xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   return Flags;
2394 }
2395 
2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2397   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2398 }
2399 
2400 /// Get a canonical add expression, or something simpler if possible.
2401 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2402                                         SCEV::NoWrapFlags OrigFlags,
2403                                         unsigned Depth) {
2404   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2405          "only nuw or nsw allowed");
2406   assert(!Ops.empty() && "Cannot get empty add!");
2407   if (Ops.size() == 1) return Ops[0];
2408 #ifndef NDEBUG
2409   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2410   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2411     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2412            "SCEVAddExpr operand types don't match!");
2413   unsigned NumPtrs = count_if(
2414       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2415   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2416 #endif
2417 
2418   // Sort by complexity, this groups all similar expression types together.
2419   GroupByComplexity(Ops, &LI, DT);
2420 
2421   // If there are any constants, fold them together.
2422   unsigned Idx = 0;
2423   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2424     ++Idx;
2425     assert(Idx < Ops.size());
2426     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2427       // We found two constants, fold them together!
2428       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2429       if (Ops.size() == 2) return Ops[0];
2430       Ops.erase(Ops.begin()+1);  // Erase the folded element
2431       LHSC = cast<SCEVConstant>(Ops[0]);
2432     }
2433 
2434     // If we are left with a constant zero being added, strip it off.
2435     if (LHSC->getValue()->isZero()) {
2436       Ops.erase(Ops.begin());
2437       --Idx;
2438     }
2439 
2440     if (Ops.size() == 1) return Ops[0];
2441   }
2442 
2443   // Delay expensive flag strengthening until necessary.
2444   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2445     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2446   };
2447 
2448   // Limit recursion calls depth.
2449   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2450     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2451 
2452   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2453     // Don't strengthen flags if we have no new information.
2454     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2455     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2456       Add->setNoWrapFlags(ComputeFlags(Ops));
2457     return S;
2458   }
2459 
2460   // Okay, check to see if the same value occurs in the operand list more than
2461   // once.  If so, merge them together into an multiply expression.  Since we
2462   // sorted the list, these values are required to be adjacent.
2463   Type *Ty = Ops[0]->getType();
2464   bool FoundMatch = false;
2465   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2466     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2467       // Scan ahead to count how many equal operands there are.
2468       unsigned Count = 2;
2469       while (i+Count != e && Ops[i+Count] == Ops[i])
2470         ++Count;
2471       // Merge the values into a multiply.
2472       const SCEV *Scale = getConstant(Ty, Count);
2473       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2474       if (Ops.size() == Count)
2475         return Mul;
2476       Ops[i] = Mul;
2477       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2478       --i; e -= Count - 1;
2479       FoundMatch = true;
2480     }
2481   if (FoundMatch)
2482     return getAddExpr(Ops, OrigFlags, Depth + 1);
2483 
2484   // Check for truncates. If all the operands are truncated from the same
2485   // type, see if factoring out the truncate would permit the result to be
2486   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2487   // if the contents of the resulting outer trunc fold to something simple.
2488   auto FindTruncSrcType = [&]() -> Type * {
2489     // We're ultimately looking to fold an addrec of truncs and muls of only
2490     // constants and truncs, so if we find any other types of SCEV
2491     // as operands of the addrec then we bail and return nullptr here.
2492     // Otherwise, we return the type of the operand of a trunc that we find.
2493     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2494       return T->getOperand()->getType();
2495     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2496       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2497       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2498         return T->getOperand()->getType();
2499     }
2500     return nullptr;
2501   };
2502   if (auto *SrcType = FindTruncSrcType()) {
2503     SmallVector<const SCEV *, 8> LargeOps;
2504     bool Ok = true;
2505     // Check all the operands to see if they can be represented in the
2506     // source type of the truncate.
2507     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2508       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2509         if (T->getOperand()->getType() != SrcType) {
2510           Ok = false;
2511           break;
2512         }
2513         LargeOps.push_back(T->getOperand());
2514       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2515         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2516       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2517         SmallVector<const SCEV *, 8> LargeMulOps;
2518         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2519           if (const SCEVTruncateExpr *T =
2520                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2521             if (T->getOperand()->getType() != SrcType) {
2522               Ok = false;
2523               break;
2524             }
2525             LargeMulOps.push_back(T->getOperand());
2526           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2527             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2528           } else {
2529             Ok = false;
2530             break;
2531           }
2532         }
2533         if (Ok)
2534           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2535       } else {
2536         Ok = false;
2537         break;
2538       }
2539     }
2540     if (Ok) {
2541       // Evaluate the expression in the larger type.
2542       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2543       // If it folds to something simple, use it. Otherwise, don't.
2544       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2545         return getTruncateExpr(Fold, Ty);
2546     }
2547   }
2548 
2549   if (Ops.size() == 2) {
2550     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2551     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2552     // C1).
2553     const SCEV *A = Ops[0];
2554     const SCEV *B = Ops[1];
2555     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2556     auto *C = dyn_cast<SCEVConstant>(A);
2557     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2558       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2559       auto C2 = C->getAPInt();
2560       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2561 
2562       APInt ConstAdd = C1 + C2;
2563       auto AddFlags = AddExpr->getNoWrapFlags();
2564       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2565       if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNUW) ==
2566               SCEV::FlagNUW &&
2567           ConstAdd.ule(C1)) {
2568         PreservedFlags =
2569             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2570       }
2571 
2572       // Adding a constant with the same sign and small magnitude is NSW, if the
2573       // original AddExpr was NSW.
2574       if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNSW) ==
2575               SCEV::FlagNSW &&
2576           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2577           ConstAdd.abs().ule(C1.abs())) {
2578         PreservedFlags =
2579             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2580       }
2581 
2582       if (PreservedFlags != SCEV::FlagAnyWrap) {
2583         SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(),
2584                                             AddExpr->op_end());
2585         NewOps[0] = getConstant(ConstAdd);
2586         return getAddExpr(NewOps, PreservedFlags);
2587       }
2588     }
2589   }
2590 
2591   // Skip past any other cast SCEVs.
2592   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2593     ++Idx;
2594 
2595   // If there are add operands they would be next.
2596   if (Idx < Ops.size()) {
2597     bool DeletedAdd = false;
2598     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2599     // common NUW flag for expression after inlining. Other flags cannot be
2600     // preserved, because they may depend on the original order of operations.
2601     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2602     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2603       if (Ops.size() > AddOpsInlineThreshold ||
2604           Add->getNumOperands() > AddOpsInlineThreshold)
2605         break;
2606       // If we have an add, expand the add operands onto the end of the operands
2607       // list.
2608       Ops.erase(Ops.begin()+Idx);
2609       Ops.append(Add->op_begin(), Add->op_end());
2610       DeletedAdd = true;
2611       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2612     }
2613 
2614     // If we deleted at least one add, we added operands to the end of the list,
2615     // and they are not necessarily sorted.  Recurse to resort and resimplify
2616     // any operands we just acquired.
2617     if (DeletedAdd)
2618       return getAddExpr(Ops, CommonFlags, Depth + 1);
2619   }
2620 
2621   // Skip over the add expression until we get to a multiply.
2622   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2623     ++Idx;
2624 
2625   // Check to see if there are any folding opportunities present with
2626   // operands multiplied by constant values.
2627   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2628     uint64_t BitWidth = getTypeSizeInBits(Ty);
2629     DenseMap<const SCEV *, APInt> M;
2630     SmallVector<const SCEV *, 8> NewOps;
2631     APInt AccumulatedConstant(BitWidth, 0);
2632     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2633                                      Ops.data(), Ops.size(),
2634                                      APInt(BitWidth, 1), *this)) {
2635       struct APIntCompare {
2636         bool operator()(const APInt &LHS, const APInt &RHS) const {
2637           return LHS.ult(RHS);
2638         }
2639       };
2640 
2641       // Some interesting folding opportunity is present, so its worthwhile to
2642       // re-generate the operands list. Group the operands by constant scale,
2643       // to avoid multiplying by the same constant scale multiple times.
2644       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2645       for (const SCEV *NewOp : NewOps)
2646         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2647       // Re-generate the operands list.
2648       Ops.clear();
2649       if (AccumulatedConstant != 0)
2650         Ops.push_back(getConstant(AccumulatedConstant));
2651       for (auto &MulOp : MulOpLists) {
2652         if (MulOp.first == 1) {
2653           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2654         } else if (MulOp.first != 0) {
2655           Ops.push_back(getMulExpr(
2656               getConstant(MulOp.first),
2657               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2658               SCEV::FlagAnyWrap, Depth + 1));
2659         }
2660       }
2661       if (Ops.empty())
2662         return getZero(Ty);
2663       if (Ops.size() == 1)
2664         return Ops[0];
2665       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2666     }
2667   }
2668 
2669   // If we are adding something to a multiply expression, make sure the
2670   // something is not already an operand of the multiply.  If so, merge it into
2671   // the multiply.
2672   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2673     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2674     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2675       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2676       if (isa<SCEVConstant>(MulOpSCEV))
2677         continue;
2678       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2679         if (MulOpSCEV == Ops[AddOp]) {
2680           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2681           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2682           if (Mul->getNumOperands() != 2) {
2683             // If the multiply has more than two operands, we must get the
2684             // Y*Z term.
2685             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2686                                                 Mul->op_begin()+MulOp);
2687             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2688             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2689           }
2690           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2691           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2692           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2693                                             SCEV::FlagAnyWrap, Depth + 1);
2694           if (Ops.size() == 2) return OuterMul;
2695           if (AddOp < Idx) {
2696             Ops.erase(Ops.begin()+AddOp);
2697             Ops.erase(Ops.begin()+Idx-1);
2698           } else {
2699             Ops.erase(Ops.begin()+Idx);
2700             Ops.erase(Ops.begin()+AddOp-1);
2701           }
2702           Ops.push_back(OuterMul);
2703           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2704         }
2705 
2706       // Check this multiply against other multiplies being added together.
2707       for (unsigned OtherMulIdx = Idx+1;
2708            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2709            ++OtherMulIdx) {
2710         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2711         // If MulOp occurs in OtherMul, we can fold the two multiplies
2712         // together.
2713         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2714              OMulOp != e; ++OMulOp)
2715           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2716             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2717             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2718             if (Mul->getNumOperands() != 2) {
2719               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2720                                                   Mul->op_begin()+MulOp);
2721               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2722               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2723             }
2724             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2725             if (OtherMul->getNumOperands() != 2) {
2726               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2727                                                   OtherMul->op_begin()+OMulOp);
2728               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2729               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2730             }
2731             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2732             const SCEV *InnerMulSum =
2733                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2734             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2735                                               SCEV::FlagAnyWrap, Depth + 1);
2736             if (Ops.size() == 2) return OuterMul;
2737             Ops.erase(Ops.begin()+Idx);
2738             Ops.erase(Ops.begin()+OtherMulIdx-1);
2739             Ops.push_back(OuterMul);
2740             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2741           }
2742       }
2743     }
2744   }
2745 
2746   // If there are any add recurrences in the operands list, see if any other
2747   // added values are loop invariant.  If so, we can fold them into the
2748   // recurrence.
2749   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2750     ++Idx;
2751 
2752   // Scan over all recurrences, trying to fold loop invariants into them.
2753   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2754     // Scan all of the other operands to this add and add them to the vector if
2755     // they are loop invariant w.r.t. the recurrence.
2756     SmallVector<const SCEV *, 8> LIOps;
2757     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2758     const Loop *AddRecLoop = AddRec->getLoop();
2759     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2760       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2761         LIOps.push_back(Ops[i]);
2762         Ops.erase(Ops.begin()+i);
2763         --i; --e;
2764       }
2765 
2766     // If we found some loop invariants, fold them into the recurrence.
2767     if (!LIOps.empty()) {
2768       // Compute nowrap flags for the addition of the loop-invariant ops and
2769       // the addrec. Temporarily push it as an operand for that purpose.
2770       LIOps.push_back(AddRec);
2771       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2772       LIOps.pop_back();
2773 
2774       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2775       LIOps.push_back(AddRec->getStart());
2776 
2777       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2778       // This follows from the fact that the no-wrap flags on the outer add
2779       // expression are applicable on the 0th iteration, when the add recurrence
2780       // will be equal to its start value.
2781       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2782 
2783       // Build the new addrec. Propagate the NUW and NSW flags if both the
2784       // outer add and the inner addrec are guaranteed to have no overflow.
2785       // Always propagate NW.
2786       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2787       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2788 
2789       // If all of the other operands were loop invariant, we are done.
2790       if (Ops.size() == 1) return NewRec;
2791 
2792       // Otherwise, add the folded AddRec by the non-invariant parts.
2793       for (unsigned i = 0;; ++i)
2794         if (Ops[i] == AddRec) {
2795           Ops[i] = NewRec;
2796           break;
2797         }
2798       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2799     }
2800 
2801     // Okay, if there weren't any loop invariants to be folded, check to see if
2802     // there are multiple AddRec's with the same loop induction variable being
2803     // added together.  If so, we can fold them.
2804     for (unsigned OtherIdx = Idx+1;
2805          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2806          ++OtherIdx) {
2807       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2808       // so that the 1st found AddRecExpr is dominated by all others.
2809       assert(DT.dominates(
2810            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2811            AddRec->getLoop()->getHeader()) &&
2812         "AddRecExprs are not sorted in reverse dominance order?");
2813       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2814         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2815         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2816         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2817              ++OtherIdx) {
2818           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2819           if (OtherAddRec->getLoop() == AddRecLoop) {
2820             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2821                  i != e; ++i) {
2822               if (i >= AddRecOps.size()) {
2823                 AddRecOps.append(OtherAddRec->op_begin()+i,
2824                                  OtherAddRec->op_end());
2825                 break;
2826               }
2827               SmallVector<const SCEV *, 2> TwoOps = {
2828                   AddRecOps[i], OtherAddRec->getOperand(i)};
2829               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2830             }
2831             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2832           }
2833         }
2834         // Step size has changed, so we cannot guarantee no self-wraparound.
2835         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2836         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2837       }
2838     }
2839 
2840     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2841     // next one.
2842   }
2843 
2844   // Okay, it looks like we really DO need an add expr.  Check to see if we
2845   // already have one, otherwise create a new one.
2846   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2847 }
2848 
2849 const SCEV *
2850 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2851                                     SCEV::NoWrapFlags Flags) {
2852   FoldingSetNodeID ID;
2853   ID.AddInteger(scAddExpr);
2854   for (const SCEV *Op : Ops)
2855     ID.AddPointer(Op);
2856   void *IP = nullptr;
2857   SCEVAddExpr *S =
2858       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2859   if (!S) {
2860     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2861     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2862     S = new (SCEVAllocator)
2863         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2864     UniqueSCEVs.InsertNode(S, IP);
2865     addToLoopUseLists(S);
2866   }
2867   S->setNoWrapFlags(Flags);
2868   return S;
2869 }
2870 
2871 const SCEV *
2872 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2873                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2874   FoldingSetNodeID ID;
2875   ID.AddInteger(scAddRecExpr);
2876   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2877     ID.AddPointer(Ops[i]);
2878   ID.AddPointer(L);
2879   void *IP = nullptr;
2880   SCEVAddRecExpr *S =
2881       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2882   if (!S) {
2883     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2884     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2885     S = new (SCEVAllocator)
2886         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2887     UniqueSCEVs.InsertNode(S, IP);
2888     addToLoopUseLists(S);
2889   }
2890   setNoWrapFlags(S, Flags);
2891   return S;
2892 }
2893 
2894 const SCEV *
2895 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2896                                     SCEV::NoWrapFlags Flags) {
2897   FoldingSetNodeID ID;
2898   ID.AddInteger(scMulExpr);
2899   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2900     ID.AddPointer(Ops[i]);
2901   void *IP = nullptr;
2902   SCEVMulExpr *S =
2903     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2904   if (!S) {
2905     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2906     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2907     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2908                                         O, Ops.size());
2909     UniqueSCEVs.InsertNode(S, IP);
2910     addToLoopUseLists(S);
2911   }
2912   S->setNoWrapFlags(Flags);
2913   return S;
2914 }
2915 
2916 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2917   uint64_t k = i*j;
2918   if (j > 1 && k / j != i) Overflow = true;
2919   return k;
2920 }
2921 
2922 /// Compute the result of "n choose k", the binomial coefficient.  If an
2923 /// intermediate computation overflows, Overflow will be set and the return will
2924 /// be garbage. Overflow is not cleared on absence of overflow.
2925 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2926   // We use the multiplicative formula:
2927   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2928   // At each iteration, we take the n-th term of the numeral and divide by the
2929   // (k-n)th term of the denominator.  This division will always produce an
2930   // integral result, and helps reduce the chance of overflow in the
2931   // intermediate computations. However, we can still overflow even when the
2932   // final result would fit.
2933 
2934   if (n == 0 || n == k) return 1;
2935   if (k > n) return 0;
2936 
2937   if (k > n/2)
2938     k = n-k;
2939 
2940   uint64_t r = 1;
2941   for (uint64_t i = 1; i <= k; ++i) {
2942     r = umul_ov(r, n-(i-1), Overflow);
2943     r /= i;
2944   }
2945   return r;
2946 }
2947 
2948 /// Determine if any of the operands in this SCEV are a constant or if
2949 /// any of the add or multiply expressions in this SCEV contain a constant.
2950 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2951   struct FindConstantInAddMulChain {
2952     bool FoundConstant = false;
2953 
2954     bool follow(const SCEV *S) {
2955       FoundConstant |= isa<SCEVConstant>(S);
2956       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2957     }
2958 
2959     bool isDone() const {
2960       return FoundConstant;
2961     }
2962   };
2963 
2964   FindConstantInAddMulChain F;
2965   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2966   ST.visitAll(StartExpr);
2967   return F.FoundConstant;
2968 }
2969 
2970 /// Get a canonical multiply expression, or something simpler if possible.
2971 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2972                                         SCEV::NoWrapFlags OrigFlags,
2973                                         unsigned Depth) {
2974   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2975          "only nuw or nsw allowed");
2976   assert(!Ops.empty() && "Cannot get empty mul!");
2977   if (Ops.size() == 1) return Ops[0];
2978 #ifndef NDEBUG
2979   Type *ETy = Ops[0]->getType();
2980   assert(!ETy->isPointerTy());
2981   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2982     assert(Ops[i]->getType() == ETy &&
2983            "SCEVMulExpr operand types don't match!");
2984 #endif
2985 
2986   // Sort by complexity, this groups all similar expression types together.
2987   GroupByComplexity(Ops, &LI, DT);
2988 
2989   // If there are any constants, fold them together.
2990   unsigned Idx = 0;
2991   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2992     ++Idx;
2993     assert(Idx < Ops.size());
2994     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2995       // We found two constants, fold them together!
2996       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2997       if (Ops.size() == 2) return Ops[0];
2998       Ops.erase(Ops.begin()+1);  // Erase the folded element
2999       LHSC = cast<SCEVConstant>(Ops[0]);
3000     }
3001 
3002     // If we have a multiply of zero, it will always be zero.
3003     if (LHSC->getValue()->isZero())
3004       return LHSC;
3005 
3006     // If we are left with a constant one being multiplied, strip it off.
3007     if (LHSC->getValue()->isOne()) {
3008       Ops.erase(Ops.begin());
3009       --Idx;
3010     }
3011 
3012     if (Ops.size() == 1)
3013       return Ops[0];
3014   }
3015 
3016   // Delay expensive flag strengthening until necessary.
3017   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3018     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3019   };
3020 
3021   // Limit recursion calls depth.
3022   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3023     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3024 
3025   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
3026     // Don't strengthen flags if we have no new information.
3027     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3028     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3029       Mul->setNoWrapFlags(ComputeFlags(Ops));
3030     return S;
3031   }
3032 
3033   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3034     if (Ops.size() == 2) {
3035       // C1*(C2+V) -> C1*C2 + C1*V
3036       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3037         // If any of Add's ops are Adds or Muls with a constant, apply this
3038         // transformation as well.
3039         //
3040         // TODO: There are some cases where this transformation is not
3041         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3042         // this transformation should be narrowed down.
3043         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3044           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3045                                        SCEV::FlagAnyWrap, Depth + 1),
3046                             getMulExpr(LHSC, Add->getOperand(1),
3047                                        SCEV::FlagAnyWrap, Depth + 1),
3048                             SCEV::FlagAnyWrap, Depth + 1);
3049 
3050       if (Ops[0]->isAllOnesValue()) {
3051         // If we have a mul by -1 of an add, try distributing the -1 among the
3052         // add operands.
3053         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3054           SmallVector<const SCEV *, 4> NewOps;
3055           bool AnyFolded = false;
3056           for (const SCEV *AddOp : Add->operands()) {
3057             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3058                                          Depth + 1);
3059             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3060             NewOps.push_back(Mul);
3061           }
3062           if (AnyFolded)
3063             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3064         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3065           // Negation preserves a recurrence's no self-wrap property.
3066           SmallVector<const SCEV *, 4> Operands;
3067           for (const SCEV *AddRecOp : AddRec->operands())
3068             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3069                                           Depth + 1));
3070 
3071           return getAddRecExpr(Operands, AddRec->getLoop(),
3072                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3073         }
3074       }
3075     }
3076   }
3077 
3078   // Skip over the add expression until we get to a multiply.
3079   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3080     ++Idx;
3081 
3082   // If there are mul operands inline them all into this expression.
3083   if (Idx < Ops.size()) {
3084     bool DeletedMul = false;
3085     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3086       if (Ops.size() > MulOpsInlineThreshold)
3087         break;
3088       // If we have an mul, expand the mul operands onto the end of the
3089       // operands list.
3090       Ops.erase(Ops.begin()+Idx);
3091       Ops.append(Mul->op_begin(), Mul->op_end());
3092       DeletedMul = true;
3093     }
3094 
3095     // If we deleted at least one mul, we added operands to the end of the
3096     // list, and they are not necessarily sorted.  Recurse to resort and
3097     // resimplify any operands we just acquired.
3098     if (DeletedMul)
3099       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3100   }
3101 
3102   // If there are any add recurrences in the operands list, see if any other
3103   // added values are loop invariant.  If so, we can fold them into the
3104   // recurrence.
3105   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3106     ++Idx;
3107 
3108   // Scan over all recurrences, trying to fold loop invariants into them.
3109   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3110     // Scan all of the other operands to this mul and add them to the vector
3111     // if they are loop invariant w.r.t. the recurrence.
3112     SmallVector<const SCEV *, 8> LIOps;
3113     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3114     const Loop *AddRecLoop = AddRec->getLoop();
3115     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3116       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3117         LIOps.push_back(Ops[i]);
3118         Ops.erase(Ops.begin()+i);
3119         --i; --e;
3120       }
3121 
3122     // If we found some loop invariants, fold them into the recurrence.
3123     if (!LIOps.empty()) {
3124       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3125       SmallVector<const SCEV *, 4> NewOps;
3126       NewOps.reserve(AddRec->getNumOperands());
3127       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3128       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3129         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3130                                     SCEV::FlagAnyWrap, Depth + 1));
3131 
3132       // Build the new addrec. Propagate the NUW and NSW flags if both the
3133       // outer mul and the inner addrec are guaranteed to have no overflow.
3134       //
3135       // No self-wrap cannot be guaranteed after changing the step size, but
3136       // will be inferred if either NUW or NSW is true.
3137       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3138       const SCEV *NewRec = getAddRecExpr(
3139           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3140 
3141       // If all of the other operands were loop invariant, we are done.
3142       if (Ops.size() == 1) return NewRec;
3143 
3144       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3145       for (unsigned i = 0;; ++i)
3146         if (Ops[i] == AddRec) {
3147           Ops[i] = NewRec;
3148           break;
3149         }
3150       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3151     }
3152 
3153     // Okay, if there weren't any loop invariants to be folded, check to see
3154     // if there are multiple AddRec's with the same loop induction variable
3155     // being multiplied together.  If so, we can fold them.
3156 
3157     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3158     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3159     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3160     //   ]]],+,...up to x=2n}.
3161     // Note that the arguments to choose() are always integers with values
3162     // known at compile time, never SCEV objects.
3163     //
3164     // The implementation avoids pointless extra computations when the two
3165     // addrec's are of different length (mathematically, it's equivalent to
3166     // an infinite stream of zeros on the right).
3167     bool OpsModified = false;
3168     for (unsigned OtherIdx = Idx+1;
3169          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3170          ++OtherIdx) {
3171       const SCEVAddRecExpr *OtherAddRec =
3172         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3173       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3174         continue;
3175 
3176       // Limit max number of arguments to avoid creation of unreasonably big
3177       // SCEVAddRecs with very complex operands.
3178       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3179           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3180         continue;
3181 
3182       bool Overflow = false;
3183       Type *Ty = AddRec->getType();
3184       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3185       SmallVector<const SCEV*, 7> AddRecOps;
3186       for (int x = 0, xe = AddRec->getNumOperands() +
3187              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3188         SmallVector <const SCEV *, 7> SumOps;
3189         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3190           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3191           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3192                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3193                z < ze && !Overflow; ++z) {
3194             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3195             uint64_t Coeff;
3196             if (LargerThan64Bits)
3197               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3198             else
3199               Coeff = Coeff1*Coeff2;
3200             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3201             const SCEV *Term1 = AddRec->getOperand(y-z);
3202             const SCEV *Term2 = OtherAddRec->getOperand(z);
3203             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3204                                         SCEV::FlagAnyWrap, Depth + 1));
3205           }
3206         }
3207         if (SumOps.empty())
3208           SumOps.push_back(getZero(Ty));
3209         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3210       }
3211       if (!Overflow) {
3212         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3213                                               SCEV::FlagAnyWrap);
3214         if (Ops.size() == 2) return NewAddRec;
3215         Ops[Idx] = NewAddRec;
3216         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3217         OpsModified = true;
3218         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3219         if (!AddRec)
3220           break;
3221       }
3222     }
3223     if (OpsModified)
3224       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3225 
3226     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3227     // next one.
3228   }
3229 
3230   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3231   // already have one, otherwise create a new one.
3232   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3233 }
3234 
3235 /// Represents an unsigned remainder expression based on unsigned division.
3236 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3237                                          const SCEV *RHS) {
3238   assert(getEffectiveSCEVType(LHS->getType()) ==
3239          getEffectiveSCEVType(RHS->getType()) &&
3240          "SCEVURemExpr operand types don't match!");
3241 
3242   // Short-circuit easy cases
3243   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3244     // If constant is one, the result is trivial
3245     if (RHSC->getValue()->isOne())
3246       return getZero(LHS->getType()); // X urem 1 --> 0
3247 
3248     // If constant is a power of two, fold into a zext(trunc(LHS)).
3249     if (RHSC->getAPInt().isPowerOf2()) {
3250       Type *FullTy = LHS->getType();
3251       Type *TruncTy =
3252           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3253       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3254     }
3255   }
3256 
3257   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3258   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3259   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3260   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3261 }
3262 
3263 /// Get a canonical unsigned division expression, or something simpler if
3264 /// possible.
3265 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3266                                          const SCEV *RHS) {
3267   assert(!LHS->getType()->isPointerTy() &&
3268          "SCEVUDivExpr operand can't be pointer!");
3269   assert(LHS->getType() == RHS->getType() &&
3270          "SCEVUDivExpr operand types don't match!");
3271 
3272   FoldingSetNodeID ID;
3273   ID.AddInteger(scUDivExpr);
3274   ID.AddPointer(LHS);
3275   ID.AddPointer(RHS);
3276   void *IP = nullptr;
3277   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3278     return S;
3279 
3280   // 0 udiv Y == 0
3281   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3282     if (LHSC->getValue()->isZero())
3283       return LHS;
3284 
3285   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3286     if (RHSC->getValue()->isOne())
3287       return LHS;                               // X udiv 1 --> x
3288     // If the denominator is zero, the result of the udiv is undefined. Don't
3289     // try to analyze it, because the resolution chosen here may differ from
3290     // the resolution chosen in other parts of the compiler.
3291     if (!RHSC->getValue()->isZero()) {
3292       // Determine if the division can be folded into the operands of
3293       // its operands.
3294       // TODO: Generalize this to non-constants by using known-bits information.
3295       Type *Ty = LHS->getType();
3296       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3297       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3298       // For non-power-of-two values, effectively round the value up to the
3299       // nearest power of two.
3300       if (!RHSC->getAPInt().isPowerOf2())
3301         ++MaxShiftAmt;
3302       IntegerType *ExtTy =
3303         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3304       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3305         if (const SCEVConstant *Step =
3306             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3307           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3308           const APInt &StepInt = Step->getAPInt();
3309           const APInt &DivInt = RHSC->getAPInt();
3310           if (!StepInt.urem(DivInt) &&
3311               getZeroExtendExpr(AR, ExtTy) ==
3312               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3313                             getZeroExtendExpr(Step, ExtTy),
3314                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3315             SmallVector<const SCEV *, 4> Operands;
3316             for (const SCEV *Op : AR->operands())
3317               Operands.push_back(getUDivExpr(Op, RHS));
3318             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3319           }
3320           /// Get a canonical UDivExpr for a recurrence.
3321           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3322           // We can currently only fold X%N if X is constant.
3323           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3324           if (StartC && !DivInt.urem(StepInt) &&
3325               getZeroExtendExpr(AR, ExtTy) ==
3326               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3327                             getZeroExtendExpr(Step, ExtTy),
3328                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3329             const APInt &StartInt = StartC->getAPInt();
3330             const APInt &StartRem = StartInt.urem(StepInt);
3331             if (StartRem != 0) {
3332               const SCEV *NewLHS =
3333                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3334                                 AR->getLoop(), SCEV::FlagNW);
3335               if (LHS != NewLHS) {
3336                 LHS = NewLHS;
3337 
3338                 // Reset the ID to include the new LHS, and check if it is
3339                 // already cached.
3340                 ID.clear();
3341                 ID.AddInteger(scUDivExpr);
3342                 ID.AddPointer(LHS);
3343                 ID.AddPointer(RHS);
3344                 IP = nullptr;
3345                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3346                   return S;
3347               }
3348             }
3349           }
3350         }
3351       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3352       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3353         SmallVector<const SCEV *, 4> Operands;
3354         for (const SCEV *Op : M->operands())
3355           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3356         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3357           // Find an operand that's safely divisible.
3358           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3359             const SCEV *Op = M->getOperand(i);
3360             const SCEV *Div = getUDivExpr(Op, RHSC);
3361             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3362               Operands = SmallVector<const SCEV *, 4>(M->operands());
3363               Operands[i] = Div;
3364               return getMulExpr(Operands);
3365             }
3366           }
3367       }
3368 
3369       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3370       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3371         if (auto *DivisorConstant =
3372                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3373           bool Overflow = false;
3374           APInt NewRHS =
3375               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3376           if (Overflow) {
3377             return getConstant(RHSC->getType(), 0, false);
3378           }
3379           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3380         }
3381       }
3382 
3383       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3384       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3385         SmallVector<const SCEV *, 4> Operands;
3386         for (const SCEV *Op : A->operands())
3387           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3388         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3389           Operands.clear();
3390           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3391             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3392             if (isa<SCEVUDivExpr>(Op) ||
3393                 getMulExpr(Op, RHS) != A->getOperand(i))
3394               break;
3395             Operands.push_back(Op);
3396           }
3397           if (Operands.size() == A->getNumOperands())
3398             return getAddExpr(Operands);
3399         }
3400       }
3401 
3402       // Fold if both operands are constant.
3403       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3404         Constant *LHSCV = LHSC->getValue();
3405         Constant *RHSCV = RHSC->getValue();
3406         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3407                                                                    RHSCV)));
3408       }
3409     }
3410   }
3411 
3412   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3413   // changes). Make sure we get a new one.
3414   IP = nullptr;
3415   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3416   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3417                                              LHS, RHS);
3418   UniqueSCEVs.InsertNode(S, IP);
3419   addToLoopUseLists(S);
3420   return S;
3421 }
3422 
3423 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3424   APInt A = C1->getAPInt().abs();
3425   APInt B = C2->getAPInt().abs();
3426   uint32_t ABW = A.getBitWidth();
3427   uint32_t BBW = B.getBitWidth();
3428 
3429   if (ABW > BBW)
3430     B = B.zext(ABW);
3431   else if (ABW < BBW)
3432     A = A.zext(BBW);
3433 
3434   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3435 }
3436 
3437 /// Get a canonical unsigned division expression, or something simpler if
3438 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3439 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3440 /// it's not exact because the udiv may be clearing bits.
3441 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3442                                               const SCEV *RHS) {
3443   // TODO: we could try to find factors in all sorts of things, but for now we
3444   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3445   // end of this file for inspiration.
3446 
3447   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3448   if (!Mul || !Mul->hasNoUnsignedWrap())
3449     return getUDivExpr(LHS, RHS);
3450 
3451   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3452     // If the mulexpr multiplies by a constant, then that constant must be the
3453     // first element of the mulexpr.
3454     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3455       if (LHSCst == RHSCst) {
3456         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3457         return getMulExpr(Operands);
3458       }
3459 
3460       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3461       // that there's a factor provided by one of the other terms. We need to
3462       // check.
3463       APInt Factor = gcd(LHSCst, RHSCst);
3464       if (!Factor.isIntN(1)) {
3465         LHSCst =
3466             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3467         RHSCst =
3468             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3469         SmallVector<const SCEV *, 2> Operands;
3470         Operands.push_back(LHSCst);
3471         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3472         LHS = getMulExpr(Operands);
3473         RHS = RHSCst;
3474         Mul = dyn_cast<SCEVMulExpr>(LHS);
3475         if (!Mul)
3476           return getUDivExactExpr(LHS, RHS);
3477       }
3478     }
3479   }
3480 
3481   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3482     if (Mul->getOperand(i) == RHS) {
3483       SmallVector<const SCEV *, 2> Operands;
3484       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3485       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3486       return getMulExpr(Operands);
3487     }
3488   }
3489 
3490   return getUDivExpr(LHS, RHS);
3491 }
3492 
3493 /// Get an add recurrence expression for the specified loop.  Simplify the
3494 /// expression as much as possible.
