->getValue())) 8429 if (L->contains(I)) 8430 Roots.push_back(S); 8431 } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 8432 if (L->contains(AddRec->getLoop())) 8433 Roots.push_back(S); 8434 } 8435 return true; 8436 } 8437 bool isDone() const { return false; } 8438 }; 8439 8440 InvalidationRootCollector C(L); 8441 visitAll(S, C); 8442 forgetMemoizedResults(C.Roots); 8443 } 8444 8445 // Also perform the normal invalidation. 8446 forgetValue(V); 8447 } 8448 8449 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } 8450 8451 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { 8452 // Unless a specific value is passed to invalidation, completely clear both 8453 // caches. 8454 if (!V) { 8455 BlockDispositions.clear(); 8456 LoopDispositions.clear(); 8457 return; 8458 } 8459 8460 if (!isSCEVable(V->getType())) 8461 return; 8462 8463 const SCEV *S = getExistingSCEV(V); 8464 if (!S) 8465 return; 8466 8467 // Invalidate the block and loop dispositions cached for S. Dispositions of 8468 // S's users may change if S's disposition changes (i.e. a user may change to 8469 // loop-invariant, if S changes to loop invariant), so also invalidate 8470 // dispositions of S's users recursively. 8471 SmallVector<const SCEV *, 8> Worklist = {S}; 8472 SmallPtrSet<const SCEV *, 8> Seen = {S}; 8473 while (!Worklist.empty()) { 8474 const SCEV *Curr = Worklist.pop_back_val(); 8475 bool LoopDispoRemoved = LoopDispositions.erase(Curr); 8476 bool BlockDispoRemoved = BlockDispositions.erase(Curr); 8477 if (!LoopDispoRemoved && !BlockDispoRemoved) 8478 continue; 8479 auto Users = SCEVUsers.find(Curr); 8480 if (Users != SCEVUsers.end()) 8481 for (const auto *User : Users->second) 8482 if (Seen.insert(User).second) 8483 Worklist.push_back(User); 8484 } 8485 } 8486 8487 /// Get the exact loop backedge taken count considering all loop exits. A 8488 /// computable result can only be returned for loops with all exiting blocks 8489 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8490 /// is never skipped. This is a valid assumption as long as the loop exits via 8491 /// that test. For precise results, it is the caller's responsibility to specify 8492 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8493 const SCEV * 8494 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8495 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8496 // If any exits were not computable, the loop is not computable. 8497 if (!isComplete() || ExitNotTaken.empty()) 8498 return SE->getCouldNotCompute(); 8499 8500 const BasicBlock *Latch = L->getLoopLatch(); 8501 // All exiting blocks we have collected must dominate the only backedge. 8502 if (!Latch) 8503 return SE->getCouldNotCompute(); 8504 8505 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8506 // count is simply a minimum out of all these calculated exit counts. 8507 SmallVector<const SCEV *, 2> Ops; 8508 for (const auto &ENT : ExitNotTaken) { 8509 const SCEV *BECount = ENT.ExactNotTaken; 8510 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8511 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8512 "We should only have known counts for exiting blocks that dominate " 8513 "latch!"); 8514 8515 Ops.push_back(BECount); 8516 8517 if (Preds) 8518 for (const auto *P : ENT.Predicates) 8519 Preds->push_back(P); 8520 8521 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8522 "Predicate should be always true!"); 8523 } 8524 8525 // If an earlier exit exits on the first iteration (exit count zero), then 8526 // a later poison exit count should not propagate into the result. This are 8527 // exactly the semantics provided by umin_seq. 8528 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8529 } 8530 8531 /// Get the exact not taken count for this loop exit. 8532 const SCEV * 8533 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8534 ScalarEvolution *SE) const { 8535 for (const auto &ENT : ExitNotTaken) 8536 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8537 return ENT.ExactNotTaken; 8538 8539 return SE->getCouldNotCompute(); 8540 } 8541 8542 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8543 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8544 for (const auto &ENT : ExitNotTaken) 8545 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8546 return ENT.ConstantMaxNotTaken; 8547 8548 return SE->getCouldNotCompute(); 8549 } 8550 8551 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8552 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8553 for (const auto &ENT : ExitNotTaken) 8554 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8555 return ENT.SymbolicMaxNotTaken; 8556 8557 return SE->getCouldNotCompute(); 8558 } 8559 8560 /// getConstantMax - Get the constant max backedge taken count for the loop. 8561 const SCEV * 8562 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8563 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8564 return !ENT.hasAlwaysTruePredicate(); 8565 }; 8566 8567 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8568 return SE->getCouldNotCompute(); 8569 8570 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8571 isa<SCEVConstant>(getConstantMax())) && 8572 "No point in having a non-constant max backedge taken count!"); 8573 return getConstantMax(); 8574 } 8575 8576 const SCEV * 8577 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8578 ScalarEvolution *SE) { 8579 if (!SymbolicMax) 8580 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8581 return SymbolicMax; 8582 } 8583 8584 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8585 ScalarEvolution *SE) const { 8586 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8587 return !ENT.hasAlwaysTruePredicate(); 8588 }; 8589 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8590 } 8591 8592 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8593 : ExitLimit(E, E, E, false, std::nullopt) {} 8594 8595 ScalarEvolution::ExitLimit::ExitLimit( 8596 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8597 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8598 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8599 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), 8600 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { 8601 // If we prove the max count is zero, so is the symbolic bound. This happens 8602 // in practice due to differences in a) how context sensitive we've chosen 8603 // to be and b) how we reason about bounds implied by UB. 8604 if (ConstantMaxNotTaken->isZero()) { 8605 this->ExactNotTaken = E = ConstantMaxNotTaken; 8606 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; 8607 } 8608 8609 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8610 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8611 "Exact is not allowed to be less precise than Constant Max"); 8612 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8613 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && 8614 "Exact is not allowed to be less precise than Symbolic Max"); 8615 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || 8616 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8617 "Symbolic Max is not allowed to be less precise than Constant Max"); 8618 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8619 isa<SCEVConstant>(ConstantMaxNotTaken)) && 8620 "No point in having a non-constant max backedge taken count!"); 8621 for (const auto *PredSet : PredSetList) 8622 for (const auto *P : *PredSet) 8623 addPredicate(P); 8624 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8625 "Backedge count should be int"); 8626 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8627 !ConstantMaxNotTaken->getType()->isPointerTy()) && 8628 "Max backedge count should be int"); 8629 } 8630 8631 ScalarEvolution::ExitLimit::ExitLimit( 8632 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8633 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8634 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8635 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, 8636 { &PredSet }) {} 8637 8638 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8639 /// computable exit into a persistent ExitNotTakenInfo array. 8640 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8641 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8642 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8643 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8644 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8645 8646 ExitNotTaken.reserve(ExitCounts.size()); 8647 std::transform(ExitCounts.begin(), ExitCounts.end(), 8648 std::back_inserter(ExitNotTaken), 8649 [&](const EdgeExitInfo &EEI) { 8650 BasicBlock *ExitBB = EEI.first; 8651 const ExitLimit &EL = EEI.second; 8652 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, 8653 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, 8654 EL.Predicates); 8655 }); 8656 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8657 isa<SCEVConstant>(ConstantMax)) && 8658 "No point in having a non-constant max backedge taken count!"); 8659 } 8660 8661 /// Compute the number of times the backedge of the specified loop will execute. 8662 ScalarEvolution::BackedgeTakenInfo 8663 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8664 bool AllowPredicates) { 8665 SmallVector<BasicBlock *, 8> ExitingBlocks; 8666 L->getExitingBlocks(ExitingBlocks); 8667 8668 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8669 8670 SmallVector<EdgeExitInfo, 4> ExitCounts; 8671 bool CouldComputeBECount = true; 8672 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8673 const SCEV *MustExitMaxBECount = nullptr; 8674 const SCEV *MayExitMaxBECount = nullptr; 8675 bool MustExitMaxOrZero = false; 8676 8677 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8678 // and compute maxBECount. 8679 // Do a union of all the predicates here. 8680 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8681 BasicBlock *ExitBB = ExitingBlocks[i]; 8682 8683 // We canonicalize untaken exits to br (constant), ignore them so that 8684 // proving an exit untaken doesn't negatively impact our ability to reason 8685 // about the loop as whole. 8686 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8687 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8688 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8689 if (ExitIfTrue == CI->isZero()) 8690 continue; 8691 } 8692 8693 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8694 8695 assert((AllowPredicates || EL.Predicates.empty()) && 8696 "Predicated exit limit when predicates are not allowed!"); 8697 8698 // 1. For each exit that can be computed, add an entry to ExitCounts. 8699 // CouldComputeBECount is true only if all exits can be computed. 8700 if (EL.ExactNotTaken != getCouldNotCompute()) 8701 ++NumExitCountsComputed; 8702 else 8703 // We couldn't compute an exact value for this exit, so 8704 // we won't be able to compute an exact value for the loop. 8705 CouldComputeBECount = false; 8706 // Remember exit count if either exact or symbolic is known. Because 8707 // Exact always implies symbolic, only check symbolic. 8708 if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) 8709 ExitCounts.emplace_back(ExitBB, EL); 8710 else { 8711 assert(EL.ExactNotTaken == getCouldNotCompute() && 8712 "Exact is known but symbolic isn't?"); 8713 ++NumExitCountsNotComputed; 8714 } 8715 8716 // 2. Derive the loop's MaxBECount from each exit's max number of 8717 // non-exiting iterations. Partition the loop exits into two kinds: 8718 // LoopMustExits and LoopMayExits. 8719 // 8720 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8721 // is a LoopMayExit. If any computable LoopMustExit is found, then 8722 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable 8723 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8724 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than 8725 // any 8726 // computable EL.ConstantMaxNotTaken. 8727 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && 8728 DT.dominates(ExitBB, Latch)) { 8729 if (!MustExitMaxBECount) { 8730 MustExitMaxBECount = EL.ConstantMaxNotTaken; 8731 MustExitMaxOrZero = EL.MaxOrZero; 8732 } else { 8733 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, 8734 EL.ConstantMaxNotTaken); 8735 } 8736 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8737 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) 8738 MayExitMaxBECount = EL.ConstantMaxNotTaken; 8739 else { 8740 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, 8741 EL.ConstantMaxNotTaken); 8742 } 8743 } 8744 } 8745 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8746 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8747 // The loop backedge will be taken the maximum or zero times if there's 8748 // a single exit that must be taken the maximum or zero times. 8749 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8750 8751 // Remember which SCEVs are used in exit limits for invalidation purposes. 8752 // We only care about non-constant SCEVs here, so we can ignore 8753 // EL.ConstantMaxNotTaken 8754 // and MaxBECount, which must be SCEVConstant. 8755 for (const auto &Pair : ExitCounts) { 8756 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8757 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8758 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) 8759 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( 8760 {L, AllowPredicates}); 8761 } 8762 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8763 MaxBECount, MaxOrZero); 8764 } 8765 8766 ScalarEvolution::ExitLimit 8767 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8768 bool AllowPredicates) { 8769 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8770 // If our exiting block does not dominate the latch, then its connection with 8771 // loop's exit limit may be far from trivial. 8772 const BasicBlock *Latch = L->getLoopLatch(); 8773 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8774 return getCouldNotCompute(); 8775 8776 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8777 Instruction *Term = ExitingBlock->getTerminator(); 8778 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8779 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8780 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8781 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8782 "It should have one successor in loop and one exit block!"); 8783 // Proceed to the next level to examine the exit condition expression. 8784 return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue, 8785 /*ControlsOnlyExit=*/IsOnlyExit, 8786 AllowPredicates); 8787 } 8788 8789 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8790 // For switch, make sure that there is a single exit from the loop. 8791 BasicBlock *Exit = nullptr; 8792 for (auto *SBB : successors(ExitingBlock)) 8793 if (!L->contains(SBB)) { 8794 if (Exit) // Multiple exit successors. 8795 return getCouldNotCompute(); 8796 Exit = SBB; 8797 } 8798 assert(Exit && "Exiting block must have at least one exit"); 8799 return computeExitLimitFromSingleExitSwitch( 8800 L, SI, Exit, 8801 /*ControlsOnlyExit=*/IsOnlyExit); 8802 } 8803 8804 return getCouldNotCompute(); 8805 } 8806 8807 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8808 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 8809 bool AllowPredicates) { 8810 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8811 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8812 ControlsOnlyExit, AllowPredicates); 8813 } 8814 8815 std::optional<ScalarEvolution::ExitLimit> 8816 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8817 bool ExitIfTrue, bool ControlsOnlyExit, 8818 bool AllowPredicates) { 8819 (void)this->L; 8820 (void)this->ExitIfTrue; 8821 (void)this->AllowPredicates; 8822 8823 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8824 this->AllowPredicates == AllowPredicates && 8825 "Variance in assumed invariant key components!"); 8826 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit}); 8827 if (Itr == TripCountMap.end()) 8828 return std::nullopt; 8829 return Itr->second; 8830 } 8831 8832 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8833 bool ExitIfTrue, 8834 bool ControlsOnlyExit, 8835 bool AllowPredicates, 8836 const ExitLimit &EL) { 8837 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8838 this->AllowPredicates == AllowPredicates && 8839 "Variance in assumed invariant key components!"); 8840 8841 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL}); 8842 assert(InsertResult.second && "Expected successful insertion!"); 8843 (void)InsertResult; 8844 (void)ExitIfTrue; 8845 } 8846 8847 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8848 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8849 bool ControlsOnlyExit, bool AllowPredicates) { 8850 8851 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, 8852 AllowPredicates)) 8853 return *MaybeEL; 8854 8855 ExitLimit EL = computeExitLimitFromCondImpl( 8856 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); 8857 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); 8858 return EL; 8859 } 8860 8861 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8862 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8863 bool ControlsOnlyExit, bool AllowPredicates) { 8864 // Handle BinOp conditions (And, Or). 8865 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8866 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) 8867 return *LimitFromBinOp; 8868 8869 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8870 // Proceed to the next level to examine the icmp. 8871 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8872 ExitLimit EL = 8873 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit); 8874 if (EL.hasFullInfo() || !AllowPredicates) 8875 return EL; 8876 8877 // Try again, but use SCEV predicates this time. 8878 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, 8879 ControlsOnlyExit, 8880 /*AllowPredicates=*/true); 8881 } 8882 8883 // Check for a constant condition. These are normally stripped out by 8884 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8885 // preserve the CFG and is temporarily leaving constant conditions 8886 // in place. 8887 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8888 if (ExitIfTrue == !CI->getZExtValue()) 8889 // The backedge is always taken. 8890 return getCouldNotCompute(); 8891 // The backedge is never taken. 8892 return getZero(CI->getType()); 8893 } 8894 8895 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8896 // with a constant step, we can form an equivalent icmp predicate and figure 8897 // out how many iterations will be taken before we exit. 8898 const WithOverflowInst *WO; 8899 const APInt *C; 8900 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8901 match(WO->getRHS(), m_APInt(C))) { 8902 ConstantRange NWR = 8903 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8904 WO->getNoWrapKind()); 8905 CmpInst::Predicate Pred; 8906 APInt NewRHSC, Offset; 8907 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8908 if (!ExitIfTrue) 8909 Pred = ICmpInst::getInversePredicate(Pred); 8910 auto *LHS = getSCEV(WO->getLHS()); 8911 if (Offset != 0) 8912 LHS = getAddExpr(LHS, getConstant(Offset)); 8913 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8914 ControlsOnlyExit, AllowPredicates); 8915 if (EL.hasAnyInfo()) 8916 return EL; 8917 } 8918 8919 // If it's not an integer or pointer comparison then compute it the hard way. 8920 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8921 } 8922 8923 std::optional<ScalarEvolution::ExitLimit> 8924 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8925 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8926 bool ControlsOnlyExit, bool AllowPredicates) { 8927 // Check if the controlling expression for this loop is an And or Or. 8928 Value *Op0, *Op1; 8929 bool IsAnd = false; 8930 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8931 IsAnd = true; 8932 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8933 IsAnd = false; 8934 else 8935 return std::nullopt; 8936 8937 // EitherMayExit is true in these two cases: 8938 // br (and Op0 Op1), loop, exit 8939 // br (or Op0 Op1), exit, loop 8940 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8941 ExitLimit EL0 = computeExitLimitFromCondCached( 8942 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 8943 AllowPredicates); 8944 ExitLimit EL1 = computeExitLimitFromCondCached( 8945 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 8946 AllowPredicates); 8947 8948 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8949 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8950 if (isa<ConstantInt>(Op1)) 8951 return Op1 == NeutralElement ? EL0 : EL1; 8952 if (isa<ConstantInt>(Op0)) 8953 return Op0 == NeutralElement ? EL1 : EL0; 8954 8955 const SCEV *BECount = getCouldNotCompute(); 8956 const SCEV *ConstantMaxBECount = getCouldNotCompute(); 8957 const SCEV *SymbolicMaxBECount = getCouldNotCompute(); 8958 if (EitherMayExit) { 8959 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); 8960 // Both conditions must be same for the loop to continue executing. 8961 // Choose the less conservative count. 8962 if (EL0.ExactNotTaken != getCouldNotCompute() && 8963 EL1.ExactNotTaken != getCouldNotCompute()) { 8964 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 8965 UseSequentialUMin); 8966 } 8967 if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) 8968 ConstantMaxBECount = EL1.ConstantMaxNotTaken; 8969 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) 8970 ConstantMaxBECount = EL0.ConstantMaxNotTaken; 8971 else 8972 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, 8973 EL1.ConstantMaxNotTaken); 8974 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) 8975 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; 8976 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) 8977 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; 8978 else 8979 SymbolicMaxBECount = getUMinFromMismatchedTypes( 8980 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); 8981 } else { 8982 // Both conditions must be same at the same time for the loop to exit. 8983 // For now, be conservative. 8984 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8985 BECount = EL0.ExactNotTaken; 8986 } 8987 8988 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8989 // to be more aggressive when computing BECount than when computing 8990 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken 8991 // and 8992 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and 8993 // EL1.ConstantMaxNotTaken to not. 8994 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 8995 !isa<SCEVCouldNotCompute>(BECount)) 8996 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8997 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) 8998 SymbolicMaxBECount = 8999 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 9000 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 9001 { &EL0.Predicates, &EL1.Predicates }); 9002 } 9003 9004 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9005 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 9006 bool AllowPredicates) { 9007 // If the condition was exit on true, convert the condition to exit on false 9008 ICmpInst::Predicate Pred; 9009 if (!ExitIfTrue) 9010 Pred = ExitCond->getPredicate(); 9011 else 9012 Pred = ExitCond->getInversePredicate(); 9013 const ICmpInst::Predicate OriginalPred = Pred; 9014 9015 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 9016 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 9017 9018 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit, 9019 AllowPredicates); 9020 if (EL.hasAnyInfo()) 9021 return EL; 9022 9023 auto *ExhaustiveCount = 9024 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9025 9026 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 9027 return ExhaustiveCount; 9028 9029 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 9030 ExitCond->getOperand(1), L, OriginalPred); 9031 } 9032 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9033 const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9034 bool ControlsOnlyExit, bool AllowPredicates) { 9035 9036 // Try to evaluate any dependencies out of the loop. 9037 LHS = getSCEVAtScope(LHS, L); 9038 RHS = getSCEVAtScope(RHS, L); 9039 9040 // At this point, we would like to compute how many iterations of the 9041 // loop the predicate will return true for these inputs. 9042 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 9043 // If there is a loop-invariant, force it into the RHS. 9044 std::swap(LHS, RHS); 9045 Pred = ICmpInst::getSwappedPredicate(Pred); 9046 } 9047 9048 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && 9049 loopIsFiniteByAssumption(L); 9050 // Simplify the operands before analyzing them. 9051 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); 9052 9053 // If we have a comparison of a chrec against a constant, try to use value 9054 // ranges to answer this query. 9055 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 9056 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 9057 if (AddRec->getLoop() == L) { 9058 // Form the constant range. 9059 ConstantRange CompRange = 9060 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 9061 9062 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 9063 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 9064 } 9065 9066 // If this loop must exit based on this condition (or execute undefined 9067 // behaviour), and we can prove the test sequence produced must repeat 9068 // the same values on self-wrap of the IV, then we can infer that IV 9069 // doesn't self wrap because if it did, we'd have an infinite (undefined) 9070 // loop. 9071 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 9072 // TODO: We can peel off any functions which are invertible *in L*. Loop 9073 // invariant terms are effectively constants for our purposes here. 9074 auto *InnerLHS = LHS; 9075 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 9076 InnerLHS = ZExt->getOperand(); 9077 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 9078 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 9079 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 9080 StrideC && StrideC->getAPInt().isPowerOf2()) { 9081 auto Flags = AR->getNoWrapFlags(); 9082 Flags = setFlags(Flags, SCEV::FlagNW); 9083 SmallVector<const SCEV*> Operands{AR->operands()}; 9084 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9085 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9086 } 9087 } 9088 } 9089 9090 switch (Pred) { 9091 case ICmpInst::ICMP_NE: { // while (X != Y) 9092 // Convert to: while (X-Y != 0) 9093 if (LHS->getType()->isPointerTy()) { 9094 LHS = getLosslessPtrToIntExpr(LHS); 9095 if (isa<SCEVCouldNotCompute>(LHS)) 9096 return LHS; 9097 } 9098 if (RHS->getType()->isPointerTy()) { 9099 RHS = getLosslessPtrToIntExpr(RHS); 9100 if (isa<SCEVCouldNotCompute>(RHS)) 9101 return RHS; 9102 } 9103 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit, 9104 AllowPredicates); 9105 if (EL.hasAnyInfo()) 9106 return EL; 9107 break; 9108 } 9109 case ICmpInst::ICMP_EQ: { // while (X == Y) 9110 // Convert to: while (X-Y == 0) 9111 if (LHS->getType()->isPointerTy()) { 9112 LHS = getLosslessPtrToIntExpr(LHS); 9113 if (isa<SCEVCouldNotCompute>(LHS)) 9114 return LHS; 9115 } 9116 if (RHS->getType()->isPointerTy()) { 9117 RHS = getLosslessPtrToIntExpr(RHS); 9118 if (isa<SCEVCouldNotCompute>(RHS)) 9119 return RHS; 9120 } 9121 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 9122 if (EL.hasAnyInfo()) return EL; 9123 break; 9124 } 9125 case ICmpInst::ICMP_SLE: 9126 case ICmpInst::ICMP_ULE: 9127 // Since the loop is finite, an invariant RHS cannot include the boundary 9128 // value, otherwise it would loop forever. 9129 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9130 !isLoopInvariant(RHS, L)) 9131 break; 9132 RHS = getAddExpr(getOne(RHS->getType()), RHS); 9133 [[fallthrough]]; 9134 case ICmpInst::ICMP_SLT: 9135 case ICmpInst::ICMP_ULT: { // while (X < Y) 9136 bool IsSigned = ICmpInst::isSigned(Pred); 9137 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9138 AllowPredicates); 9139 if (EL.hasAnyInfo()) 9140 return EL; 9141 break; 9142 } 9143 case ICmpInst::ICMP_SGE: 9144 case ICmpInst::ICMP_UGE: 9145 // Since the loop is finite, an invariant RHS cannot include the boundary 9146 // value, otherwise it would loop forever. 9147 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9148 !isLoopInvariant(RHS, L)) 9149 break; 9150 RHS = getAddExpr(getMinusOne(RHS->getType()), RHS); 9151 [[fallthrough]]; 9152 case ICmpInst::ICMP_SGT: 9153 case ICmpInst::ICMP_UGT: { // while (X > Y) 9154 bool IsSigned = ICmpInst::isSigned(Pred); 9155 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9156 AllowPredicates); 9157 if (EL.hasAnyInfo()) 9158 return EL; 9159 break; 9160 } 9161 default: 9162 break; 9163 } 9164 9165 return getCouldNotCompute(); 9166 } 9167 9168 ScalarEvolution::ExitLimit 9169 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 9170 SwitchInst *Switch, 9171 BasicBlock *ExitingBlock, 9172 bool ControlsOnlyExit) { 9173 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 9174 9175 // Give up if the exit is the default dest of a switch. 9176 if (Switch->getDefaultDest() == ExitingBlock) 9177 return getCouldNotCompute(); 9178 9179 assert(L->contains(Switch->getDefaultDest()) && 9180 "Default case must not exit the loop!"); 9181 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 9182 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 9183 9184 // while (X != Y) --> while (X-Y != 0) 9185 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit); 9186 if (EL.hasAnyInfo()) 9187 return EL; 9188 9189 return getCouldNotCompute(); 9190 } 9191 9192 static ConstantInt * 9193 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9194 ScalarEvolution &SE) { 9195 const SCEV *InVal = SE.getConstant(C); 9196 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9197 assert(isa<SCEVConstant>(Val) && 9198 "Evaluation of SCEV at constant didn't fold correctly?"); 9199 return cast<SCEVConstant>(Val)->getValue(); 9200 } 9201 9202 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9203 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9204 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9205 if (!RHS) 9206 return getCouldNotCompute(); 9207 9208 const BasicBlock *Latch = L->getLoopLatch(); 9209 if (!Latch) 9210 return getCouldNotCompute(); 9211 9212 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9213 if (!Predecessor) 9214 return getCouldNotCompute(); 9215 9216 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9217 // Return LHS in OutLHS and shift_opt in OutOpCode. 9218 auto MatchPositiveShift = 9219 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9220 9221 using namespace PatternMatch; 9222 9223 ConstantInt *ShiftAmt; 9224 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9225 OutOpCode = Instruction::LShr; 9226 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9227 OutOpCode = Instruction::AShr; 9228 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9229 OutOpCode = Instruction::Shl; 9230 else 9231 return false; 9232 9233 return ShiftAmt->getValue().isStrictlyPositive(); 9234 }; 9235 9236 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9237 // 9238 // loop: 9239 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9240 // %iv.shifted = lshr i32 %iv, <positive constant> 9241 // 9242 // Return true on a successful match. Return the corresponding PHI node (%iv 9243 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9244 auto MatchShiftRecurrence = 9245 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9246 std::optional<Instruction::BinaryOps> PostShiftOpCode; 9247 9248 { 9249 Instruction::BinaryOps OpC; 9250 Value *V; 9251 9252 // If we encounter a shift instruction, "peel off" the shift operation, 9253 // and remember that we did so. Later when we inspect %iv's backedge 9254 // value, we will make sure that the backedge value uses the same 9255 // operation. 9256 // 9257 // Note: the peeled shift operation does not have to be the same 9258 // instruction as the one feeding into the PHI's backedge value. We only 9259 // really care about it being the same *kind* of shift instruction -- 9260 // that's all that is required for our later inferences to hold. 9261 if (MatchPositiveShift(LHS, V, OpC)) { 9262 PostShiftOpCode = OpC; 9263 LHS = V; 9264 } 9265 } 9266 9267 PNOut = dyn_cast<PHINode>(LHS); 9268 if (!PNOut || PNOut->getParent() != L->getHeader()) 9269 return false; 9270 9271 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9272 Value *OpLHS; 9273 9274 return 9275 // The backedge value for the PHI node must be a shift by a positive 9276 // amount 9277 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9278 9279 // of the PHI node itself 9280 OpLHS == PNOut && 9281 9282 // and the kind of shift should be match the kind of shift we peeled 9283 // off, if any. 9284 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9285 }; 9286 9287 PHINode *PN; 9288 Instruction::BinaryOps OpCode; 9289 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9290 return getCouldNotCompute(); 9291 9292 const DataLayout &DL = getDataLayout(); 9293 9294 // The key rationale for this optimization is that for some kinds of shift 9295 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9296 // within a finite number of iterations. If the condition guarding the 9297 // backedge (in the sense that the backedge is taken if the condition is true) 9298 // is false for the value the shift recurrence stabilizes to, then we know 9299 // that the backedge is taken only a finite number of times. 