3495 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3496                                            const Loop *L,
3497                                            SCEV::NoWrapFlags Flags) {
3498   SmallVector<const SCEV *, 4> Operands;
3499   Operands.push_back(Start);
3500   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3501     if (StepChrec->getLoop() == L) {
3502       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3503       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3504     }
3505 
3506   Operands.push_back(Step);
3507   return getAddRecExpr(Operands, L, Flags);
3508 }
3509 
3510 /// Get an add recurrence expression for the specified loop.  Simplify the
3511 /// expression as much as possible.
3512 const SCEV *
3513 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3514                                const Loop *L, SCEV::NoWrapFlags Flags) {
3515   if (Operands.size() == 1) return Operands[0];
3516 #ifndef NDEBUG
3517   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3518   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3519     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3520            "SCEVAddRecExpr operand types don't match!");
3521     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3522   }
3523   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3524     assert(isLoopInvariant(Operands[i], L) &&
3525            "SCEVAddRecExpr operand is not loop-invariant!");
3526 #endif
3527 
3528   if (Operands.back()->isZero()) {
3529     Operands.pop_back();
3530     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3531   }
3532 
3533   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3534   // use that information to infer NUW and NSW flags. However, computing a
3535   // BE count requires calling getAddRecExpr, so we may not yet have a
3536   // meaningful BE count at this point (and if we don't, we'd be stuck
3537   // with a SCEVCouldNotCompute as the cached BE count).
3538 
3539   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3540 
3541   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3542   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3543     const Loop *NestedLoop = NestedAR->getLoop();
3544     if (L->contains(NestedLoop)
3545             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3546             : (!NestedLoop->contains(L) &&
3547                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3548       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3549       Operands[0] = NestedAR->getStart();
3550       // AddRecs require their operands be loop-invariant with respect to their
3551       // loops. Don't perform this transformation if it would break this
3552       // requirement.
3553       bool AllInvariant = all_of(
3554           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3555 
3556       if (AllInvariant) {
3557         // Create a recurrence for the outer loop with the same step size.
3558         //
3559         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3560         // inner recurrence has the same property.
3561         SCEV::NoWrapFlags OuterFlags =
3562           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3563 
3564         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3565         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3566           return isLoopInvariant(Op, NestedLoop);
3567         });
3568 
3569         if (AllInvariant) {
3570           // Ok, both add recurrences are valid after the transformation.
3571           //
3572           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3573           // the outer recurrence has the same property.
3574           SCEV::NoWrapFlags InnerFlags =
3575             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3576           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3577         }
3578       }
3579       // Reset Operands to its original state.
3580       Operands[0] = NestedAR;
3581     }
3582   }
3583 
3584   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3585   // already have one, otherwise create a new one.
3586   return getOrCreateAddRecExpr(Operands, L, Flags);
3587 }
3588 
3589 const SCEV *
3590 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3591                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3592   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3593   // getSCEV(Base)->getType() has the same address space as Base->getType()
3594   // because SCEV::getType() preserves the address space.
3595   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3596   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3597   // instruction to its SCEV, because the Instruction may be guarded by control
3598   // flow and the no-overflow bits may not be valid for the expression in any
3599   // context. This can be fixed similarly to how these flags are handled for
3600   // adds.
3601   SCEV::NoWrapFlags OffsetWrap =
3602       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3603 
3604   Type *CurTy = GEP->getType();
3605   bool FirstIter = true;
3606   SmallVector<const SCEV *, 4> Offsets;
3607   for (const SCEV *IndexExpr : IndexExprs) {
3608     // Compute the (potentially symbolic) offset in bytes for this index.
3609     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3610       // For a struct, add the member offset.
3611       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3612       unsigned FieldNo = Index->getZExtValue();
3613       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3614       Offsets.push_back(FieldOffset);
3615 
3616       // Update CurTy to the type of the field at Index.
3617       CurTy = STy->getTypeAtIndex(Index);
3618     } else {
3619       // Update CurTy to its element type.
3620       if (FirstIter) {
3621         assert(isa<PointerType>(CurTy) &&
3622                "The first index of a GEP indexes a pointer");
3623         CurTy = GEP->getSourceElementType();
3624         FirstIter = false;
3625       } else {
3626         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3627       }
3628       // For an array, add the element offset, explicitly scaled.
3629       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3630       // Getelementptr indices are signed.
3631       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3632 
3633       // Multiply the index by the element size to compute the element offset.
3634       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3635       Offsets.push_back(LocalOffset);
3636     }
3637   }
3638 
3639   // Handle degenerate case of GEP without offsets.
3640   if (Offsets.empty())
3641     return BaseExpr;
3642 
3643   // Add the offsets together, assuming nsw if inbounds.
3644   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3645   // Add the base address and the offset. We cannot use the nsw flag, as the
3646   // base address is unsigned. However, if we know that the offset is
3647   // non-negative, we can use nuw.
3648   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3649                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3650   return getAddExpr(BaseExpr, Offset, BaseWrap);
3651 }
3652 
3653 std::tuple<SCEV *, FoldingSetNodeID, void *>
3654 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3655                                          ArrayRef<const SCEV *> Ops) {
3656   FoldingSetNodeID ID;
3657   void *IP = nullptr;
3658   ID.AddInteger(SCEVType);
3659   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3660     ID.AddPointer(Ops[i]);
3661   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3662       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3663 }
3664 
3665 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3666   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3667   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3668 }
3669 
3670 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3671                                            SmallVectorImpl<const SCEV *> &Ops) {
3672   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3673   if (Ops.size() == 1) return Ops[0];
3674 #ifndef NDEBUG
3675   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3676   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3677     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3678            "Operand types don't match!");
3679     assert(Ops[0]->getType()->isPointerTy() ==
3680                Ops[i]->getType()->isPointerTy() &&
3681            "min/max should be consistently pointerish");
3682   }
3683 #endif
3684 
3685   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3686   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3687 
3688   // Sort by complexity, this groups all similar expression types together.
3689   GroupByComplexity(Ops, &LI, DT);
3690 
3691   // Check if we have created the same expression before.
3692   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3693     return S;
3694   }
3695 
3696   // If there are any constants, fold them together.
3697   unsigned Idx = 0;
3698   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3699     ++Idx;
3700     assert(Idx < Ops.size());
3701     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3702       if (Kind == scSMaxExpr)
3703         return APIntOps::smax(LHS, RHS);
3704       else if (Kind == scSMinExpr)
3705         return APIntOps::smin(LHS, RHS);
3706       else if (Kind == scUMaxExpr)
3707         return APIntOps::umax(LHS, RHS);
3708       else if (Kind == scUMinExpr)
3709         return APIntOps::umin(LHS, RHS);
3710       llvm_unreachable("Unknown SCEV min/max opcode");
3711     };
3712 
3713     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3714       // We found two constants, fold them together!
3715       ConstantInt *Fold = ConstantInt::get(
3716           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3717       Ops[0] = getConstant(Fold);
3718       Ops.erase(Ops.begin()+1);  // Erase the folded element
3719       if (Ops.size() == 1) return Ops[0];
3720       LHSC = cast<SCEVConstant>(Ops[0]);
3721     }
3722 
3723     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3724     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3725 
3726     if (IsMax ? IsMinV : IsMaxV) {
3727       // If we are left with a constant minimum(/maximum)-int, strip it off.
3728       Ops.erase(Ops.begin());
3729       --Idx;
3730     } else if (IsMax ? IsMaxV : IsMinV) {
3731       // If we have a max(/min) with a constant maximum(/minimum)-int,
3732       // it will always be the extremum.
3733       return LHSC;
3734     }
3735 
3736     if (Ops.size() == 1) return Ops[0];
3737   }
3738 
3739   // Find the first operation of the same kind
3740   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3741     ++Idx;
3742 
3743   // Check to see if one of the operands is of the same kind. If so, expand its
3744   // operands onto our operand list, and recurse to simplify.
3745   if (Idx < Ops.size()) {
3746     bool DeletedAny = false;
3747     while (Ops[Idx]->getSCEVType() == Kind) {
3748       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3749       Ops.erase(Ops.begin()+Idx);
3750       Ops.append(SMME->op_begin(), SMME->op_end());
3751       DeletedAny = true;
3752     }
3753 
3754     if (DeletedAny)
3755       return getMinMaxExpr(Kind, Ops);
3756   }
3757 
3758   // Okay, check to see if the same value occurs in the operand list twice.  If
3759   // so, delete one.  Since we sorted the list, these values are required to
3760   // be adjacent.
3761   llvm::CmpInst::Predicate GEPred =
3762       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3763   llvm::CmpInst::Predicate LEPred =
3764       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3765   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3766   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3767   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3768     if (Ops[i] == Ops[i + 1] ||
3769         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3770       //  X op Y op Y  -->  X op Y
3771       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3772       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3773       --i;
3774       --e;
3775     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3776                                                Ops[i + 1])) {
3777       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3778       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3779       --i;
3780       --e;
3781     }
3782   }
3783 
3784   if (Ops.size() == 1) return Ops[0];
3785 
3786   assert(!Ops.empty() && "Reduced smax down to nothing!");
3787 
3788   // Okay, it looks like we really DO need an expr.  Check to see if we
3789   // already have one, otherwise create a new one.
3790   const SCEV *ExistingSCEV;
3791   FoldingSetNodeID ID;
3792   void *IP;
3793   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3794   if (ExistingSCEV)
3795     return ExistingSCEV;
3796   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3797   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3798   SCEV *S = new (SCEVAllocator)
3799       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3800 
3801   UniqueSCEVs.InsertNode(S, IP);
3802   addToLoopUseLists(S);
3803   return S;
3804 }
3805 
3806 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3807   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3808   return getSMaxExpr(Ops);
3809 }
3810 
3811 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3812   return getMinMaxExpr(scSMaxExpr, Ops);
3813 }
3814 
3815 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3816   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3817   return getUMaxExpr(Ops);
3818 }
3819 
3820 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3821   return getMinMaxExpr(scUMaxExpr, Ops);
3822 }
3823 
3824 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3825                                          const SCEV *RHS) {
3826   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3827   return getSMinExpr(Ops);
3828 }
3829 
3830 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3831   return getMinMaxExpr(scSMinExpr, Ops);
3832 }
3833 
3834 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3835                                          const SCEV *RHS) {
3836   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3837   return getUMinExpr(Ops);
3838 }
3839 
3840 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3841   return getMinMaxExpr(scUMinExpr, Ops);
3842 }
3843 
3844 const SCEV *
3845 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3846                                              ScalableVectorType *ScalableTy) {
3847   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3848   Constant *One = ConstantInt::get(IntTy, 1);
3849   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3850   // Note that the expression we created is the final expression, we don't
3851   // want to simplify it any further Also, if we call a normal getSCEV(),
3852   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3853   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3854 }
3855 
3856 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3857   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3858     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3859   // We can bypass creating a target-independent constant expression and then
3860   // folding it back into a ConstantInt. This is just a compile-time
3861   // optimization.
3862   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3863 }
3864 
3865 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3866   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3867     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3868   // We can bypass creating a target-independent constant expression and then
3869   // folding it back into a ConstantInt. This is just a compile-time
3870   // optimization.
3871   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3872 }
3873 
3874 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3875                                              StructType *STy,
3876                                              unsigned FieldNo) {
3877   // We can bypass creating a target-independent constant expression and then
3878   // folding it back into a ConstantInt. This is just a compile-time
3879   // optimization.
3880   return getConstant(
3881       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3882 }
3883 
3884 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3885   // Don't attempt to do anything other than create a SCEVUnknown object
3886   // here.  createSCEV only calls getUnknown after checking for all other
3887   // interesting possibilities, and any other code that calls getUnknown
3888   // is doing so in order to hide a value from SCEV canonicalization.
3889 
3890   FoldingSetNodeID ID;
3891   ID.AddInteger(scUnknown);
3892   ID.AddPointer(V);
3893   void *IP = nullptr;
3894   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3895     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3896            "Stale SCEVUnknown in uniquing map!");
3897     return S;
3898   }
3899   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3900                                             FirstUnknown);
3901   FirstUnknown = cast<SCEVUnknown>(S);
3902   UniqueSCEVs.InsertNode(S, IP);
3903   return S;
3904 }
3905 
3906 //===----------------------------------------------------------------------===//
3907 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3908 //
3909 
3910 /// Test if values of the given type are analyzable within the SCEV
3911 /// framework. This primarily includes integer types, and it can optionally
3912 /// include pointer types if the ScalarEvolution class has access to
3913 /// target-specific information.
3914 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3915   // Integers and pointers are always SCEVable.
3916   return Ty->isIntOrPtrTy();
3917 }
3918 
3919 /// Return the size in bits of the specified type, for which isSCEVable must
3920 /// return true.
3921 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3922   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3923   if (Ty->isPointerTy())
3924     return getDataLayout().getIndexTypeSizeInBits(Ty);
3925   return getDataLayout().getTypeSizeInBits(Ty);
3926 }
3927 
3928 /// Return a type with the same bitwidth as the given type and which represents
3929 /// how SCEV will treat the given type, for which isSCEVable must return
3930 /// true. For pointer types, this is the pointer index sized integer type.
3931 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3932   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3933 
3934   if (Ty->isIntegerTy())
3935     return Ty;
3936 
3937   // The only other support type is pointer.
3938   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3939   return getDataLayout().getIndexType(Ty);
3940 }
3941 
3942 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3943   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3944 }
3945 
3946 const SCEV *ScalarEvolution::getCouldNotCompute() {
3947   return CouldNotCompute.get();
3948 }
3949 
3950 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3951   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3952     auto *SU = dyn_cast<SCEVUnknown>(S);
3953     return SU && SU->getValue() == nullptr;
3954   });
3955 
3956   return !ContainsNulls;
3957 }
3958 
3959 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3960   HasRecMapType::iterator I = HasRecMap.find(S);
3961   if (I != HasRecMap.end())
3962     return I->second;
3963 
3964   bool FoundAddRec =
3965       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3966   HasRecMap.insert({S, FoundAddRec});
3967   return FoundAddRec;
3968 }
3969 
3970 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3971 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3972 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3973 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3974   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3975   if (!Add)
3976     return {S, nullptr};
3977 
3978   if (Add->getNumOperands() != 2)
3979     return {S, nullptr};
3980 
3981   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3982   if (!ConstOp)
3983     return {S, nullptr};
3984 
3985   return {Add->getOperand(1), ConstOp->getValue()};
3986 }
3987 
3988 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3989 /// by the value and offset from any ValueOffsetPair in the set.
3990 ScalarEvolution::ValueOffsetPairSetVector *
3991 ScalarEvolution::getSCEVValues(const SCEV *S) {
3992   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3993   if (SI == ExprValueMap.end())
3994     return nullptr;
3995 #ifndef NDEBUG
3996   if (VerifySCEVMap) {
3997     // Check there is no dangling Value in the set returned.
3998     for (const auto &VE : SI->second)
3999       assert(ValueExprMap.count(VE.first));
4000   }
4001 #endif
4002   return &SI->second;
4003 }
4004 
4005 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4006 /// cannot be used separately. eraseValueFromMap should be used to remove
4007 /// V from ValueExprMap and ExprValueMap at the same time.
4008 void ScalarEvolution::eraseValueFromMap(Value *V) {
4009   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4010   if (I != ValueExprMap.end()) {
4011     const SCEV *S = I->second;
4012     // Remove {V, 0} from the set of ExprValueMap[S]
4013     if (auto *SV = getSCEVValues(S))
4014       SV->remove({V, nullptr});
4015 
4016     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4017     const SCEV *Stripped;
4018     ConstantInt *Offset;
4019     std::tie(Stripped, Offset) = splitAddExpr(S);
4020     if (Offset != nullptr) {
4021       if (auto *SV = getSCEVValues(Stripped))
4022         SV->remove({V, Offset});
4023     }
4024     ValueExprMap.erase(V);
4025   }
4026 }
4027 
4028 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4029 /// TODO: In reality it is better to check the poison recursively
4030 /// but this is better than nothing.
4031 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4032   if (auto *I = dyn_cast<Instruction>(V)) {
4033     if (isa<OverflowingBinaryOperator>(I)) {
4034       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4035         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4036           return true;
4037         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4038           return true;
4039       }
4040     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4041       return true;
4042   }
4043   return false;
4044 }
4045 
4046 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4047 /// create a new one.
4048 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4049   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4050 
4051   const SCEV *S = getExistingSCEV(V);
4052   if (S == nullptr) {
4053     S = createSCEV(V);
4054     // During PHI resolution, it is possible to create two SCEVs for the same
4055     // V, so it is needed to double check whether V->S is inserted into
4056     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4057     std::pair<ValueExprMapType::iterator, bool> Pair =
4058         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4059     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4060       ExprValueMap[S].insert({V, nullptr});
4061 
4062       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4063       // ExprValueMap.
4064       const SCEV *Stripped = S;
4065       ConstantInt *Offset = nullptr;
4066       std::tie(Stripped, Offset) = splitAddExpr(S);
4067       // If stripped is SCEVUnknown, don't bother to save
4068       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4069       // increase the complexity of the expansion code.
4070       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4071       // because it may generate add/sub instead of GEP in SCEV expansion.
4072       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4073           !isa<GetElementPtrInst>(V))
4074         ExprValueMap[Stripped].insert({V, Offset});
4075     }
4076   }
4077   return S;
4078 }
4079 
4080 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4081   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4082 
4083   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4084   if (I != ValueExprMap.end()) {
4085     const SCEV *S = I->second;
4086     if (checkValidity(S))
4087       return S;
4088     eraseValueFromMap(V);
4089     forgetMemoizedResults(S);
4090   }
4091   return nullptr;
4092 }
4093 
4094 /// Return a SCEV corresponding to -V = -1*V
4095 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4096                                              SCEV::NoWrapFlags Flags) {
4097   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4098     return getConstant(
4099                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4100 
4101   Type *Ty = V->getType();
4102   Ty = getEffectiveSCEVType(Ty);
4103   return getMulExpr(V, getMinusOne(Ty), Flags);
4104 }
4105 
4106 /// If Expr computes ~A, return A else return nullptr
4107 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4108   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4109   if (!Add || Add->getNumOperands() != 2 ||
4110       !Add->getOperand(0)->isAllOnesValue())
4111     return nullptr;
4112 
4113   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4114   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4115       !AddRHS->getOperand(0)->isAllOnesValue())
4116     return nullptr;
4117 
4118   return AddRHS->getOperand(1);
4119 }
4120 
4121 /// Return a SCEV corresponding to ~V = -1-V
4122 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4123   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4124     return getConstant(
4125                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4126 
4127   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4128   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4129     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4130       SmallVector<const SCEV *, 2> MatchedOperands;
4131       for (const SCEV *Operand : MME->operands()) {
4132         const SCEV *Matched = MatchNotExpr(Operand);
4133         if (!Matched)
4134           return (const SCEV *)nullptr;
4135         MatchedOperands.push_back(Matched);
4136       }
4137       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4138                            MatchedOperands);
4139     };
4140     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4141       return Replaced;
4142   }
4143 
4144   Type *Ty = V->getType();
4145   Ty = getEffectiveSCEVType(Ty);
4146   return getMinusSCEV(getMinusOne(Ty), V);
4147 }
4148 
4149 /// Compute an expression equivalent to S - getPointerBase(S).
4150 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) {
4151   assert(P->getType()->isPointerTy());
4152 
4153   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4154     // The base of an AddRec is the first operand.
4155     SmallVector<const SCEV *> Ops{AddRec->operands()};
4156     Ops[0] = removePointerBase(SE, Ops[0]);
4157     // Don't try to transfer nowrap flags for now. We could in some cases
4158     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4159     return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4160   }
4161   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4162     // The base of an Add is the pointer operand.
4163     SmallVector<const SCEV *> Ops{Add->operands()};
4164     const SCEV **PtrOp = nullptr;
4165     for (const SCEV *&AddOp : Ops) {
4166       if (AddOp->getType()->isPointerTy()) {
4167         // If we find an Add with multiple pointer operands, treat it as a
4168         // pointer base to be consistent with getPointerBase.  Eventually
4169         // we should be able to assert this is impossible.
4170         if (PtrOp)
4171           return SE->getZero(P->getType());
4172         PtrOp = &AddOp;
4173       }
4174     }
4175     *PtrOp = removePointerBase(SE, *PtrOp);
4176     // Don't try to transfer nowrap flags for now. We could in some cases
4177     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4178     return SE->getAddExpr(Ops);
4179   }
4180   // Any other expression must be a pointer base.
4181   return SE->getZero(P->getType());
4182 }
4183 
4184 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4185                                           SCEV::NoWrapFlags Flags,
4186                                           unsigned Depth) {
4187   // Fast path: X - X --> 0.
4188   if (LHS == RHS)
4189     return getZero(LHS->getType());
4190 
4191   // If we subtract two pointers with different pointer bases, bail.
4192   // Eventually, we're going to add an assertion to getMulExpr that we
4193   // can't multiply by a pointer.
4194   if (RHS->getType()->isPointerTy()) {
4195     if (!LHS->getType()->isPointerTy() ||
4196         getPointerBase(LHS) != getPointerBase(RHS))
4197       return getCouldNotCompute();
4198     LHS = removePointerBase(this, LHS);
4199     RHS = removePointerBase(this, RHS);
4200   }
4201 
4202   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4203   // makes it so that we cannot make much use of NUW.
4204   auto AddFlags = SCEV::FlagAnyWrap;
4205   const bool RHSIsNotMinSigned =
4206       !getSignedRangeMin(RHS).isMinSignedValue();
4207   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4208     // Let M be the minimum representable signed value. Then (-1)*RHS
4209     // signed-wraps if and only if RHS is M. That can happen even for
4210     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4211     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4212     // (-1)*RHS, we need to prove that RHS != M.
4213     //
4214     // If LHS is non-negative and we know that LHS - RHS does not
4215     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4216     // either by proving that RHS > M or that LHS >= 0.
4217     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4218       AddFlags = SCEV::FlagNSW;
4219     }
4220   }
4221 
4222   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4223   // RHS is NSW and LHS >= 0.
4224   //
4225   // The difficulty here is that the NSW flag may have been proven
4226   // relative to a loop that is to be found in a recurrence in LHS and
4227   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4228   // larger scope than intended.
4229   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4230 
4231   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4232 }
4233 
4234 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4235                                                      unsigned Depth) {
4236   Type *SrcTy = V->getType();
4237   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4238          "Cannot truncate or zero extend with non-integer arguments!");
4239   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4240     return V;  // No conversion
4241   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4242     return getTruncateExpr(V, Ty, Depth);
4243   return getZeroExtendExpr(V, Ty, Depth);
4244 }
4245 
4246 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4247                                                      unsigned Depth) {
4248   Type *SrcTy = V->getType();
4249   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4250          "Cannot truncate or zero extend with non-integer arguments!");
4251   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4252     return V;  // No conversion
4253   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4254     return getTruncateExpr(V, Ty, Depth);
4255   return getSignExtendExpr(V, Ty, Depth);
4256 }
4257 
4258 const SCEV *
4259 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4260   Type *SrcTy = V->getType();
4261   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4262          "Cannot noop or zero extend with non-integer arguments!");
4263   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4264          "getNoopOrZeroExtend cannot truncate!");
4265   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4266     return V;  // No conversion
4267   return getZeroExtendExpr(V, Ty);
4268 }
4269 
4270 const SCEV *
4271 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4272   Type *SrcTy = V->getType();
4273   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4274          "Cannot noop or sign extend with non-integer arguments!");
4275   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4276          "getNoopOrSignExtend cannot truncate!");
4277   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4278     return V;  // No conversion
4279   return getSignExtendExpr(V, Ty);
4280 }
4281 
4282 const SCEV *
4283 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4284   Type *SrcTy = V->getType();
4285   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4286          "Cannot noop or any extend with non-integer arguments!");
4287   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4288          "getNoopOrAnyExtend cannot truncate!");
4289   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4290     return V;  // No conversion
4291   return getAnyExtendExpr(V, Ty);
4292 }
4293 
4294 const SCEV *
4295 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4296   Type *SrcTy = V->getType();
4297   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4298          "Cannot truncate or noop with non-integer arguments!");
4299   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4300          "getTruncateOrNoop cannot extend!");
4301   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4302     return V;  // No conversion
4303   return getTruncateExpr(V, Ty);
4304 }
4305 
4306 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4307                                                         const SCEV *RHS) {
4308   const SCEV *PromotedLHS = LHS;
4309   const SCEV *PromotedRHS = RHS;
4310 
4311   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4312     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4313   else
4314     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4315 
4316   return getUMaxExpr(PromotedLHS, PromotedRHS);
4317 }
4318 
4319 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4320                                                         const SCEV *RHS) {
4321   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4322   return getUMinFromMismatchedTypes(Ops);
4323 }
4324 
4325 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4326     SmallVectorImpl<const SCEV *> &Ops) {
4327   assert(!Ops.empty() && "At least one operand must be!");
4328   // Trivial case.
4329   if (Ops.size() == 1)
4330     return Ops[0];
4331 
4332   // Find the max type first.
4333   Type *MaxType = nullptr;
4334   for (auto *S : Ops)
4335     if (MaxType)
4336       MaxType = getWiderType(MaxType, S->getType());
4337     else
4338       MaxType = S->getType();
4339   assert(MaxType && "Failed to find maximum type!");
4340 
4341   // Extend all ops to max type.
4342   SmallVector<const SCEV *, 2> PromotedOps;
4343   for (auto *S : Ops)
4344     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4345 
4346   // Generate umin.
4347   return getUMinExpr(PromotedOps);
4348 }
4349 
4350 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4351   // A pointer operand may evaluate to a nonpointer expression, such as null.
4352   if (!V->getType()->isPointerTy())
4353     return V;
4354 
4355   while (true) {
4356     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4357       V = AddRec->getStart();
4358     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4359       const SCEV *PtrOp = nullptr;
4360       for (const SCEV *AddOp : Add->operands()) {
4361         if (AddOp->getType()->isPointerTy()) {
4362           // Cannot find the base of an expression with multiple pointer ops.
4363           if (PtrOp)
4364             return V;
4365           PtrOp = AddOp;
4366         }
4367       }
4368       if (!PtrOp) // All operands were non-pointer.
4369         return V;
4370       V = PtrOp;
4371     } else // Not something we can look further into.
4372       return V;
4373   }
4374 }
4375 
4376 /// Push users of the given Instruction onto the given Worklist.
4377 static void
4378 PushDefUseChildren(Instruction *I,
4379                    SmallVectorImpl<Instruction *> &Worklist) {
4380   // Push the def-use children onto the Worklist stack.
4381   for (User *U : I->users())
4382     Worklist.push_back(cast<Instruction>(U));
4383 }
4384 
4385 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4386   SmallVector<Instruction *, 16> Worklist;
4387   PushDefUseChildren(PN, Worklist);
4388 
4389   SmallPtrSet<Instruction *, 8> Visited;
4390   Visited.insert(PN);
4391   while (!Worklist.empty()) {
4392     Instruction *I = Worklist.pop_back_val();
4393     if (!Visited.insert(I).second)
4394       continue;
4395 
4396     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4397     if (It != ValueExprMap.end()) {
4398       const SCEV *Old = It->second;
4399 
4400       // Short-circuit the def-use traversal if the symbolic name
4401       // ceases to appear in expressions.
4402       if (Old != SymName && !hasOperand(Old, SymName))
4403         continue;
4404 
4405       // SCEVUnknown for a PHI either means that it has an unrecognized
4406       // structure, it's a PHI that's in the progress of being computed
4407       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4408       // additional loop trip count information isn't going to change anything.
4409       // In the second case, createNodeForPHI will perform the necessary
4410       // updates on its own when it gets to that point. In the third, we do
4411       // want to forget the SCEVUnknown.
4412       if (!isa<PHINode>(I) ||
4413           !isa<SCEVUnknown>(Old) ||
4414           (I != PN && Old == SymName)) {
4415         eraseValueFromMap(It->first);
4416         forgetMemoizedResults(Old);
4417       }
4418     }
4419 
4420     PushDefUseChildren(I, Worklist);
4421   }
4422 }
4423 
4424 namespace {
4425 
4426 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4427 /// expression in case its Loop is L. If it is not L then
4428 /// if IgnoreOtherLoops is true then use AddRec itself
4429 /// otherwise rewrite cannot be done.
4430 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4431 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4432 public:
4433   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4434                              bool IgnoreOtherLoops = true) {
4435     SCEVInitRewriter Rewriter(L, SE);
4436     const SCEV *Result = Rewriter.visit(S);
4437     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4438       return SE.getCouldNotCompute();
4439     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4440                ? SE.getCouldNotCompute()
4441                : Result;
4442   }
4443 
4444   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4445     if (!SE.isLoopInvariant(Expr, L))
4446       SeenLoopVariantSCEVUnknown = true;
4447     return Expr;
4448   }
4449 
4450   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4451     // Only re-write AddRecExprs for this loop.
4452     if (Expr->getLoop() == L)
4453       return Expr->getStart();
4454     SeenOtherLoops = true;
4455     return Expr;
4456   }
4457 
4458   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4459 
4460   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4461 
4462 private:
4463   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4464       : SCEVRewriteVisitor(SE), L(L) {}
4465 
4466   const Loop *L;
4467   bool SeenLoopVariantSCEVUnknown = false;
4468   bool SeenOtherLoops = false;
4469 };
4470 
4471 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4472 /// increment expression in case its Loop is L. If it is not L then
4473 /// use AddRec itself.
4474 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4475 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4476 public:
4477   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4478     SCEVPostIncRewriter Rewriter(L, SE);
4479     const SCEV *Result = Rewriter.visit(S);
4480     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4481         ? SE.getCouldNotCompute()
4482         : Result;
4483   }
4484 
4485   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4486     if (!SE.isLoopInvariant(Expr, L))
4487       SeenLoopVariantSCEVUnknown = true;
4488     return Expr;
4489   }
4490 
4491   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4492     // Only re-write AddRecExprs for this loop.
4493     if (Expr->getLoop() == L)
4494       return Expr->getPostIncExpr(SE);
4495     SeenOtherLoops = true;
4496     return Expr;
4497   }
4498 
4499   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4500 
4501   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4502 
4503 private:
4504   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4505       : SCEVRewriteVisitor(SE), L(L) {}
4506 
4507   const Loop *L;
4508   bool SeenLoopVariantSCEVUnknown = false;
4509   bool SeenOtherLoops = false;
4510 };
4511 
4512 /// This class evaluates the compare condition by matching it against the
4513 /// condition of loop latch. If there is a match we assume a true value
4514 /// for the condition while building SCEV nodes.
4515 class SCEVBackedgeConditionFolder
4516     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4517 public:
4518   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4519                              ScalarEvolution &SE) {
4520     bool IsPosBECond = false;
4521     Value *BECond = nullptr;
4522     if (BasicBlock *Latch = L->getLoopLatch()) {
4523       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4524       if (BI && BI->isConditional()) {
4525         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4526                "Both outgoing branches should not target same header!");
4527         BECond = BI->getCondition();
4528         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4529       } else {
4530         return S;
4531       }
4532     }
4533     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4534     return Rewriter.visit(S);
4535   }
4536 
4537   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4538     const SCEV *Result = Expr;
4539     bool InvariantF = SE.isLoopInvariant(Expr, L);
4540 
4541     if (!InvariantF) {
4542       Instruction *I = cast<Instruction>(Expr->getValue());
4543       switch (I->getOpcode()) {
4544       case Instruction::Select: {
4545         SelectInst *SI = cast<SelectInst>(I);
4546         Optional<const SCEV *> Res =
4547             compareWithBackedgeCondition(SI->getCondition());
4548         if (Res.hasValue()) {
4549           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4550           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4551         }
4552         break;
4553       }
4554       default: {
4555         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4556         if (Res.hasValue())
4557           Result = Res.getValue();
4558         break;
4559       }
4560       }
4561     }
4562     return Result;
4563   }
4564 
4565 private:
4566   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4567                                        bool IsPosBECond, ScalarEvolution &SE)
4568       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4569         IsPositiveBECond(IsPosBECond) {}
4570 
4571   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4572 
4573   const Loop *L;
4574   /// Loop back condition.
4575   Value *BackedgeCond = nullptr;
4576   /// Set to true if loop back is on positive branch condition.
4577   bool IsPositiveBECond;
4578 };
4579 
4580 Optional<const SCEV *>
4581 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4582 
4583   // If value matches the backedge condition for loop latch,
4584   // then return a constant evolution node based on loopback
4585   // branch taken.
4586   if (BackedgeCond == IC)
4587     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4588                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4589   return None;
4590 }
4591 
4592 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4593 public:
4594   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4595                              ScalarEvolution &SE) {
4596     SCEVShiftRewriter Rewriter(L, SE);
4597     const SCEV *Result = Rewriter.visit(S);
4598     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4599   }
4600 
4601   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4602     // Only allow AddRecExprs for this loop.
4603     if (!SE.isLoopInvariant(Expr, L))
4604       Valid = false;
4605     return Expr;
4606   }
4607 
4608   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4609     if (Expr->getLoop() == L && Expr->isAffine())
4610       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4611     Valid = false;
4612     return Expr;
4613   }
4614 
4615   bool isValid() { return Valid; }
4616 
4617 private:
4618   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4619       : SCEVRewriteVisitor(SE), L(L) {}
4620 
4621   const Loop *L;
4622   bool Valid = true;
4623 };
4624 
4625 } // end anonymous namespace
4626 
4627 SCEV::NoWrapFlags
4628 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4629   if (!AR->isAffine())
4630     return SCEV::FlagAnyWrap;
4631 
4632   using OBO = OverflowingBinaryOperator;
4633 
4634   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4635 
4636   if (!AR->hasNoSignedWrap()) {
4637     ConstantRange AddRecRange = getSignedRange(AR);
4638     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4639 
4640     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4641         Instruction::Add, IncRange, OBO::NoSignedWrap);
4642     if (NSWRegion.contains(AddRecRange))
4643       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4644   }
4645 
4646   if (!AR->hasNoUnsignedWrap()) {
4647     ConstantRange AddRecRange = getUnsignedRange(AR);
4648     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4649 
4650     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4651         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4652     if (NUWRegion.contains(AddRecRange))
4653       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4654   }
4655 
4656   return Result;
4657 }
4658 
4659 SCEV::NoWrapFlags
4660 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4661   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4662 
4663   if (AR->hasNoSignedWrap())
4664     return Result;
4665 
4666   if (!AR->isAffine())
4667     return Result;
4668 
4669   const SCEV *Step = AR->getStepRecurrence(*this);
4670   const Loop *L = AR->getLoop();
4671 
4672   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4673   // Note that this serves two purposes: It filters out loops that are
4674   // simply not analyzable, and it covers the case where this code is
4675   // being called from within backedge-taken count analysis, such that
4676   // attempting to ask for the backedge-taken count would likely result
4677   // in infinite recursion. In the later case, the analysis code will
4678   // cope with a conservative value, and it will take care to purge
4679   // that value once it has finished.
4680   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4681 
4682   // Normally, in the cases we can prove no-overflow via a
4683   // backedge guarding condition, we can also compute a backedge
4684   // taken count for the loop.  The exceptions are assumptions and
4685   // guards present in the loop -- SCEV is not great at exploiting
4686   // these to compute max backedge taken counts, but can still use
4687   // these to prove lack of overflow.  Use this fact to avoid
4688   // doing extra work that may not pay off.
4689 
4690   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4691       AC.assumptions().empty())
4692     return Result;
4693 
4694   // If the backedge is guarded by a comparison with the pre-inc  value the
4695   // addrec is safe. Also, if the entry is guarded by a comparison with the
4696   // start value and the backedge is guarded by a comparison with the post-inc
4697   // value, the addrec is safe.
4698   ICmpInst::Predicate Pred;
4699   const SCEV *OverflowLimit =
4700     getSignedOverflowLimitForStep(Step, &Pred, this);
4701   if (OverflowLimit &&
4702       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4703        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4704     Result = setFlags(Result, SCEV::FlagNSW);
4705   }
4706   return Result;
4707 }
4708 SCEV::NoWrapFlags
4709 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4710   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4711 
4712   if (AR->hasNoUnsignedWrap())
4713     return Result;
4714 
4715   if (!AR->isAffine())
4716     return Result;
4717 
4718   const SCEV *Step = AR->getStepRecurrence(*this);
4719   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4720   const Loop *L = AR->getLoop();
4721 
4722   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4723   // Note that this serves two purposes: It filters out loops that are
4724   // simply not analyzable, and it covers the case where this code is
4725   // being called from within backedge-taken count analysis, such that
4726   // attempting to ask for the backedge-taken count would likely result
4727   // in infinite recursion. In the later case, the analysis code will
4728   // cope with a conservative value, and it will take care to purge
4729   // that value once it has finished.
4730   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4731 
4732   // Normally, in the cases we can prove no-overflow via a
4733   // backedge guarding condition, we can also compute a backedge
4734   // taken count for the loop.  The exceptions are assumptions and
4735   // guards present in the loop -- SCEV is not great at exploiting
4736   // these to compute max backedge taken counts, but can still use
4737   // these to prove lack of overflow.  Use this fact to avoid
4738   // doing extra work that may not pay off.
4739 
4740   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4741       AC.assumptions().empty())
4742     return Result;
4743 
4744   // If the backedge is guarded by a comparison with the pre-inc  value the
4745   // addrec is safe. Also, if the entry is guarded by a comparison with the
4746   // start value and the backedge is guarded by a comparison with the post-inc
4747   // value, the addrec is safe.
4748   if (isKnownPositive(Step)) {
4749     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4750                                 getUnsignedRangeMax(Step));
4751     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4752         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4753       Result = setFlags(Result, SCEV::FlagNUW);
4754     }
4755   }
4756 
4757   return Result;
4758 }
4759 
4760 namespace {
4761 
4762 /// Represents an abstract binary operation.  This may exist as a
4763 /// normal instruction or constant expression, or may have been
4764 /// derived from an expression tree.
4765 struct BinaryOp {
4766   unsigned Opcode;
4767   Value *LHS;
4768   Value *RHS;
4769   bool IsNSW = false;
4770   bool IsNUW = false;
4771 
4772   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4773   /// constant expression.
4774   Operator *Op = nullptr;
4775 
4776   explicit BinaryOp(Operator *Op)
4777       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4778         Op(Op) {
4779     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4780       IsNSW = OBO->hasNoSignedWrap();
4781       IsNUW = OBO->hasNoUnsignedWrap();
4782     }
4783   }
4784 
4785   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4786                     bool IsNUW = false)
4787       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4788 };
4789 
4790 } // end anonymous namespace
4791 
4792 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4793 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4794   auto *Op = dyn_cast<Operator>(V);
4795   if (!Op)
4796     return None;
4797 
4798   // Implementation detail: all the cleverness here should happen without
4799   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4800   // SCEV expressions when possible, and we should not break that.
4801 
4802   switch (Op->getOpcode()) {
4803   case Instruction::Add:
4804   case Instruction::Sub:
4805   case Instruction::Mul:
4806   case Instruction::UDiv:
4807   case Instruction::URem:
4808   case Instruction::And:
4809   case Instruction::Or:
4810   case Instruction::AShr:
4811   case Instruction::Shl:
4812     return BinaryOp(Op);
4813 
4814   case Instruction::Xor:
4815     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4816       // If the RHS of the xor is a signmask, then this is just an add.
4817       // Instcombine turns add of signmask into xor as a strength reduction step.
4818       if (RHSC->getValue().isSignMask())
4819         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4820     return BinaryOp(Op);
4821 
4822   case Instruction::LShr:
4823     // Turn logical shift right of a constant into a unsigned divide.
4824     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4825       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4826 
4827       // If the shift count is not less than the bitwidth, the result of
4828       // the shift is undefined. Don't try to analyze it, because the
4829       // resolution chosen here may differ from the resolution chosen in
4830       // other parts of the compiler.
4831       if (SA->getValue().ult(BitWidth)) {
4832         Constant *X =
4833             ConstantInt::get(SA->getContext(),
4834                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4835         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4836       }
4837     }
4838     return BinaryOp(Op);
4839 
4840   case Instruction::ExtractValue: {
4841     auto *EVI = cast<ExtractValueInst>(Op);
4842     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4843       break;
4844 
4845     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4846     if (!WO)
4847       break;
4848 
4849     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4850     bool Signed = WO->isSigned();
4851     // TODO: Should add nuw/nsw flags for mul as well.
4852     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4853       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4854 
4855     // Now that we know that all uses of the arithmetic-result component of
4856     // CI are guarded by the overflow check, we can go ahead and pretend
4857     // that the arithmetic is non-overflowing.
4858     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4859                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4860   }
4861 
4862   default:
4863     break;
4864   }
4865 
4866   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4867   // semantics as a Sub, return a binary sub expression.
4868   if (auto *II = dyn_cast<IntrinsicInst>(V))
4869     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4870       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4871 
4872   return None;
4873 }
4874 
4875 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4876 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4877 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4878 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4879 /// follows one of the following patterns:
4880 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4881 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4882 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4883 /// we return the type of the truncation operation, and indicate whether the
4884 /// truncated type should be treated as signed/unsigned by setting
4885 /// \p Signed to true/false, respectively.
4886 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4887                                bool &Signed, ScalarEvolution &SE) {
4888   // The case where Op == SymbolicPHI (that is, with no type conversions on
4889   // the way) is handled by the regular add recurrence creating logic and
4890   // would have already been triggered in createAddRecForPHI. Reaching it here
4891   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4892   // because one of the other operands of the SCEVAddExpr updating this PHI is
4893   // not invariant).
4894   //
4895   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4896   // this case predicates that allow us to prove that Op == SymbolicPHI will
4897   // be added.
4898   if (Op == SymbolicPHI)
4899     return nullptr;
4900 
4901   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4902   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4903   if (SourceBits != NewBits)
4904     return nullptr;
4905 
4906   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4907   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4908   if (!SExt && !ZExt)
4909     return nullptr;
4910   const SCEVTruncateExpr *Trunc =
4911       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4912            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4913   if (!Trunc)
4914     return nullptr;
4915   const SCEV *X = Trunc->getOperand();
4916   if (X != SymbolicPHI)
4917     return nullptr;
4918   Signed = SExt != nullptr;
4919   return Trunc->getType();
4920 }
4921 
4922 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4923   if (!PN->getType()->isIntegerTy())
4924     return nullptr;
4925   const Loop *L = LI.getLoopFor(PN->getParent());
4926   if (!L || L->getHeader() != PN->getParent())
4927     return nullptr;
4928   return L;
4929 }
4930 
4931 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4932 // computation that updates the phi follows the following pattern:
4933 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4934 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4935 // If so, try to see if it can be rewritten as an AddRecExpr under some
4936 // Predicates. If successful, return them as a pair. Also cache the results
4937 // of the analysis.
4938 //
4939 // Example usage scenario:
4940 //    Say the Rewriter is called for the following SCEV:
4941 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4942 //    where:
4943 //         %X = phi i64 (%Start, %BEValue)
4944 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4945 //    and call this function with %SymbolicPHI = %X.
4946 //
4947 //    The analysis will find that the value coming around the backedge has
4948 //    the following SCEV:
4949 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4950 //    Upon concluding that this matches the desired pattern, the function
4951 //    will return the pair {NewAddRec, SmallPredsVec} where:
4952 //         NewAddRec = {%Start,+,%Step}
4953 //         SmallPredsVec = {P1, P2, P3} as follows:
4954 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4955 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4956 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4957 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4958 //    under the predicates {P1,P2,P3}.
4959 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4960 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4961 //
4962 // TODO's:
4963 //
4964 // 1) Extend the Induction descriptor to also support inductions that involve
4965 //    casts: When needed (namely, when we are called in the context of the
4966 //    vectorizer induction analysis), a Set of cast instructions will be
4967 //    populated by this method, and provided back to isInductionPHI. This is
4968 //    needed to allow the vectorizer to properly record them to be ignored by
4969 //    the cost model and to avoid vectorizing them (otherwise these casts,
4970 //    which are redundant under the runtime overflow checks, will be
4971 //    vectorized, which can be costly).
4972 //
4973 // 2) Support additional induction/PHISCEV patterns: We also want to support
4974 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4975 //    after the induction update operation (the induction increment):
4976 //
4977 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4978 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4979 //
4980 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4981 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4982 //
4983 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4984 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4985 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4986   SmallVector<const SCEVPredicate *, 3> Predicates;
4987 
4988   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4989   // return an AddRec expression under some predicate.
4990 
4991   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4992   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4993   assert(L && "Expecting an integer loop header phi");
4994 
4995   // The loop may have multiple entrances or multiple exits; we can analyze
4996   // this phi as an addrec if it has a unique entry value and a unique
4997   // backedge value.
4998   Value *BEValueV = nullptr, *StartValueV = nullptr;
4999   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5000     Value *V = PN->getIncomingValue(i);
5001     if (L->contains(PN->getIncomingBlock(i))) {
5002       if (!BEValueV) {
5003         BEValueV = V;
5004       } else if (BEValueV != V) {
5005         BEValueV = nullptr;
5006         break;
5007       }
5008     } else if (!StartValueV) {
5009       StartValueV = V;
5010     } else if (StartValueV != V) {
5011       StartValueV = nullptr;
5012       break;
5013     }
5014   }
5015   if (!BEValueV || !StartValueV)
5016     return None;
5017 
5018   const SCEV *BEValue = getSCEV(BEValueV);
5019 
5020   // If the value coming around the backedge is an add with the symbolic
5021   // value we just inserted, possibly with casts that we can ignore under
5022   // an appropriate runtime guard, then we found a simple induction variable!
5023   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5024   if (!Add)
5025     return None;
5026 
5027   // If there is a single occurrence of the symbolic value, possibly
5028   // casted, replace it with a recurrence.
5029   unsigned FoundIndex = Add->getNumOperands();
5030   Type *TruncTy = nullptr;
5031   bool Signed;
5032   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5033     if ((TruncTy =
5034              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5035       if (FoundIndex == e) {
5036         FoundIndex = i;
5037         break;
5038       }
5039 
5040   if (FoundIndex == Add->getNumOperands())
5041     return None;
5042 
5043   // Create an add with everything but the specified operand.
5044   SmallVector<const SCEV *, 8> Ops;
5045   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5046     if (i != FoundIndex)
5047       Ops.push_back(Add->getOperand(i));
5048   const SCEV *Accum = getAddExpr(Ops);
5049 
5050   // The runtime checks will not be valid if the step amount is
5051   // varying inside the loop.
5052   if (!isLoopInvariant(Accum, L))
5053     return None;
5054 
5055   // *** Part2: Create the predicates
5056 
5057   // Analysis was successful: we have a phi-with-cast pattern for which we
5058   // can return an AddRec expression under the following predicates:
5059   //
5060   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5061   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5062   // P2: An Equal predicate that guarantees that
5063   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5064   // P3: An Equal predicate that guarantees that
5065   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5066   //
5067   // As we next prove, the above predicates guarantee that:
5068   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5069   //
5070   //
5071   // More formally, we want to prove that:
5072   //     Expr(i+1) = Start + (i+1) * Accum
5073   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5074   //
5075   // Given that:
5076   // 1) Expr(0) = Start
5077   // 2) Expr(1) = Start + Accum
5078   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5079   // 3) Induction hypothesis (step i):
5080   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5081   //
5082   // Proof:
5083   //  Expr(i+1) =
5084   //   = Start + (i+1)*Accum
5085   //   = (Start + i*Accum) + Accum
5086   //   = Expr(i) + Accum
5087   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5088   //                                                             :: from step i
5089   //
5090   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5091   //
5092   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5093   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5094   //     + Accum                                                     :: from P3
5095   //
5096   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5097   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5098   //
5099   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5100   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5101   //
5102   // By induction, the same applies to all iterations 1<=i<n:
5103   //
5104 
5105   // Create a truncated addrec for which we will add a no overflow check (P1).
5106   const SCEV *StartVal = getSCEV(StartValueV);
5107   const SCEV *PHISCEV =
5108       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5109                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5110 
5111   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5112   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5113   // will be constant.
5114   //
5115   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5116   // add P1.
5117   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5118     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5119         Signed ? SCEVWrapPredicate::IncrementNSSW
5120                : SCEVWrapPredicate::IncrementNUSW;
5121     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5122     Predicates.push_back(AddRecPred);
5123   }
5124 
5125   // Create the Equal Predicates P2,P3:
5126 
5127   // It is possible that the predicates P2 and/or P3 are computable at
5128   // compile time due to StartVal and/or Accum being constants.
5129   // If either one is, then we can check that now and escape if either P2
5130   // or P3 is false.
5131 
5132   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5133   // for each of StartVal and Accum
5134   auto getExtendedExpr = [&](const SCEV *Expr,
5135                              bool CreateSignExtend) -> const SCEV * {
5136     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5137     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5138     const SCEV *ExtendedExpr =
5139         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5140                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5141     return ExtendedExpr;
5142   };
5143 
5144   // Given:
5145   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5146   //               = getExtendedExpr(Expr)
5147   // Determine whether the predicate P: Expr == ExtendedExpr
5148   // is known to be false at compile time
5149   auto PredIsKnownFalse = [&](const SCEV *Expr,
5150                               const SCEV *ExtendedExpr) -> bool {
5151     return Expr != ExtendedExpr &&
5152            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5153   };
5154 
5155   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5156   if (PredIsKnownFalse(StartVal, StartExtended)) {
5157     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5158     return None;
5159   }
5160 
5161   // The Step is always Signed (because the overflow checks are either
5162   // NSSW or NUSW)
5163   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5164   if (PredIsKnownFalse(Accum, AccumExtended)) {
5165     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5166     return None;
5167   }
5168 
5169   auto AppendPredicate = [&](const SCEV *Expr,
5170                              const SCEV *ExtendedExpr) -> void {
5171     if (Expr != ExtendedExpr &&
5172         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5173       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5174       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5175       Predicates.push_back(Pred);
5176     }
5177   };
5178 
5179   AppendPredicate(StartVal, StartExtended);
5180   AppendPredicate(Accum, AccumExtended);
5181 
5182   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5183   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5184   // into NewAR if it will also add the runtime overflow checks specified in
5185   // Predicates.
5186   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5187 
5188   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5189       std::make_pair(NewAR, Predicates);
5190   // Remember the result of the analysis for this SCEV at this locayyytion.
5191   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5192   return PredRewrite;
5193 }
5194 
5195 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5196 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5197   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5198   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5199   if (!L)
5200     return None;
5201 
5202   // Check to see if we already analyzed this PHI.
5203   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5204   if (I != PredicatedSCEVRewrites.end()) {
5205     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5206         I->second;
5207     // Analysis was done before and failed to create an AddRec:
5208     if (Rewrite.first == SymbolicPHI)
5209       return None;
5210     // Analysis was done before and succeeded to create an AddRec under
5211     // a predicate:
5212     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5213     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5214     return Rewrite;
5215   }
5216 
5217   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5218     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5219 
5220   // Record in the cache that the analysis failed
5221   if (!Rewrite) {
5222     SmallVector<const SCEVPredicate *, 3> Predicates;
5223     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5224     return None;
5225   }
5226 
5227   return Rewrite;
5228 }
5229 
5230 // FIXME: This utility is currently required because the Rewriter currently
5231 // does not rewrite this expression:
5232 // {0, +, (sext ix (trunc iy to ix) to iy)}
5233 // into {0, +, %step},
5234 // even when the following Equal predicate exists:
5235 // "%step == (sext ix (trunc iy to ix) to iy)".
5236 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5237     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5238   if (AR1 == AR2)
5239     return true;
5240 
5241   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5242     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5243         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5244       return false;
5245     return true;
5246   };
5247 
5248   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5249       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5250     return false;
5251   return true;
5252 }
5253 
5254 /// A helper function for createAddRecFromPHI to handle simple cases.
5255 ///
5256 /// This function tries to find an AddRec expression for the simplest (yet most
5257 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5258 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5259 /// technique for finding the AddRec expression.
5260 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5261                                                       Value *BEValueV,
5262                                                       Value *StartValueV) {
5263   const Loop *L = LI.getLoopFor(PN->getParent());
5264   assert(L && L->getHeader() == PN->getParent());
5265   assert(BEValueV && StartValueV);
5266 
5267   auto BO = MatchBinaryOp(BEValueV, DT);
5268   if (!BO)
5269     return nullptr;
5270 
5271   if (BO->Opcode != Instruction::Add)
5272     return nullptr;
5273 
5274   const SCEV *Accum = nullptr;
5275   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5276     Accum = getSCEV(BO->RHS);
5277   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5278     Accum = getSCEV(BO->LHS);
5279 
5280   if (!Accum)
5281     return nullptr;
5282 
5283   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5284   if (BO->IsNUW)
5285     Flags = setFlags(Flags, SCEV::FlagNUW);
5286   if (BO->IsNSW)
5287     Flags = setFlags(Flags, SCEV::FlagNSW);
5288 
5289   const SCEV *StartVal = getSCEV(StartValueV);
5290   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5291 
5292   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5293 
5294   // We can add Flags to the post-inc expression only if we
5295   // know that it is *undefined behavior* for BEValueV to
5296   // overflow.
5297   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5298     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5299       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5300 
5301   return PHISCEV;
5302 }
5303 
5304 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5305   const Loop *L = LI.getLoopFor(PN->getParent());
5306   if (!L || L->getHeader() != PN->getParent())
5307     return nullptr;
5308 
5309   // The loop may have multiple entrances or multiple exits; we can analyze
5310   // this phi as an addrec if it has a unique entry value and a unique
5311   // backedge value.
5312   Value *BEValueV = nullptr, *StartValueV = nullptr;
5313   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5314     Value *V = PN->getIncomingValue(i);
5315     if (L->contains(PN->getIncomingBlock(i))) {
5316       if (!BEValueV) {
5317         BEValueV = V;
5318       } else if (BEValueV != V) {
5319         BEValueV = nullptr;
5320         break;
5321       }
5322     } else if (!StartValueV) {
5323       StartValueV = V;
5324     } else if (StartValueV != V) {
5325       StartValueV = nullptr;
5326       break;
5327     }
5328   }
5329   if (!BEValueV || !StartValueV)
5330     return nullptr;
5331 
5332   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5333          "PHI node already processed?");
5334 
5335   // First, try to find AddRec expression without creating a fictituos symbolic
5336   // value for PN.
5337   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5338     return S;
5339 
5340   // Handle PHI node value symbolically.
5341   const SCEV *SymbolicName = getUnknown(PN);
5342   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5343 
5344   // Using this symbolic name for the PHI, analyze the value coming around
5345   // the back-edge.
5346   const SCEV *BEValue = getSCEV(BEValueV);
5347 
5348   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5349   // has a special value for the first iteration of the loop.
5350 
5351   // If the value coming around the backedge is an add with the symbolic
5352   // value we just inserted, then we found a simple induction variable!
5353   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5354     // If there is a single occurrence of the symbolic value, replace it
5355     // with a recurrence.
5356     unsigned FoundIndex = Add->getNumOperands();
5357     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5358       if (Add->getOperand(i) == SymbolicName)
5359         if (FoundIndex == e) {
5360           FoundIndex = i;
5361           break;
5362         }
5363 
5364     if (FoundIndex != Add->getNumOperands()) {
5365       // Create an add with everything but the specified operand.
5366       SmallVector<const SCEV *, 8> Ops;
5367       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5368         if (i != FoundIndex)
5369           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5370                                                              L, *this));
5371       const SCEV *Accum = getAddExpr(Ops);
5372 
5373       // This is not a valid addrec if the step amount is varying each
5374       // loop iteration, but is not itself an addrec in this loop.
5375       if (isLoopInvariant(Accum, L) ||
5376           (isa<SCEVAddRecExpr>(Accum) &&
5377            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5378         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5379 
5380         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5381           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5382             if (BO->IsNUW)
5383               Flags = setFlags(Flags, SCEV::FlagNUW);
5384             if (BO->IsNSW)
5385               Flags = setFlags(Flags, SCEV::FlagNSW);
5386           }
5387         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5388           // If the increment is an inbounds GEP, then we know the address
5389           // space cannot be wrapped around. We cannot make any guarantee
5390           // about signed or unsigned overflow because pointers are
5391           // unsigned but we may have a negative index from the base
5392           // pointer. We can guarantee that no unsigned wrap occurs if the
5393           // indices form a positive value.
5394           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5395             Flags = setFlags(Flags, SCEV::FlagNW);
5396 
5397             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5398             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5399               Flags = setFlags(Flags, SCEV::FlagNUW);
5400           }
5401 
5402           // We cannot transfer nuw and nsw flags from subtraction
5403           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5404           // for instance.
5405         }
5406 
5407         const SCEV *StartVal = getSCEV(StartValueV);
5408         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5409 
5410         // Okay, for the entire analysis of this edge we assumed the PHI
5411         // to be symbolic.  We now need to go back and purge all of the
5412         // entries for the scalars that use the symbolic expression.
5413         forgetSymbolicName(PN, SymbolicName);
5414         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5415 
5416         // We can add Flags to the post-inc expression only if we
5417         // know that it is *undefined behavior* for BEValueV to
5418         // overflow.
5419         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5420           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5421             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5422 
5423         return PHISCEV;
5424       }
5425     }
5426   } else {
5427     // Otherwise, this could be a loop like this:
5428     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5429     // In this case, j = {1,+,1}  and BEValue is j.
5430     // Because the other in-value of i (0) fits the evolution of BEValue
5431     // i really is an addrec evolution.
5432     //
5433     // We can generalize this saying that i is the shifted value of BEValue
5434     // by one iteration:
5435     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5436     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5437     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5438     if (Shifted != getCouldNotCompute() &&
5439         Start != getCouldNotCompute()) {
5440       const SCEV *StartVal = getSCEV(StartValueV);
5441       if (Start == StartVal) {
5442         // Okay, for the entire analysis of this edge we assumed the PHI
5443         // to be symbolic.  We now need to go back and purge all of the
5444         // entries for the scalars that use the symbolic expression.
5445         forgetSymbolicName(PN, SymbolicName);
5446         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5447         return Shifted;
5448       }
5449     }
5450   }
5451 
5452   // Remove the temporary PHI node SCEV that has been inserted while intending
5453   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5454   // as it will prevent later (possibly simpler) SCEV expressions to be added
5455   // to the ValueExprMap.
5456   eraseValueFromMap(PN);
5457 
5458   return nullptr;
5459 }
5460 
5461 // Checks if the SCEV S is available at BB.  S is considered available at BB
5462 // if S can be materialized at BB without introducing a fault.
5463 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5464                                BasicBlock *BB) {
5465   struct CheckAvailable {
5466     bool TraversalDone = false;
5467     bool Available = true;
5468 
5469     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5470     BasicBlock *BB = nullptr;
5471     DominatorTree &DT;
5472 
5473     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5474       : L(L), BB(BB), DT(DT) {}
5475 
5476     bool setUnavailable() {
5477       TraversalDone = true;
5478       Available = false;
5479       return false;
5480     }
5481 
5482     bool follow(const SCEV *S) {
5483       switch (S->getSCEVType()) {
5484       case scConstant:
5485       case scPtrToInt:
5486       case scTruncate:
5487       case scZeroExtend:
5488       case scSignExtend:
5489       case scAddExpr:
5490       case scMulExpr:
5491       case scUMaxExpr:
5492       case scSMaxExpr:
5493       case scUMinExpr:
5494       case scSMinExpr:
5495         // These expressions are available if their operand(s) is/are.
5496         return true;
5497 
5498       case scAddRecExpr: {
5499         // We allow add recurrences that are on the loop BB is in, or some
5500         // outer loop.  This guarantees availability because the value of the
5501         // add recurrence at BB is simply the "current" value of the induction
5502         // variable.  We can relax this in the future; for instance an add
5503         // recurrence on a sibling dominating loop is also available at BB.
5504         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5505         if (L && (ARLoop == L || ARLoop->contains(L)))
5506           return true;
5507 
5508         return setUnavailable();
5509       }
5510 
5511       case scUnknown: {
5512         // For SCEVUnknown, we check for simple dominance.
5513         const auto *SU = cast<SCEVUnknown>(S);
5514         Value *V = SU->getValue();
5515 
5516         if (isa<Argument>(V))
5517           return false;
5518 
5519         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5520           return false;
5521 
5522         return setUnavailable();
5523       }
5524 
5525       case scUDivExpr:
5526       case scCouldNotCompute:
5527         // We do not try to smart about these at all.
5528         return setUnavailable();
5529       }
5530       llvm_unreachable("Unknown SCEV kind!");
5531     }
5532 
5533     bool isDone() { return TraversalDone; }
5534   };
5535 
5536   CheckAvailable CA(L, BB, DT);
5537   SCEVTraversal<CheckAvailable> ST(CA);
5538 
5539   ST.visitAll(S);
5540   return CA.Available;
5541 }
5542 
5543 // Try to match a control flow sequence that branches out at BI and merges back
5544 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5545 // match.
5546 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5547                           Value *&C, Value *&LHS, Value *&RHS) {
5548   C = BI->getCondition();
5549 
5550   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5551   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5552 
5553   if (!LeftEdge.isSingleEdge())
5554     return false;
5555 
5556   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5557 
5558   Use &LeftUse = Merge->getOperandUse(0);
5559   Use &RightUse = Merge->getOperandUse(1);
5560 
5561   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5562     LHS = LeftUse;
5563     RHS = RightUse;
5564     return true;
5565   }
5566 
5567   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5568     LHS = RightUse;
5569     RHS = LeftUse;
5570     return true;
5571   }
5572 
5573   return false;
5574 }
5575 
5576 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5577   auto IsReachable =
5578       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5579   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5580     const Loop *L = LI.getLoopFor(PN->getParent());
5581 
5582     // We don't want to break LCSSA, even in a SCEV expression tree.
5583     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5584       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5585         return nullptr;
5586 
5587     // Try to match
5588     //
5589     //  br %cond, label %left, label %right
5590     // left:
5591     //  br label %merge
5592     // right:
5593     //  br label %merge
5594     // merge:
5595     //  V = phi [ %x, %left ], [ %y, %right ]
5596     //
5597     // as "select %cond, %x, %y"
5598 
5599     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5600     assert(IDom && "At least the entry block should dominate PN");
5601 
5602     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5603     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5604 
5605     if (BI && BI->isConditional() &&
5606         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5607         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5608         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5609       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5610   }
5611 
5612   return nullptr;
5613 }
5614 
5615 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5616   if (const SCEV *S = createAddRecFromPHI(PN))
5617     return S;
5618 
5619   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5620     return S;
5621 
5622   // If the PHI has a single incoming value, follow that value, unless the
5623   // PHI's incoming blocks are in a different loop, in which case doing so
5624   // risks breaking LCSSA form. Instcombine would normally zap these, but
5625   // it doesn't have DominatorTree information, so it may miss cases.
5626   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5627     if (LI.replacementPreservesLCSSAForm(PN, V))
5628       return getSCEV(V);
5629 
5630   // If it's not a loop phi, we can't handle it yet.
5631   return getUnknown(PN);
5632 }
5633 
5634 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5635                                                       Value *Cond,
5636                                                       Value *TrueVal,
5637                                                       Value *FalseVal) {
5638   // Handle "constant" branch or select. This can occur for instance when a
5639   // loop pass transforms an inner loop and moves on to process the outer loop.
5640   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5641     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5642 
5643   // Try to match some simple smax or umax patterns.
5644   auto *ICI = dyn_cast<ICmpInst>(Cond);
5645   if (!ICI)
5646     return getUnknown(I);
5647 
5648   Value *LHS = ICI->getOperand(0);
5649   Value *RHS = ICI->getOperand(1);
5650 
5651   switch (ICI->getPredicate()) {
5652   case ICmpInst::ICMP_SLT:
5653   case ICmpInst::ICMP_SLE:
5654   case ICmpInst::ICMP_ULT:
5655   case ICmpInst::ICMP_ULE:
5656     std::swap(LHS, RHS);
5657     LLVM_FALLTHROUGH;
5658   case ICmpInst::ICMP_SGT:
5659   case ICmpInst::ICMP_SGE:
5660   case ICmpInst::ICMP_UGT:
5661   case ICmpInst::ICMP_UGE:
5662     // a > b ? a+x : b+x  ->  max(a, b)+x
5663     // a > b ? b+x : a+x  ->  min(a, b)+x
5664     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5665       bool Signed = ICI->isSigned();
5666       const SCEV *LA = getSCEV(TrueVal);
5667       const SCEV *RA = getSCEV(FalseVal);
5668       const SCEV *LS = getSCEV(LHS);
5669       const SCEV *RS = getSCEV(RHS);
5670       if (LA->getType()->isPointerTy()) {
5671         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5672         // Need to make sure we can't produce weird expressions involving
5673         // negated pointers.
5674         if (LA == LS && RA == RS)
5675           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5676         if (LA == RS && RA == LS)
5677           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5678       }
5679       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5680         if (Op->getType()->isPointerTy()) {
5681           Op = getLosslessPtrToIntExpr(Op);
5682           if (isa<SCEVCouldNotCompute>(Op))
5683             return Op;
5684         }
5685         if (Signed)
5686           Op = getNoopOrSignExtend(Op, I->getType());
5687         else
5688           Op = getNoopOrZeroExtend(Op, I->getType());
5689         return Op;
5690       };
5691       LS = CoerceOperand(LS);
5692       RS = CoerceOperand(RS);
5693       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5694         break;
5695       const SCEV *LDiff = getMinusSCEV(LA, LS);
5696       const SCEV *RDiff = getMinusSCEV(RA, RS);
5697       if (LDiff == RDiff)
5698         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5699                           LDiff);
5700       LDiff = getMinusSCEV(LA, RS);
5701       RDiff = getMinusSCEV(RA, LS);
5702       if (LDiff == RDiff)
5703         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5704                           LDiff);
5705     }
5706     break;
5707   case ICmpInst::ICMP_NE:
5708     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5709     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5710         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5711       const SCEV *One = getOne(I->getType());
5712       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5713       const SCEV *LA = getSCEV(TrueVal);
5714       const SCEV *RA = getSCEV(FalseVal);
5715       const SCEV *LDiff = getMinusSCEV(LA, LS);
5716       const SCEV *RDiff = getMinusSCEV(RA, One);
5717       if (LDiff == RDiff)
5718         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5719     }
5720     break;
5721   case ICmpInst::ICMP_EQ:
5722     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5723     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5724         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5725       const SCEV *One = getOne(I->getType());
5726       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5727       const SCEV *LA = getSCEV(TrueVal);
5728       const SCEV *RA = getSCEV(FalseVal);
5729       const SCEV *LDiff = getMinusSCEV(LA, One);
5730       const SCEV *RDiff = getMinusSCEV(RA, LS);
5731       if (LDiff == RDiff)
5732         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5733     }
5734     break;
5735   default:
5736     break;
5737   }
5738 
5739   return getUnknown(I);
5740 }
5741 
5742 /// Expand GEP instructions into add and multiply operations. This allows them
5743 /// to be analyzed by regular SCEV code.
5744 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5745   // Don't attempt to analyze GEPs over unsized objects.