9300 9301 ConstantInt *StableValue = nullptr; 9302 switch (OpCode) { 9303 default: 9304 llvm_unreachable("Impossible case!"); 9305 9306 case Instruction::AShr: { 9307 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9308 // bitwidth(K) iterations. 9309 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9310 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9311 Predecessor->getTerminator(), &DT); 9312 auto *Ty = cast<IntegerType>(RHS->getType()); 9313 if (Known.isNonNegative()) 9314 StableValue = ConstantInt::get(Ty, 0); 9315 else if (Known.isNegative()) 9316 StableValue = ConstantInt::get(Ty, -1, true); 9317 else 9318 return getCouldNotCompute(); 9319 9320 break; 9321 } 9322 case Instruction::LShr: 9323 case Instruction::Shl: 9324 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9325 // stabilize to 0 in at most bitwidth(K) iterations. 9326 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9327 break; 9328 } 9329 9330 auto *Result = 9331 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9332 assert(Result->getType()->isIntegerTy(1) && 9333 "Otherwise cannot be an operand to a branch instruction"); 9334 9335 if (Result->isZeroValue()) { 9336 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9337 const SCEV *UpperBound = 9338 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9339 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); 9340 } 9341 9342 return getCouldNotCompute(); 9343 } 9344 9345 /// Return true if we can constant fold an instruction of the specified type, 9346 /// assuming that all operands were constants. 9347 static bool CanConstantFold(const Instruction *I) { 9348 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9349 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9350 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9351 return true; 9352 9353 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9354 if (const Function *F = CI->getCalledFunction()) 9355 return canConstantFoldCallTo(CI, F); 9356 return false; 9357 } 9358 9359 /// Determine whether this instruction can constant evolve within this loop 9360 /// assuming its operands can all constant evolve. 9361 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9362 // An instruction outside of the loop can't be derived from a loop PHI. 9363 if (!L->contains(I)) return false; 9364 9365 if (isa<PHINode>(I)) { 9366 // We don't currently keep track of the control flow needed to evaluate 9367 // PHIs, so we cannot handle PHIs inside of loops. 9368 return L->getHeader() == I->getParent(); 9369 } 9370 9371 // If we won't be able to constant fold this expression even if the operands 9372 // are constants, bail early. 9373 return CanConstantFold(I); 9374 } 9375 9376 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9377 /// recursing through each instruction operand until reaching a loop header phi. 9378 static PHINode * 9379 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9380 DenseMap<Instruction *, PHINode *> &PHIMap, 9381 unsigned Depth) { 9382 if (Depth > MaxConstantEvolvingDepth) 9383 return nullptr; 9384 9385 // Otherwise, we can evaluate this instruction if all of its operands are 9386 // constant or derived from a PHI node themselves. 9387 PHINode *PHI = nullptr; 9388 for (Value *Op : UseInst->operands()) { 9389 if (isa<Constant>(Op)) continue; 9390 9391 Instruction *OpInst = dyn_cast<Instruction>(Op); 9392 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9393 9394 PHINode *P = dyn_cast<PHINode>(OpInst); 9395 if (!P) 9396 // If this operand is already visited, reuse the prior result. 9397 // We may have P != PHI if this is the deepest point at which the 9398 // inconsistent paths meet. 9399 P = PHIMap.lookup(OpInst); 9400 if (!P) { 9401 // Recurse and memoize the results, whether a phi is found or not. 9402 // This recursive call invalidates pointers into PHIMap. 9403 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9404 PHIMap[OpInst] = P; 9405 } 9406 if (!P) 9407 return nullptr; // Not evolving from PHI 9408 if (PHI && PHI != P) 9409 return nullptr; // Evolving from multiple different PHIs. 9410 PHI = P; 9411 } 9412 // This is a expression evolving from a constant PHI! 9413 return PHI; 9414 } 9415 9416 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9417 /// in the loop that V is derived from. We allow arbitrary operations along the 9418 /// way, but the operands of an operation must either be constants or a value 9419 /// derived from a constant PHI. If this expression does not fit with these 9420 /// constraints, return null. 9421 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9422 Instruction *I = dyn_cast<Instruction>(V); 9423 if (!I || !canConstantEvolve(I, L)) return nullptr; 9424 9425 if (PHINode *PN = dyn_cast<PHINode>(I)) 9426 return PN; 9427 9428 // Record non-constant instructions contained by the loop. 9429 DenseMap<Instruction *, PHINode *> PHIMap; 9430 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9431 } 9432 9433 /// EvaluateExpression - Given an expression that passes the 9434 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9435 /// in the loop has the value PHIVal. If we can't fold this expression for some 9436 /// reason, return null. 9437 static Constant *EvaluateExpression(Value *V, const Loop *L, 9438 DenseMap<Instruction *, Constant *> &Vals, 9439 const DataLayout &DL, 9440 const TargetLibraryInfo *TLI) { 9441 // Convenient constant check, but redundant for recursive calls. 9442 if (Constant *C = dyn_cast<Constant>(V)) return C; 9443 Instruction *I = dyn_cast<Instruction>(V); 9444 if (!I) return nullptr; 9445 9446 if (Constant *C = Vals.lookup(I)) return C; 9447 9448 // An instruction inside the loop depends on a value outside the loop that we 9449 // weren't given a mapping for, or a value such as a call inside the loop. 9450 if (!canConstantEvolve(I, L)) return nullptr; 9451 9452 // An unmapped PHI can be due to a branch or another loop inside this loop, 9453 // or due to this not being the initial iteration through a loop where we 9454 // couldn't compute the evolution of this particular PHI last time. 9455 if (isa<PHINode>(I)) return nullptr; 9456 9457 std::vector<Constant*> Operands(I->getNumOperands()); 9458 9459 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9460 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9461 if (!Operand) { 9462 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9463 if (!Operands[i]) return nullptr; 9464 continue; 9465 } 9466 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9467 Vals[Operand] = C; 9468 if (!C) return nullptr; 9469 Operands[i] = C; 9470 } 9471 9472 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9473 } 9474 9475 9476 // If every incoming value to PN except the one for BB is a specific Constant, 9477 // return that, else return nullptr. 9478 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9479 Constant *IncomingVal = nullptr; 9480 9481 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9482 if (PN->getIncomingBlock(i) == BB) 9483 continue; 9484 9485 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9486 if (!CurrentVal) 9487 return nullptr; 9488 9489 if (IncomingVal != CurrentVal) { 9490 if (IncomingVal) 9491 return nullptr; 9492 IncomingVal = CurrentVal; 9493 } 9494 } 9495 9496 return IncomingVal; 9497 } 9498 9499 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9500 /// in the header of its containing loop, we know the loop executes a 9501 /// constant number of times, and the PHI node is just a recurrence 9502 /// involving constants, fold it. 9503 Constant * 9504 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9505 const APInt &BEs, 9506 const Loop *L) { 9507 auto I = ConstantEvolutionLoopExitValue.find(PN); 9508 if (I != ConstantEvolutionLoopExitValue.end()) 9509 return I->second; 9510 9511 if (BEs.ugt(MaxBruteForceIterations)) 9512 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9513 9514 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9515 9516 DenseMap<Instruction *, Constant *> CurrentIterVals; 9517 BasicBlock *Header = L->getHeader(); 9518 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9519 9520 BasicBlock *Latch = L->getLoopLatch(); 9521 if (!Latch) 9522 return nullptr; 9523 9524 for (PHINode &PHI : Header->phis()) { 9525 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9526 CurrentIterVals[&PHI] = StartCST; 9527 } 9528 if (!CurrentIterVals.count(PN)) 9529 return RetVal = nullptr; 9530 9531 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9532 9533 // Execute the loop symbolically to determine the exit value. 9534 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9535 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9536 9537 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9538 unsigned IterationNum = 0; 9539 const DataLayout &DL = getDataLayout(); 9540 for (; ; ++IterationNum) { 9541 if (IterationNum == NumIterations) 9542 return RetVal = CurrentIterVals[PN]; // Got exit value! 9543 9544 // Compute the value of the PHIs for the next iteration. 9545 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9546 DenseMap<Instruction *, Constant *> NextIterVals; 9547 Constant *NextPHI = 9548 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9549 if (!NextPHI) 9550 return nullptr; // Couldn't evaluate! 9551 NextIterVals[PN] = NextPHI; 9552 9553 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9554 9555 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9556 // cease to be able to evaluate one of them or if they stop evolving, 9557 // because that doesn't necessarily prevent us from computing PN. 9558 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9559 for (const auto &I : CurrentIterVals) { 9560 PHINode *PHI = dyn_cast<PHINode>(I.first); 9561 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9562 PHIsToCompute.emplace_back(PHI, I.second); 9563 } 9564 // We use two distinct loops because EvaluateExpression may invalidate any 9565 // iterators into CurrentIterVals. 9566 for (const auto &I : PHIsToCompute) { 9567 PHINode *PHI = I.first; 9568 Constant *&NextPHI = NextIterVals[PHI]; 9569 if (!NextPHI) { // Not already computed. 9570 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9571 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9572 } 9573 if (NextPHI != I.second) 9574 StoppedEvolving = false; 9575 } 9576 9577 // If all entries in CurrentIterVals == NextIterVals then we can stop 9578 // iterating, the loop can't continue to change. 9579 if (StoppedEvolving) 9580 return RetVal = CurrentIterVals[PN]; 9581 9582 CurrentIterVals.swap(NextIterVals); 9583 } 9584 } 9585 9586 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9587 Value *Cond, 9588 bool ExitWhen) { 9589 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9590 if (!PN) return getCouldNotCompute(); 9591 9592 // If the loop is canonicalized, the PHI will have exactly two entries. 9593 // That's the only form we support here. 9594 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9595 9596 DenseMap<Instruction *, Constant *> CurrentIterVals; 9597 BasicBlock *Header = L->getHeader(); 9598 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9599 9600 BasicBlock *Latch = L->getLoopLatch(); 9601 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9602 9603 for (PHINode &PHI : Header->phis()) { 9604 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9605 CurrentIterVals[&PHI] = StartCST; 9606 } 9607 if (!CurrentIterVals.count(PN)) 9608 return getCouldNotCompute(); 9609 9610 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9611 // the loop symbolically to determine when the condition gets a value of 9612 // "ExitWhen". 9613 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9614 const DataLayout &DL = getDataLayout(); 9615 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9616 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9617 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9618 9619 // Couldn't symbolically evaluate. 9620 if (!CondVal) return getCouldNotCompute(); 9621 9622 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9623 ++NumBruteForceTripCountsComputed; 9624 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9625 } 9626 9627 // Update all the PHI nodes for the next iteration. 9628 DenseMap<Instruction *, Constant *> NextIterVals; 9629 9630 // Create a list of which PHIs we need to compute. We want to do this before 9631 // calling EvaluateExpression on them because that may invalidate iterators 9632 // into CurrentIterVals. 9633 SmallVector<PHINode *, 8> PHIsToCompute; 9634 for (const auto &I : CurrentIterVals) { 9635 PHINode *PHI = dyn_cast<PHINode>(I.first); 9636 if (!PHI || PHI->getParent() != Header) continue; 9637 PHIsToCompute.push_back(PHI); 9638 } 9639 for (PHINode *PHI : PHIsToCompute) { 9640 Constant *&NextPHI = NextIterVals[PHI]; 9641 if (NextPHI) continue; // Already computed! 9642 9643 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9644 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9645 } 9646 CurrentIterVals.swap(NextIterVals); 9647 } 9648 9649 // Too many iterations were needed to evaluate. 9650 return getCouldNotCompute(); 9651 } 9652 9653 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9654 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9655 ValuesAtScopes[V]; 9656 // Check to see if we've folded this expression at this loop before. 9657 for (auto &LS : Values) 9658 if (LS.first == L) 9659 return LS.second ? LS.second : V; 9660 9661 Values.emplace_back(L, nullptr); 9662 9663 // Otherwise compute it. 9664 const SCEV *C = computeSCEVAtScope(V, L); 9665 for (auto &LS : reverse(ValuesAtScopes[V])) 9666 if (LS.first == L) { 9667 LS.second = C; 9668 if (!isa<SCEVConstant>(C)) 9669 ValuesAtScopesUsers[C].push_back({L, V}); 9670 break; 9671 } 9672 return C; 9673 } 9674 9675 /// This builds up a Constant using the ConstantExpr interface. That way, we 9676 /// will return Constants for objects which aren't represented by a 9677 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9678 /// Returns NULL if the SCEV isn't representable as a Constant. 9679 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9680 switch (V->getSCEVType()) { 9681 case scCouldNotCompute: 9682 case scAddRecExpr: 9683 case scVScale: 9684 return nullptr; 9685 case scConstant: 9686 return cast<SCEVConstant>(V)->getValue(); 9687 case scUnknown: 9688 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9689 case scPtrToInt: { 9690 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9691 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9692 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9693 9694 return nullptr; 9695 } 9696 case scTruncate: { 9697 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9698 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9699 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9700 return nullptr; 9701 } 9702 case scAddExpr: { 9703 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9704 Constant *C = nullptr; 9705 for (const SCEV *Op : SA->operands()) { 9706 Constant *OpC = BuildConstantFromSCEV(Op); 9707 if (!OpC) 9708 return nullptr; 9709 if (!C) { 9710 C = OpC; 9711 continue; 9712 } 9713 assert(!C->getType()->isPointerTy() && 9714 "Can only have one pointer, and it must be last"); 9715 if (OpC->getType()->isPointerTy()) { 9716 // The offsets have been converted to bytes. We can add bytes using 9717 // an i8 GEP. 9718 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9719 OpC, C); 9720 } else { 9721 C = ConstantExpr::getAdd(C, OpC); 9722 } 9723 } 9724 return C; 9725 } 9726 case scMulExpr: 9727 case scSignExtend: 9728 case scZeroExtend: 9729 case scUDivExpr: 9730 case scSMaxExpr: 9731 case scUMaxExpr: 9732 case scSMinExpr: 9733 case scUMinExpr: 9734 case scSequentialUMinExpr: 9735 return nullptr; 9736 } 9737 llvm_unreachable("Unknown SCEV kind!"); 9738 } 9739 9740 const SCEV * 9741 ScalarEvolution::getWithOperands(const SCEV *S, 9742 SmallVectorImpl<const SCEV *> &NewOps) { 9743 switch (S->getSCEVType()) { 9744 case scTruncate: 9745 case scZeroExtend: 9746 case scSignExtend: 9747 case scPtrToInt: 9748 return getCastExpr(S->getSCEVType(), NewOps[0], S->getType()); 9749 case scAddRecExpr: { 9750 auto *AddRec = cast<SCEVAddRecExpr>(S); 9751 return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags()); 9752 } 9753 case scAddExpr: 9754 return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags()); 9755 case scMulExpr: 9756 return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags()); 9757 case scUDivExpr: 9758 return getUDivExpr(NewOps[0], NewOps[1]); 9759 case scUMaxExpr: 9760 case scSMaxExpr: 9761 case scUMinExpr: 9762 case scSMinExpr: 9763 return getMinMaxExpr(S->getSCEVType(), NewOps); 9764 case scSequentialUMinExpr: 9765 return getSequentialMinMaxExpr(S->getSCEVType(), NewOps); 9766 case scConstant: 9767 case scVScale: 9768 case scUnknown: 9769 return S; 9770 case scCouldNotCompute: 9771 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9772 } 9773 llvm_unreachable("Unknown SCEV kind!"); 9774 } 9775 9776 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9777 switch (V->getSCEVType()) { 9778 case scConstant: 9779 case scVScale: 9780 return V; 9781 case scAddRecExpr: { 9782 // If this is a loop recurrence for a loop that does not contain L, then we 9783 // are dealing with the final value computed by the loop. 9784 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); 9785 // First, attempt to evaluate each operand. 9786 // Avoid performing the look-up in the common case where the specified 9787 // expression has no loop-variant portions. 9788 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9789 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9790 if (OpAtScope == AddRec->getOperand(i)) 9791 continue; 9792 9793 // Okay, at least one of these operands is loop variant but might be 9794 // foldable. Build a new instance of the folded commutative expression. 9795 SmallVector<const SCEV *, 8> NewOps; 9796 NewOps.reserve(AddRec->getNumOperands()); 9797 append_range(NewOps, AddRec->operands().take_front(i)); 9798 NewOps.push_back(OpAtScope); 9799 for (++i; i != e; ++i) 9800 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9801 9802 const SCEV *FoldedRec = getAddRecExpr( 9803 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); 9804 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9805 // The addrec may be folded to a nonrecurrence, for example, if the 9806 // induction variable is multiplied by zero after constant folding. Go 9807 // ahead and return the folded value. 9808 if (!AddRec) 9809 return FoldedRec; 9810 break; 9811 } 9812 9813 // If the scope is outside the addrec's loop, evaluate it by using the 9814 // loop exit value of the addrec. 9815 if (!AddRec->getLoop()->contains(L)) { 9816 // To evaluate this recurrence, we need to know how many times the AddRec 9817 // loop iterates. Compute this now. 9818 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9819 if (BackedgeTakenCount == getCouldNotCompute()) 9820 return AddRec; 9821 9822 // Then, evaluate the AddRec. 9823 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9824 } 9825 9826 return AddRec; 9827 } 9828 case scTruncate: 9829 case scZeroExtend: 9830 case scSignExtend: 9831 case scPtrToInt: 9832 case scAddExpr: 9833 case scMulExpr: 9834 case scUDivExpr: 9835 case scUMaxExpr: 9836 case scSMaxExpr: 9837 case scUMinExpr: 9838 case scSMinExpr: 9839 case scSequentialUMinExpr: { 9840 ArrayRef<const SCEV *> Ops = V->operands(); 9841 // Avoid performing the look-up in the common case where the specified 9842 // expression has no loop-variant portions. 9843 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 9844 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); 9845 if (OpAtScope != Ops[i]) { 9846 // Okay, at least one of these operands is loop variant but might be 9847 // foldable. Build a new instance of the folded commutative expression. 9848 SmallVector<const SCEV *, 8> NewOps; 9849 NewOps.reserve(Ops.size()); 9850 append_range(NewOps, Ops.take_front(i)); 9851 NewOps.push_back(OpAtScope); 9852 9853 for (++i; i != e; ++i) { 9854 OpAtScope = getSCEVAtScope(Ops[i], L); 9855 NewOps.push_back(OpAtScope); 9856 } 9857 9858 return getWithOperands(V, NewOps); 9859 } 9860 } 9861 // If we got here, all operands are loop invariant. 9862 return V; 9863 } 9864 case scUnknown: { 9865 // If this instruction is evolved from a constant-evolving PHI, compute the 9866 // exit value from the loop without using SCEVs. 9867 const SCEVUnknown *SU = cast<SCEVUnknown>(V); 9868 Instruction *I = dyn_cast<Instruction>(SU->getValue()); 9869 if (!I) 9870 return V; // This is some other type of SCEVUnknown, just return it. 9871 9872 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9873 const Loop *CurrLoop = this->LI[I->getParent()]; 9874 // Looking for loop exit value. 9875 if (CurrLoop && CurrLoop->getParentLoop() == L && 9876 PN->getParent() == CurrLoop->getHeader()) { 9877 // Okay, there is no closed form solution for the PHI node. Check 9878 // to see if the loop that contains it has a known backedge-taken 9879 // count. If so, we may be able to force computation of the exit 9880 // value. 9881 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9882 // This trivial case can show up in some degenerate cases where 9883 // the incoming IR has not yet been fully simplified. 9884 if (BackedgeTakenCount->isZero()) { 9885 Value *InitValue = nullptr; 9886 bool MultipleInitValues = false; 9887 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9888 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9889 if (!InitValue) 9890 InitValue = PN->getIncomingValue(i); 9891 else if (InitValue != PN->getIncomingValue(i)) { 9892 MultipleInitValues = true; 9893 break; 9894 } 9895 } 9896 } 9897 if (!MultipleInitValues && InitValue) 9898 return getSCEV(InitValue); 9899 } 9900 // Do we have a loop invariant value flowing around the backedge 9901 // for a loop which must execute the backedge? 9902 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9903 isKnownNonZero(BackedgeTakenCount) && 9904 PN->getNumIncomingValues() == 2) { 9905 9906 unsigned InLoopPred = 9907 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9908 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9909 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9910 return getSCEV(BackedgeVal); 9911 } 9912 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9913 // Okay, we know how many times the containing loop executes. If 9914 // this is a constant evolving PHI node, get the final value at 9915 // the specified iteration number. 9916 Constant *RV = 9917 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); 9918 if (RV) 9919 return getSCEV(RV); 9920 } 9921 } 9922 } 9923 9924 // Okay, this is an expression that we cannot symbolically evaluate 9925 // into a SCEV. Check to see if it's possible to symbolically evaluate 9926 // the arguments into constants, and if so, try to constant propagate the 9927 // result. This is particularly useful for computing loop exit values. 9928 if (!CanConstantFold(I)) 9929 return V; // This is some other type of SCEVUnknown, just return it. 9930 9931 SmallVector<Constant *, 4> Operands; 9932 Operands.reserve(I->getNumOperands()); 9933 bool MadeImprovement = false; 9934 for (Value *Op : I->operands()) { 9935 if (Constant *C = dyn_cast<Constant>(Op)) { 9936 Operands.push_back(C); 9937 continue; 9938 } 9939 9940 // If any of the operands is non-constant and if they are 9941 // non-integer and non-pointer, don't even try to analyze them 9942 // with scev techniques. 9943 if (!isSCEVable(Op->getType())) 9944 return V; 9945 9946 const SCEV *OrigV = getSCEV(Op); 9947 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9948 MadeImprovement |= OrigV != OpV; 9949 9950 Constant *C = BuildConstantFromSCEV(OpV); 9951 if (!C) 9952 return V; 9953 assert(C->getType() == Op->getType() && "Type mismatch"); 9954 Operands.push_back(C); 9955 } 9956 9957 // Check to see if getSCEVAtScope actually made an improvement. 9958 if (!MadeImprovement) 9959 return V; // This is some other type of SCEVUnknown, just return it. 9960 9961 Constant *C = nullptr; 9962 const DataLayout &DL = getDataLayout(); 9963 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9964 if (!C) 9965 return V; 9966 return getSCEV(C); 9967 } 9968 case scCouldNotCompute: 9969 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9970 } 9971 llvm_unreachable("Unknown SCEV type!"); 9972 } 9973 9974 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9975 return getSCEVAtScope(getSCEV(V), L); 9976 } 9977 9978 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9979 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9980 return stripInjectiveFunctions(ZExt->getOperand()); 9981 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9982 return stripInjectiveFunctions(SExt->getOperand()); 9983 return S; 9984 } 9985 9986 /// Finds the minimum unsigned root of the following equation: 9987 /// 9988 /// A * X = B (mod N) 9989 /// 9990 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9991 /// A and B isn't important. 9992 /// 9993 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9994 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9995 ScalarEvolution &SE) { 9996 uint32_t BW = A.getBitWidth(); 9997 assert(BW == SE.getTypeSizeInBits(B->getType())); 9998 assert(A != 0 && "A must be non-zero."); 9999 10000 // 1. D = gcd(A, N) 10001 // 10002 // The gcd of A and N may have only one prime factor: 2. The number of 10003 // trailing zeros in A is its multiplicity 10004 uint32_t Mult2 = A.countr_zero(); 10005 // D = 2^Mult2 10006 10007 // 2. Check if B is divisible by D. 10008 // 10009 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 10010 // is not less than multiplicity of this prime factor for D. 10011 if (SE.getMinTrailingZeros(B) < Mult2) 10012 return SE.getCouldNotCompute(); 10013 10014 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 10015 // modulo (N / D). 10016 // 10017 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 10018 // (N / D) in general. The inverse itself always fits into BW bits, though, 10019 // so we immediately truncate it. 10020 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 10021 APInt Mod(BW + 1, 0); 10022 Mod.setBit(BW - Mult2); // Mod = N / D 10023 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 10024 10025 // 4. Compute the minimum unsigned root of the equation: 10026 // I * (B / D) mod (N / D) 10027 // To simplify the computation, we factor out the divide by D: 10028 // (I * B mod N) / D 10029 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 10030 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 10031 } 10032 10033 /// For a given quadratic addrec, generate coefficients of the corresponding 10034 /// quadratic equation, multiplied by a common value to ensure that they are 10035 /// integers. 10036 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 10037 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 10038 /// were multiplied by, and BitWidth is the bit width of the original addrec 10039 /// coefficients. 10040 /// This function returns std::nullopt if the addrec coefficients are not 10041 /// compile- time constants. 10042 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 10043 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 10044 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 10045 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 10046 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 10047 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 10048 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 10049 << *AddRec << '\n'); 10050 10051 // We currently can only solve this if the coefficients are constants. 10052 if (!LC || !MC || !NC) { 10053 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 10054 return std::nullopt; 10055 } 10056 10057 APInt L = LC->getAPInt(); 10058 APInt M = MC->getAPInt(); 10059 APInt N = NC->getAPInt(); 10060 assert(!N.isZero() && "This is not a quadratic addrec"); 10061 10062 unsigned BitWidth = LC->getAPInt().getBitWidth(); 10063 unsigned NewWidth = BitWidth + 1; 10064 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 10065 << BitWidth << '\n'); 10066 // The sign-extension (as opposed to a zero-extension) here matches the 10067 // extension used in SolveQuadraticEquationWrap (with the same motivation). 10068 N = N.sext(NewWidth); 10069 M = M.sext(NewWidth); 10070 L = L.sext(NewWidth); 10071 10072 // The increments are M, M+N, M+2N, ..., so the accumulated values are 10073 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 10074 // L+M, L+2M+N, L+3M+3N, ... 10075 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 10076 // 10077 // The equation Acc = 0 is then 10078 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 10079 // In a quadratic form it becomes: 10080 // N n^2 + (2M-N) n + 2L = 0. 10081 10082 APInt A = N; 10083 APInt B = 2 * M - A; 10084 APInt C = 2 * L; 10085 APInt T = APInt(NewWidth, 2); 10086 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 10087 << "x + " << C << ", coeff bw: " << NewWidth 10088 << ", multiplied by " << T << '\n'); 10089 return std::make_tuple(A, B, C, T, BitWidth); 10090 } 10091 10092 /// Helper function to compare optional APInts: 10093 /// (a) if X and Y both exist, return min(X, Y), 10094 /// (b) if neither X nor Y exist, return std::nullopt, 10095 /// (c) if exactly one of X and Y exists, return that value. 10096 static std::optional<APInt> MinOptional(std::optional<APInt> X, 10097 std::optional<APInt> Y) { 10098 if (X && Y) { 10099 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 10100 APInt XW = X->sext(W); 10101 APInt YW = Y->sext(W); 10102 return XW.slt(YW) ? *X : *Y; 10103 } 10104 if (!X && !Y) 10105 return std::nullopt; 10106 return X ? *X : *Y; 10107 } 10108 10109 /// Helper function to truncate an optional APInt to a given BitWidth. 10110 /// When solving addrec-related equations, it is preferable to return a value 10111 /// that has the same bit width as the original addrec's coefficients. If the 10112 /// solution fits in the original bit width, truncate it (except for i1). 10113 /// Returning a value of a different bit width may inhibit some optimizations. 10114 /// 10115 /// In general, a solution to a quadratic equation generated from an addrec 10116 /// may require BW+1 bits, where BW is the bit width of the addrec's 10117 /// coefficients. The reason is that the coefficients of the quadratic 10118 /// equation are BW+1 bits wide (to avoid truncation when converting from 10119 /// the addrec to the equation). 10120 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, 10121 unsigned BitWidth) { 10122 if (!X) 10123 return std::nullopt; 10124 unsigned W = X->getBitWidth(); 10125 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 10126 return X->trunc(BitWidth); 10127 return X; 10128 } 10129 10130 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 10131 /// iterations. The values L, M, N are assumed to be signed, and they 10132 /// should all have the same bit widths. 10133 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 10134 /// where BW is the bit width of the addrec's coefficients. 10135 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 10136 /// returned as such, otherwise the bit width of the returned value may 10137 /// be greater than BW. 10138 /// 10139 /// This function returns std::nullopt if 10140 /// (a) the addrec coefficients are not constant, or 10141 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 10142 /// like x^2 = 5, no integer solutions exist, in other cases an integer 10143 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 10144 static std::optional<APInt> 10145 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 10146 APInt A, B, C, M; 10147 unsigned BitWidth; 10148 auto T = GetQuadraticEquation(AddRec); 10149 if (!T) 10150 return std::nullopt; 10151 10152 std::tie(A, B, C, M, BitWidth) = *T; 10153 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 10154 std::optional<APInt> X = 10155 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); 10156 if (!X) 10157 return std::nullopt; 10158 10159 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 10160 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 10161 if (!V->isZero()) 10162 return std::nullopt; 10163 10164 return TruncIfPossible(X, BitWidth); 10165 } 10166 10167 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 10168 /// iterations. The values M, N are assumed to be signed, and they 10169 /// should all have the same bit widths. 