5746   if (!GEP->getSourceElementType()->isSized())
5747     return getUnknown(GEP);
5748 
5749   SmallVector<const SCEV *, 4> IndexExprs;
5750   for (Value *Index : GEP->indices())
5751     IndexExprs.push_back(getSCEV(Index));
5752   return getGEPExpr(GEP, IndexExprs);
5753 }
5754 
5755 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5756   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5757     return C->getAPInt().countTrailingZeros();
5758 
5759   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5760     return GetMinTrailingZeros(I->getOperand());
5761 
5762   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5763     return std::min(GetMinTrailingZeros(T->getOperand()),
5764                     (uint32_t)getTypeSizeInBits(T->getType()));
5765 
5766   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5767     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5768     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5769                ? getTypeSizeInBits(E->getType())
5770                : OpRes;
5771   }
5772 
5773   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5774     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5775     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5776                ? getTypeSizeInBits(E->getType())
5777                : OpRes;
5778   }
5779 
5780   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5781     // The result is the min of all operands results.
5782     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5783     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5784       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5785     return MinOpRes;
5786   }
5787 
5788   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5789     // The result is the sum of all operands results.
5790     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5791     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5792     for (unsigned i = 1, e = M->getNumOperands();
5793          SumOpRes != BitWidth && i != e; ++i)
5794       SumOpRes =
5795           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5796     return SumOpRes;
5797   }
5798 
5799   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5800     // The result is the min of all operands results.
5801     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5802     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5803       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5804     return MinOpRes;
5805   }
5806 
5807   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5808     // The result is the min of all operands results.
5809     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5810     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5811       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5812     return MinOpRes;
5813   }
5814 
5815   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5816     // The result is the min of all operands results.
5817     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5818     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5819       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5820     return MinOpRes;
5821   }
5822 
5823   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5824     // For a SCEVUnknown, ask ValueTracking.
5825     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5826     return Known.countMinTrailingZeros();
5827   }
5828 
5829   // SCEVUDivExpr
5830   return 0;
5831 }
5832 
5833 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5834   auto I = MinTrailingZerosCache.find(S);
5835   if (I != MinTrailingZerosCache.end())
5836     return I->second;
5837 
5838   uint32_t Result = GetMinTrailingZerosImpl(S);
5839   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5840   assert(InsertPair.second && "Should insert a new key");
5841   return InsertPair.first->second;
5842 }
5843 
5844 /// Helper method to assign a range to V from metadata present in the IR.
5845 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5846   if (Instruction *I = dyn_cast<Instruction>(V))
5847     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5848       return getConstantRangeFromMetadata(*MD);
5849 
5850   return None;
5851 }
5852 
5853 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5854                                      SCEV::NoWrapFlags Flags) {
5855   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5856     AddRec->setNoWrapFlags(Flags);
5857     UnsignedRanges.erase(AddRec);
5858     SignedRanges.erase(AddRec);
5859   }
5860 }
5861 
5862 ConstantRange ScalarEvolution::
5863 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5864   const DataLayout &DL = getDataLayout();
5865 
5866   unsigned BitWidth = getTypeSizeInBits(U->getType());
5867   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5868 
5869   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5870   // use information about the trip count to improve our available range.  Note
5871   // that the trip count independent cases are already handled by known bits.
5872   // WARNING: The definition of recurrence used here is subtly different than
5873   // the one used by AddRec (and thus most of this file).  Step is allowed to
5874   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5875   // and other addrecs in the same loop (for non-affine addrecs).  The code
5876   // below intentionally handles the case where step is not loop invariant.
5877   auto *P = dyn_cast<PHINode>(U->getValue());
5878   if (!P)
5879     return FullSet;
5880 
5881   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5882   // even the values that are not available in these blocks may come from them,
5883   // and this leads to false-positive recurrence test.
5884   for (auto *Pred : predecessors(P->getParent()))
5885     if (!DT.isReachableFromEntry(Pred))
5886       return FullSet;
5887 
5888   BinaryOperator *BO;
5889   Value *Start, *Step;
5890   if (!matchSimpleRecurrence(P, BO, Start, Step))
5891     return FullSet;
5892 
5893   // If we found a recurrence in reachable code, we must be in a loop. Note
5894   // that BO might be in some subloop of L, and that's completely okay.
5895   auto *L = LI.getLoopFor(P->getParent());
5896   assert(L && L->getHeader() == P->getParent());
5897   if (!L->contains(BO->getParent()))
5898     // NOTE: This bailout should be an assert instead.  However, asserting
5899     // the condition here exposes a case where LoopFusion is querying SCEV
5900     // with malformed loop information during the midst of the transform.
5901     // There doesn't appear to be an obvious fix, so for the moment bailout
5902     // until the caller issue can be fixed.  PR49566 tracks the bug.
5903     return FullSet;
5904 
5905   // TODO: Extend to other opcodes such as mul, and div
5906   switch (BO->getOpcode()) {
5907   default:
5908     return FullSet;
5909   case Instruction::AShr:
5910   case Instruction::LShr:
5911   case Instruction::Shl:
5912     break;
5913   };
5914 
5915   if (BO->getOperand(0) != P)
5916     // TODO: Handle the power function forms some day.
5917     return FullSet;
5918 
5919   unsigned TC = getSmallConstantMaxTripCount(L);
5920   if (!TC || TC >= BitWidth)
5921     return FullSet;
5922 
5923   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5924   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5925   assert(KnownStart.getBitWidth() == BitWidth &&
5926          KnownStep.getBitWidth() == BitWidth);
5927 
5928   // Compute total shift amount, being careful of overflow and bitwidths.
5929   auto MaxShiftAmt = KnownStep.getMaxValue();
5930   APInt TCAP(BitWidth, TC-1);
5931   bool Overflow = false;
5932   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5933   if (Overflow)
5934     return FullSet;
5935 
5936   switch (BO->getOpcode()) {
5937   default:
5938     llvm_unreachable("filtered out above");
5939   case Instruction::AShr: {
5940     // For each ashr, three cases:
5941     //   shift = 0 => unchanged value
5942     //   saturation => 0 or -1
5943     //   other => a value closer to zero (of the same sign)
5944     // Thus, the end value is closer to zero than the start.
5945     auto KnownEnd = KnownBits::ashr(KnownStart,
5946                                     KnownBits::makeConstant(TotalShift));
5947     if (KnownStart.isNonNegative())
5948       // Analogous to lshr (simply not yet canonicalized)
5949       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5950                                         KnownStart.getMaxValue() + 1);
5951     if (KnownStart.isNegative())
5952       // End >=u Start && End <=s Start
5953       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5954                                         KnownEnd.getMaxValue() + 1);
5955     break;
5956   }
5957   case Instruction::LShr: {
5958     // For each lshr, three cases:
5959     //   shift = 0 => unchanged value
5960     //   saturation => 0
5961     //   other => a smaller positive number
5962     // Thus, the low end of the unsigned range is the last value produced.
5963     auto KnownEnd = KnownBits::lshr(KnownStart,
5964                                     KnownBits::makeConstant(TotalShift));
5965     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5966                                       KnownStart.getMaxValue() + 1);
5967   }
5968   case Instruction::Shl: {
5969     // Iff no bits are shifted out, value increases on every shift.
5970     auto KnownEnd = KnownBits::shl(KnownStart,
5971                                    KnownBits::makeConstant(TotalShift));
5972     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5973       return ConstantRange(KnownStart.getMinValue(),
5974                            KnownEnd.getMaxValue() + 1);
5975     break;
5976   }
5977   };
5978   return FullSet;
5979 }
5980 
5981 /// Determine the range for a particular SCEV.  If SignHint is
5982 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5983 /// with a "cleaner" unsigned (resp. signed) representation.
5984 const ConstantRange &
5985 ScalarEvolution::getRangeRef(const SCEV *S,
5986                              ScalarEvolution::RangeSignHint SignHint) {
5987   DenseMap<const SCEV *, ConstantRange> &Cache =
5988       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5989                                                        : SignedRanges;
5990   ConstantRange::PreferredRangeType RangeType =
5991       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5992           ? ConstantRange::Unsigned : ConstantRange::Signed;
5993 
5994   // See if we've computed this range already.
5995   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5996   if (I != Cache.end())
5997     return I->second;
5998 
5999   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6000     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6001 
6002   unsigned BitWidth = getTypeSizeInBits(S->getType());
6003   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6004   using OBO = OverflowingBinaryOperator;
6005 
6006   // If the value has known zeros, the maximum value will have those known zeros
6007   // as well.
6008   uint32_t TZ = GetMinTrailingZeros(S);
6009   if (TZ != 0) {
6010     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6011       ConservativeResult =
6012           ConstantRange(APInt::getMinValue(BitWidth),
6013                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6014     else
6015       ConservativeResult = ConstantRange(
6016           APInt::getSignedMinValue(BitWidth),
6017           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6018   }
6019 
6020   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6021     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6022     unsigned WrapType = OBO::AnyWrap;
6023     if (Add->hasNoSignedWrap())
6024       WrapType |= OBO::NoSignedWrap;
6025     if (Add->hasNoUnsignedWrap())
6026       WrapType |= OBO::NoUnsignedWrap;
6027     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6028       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6029                           WrapType, RangeType);
6030     return setRange(Add, SignHint,
6031                     ConservativeResult.intersectWith(X, RangeType));
6032   }
6033 
6034   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6035     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6036     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6037       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6038     return setRange(Mul, SignHint,
6039                     ConservativeResult.intersectWith(X, RangeType));
6040   }
6041 
6042   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6043     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6044     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6045       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6046     return setRange(SMax, SignHint,
6047                     ConservativeResult.intersectWith(X, RangeType));
6048   }
6049 
6050   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6051     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6052     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6053       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6054     return setRange(UMax, SignHint,
6055                     ConservativeResult.intersectWith(X, RangeType));
6056   }
6057 
6058   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6059     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6060     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6061       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6062     return setRange(SMin, SignHint,
6063                     ConservativeResult.intersectWith(X, RangeType));
6064   }
6065 
6066   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6067     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6068     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6069       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6070     return setRange(UMin, SignHint,
6071                     ConservativeResult.intersectWith(X, RangeType));
6072   }
6073 
6074   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6075     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6076     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6077     return setRange(UDiv, SignHint,
6078                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6079   }
6080 
6081   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6082     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6083     return setRange(ZExt, SignHint,
6084                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6085                                                      RangeType));
6086   }
6087 
6088   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6089     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6090     return setRange(SExt, SignHint,
6091                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6092                                                      RangeType));
6093   }
6094 
6095   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6096     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6097     return setRange(PtrToInt, SignHint, X);
6098   }
6099 
6100   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6101     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6102     return setRange(Trunc, SignHint,
6103                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6104                                                      RangeType));
6105   }
6106 
6107   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6108     // If there's no unsigned wrap, the value will never be less than its
6109     // initial value.
6110     if (AddRec->hasNoUnsignedWrap()) {
6111       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6112       if (!UnsignedMinValue.isNullValue())
6113         ConservativeResult = ConservativeResult.intersectWith(
6114             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6115     }
6116 
6117     // If there's no signed wrap, and all the operands except initial value have
6118     // the same sign or zero, the value won't ever be:
6119     // 1: smaller than initial value if operands are non negative,
6120     // 2: bigger than initial value if operands are non positive.
6121     // For both cases, value can not cross signed min/max boundary.
6122     if (AddRec->hasNoSignedWrap()) {
6123       bool AllNonNeg = true;
6124       bool AllNonPos = true;
6125       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6126         if (!isKnownNonNegative(AddRec->getOperand(i)))
6127           AllNonNeg = false;
6128         if (!isKnownNonPositive(AddRec->getOperand(i)))
6129           AllNonPos = false;
6130       }
6131       if (AllNonNeg)
6132         ConservativeResult = ConservativeResult.intersectWith(
6133             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6134                                        APInt::getSignedMinValue(BitWidth)),
6135             RangeType);
6136       else if (AllNonPos)
6137         ConservativeResult = ConservativeResult.intersectWith(
6138             ConstantRange::getNonEmpty(
6139                 APInt::getSignedMinValue(BitWidth),
6140                 getSignedRangeMax(AddRec->getStart()) + 1),
6141             RangeType);
6142     }
6143 
6144     // TODO: non-affine addrec
6145     if (AddRec->isAffine()) {
6146       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6147       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6148           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6149         auto RangeFromAffine = getRangeForAffineAR(
6150             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6151             BitWidth);
6152         ConservativeResult =
6153             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6154 
6155         auto RangeFromFactoring = getRangeViaFactoring(
6156             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6157             BitWidth);
6158         ConservativeResult =
6159             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6160       }
6161 
6162       // Now try symbolic BE count and more powerful methods.
6163       if (UseExpensiveRangeSharpening) {
6164         const SCEV *SymbolicMaxBECount =
6165             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6166         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6167             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6168             AddRec->hasNoSelfWrap()) {
6169           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6170               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6171           ConservativeResult =
6172               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6173         }
6174       }
6175     }
6176 
6177     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6178   }
6179 
6180   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6181 
6182     // Check if the IR explicitly contains !range metadata.
6183     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6184     if (MDRange.hasValue())
6185       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6186                                                             RangeType);
6187 
6188     // Use facts about recurrences in the underlying IR.  Note that add
6189     // recurrences are AddRecExprs and thus don't hit this path.  This
6190     // primarily handles shift recurrences.
6191     auto CR = getRangeForUnknownRecurrence(U);
6192     ConservativeResult = ConservativeResult.intersectWith(CR);
6193 
6194     // See if ValueTracking can give us a useful range.
6195     const DataLayout &DL = getDataLayout();
6196     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6197     if (Known.getBitWidth() != BitWidth)
6198       Known = Known.zextOrTrunc(BitWidth);
6199 
6200     // ValueTracking may be able to compute a tighter result for the number of
6201     // sign bits than for the value of those sign bits.
6202     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6203     if (U->getType()->isPointerTy()) {
6204       // If the pointer size is larger than the index size type, this can cause
6205       // NS to be larger than BitWidth. So compensate for this.
6206       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6207       int ptrIdxDiff = ptrSize - BitWidth;
6208       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6209         NS -= ptrIdxDiff;
6210     }
6211 
6212     if (NS > 1) {
6213       // If we know any of the sign bits, we know all of the sign bits.
6214       if (!Known.Zero.getHiBits(NS).isNullValue())
6215         Known.Zero.setHighBits(NS);
6216       if (!Known.One.getHiBits(NS).isNullValue())
6217         Known.One.setHighBits(NS);
6218     }
6219 
6220     if (Known.getMinValue() != Known.getMaxValue() + 1)
6221       ConservativeResult = ConservativeResult.intersectWith(
6222           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6223           RangeType);
6224     if (NS > 1)
6225       ConservativeResult = ConservativeResult.intersectWith(
6226           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6227                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6228           RangeType);
6229 
6230     // A range of Phi is a subset of union of all ranges of its input.
6231     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6232       // Make sure that we do not run over cycled Phis.
6233       if (PendingPhiRanges.insert(Phi).second) {
6234         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6235         for (auto &Op : Phi->operands()) {
6236           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6237           RangeFromOps = RangeFromOps.unionWith(OpRange);
6238           // No point to continue if we already have a full set.
6239           if (RangeFromOps.isFullSet())
6240             break;
6241         }
6242         ConservativeResult =
6243             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6244         bool Erased = PendingPhiRanges.erase(Phi);
6245         assert(Erased && "Failed to erase Phi properly?");
6246         (void) Erased;
6247       }
6248     }
6249 
6250     return setRange(U, SignHint, std::move(ConservativeResult));
6251   }
6252 
6253   return setRange(S, SignHint, std::move(ConservativeResult));
6254 }
6255 
6256 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6257 // values that the expression can take. Initially, the expression has a value
6258 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6259 // argument defines if we treat Step as signed or unsigned.
6260 static ConstantRange getRangeForAffineARHelper(APInt Step,
6261                                                const ConstantRange &StartRange,
6262                                                const APInt &MaxBECount,
6263                                                unsigned BitWidth, bool Signed) {
6264   // If either Step or MaxBECount is 0, then the expression won't change, and we
6265   // just need to return the initial range.
6266   if (Step == 0 || MaxBECount == 0)
6267     return StartRange;
6268 
6269   // If we don't know anything about the initial value (i.e. StartRange is
6270   // FullRange), then we don't know anything about the final range either.
6271   // Return FullRange.
6272   if (StartRange.isFullSet())
6273     return ConstantRange::getFull(BitWidth);
6274 
6275   // If Step is signed and negative, then we use its absolute value, but we also
6276   // note that we're moving in the opposite direction.
6277   bool Descending = Signed && Step.isNegative();
6278 
6279   if (Signed)
6280     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6281     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6282     // This equations hold true due to the well-defined wrap-around behavior of
6283     // APInt.
6284     Step = Step.abs();
6285 
6286   // Check if Offset is more than full span of BitWidth. If it is, the
6287   // expression is guaranteed to overflow.
6288   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6289     return ConstantRange::getFull(BitWidth);
6290 
6291   // Offset is by how much the expression can change. Checks above guarantee no
6292   // overflow here.
6293   APInt Offset = Step * MaxBECount;
6294 
6295   // Minimum value of the final range will match the minimal value of StartRange
6296   // if the expression is increasing and will be decreased by Offset otherwise.
6297   // Maximum value of the final range will match the maximal value of StartRange
6298   // if the expression is decreasing and will be increased by Offset otherwise.
6299   APInt StartLower = StartRange.getLower();
6300   APInt StartUpper = StartRange.getUpper() - 1;
6301   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6302                                    : (StartUpper + std::move(Offset));
6303 
6304   // It's possible that the new minimum/maximum value will fall into the initial
6305   // range (due to wrap around). This means that the expression can take any
6306   // value in this bitwidth, and we have to return full range.
6307   if (StartRange.contains(MovedBoundary))
6308     return ConstantRange::getFull(BitWidth);
6309 
6310   APInt NewLower =
6311       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6312   APInt NewUpper =
6313       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6314   NewUpper += 1;
6315 
6316   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6317   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6318 }
6319 
6320 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6321                                                    const SCEV *Step,
6322                                                    const SCEV *MaxBECount,
6323                                                    unsigned BitWidth) {
6324   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6325          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6326          "Precondition!");
6327 
6328   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6329   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6330 
6331   // First, consider step signed.
6332   ConstantRange StartSRange = getSignedRange(Start);
6333   ConstantRange StepSRange = getSignedRange(Step);
6334 
6335   // If Step can be both positive and negative, we need to find ranges for the
6336   // maximum absolute step values in both directions and union them.
6337   ConstantRange SR =
6338       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6339                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6340   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6341                                               StartSRange, MaxBECountValue,
6342                                               BitWidth, /* Signed = */ true));
6343 
6344   // Next, consider step unsigned.
6345   ConstantRange UR = getRangeForAffineARHelper(
6346       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6347       MaxBECountValue, BitWidth, /* Signed = */ false);
6348 
6349   // Finally, intersect signed and unsigned ranges.
6350   return SR.intersectWith(UR, ConstantRange::Smallest);
6351 }
6352 
6353 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6354     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6355     ScalarEvolution::RangeSignHint SignHint) {
6356   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6357   assert(AddRec->hasNoSelfWrap() &&
6358          "This only works for non-self-wrapping AddRecs!");
6359   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6360   const SCEV *Step = AddRec->getStepRecurrence(*this);
6361   // Only deal with constant step to save compile time.
6362   if (!isa<SCEVConstant>(Step))
6363     return ConstantRange::getFull(BitWidth);
6364   // Let's make sure that we can prove that we do not self-wrap during
6365   // MaxBECount iterations. We need this because MaxBECount is a maximum
6366   // iteration count estimate, and we might infer nw from some exit for which we
6367   // do not know max exit count (or any other side reasoning).
6368   // TODO: Turn into assert at some point.
6369   if (getTypeSizeInBits(MaxBECount->getType()) >
6370       getTypeSizeInBits(AddRec->getType()))
6371     return ConstantRange::getFull(BitWidth);
6372   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6373   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6374   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6375   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6376   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6377                                          MaxItersWithoutWrap))
6378     return ConstantRange::getFull(BitWidth);
6379 
6380   ICmpInst::Predicate LEPred =
6381       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6382   ICmpInst::Predicate GEPred =
6383       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6384   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6385 
6386   // We know that there is no self-wrap. Let's take Start and End values and
6387   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6388   // the iteration. They either lie inside the range [Min(Start, End),
6389   // Max(Start, End)] or outside it:
6390   //
6391   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6392   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6393   //
6394   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6395   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6396   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6397   // Start <= End and step is positive, or Start >= End and step is negative.
6398   const SCEV *Start = AddRec->getStart();
6399   ConstantRange StartRange = getRangeRef(Start, SignHint);
6400   ConstantRange EndRange = getRangeRef(End, SignHint);
6401   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6402   // If they already cover full iteration space, we will know nothing useful
6403   // even if we prove what we want to prove.
6404   if (RangeBetween.isFullSet())
6405     return RangeBetween;
6406   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6407   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6408                                : RangeBetween.isWrappedSet();
6409   if (IsWrappedSet)
6410     return ConstantRange::getFull(BitWidth);
6411 
6412   if (isKnownPositive(Step) &&
6413       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6414     return RangeBetween;
6415   else if (isKnownNegative(Step) &&
6416            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6417     return RangeBetween;
6418   return ConstantRange::getFull(BitWidth);
6419 }
6420 
6421 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6422                                                     const SCEV *Step,
6423                                                     const SCEV *MaxBECount,
6424                                                     unsigned BitWidth) {
6425   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6426   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6427 
6428   struct SelectPattern {
6429     Value *Condition = nullptr;
6430     APInt TrueValue;
6431     APInt FalseValue;
6432 
6433     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6434                            const SCEV *S) {
6435       Optional<unsigned> CastOp;
6436       APInt Offset(BitWidth, 0);
6437 
6438       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6439              "Should be!");
6440 
6441       // Peel off a constant offset:
6442       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6443         // In the future we could consider being smarter here and handle
6444         // {Start+Step,+,Step} too.
6445         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6446           return;
6447 
6448         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6449         S = SA->getOperand(1);
6450       }
6451 
6452       // Peel off a cast operation
6453       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6454         CastOp = SCast->getSCEVType();
6455         S = SCast->getOperand();
6456       }
6457 
6458       using namespace llvm::PatternMatch;
6459 
6460       auto *SU = dyn_cast<SCEVUnknown>(S);
6461       const APInt *TrueVal, *FalseVal;
6462       if (!SU ||
6463           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6464                                           m_APInt(FalseVal)))) {
6465         Condition = nullptr;
6466         return;
6467       }
6468 
6469       TrueValue = *TrueVal;
6470       FalseValue = *FalseVal;
6471 
6472       // Re-apply the cast we peeled off earlier
6473       if (CastOp.hasValue())
6474         switch (*CastOp) {
6475         default:
6476           llvm_unreachable("Unknown SCEV cast type!");
6477 
6478         case scTruncate:
6479           TrueValue = TrueValue.trunc(BitWidth);
6480           FalseValue = FalseValue.trunc(BitWidth);
6481           break;
6482         case scZeroExtend:
6483           TrueValue = TrueValue.zext(BitWidth);
6484           FalseValue = FalseValue.zext(BitWidth);
6485           break;
6486         case scSignExtend:
6487           TrueValue = TrueValue.sext(BitWidth);
6488           FalseValue = FalseValue.sext(BitWidth);
6489           break;
6490         }
6491 
6492       // Re-apply the constant offset we peeled off earlier
6493       TrueValue += Offset;
6494       FalseValue += Offset;
6495     }
6496 
6497     bool isRecognized() { return Condition != nullptr; }
6498   };
6499 
6500   SelectPattern StartPattern(*this, BitWidth, Start);
6501   if (!StartPattern.isRecognized())
6502     return ConstantRange::getFull(BitWidth);
6503 
6504   SelectPattern StepPattern(*this, BitWidth, Step);
6505   if (!StepPattern.isRecognized())
6506     return ConstantRange::getFull(BitWidth);
6507 
6508   if (StartPattern.Condition != StepPattern.Condition) {
6509     // We don't handle this case today; but we could, by considering four
6510     // possibilities below instead of two. I'm not sure if there are cases where
6511     // that will help over what getRange already does, though.
6512     return ConstantRange::getFull(BitWidth);
6513   }
6514 
6515   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6516   // construct arbitrary general SCEV expressions here.  This function is called
6517   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6518   // say) can end up caching a suboptimal value.
6519 
6520   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6521   // C2352 and C2512 (otherwise it isn't needed).
6522 
6523   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6524   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6525   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6526   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6527 
6528   ConstantRange TrueRange =
6529       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6530   ConstantRange FalseRange =
6531       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6532 
6533   return TrueRange.unionWith(FalseRange);
6534 }
6535 
6536 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6537   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6538   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6539 
6540   // Return early if there are no flags to propagate to the SCEV.
6541   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6542   if (BinOp->hasNoUnsignedWrap())
6543     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6544   if (BinOp->hasNoSignedWrap())
6545     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6546   if (Flags == SCEV::FlagAnyWrap)
6547     return SCEV::FlagAnyWrap;
6548 
6549   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6550 }
6551 
6552 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6553   // Here we check that I is in the header of the innermost loop containing I,
6554   // since we only deal with instructions in the loop header. The actual loop we
6555   // need to check later will come from an add recurrence, but getting that
6556   // requires computing the SCEV of the operands, which can be expensive. This
6557   // check we can do cheaply to rule out some cases early.
6558   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6559   if (InnermostContainingLoop == nullptr ||
6560       InnermostContainingLoop->getHeader() != I->getParent())
6561     return false;
6562 
6563   // Only proceed if we can prove that I does not yield poison.
6564   if (!programUndefinedIfPoison(I))
6565     return false;
6566 
6567   // At this point we know that if I is executed, then it does not wrap
6568   // according to at least one of NSW or NUW. If I is not executed, then we do
6569   // not know if the calculation that I represents would wrap. Multiple
6570   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6571   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6572   // derived from other instructions that map to the same SCEV. We cannot make
6573   // that guarantee for cases where I is not executed. So we need to find the
6574   // loop that I is considered in relation to and prove that I is executed for
6575   // every iteration of that loop. That implies that the value that I
6576   // calculates does not wrap anywhere in the loop, so then we can apply the
6577   // flags to the SCEV.
6578   //
6579   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6580   // from different loops, so that we know which loop to prove that I is
6581   // executed in.
6582   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6583     // I could be an extractvalue from a call to an overflow intrinsic.
6584     // TODO: We can do better here in some cases.
6585     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6586       return false;
6587     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6588     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6589       bool AllOtherOpsLoopInvariant = true;
6590       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6591            ++OtherOpIndex) {
6592         if (OtherOpIndex != OpIndex) {
6593           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6594           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6595             AllOtherOpsLoopInvariant = false;
6596             break;
6597           }
6598         }
6599       }
6600       if (AllOtherOpsLoopInvariant &&
6601           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6602         return true;
6603     }
6604   }
6605   return false;
6606 }
6607 
6608 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6609   // If we know that \c I can never be poison period, then that's enough.
6610   if (isSCEVExprNeverPoison(I))
6611     return true;
6612 
6613   // For an add recurrence specifically, we assume that infinite loops without
6614   // side effects are undefined behavior, and then reason as follows:
6615   //
6616   // If the add recurrence is poison in any iteration, it is poison on all
6617   // future iterations (since incrementing poison yields poison). If the result
6618   // of the add recurrence is fed into the loop latch condition and the loop
6619   // does not contain any throws or exiting blocks other than the latch, we now
6620   // have the ability to "choose" whether the backedge is taken or not (by
6621   // choosing a sufficiently evil value for the poison feeding into the branch)
6622   // for every iteration including and after the one in which \p I first became
6623   // poison.  There are two possibilities (let's call the iteration in which \p
6624   // I first became poison as K):
6625   //
6626   //  1. In the set of iterations including and after K, the loop body executes
6627   //     no side effects.  In this case executing the backege an infinte number
6628   //     of times will yield undefined behavior.
6629   //
6630   //  2. In the set of iterations including and after K, the loop body executes
6631   //     at least one side effect.  In this case, that specific instance of side
6632   //     effect is control dependent on poison, which also yields undefined
6633   //     behavior.
6634 
6635   auto *ExitingBB = L->getExitingBlock();
6636   auto *LatchBB = L->getLoopLatch();
6637   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6638     return false;
6639 
6640   SmallPtrSet<const Instruction *, 16> Pushed;
6641   SmallVector<const Instruction *, 8> PoisonStack;
6642 
6643   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6644   // things that are known to be poison under that assumption go on the
6645   // PoisonStack.
6646   Pushed.insert(I);
6647   PoisonStack.push_back(I);
6648 
6649   bool LatchControlDependentOnPoison = false;
6650   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6651     const Instruction *Poison = PoisonStack.pop_back_val();
6652 
6653     for (auto *PoisonUser : Poison->users()) {
6654       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6655         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6656           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6657       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6658         assert(BI->isConditional() && "Only possibility!");
6659         if (BI->getParent() == LatchBB) {
6660           LatchControlDependentOnPoison = true;
6661           break;
6662         }
6663       }
6664     }
6665   }
6666 
6667   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6668 }
6669 
6670 ScalarEvolution::LoopProperties
6671 ScalarEvolution::getLoopProperties(const Loop *L) {
6672   using LoopProperties = ScalarEvolution::LoopProperties;
6673 
6674   auto Itr = LoopPropertiesCache.find(L);
6675   if (Itr == LoopPropertiesCache.end()) {
6676     auto HasSideEffects = [](Instruction *I) {
6677       if (auto *SI = dyn_cast<StoreInst>(I))
6678         return !SI->isSimple();
6679 
6680       return I->mayThrow() || I->mayWriteToMemory();
6681     };
6682 
6683     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6684                          /*HasNoSideEffects*/ true};
6685 
6686     for (auto *BB : L->getBlocks())
6687       for (auto &I : *BB) {
6688         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6689           LP.HasNoAbnormalExits = false;
6690         if (HasSideEffects(&I))
6691           LP.HasNoSideEffects = false;
6692         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6693           break; // We're already as pessimistic as we can get.
6694       }
6695 
6696     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6697     assert(InsertPair.second && "We just checked!");
6698     Itr = InsertPair.first;
6699   }
6700 
6701   return Itr->second;
6702 }
6703 
6704 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6705   // A mustprogress loop without side effects must be finite.
6706   // TODO: The check used here is very conservative.  It's only *specific*
6707   // side effects which are well defined in infinite loops.
6708   return isMustProgress(L) && loopHasNoSideEffects(L);
6709 }
6710 
6711 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6712   if (!isSCEVable(V->getType()))
6713     return getUnknown(V);
6714 
6715   if (Instruction *I = dyn_cast<Instruction>(V)) {
6716     // Don't attempt to analyze instructions in blocks that aren't
6717     // reachable. Such instructions don't matter, and they aren't required
6718     // to obey basic rules for definitions dominating uses which this
6719     // analysis depends on.
6720     if (!DT.isReachableFromEntry(I->getParent()))
6721       return getUnknown(UndefValue::get(V->getType()));
6722   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6723     return getConstant(CI);
6724   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6725     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6726   else if (!isa<ConstantExpr>(V))
6727     return getUnknown(V);
6728 
6729   Operator *U = cast<Operator>(V);
6730   if (auto BO = MatchBinaryOp(U, DT)) {
6731     switch (BO->Opcode) {
6732     case Instruction::Add: {
6733       // The simple thing to do would be to just call getSCEV on both operands
6734       // and call getAddExpr with the result. However if we're looking at a
6735       // bunch of things all added together, this can be quite inefficient,
6736       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6737       // Instead, gather up all the operands and make a single getAddExpr call.
6738       // LLVM IR canonical form means we need only traverse the left operands.
6739       SmallVector<const SCEV *, 4> AddOps;
6740       do {
6741         if (BO->Op) {
6742           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6743             AddOps.push_back(OpSCEV);
6744             break;
6745           }
6746 
6747           // If a NUW or NSW flag can be applied to the SCEV for this
6748           // addition, then compute the SCEV for this addition by itself
6749           // with a separate call to getAddExpr. We need to do that
6750           // instead of pushing the operands of the addition onto AddOps,
6751           // since the flags are only known to apply to this particular
6752           // addition - they may not apply to other additions that can be
6753           // formed with operands from AddOps.
6754           const SCEV *RHS = getSCEV(BO->RHS);
6755           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6756           if (Flags != SCEV::FlagAnyWrap) {
6757             const SCEV *LHS = getSCEV(BO->LHS);
6758             if (BO->Opcode == Instruction::Sub)
6759               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6760             else
6761               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6762             break;
6763           }
6764         }
6765 
6766         if (BO->Opcode == Instruction::Sub)
6767           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6768         else
6769           AddOps.push_back(getSCEV(BO->RHS));
6770 
6771         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6772         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6773                        NewBO->Opcode != Instruction::Sub)) {
6774           AddOps.push_back(getSCEV(BO->LHS));
6775           break;
6776         }
6777         BO = NewBO;
6778       } while (true);
6779 
6780       return getAddExpr(AddOps);
6781     }
6782 
6783     case Instruction::Mul: {
6784       SmallVector<const SCEV *, 4> MulOps;
6785       do {
6786         if (BO->Op) {
6787           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6788             MulOps.push_back(OpSCEV);
6789             break;
6790           }
6791 
6792           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6793           if (Flags != SCEV::FlagAnyWrap) {
6794             MulOps.push_back(
6795                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6796             break;
6797           }
6798         }
6799 
6800         MulOps.push_back(getSCEV(BO->RHS));
6801         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6802         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6803           MulOps.push_back(getSCEV(BO->LHS));
6804           break;
6805         }
6806         BO = NewBO;
6807       } while (true);
6808 
6809       return getMulExpr(MulOps);
6810     }
6811     case Instruction::UDiv:
6812       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6813     case Instruction::URem:
6814       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6815     case Instruction::Sub: {
6816       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6817       if (BO->Op)
6818         Flags = getNoWrapFlagsFromUB(BO->Op);
6819       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6820     }
6821     case Instruction::And:
6822       // For an expression like x&255 that merely masks off the high bits,
6823       // use zext(trunc(x)) as the SCEV expression.