10170 /// Find the least n such that c(n) does not belong to the given range, 10171 /// while c(n-1) does. 10172 /// 10173 /// This function returns std::nullopt if 10174 /// (a) the addrec coefficients are not constant, or 10175 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 10176 /// bounds of the range. 10177 static std::optional<APInt> 10178 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 10179 const ConstantRange &Range, ScalarEvolution &SE) { 10180 assert(AddRec->getOperand(0)->isZero() && 10181 "Starting value of addrec should be 0"); 10182 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 10183 << Range << ", addrec " << *AddRec << '\n'); 10184 // This case is handled in getNumIterationsInRange. Here we can assume that 10185 // we start in the range. 10186 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 10187 "Addrec's initial value should be in range"); 10188 10189 APInt A, B, C, M; 10190 unsigned BitWidth; 10191 auto T = GetQuadraticEquation(AddRec); 10192 if (!T) 10193 return std::nullopt; 10194 10195 // Be careful about the return value: there can be two reasons for not 10196 // returning an actual number. First, if no solutions to the equations 10197 // were found, and second, if the solutions don't leave the given range. 10198 // The first case means that the actual solution is "unknown", the second 10199 // means that it's known, but not valid. If the solution is unknown, we 10200 // cannot make any conclusions. 10201 // Return a pair: the optional solution and a flag indicating if the 10202 // solution was found. 10203 auto SolveForBoundary = 10204 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { 10205 // Solve for signed overflow and unsigned overflow, pick the lower 10206 // solution. 10207 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10208 << Bound << " (before multiplying by " << M << ")\n"); 10209 Bound *= M; // The quadratic equation multiplier. 10210 10211 std::optional<APInt> SO; 10212 if (BitWidth > 1) { 10213 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10214 "signed overflow\n"); 10215 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10216 } 10217 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10218 "unsigned overflow\n"); 10219 std::optional<APInt> UO = 10220 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); 10221 10222 auto LeavesRange = [&] (const APInt &X) { 10223 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10224 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10225 if (Range.contains(V0->getValue())) 10226 return false; 10227 // X should be at least 1, so X-1 is non-negative. 10228 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10229 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10230 if (Range.contains(V1->getValue())) 10231 return true; 10232 return false; 10233 }; 10234 10235 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there 10236 // can be a solution, but the function failed to find it. We cannot treat it 10237 // as "no solution". 10238 if (!SO || !UO) 10239 return {std::nullopt, false}; 10240 10241 // Check the smaller value first to see if it leaves the range. 10242 // At this point, both SO and UO must have values. 10243 std::optional<APInt> Min = MinOptional(SO, UO); 10244 if (LeavesRange(*Min)) 10245 return { Min, true }; 10246 std::optional<APInt> Max = Min == SO ? UO : SO; 10247 if (LeavesRange(*Max)) 10248 return { Max, true }; 10249 10250 // Solutions were found, but were eliminated, hence the "true". 10251 return {std::nullopt, true}; 10252 }; 10253 10254 std::tie(A, B, C, M, BitWidth) = *T; 10255 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10256 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10257 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10258 auto SL = SolveForBoundary(Lower); 10259 auto SU = SolveForBoundary(Upper); 10260 // If any of the solutions was unknown, no meaninigful conclusions can 10261 // be made. 10262 if (!SL.second || !SU.second) 10263 return std::nullopt; 10264 10265 // Claim: The correct solution is not some value between Min and Max. 10266 // 10267 // Justification: Assuming that Min and Max are different values, one of 10268 // them is when the first signed overflow happens, the other is when the 10269 // first unsigned overflow happens. Crossing the range boundary is only 10270 // possible via an overflow (treating 0 as a special case of it, modeling 10271 // an overflow as crossing k*2^W for some k). 10272 // 10273 // The interesting case here is when Min was eliminated as an invalid 10274 // solution, but Max was not. The argument is that if there was another 10275 // overflow between Min and Max, it would also have been eliminated if 10276 // it was considered. 10277 // 10278 // For a given boundary, it is possible to have two overflows of the same 10279 // type (signed/unsigned) without having the other type in between: this 10280 // can happen when the vertex of the parabola is between the iterations 10281 // corresponding to the overflows. This is only possible when the two 10282 // overflows cross k*2^W for the same k. In such case, if the second one 10283 // left the range (and was the first one to do so), the first overflow 10284 // would have to enter the range, which would mean that either we had left 10285 // the range before or that we started outside of it. Both of these cases 10286 // are contradictions. 10287 // 10288 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct 10289 // solution is not some value between the Max for this boundary and the 10290 // Min of the other boundary. 10291 // 10292 // Justification: Assume that we had such Max_A and Min_B corresponding 10293 // to range boundaries A and B and such that Max_A < Min_B. If there was 10294 // a solution between Max_A and Min_B, it would have to be caused by an 10295 // overflow corresponding to either A or B. It cannot correspond to B, 10296 // since Min_B is the first occurrence of such an overflow. If it 10297 // corresponded to A, it would have to be either a signed or an unsigned 10298 // overflow that is larger than both eliminated overflows for A. But 10299 // between the eliminated overflows and this overflow, the values would 10300 // cover the entire value space, thus crossing the other boundary, which 10301 // is a contradiction. 10302 10303 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10304 } 10305 10306 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, 10307 const Loop *L, 10308 bool ControlsOnlyExit, 10309 bool AllowPredicates) { 10310 10311 // This is only used for loops with a "x != y" exit test. The exit condition 10312 // is now expressed as a single expression, V = x-y. So the exit test is 10313 // effectively V != 0. We know and take advantage of the fact that this 10314 // expression only being used in a comparison by zero context. 10315 10316 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10317 // If the value is a constant 10318 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10319 // If the value is already zero, the branch will execute zero times. 10320 if (C->getValue()->isZero()) return C; 10321 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10322 } 10323 10324 const SCEVAddRecExpr *AddRec = 10325 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10326 10327 if (!AddRec && AllowPredicates) 10328 // Try to make this an AddRec using runtime tests, in the first X 10329 // iterations of this loop, where X is the SCEV expression found by the 10330 // algorithm below. 10331 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10332 10333 if (!AddRec || AddRec->getLoop() != L) 10334 return getCouldNotCompute(); 10335 10336 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10337 // the quadratic equation to solve it. 10338 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10339 // We can only use this value if the chrec ends up with an exact zero 10340 // value at this index. When solving for "X*X != 5", for example, we 10341 // should not accept a root of 2. 10342 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10343 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10344 return ExitLimit(R, R, R, false, Predicates); 10345 } 10346 return getCouldNotCompute(); 10347 } 10348 10349 // Otherwise we can only handle this if it is affine. 10350 if (!AddRec->isAffine()) 10351 return getCouldNotCompute(); 10352 10353 // If this is an affine expression, the execution count of this branch is 10354 // the minimum unsigned root of the following equation: 10355 // 10356 // Start + Step*N = 0 (mod 2^BW) 10357 // 10358 // equivalent to: 10359 // 10360 // Step*N = -Start (mod 2^BW) 10361 // 10362 // where BW is the common bit width of Start and Step. 10363 10364 // Get the initial value for the loop. 10365 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10366 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10367 10368 // For now we handle only constant steps. 10369 // 10370 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10371 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10372 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10373 // We have not yet seen any such cases. 10374 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10375 if (!StepC || StepC->getValue()->isZero()) 10376 return getCouldNotCompute(); 10377 10378 // For positive steps (counting up until unsigned overflow): 10379 // N = -Start/Step (as unsigned) 10380 // For negative steps (counting down to zero): 10381 // N = Start/-Step 10382 // First compute the unsigned distance from zero in the direction of Step. 10383 bool CountDown = StepC->getAPInt().isNegative(); 10384 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10385 10386 // Handle unitary steps, which cannot wraparound. 10387 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10388 // N = Distance (as unsigned) 10389 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10390 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10391 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10392 10393 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10394 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10395 // case, and see if we can improve the bound. 10396 // 10397 // Explicitly handling this here is necessary because getUnsignedRange 10398 // isn't context-sensitive; it doesn't know that we only care about the 10399 // range inside the loop. 10400 const SCEV *Zero = getZero(Distance->getType()); 10401 const SCEV *One = getOne(Distance->getType()); 10402 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10403 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10404 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10405 // as "unsigned_max(Distance + 1) - 1". 10406 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10407 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10408 } 10409 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, 10410 Predicates); 10411 } 10412 10413 // If the condition controls loop exit (the loop exits only if the expression 10414 // is true) and the addition is no-wrap we can use unsigned divide to 10415 // compute the backedge count. In this case, the step may not divide the 10416 // distance, but we don't care because if the condition is "missed" the loop 10417 // will have undefined behavior due to wrapping. 10418 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && 10419 loopHasNoAbnormalExits(AddRec->getLoop())) { 10420 const SCEV *Exact = 10421 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10422 const SCEV *ConstantMax = getCouldNotCompute(); 10423 if (Exact != getCouldNotCompute()) { 10424 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10425 ConstantMax = 10426 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10427 } 10428 const SCEV *SymbolicMax = 10429 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; 10430 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); 10431 } 10432 10433 // Solve the general equation. 10434 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10435 getNegativeSCEV(Start), *this); 10436 10437 const SCEV *M = E; 10438 if (E != getCouldNotCompute()) { 10439 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10440 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10441 } 10442 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; 10443 return ExitLimit(E, M, S, false, Predicates); 10444 } 10445 10446 ScalarEvolution::ExitLimit 10447 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10448 // Loops that look like: while (X == 0) are very strange indeed. We don't 10449 // handle them yet except for the trivial case. This could be expanded in the 10450 // future as needed. 10451 10452 // If the value is a constant, check to see if it is known to be non-zero 10453 // already. If so, the backedge will execute zero times. 10454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10455 if (!C->getValue()->isZero()) 10456 return getZero(C->getType()); 10457 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10458 } 10459 10460 // We could implement others, but I really doubt anyone writes loops like 10461 // this, and if they did, they would already be constant folded. 10462 return getCouldNotCompute(); 10463 } 10464 10465 std::pair<const BasicBlock *, const BasicBlock *> 10466 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10467 const { 10468 // If the block has a unique predecessor, then there is no path from the 10469 // predecessor to the block that does not go through the direct edge 10470 // from the predecessor to the block. 10471 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10472 return {Pred, BB}; 10473 10474 // A loop's header is defined to be a block that dominates the loop. 10475 // If the header has a unique predecessor outside the loop, it must be 10476 // a block that has exactly one successor that can reach the loop. 10477 if (const Loop *L = LI.getLoopFor(BB)) 10478 return {L->getLoopPredecessor(), L->getHeader()}; 10479 10480 return {nullptr, nullptr}; 10481 } 10482 10483 /// SCEV structural equivalence is usually sufficient for testing whether two 10484 /// expressions are equal, however for the purposes of looking for a condition 10485 /// guarding a loop, it can be useful to be a little more general, since a 10486 /// front-end may have replicated the controlling expression. 10487 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10488 // Quick check to see if they are the same SCEV. 10489 if (A == B) return true; 10490 10491 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10492 // Not all instructions that are "identical" compute the same value. For 10493 // instance, two distinct alloca instructions allocating the same type are 10494 // identical and do not read memory; but compute distinct values. 10495 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10496 }; 10497 10498 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10499 // two different instructions with the same value. Check for this case. 10500 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10501 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10502 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10503 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10504 if (ComputesEqualValues(AI, BI)) 10505 return true; 10506 10507 // Otherwise assume they may have a different value. 10508 return false; 10509 } 10510 10511 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10512 const SCEV *&LHS, const SCEV *&RHS, 10513 unsigned Depth) { 10514 bool Changed = false; 10515 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10516 // '0 != 0'. 10517 auto TrivialCase = [&](bool TriviallyTrue) { 10518 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10519 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10520 return true; 10521 }; 10522 // If we hit the max recursion limit bail out. 10523 if (Depth >= 3) 10524 return false; 10525 10526 // Canonicalize a constant to the right side. 10527 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10528 // Check for both operands constant. 10529 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10530 if (ConstantExpr::getICmp(Pred, 10531 LHSC->getValue(), 10532 RHSC->getValue())->isNullValue()) 10533 return TrivialCase(false); 10534 return TrivialCase(true); 10535 } 10536 // Otherwise swap the operands to put the constant on the right. 10537 std::swap(LHS, RHS); 10538 Pred = ICmpInst::getSwappedPredicate(Pred); 10539 Changed = true; 10540 } 10541 10542 // If we're comparing an addrec with a value which is loop-invariant in the 10543 // addrec's loop, put the addrec on the left. Also make a dominance check, 10544 // as both operands could be addrecs loop-invariant in each other's loop. 10545 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10546 const Loop *L = AR->getLoop(); 10547 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10548 std::swap(LHS, RHS); 10549 Pred = ICmpInst::getSwappedPredicate(Pred); 10550 Changed = true; 10551 } 10552 } 10553 10554 // If there's a constant operand, canonicalize comparisons with boundary 10555 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10556 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10557 const APInt &RA = RC->getAPInt(); 10558 10559 bool SimplifiedByConstantRange = false; 10560 10561 if (!ICmpInst::isEquality(Pred)) { 10562 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10563 if (ExactCR.isFullSet()) 10564 return TrivialCase(true); 10565 if (ExactCR.isEmptySet()) 10566 return TrivialCase(false); 10567 10568 APInt NewRHS; 10569 CmpInst::Predicate NewPred; 10570 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10571 ICmpInst::isEquality(NewPred)) { 10572 // We were able to convert an inequality to an equality. 10573 Pred = NewPred; 10574 RHS = getConstant(NewRHS); 10575 Changed = SimplifiedByConstantRange = true; 10576 } 10577 } 10578 10579 if (!SimplifiedByConstantRange) { 10580 switch (Pred) { 10581 default: 10582 break; 10583 case ICmpInst::ICMP_EQ: 10584 case ICmpInst::ICMP_NE: 10585 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10586 if (!RA) 10587 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10588 if (const SCEVMulExpr *ME = 10589 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10590 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10591 ME->getOperand(0)->isAllOnesValue()) { 10592 RHS = AE->getOperand(1); 10593 LHS = ME->getOperand(1); 10594 Changed = true; 10595 } 10596 break; 10597 10598 10599 // The "Should have been caught earlier!" messages refer to the fact 10600 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10601 // should have fired on the corresponding cases, and canonicalized the 10602 // check to trivial case. 10603 10604 case ICmpInst::ICMP_UGE: 10605 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10606 Pred = ICmpInst::ICMP_UGT; 10607 RHS = getConstant(RA - 1); 10608 Changed = true; 10609 break; 10610 case ICmpInst::ICMP_ULE: 10611 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10612 Pred = ICmpInst::ICMP_ULT; 10613 RHS = getConstant(RA + 1); 10614 Changed = true; 10615 break; 10616 case ICmpInst::ICMP_SGE: 10617 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10618 Pred = ICmpInst::ICMP_SGT; 10619 RHS = getConstant(RA - 1); 10620 Changed = true; 10621 break; 10622 case ICmpInst::ICMP_SLE: 10623 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10624 Pred = ICmpInst::ICMP_SLT; 10625 RHS = getConstant(RA + 1); 10626 Changed = true; 10627 break; 10628 } 10629 } 10630 } 10631 10632 // Check for obvious equality. 10633 if (HasSameValue(LHS, RHS)) { 10634 if (ICmpInst::isTrueWhenEqual(Pred)) 10635 return TrivialCase(true); 10636 if (ICmpInst::isFalseWhenEqual(Pred)) 10637 return TrivialCase(false); 10638 } 10639 10640 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10641 // adding or subtracting 1 from one of the operands. 10642 switch (Pred) { 10643 case ICmpInst::ICMP_SLE: 10644 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 10645 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10646 SCEV::FlagNSW); 10647 Pred = ICmpInst::ICMP_SLT; 10648 Changed = true; 10649 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10650 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10651 SCEV::FlagNSW); 10652 Pred = ICmpInst::ICMP_SLT; 10653 Changed = true; 10654 } 10655 break; 10656 case ICmpInst::ICMP_SGE: 10657 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 10658 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10659 SCEV::FlagNSW); 10660 Pred = ICmpInst::ICMP_SGT; 10661 Changed = true; 10662 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10663 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10664 SCEV::FlagNSW); 10665 Pred = ICmpInst::ICMP_SGT; 10666 Changed = true; 10667 } 10668 break; 10669 case ICmpInst::ICMP_ULE: 10670 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 10671 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10672 SCEV::FlagNUW); 10673 Pred = ICmpInst::ICMP_ULT; 10674 Changed = true; 10675 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10676 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10677 Pred = ICmpInst::ICMP_ULT; 10678 Changed = true; 10679 } 10680 break; 10681 case ICmpInst::ICMP_UGE: 10682 if (!getUnsignedRangeMin(RHS).isMinValue()) { 10683 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10684 Pred = ICmpInst::ICMP_UGT; 10685 Changed = true; 10686 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10687 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10688 SCEV::FlagNUW); 10689 Pred = ICmpInst::ICMP_UGT; 10690 Changed = true; 10691 } 10692 break; 10693 default: 10694 break; 10695 } 10696 10697 // TODO: More simplifications are possible here. 10698 10699 // Recursively simplify until we either hit a recursion limit or nothing 10700 // changes. 10701 if (Changed) 10702 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1); 10703 10704 return Changed; 10705 } 10706 10707 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10708 return getSignedRangeMax(S).isNegative(); 10709 } 10710 10711 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10712 return getSignedRangeMin(S).isStrictlyPositive(); 10713 } 10714 10715 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10716 return !getSignedRangeMin(S).isNegative(); 10717 } 10718 10719 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10720 return !getSignedRangeMax(S).isStrictlyPositive(); 10721 } 10722 10723 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10724 return getUnsignedRangeMin(S) != 0; 10725 } 10726 10727 std::pair<const SCEV *, const SCEV *> 10728 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10729 // Compute SCEV on entry of loop L. 10730 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10731 if (Start == getCouldNotCompute()) 10732 return { Start, Start }; 10733 // Compute post increment SCEV for loop L. 10734 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10735 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10736 return { Start, PostInc }; 10737 } 10738 10739 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10740 const SCEV *LHS, const SCEV *RHS) { 10741 // First collect all loops. 10742 SmallPtrSet<const Loop *, 8> LoopsUsed; 10743 getUsedLoops(LHS, LoopsUsed); 10744 getUsedLoops(RHS, LoopsUsed); 10745 10746 if (LoopsUsed.empty()) 10747 return false; 10748 10749 // Domination relationship must be a linear order on collected loops. 10750 #ifndef NDEBUG 10751 for (const auto *L1 : LoopsUsed) 10752 for (const auto *L2 : LoopsUsed) 10753 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10754 DT.dominates(L2->getHeader(), L1->getHeader())) && 10755 "Domination relationship is not a linear order"); 10756 #endif 10757 10758 const Loop *MDL = 10759 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10760 [&](const Loop *L1, const Loop *L2) { 10761 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10762 }); 10763 10764 // Get init and post increment value for LHS. 10765 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10766 // if LHS contains unknown non-invariant SCEV then bail out. 10767 if (SplitLHS.first == getCouldNotCompute()) 10768 return false; 10769 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10770 // Get init and post increment value for RHS. 10771 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10772 // if RHS contains unknown non-invariant SCEV then bail out. 10773 if (SplitRHS.first == getCouldNotCompute()) 10774 return false; 10775 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10776 // It is possible that init SCEV contains an invariant load but it does 10777 // not dominate MDL and is not available at MDL loop entry, so we should 10778 // check it here. 10779 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10780 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10781 return false; 10782 10783 // It seems backedge guard check is faster than entry one so in some cases 10784 // it can speed up whole estimation by short circuit 10785 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10786 SplitRHS.second) && 10787 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10788 } 10789 10790 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10791 const SCEV *LHS, const SCEV *RHS) { 10792 // Canonicalize the inputs first. 10793 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10794 10795 if (isKnownViaInduction(Pred, LHS, RHS)) 10796 return true; 10797 10798 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10799 return true; 10800 10801 // Otherwise see what can be done with some simple reasoning. 10802 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10803 } 10804 10805 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10806 const SCEV *LHS, 10807 const SCEV *RHS) { 10808 if (isKnownPredicate(Pred, LHS, RHS)) 10809 return true; 10810 if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10811 return false; 10812 return std::nullopt; 10813 } 10814 10815 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10816 const SCEV *LHS, const SCEV *RHS, 10817 const Instruction *CtxI) { 10818 // TODO: Analyze guards and assumes from Context's block. 10819 return isKnownPredicate(Pred, LHS, RHS) || 10820 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10821 } 10822 10823 std::optional<bool> 10824 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 10825 const SCEV *RHS, const Instruction *CtxI) { 10826 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10827 if (KnownWithoutContext) 10828 return KnownWithoutContext; 10829 10830 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10831 return true; 10832 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10833 ICmpInst::getInversePredicate(Pred), 10834 LHS, RHS)) 10835 return false; 10836 return std::nullopt; 10837 } 10838 10839 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10840 const SCEVAddRecExpr *LHS, 10841 const SCEV *RHS) { 10842 const Loop *L = LHS->getLoop(); 10843 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10844 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10845 } 10846 10847 std::optional<ScalarEvolution::MonotonicPredicateType> 10848 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10849 ICmpInst::Predicate Pred) { 10850 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10851 10852 #ifndef NDEBUG 10853 // Verify an invariant: inverting the predicate should turn a monotonically 10854 // increasing change to a monotonically decreasing one, and vice versa. 10855 if (Result) { 10856 auto ResultSwapped = 10857 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10858 10859 assert(*ResultSwapped != *Result && 10860 "monotonicity should flip as we flip the predicate"); 10861 } 10862 #endif 10863 10864 return Result; 10865 } 10866 10867 std::optional<ScalarEvolution::MonotonicPredicateType> 10868 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10869 ICmpInst::Predicate Pred) { 10870 // A zero step value for LHS means the induction variable is essentially a 10871 // loop invariant value. We don't really depend on the predicate actually 10872 // flipping from false to true (for increasing predicates, and the other way 10873 // around for decreasing predicates), all we care about is that *if* the 10874 // predicate changes then it only changes from false to true. 10875 // 10876 // A zero step value in itself is not very useful, but there may be places 10877 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10878 // as general as possible. 10879 10880 // Only handle LE/LT/GE/GT predicates. 10881 if (!ICmpInst::isRelational(Pred)) 10882 return std::nullopt; 10883 10884 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10885 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10886 "Should be greater or less!"); 10887 10888 // Check that AR does not wrap. 10889 if (ICmpInst::isUnsigned(Pred)) { 10890 if (!LHS->hasNoUnsignedWrap()) 10891 return std::nullopt; 10892 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10893 } 10894 assert(ICmpInst::isSigned(Pred) && 10895 "Relational predicate is either signed or unsigned!"); 10896 if (!LHS->hasNoSignedWrap()) 10897 return std::nullopt; 10898 10899 const SCEV *Step = LHS->getStepRecurrence(*this); 10900 10901 if (isKnownNonNegative(Step)) 10902 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10903 10904 if (isKnownNonPositive(Step)) 10905 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10906 10907 return std::nullopt; 10908 } 10909 10910 std::optional<ScalarEvolution::LoopInvariantPredicate> 10911 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10912 const SCEV *LHS, const SCEV *RHS, 10913 const Loop *L, 10914 const Instruction *CtxI) { 10915 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10916 if (!isLoopInvariant(RHS, L)) { 10917 if (!isLoopInvariant(LHS, L)) 10918 return std::nullopt; 10919 10920 std::swap(LHS, RHS); 10921 Pred = ICmpInst::getSwappedPredicate(Pred); 10922 } 10923 10924 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10925 if (!ArLHS || ArLHS->getLoop() != L) 10926 return std::nullopt; 10927 10928 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10929 if (!MonotonicType) 10930 return std::nullopt; 10931 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10932 // true as the loop iterates, and the backedge is control dependent on 10933 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10934 // 10935 // * if the predicate was false in the first iteration then the predicate 10936 // is never evaluated again, since the loop exits without taking the 10937 // backedge. 10938 // * if the predicate was true in the first iteration then it will 10939 // continue to be true for all future iterations since it is 10940 // monotonically increasing. 10941 // 10942 // For both the above possibilities, we can replace the loop varying 10943 // predicate with its value on the first iteration of the loop (which is 10944 // loop invariant). 10945 // 10946 // A similar reasoning applies for a monotonically decreasing predicate, by 10947 // replacing true with false and false with true in the above two bullets. 10948 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10949 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10950 10951 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10952 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 10953 RHS); 10954 10955 if (!CtxI) 10956 return std::nullopt; 10957 // Try to prove via context. 10958 // TODO: Support other cases. 10959 switch (Pred) { 10960 default: 10961 break; 10962 case ICmpInst::ICMP_ULE: 10963 case ICmpInst::ICMP_ULT: { 10964 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!"); 10965 // Given preconditions 10966 // (1) ArLHS does not cross the border of positive and negative parts of 10967 // range because of: 10968 // - Positive step; (TODO: lift this limitation) 10969 // - nuw - does not cross zero boundary; 10970 // - nsw - does not cross SINT_MAX boundary; 10971 // (2) ArLHS <s RHS 10972 // (3) RHS >=s 0 10973 // we can replace the loop variant ArLHS <u RHS condition with loop 10974 // invariant Start(ArLHS) <u RHS. 10975 // 10976 // Because of (1) there are two options: 10977 // - ArLHS is always negative. It means that ArLHS <u RHS is always false; 10978 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. 