6824       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6825         if (CI->isZero())
6826           return getSCEV(BO->RHS);
6827         if (CI->isMinusOne())
6828           return getSCEV(BO->LHS);
6829         const APInt &A = CI->getValue();
6830 
6831         // Instcombine's ShrinkDemandedConstant may strip bits out of
6832         // constants, obscuring what would otherwise be a low-bits mask.
6833         // Use computeKnownBits to compute what ShrinkDemandedConstant
6834         // knew about to reconstruct a low-bits mask value.
6835         unsigned LZ = A.countLeadingZeros();
6836         unsigned TZ = A.countTrailingZeros();
6837         unsigned BitWidth = A.getBitWidth();
6838         KnownBits Known(BitWidth);
6839         computeKnownBits(BO->LHS, Known, getDataLayout(),
6840                          0, &AC, nullptr, &DT);
6841 
6842         APInt EffectiveMask =
6843             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6844         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6845           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6846           const SCEV *LHS = getSCEV(BO->LHS);
6847           const SCEV *ShiftedLHS = nullptr;
6848           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6849             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6850               // For an expression like (x * 8) & 8, simplify the multiply.
6851               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6852               unsigned GCD = std::min(MulZeros, TZ);
6853               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6854               SmallVector<const SCEV*, 4> MulOps;
6855               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6856               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6857               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6858               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6859             }
6860           }
6861           if (!ShiftedLHS)
6862             ShiftedLHS = getUDivExpr(LHS, MulCount);
6863           return getMulExpr(
6864               getZeroExtendExpr(
6865                   getTruncateExpr(ShiftedLHS,
6866                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6867                   BO->LHS->getType()),
6868               MulCount);
6869         }
6870       }
6871       break;
6872 
6873     case Instruction::Or:
6874       // If the RHS of the Or is a constant, we may have something like:
6875       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6876       // optimizations will transparently handle this case.
6877       //
6878       // In order for this transformation to be safe, the LHS must be of the
6879       // form X*(2^n) and the Or constant must be less than 2^n.
6880       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6881         const SCEV *LHS = getSCEV(BO->LHS);
6882         const APInt &CIVal = CI->getValue();
6883         if (GetMinTrailingZeros(LHS) >=
6884             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6885           // Build a plain add SCEV.
6886           return getAddExpr(LHS, getSCEV(CI),
6887                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6888         }
6889       }
6890       break;
6891 
6892     case Instruction::Xor:
6893       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6894         // If the RHS of xor is -1, then this is a not operation.
6895         if (CI->isMinusOne())
6896           return getNotSCEV(getSCEV(BO->LHS));
6897 
6898         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6899         // This is a variant of the check for xor with -1, and it handles
6900         // the case where instcombine has trimmed non-demanded bits out
6901         // of an xor with -1.
6902         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6903           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6904             if (LBO->getOpcode() == Instruction::And &&
6905                 LCI->getValue() == CI->getValue())
6906               if (const SCEVZeroExtendExpr *Z =
6907                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6908                 Type *UTy = BO->LHS->getType();
6909                 const SCEV *Z0 = Z->getOperand();
6910                 Type *Z0Ty = Z0->getType();
6911                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6912 
6913                 // If C is a low-bits mask, the zero extend is serving to
6914                 // mask off the high bits. Complement the operand and
6915                 // re-apply the zext.
6916                 if (CI->getValue().isMask(Z0TySize))
6917                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6918 
6919                 // If C is a single bit, it may be in the sign-bit position
6920                 // before the zero-extend. In this case, represent the xor
6921                 // using an add, which is equivalent, and re-apply the zext.
6922                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6923                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6924                     Trunc.isSignMask())
6925                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6926                                            UTy);
6927               }
6928       }
6929       break;
6930 
6931     case Instruction::Shl:
6932       // Turn shift left of a constant amount into a multiply.
6933       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6934         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6935 
6936         // If the shift count is not less than the bitwidth, the result of
6937         // the shift is undefined. Don't try to analyze it, because the
6938         // resolution chosen here may differ from the resolution chosen in
6939         // other parts of the compiler.
6940         if (SA->getValue().uge(BitWidth))
6941           break;
6942 
6943         // We can safely preserve the nuw flag in all cases. It's also safe to
6944         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6945         // requires special handling. It can be preserved as long as we're not
6946         // left shifting by bitwidth - 1.
6947         auto Flags = SCEV::FlagAnyWrap;
6948         if (BO->Op) {
6949           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6950           if ((MulFlags & SCEV::FlagNSW) &&
6951               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6952             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6953           if (MulFlags & SCEV::FlagNUW)
6954             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6955         }
6956 
6957         Constant *X = ConstantInt::get(
6958             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6959         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6960       }
6961       break;
6962 
6963     case Instruction::AShr: {
6964       // AShr X, C, where C is a constant.
6965       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6966       if (!CI)
6967         break;
6968 
6969       Type *OuterTy = BO->LHS->getType();
6970       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6971       // If the shift count is not less than the bitwidth, the result of
6972       // the shift is undefined. Don't try to analyze it, because the
6973       // resolution chosen here may differ from the resolution chosen in
6974       // other parts of the compiler.
6975       if (CI->getValue().uge(BitWidth))
6976         break;
6977 
6978       if (CI->isZero())
6979         return getSCEV(BO->LHS); // shift by zero --> noop
6980 
6981       uint64_t AShrAmt = CI->getZExtValue();
6982       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6983 
6984       Operator *L = dyn_cast<Operator>(BO->LHS);
6985       if (L && L->getOpcode() == Instruction::Shl) {
6986         // X = Shl A, n
6987         // Y = AShr X, m
6988         // Both n and m are constant.
6989 
6990         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6991         if (L->getOperand(1) == BO->RHS)
6992           // For a two-shift sext-inreg, i.e. n = m,
6993           // use sext(trunc(x)) as the SCEV expression.
6994           return getSignExtendExpr(
6995               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6996 
6997         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6998         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6999           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7000           if (ShlAmt > AShrAmt) {
7001             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7002             // expression. We already checked that ShlAmt < BitWidth, so
7003             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7004             // ShlAmt - AShrAmt < Amt.
7005             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7006                                             ShlAmt - AShrAmt);
7007             return getSignExtendExpr(
7008                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7009                 getConstant(Mul)), OuterTy);
7010           }
7011         }
7012       }
7013       break;
7014     }
7015     }
7016   }
7017 
7018   switch (U->getOpcode()) {
7019   case Instruction::Trunc:
7020     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7021 
7022   case Instruction::ZExt:
7023     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7024 
7025   case Instruction::SExt:
7026     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7027       // The NSW flag of a subtract does not always survive the conversion to
7028       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7029       // more likely to preserve NSW and allow later AddRec optimisations.
7030       //
7031       // NOTE: This is effectively duplicating this logic from getSignExtend:
7032       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7033       // but by that point the NSW information has potentially been lost.
7034       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7035         Type *Ty = U->getType();
7036         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7037         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7038         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7039       }
7040     }
7041     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7042 
7043   case Instruction::BitCast:
7044     // BitCasts are no-op casts so we just eliminate the cast.
7045     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7046       return getSCEV(U->getOperand(0));
7047     break;
7048 
7049   case Instruction::PtrToInt: {
7050     // Pointer to integer cast is straight-forward, so do model it.
7051     const SCEV *Op = getSCEV(U->getOperand(0));
7052     Type *DstIntTy = U->getType();
7053     // But only if effective SCEV (integer) type is wide enough to represent
7054     // all possible pointer values.
7055     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7056     if (isa<SCEVCouldNotCompute>(IntOp))
7057       return getUnknown(V);
7058     return IntOp;
7059   }
7060   case Instruction::IntToPtr:
7061     // Just don't deal with inttoptr casts.
7062     return getUnknown(V);
7063 
7064   case Instruction::SDiv:
7065     // If both operands are non-negative, this is just an udiv.
7066     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7067         isKnownNonNegative(getSCEV(U->getOperand(1))))
7068       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7069     break;
7070 
7071   case Instruction::SRem:
7072     // If both operands are non-negative, this is just an urem.
7073     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7074         isKnownNonNegative(getSCEV(U->getOperand(1))))
7075       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7076     break;
7077 
7078   case Instruction::GetElementPtr:
7079     return createNodeForGEP(cast<GEPOperator>(U));
7080 
7081   case Instruction::PHI:
7082     return createNodeForPHI(cast<PHINode>(U));
7083 
7084   case Instruction::Select:
7085     // U can also be a select constant expr, which let fall through.  Since
7086     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7087     // constant expressions cannot have instructions as operands, we'd have
7088     // returned getUnknown for a select constant expressions anyway.
7089     if (isa<Instruction>(U))
7090       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7091                                       U->getOperand(1), U->getOperand(2));
7092     break;
7093 
7094   case Instruction::Call:
7095   case Instruction::Invoke:
7096     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7097       return getSCEV(RV);
7098 
7099     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7100       switch (II->getIntrinsicID()) {
7101       case Intrinsic::abs:
7102         return getAbsExpr(
7103             getSCEV(II->getArgOperand(0)),
7104             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7105       case Intrinsic::umax:
7106         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7107                            getSCEV(II->getArgOperand(1)));
7108       case Intrinsic::umin:
7109         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7110                            getSCEV(II->getArgOperand(1)));
7111       case Intrinsic::smax:
7112         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7113                            getSCEV(II->getArgOperand(1)));
7114       case Intrinsic::smin:
7115         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7116                            getSCEV(II->getArgOperand(1)));
7117       case Intrinsic::usub_sat: {
7118         const SCEV *X = getSCEV(II->getArgOperand(0));
7119         const SCEV *Y = getSCEV(II->getArgOperand(1));
7120         const SCEV *ClampedY = getUMinExpr(X, Y);
7121         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7122       }
7123       case Intrinsic::uadd_sat: {
7124         const SCEV *X = getSCEV(II->getArgOperand(0));
7125         const SCEV *Y = getSCEV(II->getArgOperand(1));
7126         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7127         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7128       }
7129       case Intrinsic::start_loop_iterations:
7130         // A start_loop_iterations is just equivalent to the first operand for
7131         // SCEV purposes.
7132         return getSCEV(II->getArgOperand(0));
7133       default:
7134         break;
7135       }
7136     }
7137     break;
7138   }
7139 
7140   return getUnknown(V);
7141 }
7142 
7143 //===----------------------------------------------------------------------===//
7144 //                   Iteration Count Computation Code
7145 //
7146 
7147 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7148   // Get the trip count from the BE count by adding 1.  Overflow, results
7149   // in zero which means "unknown".
7150   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7151 }
7152 
7153 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7154   if (!ExitCount)
7155     return 0;
7156 
7157   ConstantInt *ExitConst = ExitCount->getValue();
7158 
7159   // Guard against huge trip counts.
7160   if (ExitConst->getValue().getActiveBits() > 32)
7161     return 0;
7162 
7163   // In case of integer overflow, this returns 0, which is correct.
7164   return ((unsigned)ExitConst->getZExtValue()) + 1;
7165 }
7166 
7167 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7168   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7169   return getConstantTripCount(ExitCount);
7170 }
7171 
7172 unsigned
7173 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7174                                            const BasicBlock *ExitingBlock) {
7175   assert(ExitingBlock && "Must pass a non-null exiting block!");
7176   assert(L->isLoopExiting(ExitingBlock) &&
7177          "Exiting block must actually branch out of the loop!");
7178   const SCEVConstant *ExitCount =
7179       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7180   return getConstantTripCount(ExitCount);
7181 }
7182 
7183 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7184   const auto *MaxExitCount =
7185       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7186   return getConstantTripCount(MaxExitCount);
7187 }
7188 
7189 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7190   SmallVector<BasicBlock *, 8> ExitingBlocks;
7191   L->getExitingBlocks(ExitingBlocks);
7192 
7193   Optional<unsigned> Res = None;
7194   for (auto *ExitingBB : ExitingBlocks) {
7195     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7196     if (!Res)
7197       Res = Multiple;
7198     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7199   }
7200   return Res.getValueOr(1);
7201 }
7202 
7203 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7204                                                        const SCEV *ExitCount) {
7205   if (ExitCount == getCouldNotCompute())
7206     return 1;
7207 
7208   // Get the trip count
7209   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7210 
7211   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7212   if (!TC)
7213     // Attempt to factor more general cases. Returns the greatest power of
7214     // two divisor. If overflow happens, the trip count expression is still
7215     // divisible by the greatest power of 2 divisor returned.
7216     return 1U << std::min((uint32_t)31,
7217                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7218 
7219   ConstantInt *Result = TC->getValue();
7220 
7221   // Guard against huge trip counts (this requires checking
7222   // for zero to handle the case where the trip count == -1 and the
7223   // addition wraps).
7224   if (!Result || Result->getValue().getActiveBits() > 32 ||
7225       Result->getValue().getActiveBits() == 0)
7226     return 1;
7227 
7228   return (unsigned)Result->getZExtValue();
7229 }
7230 
7231 /// Returns the largest constant divisor of the trip count of this loop as a
7232 /// normal unsigned value, if possible. This means that the actual trip count is
7233 /// always a multiple of the returned value (don't forget the trip count could
7234 /// very well be zero as well!).
7235 ///
7236 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7237 /// multiple of a constant (which is also the case if the trip count is simply
7238 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7239 /// if the trip count is very large (>= 2^32).
7240 ///
7241 /// As explained in the comments for getSmallConstantTripCount, this assumes
7242 /// that control exits the loop via ExitingBlock.
7243 unsigned
7244 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7245                                               const BasicBlock *ExitingBlock) {
7246   assert(ExitingBlock && "Must pass a non-null exiting block!");
7247   assert(L->isLoopExiting(ExitingBlock) &&
7248          "Exiting block must actually branch out of the loop!");
7249   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7250   return getSmallConstantTripMultiple(L, ExitCount);
7251 }
7252 
7253 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7254                                           const BasicBlock *ExitingBlock,
7255                                           ExitCountKind Kind) {
7256   switch (Kind) {
7257   case Exact:
7258   case SymbolicMaximum:
7259     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7260   case ConstantMaximum:
7261     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7262   };
7263   llvm_unreachable("Invalid ExitCountKind!");
7264 }
7265 
7266 const SCEV *
7267 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7268                                                  SCEVUnionPredicate &Preds) {
7269   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7270 }
7271 
7272 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7273                                                    ExitCountKind Kind) {
7274   switch (Kind) {
7275   case Exact:
7276     return getBackedgeTakenInfo(L).getExact(L, this);
7277   case ConstantMaximum:
7278     return getBackedgeTakenInfo(L).getConstantMax(this);
7279   case SymbolicMaximum:
7280     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7281   };
7282   llvm_unreachable("Invalid ExitCountKind!");
7283 }
7284 
7285 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7286   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7287 }
7288 
7289 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7290 static void
7291 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7292   BasicBlock *Header = L->getHeader();
7293 
7294   // Push all Loop-header PHIs onto the Worklist stack.
7295   for (PHINode &PN : Header->phis())
7296     Worklist.push_back(&PN);
7297 }
7298 
7299 const ScalarEvolution::BackedgeTakenInfo &
7300 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7301   auto &BTI = getBackedgeTakenInfo(L);
7302   if (BTI.hasFullInfo())
7303     return BTI;
7304 
7305   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7306 
7307   if (!Pair.second)
7308     return Pair.first->second;
7309 
7310   BackedgeTakenInfo Result =
7311       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7312 
7313   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7314 }
7315 
7316 ScalarEvolution::BackedgeTakenInfo &
7317 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7318   // Initially insert an invalid entry for this loop. If the insertion
7319   // succeeds, proceed to actually compute a backedge-taken count and
7320   // update the value. The temporary CouldNotCompute value tells SCEV
7321   // code elsewhere that it shouldn't attempt to request a new
7322   // backedge-taken count, which could result in infinite recursion.
7323   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7324       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7325   if (!Pair.second)
7326     return Pair.first->second;
7327 
7328   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7329   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7330   // must be cleared in this scope.
7331   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7332 
7333   // In product build, there are no usage of statistic.
7334   (void)NumTripCountsComputed;
7335   (void)NumTripCountsNotComputed;
7336 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7337   const SCEV *BEExact = Result.getExact(L, this);
7338   if (BEExact != getCouldNotCompute()) {
7339     assert(isLoopInvariant(BEExact, L) &&
7340            isLoopInvariant(Result.getConstantMax(this), L) &&
7341            "Computed backedge-taken count isn't loop invariant for loop!");
7342     ++NumTripCountsComputed;
7343   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7344              isa<PHINode>(L->getHeader()->begin())) {
7345     // Only count loops that have phi nodes as not being computable.
7346     ++NumTripCountsNotComputed;
7347   }
7348 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7349 
7350   // Now that we know more about the trip count for this loop, forget any
7351   // existing SCEV values for PHI nodes in this loop since they are only
7352   // conservative estimates made without the benefit of trip count
7353   // information. This is similar to the code in forgetLoop, except that
7354   // it handles SCEVUnknown PHI nodes specially.
7355   if (Result.hasAnyInfo()) {
7356     SmallVector<Instruction *, 16> Worklist;
7357     PushLoopPHIs(L, Worklist);
7358 
7359     SmallPtrSet<Instruction *, 8> Discovered;
7360     while (!Worklist.empty()) {
7361       Instruction *I = Worklist.pop_back_val();
7362 
7363       ValueExprMapType::iterator It =
7364         ValueExprMap.find_as(static_cast<Value *>(I));
7365       if (It != ValueExprMap.end()) {
7366         const SCEV *Old = It->second;
7367 
7368         // SCEVUnknown for a PHI either means that it has an unrecognized
7369         // structure, or it's a PHI that's in the progress of being computed
7370         // by createNodeForPHI.  In the former case, additional loop trip
7371         // count information isn't going to change anything. In the later
7372         // case, createNodeForPHI will perform the necessary updates on its
7373         // own when it gets to that point.
7374         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7375           eraseValueFromMap(It->first);
7376           forgetMemoizedResults(Old);
7377         }
7378         if (PHINode *PN = dyn_cast<PHINode>(I))
7379           ConstantEvolutionLoopExitValue.erase(PN);
7380       }
7381 
7382       // Since we don't need to invalidate anything for correctness and we're
7383       // only invalidating to make SCEV's results more precise, we get to stop
7384       // early to avoid invalidating too much.  This is especially important in
7385       // cases like:
7386       //
7387       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7388       // loop0:
7389       //   %pn0 = phi
7390       //   ...
7391       // loop1:
7392       //   %pn1 = phi
7393       //   ...
7394       //
7395       // where both loop0 and loop1's backedge taken count uses the SCEV
7396       // expression for %v.  If we don't have the early stop below then in cases
7397       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7398       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7399       // count for loop1, effectively nullifying SCEV's trip count cache.
7400       for (auto *U : I->users())
7401         if (auto *I = dyn_cast<Instruction>(U)) {
7402           auto *LoopForUser = LI.getLoopFor(I->getParent());
7403           if (LoopForUser && L->contains(LoopForUser) &&
7404               Discovered.insert(I).second)
7405             Worklist.push_back(I);
7406         }
7407     }
7408   }
7409 
7410   // Re-lookup the insert position, since the call to
7411   // computeBackedgeTakenCount above could result in a
7412   // recusive call to getBackedgeTakenInfo (on a different
7413   // loop), which would invalidate the iterator computed
7414   // earlier.
7415   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7416 }
7417 
7418 void ScalarEvolution::forgetAllLoops() {
7419   // This method is intended to forget all info about loops. It should
7420   // invalidate caches as if the following happened:
7421   // - The trip counts of all loops have changed arbitrarily
7422   // - Every llvm::Value has been updated in place to produce a different
7423   // result.
7424   BackedgeTakenCounts.clear();
7425   PredicatedBackedgeTakenCounts.clear();
7426   LoopPropertiesCache.clear();
7427   ConstantEvolutionLoopExitValue.clear();
7428   ValueExprMap.clear();
7429   ValuesAtScopes.clear();
7430   LoopDispositions.clear();
7431   BlockDispositions.clear();
7432   UnsignedRanges.clear();
7433   SignedRanges.clear();
7434   ExprValueMap.clear();
7435   HasRecMap.clear();
7436   MinTrailingZerosCache.clear();
7437   PredicatedSCEVRewrites.clear();
7438 }
7439 
7440 void ScalarEvolution::forgetLoop(const Loop *L) {
7441   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7442   SmallVector<Instruction *, 32> Worklist;
7443   SmallPtrSet<Instruction *, 16> Visited;
7444 
7445   // Iterate over all the loops and sub-loops to drop SCEV information.
7446   while (!LoopWorklist.empty()) {
7447     auto *CurrL = LoopWorklist.pop_back_val();
7448 
7449     // Drop any stored trip count value.
7450     BackedgeTakenCounts.erase(CurrL);
7451     PredicatedBackedgeTakenCounts.erase(CurrL);
7452 
7453     // Drop information about predicated SCEV rewrites for this loop.
7454     for (auto I = PredicatedSCEVRewrites.begin();
7455          I != PredicatedSCEVRewrites.end();) {
7456       std::pair<const SCEV *, const Loop *> Entry = I->first;
7457       if (Entry.second == CurrL)
7458         PredicatedSCEVRewrites.erase(I++);
7459       else
7460         ++I;
7461     }
7462 
7463     auto LoopUsersItr = LoopUsers.find(CurrL);
7464     if (LoopUsersItr != LoopUsers.end()) {
7465       for (auto *S : LoopUsersItr->second)
7466         forgetMemoizedResults(S);
7467       LoopUsers.erase(LoopUsersItr);
7468     }
7469 
7470     // Drop information about expressions based on loop-header PHIs.
7471     PushLoopPHIs(CurrL, Worklist);
7472 
7473     while (!Worklist.empty()) {
7474       Instruction *I = Worklist.pop_back_val();
7475       if (!Visited.insert(I).second)
7476         continue;
7477 
7478       ValueExprMapType::iterator It =
7479           ValueExprMap.find_as(static_cast<Value *>(I));
7480       if (It != ValueExprMap.end()) {
7481         eraseValueFromMap(It->first);
7482         forgetMemoizedResults(It->second);
7483         if (PHINode *PN = dyn_cast<PHINode>(I))
7484           ConstantEvolutionLoopExitValue.erase(PN);
7485       }
7486 
7487       PushDefUseChildren(I, Worklist);
7488     }
7489 
7490     LoopPropertiesCache.erase(CurrL);
7491     // Forget all contained loops too, to avoid dangling entries in the
7492     // ValuesAtScopes map.
7493     LoopWorklist.append(CurrL->begin(), CurrL->end());
7494   }
7495 }
7496 
7497 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7498   while (Loop *Parent = L->getParentLoop())
7499     L = Parent;
7500   forgetLoop(L);
7501 }
7502 
7503 void ScalarEvolution::forgetValue(Value *V) {
7504   Instruction *I = dyn_cast<Instruction>(V);
7505   if (!I) return;
7506 
7507   // Drop information about expressions based on loop-header PHIs.
7508   SmallVector<Instruction *, 16> Worklist;
7509   Worklist.push_back(I);
7510 
7511   SmallPtrSet<Instruction *, 8> Visited;
7512   while (!Worklist.empty()) {
7513     I = Worklist.pop_back_val();
7514     if (!Visited.insert(I).second)
7515       continue;
7516 
7517     ValueExprMapType::iterator It =
7518       ValueExprMap.find_as(static_cast<Value *>(I));
7519     if (It != ValueExprMap.end()) {
7520       eraseValueFromMap(It->first);
7521       forgetMemoizedResults(It->second);
7522       if (PHINode *PN = dyn_cast<PHINode>(I))
7523         ConstantEvolutionLoopExitValue.erase(PN);
7524     }
7525 
7526     PushDefUseChildren(I, Worklist);
7527   }
7528 }
7529 
7530 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7531   LoopDispositions.clear();
7532 }
7533 
7534 /// Get the exact loop backedge taken count considering all loop exits. A
7535 /// computable result can only be returned for loops with all exiting blocks
7536 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7537 /// is never skipped. This is a valid assumption as long as the loop exits via
7538 /// that test. For precise results, it is the caller's responsibility to specify
7539 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7540 const SCEV *
7541 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7542                                              SCEVUnionPredicate *Preds) const {
7543   // If any exits were not computable, the loop is not computable.
7544   if (!isComplete() || ExitNotTaken.empty())
7545     return SE->getCouldNotCompute();
7546 
7547   const BasicBlock *Latch = L->getLoopLatch();
7548   // All exiting blocks we have collected must dominate the only backedge.
7549   if (!Latch)
7550     return SE->getCouldNotCompute();
7551 
7552   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7553   // count is simply a minimum out of all these calculated exit counts.
7554   SmallVector<const SCEV *, 2> Ops;
7555   for (auto &ENT : ExitNotTaken) {
7556     const SCEV *BECount = ENT.ExactNotTaken;
7557     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7558     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7559            "We should only have known counts for exiting blocks that dominate "
7560            "latch!");
7561 
7562     Ops.push_back(BECount);
7563 
7564     if (Preds && !ENT.hasAlwaysTruePredicate())
7565       Preds->add(ENT.Predicate.get());
7566 
7567     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7568            "Predicate should be always true!");
7569   }
7570 
7571   return SE->getUMinFromMismatchedTypes(Ops);
7572 }
7573 
7574 /// Get the exact not taken count for this loop exit.
7575 const SCEV *
7576 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7577                                              ScalarEvolution *SE) const {
7578   for (auto &ENT : ExitNotTaken)
7579     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7580       return ENT.ExactNotTaken;
7581 
7582   return SE->getCouldNotCompute();
7583 }
7584 
7585 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7586     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7587   for (auto &ENT : ExitNotTaken)
7588     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7589       return ENT.MaxNotTaken;
7590 
7591   return SE->getCouldNotCompute();
7592 }
7593 
7594 /// getConstantMax - Get the constant max backedge taken count for the loop.
7595 const SCEV *
7596 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7597   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7598     return !ENT.hasAlwaysTruePredicate();
7599   };
7600 
7601   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7602     return SE->getCouldNotCompute();
7603 
7604   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7605           isa<SCEVConstant>(getConstantMax())) &&
7606          "No point in having a non-constant max backedge taken count!");
7607   return getConstantMax();
7608 }
7609 
7610 const SCEV *
7611 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7612                                                    ScalarEvolution *SE) {
7613   if (!SymbolicMax)
7614     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7615   return SymbolicMax;
7616 }
7617 
7618 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7619     ScalarEvolution *SE) const {
7620   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7621     return !ENT.hasAlwaysTruePredicate();
7622   };
7623   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7624 }
7625 
7626 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7627   return Operands.contains(S);
7628 }
7629 
7630 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7631     : ExitLimit(E, E, false, None) {
7632 }
7633 
7634 ScalarEvolution::ExitLimit::ExitLimit(
7635     const SCEV *E, const SCEV *M, bool MaxOrZero,
7636     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7637     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7638   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7639           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7640          "Exact is not allowed to be less precise than Max");
7641   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7642           isa<SCEVConstant>(MaxNotTaken)) &&
7643          "No point in having a non-constant max backedge taken count!");
7644   for (auto *PredSet : PredSetList)
7645     for (auto *P : *PredSet)
7646       addPredicate(P);
7647   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7648          "Backedge count should be int");
7649   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7650          "Max backedge count should be int");
7651 }
7652 
7653 ScalarEvolution::ExitLimit::ExitLimit(
7654     const SCEV *E, const SCEV *M, bool MaxOrZero,
7655     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7656     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7657 }
7658 
7659 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7660                                       bool MaxOrZero)
7661     : ExitLimit(E, M, MaxOrZero, None) {
7662 }
7663 
7664 class SCEVRecordOperands {
7665   SmallPtrSetImpl<const SCEV *> &Operands;
7666 
7667 public:
7668   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7669     : Operands(Operands) {}
7670   bool follow(const SCEV *S) {
7671     Operands.insert(S);
7672     return true;
7673   }
7674   bool isDone() { return false; }
7675 };
7676 
7677 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7678 /// computable exit into a persistent ExitNotTakenInfo array.
7679 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7680     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7681     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7682     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7683   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7684 
7685   ExitNotTaken.reserve(ExitCounts.size());
7686   std::transform(
7687       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7688       [&](const EdgeExitInfo &EEI) {
7689         BasicBlock *ExitBB = EEI.first;
7690         const ExitLimit &EL = EEI.second;
7691         if (EL.Predicates.empty())
7692           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7693                                   nullptr);
7694 
7695         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7696         for (auto *Pred : EL.Predicates)
7697           Predicate->add(Pred);
7698 
7699         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7700                                 std::move(Predicate));
7701       });
7702   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7703           isa<SCEVConstant>(ConstantMax)) &&
7704          "No point in having a non-constant max backedge taken count!");
7705 
7706   SCEVRecordOperands RecordOperands(Operands);
7707   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7708   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7709     ST.visitAll(ConstantMax);
7710   for (auto &ENT : ExitNotTaken)
7711     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7712       ST.visitAll(ENT.ExactNotTaken);
7713 }
7714 
7715 /// Compute the number of times the backedge of the specified loop will execute.
7716 ScalarEvolution::BackedgeTakenInfo
7717 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7718                                            bool AllowPredicates) {
7719   SmallVector<BasicBlock *, 8> ExitingBlocks;
7720   L->getExitingBlocks(ExitingBlocks);
7721 
7722   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7723 
7724   SmallVector<EdgeExitInfo, 4> ExitCounts;
7725   bool CouldComputeBECount = true;
7726   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7727   const SCEV *MustExitMaxBECount = nullptr;
7728   const SCEV *MayExitMaxBECount = nullptr;
7729   bool MustExitMaxOrZero = false;
7730 
7731   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7732   // and compute maxBECount.
7733   // Do a union of all the predicates here.
7734   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7735     BasicBlock *ExitBB = ExitingBlocks[i];
7736 
7737     // We canonicalize untaken exits to br (constant), ignore them so that
7738     // proving an exit untaken doesn't negatively impact our ability to reason
7739     // about the loop as whole.
7740     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7741       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7742         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7743         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7744           continue;
7745       }
7746 
7747     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7748 
7749     assert((AllowPredicates || EL.Predicates.empty()) &&
7750            "Predicated exit limit when predicates are not allowed!");
7751 
7752     // 1. For each exit that can be computed, add an entry to ExitCounts.
7753     // CouldComputeBECount is true only if all exits can be computed.
7754     if (EL.ExactNotTaken == getCouldNotCompute())
7755       // We couldn't compute an exact value for this exit, so
7756       // we won't be able to compute an exact value for the loop.
7757       CouldComputeBECount = false;
7758     else
7759       ExitCounts.emplace_back(ExitBB, EL);
7760 
7761     // 2. Derive the loop's MaxBECount from each exit's max number of
7762     // non-exiting iterations. Partition the loop exits into two kinds:
7763     // LoopMustExits and LoopMayExits.
7764     //
7765     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7766     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7767     // MaxBECount is the minimum EL.MaxNotTaken of computable
7768     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7769     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7770     // computable EL.MaxNotTaken.
7771     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7772         DT.dominates(ExitBB, Latch)) {
7773       if (!MustExitMaxBECount) {
7774         MustExitMaxBECount = EL.MaxNotTaken;
7775         MustExitMaxOrZero = EL.MaxOrZero;
7776       } else {
7777         MustExitMaxBECount =
7778             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7779       }
7780     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7781       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7782         MayExitMaxBECount = EL.MaxNotTaken;
7783       else {
7784         MayExitMaxBECount =
7785             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7786       }
7787     }
7788   }
7789   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7790     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7791   // The loop backedge will be taken the maximum or zero times if there's
7792   // a single exit that must be taken the maximum or zero times.
7793   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7794   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7795                            MaxBECount, MaxOrZero);
7796 }
7797 
7798 ScalarEvolution::ExitLimit
7799 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7800                                       bool AllowPredicates) {
7801   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7802   // If our exiting block does not dominate the latch, then its connection with
7803   // loop's exit limit may be far from trivial.
7804   const BasicBlock *Latch = L->getLoopLatch();
7805   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7806     return getCouldNotCompute();
7807 
7808   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7809   Instruction *Term = ExitingBlock->getTerminator();
7810   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7811     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7812     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7813     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7814            "It should have one successor in loop and one exit block!");
7815     // Proceed to the next level to examine the exit condition expression.
7816     return computeExitLimitFromCond(
7817         L, BI->getCondition(), ExitIfTrue,
7818         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7819   }
7820 
7821   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7822     // For switch, make sure that there is a single exit from the loop.
7823     BasicBlock *Exit = nullptr;
7824     for (auto *SBB : successors(ExitingBlock))
7825       if (!L->contains(SBB)) {
7826         if (Exit) // Multiple exit successors.
7827           return getCouldNotCompute();
7828         Exit = SBB;
7829       }
7830     assert(Exit && "Exiting block must have at least one exit");
7831     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7832                                                 /*ControlsExit=*/IsOnlyExit);
7833   }
7834 
7835   return getCouldNotCompute();
7836 }
7837 
7838 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7839     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7840     bool ControlsExit, bool AllowPredicates) {
7841   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7842   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7843                                         ControlsExit, AllowPredicates);
7844 }
7845 
7846 Optional<ScalarEvolution::ExitLimit>
7847 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7848                                       bool ExitIfTrue, bool ControlsExit,
7849                                       bool AllowPredicates) {
7850   (void)this->L;
7851   (void)this->ExitIfTrue;
7852   (void)this->AllowPredicates;
7853 
7854   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7855          this->AllowPredicates == AllowPredicates &&
7856          "Variance in assumed invariant key components!");
7857   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7858   if (Itr == TripCountMap.end())
7859     return None;
7860   return Itr->second;
7861 }
7862 
7863 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7864                                              bool ExitIfTrue,
7865                                              bool ControlsExit,
7866                                              bool AllowPredicates,
7867                                              const ExitLimit &EL) {
7868   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7869          this->AllowPredicates == AllowPredicates &&
7870          "Variance in assumed invariant key components!");
7871 
7872   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7873   assert(InsertResult.second && "Expected successful insertion!");
7874   (void)InsertResult;
7875   (void)ExitIfTrue;
7876 }
7877 
7878 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7879     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7880     bool ControlsExit, bool AllowPredicates) {
7881 
7882   if (auto MaybeEL =
7883           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7884     return *MaybeEL;
7885 
7886   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7887                                               ControlsExit, AllowPredicates);
7888   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7889   return EL;
7890 }
7891 
7892 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7893     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7894     bool ControlsExit, bool AllowPredicates) {
7895   // Handle BinOp conditions (And, Or).
7896   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7897           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7898     return *LimitFromBinOp;
7899 
7900   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7901   // Proceed to the next level to examine the icmp.
7902   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7903     ExitLimit EL =
7904         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7905     if (EL.hasFullInfo() || !AllowPredicates)
7906       return EL;
7907 
7908     // Try again, but use SCEV predicates this time.
7909     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7910                                     /*AllowPredicates=*/true);
7911   }
7912 
7913   // Check for a constant condition. These are normally stripped out by
7914   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7915   // preserve the CFG and is temporarily leaving constant conditions
7916   // in place.
7917   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7918     if (ExitIfTrue == !CI->getZExtValue())
7919       // The backedge is always taken.
7920       return getCouldNotCompute();
7921     else
7922       // The backedge is never taken.
7923       return getZero(CI->getType());
7924   }
7925 
7926   // If it's not an integer or pointer comparison then compute it the hard way.
7927   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7928 }
7929 
7930 Optional<ScalarEvolution::ExitLimit>
7931 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7932     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7933     bool ControlsExit, bool AllowPredicates) {
7934   // Check if the controlling expression for this loop is an And or Or.
7935   Value *Op0, *Op1;
7936   bool IsAnd = false;
7937   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7938     IsAnd = true;
7939   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7940     IsAnd = false;
7941   else
7942     return None;
7943 
7944   // EitherMayExit is true in these two cases:
7945   //   br (and Op0 Op1), loop, exit
7946   //   br (or  Op0 Op1), exit, loop
7947   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7948   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7949                                                  ControlsExit && !EitherMayExit,
7950                                                  AllowPredicates);
7951   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7952                                                  ControlsExit && !EitherMayExit,
7953                                                  AllowPredicates);
7954 
7955   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7956   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7957   if (isa<ConstantInt>(Op1))
7958     return Op1 == NeutralElement ? EL0 : EL1;
7959   if (isa<ConstantInt>(Op0))
7960     return Op0 == NeutralElement ? EL1 : EL0;
7961 
7962   const SCEV *BECount = getCouldNotCompute();
7963   const SCEV *MaxBECount = getCouldNotCompute();
7964   if (EitherMayExit) {
7965     // Both conditions must be same for the loop to continue executing.
7966     // Choose the less conservative count.
7967     // If ExitCond is a short-circuit form (select), using
7968     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7969     // To see the detailed examples, please see
7970     // test/Analysis/ScalarEvolution/exit-count-select.ll
7971     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7972     if (!PoisonSafe)
7973       // Even if ExitCond is select, we can safely derive BECount using both
7974       // EL0 and EL1 in these cases:
7975       // (1) EL0.ExactNotTaken is non-zero
7976       // (2) EL1.ExactNotTaken is non-poison
7977       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7978       //     it cannot be umin(0, ..))
7979       // The PoisonSafe assignment below is simplified and the assertion after
7980       // BECount calculation fully guarantees the condition (3).
7981       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7982                    isa<SCEVConstant>(EL1.ExactNotTaken);
7983     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7984         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7985       BECount =
7986           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7987 
7988       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7989       // it should have been simplified to zero (see the condition (3) above)
7990       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7991              BECount->isZero());
7992     }
7993     if (EL0.MaxNotTaken == getCouldNotCompute())
7994       MaxBECount = EL1.MaxNotTaken;
7995     else if (EL1.MaxNotTaken == getCouldNotCompute())
7996       MaxBECount = EL0.MaxNotTaken;
7997     else
7998       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7999   } else {
8000     // Both conditions must be same at the same time for the loop to exit.
8001     // For now, be conservative.
8002     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8003       BECount = EL0.ExactNotTaken;
8004   }
8005 
8006   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8007   // to be more aggressive when computing BECount than when computing
8008   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8009   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8010   // to not.
8011   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8012       !isa<SCEVCouldNotCompute>(BECount))
8013     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8014 
8015   return ExitLimit(BECount, MaxBECount, false,
8016                    { &EL0.Predicates, &EL1.Predicates });
8017 }
8018 
8019 ScalarEvolution::ExitLimit
8020 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8021                                           ICmpInst *ExitCond,
8022                                           bool ExitIfTrue,
8023                                           bool ControlsExit,
8024                                           bool AllowPredicates) {
8025   // If the condition was exit on true, convert the condition to exit on false
8026   ICmpInst::Predicate Pred;
8027   if (!ExitIfTrue)
8028     Pred = ExitCond->getPredicate();
8029   else
8030     Pred = ExitCond->getInversePredicate();
8031   const ICmpInst::Predicate OriginalPred = Pred;
8032 
8033   // Handle common loops like: for (X = "string"; *X; ++X)
8034   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8035     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8036       ExitLimit ItCnt =
8037         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8038       if (ItCnt.hasAnyInfo())
8039         return ItCnt;
8040     }
8041 
8042   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8043   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8044 
8045   // Try to evaluate any dependencies out of the loop.
8046   LHS = getSCEVAtScope(LHS, L);
8047   RHS = getSCEVAtScope(RHS, L);
8048 
8049   // At this point, we would like to compute how many iterations of the
8050   // loop the predicate will return true for these inputs.
8051   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8052     // If there is a loop-invariant, force it into the RHS.
8053     std::swap(LHS, RHS);
8054     Pred = ICmpInst::getSwappedPredicate(Pred);
8055   }
8056 
8057   // Simplify the operands before analyzing them.
8058   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8059 
8060   // If we have a comparison of a chrec against a constant, try to use value
8061   // ranges to answer this query.
8062   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8063     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8064       if (AddRec->getLoop() == L) {
8065         // Form the constant range.
8066         ConstantRange CompRange =
8067             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8068 
8069         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8070         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8071       }
8072 
8073   switch (Pred) {
8074   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8075     // Convert to: while (X-Y != 0)
8076     if (LHS->getType()->isPointerTy()) {
8077       LHS = getLosslessPtrToIntExpr(LHS);
8078       if (isa<SCEVCouldNotCompute>(LHS))
8079         return LHS;
8080     }
8081     if (RHS->getType()->isPointerTy()) {
8082       RHS = getLosslessPtrToIntExpr(RHS);
8083       if (isa<SCEVCouldNotCompute>(RHS))
8084         return RHS;
8085     }
8086     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8087                                 AllowPredicates);
8088     if (EL.hasAnyInfo()) return EL;
8089     break;
8090   }
8091   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8092     // Convert to: while (X-Y == 0)
8093     if (LHS->getType()->isPointerTy()) {
8094       LHS = getLosslessPtrToIntExpr(LHS);
8095       if (isa<SCEVCouldNotCompute>(LHS))
8096         return LHS;
8097     }
8098     if (RHS->getType()->isPointerTy()) {
8099       RHS = getLosslessPtrToIntExpr(RHS);
8100       if (isa<SCEVCouldNotCompute>(RHS))
8101         return RHS;
8102     }
8103     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8104     if (EL.hasAnyInfo()) return EL;
8105     break;
8106   }
8107   case ICmpInst::ICMP_SLT:
8108   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8109     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8110     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8111                                     AllowPredicates);
8112     if (EL.hasAnyInfo()) return EL;
8113     break;
8114   }
8115   case ICmpInst::ICMP_SGT:
8116   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8117     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8118     ExitLimit EL =
8119         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8120                             AllowPredicates);
8121     if (EL.hasAnyInfo()) return EL;
8122     break;
8123   }
8124   default:
8125     break;
8126   }
8127 
8128   auto *ExhaustiveCount =
8129       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8130 
8131   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8132     return ExhaustiveCount;
8133 
8134   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8135                                       ExitCond->getOperand(1), L, OriginalPred);
8136 }
8137 
8138 ScalarEvolution::ExitLimit
8139 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8140                                                       SwitchInst *Switch,
8141                                                       BasicBlock *ExitingBlock,
8142                                                       bool ControlsExit) {
8143   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8144 
8145   // Give up if the exit is the default dest of a switch.
8146   if (Switch->getDefaultDest() == ExitingBlock)
8147     return getCouldNotCompute();
8148 
8149   assert(L->contains(Switch->getDefaultDest()) &&
8150          "Default case must not exit the loop!");
8151   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8152   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8153 
8154   // while (X != Y) --> while (X-Y != 0)
8155   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8156   if (EL.hasAnyInfo())
8157     return EL;
8158 
8159   return getCouldNotCompute();
8160 }
8161 
8162 static ConstantInt *
8163 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8164                                 ScalarEvolution &SE) {
8165   const SCEV *InVal = SE.getConstant(C);
8166   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8167   assert(isa<SCEVConstant>(Val) &&
8168          "Evaluation of SCEV at constant didn't fold correctly?");
8169   return cast<SCEVConstant>(Val)->getValue();
8170 }
8171 
8172 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8173 /// compute the backedge execution count.
8174 ScalarEvolution::ExitLimit
8175 ScalarEvolution::computeLoadConstantCompareExitLimit(
8176   LoadInst *LI,
8177   Constant *RHS,
8178   const Loop *L,
8179   ICmpInst::Predicate predicate) {
8180   if (LI->isVolatile()) return getCouldNotCompute();
8181 
8182   // Check to see if the loaded pointer is a getelementptr of a global.
8183   // TODO: Use SCEV instead of manually grubbing with GEPs.
8184   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8185   if (!GEP) return getCouldNotCompute();
8186 
8187   // Make sure that it is really a constant global we are gepping, with an
8188   // initializer, and make sure the first IDX is really 0.
8189   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8190   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8191       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8192       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8193     return getCouldNotCompute();
8194 
8195   // Okay, we allow one non-constant index into the GEP instruction.
8196   Value *VarIdx = nullptr;
8197   std::vector<Constant*> Indexes;
8198   unsigned VarIdxNum = 0;
8199   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8200     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8201       Indexes.push_back(CI);
8202     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8203       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8204       VarIdx = GEP->getOperand(i);
8205       VarIdxNum = i-2;
8206       Indexes.push_back(nullptr);
8207     }
8208 
8209   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8210   if (!VarIdx)
8211     return getCouldNotCompute();
8212 
8213   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8214   // Check to see if X is a loop variant variable value now.
8215   const SCEV *Idx = getSCEV(VarIdx);
8216   Idx = getSCEVAtScope(Idx, L);
8217 
8218   // We can only recognize very limited forms of loop index expressions, in
8219   // particular, only affine AddRec's like {C1,+,C2}<L>.
8220   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8221   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8222       isLoopInvariant(IdxExpr, L) ||
8223       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8224       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8225     return getCouldNotCompute();
8226 
8227   unsigned MaxSteps = MaxBruteForceIterations;
8228   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8229     ConstantInt *ItCst = ConstantInt::get(
8230                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8231     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8232 
8233     // Form the GEP offset.
8234     Indexes[VarIdxNum] = Val;
8235 
8236     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8237                                                          Indexes);
8238     if (!Result) break;  // Cannot compute!
8239 
8240     // Evaluate the condition for this iteration.
8241     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8242     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8243     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8244       ++NumArrayLenItCounts;
8245       return getConstant(ItCst);   // Found terminating iteration!
8246     }
8247   }
8248   return getCouldNotCompute();
8249 }
8250 
8251 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8252     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8253   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8254   if (!RHS)
8255     return getCouldNotCompute();
8256 
8257   const BasicBlock *Latch = L->getLoopLatch();
8258   if (!Latch)
8259     return getCouldNotCompute();
8260 
8261   const BasicBlock *Predecessor = L->getLoopPredecessor();
8262   if (!Predecessor)
8263     return getCouldNotCompute();
8264 
8265   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8266   // Return LHS in OutLHS and shift_opt in OutOpCode.
8267   auto MatchPositiveShift =
8268       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8269 
8270     using namespace PatternMatch;
8271 
8272     ConstantInt *ShiftAmt;
8273     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8274       OutOpCode = Instruction::LShr;
8275     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8276       OutOpCode = Instruction::AShr;
8277     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8278       OutOpCode = Instruction::Shl;
8279     else
8280       return false;
8281 
8282     return ShiftAmt->getValue().isStrictlyPositive();
8283   };
8284 
8285   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8286   //
8287   // loop:
8288   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8289   //   %iv.shifted = lshr i32 %iv, <positive constant>
8290   //
8291   // Return true on a successful match.  Return the corresponding PHI node (%iv
8292   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8293   auto MatchShiftRecurrence =
8294       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8295     Optional<Instruction::BinaryOps> PostShiftOpCode;
8296 
8297     {
8298       Instruction::BinaryOps OpC;
8299       Value *V;
8300 
8301       // If we encounter a shift instruction, "peel off" the shift operation,
8302       // and remember that we did so.  Later when we inspect %iv's backedge
8303       // value, we will make sure that the backedge value uses the same
8304       // operation.
8305       //
8306       // Note: the peeled shift operation does not have to be the same
8307       // instruction as the one feeding into the PHI's backedge value.  We only
8308       // really care about it being the same *kind* of shift instruction --
8309       // that's all that is required for our later inferences to hold.
8310       if (MatchPositiveShift(LHS, V, OpC)) {
8311         PostShiftOpCode = OpC;
8312         LHS = V;
8313       }
8314     }
8315 
8316     PNOut = dyn_cast<PHINode>(LHS);
8317     if (!PNOut || PNOut->getParent() != L->getHeader())
8318       return false;
8319 
8320     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8321     Value *OpLHS;
8322 
8323     return
8324         // The backedge value for the PHI node must be a shift by a positive
8325         // amount
8326         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8327 
8328         // of the PHI node itself
8329         OpLHS == PNOut &&
8330 
8331         // and the kind of shift should be match the kind of shift we peeled
8332         // off, if any.
8333         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8334   };
8335 
8336   PHINode *PN;
8337   Instruction::BinaryOps OpCode;
8338   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8339     return getCouldNotCompute();
8340 
8341   const DataLayout &DL = getDataLayout();
8342 
8343   // The key rationale for this optimization is that for some kinds of shift
8344   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8345   // within a finite number of iterations.  If the condition guarding the
8346   // backedge (in the sense that the backedge is taken if the condition is true)
8347   // is false for the value the shift recurrence stabilizes to, then we know
8348   // that the backedge is taken only a finite number of times.
8349 
8350   ConstantInt *StableValue = nullptr;
8351   switch (OpCode) {
8352   default:
8353     llvm_unreachable("Impossible case!");
8354 
8355   case Instruction::AShr: {
8356     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8357     // bitwidth(K) iterations.
8358     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8359     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8360                                        Predecessor->getTerminator(), &DT);
8361     auto *Ty = cast<IntegerType>(RHS->getType());
8362     if (Known.isNonNegative())
8363       StableValue = ConstantInt::get(Ty, 0);
8364     else if (Known.isNegative())
8365       StableValue = ConstantInt::get(Ty, -1, true);
8366     else
8367       return getCouldNotCompute();
8368 
8369     break;
8370   }
8371   case Instruction::LShr:
8372   case Instruction::Shl:
8373     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8374     // stabilize to 0 in at most bitwidth(K) iterations.
8375     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8376     break;
8377   }
8378 
8379   auto *Result =
8380       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8381   assert(Result->getType()->isIntegerTy(1) &&
8382          "Otherwise cannot be an operand to a branch instruction");
8383 
8384   if (Result->isZeroValue()) {
8385     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8386     const SCEV *UpperBound =
8387         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8388     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8389   }
8390 
8391   return getCouldNotCompute();
8392 }
8393 
8394 /// Return true if we can constant fold an instruction of the specified type,
8395 /// assuming that all operands were constants.
8396 static bool CanConstantFold(const Instruction *I) {
8397   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8398       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8399       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8400     return true;
8401 
8402   if (const CallInst *CI = dyn_cast<CallInst>(I))
8403     if (const Function *F = CI->getCalledFunction())
8404       return canConstantFoldCallTo(CI, F);
8405   return false;
8406 }
8407 
8408 /// Determine whether this instruction can constant evolve within this loop
8409 /// assuming its operands can all constant evolve.
8410 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8411   // An instruction outside of the loop can't be derived from a loop PHI.
8412   if (!L->contains(I)) return false;
8413 
8414   if (isa<PHINode>(I)) {
8415     // We don't currently keep track of the control flow needed to evaluate
8416     // PHIs, so we cannot handle PHIs inside of loops.
8417     return L->getHeader() == I->getParent();
8418   }
8419 
8420   // If we won't be able to constant fold this expression even if the operands
8421   // are constants, bail early.
8422   return CanConstantFold(I);
8423 }
8424 
8425 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8426 /// recursing through each instruction operand until reaching a loop header phi.
8427 static PHINode *
8428 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8429                                DenseMap<Instruction *, PHINode *> &PHIMap,
8430                                unsigned Depth) {
8431   if (Depth > MaxConstantEvolvingDepth)
8432     return nullptr;
8433 
8434   // Otherwise, we can evaluate this instruction if all of its operands are
8435   // constant or derived from a PHI node themselves.
8436   PHINode *PHI = nullptr;
8437   for (Value *Op : UseInst->operands()) {
8438     if (isa<Constant>(Op)) continue;
8439 
8440     Instruction *OpInst = dyn_cast<Instruction>(Op);
8441     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8442 
8443     PHINode *P = dyn_cast<PHINode>(OpInst);
8444     if (!P)
8445       // If this operand is already visited, reuse the prior result.
8446       // We may have P != PHI if this is the deepest point at which the
8447       // inconsistent paths meet.
8448       P = PHIMap.lookup(OpInst);
8449     if (!P) {
8450       // Recurse and memoize the results, whether a phi is found or not.
8451       // This recursive call invalidates pointers into PHIMap.
8452       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8453       PHIMap[OpInst] = P;
8454     }
8455     if (!P)
8456       return nullptr;  // Not evolving from PHI
8457     if (PHI && PHI != P)
8458       return nullptr;  // Evolving from multiple different PHIs.
8459     PHI = P;
8460   }
8461   // This is a expression evolving from a constant PHI!
8462   return PHI;
8463 }
8464 
8465 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8466 /// in the loop that V is derived from.  We allow arbitrary operations along the
8467 /// way, but the operands of an operation must either be constants or a value
8468 /// derived from a constant PHI.  If this expression does not fit with these
8469 /// constraints, return null.
8470 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8471   Instruction *I = dyn_cast<Instruction>(V);
8472   if (!I || !canConstantEvolve(I, L)) return nullptr;
8473 
8474   if (PHINode *PN = dyn_cast<PHINode>(I))
8475     return PN;
8476 
8477   // Record non-constant instructions contained by the loop.
8478   DenseMap<Instruction *, PHINode *> PHIMap;
8479   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8480 }
8481 
8482 /// EvaluateExpression - Given an expression that passes the
8483 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8484 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8485 /// reason, return null.
8486 static Constant *EvaluateExpression(Value *V, const Loop *L,
8487                                     DenseMap<Instruction *, Constant *> &Vals,
8488                                     const DataLayout &DL,
8489                                     const TargetLibraryInfo *TLI) {
8490   // Convenient constant check, but redundant for recursive calls.
8491   if (Constant *C = dyn_cast<Constant>(V)) return C;
8492   Instruction *I = dyn_cast<Instruction>(V);
8493   if (!I) return nullptr;
8494 
8495   if (Constant *C = Vals.lookup(I)) return C;
8496 
8497   // An instruction inside the loop depends on a value outside the loop that we
8498   // weren't given a mapping for, or a value such as a call inside the loop.
8499   if (!canConstantEvolve(I, L)) return nullptr;
8500 
8501   // An unmapped PHI can be due to a branch or another loop inside this loop,
8502   // or due to this not being the initial iteration through a loop where we
8503   // couldn't compute the evolution of this particular PHI last time.
8504   if (isa<PHINode>(I)) return nullptr;
8505 
8506   std::vector<Constant*> Operands(I->getNumOperands());
8507 
8508   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8509     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8510     if (!Operand) {
8511       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8512       if (!Operands[i]) return nullptr;
8513       continue;
8514     }
8515     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8516     Vals[Operand] = C;
8517     if (!C) return nullptr;
8518     Operands[i] = C;
8519   }
8520 
8521   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8522     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8523                                            Operands[1], DL, TLI);
8524   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8525     if (!LI->isVolatile())
8526       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8527   }
8528   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8529 }
8530 
8531 
8532 // If every incoming value to PN except the one for BB is a specific Constant,
8533 // return that, else return nullptr.
8534 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8535   Constant *IncomingVal = nullptr;
8536 
8537   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8538     if (PN->getIncomingBlock(i) == BB)
8539       continue;
8540 
8541     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8542     if (!CurrentVal)
8543       return nullptr;
8544 
8545     if (IncomingVal != CurrentVal) {
8546       if (IncomingVal)
8547         return nullptr;
8548       IncomingVal = CurrentVal;
8549     }
8550   }
8551 
8552   return IncomingVal;
8553 }
8554 
8555 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8556 /// in the header of its containing loop, we know the loop executes a
8557 /// constant number of times, and the PHI node is just a recurrence
8558 /// involving constants, fold it.
8559 Constant *
8560 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8561                                                    const APInt &BEs,
8562                                                    const Loop *L) {
8563   auto I = ConstantEvolutionLoopExitValue.find(PN);
8564   if (I != ConstantEvolutionLoopExitValue.end())
8565     return I->second;
8566 
8567   if (BEs.ugt(MaxBruteForceIterations))
8568     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8569 
8570   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8571 
8572   DenseMap<Instruction *, Constant *> CurrentIterVals;
8573   BasicBlock *Header = L->getHeader();
8574   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8575 
8576   BasicBlock *Latch = L->getLoopLatch();
8577   if (!Latch)
8578     return nullptr;
8579 
8580   for (PHINode &PHI : Header->phis()) {
8581     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8582       CurrentIterVals[&PHI] = StartCST;
8583   }
8584   if (!CurrentIterVals.count(PN))
8585     return RetVal = nullptr;
8586 
8587   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8588 
8589   // Execute the loop symbolically to determine the exit value.
8590   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8591          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8592 
8593   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8594   unsigned IterationNum = 0;
8595   const DataLayout &DL = getDataLayout();
8596   for (; ; ++IterationNum) {
8597     if (IterationNum == NumIterations)
8598       return RetVal = CurrentIterVals[PN];  // Got exit value!
8599 
8600     // Compute the value of the PHIs for the next iteration.
8601     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8602     DenseMap<Instruction *, Constant *> NextIterVals;
8603     Constant *NextPHI =
8604         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8605     if (!NextPHI)
8606       return nullptr;        // Couldn't evaluate!
8607     NextIterVals[PN] = NextPHI;
8608 
8609     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8610 
8611     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8612     // cease to be able to evaluate one of them or if they stop evolving,
8613     // because that doesn't necessarily prevent us from computing PN.
8614     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8615     for (const auto &I : CurrentIterVals) {
8616       PHINode *PHI = dyn_cast<PHINode>(I.first);
8617       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8618       PHIsToCompute.emplace_back(PHI, I.second);
8619     }
8620     // We use two distinct loops because EvaluateExpression may invalidate any
8621     // iterators into CurrentIterVals.
8622     for (const auto &I : PHIsToCompute) {
8623       PHINode *PHI = I.first;
8624       Constant *&NextPHI = NextIterVals[PHI];
8625       if (!NextPHI) {   // Not already computed.
8626         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8627         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8628       }
8629       if (NextPHI != I.second)
8630         StoppedEvolving = false;
8631     }
8632 
8633     // If all entries in CurrentIterVals == NextIterVals then we can stop
8634     // iterating, the loop can't continue to change.
8635     if (StoppedEvolving)
8636       return RetVal = CurrentIterVals[PN];
8637 
8638     CurrentIterVals.swap(NextIterVals);
8639   }
8640 }
8641 
8642 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8643                                                           Value *Cond,
8644                                                           bool ExitWhen) {
8645   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8646   if (!PN) return getCouldNotCompute();
8647 
8648   // If the loop is canonicalized, the PHI will have exactly two entries.
8649   // That's the only form we support here.
8650   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8651 
8652   DenseMap<Instruction *, Constant *> CurrentIterVals;
8653   BasicBlock *Header = L->getHeader();
8654   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8655 
8656   BasicBlock *Latch = L->getLoopLatch();
8657   assert(Latch && "Should follow from NumIncomingValues == 2!");
8658 
8659   for (PHINode &PHI : Header->phis()) {
8660     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8661       CurrentIterVals[&PHI] = StartCST;
8662   }
8663   if (!CurrentIterVals.count(PN))
8664     return getCouldNotCompute();
8665 
8666   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8667   // the loop symbolically to determine when the condition gets a value of
8668   // "ExitWhen".
8669   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8670   const DataLayout &DL = getDataLayout();
8671   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8672     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8673         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8674 
8675     // Couldn't symbolically evaluate.
8676     if (!CondVal) return getCouldNotCompute();
8677 
8678     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8679       ++NumBruteForceTripCountsComputed;
8680       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8681     }
8682 
8683     // Update all the PHI nodes for the next iteration.
8684     DenseMap<Instruction *, Constant *> NextIterVals;
8685 
8686     // Create a list of which PHIs we need to compute. We want to do this before
8687     // calling EvaluateExpression on them because that may invalidate iterators
8688     // into CurrentIterVals.
8689     SmallVector<PHINode *, 8> PHIsToCompute;
8690     for (const auto &I : CurrentIterVals) {
8691       PHINode *PHI = dyn_cast<PHINode>(I.first);
8692       if (!PHI || PHI->getParent() != Header) continue;
8693       PHIsToCompute.push_back(PHI);
8694     }
8695     for (PHINode *PHI : PHIsToCompute) {
8696       Constant *&NextPHI = NextIterVals[PHI];
8697       if (NextPHI) continue;    // Already computed!
8698 
8699       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8700       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8701     }
8702     CurrentIterVals.swap(NextIterVals);
8703   }
8704 
8705   // Too many iterations were needed to evaluate.
8706   return getCouldNotCompute();
8707 }
8708 
8709 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8710   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8711       ValuesAtScopes[V];
8712   // Check to see if we've folded this expression at this loop before.
8713   for (auto &LS : Values)
8714     if (LS.first == L)
8715       return LS.second ? LS.second : V;
8716 
8717   Values.emplace_back(L, nullptr);
8718 
8719   // Otherwise compute it.
8720   const SCEV *C = computeSCEVAtScope(V, L);
8721   for (auto &LS : reverse(ValuesAtScopes[V]))
8722     if (LS.first == L) {
8723       LS.second = C;
8724       break;
8725     }
8726   return C;
8727 }
8728 
8729 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8730 /// will return Constants for objects which aren't represented by a
8731 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8732 /// Returns NULL if the SCEV isn't representable as a Constant.
8733 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8734   switch (V->getSCEVType()) {
8735   case scCouldNotCompute:
8736   case scAddRecExpr:
8737     return nullptr;
8738   case scConstant:
8739     return cast<SCEVConstant>(V)->getValue();
8740   case scUnknown:
8741     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8742   case scSignExtend: {
8743     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8744     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8745       return ConstantExpr::getSExt(CastOp, SS->getType());
8746     return nullptr;
8747   }
8748   case scZeroExtend: {
8749     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8750     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8751       return ConstantExpr::getZExt(CastOp, SZ->getType());
8752     return nullptr;
8753   }
8754   case scPtrToInt: {
8755     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8756     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8757       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8758 
8759     return nullptr;
8760   }
8761   case scTruncate: {
8762     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8763     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8764       return ConstantExpr::getTrunc(CastOp, ST->getType());
8765     return nullptr;
8766   }
8767   case scAddExpr: {
8768     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8769     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8770       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8771         unsigned AS = PTy->getAddressSpace();
8772         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8773         C = ConstantExpr::getBitCast(C, DestPtrTy);
8774       }
8775       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8776         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8777         if (!C2)
8778           return nullptr;
8779 
8780         // First pointer!
8781         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8782           unsigned AS = C2->getType()->getPointerAddressSpace();
8783           std::swap(C, C2);
8784           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8785           // The offsets have been converted to bytes.  We can add bytes to an
8786           // i8* by GEP with the byte count in the first index.
8787           C = ConstantExpr::getBitCast(C, DestPtrTy);
8788         }
8789 
8790         // Don't bother trying to sum two pointers. We probably can't
8791         // statically compute a load that results from it anyway.
8792         if (C2->getType()->isPointerTy())
8793           return nullptr;
8794 
8795         if (C->getType()->isPointerTy()) {
8796           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8797                                              C, C2);
8798         } else {
8799           C = ConstantExpr::getAdd(C, C2);
8800         }
8801       }
8802       return C;
8803     }
8804     return nullptr;
8805   }
8806   case scMulExpr: {
8807     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8808     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8809       // Don't bother with pointers at all.
8810       if (C->getType()->isPointerTy())
8811         return nullptr;
8812       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8813         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8814         if (!C2 || C2->getType()->isPointerTy())
8815           return nullptr;
8816         C = ConstantExpr::getMul(C, C2);
8817       }
8818       return C;
8819     }
8820     return nullptr;
8821   }
8822   case scUDivExpr: {
8823     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8824     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8825       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8826         if (LHS->getType() == RHS->getType())
8827           return ConstantExpr::getUDiv(LHS, RHS);
8828     return nullptr;
8829   }
8830   case scSMaxExpr:
8831   case scUMaxExpr:
8832   case scSMinExpr:
8833   case scUMinExpr:
8834     return nullptr; // TODO: smax, umax, smin, umax.
8835   }
8836   llvm_unreachable("Unknown SCEV kind!");
8837 }
8838 
8839 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8840   if (isa<SCEVConstant>(V)) return V;
8841 
8842   // If this instruction is evolved from a constant-evolving PHI, compute the
8843   // exit value from the loop without using SCEVs.
8844   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8845     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8846       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8847         const Loop *CurrLoop = this->LI[I->getParent()];
8848         // Looking for loop exit value.
8849         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8850             PN->getParent() == CurrLoop->getHeader()) {
8851           // Okay, there is no closed form solution for the PHI node.  Check
8852           // to see if the loop that contains it has a known backedge-taken
8853           // count.  If so, we may be able to force computation of the exit
8854           // value.
8855           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8856           // This trivial case can show up in some degenerate cases where
8857           // the incoming IR has not yet been fully simplified.
8858           if (BackedgeTakenCount->isZero()) {
8859             Value *InitValue = nullptr;
8860             bool MultipleInitValues = false;
8861             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8862               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8863                 if (!InitValue)
8864                   InitValue = PN->getIncomingValue(i);
8865                 else if (InitValue != PN->getIncomingValue(i)) {
8866                   MultipleInitValues = true;
8867                   break;
8868                 }
8869               }
8870             }
8871             if (!MultipleInitValues && InitValue)
8872               return getSCEV(InitValue);
8873           }
8874           // Do we have a loop invariant value flowing around the backedge
8875           // for a loop which must execute the backedge?
8876           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8877               isKnownPositive(BackedgeTakenCount) &&
8878               PN->getNumIncomingValues() == 2) {
8879 
8880             unsigned InLoopPred =
8881                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8882             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8883             if (CurrLoop->isLoopInvariant(BackedgeVal))
8884               return getSCEV(BackedgeVal);
8885           }
8886           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8887             // Okay, we know how many times the containing loop executes.  If
8888             // this is a constant evolving PHI node, get the final value at
8889             // the specified iteration number.
8890             Constant *RV = getConstantEvolutionLoopExitValue(
8891                 PN, BTCC->getAPInt(), CurrLoop);
8892             if (RV) return getSCEV(RV);
8893           }
8894         }
8895 
8896         // If there is a single-input Phi, evaluate it at our scope. If we can
8897         // prove that this replacement does not break LCSSA form, use new value.
8898         if (PN->getNumOperands() == 1) {
8899           const SCEV *Input = getSCEV(PN->getOperand(0));
8900           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8901           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8902           // for the simplest case just support constants.
8903           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8904         }
8905       }
8906 
8907       // Okay, this is an expression that we cannot symbolically evaluate
8908       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8909       // the arguments into constants, and if so, try to constant propagate the
8910       // result.  This is particularly useful for computing loop exit values.
8911       if (CanConstantFold(I)) {
8912         SmallVector<Constant *, 4> Operands;
8913         bool MadeImprovement = false;
8914         for (Value *Op : I->operands()) {
8915           if (Constant *C = dyn_cast<Constant>(Op)) {
8916             Operands.push_back(C);
8917             continue;
8918           }
8919 
8920           // If any of the operands is non-constant and if they are
8921           // non-integer and non-pointer, don't even try to analyze them
8922           // with scev techniques.
8923           if (!isSCEVable(Op->getType()))
8924             return V;
8925 
8926           const SCEV *OrigV = getSCEV(Op);
8927           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8928           MadeImprovement |= OrigV != OpV;
8929 
8930           Constant *C = BuildConstantFromSCEV(OpV);
8931           if (!C) return V;
8932           if (C->getType() != Op->getType())
8933             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8934                                                               Op->getType(),
8935                                                               false),
8936                                       C, Op->getType());
8937           Operands.push_back(C);
8938         }
8939 
8940         // Check to see if getSCEVAtScope actually made an improvement.