10979 // It means that ArLHS <s RHS <=> ArLHS <u RHS. 10980 // Because of (2) ArLHS <u RHS is trivially true. 10981 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. 10982 // We can strengthen this to Start(ArLHS) <u RHS. 10983 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); 10984 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && 10985 isKnownPositive(ArLHS->getStepRecurrence(*this)) && 10986 isKnownNonNegative(RHS) && 10987 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) 10988 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 10989 RHS); 10990 } 10991 } 10992 10993 return std::nullopt; 10994 } 10995 10996 std::optional<ScalarEvolution::LoopInvariantPredicate> 10997 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10998 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10999 const Instruction *CtxI, const SCEV *MaxIter) { 11000 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11001 Pred, LHS, RHS, L, CtxI, MaxIter)) 11002 return LIP; 11003 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) 11004 // Number of iterations expressed as UMIN isn't always great for expressing 11005 // the value on the last iteration. If the straightforward approach didn't 11006 // work, try the following trick: if the a predicate is invariant for X, it 11007 // is also invariant for umin(X, ...). So try to find something that works 11008 // among subexpressions of MaxIter expressed as umin. 11009 for (auto *Op : UMin->operands()) 11010 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11011 Pred, LHS, RHS, L, CtxI, Op)) 11012 return LIP; 11013 return std::nullopt; 11014 } 11015 11016 std::optional<ScalarEvolution::LoopInvariantPredicate> 11017 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( 11018 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11019 const Instruction *CtxI, const SCEV *MaxIter) { 11020 // Try to prove the following set of facts: 11021 // - The predicate is monotonic in the iteration space. 11022 // - If the check does not fail on the 1st iteration: 11023 // - No overflow will happen during first MaxIter iterations; 11024 // - It will not fail on the MaxIter'th iteration. 11025 // If the check does fail on the 1st iteration, we leave the loop and no 11026 // other checks matter. 11027 11028 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11029 if (!isLoopInvariant(RHS, L)) { 11030 if (!isLoopInvariant(LHS, L)) 11031 return std::nullopt; 11032 11033 std::swap(LHS, RHS); 11034 Pred = ICmpInst::getSwappedPredicate(Pred); 11035 } 11036 11037 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 11038 if (!AR || AR->getLoop() != L) 11039 return std::nullopt; 11040 11041 // The predicate must be relational (i.e. <, <=, >=, >). 11042 if (!ICmpInst::isRelational(Pred)) 11043 return std::nullopt; 11044 11045 // TODO: Support steps other than +/- 1. 11046 const SCEV *Step = AR->getStepRecurrence(*this); 11047 auto *One = getOne(Step->getType()); 11048 auto *MinusOne = getNegativeSCEV(One); 11049 if (Step != One && Step != MinusOne) 11050 return std::nullopt; 11051 11052 // Type mismatch here means that MaxIter is potentially larger than max 11053 // unsigned value in start type, which mean we cannot prove no wrap for the 11054 // indvar. 11055 if (AR->getType() != MaxIter->getType()) 11056 return std::nullopt; 11057 11058 // Value of IV on suggested last iteration. 11059 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 11060 // Does it still meet the requirement? 11061 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 11062 return std::nullopt; 11063 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 11064 // not exceed max unsigned value of this type), this effectively proves 11065 // that there is no wrap during the iteration. To prove that there is no 11066 // signed/unsigned wrap, we need to check that 11067 // Start <= Last for step = 1 or Start >= Last for step = -1. 11068 ICmpInst::Predicate NoOverflowPred = 11069 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11070 if (Step == MinusOne) 11071 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 11072 const SCEV *Start = AR->getStart(); 11073 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 11074 return std::nullopt; 11075 11076 // Everything is fine. 11077 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 11078 } 11079 11080 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 11081 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 11082 if (HasSameValue(LHS, RHS)) 11083 return ICmpInst::isTrueWhenEqual(Pred); 11084 11085 // This code is split out from isKnownPredicate because it is called from 11086 // within isLoopEntryGuardedByCond. 11087 11088 auto CheckRanges = [&](const ConstantRange &RangeLHS, 11089 const ConstantRange &RangeRHS) { 11090 return RangeLHS.icmp(Pred, RangeRHS); 11091 }; 11092 11093 // The check at the top of the function catches the case where the values are 11094 // known to be equal. 11095 if (Pred == CmpInst::ICMP_EQ) 11096 return false; 11097 11098 if (Pred == CmpInst::ICMP_NE) { 11099 auto SL = getSignedRange(LHS); 11100 auto SR = getSignedRange(RHS); 11101 if (CheckRanges(SL, SR)) 11102 return true; 11103 auto UL = getUnsignedRange(LHS); 11104 auto UR = getUnsignedRange(RHS); 11105 if (CheckRanges(UL, UR)) 11106 return true; 11107 auto *Diff = getMinusSCEV(LHS, RHS); 11108 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 11109 } 11110 11111 if (CmpInst::isSigned(Pred)) { 11112 auto SL = getSignedRange(LHS); 11113 auto SR = getSignedRange(RHS); 11114 return CheckRanges(SL, SR); 11115 } 11116 11117 auto UL = getUnsignedRange(LHS); 11118 auto UR = getUnsignedRange(RHS); 11119 return CheckRanges(UL, UR); 11120 } 11121 11122 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 11123 const SCEV *LHS, 11124 const SCEV *RHS) { 11125 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 11126 // C1 and C2 are constant integers. If either X or Y are not add expressions, 11127 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 11128 // OutC1 and OutC2. 11129 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 11130 APInt &OutC1, APInt &OutC2, 11131 SCEV::NoWrapFlags ExpectedFlags) { 11132 const SCEV *XNonConstOp, *XConstOp; 11133 const SCEV *YNonConstOp, *YConstOp; 11134 SCEV::NoWrapFlags XFlagsPresent; 11135 SCEV::NoWrapFlags YFlagsPresent; 11136 11137 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 11138 XConstOp = getZero(X->getType()); 11139 XNonConstOp = X; 11140 XFlagsPresent = ExpectedFlags; 11141 } 11142 if (!isa<SCEVConstant>(XConstOp) || 11143 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 11144 return false; 11145 11146 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 11147 YConstOp = getZero(Y->getType()); 11148 YNonConstOp = Y; 11149 YFlagsPresent = ExpectedFlags; 11150 } 11151 11152 if (!isa<SCEVConstant>(YConstOp) || 11153 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 11154 return false; 11155 11156 if (YNonConstOp != XNonConstOp) 11157 return false; 11158 11159 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 11160 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 11161 11162 return true; 11163 }; 11164 11165 APInt C1; 11166 APInt C2; 11167 11168 switch (Pred) { 11169 default: 11170 break; 11171 11172 case ICmpInst::ICMP_SGE: 11173 std::swap(LHS, RHS); 11174 [[fallthrough]]; 11175 case ICmpInst::ICMP_SLE: 11176 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 11177 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 11178 return true; 11179 11180 break; 11181 11182 case ICmpInst::ICMP_SGT: 11183 std::swap(LHS, RHS); 11184 [[fallthrough]]; 11185 case ICmpInst::ICMP_SLT: 11186 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 11187 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 11188 return true; 11189 11190 break; 11191 11192 case ICmpInst::ICMP_UGE: 11193 std::swap(LHS, RHS); 11194 [[fallthrough]]; 11195 case ICmpInst::ICMP_ULE: 11196 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 11197 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 11198 return true; 11199 11200 break; 11201 11202 case ICmpInst::ICMP_UGT: 11203 std::swap(LHS, RHS); 11204 [[fallthrough]]; 11205 case ICmpInst::ICMP_ULT: 11206 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 11207 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 11208 return true; 11209 break; 11210 } 11211 11212 return false; 11213 } 11214 11215 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 11216 const SCEV *LHS, 11217 const SCEV *RHS) { 11218 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 11219 return false; 11220 11221 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 11222 // the stack can result in exponential time complexity. 11223 SaveAndRestore Restore(ProvingSplitPredicate, true); 11224 11225 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 11226 // 11227 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 11228 // isKnownPredicate. isKnownPredicate is more powerful, but also more 11229 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 11230 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 11231 // use isKnownPredicate later if needed. 11232 return isKnownNonNegative(RHS) && 11233 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 11234 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 11235 } 11236 11237 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 11238 ICmpInst::Predicate Pred, 11239 const SCEV *LHS, const SCEV *RHS) { 11240 // No need to even try if we know the module has no guards. 11241 if (!HasGuards) 11242 return false; 11243 11244 return any_of(*BB, [&](const Instruction &I) { 11245 using namespace llvm::PatternMatch; 11246 11247 Value *Condition; 11248 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11249 m_Value(Condition))) && 11250 isImpliedCond(Pred, LHS, RHS, Condition, false); 11251 }); 11252 } 11253 11254 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11255 /// protected by a conditional between LHS and RHS. This is used to 11256 /// to eliminate casts. 11257 bool 11258 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11259 ICmpInst::Predicate Pred, 11260 const SCEV *LHS, const SCEV *RHS) { 11261 // Interpret a null as meaning no loop, where there is obviously no guard 11262 // (interprocedural conditions notwithstanding). Do not bother about 11263 // unreachable loops. 11264 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11265 return true; 11266 11267 if (VerifyIR) 11268 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11269 "This cannot be done on broken IR!"); 11270 11271 11272 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11273 return true; 11274 11275 BasicBlock *Latch = L->getLoopLatch(); 11276 if (!Latch) 11277 return false; 11278 11279 BranchInst *LoopContinuePredicate = 11280 dyn_cast<BranchInst>(Latch->getTerminator()); 11281 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11282 isImpliedCond(Pred, LHS, RHS, 11283 LoopContinuePredicate->getCondition(), 11284 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11285 return true; 11286 11287 // We don't want more than one activation of the following loops on the stack 11288 // -- that can lead to O(n!) time complexity. 11289 if (WalkingBEDominatingConds) 11290 return false; 11291 11292 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); 11293 11294 // See if we can exploit a trip count to prove the predicate. 11295 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11296 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11297 if (LatchBECount != getCouldNotCompute()) { 11298 // We know that Latch branches back to the loop header exactly 11299 // LatchBECount times. This means the backdege condition at Latch is 11300 // equivalent to "{0,+,1} u< LatchBECount". 11301 Type *Ty = LatchBECount->getType(); 11302 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11303 const SCEV *LoopCounter = 11304 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11305 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11306 LatchBECount)) 11307 return true; 11308 } 11309 11310 // Check conditions due to any @llvm.assume intrinsics. 11311 for (auto &AssumeVH : AC.assumptions()) { 11312 if (!AssumeVH) 11313 continue; 11314 auto *CI = cast<CallInst>(AssumeVH); 11315 if (!DT.dominates(CI, Latch->getTerminator())) 11316 continue; 11317 11318 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11319 return true; 11320 } 11321 11322 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11323 return true; 11324 11325 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11326 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11327 assert(DTN && "should reach the loop header before reaching the root!"); 11328 11329 BasicBlock *BB = DTN->getBlock(); 11330 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11331 return true; 11332 11333 BasicBlock *PBB = BB->getSinglePredecessor(); 11334 if (!PBB) 11335 continue; 11336 11337 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11338 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11339 continue; 11340 11341 Value *Condition = ContinuePredicate->getCondition(); 11342 11343 // If we have an edge `E` within the loop body that dominates the only 11344 // latch, the condition guarding `E` also guards the backedge. This 11345 // reasoning works only for loops with a single latch. 11346 11347 BasicBlockEdge DominatingEdge(PBB, BB); 11348 if (DominatingEdge.isSingleEdge()) { 11349 // We're constructively (and conservatively) enumerating edges within the 11350 // loop body that dominate the latch. The dominator tree better agree 11351 // with us on this: 11352 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11353 11354 if (isImpliedCond(Pred, LHS, RHS, Condition, 11355 BB != ContinuePredicate->getSuccessor(0))) 11356 return true; 11357 } 11358 } 11359 11360 return false; 11361 } 11362 11363 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11364 ICmpInst::Predicate Pred, 11365 const SCEV *LHS, 11366 const SCEV *RHS) { 11367 // Do not bother proving facts for unreachable code. 11368 if (!DT.isReachableFromEntry(BB)) 11369 return true; 11370 if (VerifyIR) 11371 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11372 "This cannot be done on broken IR!"); 11373 11374 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11375 // the facts (a >= b && a != b) separately. A typical situation is when the 11376 // non-strict comparison is known from ranges and non-equality is known from 11377 // dominating predicates. If we are proving strict comparison, we always try 11378 // to prove non-equality and non-strict comparison separately. 11379 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11380 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11381 bool ProvedNonStrictComparison = false; 11382 bool ProvedNonEquality = false; 11383 11384 auto SplitAndProve = 11385 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11386 if (!ProvedNonStrictComparison) 11387 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11388 if (!ProvedNonEquality) 11389 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11390 if (ProvedNonStrictComparison && ProvedNonEquality) 11391 return true; 11392 return false; 11393 }; 11394 11395 if (ProvingStrictComparison) { 11396 auto ProofFn = [&](ICmpInst::Predicate P) { 11397 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11398 }; 11399 if (SplitAndProve(ProofFn)) 11400 return true; 11401 } 11402 11403 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11404 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11405 const Instruction *CtxI = &BB->front(); 11406 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11407 return true; 11408 if (ProvingStrictComparison) { 11409 auto ProofFn = [&](ICmpInst::Predicate P) { 11410 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11411 }; 11412 if (SplitAndProve(ProofFn)) 11413 return true; 11414 } 11415 return false; 11416 }; 11417 11418 // Starting at the block's predecessor, climb up the predecessor chain, as long 11419 // as there are predecessors that can be found that have unique successors 11420 // leading to the original block. 11421 const Loop *ContainingLoop = LI.getLoopFor(BB); 11422 const BasicBlock *PredBB; 11423 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11424 PredBB = ContainingLoop->getLoopPredecessor(); 11425 else 11426 PredBB = BB->getSinglePredecessor(); 11427 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11428 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11429 const BranchInst *BlockEntryPredicate = 11430 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11431 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11432 continue; 11433 11434 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11435 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11436 return true; 11437 } 11438 11439 // Check conditions due to any @llvm.assume intrinsics. 11440 for (auto &AssumeVH : AC.assumptions()) { 11441 if (!AssumeVH) 11442 continue; 11443 auto *CI = cast<CallInst>(AssumeVH); 11444 if (!DT.dominates(CI, BB)) 11445 continue; 11446 11447 if (ProveViaCond(CI->getArgOperand(0), false)) 11448 return true; 11449 } 11450 11451 // Check conditions due to any @llvm.experimental.guard intrinsics. 11452 auto *GuardDecl = F.getParent()->getFunction( 11453 Intrinsic::getName(Intrinsic::experimental_guard)); 11454 if (GuardDecl) 11455 for (const auto *GU : GuardDecl->users()) 11456 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 11457 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) 11458 if (ProveViaCond(Guard->getArgOperand(0), false)) 11459 return true; 11460 return false; 11461 } 11462 11463 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11464 ICmpInst::Predicate Pred, 11465 const SCEV *LHS, 11466 const SCEV *RHS) { 11467 // Interpret a null as meaning no loop, where there is obviously no guard 11468 // (interprocedural conditions notwithstanding). 11469 if (!L) 11470 return false; 11471 11472 // Both LHS and RHS must be available at loop entry. 11473 assert(isAvailableAtLoopEntry(LHS, L) && 11474 "LHS is not available at Loop Entry"); 11475 assert(isAvailableAtLoopEntry(RHS, L) && 11476 "RHS is not available at Loop Entry"); 11477 11478 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11479 return true; 11480 11481 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11482 } 11483 11484 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11485 const SCEV *RHS, 11486 const Value *FoundCondValue, bool Inverse, 11487 const Instruction *CtxI) { 11488 // False conditions implies anything. Do not bother analyzing it further. 11489 if (FoundCondValue == 11490 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11491 return true; 11492 11493 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11494 return false; 11495 11496 auto ClearOnExit = 11497 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11498 11499 // Recursively handle And and Or conditions. 11500 const Value *Op0, *Op1; 11501 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11502 if (!Inverse) 11503 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11504 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11505 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11506 if (Inverse) 11507 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11508 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11509 } 11510 11511 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11512 if (!ICI) return false; 11513 11514 // Now that we found a conditional branch that dominates the loop or controls 11515 // the loop latch. Check to see if it is the comparison we are looking for. 11516 ICmpInst::Predicate FoundPred; 11517 if (Inverse) 11518 FoundPred = ICI->getInversePredicate(); 11519 else 11520 FoundPred = ICI->getPredicate(); 11521 11522 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11523 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11524 11525 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11526 } 11527 11528 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11529 const SCEV *RHS, 11530 ICmpInst::Predicate FoundPred, 11531 const SCEV *FoundLHS, const SCEV *FoundRHS, 11532 const Instruction *CtxI) { 11533 // Balance the types. 11534 if (getTypeSizeInBits(LHS->getType()) < 11535 getTypeSizeInBits(FoundLHS->getType())) { 11536 // For unsigned and equality predicates, try to prove that both found 11537 // operands fit into narrow unsigned range. If so, try to prove facts in 11538 // narrow types. 11539 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11540 !FoundRHS->getType()->isPointerTy()) { 11541 auto *NarrowType = LHS->getType(); 11542 auto *WideType = FoundLHS->getType(); 11543 auto BitWidth = getTypeSizeInBits(NarrowType); 11544 const SCEV *MaxValue = getZeroExtendExpr( 11545 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11546 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11547 MaxValue) && 11548 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11549 MaxValue)) { 11550 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11551 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11552 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11553 TruncFoundRHS, CtxI)) 11554 return true; 11555 } 11556 } 11557 11558 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11559 return false; 11560 if (CmpInst::isSigned(Pred)) { 11561 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11562 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11563 } else { 11564 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11565 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11566 } 11567 } else if (getTypeSizeInBits(LHS->getType()) > 11568 getTypeSizeInBits(FoundLHS->getType())) { 11569 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11570 return false; 11571 if (CmpInst::isSigned(FoundPred)) { 11572 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11573 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11574 } else { 11575 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11576 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11577 } 11578 } 11579 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11580 FoundRHS, CtxI); 11581 } 11582 11583 bool ScalarEvolution::isImpliedCondBalancedTypes( 11584 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11585 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11586 const Instruction *CtxI) { 11587 assert(getTypeSizeInBits(LHS->getType()) == 11588 getTypeSizeInBits(FoundLHS->getType()) && 11589 "Types should be balanced!"); 11590 // Canonicalize the query to match the way instcombine will have 11591 // canonicalized the comparison. 11592 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11593 if (LHS == RHS) 11594 return CmpInst::isTrueWhenEqual(Pred); 11595 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11596 if (FoundLHS == FoundRHS) 11597 return CmpInst::isFalseWhenEqual(FoundPred); 11598 11599 // Check to see if we can make the LHS or RHS match. 11600 if (LHS == FoundRHS || RHS == FoundLHS) { 11601 if (isa<SCEVConstant>(RHS)) { 11602 std::swap(FoundLHS, FoundRHS); 11603 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11604 } else { 11605 std::swap(LHS, RHS); 11606 Pred = ICmpInst::getSwappedPredicate(Pred); 11607 } 11608 } 11609 11610 // Check whether the found predicate is the same as the desired predicate. 11611 if (FoundPred == Pred) 11612 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11613 11614 // Check whether swapping the found predicate makes it the same as the 11615 // desired predicate. 11616 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11617 // We can write the implication 11618 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11619 // using one of the following ways: 11620 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11621 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11622 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11623 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11624 // Forms 1. and 2. require swapping the operands of one condition. Don't 11625 // do this if it would break canonical constant/addrec ordering. 11626 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11627 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11628 CtxI); 11629 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11630 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11631 11632 // There's no clear preference between forms 3. and 4., try both. Avoid 11633 // forming getNotSCEV of pointer values as the resulting subtract is 11634 // not legal. 11635 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11636 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11637 FoundLHS, FoundRHS, CtxI)) 11638 return true; 11639 11640 if (!FoundLHS->getType()->isPointerTy() && 11641 !FoundRHS->getType()->isPointerTy() && 11642 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11643 getNotSCEV(FoundRHS), CtxI)) 11644 return true; 11645 11646 return false; 11647 } 11648 11649 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11650 CmpInst::Predicate P2) { 11651 assert(P1 != P2 && "Handled earlier!"); 11652 return CmpInst::isRelational(P2) && 11653 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11654 }; 11655 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11656 // Unsigned comparison is the same as signed comparison when both the 11657 // operands are non-negative or negative. 11658 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11659 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11660 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11661 // Create local copies that we can freely swap and canonicalize our 11662 // conditions to "le/lt". 11663 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11664 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11665 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11666 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11667 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11668 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11669 std::swap(CanonicalLHS, CanonicalRHS); 11670 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11671 } 11672 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11673 "Must be!"); 11674 assert((ICmpInst::isLT(CanonicalFoundPred) || 11675 ICmpInst::isLE(CanonicalFoundPred)) && 11676 "Must be!"); 11677 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11678 // Use implication: 11679 // x <u y && y >=s 0 --> x <s y. 11680 // If we can prove the left part, the right part is also proven. 11681 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11682 CanonicalRHS, CanonicalFoundLHS, 11683 CanonicalFoundRHS); 11684 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11685 // Use implication: 11686 // x <s y && y <s 0 --> x <u y. 11687 // If we can prove the left part, the right part is also proven. 11688 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11689 CanonicalRHS, CanonicalFoundLHS, 11690 CanonicalFoundRHS); 11691 } 11692 11693 // Check if we can make progress by sharpening ranges. 11694 if (FoundPred == ICmpInst::ICMP_NE && 11695 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11696 11697 const SCEVConstant *C = nullptr; 11698 const SCEV *V = nullptr; 11699 11700 if (isa<SCEVConstant>(FoundLHS)) { 11701 C = cast<SCEVConstant>(FoundLHS); 11702 V = FoundRHS; 11703 } else { 11704 C = cast<SCEVConstant>(FoundRHS); 11705 V = FoundLHS; 11706 } 11707 11708 // The guarding predicate tells us that C != V. If the known range 11709 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11710 // range we consider has to correspond to same signedness as the 11711 // predicate we're interested in folding. 11712 11713 APInt Min = ICmpInst::isSigned(Pred) ? 11714 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11715 11716 if (Min == C->getAPInt()) { 11717 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11718 // This is true even if (Min + 1) wraps around -- in case of 11719 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11720 11721 APInt SharperMin = Min + 1; 11722 11723 switch (Pred) { 11724 case ICmpInst::ICMP_SGE: 11725 case ICmpInst::ICMP_UGE: 11726 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11727 // RHS, we're done. 11728 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11729 CtxI)) 11730 return true; 11731 [[fallthrough]]; 11732 11733 case ICmpInst::ICMP_SGT: 11734 case ICmpInst::ICMP_UGT: 11735 // We know from the range information that (V `Pred` Min || 11736 // V == Min). We know from the guarding condition that !(V 11737 // == Min). This gives us 11738 // 11739 // V `Pred` Min || V == Min && !(V == Min) 11740 // => V `Pred` Min 11741 // 11742 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11743 11744 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11745 return true; 11746 break; 11747 11748 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11749 case ICmpInst::ICMP_SLE: 11750 case ICmpInst::ICMP_ULE: 11751 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11752 LHS, V, getConstant(SharperMin), CtxI)) 11753 return true; 11754 [[fallthrough]]; 11755 11756 case ICmpInst::ICMP_SLT: 11757 case ICmpInst::ICMP_ULT: 11758 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11759 LHS, V, getConstant(Min), CtxI)) 11760 return true; 11761 break; 11762 11763 default: 11764 // No change 11765 break; 11766 } 11767 } 11768 } 11769 11770 // Check whether the actual condition is beyond sufficient. 11771 if (FoundPred == ICmpInst::ICMP_EQ) 11772 if (ICmpInst::isTrueWhenEqual(Pred)) 11773 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11774 return true; 11775 if (Pred == ICmpInst::ICMP_NE) 11776 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11777 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11778 return true; 11779 11780 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS)) 11781 return true; 11782 11783 // Otherwise assume the worst. 11784 return false; 11785 } 11786 11787 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11788 const SCEV *&L, const SCEV *&R, 11789 SCEV::NoWrapFlags &Flags) { 11790 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11791 if (!AE || AE->getNumOperands() != 2) 11792 return false; 11793 11794 L = AE->getOperand(0); 11795 R = AE->getOperand(1); 11796 Flags = AE->getNoWrapFlags(); 11797 return true; 11798 } 11799 11800 std::optional<APInt> 11801 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { 11802 // We avoid subtracting expressions here because this function is usually 11803 // fairly deep in the call stack (i.e. is called many times). 11804 11805 // X - X = 0. 11806 if (More == Less) 11807 return APInt(getTypeSizeInBits(More->getType()), 0); 11808 11809 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11810 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11811 const auto *MAR = cast<SCEVAddRecExpr>(More); 11812 11813 if (LAR->getLoop() != MAR->getLoop()) 11814 return std::nullopt; 11815 11816 // We look at affine expressions only; not for correctness but to keep 11817 // getStepRecurrence cheap. 11818 if (!LAR->isAffine() || !MAR->isAffine()) 11819 return std::nullopt; 11820 11821 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11822 return std::nullopt; 11823 11824 Less = LAR->getStart(); 11825 More = MAR->getStart(); 11826 11827 // fall through 11828 } 11829 11830 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11831 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11832 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11833 return M - L; 11834 } 11835 11836 SCEV::NoWrapFlags Flags; 11837 const SCEV *LLess = nullptr, *RLess = nullptr; 11838 const SCEV *LMore = nullptr, *RMore = nullptr; 11839 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11840 // Compare (X + C1) vs X. 11841 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11842 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11843 if (RLess == More) 11844 return -(C1->getAPInt()); 11845 11846 // Compare X vs (X + C2). 11847 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11848 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11849 if (RMore == Less) 11850 return C2->getAPInt(); 11851 11852 // Compare (X + C1) vs (X + C2). 11853 if (C1 && C2 && RLess == RMore) 11854 return C2->getAPInt() - C1->getAPInt(); 11855 11856 return std::nullopt; 11857 } 11858 11859 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11861 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11862 // Try to recognize the following pattern: 11863 // 11864 // FoundRHS = ... 11865 // ... 11866 // loop: 11867 // FoundLHS = {Start,+,W} 11868 // context_bb: // Basic block from the same loop 11869 // known(Pred, FoundLHS, FoundRHS) 11870 // 11871 // If some predicate is known in the context of a loop, it is also known on 11872 // each iteration of this loop, including the first iteration. Therefore, in 11873 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11874 // prove the original pred using this fact. 11875 if (!CtxI) 11876 return false; 11877 const BasicBlock *ContextBB = CtxI->getParent(); 11878 // Make sure AR varies in the context block. 