8941         if (MadeImprovement) {
8942           Constant *C = nullptr;
8943           const DataLayout &DL = getDataLayout();
8944           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8945             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8946                                                 Operands[1], DL, &TLI);
8947           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8948             if (!Load->isVolatile())
8949               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8950                                                DL);
8951           } else
8952             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8953           if (!C) return V;
8954           return getSCEV(C);
8955         }
8956       }
8957     }
8958 
8959     // This is some other type of SCEVUnknown, just return it.
8960     return V;
8961   }
8962 
8963   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8964     // Avoid performing the look-up in the common case where the specified
8965     // expression has no loop-variant portions.
8966     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8967       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8968       if (OpAtScope != Comm->getOperand(i)) {
8969         // Okay, at least one of these operands is loop variant but might be
8970         // foldable.  Build a new instance of the folded commutative expression.
8971         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8972                                             Comm->op_begin()+i);
8973         NewOps.push_back(OpAtScope);
8974 
8975         for (++i; i != e; ++i) {
8976           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8977           NewOps.push_back(OpAtScope);
8978         }
8979         if (isa<SCEVAddExpr>(Comm))
8980           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8981         if (isa<SCEVMulExpr>(Comm))
8982           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8983         if (isa<SCEVMinMaxExpr>(Comm))
8984           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8985         llvm_unreachable("Unknown commutative SCEV type!");
8986       }
8987     }
8988     // If we got here, all operands are loop invariant.
8989     return Comm;
8990   }
8991 
8992   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8993     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8994     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8995     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8996       return Div;   // must be loop invariant
8997     return getUDivExpr(LHS, RHS);
8998   }
8999 
9000   // If this is a loop recurrence for a loop that does not contain L, then we
9001   // are dealing with the final value computed by the loop.
9002   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9003     // First, attempt to evaluate each operand.
9004     // Avoid performing the look-up in the common case where the specified
9005     // expression has no loop-variant portions.
9006     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9007       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9008       if (OpAtScope == AddRec->getOperand(i))
9009         continue;
9010 
9011       // Okay, at least one of these operands is loop variant but might be
9012       // foldable.  Build a new instance of the folded commutative expression.
9013       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9014                                           AddRec->op_begin()+i);
9015       NewOps.push_back(OpAtScope);
9016       for (++i; i != e; ++i)
9017         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9018 
9019       const SCEV *FoldedRec =
9020         getAddRecExpr(NewOps, AddRec->getLoop(),
9021                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9022       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9023       // The addrec may be folded to a nonrecurrence, for example, if the
9024       // induction variable is multiplied by zero after constant folding. Go
9025       // ahead and return the folded value.
9026       if (!AddRec)
9027         return FoldedRec;
9028       break;
9029     }
9030 
9031     // If the scope is outside the addrec's loop, evaluate it by using the
9032     // loop exit value of the addrec.
9033     if (!AddRec->getLoop()->contains(L)) {
9034       // To evaluate this recurrence, we need to know how many times the AddRec
9035       // loop iterates.  Compute this now.
9036       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9037       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9038 
9039       // Then, evaluate the AddRec.
9040       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9041     }
9042 
9043     return AddRec;
9044   }
9045 
9046   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9047     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9048     if (Op == Cast->getOperand())
9049       return Cast;  // must be loop invariant
9050     return getZeroExtendExpr(Op, Cast->getType());
9051   }
9052 
9053   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9054     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9055     if (Op == Cast->getOperand())
9056       return Cast;  // must be loop invariant
9057     return getSignExtendExpr(Op, Cast->getType());
9058   }
9059 
9060   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9061     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9062     if (Op == Cast->getOperand())
9063       return Cast;  // must be loop invariant
9064     return getTruncateExpr(Op, Cast->getType());
9065   }
9066 
9067   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9068     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9069     if (Op == Cast->getOperand())
9070       return Cast; // must be loop invariant
9071     return getPtrToIntExpr(Op, Cast->getType());
9072   }
9073 
9074   llvm_unreachable("Unknown SCEV type!");
9075 }
9076 
9077 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9078   return getSCEVAtScope(getSCEV(V), L);
9079 }
9080 
9081 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9082   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9083     return stripInjectiveFunctions(ZExt->getOperand());
9084   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9085     return stripInjectiveFunctions(SExt->getOperand());
9086   return S;
9087 }
9088 
9089 /// Finds the minimum unsigned root of the following equation:
9090 ///
9091 ///     A * X = B (mod N)
9092 ///
9093 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9094 /// A and B isn't important.
9095 ///
9096 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9097 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9098                                                ScalarEvolution &SE) {
9099   uint32_t BW = A.getBitWidth();
9100   assert(BW == SE.getTypeSizeInBits(B->getType()));
9101   assert(A != 0 && "A must be non-zero.");
9102 
9103   // 1. D = gcd(A, N)
9104   //
9105   // The gcd of A and N may have only one prime factor: 2. The number of
9106   // trailing zeros in A is its multiplicity
9107   uint32_t Mult2 = A.countTrailingZeros();
9108   // D = 2^Mult2
9109 
9110   // 2. Check if B is divisible by D.
9111   //
9112   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9113   // is not less than multiplicity of this prime factor for D.
9114   if (SE.GetMinTrailingZeros(B) < Mult2)
9115     return SE.getCouldNotCompute();
9116 
9117   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9118   // modulo (N / D).
9119   //
9120   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9121   // (N / D) in general. The inverse itself always fits into BW bits, though,
9122   // so we immediately truncate it.
9123   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9124   APInt Mod(BW + 1, 0);
9125   Mod.setBit(BW - Mult2);  // Mod = N / D
9126   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9127 
9128   // 4. Compute the minimum unsigned root of the equation:
9129   // I * (B / D) mod (N / D)
9130   // To simplify the computation, we factor out the divide by D:
9131   // (I * B mod N) / D
9132   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9133   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9134 }
9135 
9136 /// For a given quadratic addrec, generate coefficients of the corresponding
9137 /// quadratic equation, multiplied by a common value to ensure that they are
9138 /// integers.
9139 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9140 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9141 /// were multiplied by, and BitWidth is the bit width of the original addrec
9142 /// coefficients.
9143 /// This function returns None if the addrec coefficients are not compile-
9144 /// time constants.
9145 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9146 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9147   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9148   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9149   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9150   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9151   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9152                     << *AddRec << '\n');
9153 
9154   // We currently can only solve this if the coefficients are constants.
9155   if (!LC || !MC || !NC) {
9156     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9157     return None;
9158   }
9159 
9160   APInt L = LC->getAPInt();
9161   APInt M = MC->getAPInt();
9162   APInt N = NC->getAPInt();
9163   assert(!N.isNullValue() && "This is not a quadratic addrec");
9164 
9165   unsigned BitWidth = LC->getAPInt().getBitWidth();
9166   unsigned NewWidth = BitWidth + 1;
9167   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9168                     << BitWidth << '\n');
9169   // The sign-extension (as opposed to a zero-extension) here matches the
9170   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9171   N = N.sext(NewWidth);
9172   M = M.sext(NewWidth);
9173   L = L.sext(NewWidth);
9174 
9175   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9176   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9177   //   L+M, L+2M+N, L+3M+3N, ...
9178   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9179   //
9180   // The equation Acc = 0 is then
9181   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9182   // In a quadratic form it becomes:
9183   //   N n^2 + (2M-N) n + 2L = 0.
9184 
9185   APInt A = N;
9186   APInt B = 2 * M - A;
9187   APInt C = 2 * L;
9188   APInt T = APInt(NewWidth, 2);
9189   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9190                     << "x + " << C << ", coeff bw: " << NewWidth
9191                     << ", multiplied by " << T << '\n');
9192   return std::make_tuple(A, B, C, T, BitWidth);
9193 }
9194 
9195 /// Helper function to compare optional APInts:
9196 /// (a) if X and Y both exist, return min(X, Y),
9197 /// (b) if neither X nor Y exist, return None,
9198 /// (c) if exactly one of X and Y exists, return that value.
9199 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9200   if (X.hasValue() && Y.hasValue()) {
9201     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9202     APInt XW = X->sextOrSelf(W);
9203     APInt YW = Y->sextOrSelf(W);
9204     return XW.slt(YW) ? *X : *Y;
9205   }
9206   if (!X.hasValue() && !Y.hasValue())
9207     return None;
9208   return X.hasValue() ? *X : *Y;
9209 }
9210 
9211 /// Helper function to truncate an optional APInt to a given BitWidth.
9212 /// When solving addrec-related equations, it is preferable to return a value
9213 /// that has the same bit width as the original addrec's coefficients. If the
9214 /// solution fits in the original bit width, truncate it (except for i1).
9215 /// Returning a value of a different bit width may inhibit some optimizations.
9216 ///
9217 /// In general, a solution to a quadratic equation generated from an addrec
9218 /// may require BW+1 bits, where BW is the bit width of the addrec's
9219 /// coefficients. The reason is that the coefficients of the quadratic
9220 /// equation are BW+1 bits wide (to avoid truncation when converting from
9221 /// the addrec to the equation).
9222 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9223   if (!X.hasValue())
9224     return None;
9225   unsigned W = X->getBitWidth();
9226   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9227     return X->trunc(BitWidth);
9228   return X;
9229 }
9230 
9231 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9232 /// iterations. The values L, M, N are assumed to be signed, and they
9233 /// should all have the same bit widths.
9234 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9235 /// where BW is the bit width of the addrec's coefficients.
9236 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9237 /// returned as such, otherwise the bit width of the returned value may
9238 /// be greater than BW.
9239 ///
9240 /// This function returns None if
9241 /// (a) the addrec coefficients are not constant, or
9242 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9243 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9244 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9245 static Optional<APInt>
9246 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9247   APInt A, B, C, M;
9248   unsigned BitWidth;
9249   auto T = GetQuadraticEquation(AddRec);
9250   if (!T.hasValue())
9251     return None;
9252 
9253   std::tie(A, B, C, M, BitWidth) = *T;
9254   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9255   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9256   if (!X.hasValue())
9257     return None;
9258 
9259   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9260   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9261   if (!V->isZero())
9262     return None;
9263 
9264   return TruncIfPossible(X, BitWidth);
9265 }
9266 
9267 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9268 /// iterations. The values M, N are assumed to be signed, and they
9269 /// should all have the same bit widths.
9270 /// Find the least n such that c(n) does not belong to the given range,
9271 /// while c(n-1) does.
9272 ///
9273 /// This function returns None if
9274 /// (a) the addrec coefficients are not constant, or
9275 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9276 ///     bounds of the range.
9277 static Optional<APInt>
9278 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9279                           const ConstantRange &Range, ScalarEvolution &SE) {
9280   assert(AddRec->getOperand(0)->isZero() &&
9281          "Starting value of addrec should be 0");
9282   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9283                     << Range << ", addrec " << *AddRec << '\n');
9284   // This case is handled in getNumIterationsInRange. Here we can assume that
9285   // we start in the range.
9286   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9287          "Addrec's initial value should be in range");
9288 
9289   APInt A, B, C, M;
9290   unsigned BitWidth;
9291   auto T = GetQuadraticEquation(AddRec);
9292   if (!T.hasValue())
9293     return None;
9294 
9295   // Be careful about the return value: there can be two reasons for not
9296   // returning an actual number. First, if no solutions to the equations
9297   // were found, and second, if the solutions don't leave the given range.
9298   // The first case means that the actual solution is "unknown", the second
9299   // means that it's known, but not valid. If the solution is unknown, we
9300   // cannot make any conclusions.
9301   // Return a pair: the optional solution and a flag indicating if the
9302   // solution was found.
9303   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9304     // Solve for signed overflow and unsigned overflow, pick the lower
9305     // solution.
9306     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9307                       << Bound << " (before multiplying by " << M << ")\n");
9308     Bound *= M; // The quadratic equation multiplier.
9309 
9310     Optional<APInt> SO = None;
9311     if (BitWidth > 1) {
9312       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9313                            "signed overflow\n");
9314       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9315     }
9316     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9317                          "unsigned overflow\n");
9318     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9319                                                               BitWidth+1);
9320 
9321     auto LeavesRange = [&] (const APInt &X) {
9322       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9323       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9324       if (Range.contains(V0->getValue()))
9325         return false;
9326       // X should be at least 1, so X-1 is non-negative.
9327       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9328       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9329       if (Range.contains(V1->getValue()))
9330         return true;
9331       return false;
9332     };
9333 
9334     // If SolveQuadraticEquationWrap returns None, it means that there can
9335     // be a solution, but the function failed to find it. We cannot treat it
9336     // as "no solution".
9337     if (!SO.hasValue() || !UO.hasValue())
9338       return { None, false };
9339 
9340     // Check the smaller value first to see if it leaves the range.
9341     // At this point, both SO and UO must have values.
9342     Optional<APInt> Min = MinOptional(SO, UO);
9343     if (LeavesRange(*Min))
9344       return { Min, true };
9345     Optional<APInt> Max = Min == SO ? UO : SO;
9346     if (LeavesRange(*Max))
9347       return { Max, true };
9348 
9349     // Solutions were found, but were eliminated, hence the "true".
9350     return { None, true };
9351   };
9352 
9353   std::tie(A, B, C, M, BitWidth) = *T;
9354   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9355   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9356   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9357   auto SL = SolveForBoundary(Lower);
9358   auto SU = SolveForBoundary(Upper);
9359   // If any of the solutions was unknown, no meaninigful conclusions can
9360   // be made.
9361   if (!SL.second || !SU.second)
9362     return None;
9363 
9364   // Claim: The correct solution is not some value between Min and Max.
9365   //
9366   // Justification: Assuming that Min and Max are different values, one of
9367   // them is when the first signed overflow happens, the other is when the
9368   // first unsigned overflow happens. Crossing the range boundary is only
9369   // possible via an overflow (treating 0 as a special case of it, modeling
9370   // an overflow as crossing k*2^W for some k).
9371   //
9372   // The interesting case here is when Min was eliminated as an invalid
9373   // solution, but Max was not. The argument is that if there was another
9374   // overflow between Min and Max, it would also have been eliminated if
9375   // it was considered.
9376   //
9377   // For a given boundary, it is possible to have two overflows of the same
9378   // type (signed/unsigned) without having the other type in between: this
9379   // can happen when the vertex of the parabola is between the iterations
9380   // corresponding to the overflows. This is only possible when the two
9381   // overflows cross k*2^W for the same k. In such case, if the second one
9382   // left the range (and was the first one to do so), the first overflow
9383   // would have to enter the range, which would mean that either we had left
9384   // the range before or that we started outside of it. Both of these cases
9385   // are contradictions.
9386   //
9387   // Claim: In the case where SolveForBoundary returns None, the correct
9388   // solution is not some value between the Max for this boundary and the
9389   // Min of the other boundary.
9390   //
9391   // Justification: Assume that we had such Max_A and Min_B corresponding
9392   // to range boundaries A and B and such that Max_A < Min_B. If there was
9393   // a solution between Max_A and Min_B, it would have to be caused by an
9394   // overflow corresponding to either A or B. It cannot correspond to B,
9395   // since Min_B is the first occurrence of such an overflow. If it
9396   // corresponded to A, it would have to be either a signed or an unsigned
9397   // overflow that is larger than both eliminated overflows for A. But
9398   // between the eliminated overflows and this overflow, the values would
9399   // cover the entire value space, thus crossing the other boundary, which
9400   // is a contradiction.
9401 
9402   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9403 }
9404 
9405 ScalarEvolution::ExitLimit
9406 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9407                               bool AllowPredicates) {
9408 
9409   // This is only used for loops with a "x != y" exit test. The exit condition
9410   // is now expressed as a single expression, V = x-y. So the exit test is
9411   // effectively V != 0.  We know and take advantage of the fact that this
9412   // expression only being used in a comparison by zero context.
9413 
9414   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9415   // If the value is a constant
9416   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9417     // If the value is already zero, the branch will execute zero times.
9418     if (C->getValue()->isZero()) return C;
9419     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9420   }
9421 
9422   const SCEVAddRecExpr *AddRec =
9423       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9424 
9425   if (!AddRec && AllowPredicates)
9426     // Try to make this an AddRec using runtime tests, in the first X
9427     // iterations of this loop, where X is the SCEV expression found by the
9428     // algorithm below.
9429     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9430 
9431   if (!AddRec || AddRec->getLoop() != L)
9432     return getCouldNotCompute();
9433 
9434   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9435   // the quadratic equation to solve it.
9436   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9437     // We can only use this value if the chrec ends up with an exact zero
9438     // value at this index.  When solving for "X*X != 5", for example, we
9439     // should not accept a root of 2.
9440     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9441       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9442       return ExitLimit(R, R, false, Predicates);
9443     }
9444     return getCouldNotCompute();
9445   }
9446 
9447   // Otherwise we can only handle this if it is affine.
9448   if (!AddRec->isAffine())
9449     return getCouldNotCompute();
9450 
9451   // If this is an affine expression, the execution count of this branch is
9452   // the minimum unsigned root of the following equation:
9453   //
9454   //     Start + Step*N = 0 (mod 2^BW)
9455   //
9456   // equivalent to:
9457   //
9458   //             Step*N = -Start (mod 2^BW)
9459   //
9460   // where BW is the common bit width of Start and Step.
9461 
9462   // Get the initial value for the loop.
9463   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9464   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9465 
9466   // For now we handle only constant steps.
9467   //
9468   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9469   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9470   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9471   // We have not yet seen any such cases.
9472   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9473   if (!StepC || StepC->getValue()->isZero())
9474     return getCouldNotCompute();
9475 
9476   // For positive steps (counting up until unsigned overflow):
9477   //   N = -Start/Step (as unsigned)
9478   // For negative steps (counting down to zero):
9479   //   N = Start/-Step
9480   // First compute the unsigned distance from zero in the direction of Step.
9481   bool CountDown = StepC->getAPInt().isNegative();
9482   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9483 
9484   // Handle unitary steps, which cannot wraparound.
9485   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9486   //   N = Distance (as unsigned)
9487   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9488     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9489     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9490     if (MaxBECountBase.ult(MaxBECount))
9491       MaxBECount = MaxBECountBase;
9492 
9493     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9494     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9495     // case, and see if we can improve the bound.
9496     //
9497     // Explicitly handling this here is necessary because getUnsignedRange
9498     // isn't context-sensitive; it doesn't know that we only care about the
9499     // range inside the loop.
9500     const SCEV *Zero = getZero(Distance->getType());
9501     const SCEV *One = getOne(Distance->getType());
9502     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9503     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9504       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9505       // as "unsigned_max(Distance + 1) - 1".
9506       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9507       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9508     }
9509     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9510   }
9511 
9512   // If the condition controls loop exit (the loop exits only if the expression
9513   // is true) and the addition is no-wrap we can use unsigned divide to
9514   // compute the backedge count.  In this case, the step may not divide the
9515   // distance, but we don't care because if the condition is "missed" the loop
9516   // will have undefined behavior due to wrapping.
9517   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9518       loopHasNoAbnormalExits(AddRec->getLoop())) {
9519     const SCEV *Exact =
9520         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9521     const SCEV *Max = getCouldNotCompute();
9522     if (Exact != getCouldNotCompute()) {
9523       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9524       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9525       if (BaseMaxInt.ult(MaxInt))
9526         Max = getConstant(BaseMaxInt);
9527       else
9528         Max = getConstant(MaxInt);
9529     }
9530     return ExitLimit(Exact, Max, false, Predicates);
9531   }
9532 
9533   // Solve the general equation.
9534   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9535                                                getNegativeSCEV(Start), *this);
9536   const SCEV *M = E == getCouldNotCompute()
9537                       ? E
9538                       : getConstant(getUnsignedRangeMax(E));
9539   return ExitLimit(E, M, false, Predicates);
9540 }
9541 
9542 ScalarEvolution::ExitLimit
9543 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9544   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9545   // handle them yet except for the trivial case.  This could be expanded in the
9546   // future as needed.
9547 
9548   // If the value is a constant, check to see if it is known to be non-zero
9549   // already.  If so, the backedge will execute zero times.
9550   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9551     if (!C->getValue()->isZero())
9552       return getZero(C->getType());
9553     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9554   }
9555 
9556   // We could implement others, but I really doubt anyone writes loops like
9557   // this, and if they did, they would already be constant folded.
9558   return getCouldNotCompute();
9559 }
9560 
9561 std::pair<const BasicBlock *, const BasicBlock *>
9562 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9563     const {
9564   // If the block has a unique predecessor, then there is no path from the
9565   // predecessor to the block that does not go through the direct edge
9566   // from the predecessor to the block.
9567   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9568     return {Pred, BB};
9569 
9570   // A loop's header is defined to be a block that dominates the loop.
9571   // If the header has a unique predecessor outside the loop, it must be
9572   // a block that has exactly one successor that can reach the loop.
9573   if (const Loop *L = LI.getLoopFor(BB))
9574     return {L->getLoopPredecessor(), L->getHeader()};
9575 
9576   return {nullptr, nullptr};
9577 }
9578 
9579 /// SCEV structural equivalence is usually sufficient for testing whether two
9580 /// expressions are equal, however for the purposes of looking for a condition
9581 /// guarding a loop, it can be useful to be a little more general, since a
9582 /// front-end may have replicated the controlling expression.
9583 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9584   // Quick check to see if they are the same SCEV.
9585   if (A == B) return true;
9586 
9587   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9588     // Not all instructions that are "identical" compute the same value.  For
9589     // instance, two distinct alloca instructions allocating the same type are
9590     // identical and do not read memory; but compute distinct values.
9591     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9592   };
9593 
9594   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9595   // two different instructions with the same value. Check for this case.
9596   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9597     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9598       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9599         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9600           if (ComputesEqualValues(AI, BI))
9601             return true;
9602 
9603   // Otherwise assume they may have a different value.
9604   return false;
9605 }
9606 
9607 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9608                                            const SCEV *&LHS, const SCEV *&RHS,
9609                                            unsigned Depth) {
9610   bool Changed = false;
9611   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9612   // '0 != 0'.
9613   auto TrivialCase = [&](bool TriviallyTrue) {
9614     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9615     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9616     return true;
9617   };
9618   // If we hit the max recursion limit bail out.
9619   if (Depth >= 3)
9620     return false;
9621 
9622   // Canonicalize a constant to the right side.
9623   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9624     // Check for both operands constant.
9625     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9626       if (ConstantExpr::getICmp(Pred,
9627                                 LHSC->getValue(),
9628                                 RHSC->getValue())->isNullValue())
9629         return TrivialCase(false);
9630       else
9631         return TrivialCase(true);
9632     }
9633     // Otherwise swap the operands to put the constant on the right.
9634     std::swap(LHS, RHS);
9635     Pred = ICmpInst::getSwappedPredicate(Pred);
9636     Changed = true;
9637   }
9638 
9639   // If we're comparing an addrec with a value which is loop-invariant in the
9640   // addrec's loop, put the addrec on the left. Also make a dominance check,
9641   // as both operands could be addrecs loop-invariant in each other's loop.
9642   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9643     const Loop *L = AR->getLoop();
9644     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9645       std::swap(LHS, RHS);
9646       Pred = ICmpInst::getSwappedPredicate(Pred);
9647       Changed = true;
9648     }
9649   }
9650 
9651   // If there's a constant operand, canonicalize comparisons with boundary
9652   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9653   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9654     const APInt &RA = RC->getAPInt();
9655 
9656     bool SimplifiedByConstantRange = false;
9657 
9658     if (!ICmpInst::isEquality(Pred)) {
9659       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9660       if (ExactCR.isFullSet())
9661         return TrivialCase(true);
9662       else if (ExactCR.isEmptySet())
9663         return TrivialCase(false);
9664 
9665       APInt NewRHS;
9666       CmpInst::Predicate NewPred;
9667       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9668           ICmpInst::isEquality(NewPred)) {
9669         // We were able to convert an inequality to an equality.
9670         Pred = NewPred;
9671         RHS = getConstant(NewRHS);
9672         Changed = SimplifiedByConstantRange = true;
9673       }
9674     }
9675 
9676     if (!SimplifiedByConstantRange) {
9677       switch (Pred) {
9678       default:
9679         break;
9680       case ICmpInst::ICMP_EQ:
9681       case ICmpInst::ICMP_NE:
9682         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9683         if (!RA)
9684           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9685             if (const SCEVMulExpr *ME =
9686                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9687               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9688                   ME->getOperand(0)->isAllOnesValue()) {
9689                 RHS = AE->getOperand(1);
9690                 LHS = ME->getOperand(1);
9691                 Changed = true;
9692               }
9693         break;
9694 
9695 
9696         // The "Should have been caught earlier!" messages refer to the fact
9697         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9698         // should have fired on the corresponding cases, and canonicalized the
9699         // check to trivial case.
9700 
9701       case ICmpInst::ICMP_UGE:
9702         assert(!RA.isMinValue() && "Should have been caught earlier!");
9703         Pred = ICmpInst::ICMP_UGT;
9704         RHS = getConstant(RA - 1);
9705         Changed = true;
9706         break;
9707       case ICmpInst::ICMP_ULE:
9708         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9709         Pred = ICmpInst::ICMP_ULT;
9710         RHS = getConstant(RA + 1);
9711         Changed = true;
9712         break;
9713       case ICmpInst::ICMP_SGE:
9714         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9715         Pred = ICmpInst::ICMP_SGT;
9716         RHS = getConstant(RA - 1);
9717         Changed = true;
9718         break;
9719       case ICmpInst::ICMP_SLE:
9720         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9721         Pred = ICmpInst::ICMP_SLT;
9722         RHS = getConstant(RA + 1);
9723         Changed = true;
9724         break;
9725       }
9726     }
9727   }
9728 
9729   // Check for obvious equality.
9730   if (HasSameValue(LHS, RHS)) {
9731     if (ICmpInst::isTrueWhenEqual(Pred))
9732       return TrivialCase(true);
9733     if (ICmpInst::isFalseWhenEqual(Pred))
9734       return TrivialCase(false);
9735   }
9736 
9737   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9738   // adding or subtracting 1 from one of the operands.
9739   switch (Pred) {
9740   case ICmpInst::ICMP_SLE:
9741     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9742       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9743                        SCEV::FlagNSW);
9744       Pred = ICmpInst::ICMP_SLT;
9745       Changed = true;
9746     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9747       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9748                        SCEV::FlagNSW);
9749       Pred = ICmpInst::ICMP_SLT;
9750       Changed = true;
9751     }
9752     break;
9753   case ICmpInst::ICMP_SGE:
9754     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9755       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9756                        SCEV::FlagNSW);
9757       Pred = ICmpInst::ICMP_SGT;
9758       Changed = true;
9759     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9760       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9761                        SCEV::FlagNSW);
9762       Pred = ICmpInst::ICMP_SGT;
9763       Changed = true;
9764     }
9765     break;
9766   case ICmpInst::ICMP_ULE:
9767     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9768       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9769                        SCEV::FlagNUW);
9770       Pred = ICmpInst::ICMP_ULT;
9771       Changed = true;
9772     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9773       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9774       Pred = ICmpInst::ICMP_ULT;
9775       Changed = true;
9776     }
9777     break;
9778   case ICmpInst::ICMP_UGE:
9779     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9780       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9781       Pred = ICmpInst::ICMP_UGT;
9782       Changed = true;
9783     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9784       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9785                        SCEV::FlagNUW);
9786       Pred = ICmpInst::ICMP_UGT;
9787       Changed = true;
9788     }
9789     break;
9790   default:
9791     break;
9792   }
9793 
9794   // TODO: More simplifications are possible here.
9795 
9796   // Recursively simplify until we either hit a recursion limit or nothing
9797   // changes.
9798   if (Changed)
9799     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9800 
9801   return Changed;
9802 }
9803 
9804 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9805   return getSignedRangeMax(S).isNegative();
9806 }
9807 
9808 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9809   return getSignedRangeMin(S).isStrictlyPositive();
9810 }
9811 
9812 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9813   return !getSignedRangeMin(S).isNegative();
9814 }
9815 
9816 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9817   return !getSignedRangeMax(S).isStrictlyPositive();
9818 }
9819 
9820 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9821   return getUnsignedRangeMin(S) != 0;
9822 }
9823 
9824 std::pair<const SCEV *, const SCEV *>
9825 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9826   // Compute SCEV on entry of loop L.
9827   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9828   if (Start == getCouldNotCompute())
9829     return { Start, Start };
9830   // Compute post increment SCEV for loop L.
9831   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9832   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9833   return { Start, PostInc };
9834 }
9835 
9836 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9837                                           const SCEV *LHS, const SCEV *RHS) {
9838   // First collect all loops.
9839   SmallPtrSet<const Loop *, 8> LoopsUsed;
9840   getUsedLoops(LHS, LoopsUsed);
9841   getUsedLoops(RHS, LoopsUsed);
9842 
9843   if (LoopsUsed.empty())
9844     return false;
9845 
9846   // Domination relationship must be a linear order on collected loops.
9847 #ifndef NDEBUG
9848   for (auto *L1 : LoopsUsed)
9849     for (auto *L2 : LoopsUsed)
9850       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9851               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9852              "Domination relationship is not a linear order");
9853 #endif
9854 
9855   const Loop *MDL =
9856       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9857                         [&](const Loop *L1, const Loop *L2) {
9858          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9859        });
9860 
9861   // Get init and post increment value for LHS.
9862   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9863   // if LHS contains unknown non-invariant SCEV then bail out.
9864   if (SplitLHS.first == getCouldNotCompute())
9865     return false;
9866   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9867   // Get init and post increment value for RHS.
9868   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9869   // if RHS contains unknown non-invariant SCEV then bail out.
9870   if (SplitRHS.first == getCouldNotCompute())
9871     return false;
9872   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9873   // It is possible that init SCEV contains an invariant load but it does
9874   // not dominate MDL and is not available at MDL loop entry, so we should
9875   // check it here.
9876   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9877       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9878     return false;
9879 
9880   // It seems backedge guard check is faster than entry one so in some cases
9881   // it can speed up whole estimation by short circuit
9882   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9883                                      SplitRHS.second) &&
9884          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9885 }
9886 
9887 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9888                                        const SCEV *LHS, const SCEV *RHS) {
9889   // Canonicalize the inputs first.
9890   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9891 
9892   if (isKnownViaInduction(Pred, LHS, RHS))
9893     return true;
9894 
9895   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9896     return true;
9897 
9898   // Otherwise see what can be done with some simple reasoning.
9899   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9900 }
9901 
9902 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9903                                                   const SCEV *LHS,
9904                                                   const SCEV *RHS) {
9905   if (isKnownPredicate(Pred, LHS, RHS))
9906     return true;
9907   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9908     return false;
9909   return None;
9910 }
9911 
9912 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9913                                          const SCEV *LHS, const SCEV *RHS,
9914                                          const Instruction *Context) {
9915   // TODO: Analyze guards and assumes from Context's block.
9916   return isKnownPredicate(Pred, LHS, RHS) ||
9917          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9918 }
9919 
9920 Optional<bool>
9921 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9922                                      const SCEV *RHS,
9923                                      const Instruction *Context) {
9924   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9925   if (KnownWithoutContext)
9926     return KnownWithoutContext;
9927 
9928   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9929     return true;
9930   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9931                                           ICmpInst::getInversePredicate(Pred),
9932                                           LHS, RHS))
9933     return false;
9934   return None;
9935 }
9936 
9937 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9938                                               const SCEVAddRecExpr *LHS,
9939                                               const SCEV *RHS) {
9940   const Loop *L = LHS->getLoop();
9941   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9942          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9943 }
9944 
9945 Optional<ScalarEvolution::MonotonicPredicateType>
9946 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9947                                            ICmpInst::Predicate Pred) {
9948   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9949 
9950 #ifndef NDEBUG
9951   // Verify an invariant: inverting the predicate should turn a monotonically
9952   // increasing change to a monotonically decreasing one, and vice versa.
9953   if (Result) {
9954     auto ResultSwapped =
9955         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9956 
9957     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9958     assert(ResultSwapped.getValue() != Result.getValue() &&
9959            "monotonicity should flip as we flip the predicate");
9960   }
9961 #endif
9962 
9963   return Result;
9964 }
9965 
9966 Optional<ScalarEvolution::MonotonicPredicateType>
9967 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9968                                                ICmpInst::Predicate Pred) {
9969   // A zero step value for LHS means the induction variable is essentially a
9970   // loop invariant value. We don't really depend on the predicate actually
9971   // flipping from false to true (for increasing predicates, and the other way
9972   // around for decreasing predicates), all we care about is that *if* the
9973   // predicate changes then it only changes from false to true.
9974   //
9975   // A zero step value in itself is not very useful, but there may be places
9976   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9977   // as general as possible.
9978 
9979   // Only handle LE/LT/GE/GT predicates.
9980   if (!ICmpInst::isRelational(Pred))
9981     return None;
9982 
9983   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9984   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9985          "Should be greater or less!");
9986 
9987   // Check that AR does not wrap.
9988   if (ICmpInst::isUnsigned(Pred)) {
9989     if (!LHS->hasNoUnsignedWrap())
9990       return None;
9991     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9992   } else {
9993     assert(ICmpInst::isSigned(Pred) &&
9994            "Relational predicate is either signed or unsigned!");
9995     if (!LHS->hasNoSignedWrap())
9996       return None;
9997 
9998     const SCEV *Step = LHS->getStepRecurrence(*this);
9999 
10000     if (isKnownNonNegative(Step))
10001       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10002 
10003     if (isKnownNonPositive(Step))
10004       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10005 
10006     return None;
10007   }
10008 }
10009 
10010 Optional<ScalarEvolution::LoopInvariantPredicate>
10011 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10012                                            const SCEV *LHS, const SCEV *RHS,
10013                                            const Loop *L) {
10014 
10015   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10016   if (!isLoopInvariant(RHS, L)) {
10017     if (!isLoopInvariant(LHS, L))
10018       return None;
10019 
10020     std::swap(LHS, RHS);
10021     Pred = ICmpInst::getSwappedPredicate(Pred);
10022   }
10023 
10024   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10025   if (!ArLHS || ArLHS->getLoop() != L)
10026     return None;
10027 
10028   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10029   if (!MonotonicType)
10030     return None;
10031   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10032   // true as the loop iterates, and the backedge is control dependent on
10033   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10034   //
10035   //   * if the predicate was false in the first iteration then the predicate
10036   //     is never evaluated again, since the loop exits without taking the
10037   //     backedge.