11879 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11880 const Loop *L = AR->getLoop(); 11881 // Make sure that context belongs to the loop and executes on 1st iteration 11882 // (if it ever executes at all). 11883 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11884 return false; 11885 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11886 return false; 11887 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11888 } 11889 11890 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11891 const Loop *L = AR->getLoop(); 11892 // Make sure that context belongs to the loop and executes on 1st iteration 11893 // (if it ever executes at all). 11894 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11895 return false; 11896 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11897 return false; 11898 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11899 } 11900 11901 return false; 11902 } 11903 11904 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11905 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11906 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11907 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11908 return false; 11909 11910 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11911 if (!AddRecLHS) 11912 return false; 11913 11914 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11915 if (!AddRecFoundLHS) 11916 return false; 11917 11918 // We'd like to let SCEV reason about control dependencies, so we constrain 11919 // both the inequalities to be about add recurrences on the same loop. This 11920 // way we can use isLoopEntryGuardedByCond later. 11921 11922 const Loop *L = AddRecFoundLHS->getLoop(); 11923 if (L != AddRecLHS->getLoop()) 11924 return false; 11925 11926 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11927 // 11928 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11929 // ... (2) 11930 // 11931 // Informal proof for (2), assuming (1) [*]: 11932 // 11933 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11934 // 11935 // Then 11936 // 11937 // FoundLHS s< FoundRHS s< INT_MIN - C 11938 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11939 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11940 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11941 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11942 // <=> FoundLHS + C s< FoundRHS + C 11943 // 11944 // [*]: (1) can be proved by ruling out overflow. 11945 // 11946 // [**]: This can be proved by analyzing all the four possibilities: 11947 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11948 // (A s>= 0, B s>= 0). 11949 // 11950 // Note: 11951 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11952 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11953 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11954 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11955 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11956 // C)". 11957 11958 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11959 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11960 if (!LDiff || !RDiff || *LDiff != *RDiff) 11961 return false; 11962 11963 if (LDiff->isMinValue()) 11964 return true; 11965 11966 APInt FoundRHSLimit; 11967 11968 if (Pred == CmpInst::ICMP_ULT) { 11969 FoundRHSLimit = -(*RDiff); 11970 } else { 11971 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11972 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11973 } 11974 11975 // Try to prove (1) or (2), as needed. 11976 return isAvailableAtLoopEntry(FoundRHS, L) && 11977 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11978 getConstant(FoundRHSLimit)); 11979 } 11980 11981 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11982 const SCEV *LHS, const SCEV *RHS, 11983 const SCEV *FoundLHS, 11984 const SCEV *FoundRHS, unsigned Depth) { 11985 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11986 11987 auto ClearOnExit = make_scope_exit([&]() { 11988 if (LPhi) { 11989 bool Erased = PendingMerges.erase(LPhi); 11990 assert(Erased && "Failed to erase LPhi!"); 11991 (void)Erased; 11992 } 11993 if (RPhi) { 11994 bool Erased = PendingMerges.erase(RPhi); 11995 assert(Erased && "Failed to erase RPhi!"); 11996 (void)Erased; 11997 } 11998 }); 11999 12000 // Find respective Phis and check that they are not being pending. 12001 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 12002 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 12003 if (!PendingMerges.insert(Phi).second) 12004 return false; 12005 LPhi = Phi; 12006 } 12007 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 12008 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 12009 // If we detect a loop of Phi nodes being processed by this method, for 12010 // example: 12011 // 12012 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 12013 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 12014 // 12015 // we don't want to deal with a case that complex, so return conservative 12016 // answer false. 12017 if (!PendingMerges.insert(Phi).second) 12018 return false; 12019 RPhi = Phi; 12020 } 12021 12022 // If none of LHS, RHS is a Phi, nothing to do here. 12023 if (!LPhi && !RPhi) 12024 return false; 12025 12026 // If there is a SCEVUnknown Phi we are interested in, make it left. 12027 if (!LPhi) { 12028 std::swap(LHS, RHS); 12029 std::swap(FoundLHS, FoundRHS); 12030 std::swap(LPhi, RPhi); 12031 Pred = ICmpInst::getSwappedPredicate(Pred); 12032 } 12033 12034 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 12035 const BasicBlock *LBB = LPhi->getParent(); 12036 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12037 12038 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 12039 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 12040 isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) || 12041 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 12042 }; 12043 12044 if (RPhi && RPhi->getParent() == LBB) { 12045 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 12046 // If we compare two Phis from the same block, and for each entry block 12047 // the predicate is true for incoming values from this block, then the 12048 // predicate is also true for the Phis. 12049 for (const BasicBlock *IncBB : predecessors(LBB)) { 12050 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12051 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 12052 if (!ProvedEasily(L, R)) 12053 return false; 12054 } 12055 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 12056 // Case two: RHS is also a Phi from the same basic block, and it is an 12057 // AddRec. It means that there is a loop which has both AddRec and Unknown 12058 // PHIs, for it we can compare incoming values of AddRec from above the loop 12059 // and latch with their respective incoming values of LPhi. 12060 // TODO: Generalize to handle loops with many inputs in a header. 12061 if (LPhi->getNumIncomingValues() != 2) return false; 12062 12063 auto *RLoop = RAR->getLoop(); 12064 auto *Predecessor = RLoop->getLoopPredecessor(); 12065 assert(Predecessor && "Loop with AddRec with no predecessor?"); 12066 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 12067 if (!ProvedEasily(L1, RAR->getStart())) 12068 return false; 12069 auto *Latch = RLoop->getLoopLatch(); 12070 assert(Latch && "Loop with AddRec with no latch?"); 12071 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 12072 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 12073 return false; 12074 } else { 12075 // In all other cases go over inputs of LHS and compare each of them to RHS, 12076 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 12077 // At this point RHS is either a non-Phi, or it is a Phi from some block 12078 // different from LBB. 12079 for (const BasicBlock *IncBB : predecessors(LBB)) { 12080 // Check that RHS is available in this block. 12081 if (!dominates(RHS, IncBB)) 12082 return false; 12083 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12084 // Make sure L does not refer to a value from a potentially previous 12085 // iteration of a loop. 12086 if (!properlyDominates(L, LBB)) 12087 return false; 12088 if (!ProvedEasily(L, RHS)) 12089 return false; 12090 } 12091 } 12092 return true; 12093 } 12094 12095 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 12096 const SCEV *LHS, 12097 const SCEV *RHS, 12098 const SCEV *FoundLHS, 12099 const SCEV *FoundRHS) { 12100 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 12101 // sure that we are dealing with same LHS. 12102 if (RHS == FoundRHS) { 12103 std::swap(LHS, RHS); 12104 std::swap(FoundLHS, FoundRHS); 12105 Pred = ICmpInst::getSwappedPredicate(Pred); 12106 } 12107 if (LHS != FoundLHS) 12108 return false; 12109 12110 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 12111 if (!SUFoundRHS) 12112 return false; 12113 12114 Value *Shiftee, *ShiftValue; 12115 12116 using namespace PatternMatch; 12117 if (match(SUFoundRHS->getValue(), 12118 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 12119 auto *ShifteeS = getSCEV(Shiftee); 12120 // Prove one of the following: 12121 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 12122 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 12123 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12124 // ---> LHS <s RHS 12125 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12126 // ---> LHS <=s RHS 12127 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 12128 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 12129 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 12130 if (isKnownNonNegative(ShifteeS)) 12131 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 12132 } 12133 12134 return false; 12135 } 12136 12137 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 12138 const SCEV *LHS, const SCEV *RHS, 12139 const SCEV *FoundLHS, 12140 const SCEV *FoundRHS, 12141 const Instruction *CtxI) { 12142 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS)) 12143 return true; 12144 12145 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12146 return true; 12147 12148 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12149 return true; 12150 12151 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 12152 CtxI)) 12153 return true; 12154 12155 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 12156 FoundLHS, FoundRHS); 12157 } 12158 12159 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 12160 template <typename MinMaxExprType> 12161 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 12162 const SCEV *Candidate) { 12163 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 12164 if (!MinMaxExpr) 12165 return false; 12166 12167 return is_contained(MinMaxExpr->operands(), Candidate); 12168 } 12169 12170 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 12171 ICmpInst::Predicate Pred, 12172 const SCEV *LHS, const SCEV *RHS) { 12173 // If both sides are affine addrecs for the same loop, with equal 12174 // steps, and we know the recurrences don't wrap, then we only 12175 // need to check the predicate on the starting values. 12176 12177 if (!ICmpInst::isRelational(Pred)) 12178 return false; 12179 12180 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 12181 if (!LAR) 12182 return false; 12183 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12184 if (!RAR) 12185 return false; 12186 if (LAR->getLoop() != RAR->getLoop()) 12187 return false; 12188 if (!LAR->isAffine() || !RAR->isAffine()) 12189 return false; 12190 12191 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 12192 return false; 12193 12194 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 12195 SCEV::FlagNSW : SCEV::FlagNUW; 12196 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 12197 return false; 12198 12199 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 12200 } 12201 12202 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 12203 /// expression? 12204 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 12205 ICmpInst::Predicate Pred, 12206 const SCEV *LHS, const SCEV *RHS) { 12207 switch (Pred) { 12208 default: 12209 return false; 12210 12211 case ICmpInst::ICMP_SGE: 12212 std::swap(LHS, RHS); 12213 [[fallthrough]]; 12214 case ICmpInst::ICMP_SLE: 12215 return 12216 // min(A, ...) <= A 12217 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 12218 // A <= max(A, ...) 12219 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 12220 12221 case ICmpInst::ICMP_UGE: 12222 std::swap(LHS, RHS); 12223 [[fallthrough]]; 12224 case ICmpInst::ICMP_ULE: 12225 return 12226 // min(A, ...) <= A 12227 // FIXME: what about umin_seq? 12228 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 12229 // A <= max(A, ...) 12230 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 12231 } 12232 12233 llvm_unreachable("covered switch fell through?!"); 12234 } 12235 12236 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 12237 const SCEV *LHS, const SCEV *RHS, 12238 const SCEV *FoundLHS, 12239 const SCEV *FoundRHS, 12240 unsigned Depth) { 12241 assert(getTypeSizeInBits(LHS->getType()) == 12242 getTypeSizeInBits(RHS->getType()) && 12243 "LHS and RHS have different sizes?"); 12244 assert(getTypeSizeInBits(FoundLHS->getType()) == 12245 getTypeSizeInBits(FoundRHS->getType()) && 12246 "FoundLHS and FoundRHS have different sizes?"); 12247 // We want to avoid hurting the compile time with analysis of too big trees. 12248 if (Depth > MaxSCEVOperationsImplicationDepth) 12249 return false; 12250 12251 // We only want to work with GT comparison so far. 12252 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12253 Pred = CmpInst::getSwappedPredicate(Pred); 12254 std::swap(LHS, RHS); 12255 std::swap(FoundLHS, FoundRHS); 12256 } 12257 12258 // For unsigned, try to reduce it to corresponding signed comparison. 12259 if (Pred == ICmpInst::ICMP_UGT) 12260 // We can replace unsigned predicate with its signed counterpart if all 12261 // involved values are non-negative. 12262 // TODO: We could have better support for unsigned. 12263 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12264 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12265 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12266 // use this fact to prove that LHS and RHS are non-negative. 12267 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12268 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12269 FoundRHS) && 12270 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12271 FoundRHS)) 12272 Pred = ICmpInst::ICMP_SGT; 12273 } 12274 12275 if (Pred != ICmpInst::ICMP_SGT) 12276 return false; 12277 12278 auto GetOpFromSExt = [&](const SCEV *S) { 12279 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12280 return Ext->getOperand(); 12281 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12282 // the constant in some cases. 12283 return S; 12284 }; 12285 12286 // Acquire values from extensions. 12287 auto *OrigLHS = LHS; 12288 auto *OrigFoundLHS = FoundLHS; 12289 LHS = GetOpFromSExt(LHS); 12290 FoundLHS = GetOpFromSExt(FoundLHS); 12291 12292 // Is the SGT predicate can be proved trivially or using the found context. 12293 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12294 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12295 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12296 FoundRHS, Depth + 1); 12297 }; 12298 12299 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12300 // We want to avoid creation of any new non-constant SCEV. Since we are 12301 // going to compare the operands to RHS, we should be certain that we don't 12302 // need any size extensions for this. So let's decline all cases when the 12303 // sizes of types of LHS and RHS do not match. 12304 // TODO: Maybe try to get RHS from sext to catch more cases? 12305 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12306 return false; 12307 12308 // Should not overflow. 12309 if (!LHSAddExpr->hasNoSignedWrap()) 12310 return false; 12311 12312 auto *LL = LHSAddExpr->getOperand(0); 12313 auto *LR = LHSAddExpr->getOperand(1); 12314 auto *MinusOne = getMinusOne(RHS->getType()); 12315 12316 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12317 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12318 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12319 }; 12320 // Try to prove the following rule: 12321 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12322 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12323 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12324 return true; 12325 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12326 Value *LL, *LR; 12327 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12328 12329 using namespace llvm::PatternMatch; 12330 12331 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12332 // Rules for division. 12333 // We are going to perform some comparisons with Denominator and its 12334 // derivative expressions. In general case, creating a SCEV for it may 12335 // lead to a complex analysis of the entire graph, and in particular it 12336 // can request trip count recalculation for the same loop. This would 12337 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12338 // this, we only want to create SCEVs that are constants in this section. 12339 // So we bail if Denominator is not a constant. 12340 if (!isa<ConstantInt>(LR)) 12341 return false; 12342 12343 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12344 12345 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12346 // then a SCEV for the numerator already exists and matches with FoundLHS. 12347 auto *Numerator = getExistingSCEV(LL); 12348 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12349 return false; 12350 12351 // Make sure that the numerator matches with FoundLHS and the denominator 12352 // is positive. 12353 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12354 return false; 12355 12356 auto *DTy = Denominator->getType(); 12357 auto *FRHSTy = FoundRHS->getType(); 12358 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12359 // One of types is a pointer and another one is not. We cannot extend 12360 // them properly to a wider type, so let us just reject this case. 12361 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12362 // to avoid this check. 12363 return false; 12364 12365 // Given that: 12366 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12367 auto *WTy = getWiderType(DTy, FRHSTy); 12368 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12369 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12370 12371 // Try to prove the following rule: 12372 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12373 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12374 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12375 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12376 if (isKnownNonPositive(RHS) && 12377 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12378 return true; 12379 12380 // Try to prove the following rule: 12381 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12382 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12383 // If we divide it by Denominator > 2, then: 12384 // 1. If FoundLHS is negative, then the result is 0. 12385 // 2. If FoundLHS is non-negative, then the result is non-negative. 12386 // Anyways, the result is non-negative. 12387 auto *MinusOne = getMinusOne(WTy); 12388 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12389 if (isKnownNegative(RHS) && 12390 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12391 return true; 12392 } 12393 } 12394 12395 // If our expression contained SCEVUnknown Phis, and we split it down and now 12396 // need to prove something for them, try to prove the predicate for every 12397 // possible incoming values of those Phis. 12398 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12399 return true; 12400 12401 return false; 12402 } 12403 12404 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12405 const SCEV *LHS, const SCEV *RHS) { 12406 // zext x u<= sext x, sext x s<= zext x 12407 switch (Pred) { 12408 case ICmpInst::ICMP_SGE: 12409 std::swap(LHS, RHS); 12410 [[fallthrough]]; 12411 case ICmpInst::ICMP_SLE: { 12412 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12413 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12414 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12415 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12416 return true; 12417 break; 12418 } 12419 case ICmpInst::ICMP_UGE: 12420 std::swap(LHS, RHS); 12421 [[fallthrough]]; 12422 case ICmpInst::ICMP_ULE: { 12423 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12424 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12425 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12426 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12427 return true; 12428 break; 12429 } 12430 default: 12431 break; 12432 }; 12433 return false; 12434 } 12435 12436 bool 12437 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12438 const SCEV *LHS, const SCEV *RHS) { 12439 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12440 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12441 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12442 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12443 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12444 } 12445 12446 bool 12447 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12448 const SCEV *LHS, const SCEV *RHS, 12449 const SCEV *FoundLHS, 12450 const SCEV *FoundRHS) { 12451 switch (Pred) { 12452 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12453 case ICmpInst::ICMP_EQ: 12454 case ICmpInst::ICMP_NE: 12455 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12456 return true; 12457 break; 12458 case ICmpInst::ICMP_SLT: 12459 case ICmpInst::ICMP_SLE: 12460 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12461 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12462 return true; 12463 break; 12464 case ICmpInst::ICMP_SGT: 12465 case ICmpInst::ICMP_SGE: 12466 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12467 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12468 return true; 12469 break; 12470 case ICmpInst::ICMP_ULT: 12471 case ICmpInst::ICMP_ULE: 12472 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12473 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12474 return true; 12475 break; 12476 case ICmpInst::ICMP_UGT: 12477 case ICmpInst::ICMP_UGE: 12478 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12479 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12480 return true; 12481 break; 12482 } 12483 12484 // Maybe it can be proved via operations? 12485 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12486 return true; 12487 12488 return false; 12489 } 12490 12491 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12492 const SCEV *LHS, 12493 const SCEV *RHS, 12494 ICmpInst::Predicate FoundPred, 12495 const SCEV *FoundLHS, 12496 const SCEV *FoundRHS) { 12497 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12498 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12499 // reduce the compile time impact of this optimization. 12500 return false; 12501 12502 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12503 if (!Addend) 12504 return false; 12505 12506 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12507 12508 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12509 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`". 12510 ConstantRange FoundLHSRange = 12511 ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS); 12512 12513 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12514 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12515 12516 // We can also compute the range of values for `LHS` that satisfy the 12517 // consequent, "`LHS` `Pred` `RHS`": 12518 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12519 // The antecedent implies the consequent if every value of `LHS` that 12520 // satisfies the antecedent also satisfies the consequent. 12521 return LHSRange.icmp(Pred, ConstRHS); 12522 } 12523 12524 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12525 bool IsSigned) { 12526 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12527 12528 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12529 const SCEV *One = getOne(Stride->getType()); 12530 12531 if (IsSigned) { 12532 APInt MaxRHS = getSignedRangeMax(RHS); 12533 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12534 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12535 12536 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12537 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12538 } 12539 12540 APInt MaxRHS = getUnsignedRangeMax(RHS); 12541 APInt MaxValue = APInt::getMaxValue(BitWidth); 12542 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12543 12544 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12545 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12546 } 12547 12548 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12549 bool IsSigned) { 12550 12551 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12552 const SCEV *One = getOne(Stride->getType()); 12553 12554 if (IsSigned) { 12555 APInt MinRHS = getSignedRangeMin(RHS); 12556 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12557 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12558 12559 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12560 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12561 } 12562 12563 APInt MinRHS = getUnsignedRangeMin(RHS); 12564 APInt MinValue = APInt::getMinValue(BitWidth); 12565 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12566 12567 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12568 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12569 } 12570 12571 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12572 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12573 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12574 // expression fixes the case of N=0. 12575 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12576 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12577 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12578 } 12579 12580 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12581 const SCEV *Stride, 12582 const SCEV *End, 12583 unsigned BitWidth, 12584 bool IsSigned) { 12585 // The logic in this function assumes we can represent a positive stride. 12586 // If we can't, the backedge-taken count must be zero. 12587 if (IsSigned && BitWidth == 1) 12588 return getZero(Stride->getType()); 12589 12590 // This code below only been closely audited for negative strides in the 12591 // unsigned comparison case, it may be correct for signed comparison, but 12592 // that needs to be established. 12593 if (IsSigned && isKnownNegative(Stride)) 12594 return getCouldNotCompute(); 12595 12596 // Calculate the maximum backedge count based on the range of values 12597 // permitted by Start, End, and Stride. 12598 APInt MinStart = 12599 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12600 12601 APInt MinStride = 12602 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12603 12604 // We assume either the stride is positive, or the backedge-taken count 12605 // is zero. So force StrideForMaxBECount to be at least one. 12606 APInt One(BitWidth, 1); 12607 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12608 : APIntOps::umax(One, MinStride); 12609 12610 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12611 : APInt::getMaxValue(BitWidth); 12612 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12613 12614 // Although End can be a MAX expression we estimate MaxEnd considering only 12615 // the case End = RHS of the loop termination condition. This is safe because 12616 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12617 // taken count. 12618 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12619 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12620 12621 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12622 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12623 : APIntOps::umax(MaxEnd, MinStart); 12624 12625 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12626 getConstant(StrideForMaxBECount) /* Step */); 12627 } 12628 12629 ScalarEvolution::ExitLimit 12630 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12631 const Loop *L, bool IsSigned, 12632 bool ControlsOnlyExit, bool AllowPredicates) { 12633 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12634 12635 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12636 bool PredicatedIV = false; 12637 12638 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12639 // Can we prove this loop *must* be UB if overflow of IV occurs? 12640 // Reasoning goes as follows: 12641 // * Suppose the IV did self wrap. 12642 // * If Stride evenly divides the iteration space, then once wrap 12643 // occurs, the loop must revisit the same values. 12644 // * We know that RHS is invariant, and that none of those values 12645 // caused this exit to be taken previously. Thus, this exit is 12646 // dynamically dead. 12647 // * If this is the sole exit, then a dead exit implies the loop 12648 // must be infinite if there are no abnormal exits. 12649 // * If the loop were infinite, then it must either not be mustprogress 12650 // or have side effects. Otherwise, it must be UB. 12651 // * It can't (by assumption), be UB so we have contradicted our 12652 // premise and can conclude the IV did not in fact self-wrap. 12653 if (!isLoopInvariant(RHS, L)) 12654 return false; 12655 12656 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12657 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12658 return false; 12659 12660 if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L)) 12661 return false; 12662 12663 return loopIsFiniteByAssumption(L); 12664 }; 12665 12666 if (!IV) { 12667 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12668 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12669 if (AR && AR->getLoop() == L && AR->isAffine()) { 12670 auto canProveNUW = [&]() { 12671 // We can use the comparison to infer no-wrap flags only if it fully 12672 // controls the loop exit. 12673 if (!ControlsOnlyExit) 12674 return false; 12675 12676 if (!isLoopInvariant(RHS, L)) 12677 return false; 12678 12679 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12680 // We need the sequence defined by AR to strictly increase in the 12681 // unsigned integer domain for the logic below to hold. 12682 return false; 12683 12684 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12685 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12686 // If RHS <=u Limit, then there must exist a value V in the sequence 12687 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12688 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12689 // overflow occurs. This limit also implies that a signed comparison 12690 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12691 // the high bits on both sides must be zero. 12692 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12693 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12694 Limit = Limit.zext(OuterBitWidth); 12695 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12696 }; 12697 auto Flags = AR->getNoWrapFlags(); 12698 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12699 Flags = setFlags(Flags, SCEV::FlagNUW); 12700 12701 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12702 if (AR->hasNoUnsignedWrap()) { 12703 // Emulate what getZeroExtendExpr would have done during construction 12704 // if we'd been able to infer the fact just above at that time. 12705 const SCEV *Step = AR->getStepRecurrence(*this); 12706 Type *Ty = ZExt->getType(); 12707 auto *S = getAddRecExpr( 12708 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12709 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12710 IV = dyn_cast<SCEVAddRecExpr>(S); 12711 } 12712 } 12713 } 12714 } 12715 12716 12717 if (!IV && AllowPredicates) { 12718 // Try to make this an AddRec using runtime tests, in the first X 12719 // iterations of this loop, where X is the SCEV expression found by the 12720 // algorithm below. 12721 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12722 PredicatedIV = true; 12723 } 12724 12725 // Avoid weird loops 12726 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12727 return getCouldNotCompute(); 12728 12729 // A precondition of this method is that the condition being analyzed 12730 // reaches an exiting branch which dominates the latch. Given that, we can 12731 // assume that an increment which violates the nowrap specification and 12732 // produces poison must cause undefined behavior when the resulting poison 12733 // value is branched upon and thus we can conclude that the backedge is 12734 // taken no more often than would be required to produce that poison value. 12735 // Note that a well defined loop can exit on the iteration which violates 12736 // the nowrap specification if there is another exit (either explicit or 12737 // implicit/exceptional) which causes the loop to execute before the 12738 // exiting instruction we're analyzing would trigger UB. 12739 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12740 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 12741 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12742 12743 const SCEV *Stride = IV->getStepRecurrence(*this); 12744 12745 bool PositiveStride = isKnownPositive(Stride); 12746 12747 // Avoid negative or zero stride values. 12748 if (!PositiveStride) { 12749 // We can compute the correct backedge taken count for loops with unknown 12750 // strides if we can prove that the loop is not an infinite loop with side 12751 // effects. Here's the loop structure we are trying to handle - 12752 // 12753 // i = start 12754 // do { 12755 // A[i] = i; 12756 // i += s; 12757 // } while (i < end); 12758 // 12759 // The backedge taken count for such loops is evaluated as - 12760 // (max(end, start + stride) - start - 1) /u stride 12761 // 12762 // The additional preconditions that we need to check to prove correctness 12763 // of the above formula is as follows - 12764 // 12765 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12766 // NoWrap flag). 12767 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12768 // no side effects within the loop) 12769 // c) loop has a single static exit (with no abnormal exits) 12770 // 12771 // Precondition a) implies that if the stride is negative, this is a single 12772 // trip loop. The backedge taken count formula reduces to zero in this case. 12773 // 12774 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12775 // then a zero stride means the backedge can't be taken without executing 12776 // undefined behavior. 12777 // 12778 // The positive stride case is the same as isKnownPositive(Stride) returning 12779 // true (original behavior of the function). 12780 // 12781 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12782 !loopHasNoAbnormalExits(L)) 12783 return getCouldNotCompute(); 12784 12785 if (!isKnownNonZero(Stride)) { 12786 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12787 // if it might eventually be greater than start and if so, on which 12788 // iteration. We can't even produce a useful upper bound. 12789 if (!isLoopInvariant(RHS, L)) 12790 return getCouldNotCompute(); 12791 12792 // We allow a potentially zero stride, but we need to divide by stride 12793 // below. Since the loop can't be infinite and this check must control 12794 // the sole exit, we can infer the exit must be taken on the first 12795 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12796 // we know the numerator in the divides below must be zero, so we can 12797 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12798 // and produce the right result. 12799 // FIXME: Handle the case where Stride is poison? 12800 auto wouldZeroStrideBeUB = [&]() { 12801 // Proof by contradiction. Suppose the stride were zero. If we can 12802 // prove that the backedge *is* taken on the first iteration, then since 12803 // we know this condition controls the sole exit, we must have an 12804 // infinite loop. We can't have a (well defined) infinite loop per 12805 // check just above. 12806 // Note: The (Start - Stride) term is used to get the start' term from 12807 // (start' + stride,+,stride). Remember that we only care about the 12808 // result of this expression when stride == 0 at runtime. 12809 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12810 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12811 }; 12812 if (!wouldZeroStrideBeUB()) { 12813 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12814 } 12815 } 12816 } else if (!Stride->isOne() && !NoWrap) { 12817 auto isUBOnWrap = [&]() { 12818 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12819 // follows trivially from the fact that every (un)signed-wrapped, but 12820 // not self-wrapped value must be LT than the last value before 12821 // (un)signed wrap. Since we know that last value didn't exit, nor 12822 // will any smaller one. 12823 return canAssumeNoSelfWrap(IV); 12824 }; 12825 12826 // Avoid proven overflow cases: this will ensure that the backedge taken 12827 // count will not generate any unsigned overflow. Relaxed no-overflow 12828 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12829 // undefined behaviors like the case of C language. 12830 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12831 return getCouldNotCompute(); 12832 } 12833 12834 // On all paths just preceeding, we established the following invariant: 12835 // IV can be assumed not to overflow up to and including the exiting 12836 // iteration. We proved this in one of two ways: 12837 // 1) We can show overflow doesn't occur before the exiting iteration 12838 // 1a) canIVOverflowOnLT, and b) step of one 12839 // 2) We can show that if overflow occurs, the loop must execute UB 12840 // before any possible exit. 12841 // Note that we have not yet proved RHS invariant (in general). 12842 12843 const SCEV *Start = IV->getStart(); 12844 12845 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12846 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12847 // Use integer-typed versions for actual computation; we can't subtract 12848 // pointers in general. 12849 const SCEV *OrigStart = Start; 12850 const SCEV *OrigRHS = RHS; 12851 if (Start->getType()->isPointerTy()) { 12852 Start = getLosslessPtrToIntExpr(Start); 12853 if (isa<SCEVCouldNotCompute>(Start)) 12854 return Start; 12855 } 12856 if (RHS->getType()->isPointerTy()) { 12857 RHS = getLosslessPtrToIntExpr(RHS); 12858 if (isa<SCEVCouldNotCompute>(RHS)) 12859 return RHS; 12860 } 12861 12862 // When the RHS is not invariant, we do not know the end bound of the loop and 12863 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12864 // calculate the MaxBECount, given the start, stride and max value for the end 12865 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12866 // checked above). 12867 if (!isLoopInvariant(RHS, L)) { 12868 const SCEV *MaxBECount = computeMaxBECountForLT( 12869 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12870 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12871 MaxBECount, false /*MaxOrZero*/, Predicates); 12872 } 12873 12874 // We use the expression (max(End,Start)-Start)/Stride to describe the 12875 // backedge count, as if the backedge is taken at least once max(End,Start) 12876 // is End and so the result is as above, and if not max(End,Start) is Start 12877 // so we get a backedge count of zero. 12878 const SCEV *BECount = nullptr; 12879 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12880 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12881 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12882 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12883 // Can we prove (max(RHS,Start) > Start - Stride? 12884 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12885 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12886 // In this case, we can use a refined formula for computing backedge taken 12887 // count. The general formula remains: 12888 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12889 // We want to use the alternate formula: 12890 // "((End - 1) - (Start - Stride)) /u Stride" 12891 // Let's do a quick case analysis to show these are equivalent under 12892 // our precondition that max(RHS,Start) > Start - Stride. 12893 // * For RHS <= Start, the backedge-taken count must be zero. 12894 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12895 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12896 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12897 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12898 // this to the stride of 1 case. 12899 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12900 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12901 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12902 // "((RHS - (Start - Stride) - 1) /u Stride". 12903 // Our preconditions trivially imply no overflow in that form. 12904 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12905 const SCEV *Numerator = 12906 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12907 BECount = getUDivExpr(Numerator, Stride); 12908 } 12909 12910 const SCEV *BECountIfBackedgeTaken = nullptr; 12911 if (!BECount) { 12912 auto canProveRHSGreaterThanEqualStart = [&]() { 12913 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12914 const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L); 12915 const SCEV *GuardedStart = applyLoopGuards(OrigStart, L); 12916 12917 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) || 12918 isKnownPredicate(CondGE, GuardedRHS, GuardedStart)) 12919 return true; 12920 12921 // (RHS > Start - 1) implies RHS >= Start. 12922 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12923 // "Start - 1" doesn't overflow. 12924 // * For signed comparison, if Start - 1 does overflow, it's equal 12925 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12926 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12927 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12928 // 12929 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12930 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12931 auto *StartMinusOne = getAddExpr(OrigStart, 12932 getMinusOne(OrigStart->getType())); 12933 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12934 }; 12935 12936 // If we know that RHS >= Start in the context of loop, then we know that 12937 // max(RHS, Start) = RHS at this point. 12938 const SCEV *End; 12939 if (canProveRHSGreaterThanEqualStart()) { 12940 End = RHS; 12941 } else { 12942 // If RHS < Start, the backedge will be taken zero times. So in 12943 // general, we can write the backedge-taken count as: 12944 // 12945 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12946 // 12947 // We convert it to the following to make it more convenient for SCEV: 12948 // 12949 // ceil(max(RHS, Start) - Start) / Stride 12950 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12951 12952 // See what would happen if we assume the backedge is taken. This is 12953 // used to compute MaxBECount. 12954 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12955 } 12956 12957 // At this point, we know: 12958 // 12959 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12960 // 2. The index variable doesn't overflow. 12961 // 12962 // Therefore, we know N exists such that 12963 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12964 // doesn't overflow. 12965 // 12966 // Using this information, try to prove whether the addition in 12967 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12968 const SCEV *One = getOne(Stride->getType()); 12969 bool MayAddOverflow = [&] { 12970 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12971 if (StrideC->getAPInt().isPowerOf2()) { 12972 // Suppose Stride is a power of two, and Start/End are unsigned 12973 // integers. Let UMAX be the largest representable unsigned 12974 // integer. 12975 // 12976 // By the preconditions of this function, we know 12977 // "(Start + Stride * N) >= End", and this doesn't overflow. 12978 // As a formula: 12979 // 12980 // End <= (Start + Stride * N) <= UMAX 12981 // 12982 // Subtracting Start from all the terms: 12983 // 12984 // End - Start <= Stride * N <= UMAX - Start 12985 // 12986 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12987 // 12988 // End - Start <= Stride * N <= UMAX 12989 // 12990 // Stride * N is a multiple of Stride. Therefore, 12991 // 12992 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12993 // 12994 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12995 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12996 // 12997 // End - Start <= Stride * N <= UMAX - Stride - 1 12998 // 12999 // Dropping the middle term: 13000 // 13001 // End - Start <= UMAX - Stride - 1 13002 // 13003 // Adding Stride - 1 to both sides: 13004 // 13005 // (End - Start) + (Stride - 1) <= UMAX 13006 // 13007 // In other words, the addition doesn't have unsigned overflow. 13008 // 13009 // A similar proof works if we treat Start/End as signed values. 13010 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 13011 // use signed max instead of unsigned max. Note that we're trying 13012 // to prove a lack of unsigned overflow in either case. 13013 return false; 13014 } 13015 } 13016 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 13017 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 13018 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 13019 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 13020 // 13021 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 13022 return false; 13023 } 13024 return true; 13025 }(); 13026 13027 const SCEV *Delta = getMinusSCEV(End, Start); 13028 if (!MayAddOverflow) { 13029 // floor((D + (S - 1)) / S) 13030 // We prefer this formulation if it's legal because it's fewer operations. 13031 BECount = 13032 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 13033 } else { 13034 BECount = getUDivCeilSCEV(Delta, Stride); 13035 } 13036 } 13037 13038 const SCEV *ConstantMaxBECount; 13039 bool MaxOrZero = false; 13040 if (isa<SCEVConstant>(BECount)) { 13041 ConstantMaxBECount = BECount; 13042 } else if (BECountIfBackedgeTaken && 13043 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 13044 // If we know exactly how many times the backedge will be taken if it's 13045 // taken at least once, then the backedge count will either be that or 13046 // zero. 13047 ConstantMaxBECount = BECountIfBackedgeTaken; 13048 MaxOrZero = true; 13049 } else { 13050 ConstantMaxBECount = computeMaxBECountForLT( 13051 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13052 } 13053 13054 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 13055 !isa<SCEVCouldNotCompute>(BECount)) 13056 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 13057 13058 const SCEV *SymbolicMaxBECount = 13059 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13060 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, 13061 Predicates); 13062 } 13063 13064 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( 13065 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, 13066 bool ControlsOnlyExit, bool AllowPredicates) { 13067 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 13068 // We handle only IV > Invariant 13069 if (!isLoopInvariant(RHS, L)) 13070 return getCouldNotCompute(); 13071 13072 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 13073 if (!IV && AllowPredicates) 13074 // Try to make this an AddRec using runtime tests, in the first X 13075 // iterations of this loop, where X is the SCEV expression found by the 13076 // algorithm below. 13077 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13078 13079 // Avoid weird loops 13080 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13081 return getCouldNotCompute(); 13082 13083 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13084 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 13085 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13086 13087 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 13088 13089 // Avoid negative or zero stride values 13090 if (!isKnownPositive(Stride)) 13091 return getCouldNotCompute(); 13092 13093 // Avoid proven overflow cases: this will ensure that the backedge taken count 13094 // will not generate any unsigned overflow. Relaxed no-overflow conditions 13095 // exploit NoWrapFlags, allowing to optimize in presence of undefined 13096 // behaviors like the case of C language. 13097 if (!Stride->isOne() && !NoWrap) 13098 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 13099 return getCouldNotCompute(); 13100 13101 const SCEV *Start = IV->getStart(); 13102 const SCEV *End = RHS; 13103 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 13104 // If we know that Start >= RHS in the context of loop, then we know that 13105 // min(RHS, Start) = RHS at this point. 13106 if (isLoopEntryGuardedByCond( 13107 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 13108 End = RHS; 13109 else 13110 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 13111 } 13112 13113 if (Start->getType()->isPointerTy()) { 13114 Start = getLosslessPtrToIntExpr(Start); 13115 if (isa<SCEVCouldNotCompute>(Start)) 13116 return Start; 13117 } 13118 if (End->getType()->isPointerTy()) { 13119 End = getLosslessPtrToIntExpr(End); 13120 if (isa<SCEVCouldNotCompute>(End)) 13121 return End; 13122 } 13123 13124 // Compute ((Start - End) + (Stride - 1)) / Stride. 13125 // FIXME: This can overflow. Holding off on fixing this for now; 13126 // howManyGreaterThans will hopefully be gone soon. 13127 const SCEV *One = getOne(Stride->getType()); 13128 const SCEV *BECount = getUDivExpr( 13129 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 13130 13131 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 13132 : getUnsignedRangeMax(Start); 13133 13134 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 13135 : getUnsignedRangeMin(Stride); 13136 13137 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 13138 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 13139 : APInt::getMinValue(BitWidth) + (MinStride - 1); 13140 13141 // Although End can be a MIN expression we estimate MinEnd considering only 13142 // the case End = RHS. This is safe because in the other case (Start - End) 13143 // is zero, leading to a zero maximum backedge taken count. 13144 APInt MinEnd = 13145 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 13146 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 13147 13148 const SCEV *ConstantMaxBECount = 13149 isa<SCEVConstant>(BECount) 13150 ? BECount 13151 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 13152 getConstant(MinStride)); 13153 13154 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) 13155 ConstantMaxBECount = BECount; 13156 const SCEV *SymbolicMaxBECount = 13157 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13158 13159 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 13160 Predicates); 13161 } 13162 13163 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 13164 ScalarEvolution &SE) const { 13165 if (Range.isFullSet()) // Infinite loop. 13166 return SE.getCouldNotCompute(); 13167 13168 // If the start is a non-zero constant, shift the range to simplify things. 13169 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 13170 if (!SC->getValue()->isZero()) { 13171 SmallVector<const SCEV *, 4> Operands(operands()); 13172 Operands[0] = SE.getZero(SC->getType()); 13173 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 13174 getNoWrapFlags(FlagNW)); 13175 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 13176 return ShiftedAddRec->getNumIterationsInRange( 13177 Range.subtract(SC->getAPInt()), SE); 13178 // This is strange and shouldn't happen. 13179 return SE.getCouldNotCompute(); 13180 } 13181 13182 // The only time we can solve this is when we have all constant indices. 13183 // Otherwise, we cannot determine the overflow conditions. 13184 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 13185 return SE.getCouldNotCompute(); 13186 13187 // Okay at this point we know that all elements of the chrec are constants and 13188 // that the start element is zero. 13189 13190 // First check to see if the range contains zero. If not, the first 13191 // iteration exits. 13192 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 13193 if (!Range.contains(APInt(BitWidth, 0))) 13194 return SE.getZero(getType()); 13195 13196 if (isAffine()) { 13197 // If this is an affine expression then we have this situation: 13198 // Solve {0,+,A} in Range === Ax in Range 13199 13200 // We know that zero is in the range. If A is positive then we know that 13201 // the upper value of the range must be the first possible exit value. 13202 // If A is negative then the lower of the range is the last possible loop 13203 // value. Also note that we already checked for a full range. 13204 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 13205 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 13206 13207 // The exit value should be (End+A)/A. 13208 APInt ExitVal = (End + A).udiv(A); 13209 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 13210 13211 // Evaluate at the exit value. If we really did fall out of the valid 13212 // range, then we computed our trip count, otherwise wrap around or other 13213 // things must have happened. 13214 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 13215 if (Range.contains(Val->getValue())) 13216 return SE.getCouldNotCompute(); // Something strange happened 13217 13218 // Ensure that the previous value is in the range. 13219 assert(Range.contains( 13220 EvaluateConstantChrecAtConstant(this, 13221 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 13222 "Linear scev computation is off in a bad way!"); 13223 return SE.getConstant(ExitValue); 13224 } 13225 13226 if (isQuadratic()) { 13227 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 13228 return SE.getConstant(*S); 13229 } 13230 13231 return SE.getCouldNotCompute(); 13232 } 13233 13234 const SCEVAddRecExpr * 13235 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 13236 assert(getNumOperands() > 1 && "AddRec with zero step?"); 13237 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 13238 // but in this case we cannot guarantee that the value returned will be an 13239 // AddRec because SCEV does not have a fixed point where it stops 13240 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 13241 // may happen if we reach arithmetic depth limit while simplifying. So we 13242 // construct the returned value explicitly. 13243 SmallVector<const SCEV *, 3> Ops; 13244 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 13245 // (this + Step) is {A+B,+,B+C,+...,+,N}. 13246 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 13247 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 13248 // We know that the last operand is not a constant zero (otherwise it would 13249 // have been popped out earlier). This guarantees us that if the result has 13250 // the same last operand, then it will also not be popped out, meaning that 13251 // the returned value will be an AddRec. 13252 const SCEV *Last = getOperand(getNumOperands() - 1); 13253 assert(!Last->isZero() && "Recurrency with zero step?"); 13254 Ops.push_back(Last); 13255 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13256 SCEV::FlagAnyWrap)); 13257 } 13258 13259 // Return true when S contains at least an undef value. 13260 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13261 return SCEVExprContains(S, [](const SCEV *S) { 13262 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13263 return isa<UndefValue>(SU->getValue()); 13264 return false; 13265 }); 13266 } 13267 13268 // Return true when S contains a value that is a nullptr. 13269 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13270 return SCEVExprContains(S, [](const SCEV *S) { 13271 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13272 return SU->getValue() == nullptr; 13273 return false; 13274 }); 13275 } 13276 13277 /// Return the size of an element read or written by Inst. 13278 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13279 Type *Ty; 13280 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13281 Ty = Store->getValueOperand()->getType(); 13282 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13283 Ty = Load->getType(); 13284 else 13285 return nullptr; 13286 13287 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13288 return getSizeOfExpr(ETy, Ty); 13289 } 13290 13291 //===----------------------------------------------------------------------===// 13292 // SCEVCallbackVH Class Implementation 13293 //===----------------------------------------------------------------------===// 13294 13295 void ScalarEvolution::SCEVCallbackVH::deleted() { 13296 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13297 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13298 SE->ConstantEvolutionLoopExitValue.erase(PN); 13299 SE->eraseValueFromMap(getValPtr()); 13300 // this now dangles! 13301 } 13302 13303 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13304 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13305 13306 // Forget all the expressions associated with users of the old value, 13307 // so that future queries will recompute the expressions using the new 13308 // value. 13309 SE->forgetValue(getValPtr()); 13310 // this now dangles! 13311 } 13312 13313 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13314 : CallbackVH(V), SE(se) {} 13315 13316 //===----------------------------------------------------------------------===// 13317 // ScalarEvolution Class Implementation 13318 //===----------------------------------------------------------------------===// 13319 13320 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13321 AssumptionCache &AC, DominatorTree &DT, 13322 LoopInfo &LI) 13323 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 13324 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13325 LoopDispositions(64), BlockDispositions(64) { 13326 // To use guards for proving predicates, we need to scan every instruction in 13327 // relevant basic blocks, and not just terminators. Doing this is a waste of 13328 // time if the IR does not actually contain any calls to 13329 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13330 // 13331 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13332 // to _add_ guards to the module when there weren't any before, and wants 13333 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13334 // efficient in lieu of being smart in that rather obscure case. 13335 13336 auto *GuardDecl = F.getParent()->getFunction( 13337 Intrinsic::getName(Intrinsic::experimental_guard)); 13338 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13339 } 13340 13341 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13342 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 13343 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13344 ValueExprMap(std::move(Arg.ValueExprMap)), 13345 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13346 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13347 PendingMerges(std::move(Arg.PendingMerges)), 13348 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), 13349 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13350 PredicatedBackedgeTakenCounts( 13351 std::move(Arg.PredicatedBackedgeTakenCounts)), 13352 BECountUsers(std::move(Arg.BECountUsers)), 13353 ConstantEvolutionLoopExitValue( 13354 std::move(Arg.ConstantEvolutionLoopExitValue)), 13355 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13356 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13357 LoopDispositions(std::move(Arg.LoopDispositions)), 13358 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13359 BlockDispositions(std::move(Arg.BlockDispositions)), 13360 SCEVUsers(std::move(Arg.SCEVUsers)), 13361 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13362 SignedRanges(std::move(Arg.SignedRanges)), 13363 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13364 UniquePreds(std::move(Arg.UniquePreds)), 13365 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13366 LoopUsers(std::move(Arg.LoopUsers)), 13367 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13368 FirstUnknown(Arg.FirstUnknown) { 13369 Arg.FirstUnknown = nullptr; 13370 } 13371 13372 ScalarEvolution::~ScalarEvolution() { 13373 // Iterate through all the SCEVUnknown instances and call their 13374 // destructors, so that they release their references to their values. 13375 for (SCEVUnknown *U = FirstUnknown; U;) { 13376 SCEVUnknown *Tmp = U; 13377 U = U->Next; 13378 Tmp->~SCEVUnknown(); 13379 } 13380 FirstUnknown = nullptr; 13381 13382 ExprValueMap.clear(); 13383 ValueExprMap.clear(); 13384 HasRecMap.clear(); 13385 BackedgeTakenCounts.clear(); 13386 PredicatedBackedgeTakenCounts.clear(); 13387 13388 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13389 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13390 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13391 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13392 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13393 } 13394 13395 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13396 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13397 } 13398 13399 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13400 const Loop *L) { 13401 // Print all inner loops first 13402 for (Loop *I : *L) 13403 PrintLoopInfo(OS, SE, I); 13404 13405 OS << "Loop "; 13406 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13407 OS << ": "; 13408 13409 SmallVector<BasicBlock *, 8> ExitingBlocks; 13410 L->getExitingBlocks(ExitingBlocks); 13411 if (ExitingBlocks.size() != 1) 13412 OS << "<multiple exits> "; 13413 13414 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 13415 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 13416 else 13417 OS << "Unpredictable backedge-taken count.\n"; 13418 13419 if (ExitingBlocks.size() > 1) 13420 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13421 OS << " exit count for " << ExitingBlock->getName() << ": " 13422 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13423 } 13424 13425 OS << "Loop "; 13426 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13427 OS << ": "; 13428 13429 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); 13430 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { 13431 OS << "constant max backedge-taken count is " << *ConstantBTC; 13432 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13433 OS << ", actual taken count either this or zero."; 13434 } else { 13435 OS << "Unpredictable constant max backedge-taken count. "; 13436 } 13437 13438 OS << "\n" 13439 "Loop "; 13440 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13441 OS << ": "; 13442 13443 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); 13444 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { 13445 OS << "symbolic max backedge-taken count is " << *SymbolicBTC; 13446 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13447 OS << ", actual taken count either this or zero."; 13448 } else { 13449 OS << "Unpredictable symbolic max backedge-taken count. "; 13450 } 13451 13452 OS << "\n"; 13453 if (ExitingBlocks.size() > 1) 13454 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13455 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " 13456 << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum) 13457 << "\n"; 13458 } 13459 13460 OS << "Loop "; 13461 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13462 OS << ": "; 13463 13464 SmallVector<const SCEVPredicate *, 4> Preds; 13465 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13466 if (!isa<SCEVCouldNotCompute>(PBT)) { 13467 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13468 OS << " Predicates:\n"; 13469 for (const auto *P : Preds) 13470 P->print(OS, 4); 13471 } else { 13472 OS << "Unpredictable predicated backedge-taken count.\n"; 13473 } 13474 13475 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13476 OS << "Loop "; 13477 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13478 OS << ": "; 13479 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13480 } 13481 } 13482 13483 namespace llvm { 13484 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { 13485 switch (LD) { 13486 case ScalarEvolution::LoopVariant: 13487 OS << "Variant"; 13488 break; 13489 case ScalarEvolution::LoopInvariant: 13490 OS << "Invariant"; 13491 break; 13492 case ScalarEvolution::LoopComputable: 13493 OS << "Computable"; 13494 break; 13495 } 13496 return OS; 13497 } 13498 13499 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { 13500 switch (BD) { 13501 case ScalarEvolution::DoesNotDominateBlock: 13502 OS << "DoesNotDominate"; 13503 break; 13504 case ScalarEvolution::DominatesBlock: 13505 OS << "Dominates"; 13506 break; 13507 case ScalarEvolution::ProperlyDominatesBlock: 13508 OS << "ProperlyDominates"; 13509 break; 13510 } 13511 return OS; 13512 } 13513 } 13514 13515 void ScalarEvolution::print(raw_ostream &OS) const { 13516 // ScalarEvolution's implementation of the print method is to print 13517 // out SCEV values of all instructions that are interesting. Doing 13518 // this potentially causes it to create new SCEV objects though, 13519 // which technically conflicts with the const qualifier. This isn't 13520 // observable from outside the class though, so casting away the 13521 // const isn't dangerous. 13522 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13523 13524 if (ClassifyExpressions) { 13525 OS << "Classifying expressions for: "; 13526 F.printAsOperand(OS, /*PrintType=*/false); 13527 OS << "\n"; 13528 for (Instruction &I : instructions(F)) 13529 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13530 OS << I << '\n'; 13531 OS << " --> "; 13532 const SCEV *SV = SE.getSCEV(&I); 13533 SV->print(OS); 13534 if (!isa<SCEVCouldNotCompute>(SV)) { 13535 OS << " U: "; 13536 SE.getUnsignedRange(SV).print(OS); 13537 OS << " S: "; 13538 SE.getSignedRange(SV).print(OS); 13539 } 13540 13541 const Loop *L = LI.getLoopFor(I.getParent()); 13542 13543 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13544 if (AtUse != SV) { 13545 OS << " --> "; 13546 AtUse->print(OS); 13547 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13548 OS << " U: "; 13549 SE.getUnsignedRange(AtUse).print(OS); 13550 OS << " S: "; 13551 SE.getSignedRange(AtUse).print(OS); 13552 } 13553 } 13554 13555 if (L) { 13556 OS << "\t\t" "Exits: "; 13557 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13558 if (!SE.isLoopInvariant(ExitValue, L)) { 13559 OS << "<<Unknown>>"; 13560 } else { 13561 OS << *ExitValue; 13562 } 13563 13564 bool First = true; 13565 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13566 if (First) { 13567 OS << "\t\t" "LoopDispositions: { "; 13568 First = false; 13569 } else { 13570 OS << ", "; 13571 } 13572 13573 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13574 OS << ": " << SE.getLoopDisposition(SV, Iter); 13575 } 13576 13577 for (const auto *InnerL : depth_first(L)) { 13578 if (InnerL == L) 13579 continue; 13580 if (First) { 13581 OS << "\t\t" "LoopDispositions: { "; 13582 First = false; 13583 } else { 13584 OS << ", "; 13585 } 13586 13587 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13588 OS << ": " << SE.getLoopDisposition(SV, InnerL); 13589 } 13590 13591 OS << " }"; 13592 } 13593 13594 OS << "\n"; 13595 } 13596 } 13597 13598 OS << "Determining loop execution counts for: "; 13599 F.printAsOperand(OS, /*PrintType=*/false); 13600 OS << "\n"; 13601 for (Loop *I : LI) 13602 PrintLoopInfo(OS, &SE, I); 13603 } 13604 13605 ScalarEvolution::LoopDisposition 13606 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13607 auto &Values = LoopDispositions[S]; 13608 for (auto &V : Values) { 13609 if (V.getPointer() == L) 13610 return V.getInt(); 13611 } 13612 Values.emplace_back(L, LoopVariant); 13613 LoopDisposition D = computeLoopDisposition(S, L); 13614 auto &Values2 = LoopDispositions[S]; 13615 for (auto &V : llvm::reverse(Values2)) { 13616 if (V.getPointer() == L) { 13617 V.setInt(D); 13618 break; 13619 } 13620 } 13621 return D; 13622 } 13623 13624 ScalarEvolution::LoopDisposition 13625 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13626 switch (S->getSCEVType()) { 13627 case scConstant: 13628 case scVScale: 13629 return LoopInvariant; 13630 case scAddRecExpr: { 13631 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13632 13633 // If L is the addrec's loop, it's computable. 13634 if (AR->getLoop() == L) 13635 return LoopComputable; 13636 13637 // Add recurrences are never invariant in the function-body (null loop). 13638 if (!L) 13639 return LoopVariant; 13640 13641 // Everything that is not defined at loop entry is variant. 13642 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13643 return LoopVariant; 13644 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13645 " dominate the contained loop's header?"); 13646 13647 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13648 if (AR->getLoop()->contains(L)) 13649 return LoopInvariant; 13650 13651 // This recurrence is variant w.r.t. L if any of its operands 13652 // are variant. 13653 for (const auto *Op : AR->operands()) 13654 if (!isLoopInvariant(Op, L)) 13655 return LoopVariant; 13656 13657 // Otherwise it's loop-invariant. 13658 return LoopInvariant; 13659 } 13660 case scTruncate: 13661 case scZeroExtend: 13662 case scSignExtend: 13663 case scPtrToInt: 13664 case scAddExpr: 13665 case scMulExpr: 13666 case scUDivExpr: 13667 case scUMaxExpr: 13668 case scSMaxExpr: 13669 case scUMinExpr: 13670 case scSMinExpr: 13671 case scSequentialUMinExpr: { 13672 bool HasVarying = false; 13673 for (const auto *Op : S->operands()) { 13674 LoopDisposition D = getLoopDisposition(Op, L); 13675 if (D == LoopVariant) 13676 return LoopVariant; 13677 if (D == LoopComputable) 13678 HasVarying = true; 13679 } 13680 return HasVarying ? LoopComputable : LoopInvariant; 13681 } 13682 case scUnknown: 13683 // All non-instruction values are loop invariant. All instructions are loop 13684 // invariant if they are not contained in the specified loop. 13685 // Instructions are never considered invariant in the function body 13686 // (null loop) because they are defined within the "loop". 13687 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13688 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13689 return LoopInvariant; 13690 case scCouldNotCompute: 13691 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13692 } 13693 llvm_unreachable("Unknown SCEV kind!"); 13694 } 13695 13696 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13697 return getLoopDisposition(S, L) == LoopInvariant; 13698 } 13699 13700 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13701 return getLoopDisposition(S, L) == LoopComputable; 13702 } 13703 13704 ScalarEvolution::BlockDisposition 13705 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13706 auto &Values = BlockDispositions[S]; 13707 for (auto &V : Values) { 13708 if (V.getPointer() == BB) 13709 return V.getInt(); 13710 } 13711 Values.emplace_back(BB, DoesNotDominateBlock); 13712 BlockDisposition D = computeBlockDisposition(S, BB); 13713 auto &Values2 = BlockDispositions[S]; 13714 for (auto &V : llvm::reverse(Values2)) { 13715 if (V.getPointer() == BB) { 13716 V.setInt(D); 13717 break; 13718 } 13719 } 13720 return D; 13721 } 13722 13723 ScalarEvolution::BlockDisposition 13724 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13725 switch (S->getSCEVType()) { 13726 case scConstant: 13727 case scVScale: 13728 return ProperlyDominatesBlock; 13729 case scAddRecExpr: { 13730 // This uses a "dominates" query instead of "properly dominates" query 13731 // to test for proper dominance too, because the instruction which 13732 // produces the addrec's value is a PHI, and a PHI effectively properly 13733 // dominates its entire containing block. 13734 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13735 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13736 return DoesNotDominateBlock; 13737 13738 // Fall through into SCEVNAryExpr handling. 13739 [[fallthrough]]; 13740 } 13741 case scTruncate: 13742 case scZeroExtend: 13743 case scSignExtend: 13744 case scPtrToInt: 13745 case scAddExpr: 13746 case scMulExpr: 13747 case scUDivExpr: 13748 case scUMaxExpr: 13749 case scSMaxExpr: 13750 case scUMinExpr: 13751 case scSMinExpr: 13752 case scSequentialUMinExpr: { 13753 bool Proper = true; 13754 for (const SCEV *NAryOp : S->operands()) { 13755 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13756 if (D == DoesNotDominateBlock) 13757 return DoesNotDominateBlock; 13758 if (D == DominatesBlock) 13759 Proper = false; 13760 } 13761 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13762 } 13763 case scUnknown: 13764 if (Instruction *I = 13765 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13766 if (I->getParent() == BB) 13767 return DominatesBlock; 13768 if (DT.properlyDominates(I->getParent(), BB)) 13769 return ProperlyDominatesBlock; 13770 return DoesNotDominateBlock; 13771 } 13772 return ProperlyDominatesBlock; 13773 case scCouldNotCompute: 13774 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13775 } 13776 llvm_unreachable("Unknown SCEV kind!"); 13777 } 13778 13779 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13780 return getBlockDisposition(S, BB) >= DominatesBlock; 13781 } 13782 13783 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13784 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13785 } 13786 13787 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13788 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13789 } 13790 13791 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13792 bool Predicated) { 13793 auto &BECounts = 13794 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13795 auto It = BECounts.find(L); 13796 if (It != BECounts.end()) { 13797 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13798 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 13799 if (!isa<SCEVConstant>(S)) { 13800 auto UserIt = BECountUsers.find(S); 13801 assert(UserIt != BECountUsers.end()); 13802 UserIt->second.erase({L, Predicated}); 13803 } 13804 } 13805 } 13806 BECounts.erase(It); 13807 } 13808 } 13809 13810 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13811 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13812 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13813 13814 while (!Worklist.empty()) { 13815 const SCEV *Curr = Worklist.pop_back_val(); 13816 auto Users = SCEVUsers.find(Curr); 13817 if (Users != SCEVUsers.end()) 13818 for (const auto *User : Users->second) 13819 if (ToForget.insert(User).second) 13820 Worklist.push_back(User); 13821 } 13822 13823 for (const auto *S : ToForget) 13824 forgetMemoizedResultsImpl(S); 13825 13826 for (auto I = PredicatedSCEVRewrites.begin(); 13827 I != PredicatedSCEVRewrites.end();) { 13828 std::pair<const SCEV *, const Loop *> Entry = I->first; 13829 if (ToForget.count(Entry.first)) 13830 PredicatedSCEVRewrites.erase(I++); 13831 else 13832 ++I; 13833 } 13834 } 13835 13836 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13837 LoopDispositions.erase(S); 13838 BlockDispositions.erase(S); 13839 UnsignedRanges.erase(S); 13840 SignedRanges.erase(S); 13841 HasRecMap.erase(S); 13842 ConstantMultipleCache.erase(S); 13843 13844 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { 13845 UnsignedWrapViaInductionTried.erase(AR); 13846 SignedWrapViaInductionTried.erase(AR); 13847 } 13848 13849 auto ExprIt = ExprValueMap.find(S); 13850 if (ExprIt != ExprValueMap.end()) { 13851 for (Value *V : ExprIt->second) { 13852 auto ValueIt = ValueExprMap.find_as(V); 13853 if (ValueIt != ValueExprMap.end()) 13854 ValueExprMap.erase(ValueIt); 13855 } 13856 ExprValueMap.erase(ExprIt); 13857 } 13858 13859 auto ScopeIt = ValuesAtScopes.find(S); 13860 if (ScopeIt != ValuesAtScopes.end()) { 13861 for (const auto &Pair : ScopeIt->second) 13862 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13863 llvm::erase(ValuesAtScopesUsers[Pair.second], 13864 std::make_pair(Pair.first, S)); 13865 ValuesAtScopes.erase(ScopeIt); 13866 } 13867 13868 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13869 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13870 for (const auto &Pair : ScopeUserIt->second) 13871 llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13872 ValuesAtScopesUsers.erase(ScopeUserIt); 13873 } 13874 13875 auto BEUsersIt = BECountUsers.find(S); 13876 if (BEUsersIt != BECountUsers.end()) { 13877 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13878 auto Copy = BEUsersIt->second; 13879 for (const auto &Pair : Copy) 13880 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13881 BECountUsers.erase(BEUsersIt); 13882 } 13883 13884 auto FoldUser = FoldCacheUser.find(S); 13885 if (FoldUser != FoldCacheUser.end()) 13886 for (auto &KV : FoldUser->second) 13887 FoldCache.erase(KV); 13888 FoldCacheUser.erase(S); 13889 } 13890 13891 void 13892 ScalarEvolution::getUsedLoops(const SCEV *S, 13893 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13894 struct FindUsedLoops { 13895 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13896 : LoopsUsed(LoopsUsed) {} 13897 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13898 bool follow(const SCEV *S) { 13899 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13900 LoopsUsed.insert(AR->getLoop()); 13901 return true; 13902 } 13903 13904 bool isDone() const { return false; } 13905 }; 13906 13907 FindUsedLoops F(LoopsUsed); 13908 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13909 } 13910 13911 void ScalarEvolution::getReachableBlocks( 13912 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13913 SmallVector<BasicBlock *> Worklist; 13914 Worklist.push_back(&F.getEntryBlock()); 13915 while (!Worklist.empty()) { 13916 BasicBlock *BB = Worklist.pop_back_val(); 13917 if (!Reachable.insert(BB).second) 13918 continue; 13919 13920 Value *Cond; 13921 BasicBlock *TrueBB, *FalseBB; 13922 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13923 m_BasicBlock(FalseBB)))) { 13924 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13925 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13926 continue; 13927 } 13928 13929 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13930 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13931 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13932 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13933 Worklist.push_back(TrueBB); 13934 continue; 13935 } 13936 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13937 R)) { 13938 Worklist.push_back(FalseBB); 13939 continue; 13940 } 13941 } 13942 } 13943 13944 append_range(Worklist, successors(BB)); 13945 } 13946 } 13947 13948 void ScalarEvolution::verify() const { 13949 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13950 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13951 13952 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13953 13954 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13955 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13956 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13957 13958 const SCEV *visitConstant(const SCEVConstant *Constant) { 13959 return SE.getConstant(Constant->getAPInt()); 13960 } 13961 13962 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13963 return SE.getUnknown(Expr->getValue()); 13964 } 13965 13966 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13967 return SE.getCouldNotCompute(); 13968 } 13969 }; 13970 13971 SCEVMapper SCM(SE2); 13972 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13973 SE2.getReachableBlocks(ReachableBlocks, F); 13974 13975 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13976 if (containsUndefs(Old) || containsUndefs(New)) { 13977 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13978 // not propagate undef aggressively). This means we can (and do) fail 13979 // verification in cases where a transform makes a value go from "undef" 13980 // to "undef+1" (say). The transform is fine, since in both cases the 13981 // result is "undef", but SCEV thinks the value increased by 1. 13982 return nullptr; 13983 } 13984 13985 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13986 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13987 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13988 return nullptr; 13989 13990 return Delta; 13991 }; 13992 13993 while (!LoopStack.empty()) { 13994 auto *L = LoopStack.pop_back_val(); 13995 llvm::append_range(LoopStack, *L); 13996 13997 // Only verify BECounts in reachable loops. For an unreachable loop, 13998 // any BECount is legal. 13999 if (!ReachableBlocks.contains(L->getHeader())) 14000 continue; 14001 14002 // Only verify cached BECounts. Computing new BECounts may change the 14003 // results of subsequent SCEV uses. 14004 auto It = BackedgeTakenCounts.find(L); 14005 if (It == BackedgeTakenCounts.end()) 14006 continue; 14007 14008 auto *CurBECount = 14009 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 14010 auto *NewBECount = SE2.getBackedgeTakenCount(L); 14011 14012 if (CurBECount == SE2.getCouldNotCompute() || 14013 NewBECount == SE2.getCouldNotCompute()) { 14014 // NB! This situation is legal, but is very suspicious -- whatever pass 14015 // change the loop to make a trip count go from could not compute to 14016 // computable or vice-versa *should have* invalidated SCEV. However, we 14017 // choose not to assert here (for now) since we don't want false 14018 // positives. 14019 continue; 14020 } 14021 14022 if (SE.getTypeSizeInBits(CurBECount->getType()) > 14023 SE.getTypeSizeInBits(NewBECount->getType())) 14024 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 14025 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 14026 SE.getTypeSizeInBits(NewBECount->getType())) 14027 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 14028 14029 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 14030 if (Delta && !Delta->isZero()) { 14031 dbgs() << "Trip Count for " << *L << " Changed!\n"; 14032 dbgs() << "Old: " << *CurBECount << "\n"; 14033 dbgs() << "New: " << *NewBECount << "\n"; 14034 dbgs() << "Delta: " << *Delta << "\n"; 14035 std::abort(); 14036 } 14037 } 14038 14039 // Collect all valid loops currently in LoopInfo. 14040 SmallPtrSet<Loop *, 32> ValidLoops; 14041 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 14042 while (!Worklist.empty()) { 14043 Loop *L = Worklist.pop_back_val(); 14044 if (ValidLoops.insert(L).second) 14045 Worklist.append(L->begin(), L->end()); 14046 } 14047 for (const auto &KV : ValueExprMap) { 14048 #ifndef NDEBUG 14049 // Check for SCEV expressions referencing invalid/deleted loops. 14050 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 14051 assert(ValidLoops.contains(AR->getLoop()) && 14052 "AddRec references invalid loop"); 14053 } 14054 #endif 14055 14056 // Check that the value is also part of the reverse map. 14057 auto It = ExprValueMap.find(KV.second); 14058 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 14059 dbgs() << "Value " << *KV.first 14060 << " is in ValueExprMap but not in ExprValueMap\n"; 14061 std::abort(); 14062 } 14063 14064 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 14065 if (!ReachableBlocks.contains(I->getParent())) 14066 continue; 14067 const SCEV *OldSCEV = SCM.visit(KV.second); 14068 const SCEV *NewSCEV = SE2.getSCEV(I); 14069 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 14070 if (Delta && !Delta->isZero()) { 14071 dbgs() << "SCEV for value " << *I << " changed!\n" 14072 << "Old: " << *OldSCEV << "\n" 14073 << "New: " << *NewSCEV << "\n" 14074 << "Delta: " << *Delta << "\n"; 14075 std::abort(); 14076 } 14077 } 14078 } 14079 14080 for (const auto &KV : ExprValueMap) { 14081 for (Value *V : KV.second) { 14082 auto It = ValueExprMap.find_as(V); 14083 if (It == ValueExprMap.end()) { 14084 dbgs() << "Value " << *V 14085 << " is in ExprValueMap but not in ValueExprMap\n"; 14086 std::abort(); 14087 } 14088 if (It->second != KV.first) { 14089 dbgs() << "Value " << *V << " mapped to " << *It->second 14090 << " rather than " << *KV.first << "\n"; 14091 std::abort(); 14092 } 14093 } 14094 } 14095 14096 // Verify integrity of SCEV users. 14097 for (const auto &S : UniqueSCEVs) { 14098 for (const auto *Op : S.operands()) { 14099 // We do not store dependencies of constants. 14100 if (isa<SCEVConstant>(Op)) 14101 continue; 14102 auto It = SCEVUsers.find(Op); 14103 if (It != SCEVUsers.end() && It->second.count(&S)) 14104 continue; 14105 dbgs() << "Use of operand " << *Op << " by user " << S 14106 << " is not being tracked!\n"; 14107 std::abort(); 14108 } 14109 } 14110 14111 // Verify integrity of ValuesAtScopes users. 14112 for (const auto &ValueAndVec : ValuesAtScopes) { 14113 const SCEV *Value = ValueAndVec.first; 14114 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 14115 const Loop *L = LoopAndValueAtScope.first; 14116 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 14117 if (!isa<SCEVConstant>(ValueAtScope)) { 14118 auto It = ValuesAtScopesUsers.find(ValueAtScope); 14119 if (It != ValuesAtScopesUsers.end() && 14120 is_contained(It->second, std::make_pair(L, Value))) 14121 continue; 14122 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14123 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 14124 std::abort(); 14125 } 14126 } 14127 } 14128 14129 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 14130 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 14131 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 14132 const Loop *L = LoopAndValue.first; 14133 const SCEV *Value = LoopAndValue.second; 14134 assert(!isa<SCEVConstant>(Value)); 14135 auto It = ValuesAtScopes.find(Value); 14136 if (It != ValuesAtScopes.end() && 14137 is_contained(It->second, std::make_pair(L, ValueAtScope))) 14138 continue; 14139 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14140 << *ValueAtScope << " missing in ValuesAtScopes\n"; 14141 std::abort(); 14142 } 14143 } 14144 14145 // Verify integrity of BECountUsers. 14146 auto VerifyBECountUsers = [&](bool Predicated) { 14147 auto &BECounts = 14148 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14149 for (const auto &LoopAndBEInfo : BECounts) { 14150 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 14151 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14152 if (!isa<SCEVConstant>(S)) { 14153 auto UserIt = BECountUsers.find(S); 14154 if (UserIt != BECountUsers.end() && 14155 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 14156 continue; 14157 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first 14158 << " missing from BECountUsers\n"; 14159 std::abort(); 14160 } 14161 } 14162 } 14163 } 14164 }; 14165 VerifyBECountUsers(/* Predicated */ false); 14166 VerifyBECountUsers(/* Predicated */ true); 14167 14168 // Verify intergity of loop disposition cache. 14169 for (auto &[S, Values] : LoopDispositions) { 14170 for (auto [Loop, CachedDisposition] : Values) { 14171 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); 14172 if (CachedDisposition != RecomputedDisposition) { 14173 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop 14174 << " is incorrect: cached " << CachedDisposition << ", actual " 14175 << RecomputedDisposition << "\n"; 14176 std::abort(); 14177 } 14178 } 14179 } 14180 14181 // Verify integrity of the block disposition cache. 14182 for (auto &[S, Values] : BlockDispositions) { 14183 for (auto [BB, CachedDisposition] : Values) { 14184 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); 14185 if (CachedDisposition != RecomputedDisposition) { 14186 dbgs() << "Cached disposition of " << *S << " for block %" 14187 << BB->getName() << " is incorrect: cached " << CachedDisposition 14188 << ", actual " << RecomputedDisposition << "\n"; 14189 std::abort(); 14190 } 14191 } 14192 } 14193 14194 // Verify FoldCache/FoldCacheUser caches. 14195 for (auto [FoldID, Expr] : FoldCache) { 14196 auto I = FoldCacheUser.find(Expr); 14197 if (I == FoldCacheUser.end()) { 14198 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr 14199 << "!\n"; 14200 std::abort(); 14201 } 14202 if (!is_contained(I->second, FoldID)) { 14203 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; 14204 std::abort(); 14205 } 14206 } 14207 for (auto [Expr, IDs] : FoldCacheUser) { 14208 for (auto &FoldID : IDs) { 14209 auto I = FoldCache.find(FoldID); 14210 if (I == FoldCache.end()) { 14211 dbgs() << "Missing entry in FoldCache for expression " << *Expr 14212 << "!\n"; 14213 std::abort(); 14214 } 14215 if (I->second != Expr) { 14216 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " 14217 << *I->second << " != " << *Expr << "!\n"; 14218 std::abort(); 14219 } 14220 } 14221 } 14222 14223 // Verify that ConstantMultipleCache computations are correct. We check that 14224 // cached multiples and recomputed multiples are multiples of each other to 14225 // verify correctness. It is possible that a recomputed multiple is different 14226 // from the cached multiple due to strengthened no wrap flags or changes in 14227 // KnownBits computations. 14228 for (auto [S, Multiple] : ConstantMultipleCache) { 14229 APInt RecomputedMultiple = SE2.getConstantMultiple(S); 14230 if ((Multiple != 0 && RecomputedMultiple != 0 && 14231 Multiple.urem(RecomputedMultiple) != 0 && 14232 RecomputedMultiple.urem(Multiple) != 0)) { 14233 dbgs() << "Incorrect cached computation in ConstantMultipleCache for " 14234 << *S << " : Computed " << RecomputedMultiple 14235 << " but cache contains " << Multiple << "!\n"; 14236 std::abort(); 14237 } 14238 } 14239 } 14240 14241 bool ScalarEvolution::invalidate( 14242 Function &F, const PreservedAnalyses &PA, 14243 FunctionAnalysisManager::Invalidator &Inv) { 14244 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 14245 // of its dependencies is invalidated. 14246 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 14247 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 14248 Inv.invalidate<AssumptionAnalysis>(F, PA) || 14249 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 14250 Inv.invalidate<LoopAnalysis>(F, PA); 14251 } 14252 14253 AnalysisKey ScalarEvolutionAnalysis::Key; 14254 14255 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 14256 FunctionAnalysisManager &AM) { 14257 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 14258 auto &AC = AM.getResult<AssumptionAnalysis>(F); 14259 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 14260 auto &LI = AM.getResult<LoopAnalysis>(F); 14261 return ScalarEvolution(F, TLI, AC, DT, LI); 14262 } 14263 14264 PreservedAnalyses 14265 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 14266 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 14267 return PreservedAnalyses::all(); 14268 } 14269 14270 PreservedAnalyses 14271 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 14272 // For compatibility with opt's -analyze feature under legacy pass manager 14273 // which was not ported to NPM. This keeps tests using 14274 // update_analyze_test_checks.py working. 14275 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 14276 << F.getName() << "':\n"; 14277 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 14278 return PreservedAnalyses::all(); 14279 } 14280 14281 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 14282 "Scalar Evolution Analysis", false, true) 14283 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14284 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 14285 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 14286 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 14287 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 14288 "Scalar Evolution Analysis", false, true) 14289 14290 char ScalarEvolutionWrapperPass::ID = 0; 14291 14292 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 14293 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 14294 } 14295 14296 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 14297 SE.reset(new ScalarEvolution( 14298 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 14299 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 14300 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 14301 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 14302 return false; 14303 } 14304 14305 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 14306 14307 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 14308 SE->print(OS); 14309 } 14310 14311 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 14312 if (!VerifySCEV) 14313 return; 14314 14315 SE->verify(); 14316 } 14317 14318 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 14319 AU.setPreservesAll(); 14320 AU.addRequiredTransitive<AssumptionCacheTracker>(); 14321 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 14322 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 14323 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 14324 } 14325 14326 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 14327 const SCEV *RHS) { 14328 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 14329 } 14330 14331 const SCEVPredicate * 14332 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 14333 const SCEV *LHS, const SCEV *RHS) { 14334 FoldingSetNodeID ID; 14335 assert(LHS->getType() == RHS->getType() && 14336 "Type mismatch between LHS and RHS"); 14337 // Unique this node based on the arguments 14338 ID.AddInteger(SCEVPredicate::P_Compare); 14339 ID.AddInteger(Pred); 14340 ID.AddPointer(LHS); 14341 ID.AddPointer(RHS); 14342 void *IP = nullptr; 14343 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14344 return S; 14345 SCEVComparePredicate *Eq = new (SCEVAllocator) 14346 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14347 UniquePreds.InsertNode(Eq, IP); 14348 return Eq; 14349 } 14350 14351 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14352 const SCEVAddRecExpr *AR, 14353 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14354 FoldingSetNodeID ID; 14355 // Unique this node based on the arguments 14356 ID.AddInteger(SCEVPredicate::P_Wrap); 14357 ID.AddPointer(AR); 14358 ID.AddInteger(AddedFlags); 14359 void *IP = nullptr; 14360 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14361 return S; 14362 auto *OF = new (SCEVAllocator) 14363 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14364 UniquePreds.InsertNode(OF, IP); 14365 return OF; 14366 } 14367 14368 namespace { 14369 14370 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14371 public: 14372 14373 /// Rewrites \p S in the context of a loop L and the SCEV predication 14374 /// infrastructure. 14375 /// 14376 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14377 /// equivalences present in \p Pred. 14378 /// 14379 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14380 /// \p NewPreds such that the result will be an AddRecExpr. 14381 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14382 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14383 const SCEVPredicate *Pred) { 14384 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14385 return Rewriter.visit(S); 14386 } 14387 14388 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14389 if (Pred) { 14390 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14391 for (const auto *Pred : U->getPredicates()) 14392 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14393 if (IPred->getLHS() == Expr && 14394 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14395 return IPred->getRHS(); 14396 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14397 if (IPred->getLHS() == Expr && 14398 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14399 return IPred->getRHS(); 14400 } 14401 } 14402 return convertToAddRecWithPreds(Expr); 14403 } 14404 14405 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14406 const SCEV *Operand = visit(Expr->getOperand()); 14407 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14408 if (AR && AR->getLoop() == L && AR->isAffine()) { 14409 // This couldn't be folded because the operand didn't have the nuw 14410 // flag. Add the nusw flag as an assumption that we could make. 14411 const SCEV *Step = AR->getStepRecurrence(SE); 14412 Type *Ty = Expr->getType(); 14413 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14414 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14415 SE.getSignExtendExpr(Step, Ty), L, 14416 AR->getNoWrapFlags()); 14417 } 14418 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14419 } 14420 14421 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14422 const SCEV *Operand = visit(Expr->getOperand()); 14423 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14424 if (AR && AR->getLoop() == L && AR->isAffine()) { 14425 // This couldn't be folded because the operand didn't have the nsw 14426 // flag. Add the nssw flag as an assumption that we could make. 14427 const SCEV *Step = AR->getStepRecurrence(SE); 14428 Type *Ty = Expr->getType(); 14429 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14430 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14431 SE.getSignExtendExpr(Step, Ty), L, 14432 AR->getNoWrapFlags()); 14433 } 14434 return SE.getSignExtendExpr(Operand, Expr->getType()); 14435 } 14436 14437 private: 14438 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14439 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14440 const SCEVPredicate *Pred) 14441 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14442 14443 bool addOverflowAssumption(const SCEVPredicate *P) { 14444 if (!NewPreds) { 14445 // Check if we've already made this assumption. 14446 return Pred && Pred->implies(P); 14447 } 14448 NewPreds->insert(P); 14449 return true; 14450 } 14451 14452 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14453 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14454 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14455 return addOverflowAssumption(A); 14456 } 14457 14458 // If \p Expr represents a PHINode, we try to see if it can be represented 14459 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14460 // to add this predicate as a runtime overflow check, we return the AddRec. 14461 // If \p Expr does not meet these conditions (is not a PHI node, or we 14462 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14463 // return \p Expr. 14464 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14465 if (!isa<PHINode>(Expr->getValue())) 14466 return Expr; 14467 std::optional< 14468 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14469 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14470 if (!PredicatedRewrite) 14471 return Expr; 14472 for (const auto *P : PredicatedRewrite->second){ 14473 // Wrap predicates from outer loops are not supported. 14474 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14475 if (L != WP->getExpr()->getLoop()) 14476 return Expr; 14477 } 14478 if (!addOverflowAssumption(P)) 14479 return Expr; 14480 } 14481 return PredicatedRewrite->first; 14482 } 14483 14484 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14485 const SCEVPredicate *Pred; 14486 const Loop *L; 14487 }; 14488 14489 } // end anonymous namespace 14490 14491 const SCEV * 14492 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14493 const SCEVPredicate &Preds) { 14494 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14495 } 14496 14497 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14498 const SCEV *S, const Loop *L, 14499 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14500 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14501 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14502 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14503 14504 if (!AddRec) 14505 return nullptr; 14506 14507 // Since the transformation was successful, we can now transfer the SCEV 14508 // predicates. 14509 for (const auto *P : TransformPreds) 14510 Preds.insert(P); 14511 14512 return AddRec; 14513 } 14514 14515 /// SCEV predicates 14516 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14517 SCEVPredicateKind Kind) 14518 : FastID(ID), Kind(Kind) {} 14519 14520 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14521 const ICmpInst::Predicate Pred, 14522 const SCEV *LHS, const SCEV *RHS) 14523 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14524 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14525 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14526 } 14527 14528 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14529 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14530 14531 if (!Op) 14532 return false; 14533 14534 if (Pred != ICmpInst::ICMP_EQ) 14535 return false; 14536 14537 return Op->LHS == LHS && Op->RHS == RHS; 14538 } 14539 14540 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14541 14542 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14543 if (Pred == ICmpInst::ICMP_EQ) 14544 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14545 else 14546 OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " 14547 << *RHS << "\n"; 14548 14549 } 14550 14551 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14552 const SCEVAddRecExpr *AR, 14553 IncrementWrapFlags Flags) 14554 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14555 14556 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14557 14558 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14559 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14560 14561 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14562 } 14563 14564 bool SCEVWrapPredicate::isAlwaysTrue() const { 14565 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14566 IncrementWrapFlags IFlags = Flags; 14567 14568 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14569 IFlags = clearFlags(IFlags, IncrementNSSW); 14570 14571 return IFlags == IncrementAnyWrap; 14572 } 14573 14574 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14575 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14576 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14577 OS << "<nusw>"; 14578 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14579 OS << "<nssw>"; 14580 OS << "\n"; 14581 } 14582 14583 SCEVWrapPredicate::IncrementWrapFlags 14584 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14585 ScalarEvolution &SE) { 14586 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14587 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14588 14589 // We can safely transfer the NSW flag as NSSW. 14590 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14591 ImpliedFlags = IncrementNSSW; 14592 14593 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14594 // If the increment is positive, the SCEV NUW flag will also imply the 14595 // WrapPredicate NUSW flag. 14596 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14597 if (Step->getValue()->getValue().isNonNegative()) 14598 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14599 } 14600 14601 return ImpliedFlags; 14602 } 14603 14604 /// Union predicates don't get cached so create a dummy set ID for it. 14605 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14606 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14607 for (const auto *P : Preds) 14608 add(P); 14609 } 14610 14611 bool SCEVUnionPredicate::isAlwaysTrue() const { 14612 return all_of(Preds, 14613 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14614 } 14615 14616 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14617 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14618 return all_of(Set->Preds, 14619 [this](const SCEVPredicate *I) { return this->implies(I); }); 14620 14621 return any_of(Preds, 14622 [N](const SCEVPredicate *I) { return I->implies(N); }); 14623 } 14624 14625 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14626 for (const auto *Pred : Preds) 14627 Pred->print(OS, Depth); 14628 } 14629 14630 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14631 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14632 for (const auto *Pred : Set->Preds) 14633 add(Pred); 14634 return; 14635 } 14636 14637 Preds.push_back(N); 14638 } 14639 14640 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14641 Loop &L) 14642 : SE(SE), L(L) { 14643 SmallVector<const SCEVPredicate*, 4> Empty; 14644 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14645 } 14646 14647 void ScalarEvolution::registerUser(const SCEV *User, 14648 ArrayRef<const SCEV *> Ops) { 14649 for (const auto *Op : Ops) 14650 // We do not expect that forgetting cached data for SCEVConstants will ever 14651 // open any prospects for sharpening or introduce any correctness issues, 14652 // so we don't bother storing their dependencies. 14653 if (!isa<SCEVConstant>(Op)) 14654 SCEVUsers[Op].insert(User); 14655 } 14656 14657 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14658 const SCEV *Expr = SE.getSCEV(V); 14659 RewriteEntry &Entry = RewriteMap[Expr]; 14660 14661 // If we already have an entry and the version matches, return it. 14662 if (Entry.second && Generation == Entry.first) 14663 return Entry.second; 14664 14665 // We found an entry but it's stale. Rewrite the stale entry 14666 // according to the current predicate. 14667 if (Entry.second) 14668 Expr = Entry.second; 14669 14670 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14671 Entry = {Generation, NewSCEV}; 14672 14673 return NewSCEV; 14674 } 14675 14676 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14677 if (!BackedgeCount) { 14678 SmallVector<const SCEVPredicate *, 4> Preds; 14679 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14680 for (const auto *P : Preds) 14681 addPredicate(*P); 14682 } 14683 return BackedgeCount; 14684 } 14685 14686 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14687 if (Preds->implies(&Pred)) 14688 return; 14689 14690 auto &OldPreds = Preds->getPredicates(); 14691 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14692 NewPreds.push_back(&Pred); 14693 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14694 updateGeneration(); 14695 } 14696 14697 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14698 return *Preds; 14699 } 14700 14701 void PredicatedScalarEvolution::updateGeneration() { 14702 // If the generation number wrapped recompute everything. 14703 if (++Generation == 0) { 14704 for (auto &II : RewriteMap) { 14705 const SCEV *Rewritten = II.second.second; 14706 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14707 } 14708 } 14709 } 14710 14711 void PredicatedScalarEvolution::setNoOverflow( 14712 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14713 const SCEV *Expr = getSCEV(V); 14714 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14715 14716 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14717 14718 // Clear the statically implied flags. 14719 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14720 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14721 14722 auto II = FlagsMap.insert({V, Flags}); 14723 if (!II.second) 14724 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14725 } 14726 14727 bool PredicatedScalarEvolution::hasNoOverflow( 14728 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14729 const SCEV *Expr = getSCEV(V); 14730 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14731 14732 Flags = SCEVWrapPredicate::clearFlags( 14733 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14734 14735 auto II = FlagsMap.find(V); 14736 14737 if (II != FlagsMap.end()) 14738 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14739 14740 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14741 } 14742 14743 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14744 const SCEV *Expr = this->getSCEV(V); 14745 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14746 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14747 14748 if (!New) 14749 return nullptr; 14750 14751 for (const auto *P : NewPreds) 14752 addPredicate(*P); 14753 14754 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14755 return New; 14756 } 14757 14758 PredicatedScalarEvolution::PredicatedScalarEvolution( 14759 const PredicatedScalarEvolution &Init) 14760 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14761 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14762 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14763 for (auto I : Init.FlagsMap) 14764 FlagsMap.insert(I); 14765 } 14766 14767 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14768 // For each block. 14769 for (auto *BB : L.getBlocks()) 14770 for (auto &I : *BB) { 14771 if (!SE.isSCEVable(I.getType())) 14772 continue; 14773 14774 auto *Expr = SE.getSCEV(&I); 14775 auto II = RewriteMap.find(Expr); 14776 14777 if (II == RewriteMap.end()) 14778 continue; 14779 14780 // Don't print things that are not interesting. 14781 if (II->second.second == Expr) 14782 continue; 14783 14784 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14785 OS.indent(Depth + 2) << *Expr << "\n"; 14786 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14787 } 14788 } 14789 14790 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14791 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14792 // for URem with constant power-of-2 second operands. 14793 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14794 // 4, A / B becomes X / 8). 14795 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14796 const SCEV *&RHS) { 14797 // Try to match 'zext (trunc A to iB) to iY', which is used 14798 // for URem with constant power-of-2 second operands. Make sure the size of 14799 // the operand A matches the size of the whole expressions. 14800 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14801 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14802 LHS = Trunc->getOperand(); 14803 // Bail out if the type of the LHS is larger than the type of the 14804 // expression for now. 14805 if (getTypeSizeInBits(LHS->getType()) > 14806 getTypeSizeInBits(Expr->getType())) 14807 return false; 14808 if (LHS->getType() != Expr->getType()) 14809 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14810 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14811 << getTypeSizeInBits(Trunc->getType())); 14812 return true; 14813 } 14814 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14815 if (Add == nullptr || Add->getNumOperands() != 2) 14816 return false; 14817 14818 const SCEV *A = Add->getOperand(1); 14819 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14820 14821 if (Mul == nullptr) 14822 return false; 14823 14824 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14825 // (SomeExpr + (-(SomeExpr / B) * B)). 14826 if (Expr == getURemExpr(A, B)) { 14827 LHS = A; 14828 RHS = B; 14829 return true; 14830 } 14831 return false; 14832 }; 14833 14834 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14835 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14836 return MatchURemWithDivisor(Mul->getOperand(1)) || 14837 MatchURemWithDivisor(Mul->getOperand(2)); 14838 14839 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14840 if (Mul->getNumOperands() == 2) 14841 return MatchURemWithDivisor(Mul->getOperand(1)) || 14842 MatchURemWithDivisor(Mul->getOperand(0)) || 14843 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14844 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14845 return false; 14846 } 14847 14848 const SCEV * 14849 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14850 SmallVector<BasicBlock*, 16> ExitingBlocks; 14851 L->getExitingBlocks(ExitingBlocks); 14852 14853 // Form an expression for the maximum exit count possible for this loop. We 14854 // merge the max and exact information to approximate a version of 14855 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14856 SmallVector<const SCEV*, 4> ExitCounts; 14857 for (BasicBlock *ExitingBB : ExitingBlocks) { 14858 const SCEV *ExitCount = 14859 getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum); 14860 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14861 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14862 "We should only have known counts for exiting blocks that " 14863 "dominate latch!"); 14864 ExitCounts.push_back(ExitCount); 14865 } 14866 } 14867 if (ExitCounts.empty()) 14868 return getCouldNotCompute(); 14869 return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); 14870 } 14871 14872 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14873 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14874 /// replacement is loop invariant in the loop of the AddRec. 14875 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14876 const DenseMap<const SCEV *, const SCEV *> ⤅ 14877 14878 public: 14879 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14880 DenseMap<const SCEV *, const SCEV *> &M) 14881 : SCEVRewriteVisitor(SE), Map(M) {} 14882 14883 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14884 14885 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14886 auto I = Map.find(Expr); 14887 if (I == Map.end()) 14888 return Expr; 14889 return I->second; 14890 } 14891 14892 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14893 auto I = Map.find(Expr); 14894 if (I == Map.end()) { 14895 // If we didn't find the extact ZExt expr in the map, check if there's an 14896 // entry for a smaller ZExt we can use instead. 14897 Type *Ty = Expr->getType(); 14898 const SCEV *Op = Expr->getOperand(0); 14899 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; 14900 while (Bitwidth % 8 == 0 && Bitwidth >= 8 && 14901 Bitwidth > Op->getType()->getScalarSizeInBits()) { 14902 Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth); 14903 auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy); 14904 auto I = Map.find(NarrowExt); 14905 if (I != Map.end()) 14906 return SE.getZeroExtendExpr(I->second, Ty); 14907 Bitwidth = Bitwidth / 2; 14908 } 14909 14910 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14911 Expr); 14912 } 14913 return I->second; 14914 } 14915 14916 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14917 auto I = Map.find(Expr); 14918 if (I == Map.end()) 14919 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( 14920 Expr); 14921 return I->second; 14922 } 14923 14924 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { 14925 auto I = Map.find(Expr); 14926 if (I == Map.end()) 14927 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); 14928 return I->second; 14929 } 14930 14931 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { 14932 auto I = Map.find(Expr); 14933 if (I == Map.end()) 14934 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); 14935 return I->second; 14936 } 14937 }; 14938 14939 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14940 SmallVector<const SCEV *> ExprsToRewrite; 14941 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14942 const SCEV *RHS, 14943 DenseMap<const SCEV *, const SCEV *> 14944 &RewriteMap) { 14945 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14946 // replacement SCEV which isn't directly implied by the structure of that 14947 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14948 // legal. See the scoping rules for flags in the header to understand why. 14949 14950 // If LHS is a constant, apply information to the other expression. 14951 if (isa<SCEVConstant>(LHS)) { 14952 std::swap(LHS, RHS); 14953 Predicate = CmpInst::getSwappedPredicate(Predicate); 14954 } 14955 14956 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14957 // create this form when combining two checks of the form (X u< C2 + C1) and 14958 // (X >=u C1). 14959 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14960 &ExprsToRewrite]() { 14961 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14962 if (!AddExpr || AddExpr->getNumOperands() != 2) 14963 return false; 14964 14965 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14966 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14967 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14968 if (!C1 || !C2 || !LHSUnknown) 14969 return false; 14970 14971 auto ExactRegion = 14972 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14973 .sub(C1->getAPInt()); 14974 14975 // Bail out, unless we have a non-wrapping, monotonic range. 14976 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14977 return false; 14978 auto I = RewriteMap.find(LHSUnknown); 14979 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14980 RewriteMap[LHSUnknown] = getUMaxExpr( 14981 getConstant(ExactRegion.getUnsignedMin()), 14982 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14983 ExprsToRewrite.push_back(LHSUnknown); 14984 return true; 14985 }; 14986 if (MatchRangeCheckIdiom()) 14987 return; 14988 14989 // Return true if \p Expr is a MinMax SCEV expression with a non-negative 14990 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS 14991 // the non-constant operand and in \p LHS the constant operand. 14992 auto IsMinMaxSCEVWithNonNegativeConstant = 14993 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, 14994 const SCEV *&RHS) { 14995 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) { 14996 if (MinMax->getNumOperands() != 2) 14997 return false; 14998 if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) { 14999 if (C->getAPInt().isNegative()) 15000 return false; 15001 SCTy = MinMax->getSCEVType(); 15002 LHS = MinMax->getOperand(0); 15003 RHS = MinMax->getOperand(1); 15004 return true; 15005 } 15006 } 15007 return false; 15008 }; 15009 15010 // Checks whether Expr is a non-negative constant, and Divisor is a positive 15011 // constant, and returns their APInt in ExprVal and in DivisorVal. 15012 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, 15013 APInt &ExprVal, APInt &DivisorVal) { 15014 auto *ConstExpr = dyn_cast<SCEVConstant>(Expr); 15015 auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor); 15016 if (!ConstExpr || !ConstDivisor) 15017 return false; 15018 ExprVal = ConstExpr->getAPInt(); 15019 DivisorVal = ConstDivisor->getAPInt(); 15020 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); 15021 }; 15022 15023 // Return a new SCEV that modifies \p Expr to the closest number divides by 15024 // \p Divisor and greater or equal than Expr. 15025 // For now, only handle constant Expr and Divisor. 15026 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, 15027 const SCEV *Divisor) { 15028 APInt ExprVal; 15029 APInt DivisorVal; 15030 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15031 return Expr; 15032 APInt Rem = ExprVal.urem(DivisorVal); 15033 if (!Rem.isZero()) 15034 // return the SCEV: Expr + Divisor - Expr % Divisor 15035 return getConstant(ExprVal + DivisorVal - Rem); 15036 return Expr; 15037 }; 15038 15039 // Return a new SCEV that modifies \p Expr to the closest number divides by 15040 // \p Divisor and less or equal than Expr. 15041 // For now, only handle constant Expr and Divisor. 15042 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, 15043 const SCEV *Divisor) { 15044 APInt ExprVal; 15045 APInt DivisorVal; 15046 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15047 return Expr; 15048 APInt Rem = ExprVal.urem(DivisorVal); 15049 // return the SCEV: Expr - Expr % Divisor 15050 return getConstant(ExprVal - Rem); 15051 }; 15052 15053 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, 15054 // recursively. This is done by aligning up/down the constant value to the 15055 // Divisor. 15056 std::function<const SCEV *(const SCEV *, const SCEV *)> 15057 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, 15058 const SCEV *Divisor) { 15059 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; 15060 SCEVTypes SCTy; 15061 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, 15062 MinMaxRHS)) 15063 return MinMaxExpr; 15064 auto IsMin = 15065 isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr); 15066 assert(isKnownNonNegative(MinMaxLHS) && 15067 "Expected non-negative operand!"); 15068 auto *DivisibleExpr = 15069 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) 15070 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); 15071 SmallVector<const SCEV *> Ops = { 15072 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; 15073 return getMinMaxExpr(SCTy, Ops); 15074 }; 15075 15076 // If we have LHS == 0, check if LHS is computing a property of some unknown 15077 // SCEV %v which we can rewrite %v to express explicitly. 15078 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 15079 if (Predicate == CmpInst::ICMP_EQ && RHSC && 15080 RHSC->getValue()->isNullValue()) { 15081 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 15082 // explicitly express that. 15083 const SCEV *URemLHS = nullptr; 15084 const SCEV *URemRHS = nullptr; 15085 if (matchURem(LHS, URemLHS, URemRHS)) { 15086 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 15087 auto I = RewriteMap.find(LHSUnknown); 15088 const SCEV *RewrittenLHS = 15089 I != RewriteMap.end() ? I->second : LHSUnknown; 15090 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); 15091 const auto *Multiple = 15092 getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS); 15093 RewriteMap[LHSUnknown] = Multiple; 15094 ExprsToRewrite.push_back(LHSUnknown); 15095 return; 15096 } 15097 } 15098 } 15099 15100 // Do not apply information for constants or if RHS contains an AddRec. 15101 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 15102 return; 15103 15104 // If RHS is SCEVUnknown, make sure the information is applied to it. 15105 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 15106 std::swap(LHS, RHS); 15107 Predicate = CmpInst::getSwappedPredicate(Predicate); 15108 } 15109 15110 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From 15111 // and \p FromRewritten are the same (i.e. there has been no rewrite 15112 // registered for \p From), then puts this value in the list of rewritten 15113 // expressions. 15114 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, 15115 const SCEV *To) { 15116 if (From == FromRewritten) 15117 ExprsToRewrite.push_back(From); 15118 RewriteMap[From] = To; 15119 }; 15120 15121 // Checks whether \p S has already been rewritten. In that case returns the 15122 // existing rewrite because we want to chain further rewrites onto the 15123 // already rewritten value. Otherwise returns \p S. 15124 auto GetMaybeRewritten = [&](const SCEV *S) { 15125 auto I = RewriteMap.find(S); 15126 return I != RewriteMap.end() ? I->second : S; 15127 }; 15128 15129 // Check for the SCEV expression (A /u B) * B while B is a constant, inside 15130 // \p Expr. The check is done recuresively on \p Expr, which is assumed to 15131 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A 15132 // /u B) * B was found, and return the divisor B in \p DividesBy. For 15133 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since 15134 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p 15135 // DividesBy. 15136 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = 15137 [&](const SCEV *Expr, const SCEV *&DividesBy) { 15138 if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) { 15139 if (Mul->getNumOperands() != 2) 15140 return false; 15141 auto *MulLHS = Mul->getOperand(0); 15142 auto *MulRHS = Mul->getOperand(1); 15143 if (isa<SCEVConstant>(MulLHS)) 15144 std::swap(MulLHS, MulRHS); 15145 if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS)) 15146 if (Div->getOperand(1) == MulRHS) { 15147 DividesBy = MulRHS; 15148 return true; 15149 } 15150 } 15151 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15152 return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) || 15153 HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy); 15154 return false; 15155 }; 15156 15157 // Return true if Expr known to divide by \p DividesBy. 15158 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = 15159 [&](const SCEV *Expr, const SCEV *DividesBy) { 15160 if (getURemExpr(Expr, DividesBy)->isZero()) 15161 return true; 15162 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15163 return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) && 15164 IsKnownToDivideBy(MinMax->getOperand(1), DividesBy); 15165 return false; 15166 }; 15167 15168 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); 15169 const SCEV *DividesBy = nullptr; 15170 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) 15171 // Check that the whole expression is divided by DividesBy 15172 DividesBy = 15173 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; 15174 15175 // Collect rewrites for LHS and its transitive operands based on the 15176 // condition. 15177 // For min/max expressions, also apply the guard to its operands: 15178 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', 15179 // 'min(a, b) > c' -> '(a > c) and (b > c)', 15180 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', 15181 // 'max(a, b) < c' -> '(a < c) and (b < c)'. 15182 15183 // We cannot express strict predicates in SCEV, so instead we replace them 15184 // with non-strict ones against plus or minus one of RHS depending on the 15185 // predicate. 15186 const SCEV *One = getOne(RHS->getType()); 15187 switch (Predicate) { 15188 case CmpInst::ICMP_ULT: 15189 if (RHS->getType()->isPointerTy()) 15190 return; 15191 RHS = getUMaxExpr(RHS, One); 15192 [[fallthrough]]; 15193 case CmpInst::ICMP_SLT: { 15194 RHS = getMinusSCEV(RHS, One); 15195 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15196 break; 15197 } 15198 case CmpInst::ICMP_UGT: 15199 case CmpInst::ICMP_SGT: 15200 RHS = getAddExpr(RHS, One); 15201 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15202 break; 15203 case CmpInst::ICMP_ULE: 15204 case CmpInst::ICMP_SLE: 15205 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15206 break; 15207 case CmpInst::ICMP_UGE: 15208 case CmpInst::ICMP_SGE: 15209 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15210 break; 15211 default: 15212 break; 15213 } 15214 15215 SmallVector<const SCEV *, 16> Worklist(1, LHS); 15216 SmallPtrSet<const SCEV *, 16> Visited; 15217 15218 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { 15219 append_range(Worklist, S->operands()); 15220 }; 15221 15222 while (!Worklist.empty()) { 15223 const SCEV *From = Worklist.pop_back_val(); 15224 if (isa<SCEVConstant>(From)) 15225 continue; 15226 if (!Visited.insert(From).second) 15227 continue; 15228 const SCEV *FromRewritten = GetMaybeRewritten(From); 15229 const SCEV *To = nullptr; 15230 15231 switch (Predicate) { 15232 case CmpInst::ICMP_ULT: 15233 case CmpInst::ICMP_ULE: 15234 To = getUMinExpr(FromRewritten, RHS); 15235 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten)) 15236 EnqueueOperands(UMax); 15237 break; 15238 case CmpInst::ICMP_SLT: 15239 case CmpInst::ICMP_SLE: 15240 To = getSMinExpr(FromRewritten, RHS); 15241 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten)) 15242 EnqueueOperands(SMax); 15243 break; 15244 case CmpInst::ICMP_UGT: 15245 case CmpInst::ICMP_UGE: 15246 To = getUMaxExpr(FromRewritten, RHS); 15247 if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten)) 15248 EnqueueOperands(UMin); 15249 break; 15250 case CmpInst::ICMP_SGT: 15251 case CmpInst::ICMP_SGE: 15252 To = getSMaxExpr(FromRewritten, RHS); 15253 if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten)) 15254 EnqueueOperands(SMin); 15255 break; 15256 case CmpInst::ICMP_EQ: 15257 if (isa<SCEVConstant>(RHS)) 15258 To = RHS; 15259 break; 15260 case CmpInst::ICMP_NE: 15261 if (isa<SCEVConstant>(RHS) && 15262 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) { 15263 const SCEV *OneAlignedUp = 15264 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; 15265 To = getUMaxExpr(FromRewritten, OneAlignedUp); 15266 } 15267 break; 15268 default: 15269 break; 15270 } 15271 15272 if (To) 15273 AddRewrite(From, FromRewritten, To); 15274 } 15275 }; 15276 15277 BasicBlock *Header = L->getHeader(); 15278 SmallVector<PointerIntPair<Value *, 1, bool>> Terms; 15279 // First, collect information from assumptions dominating the loop. 15280 for (auto &AssumeVH : AC.assumptions()) { 15281 if (!AssumeVH) 15282 continue; 15283 auto *AssumeI = cast<CallInst>(AssumeVH); 15284 if (!DT.dominates(AssumeI, Header)) 15285 continue; 15286 Terms.emplace_back(AssumeI->getOperand(0), true); 15287 } 15288 15289 // Second, collect information from llvm.experimental.guards dominating the loop. 15290 auto *GuardDecl = F.getParent()->getFunction( 15291 Intrinsic::getName(Intrinsic::experimental_guard)); 15292 if (GuardDecl) 15293 for (const auto *GU : GuardDecl->users()) 15294 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 15295 if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header)) 15296 Terms.emplace_back(Guard->getArgOperand(0), true); 15297 15298 // Third, collect conditions from dominating branches. Starting at the loop 15299 // predecessor, climb up the predecessor chain, as long as there are 15300 // predecessors that can be found that have unique successors leading to the 15301 // original header. 15302 // TODO: share this logic with isLoopEntryGuardedByCond. 15303 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 15304 L->getLoopPredecessor(), Header); 15305 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 15306 15307 const BranchInst *LoopEntryPredicate = 15308 dyn_cast<BranchInst>(Pair.first->getTerminator()); 15309 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 15310 continue; 15311 15312 Terms.emplace_back(LoopEntryPredicate->getCondition(), 15313 LoopEntryPredicate->getSuccessor(0) == Pair.second); 15314 } 15315 15316 // Now apply the information from the collected conditions to RewriteMap. 15317 // Conditions are processed in reverse order, so the earliest conditions is 15318 // processed first. This ensures the SCEVs with the shortest dependency chains 15319 // are constructed first. 15320 DenseMap<const SCEV *, const SCEV *> RewriteMap; 15321 for (auto [Term, EnterIfTrue] : reverse(Terms)) { 15322 SmallVector<Value *, 8> Worklist; 15323 SmallPtrSet<Value *, 8> Visited; 15324 Worklist.push_back(Term); 15325 while (!Worklist.empty()) { 15326 Value *Cond = Worklist.pop_back_val(); 15327 if (!Visited.insert(Cond).second) 15328 continue; 15329 15330 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 15331 auto Predicate = 15332 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 15333 const auto *LHS = getSCEV(Cmp->getOperand(0)); 15334 const auto *RHS = getSCEV(Cmp->getOperand(1)); 15335 CollectCondition(Predicate, LHS, RHS, RewriteMap); 15336 continue; 15337 } 15338 15339 Value *L, *R; 15340 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 15341 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 15342 Worklist.push_back(L); 15343 Worklist.push_back(R); 15344 } 15345 } 15346 } 15347 15348 if (RewriteMap.empty()) 15349 return Expr; 15350 15351 // Now that all rewrite information is collect, rewrite the collected 15352 // expressions with the information in the map. This applies information to 15353 // sub-expressions. 15354 if (ExprsToRewrite.size() > 1) { 15355 for (const SCEV *Expr : ExprsToRewrite) { 15356 const SCEV *RewriteTo = RewriteMap[Expr]; 15357 RewriteMap.erase(Expr); 15358 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15359 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 15360 } 15361 } 15362 15363 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 15364 return Rewriter.visit(Expr); 15365 } 15366