10038   //   * if the predicate was true in the first iteration then it will
10039   //     continue to be true for all future iterations since it is
10040   //     monotonically increasing.
10041   //
10042   // For both the above possibilities, we can replace the loop varying
10043   // predicate with its value on the first iteration of the loop (which is
10044   // loop invariant).
10045   //
10046   // A similar reasoning applies for a monotonically decreasing predicate, by
10047   // replacing true with false and false with true in the above two bullets.
10048   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10049   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10050 
10051   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10052     return None;
10053 
10054   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10055 }
10056 
10057 Optional<ScalarEvolution::LoopInvariantPredicate>
10058 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10059     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10060     const Instruction *Context, const SCEV *MaxIter) {
10061   // Try to prove the following set of facts:
10062   // - The predicate is monotonic in the iteration space.
10063   // - If the check does not fail on the 1st iteration:
10064   //   - No overflow will happen during first MaxIter iterations;
10065   //   - It will not fail on the MaxIter'th iteration.
10066   // If the check does fail on the 1st iteration, we leave the loop and no
10067   // other checks matter.
10068 
10069   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10070   if (!isLoopInvariant(RHS, L)) {
10071     if (!isLoopInvariant(LHS, L))
10072       return None;
10073 
10074     std::swap(LHS, RHS);
10075     Pred = ICmpInst::getSwappedPredicate(Pred);
10076   }
10077 
10078   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10079   if (!AR || AR->getLoop() != L)
10080     return None;
10081 
10082   // The predicate must be relational (i.e. <, <=, >=, >).
10083   if (!ICmpInst::isRelational(Pred))
10084     return None;
10085 
10086   // TODO: Support steps other than +/- 1.
10087   const SCEV *Step = AR->getStepRecurrence(*this);
10088   auto *One = getOne(Step->getType());
10089   auto *MinusOne = getNegativeSCEV(One);
10090   if (Step != One && Step != MinusOne)
10091     return None;
10092 
10093   // Type mismatch here means that MaxIter is potentially larger than max
10094   // unsigned value in start type, which mean we cannot prove no wrap for the
10095   // indvar.
10096   if (AR->getType() != MaxIter->getType())
10097     return None;
10098 
10099   // Value of IV on suggested last iteration.
10100   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10101   // Does it still meet the requirement?
10102   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10103     return None;
10104   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10105   // not exceed max unsigned value of this type), this effectively proves
10106   // that there is no wrap during the iteration. To prove that there is no
10107   // signed/unsigned wrap, we need to check that
10108   // Start <= Last for step = 1 or Start >= Last for step = -1.
10109   ICmpInst::Predicate NoOverflowPred =
10110       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10111   if (Step == MinusOne)
10112     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10113   const SCEV *Start = AR->getStart();
10114   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
10115     return None;
10116 
10117   // Everything is fine.
10118   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10119 }
10120 
10121 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10122     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10123   if (HasSameValue(LHS, RHS))
10124     return ICmpInst::isTrueWhenEqual(Pred);
10125 
10126   // This code is split out from isKnownPredicate because it is called from
10127   // within isLoopEntryGuardedByCond.
10128 
10129   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10130                          const ConstantRange &RangeRHS) {
10131     return RangeLHS.icmp(Pred, RangeRHS);
10132   };
10133 
10134   // The check at the top of the function catches the case where the values are
10135   // known to be equal.
10136   if (Pred == CmpInst::ICMP_EQ)
10137     return false;
10138 
10139   if (Pred == CmpInst::ICMP_NE) {
10140     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10141         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10142       return true;
10143     auto *Diff = getMinusSCEV(LHS, RHS);
10144     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10145   }
10146 
10147   if (CmpInst::isSigned(Pred))
10148     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10149 
10150   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10151 }
10152 
10153 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10154                                                     const SCEV *LHS,
10155                                                     const SCEV *RHS) {
10156   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10157   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10158   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10159   // OutC1 and OutC2.
10160   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10161                                       APInt &OutC1, APInt &OutC2,
10162                                       SCEV::NoWrapFlags ExpectedFlags) {
10163     const SCEV *XNonConstOp, *XConstOp;
10164     const SCEV *YNonConstOp, *YConstOp;
10165     SCEV::NoWrapFlags XFlagsPresent;
10166     SCEV::NoWrapFlags YFlagsPresent;
10167 
10168     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10169       XConstOp = getZero(X->getType());
10170       XNonConstOp = X;
10171       XFlagsPresent = ExpectedFlags;
10172     }
10173     if (!isa<SCEVConstant>(XConstOp) ||
10174         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10175       return false;
10176 
10177     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10178       YConstOp = getZero(Y->getType());
10179       YNonConstOp = Y;
10180       YFlagsPresent = ExpectedFlags;
10181     }
10182 
10183     if (!isa<SCEVConstant>(YConstOp) ||
10184         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10185       return false;
10186 
10187     if (YNonConstOp != XNonConstOp)
10188       return false;
10189 
10190     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10191     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10192 
10193     return true;
10194   };
10195 
10196   APInt C1;
10197   APInt C2;
10198 
10199   switch (Pred) {
10200   default:
10201     break;
10202 
10203   case ICmpInst::ICMP_SGE:
10204     std::swap(LHS, RHS);
10205     LLVM_FALLTHROUGH;
10206   case ICmpInst::ICMP_SLE:
10207     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10208     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10209       return true;
10210 
10211     break;
10212 
10213   case ICmpInst::ICMP_SGT:
10214     std::swap(LHS, RHS);
10215     LLVM_FALLTHROUGH;
10216   case ICmpInst::ICMP_SLT:
10217     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10218     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10219       return true;
10220 
10221     break;
10222 
10223   case ICmpInst::ICMP_UGE:
10224     std::swap(LHS, RHS);
10225     LLVM_FALLTHROUGH;
10226   case ICmpInst::ICMP_ULE:
10227     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10228     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10229       return true;
10230 
10231     break;
10232 
10233   case ICmpInst::ICMP_UGT:
10234     std::swap(LHS, RHS);
10235     LLVM_FALLTHROUGH;
10236   case ICmpInst::ICMP_ULT:
10237     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10238     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10239       return true;
10240     break;
10241   }
10242 
10243   return false;
10244 }
10245 
10246 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10247                                                    const SCEV *LHS,
10248                                                    const SCEV *RHS) {
10249   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10250     return false;
10251 
10252   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10253   // the stack can result in exponential time complexity.
10254   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10255 
10256   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10257   //
10258   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10259   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10260   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10261   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10262   // use isKnownPredicate later if needed.
10263   return isKnownNonNegative(RHS) &&
10264          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10265          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10266 }
10267 
10268 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10269                                         ICmpInst::Predicate Pred,
10270                                         const SCEV *LHS, const SCEV *RHS) {
10271   // No need to even try if we know the module has no guards.
10272   if (!HasGuards)
10273     return false;
10274 
10275   return any_of(*BB, [&](const Instruction &I) {
10276     using namespace llvm::PatternMatch;
10277 
10278     Value *Condition;
10279     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10280                          m_Value(Condition))) &&
10281            isImpliedCond(Pred, LHS, RHS, Condition, false);
10282   });
10283 }
10284 
10285 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10286 /// protected by a conditional between LHS and RHS.  This is used to
10287 /// to eliminate casts.
10288 bool
10289 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10290                                              ICmpInst::Predicate Pred,
10291                                              const SCEV *LHS, const SCEV *RHS) {
10292   // Interpret a null as meaning no loop, where there is obviously no guard
10293   // (interprocedural conditions notwithstanding).
10294   if (!L) return true;
10295 
10296   if (VerifyIR)
10297     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10298            "This cannot be done on broken IR!");
10299 
10300 
10301   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10302     return true;
10303 
10304   BasicBlock *Latch = L->getLoopLatch();
10305   if (!Latch)
10306     return false;
10307 
10308   BranchInst *LoopContinuePredicate =
10309     dyn_cast<BranchInst>(Latch->getTerminator());
10310   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10311       isImpliedCond(Pred, LHS, RHS,
10312                     LoopContinuePredicate->getCondition(),
10313                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10314     return true;
10315 
10316   // We don't want more than one activation of the following loops on the stack
10317   // -- that can lead to O(n!) time complexity.
10318   if (WalkingBEDominatingConds)
10319     return false;
10320 
10321   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10322 
10323   // See if we can exploit a trip count to prove the predicate.
10324   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10325   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10326   if (LatchBECount != getCouldNotCompute()) {
10327     // We know that Latch branches back to the loop header exactly
10328     // LatchBECount times.  This means the backdege condition at Latch is
10329     // equivalent to  "{0,+,1} u< LatchBECount".
10330     Type *Ty = LatchBECount->getType();
10331     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10332     const SCEV *LoopCounter =
10333       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10334     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10335                       LatchBECount))
10336       return true;
10337   }
10338 
10339   // Check conditions due to any @llvm.assume intrinsics.
10340   for (auto &AssumeVH : AC.assumptions()) {
10341     if (!AssumeVH)
10342       continue;
10343     auto *CI = cast<CallInst>(AssumeVH);
10344     if (!DT.dominates(CI, Latch->getTerminator()))
10345       continue;
10346 
10347     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10348       return true;
10349   }
10350 
10351   // If the loop is not reachable from the entry block, we risk running into an
10352   // infinite loop as we walk up into the dom tree.  These loops do not matter
10353   // anyway, so we just return a conservative answer when we see them.
10354   if (!DT.isReachableFromEntry(L->getHeader()))
10355     return false;
10356 
10357   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10358     return true;
10359 
10360   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10361        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10362     assert(DTN && "should reach the loop header before reaching the root!");
10363 
10364     BasicBlock *BB = DTN->getBlock();
10365     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10366       return true;
10367 
10368     BasicBlock *PBB = BB->getSinglePredecessor();
10369     if (!PBB)
10370       continue;
10371 
10372     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10373     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10374       continue;
10375 
10376     Value *Condition = ContinuePredicate->getCondition();
10377 
10378     // If we have an edge `E` within the loop body that dominates the only
10379     // latch, the condition guarding `E` also guards the backedge.  This
10380     // reasoning works only for loops with a single latch.
10381 
10382     BasicBlockEdge DominatingEdge(PBB, BB);
10383     if (DominatingEdge.isSingleEdge()) {
10384       // We're constructively (and conservatively) enumerating edges within the
10385       // loop body that dominate the latch.  The dominator tree better agree
10386       // with us on this:
10387       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10388 
10389       if (isImpliedCond(Pred, LHS, RHS, Condition,
10390                         BB != ContinuePredicate->getSuccessor(0)))
10391         return true;
10392     }
10393   }
10394 
10395   return false;
10396 }
10397 
10398 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10399                                                      ICmpInst::Predicate Pred,
10400                                                      const SCEV *LHS,
10401                                                      const SCEV *RHS) {
10402   if (VerifyIR)
10403     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10404            "This cannot be done on broken IR!");
10405 
10406   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10407   // the facts (a >= b && a != b) separately. A typical situation is when the
10408   // non-strict comparison is known from ranges and non-equality is known from
10409   // dominating predicates. If we are proving strict comparison, we always try
10410   // to prove non-equality and non-strict comparison separately.
10411   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10412   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10413   bool ProvedNonStrictComparison = false;
10414   bool ProvedNonEquality = false;
10415 
10416   auto SplitAndProve =
10417     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10418     if (!ProvedNonStrictComparison)
10419       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10420     if (!ProvedNonEquality)
10421       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10422     if (ProvedNonStrictComparison && ProvedNonEquality)
10423       return true;
10424     return false;
10425   };
10426 
10427   if (ProvingStrictComparison) {
10428     auto ProofFn = [&](ICmpInst::Predicate P) {
10429       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10430     };
10431     if (SplitAndProve(ProofFn))
10432       return true;
10433   }
10434 
10435   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10436   auto ProveViaGuard = [&](const BasicBlock *Block) {
10437     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10438       return true;
10439     if (ProvingStrictComparison) {
10440       auto ProofFn = [&](ICmpInst::Predicate P) {
10441         return isImpliedViaGuard(Block, P, LHS, RHS);
10442       };
10443       if (SplitAndProve(ProofFn))
10444         return true;
10445     }
10446     return false;
10447   };
10448 
10449   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10450   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10451     const Instruction *Context = &BB->front();
10452     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10453       return true;
10454     if (ProvingStrictComparison) {
10455       auto ProofFn = [&](ICmpInst::Predicate P) {
10456         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10457       };
10458       if (SplitAndProve(ProofFn))
10459         return true;
10460     }
10461     return false;
10462   };
10463 
10464   // Starting at the block's predecessor, climb up the predecessor chain, as long
10465   // as there are predecessors that can be found that have unique successors
10466   // leading to the original block.
10467   const Loop *ContainingLoop = LI.getLoopFor(BB);
10468   const BasicBlock *PredBB;
10469   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10470     PredBB = ContainingLoop->getLoopPredecessor();
10471   else
10472     PredBB = BB->getSinglePredecessor();
10473   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10474        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10475     if (ProveViaGuard(Pair.first))
10476       return true;
10477 
10478     const BranchInst *LoopEntryPredicate =
10479         dyn_cast<BranchInst>(Pair.first->getTerminator());
10480     if (!LoopEntryPredicate ||
10481         LoopEntryPredicate->isUnconditional())
10482       continue;
10483 
10484     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10485                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10486       return true;
10487   }
10488 
10489   // Check conditions due to any @llvm.assume intrinsics.
10490   for (auto &AssumeVH : AC.assumptions()) {
10491     if (!AssumeVH)
10492       continue;
10493     auto *CI = cast<CallInst>(AssumeVH);
10494     if (!DT.dominates(CI, BB))
10495       continue;
10496 
10497     if (ProveViaCond(CI->getArgOperand(0), false))
10498       return true;
10499   }
10500 
10501   return false;
10502 }
10503 
10504 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10505                                                ICmpInst::Predicate Pred,
10506                                                const SCEV *LHS,
10507                                                const SCEV *RHS) {
10508   // Interpret a null as meaning no loop, where there is obviously no guard
10509   // (interprocedural conditions notwithstanding).
10510   if (!L)
10511     return false;
10512 
10513   // Both LHS and RHS must be available at loop entry.
10514   assert(isAvailableAtLoopEntry(LHS, L) &&
10515          "LHS is not available at Loop Entry");
10516   assert(isAvailableAtLoopEntry(RHS, L) &&
10517          "RHS is not available at Loop Entry");
10518 
10519   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10520     return true;
10521 
10522   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10523 }
10524 
10525 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10526                                     const SCEV *RHS,
10527                                     const Value *FoundCondValue, bool Inverse,
10528                                     const Instruction *Context) {
10529   // False conditions implies anything. Do not bother analyzing it further.
10530   if (FoundCondValue ==
10531       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10532     return true;
10533 
10534   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10535     return false;
10536 
10537   auto ClearOnExit =
10538       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10539 
10540   // Recursively handle And and Or conditions.
10541   const Value *Op0, *Op1;
10542   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10543     if (!Inverse)
10544       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10545               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10546   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10547     if (Inverse)
10548       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10549               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10550   }
10551 
10552   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10553   if (!ICI) return false;
10554 
10555   // Now that we found a conditional branch that dominates the loop or controls
10556   // the loop latch. Check to see if it is the comparison we are looking for.
10557   ICmpInst::Predicate FoundPred;
10558   if (Inverse)
10559     FoundPred = ICI->getInversePredicate();
10560   else
10561     FoundPred = ICI->getPredicate();
10562 
10563   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10564   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10565 
10566   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10567 }
10568 
10569 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10570                                     const SCEV *RHS,
10571                                     ICmpInst::Predicate FoundPred,
10572                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10573                                     const Instruction *Context) {
10574   // Balance the types.
10575   if (getTypeSizeInBits(LHS->getType()) <
10576       getTypeSizeInBits(FoundLHS->getType())) {
10577     // For unsigned and equality predicates, try to prove that both found
10578     // operands fit into narrow unsigned range. If so, try to prove facts in
10579     // narrow types.
10580     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10581       auto *NarrowType = LHS->getType();
10582       auto *WideType = FoundLHS->getType();
10583       auto BitWidth = getTypeSizeInBits(NarrowType);
10584       const SCEV *MaxValue = getZeroExtendExpr(
10585           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10586       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10587           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10588         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10589         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10590         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10591                                        TruncFoundRHS, Context))
10592           return true;
10593       }
10594     }
10595 
10596     if (LHS->getType()->isPointerTy())
10597       return false;
10598     if (CmpInst::isSigned(Pred)) {
10599       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10600       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10601     } else {
10602       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10603       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10604     }
10605   } else if (getTypeSizeInBits(LHS->getType()) >
10606       getTypeSizeInBits(FoundLHS->getType())) {
10607     if (FoundLHS->getType()->isPointerTy())
10608       return false;
10609     if (CmpInst::isSigned(FoundPred)) {
10610       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10611       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10612     } else {
10613       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10614       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10615     }
10616   }
10617   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10618                                     FoundRHS, Context);
10619 }
10620 
10621 bool ScalarEvolution::isImpliedCondBalancedTypes(
10622     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10623     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10624     const Instruction *Context) {
10625   assert(getTypeSizeInBits(LHS->getType()) ==
10626              getTypeSizeInBits(FoundLHS->getType()) &&
10627          "Types should be balanced!");
10628   // Canonicalize the query to match the way instcombine will have
10629   // canonicalized the comparison.
10630   if (SimplifyICmpOperands(Pred, LHS, RHS))
10631     if (LHS == RHS)
10632       return CmpInst::isTrueWhenEqual(Pred);
10633   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10634     if (FoundLHS == FoundRHS)
10635       return CmpInst::isFalseWhenEqual(FoundPred);
10636 
10637   // Check to see if we can make the LHS or RHS match.
10638   if (LHS == FoundRHS || RHS == FoundLHS) {
10639     if (isa<SCEVConstant>(RHS)) {
10640       std::swap(FoundLHS, FoundRHS);
10641       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10642     } else {
10643       std::swap(LHS, RHS);
10644       Pred = ICmpInst::getSwappedPredicate(Pred);
10645     }
10646   }
10647 
10648   // Check whether the found predicate is the same as the desired predicate.
10649   if (FoundPred == Pred)
10650     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10651 
10652   // Check whether swapping the found predicate makes it the same as the
10653   // desired predicate.
10654   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10655     // We can write the implication
10656     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10657     // using one of the following ways:
10658     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10659     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10660     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10661     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10662     // Forms 1. and 2. require swapping the operands of one condition. Don't
10663     // do this if it would break canonical constant/addrec ordering.
10664     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10665       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10666                                    Context);
10667     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10668       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10669 
10670     // Don't try to getNotSCEV pointers.
10671     if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy())
10672       return false;
10673 
10674     // There's no clear preference between forms 3. and 4., try both.
10675     return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10676                                  FoundLHS, FoundRHS, Context) ||
10677            isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10678                                  getNotSCEV(FoundRHS), Context);
10679   }
10680 
10681   // Unsigned comparison is the same as signed comparison when both the operands
10682   // are non-negative.
10683   if (CmpInst::isUnsigned(FoundPred) &&
10684       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10685       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10686     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10687 
10688   // Check if we can make progress by sharpening ranges.
10689   if (FoundPred == ICmpInst::ICMP_NE &&
10690       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10691 
10692     const SCEVConstant *C = nullptr;
10693     const SCEV *V = nullptr;
10694 
10695     if (isa<SCEVConstant>(FoundLHS)) {
10696       C = cast<SCEVConstant>(FoundLHS);
10697       V = FoundRHS;
10698     } else {
10699       C = cast<SCEVConstant>(FoundRHS);
10700       V = FoundLHS;
10701     }
10702 
10703     // The guarding predicate tells us that C != V. If the known range
10704     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10705     // range we consider has to correspond to same signedness as the
10706     // predicate we're interested in folding.
10707 
10708     APInt Min = ICmpInst::isSigned(Pred) ?
10709         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10710 
10711     if (Min == C->getAPInt()) {
10712       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10713       // This is true even if (Min + 1) wraps around -- in case of
10714       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10715 
10716       APInt SharperMin = Min + 1;
10717 
10718       switch (Pred) {
10719         case ICmpInst::ICMP_SGE:
10720         case ICmpInst::ICMP_UGE:
10721           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10722           // RHS, we're done.
10723           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10724                                     Context))
10725             return true;
10726           LLVM_FALLTHROUGH;
10727 
10728         case ICmpInst::ICMP_SGT:
10729         case ICmpInst::ICMP_UGT:
10730           // We know from the range information that (V `Pred` Min ||
10731           // V == Min).  We know from the guarding condition that !(V
10732           // == Min).  This gives us
10733           //
10734           //       V `Pred` Min || V == Min && !(V == Min)
10735           //   =>  V `Pred` Min
10736           //
10737           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10738 
10739           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10740                                     Context))
10741             return true;
10742           break;
10743 
10744         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10745         case ICmpInst::ICMP_SLE:
10746         case ICmpInst::ICMP_ULE:
10747           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10748                                     LHS, V, getConstant(SharperMin), Context))
10749             return true;
10750           LLVM_FALLTHROUGH;
10751 
10752         case ICmpInst::ICMP_SLT:
10753         case ICmpInst::ICMP_ULT:
10754           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10755                                     LHS, V, getConstant(Min), Context))
10756             return true;
10757           break;
10758 
10759         default:
10760           // No change
10761           break;
10762       }
10763     }
10764   }
10765 
10766   // Check whether the actual condition is beyond sufficient.
10767   if (FoundPred == ICmpInst::ICMP_EQ)
10768     if (ICmpInst::isTrueWhenEqual(Pred))
10769       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10770         return true;
10771   if (Pred == ICmpInst::ICMP_NE)
10772     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10773       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10774                                 Context))
10775         return true;
10776 
10777   // Otherwise assume the worst.
10778   return false;
10779 }
10780 
10781 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10782                                      const SCEV *&L, const SCEV *&R,
10783                                      SCEV::NoWrapFlags &Flags) {
10784   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10785   if (!AE || AE->getNumOperands() != 2)
10786     return false;
10787 
10788   L = AE->getOperand(0);
10789   R = AE->getOperand(1);
10790   Flags = AE->getNoWrapFlags();
10791   return true;
10792 }
10793 
10794 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10795                                                            const SCEV *Less) {
10796   // We avoid subtracting expressions here because this function is usually
10797   // fairly deep in the call stack (i.e. is called many times).
10798 
10799   // X - X = 0.
10800   if (More == Less)
10801     return APInt(getTypeSizeInBits(More->getType()), 0);
10802 
10803   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10804     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10805     const auto *MAR = cast<SCEVAddRecExpr>(More);
10806 
10807     if (LAR->getLoop() != MAR->getLoop())
10808       return None;
10809 
10810     // We look at affine expressions only; not for correctness but to keep
10811     // getStepRecurrence cheap.
10812     if (!LAR->isAffine() || !MAR->isAffine())
10813       return None;
10814 
10815     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10816       return None;
10817 
10818     Less = LAR->getStart();
10819     More = MAR->getStart();
10820 
10821     // fall through
10822   }
10823 
10824   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10825     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10826     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10827     return M - L;
10828   }
10829 
10830   SCEV::NoWrapFlags Flags;
10831   const SCEV *LLess = nullptr, *RLess = nullptr;
10832   const SCEV *LMore = nullptr, *RMore = nullptr;
10833   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10834   // Compare (X + C1) vs X.
10835   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10836     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10837       if (RLess == More)
10838         return -(C1->getAPInt());
10839 
10840   // Compare X vs (X + C2).
10841   if (splitBinaryAdd(More, LMore, RMore, Flags))
10842     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10843       if (RMore == Less)
10844         return C2->getAPInt();
10845 
10846   // Compare (X + C1) vs (X + C2).
10847   if (C1 && C2 && RLess == RMore)
10848     return C2->getAPInt() - C1->getAPInt();
10849 
10850   return None;
10851 }
10852 
10853 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10854     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10855     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10856   // Try to recognize the following pattern:
10857   //
10858   //   FoundRHS = ...
10859   // ...
10860   // loop:
10861   //   FoundLHS = {Start,+,W}
10862   // context_bb: // Basic block from the same loop
10863   //   known(Pred, FoundLHS, FoundRHS)
10864   //
10865   // If some predicate is known in the context of a loop, it is also known on
10866   // each iteration of this loop, including the first iteration. Therefore, in
10867   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10868   // prove the original pred using this fact.
10869   if (!Context)
10870     return false;
10871   const BasicBlock *ContextBB = Context->getParent();
10872   // Make sure AR varies in the context block.
10873   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10874     const Loop *L = AR->getLoop();
10875     // Make sure that context belongs to the loop and executes on 1st iteration
10876     // (if it ever executes at all).
10877     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10878       return false;
10879     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10880       return false;
10881     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10882   }
10883 
10884   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10885     const Loop *L = AR->getLoop();
10886     // Make sure that context belongs to the loop and executes on 1st iteration
10887     // (if it ever executes at all).
10888     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10889       return false;
10890     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10891       return false;
10892     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10893   }
10894 
10895   return false;
10896 }
10897 
10898 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10899     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10900     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10901   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10902     return false;
10903 
10904   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10905   if (!AddRecLHS)
10906     return false;
10907 
10908   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10909   if (!AddRecFoundLHS)
10910     return false;
10911 
10912   // We'd like to let SCEV reason about control dependencies, so we constrain
10913   // both the inequalities to be about add recurrences on the same loop.  This
10914   // way we can use isLoopEntryGuardedByCond later.
10915 
10916   const Loop *L = AddRecFoundLHS->getLoop();
10917   if (L != AddRecLHS->getLoop())
10918     return false;
10919 
10920   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10921   //
10922   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10923   //                                                                  ... (2)
10924   //
10925   // Informal proof for (2), assuming (1) [*]:
10926   //
10927   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10928   //
10929   // Then
10930   //
10931   //       FoundLHS s< FoundRHS s< INT_MIN - C
10932   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10933   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10934   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10935   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10936   // <=>  FoundLHS + C s< FoundRHS + C
10937   //
10938   // [*]: (1) can be proved by ruling out overflow.
10939   //
10940   // [**]: This can be proved by analyzing all the four possibilities:
10941   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10942   //    (A s>= 0, B s>= 0).
10943   //
10944   // Note:
10945   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10946   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10947   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10948   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10949   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10950   // C)".
10951 
10952   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10953   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10954   if (!LDiff || !RDiff || *LDiff != *RDiff)
10955     return false;
10956 
10957   if (LDiff->isMinValue())
10958     return true;
10959 
10960   APInt FoundRHSLimit;
10961 
10962   if (Pred == CmpInst::ICMP_ULT) {
10963     FoundRHSLimit = -(*RDiff);
10964   } else {
10965     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10966     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10967   }
10968 
10969   // Try to prove (1) or (2), as needed.
10970   return isAvailableAtLoopEntry(FoundRHS, L) &&
10971          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10972                                   getConstant(FoundRHSLimit));
10973 }
10974 
10975 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10976                                         const SCEV *LHS, const SCEV *RHS,
10977                                         const SCEV *FoundLHS,
10978                                         const SCEV *FoundRHS, unsigned Depth) {
10979   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10980 
10981   auto ClearOnExit = make_scope_exit([&]() {
10982     if (LPhi) {
10983       bool Erased = PendingMerges.erase(LPhi);
10984       assert(Erased && "Failed to erase LPhi!");
10985       (void)Erased;
10986     }
10987     if (RPhi) {
10988       bool Erased = PendingMerges.erase(RPhi);
10989       assert(Erased && "Failed to erase RPhi!");
10990       (void)Erased;
10991     }
10992   });
10993 
10994   // Find respective Phis and check that they are not being pending.
10995   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10996     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10997       if (!PendingMerges.insert(Phi).second)
10998         return false;
10999       LPhi = Phi;
11000     }
11001   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11002     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11003       // If we detect a loop of Phi nodes being processed by this method, for
11004       // example:
11005       //
11006       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11007       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11008       //
11009       // we don't want to deal with a case that complex, so return conservative
11010       // answer false.
11011       if (!PendingMerges.insert(Phi).second)
11012         return false;
11013       RPhi = Phi;
11014     }
11015 
11016   // If none of LHS, RHS is a Phi, nothing to do here.
11017   if (!LPhi && !RPhi)
11018     return false;
11019 
11020   // If there is a SCEVUnknown Phi we are interested in, make it left.
11021   if (!LPhi) {
11022     std::swap(LHS, RHS);
11023     std::swap(FoundLHS, FoundRHS);
11024     std::swap(LPhi, RPhi);
11025     Pred = ICmpInst::getSwappedPredicate(Pred);
11026   }
11027 
11028   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11029   const BasicBlock *LBB = LPhi->getParent();
11030   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11031 
11032   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11033     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11034            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11035            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11036   };
11037 
11038   if (RPhi && RPhi->getParent() == LBB) {
11039     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11040     // If we compare two Phis from the same block, and for each entry block
11041     // the predicate is true for incoming values from this block, then the
11042     // predicate is also true for the Phis.
11043     for (const BasicBlock *IncBB : predecessors(LBB)) {
11044       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11045       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11046       if (!ProvedEasily(L, R))
11047         return false;
11048     }
11049   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11050     // Case two: RHS is also a Phi from the same basic block, and it is an
11051     // AddRec. It means that there is a loop which has both AddRec and Unknown
11052     // PHIs, for it we can compare incoming values of AddRec from above the loop
11053     // and latch with their respective incoming values of LPhi.
11054     // TODO: Generalize to handle loops with many inputs in a header.
11055     if (LPhi->getNumIncomingValues() != 2) return false;
11056 
11057     auto *RLoop = RAR->getLoop();
11058     auto *Predecessor = RLoop->getLoopPredecessor();
11059     assert(Predecessor && "Loop with AddRec with no predecessor?");
11060     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11061     if (!ProvedEasily(L1, RAR->getStart()))
11062       return false;
11063     auto *Latch = RLoop->getLoopLatch();
11064     assert(Latch && "Loop with AddRec with no latch?");
11065     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11066     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11067       return false;
11068   } else {
11069     // In all other cases go over inputs of LHS and compare each of them to RHS,
11070     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11071     // At this point RHS is either a non-Phi, or it is a Phi from some block
11072     // different from LBB.
11073     for (const BasicBlock *IncBB : predecessors(LBB)) {
11074       // Check that RHS is available in this block.
11075       if (!dominates(RHS, IncBB))
11076         return false;
11077       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11078       // Make sure L does not refer to a value from a potentially previous
11079       // iteration of a loop.
11080       if (!properlyDominates(L, IncBB))
11081         return false;
11082       if (!ProvedEasily(L, RHS))
11083         return false;
11084     }
11085   }
11086   return true;
11087 }
11088 
11089 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11090                                             const SCEV *LHS, const SCEV *RHS,
11091                                             const SCEV *FoundLHS,
11092                                             const SCEV *FoundRHS,
11093                                             const Instruction *Context) {
11094   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11095     return true;
11096 
11097   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11098     return true;
11099 
11100   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11101                                           Context))
11102     return true;
11103 
11104   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11105                                      FoundLHS, FoundRHS);
11106 }
11107 
11108 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11109 template <typename MinMaxExprType>
11110 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11111                                  const SCEV *Candidate) {
11112   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11113   if (!MinMaxExpr)
11114     return false;
11115 
11116   return is_contained(MinMaxExpr->operands(), Candidate);
11117 }
11118 
11119 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11120                                            ICmpInst::Predicate Pred,
11121                                            const SCEV *LHS, const SCEV *RHS) {
11122   // If both sides are affine addrecs for the same loop, with equal
11123   // steps, and we know the recurrences don't wrap, then we only
11124   // need to check the predicate on the starting values.
11125 
11126   if (!ICmpInst::isRelational(Pred))
11127     return false;
11128 
11129   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11130   if (!LAR)
11131     return false;
11132   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11133   if (!RAR)
11134     return false;
11135   if (LAR->getLoop() != RAR->getLoop())
11136     return false;
11137   if (!LAR->isAffine() || !RAR->isAffine())
11138     return false;
11139 
11140   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11141     return false;
11142 
11143   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11144                          SCEV::FlagNSW : SCEV::FlagNUW;
11145   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11146     return false;
11147 
11148   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11149 }
11150 
11151 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11152 /// expression?
11153 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11154                                         ICmpInst::Predicate Pred,
11155                                         const SCEV *LHS, const SCEV *RHS) {
11156   switch (Pred) {
11157   default:
11158     return false;
11159 
11160   case ICmpInst::ICMP_SGE:
11161     std::swap(LHS, RHS);
11162     LLVM_FALLTHROUGH;
11163   case ICmpInst::ICMP_SLE:
11164     return
11165         // min(A, ...) <= A
11166         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11167         // A <= max(A, ...)
11168         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11169 
11170   case ICmpInst::ICMP_UGE:
11171     std::swap(LHS, RHS);
11172     LLVM_FALLTHROUGH;
11173   case ICmpInst::ICMP_ULE:
11174     return
11175         // min(A, ...) <= A
11176         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11177         // A <= max(A, ...)
11178         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11179   }
11180 
11181   llvm_unreachable("covered switch fell through?!");
11182 }
11183 
11184 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11185                                              const SCEV *LHS, const SCEV *RHS,
11186                                              const SCEV *FoundLHS,
11187                                              const SCEV *FoundRHS,
11188                                              unsigned Depth) {
11189   assert(getTypeSizeInBits(LHS->getType()) ==
11190              getTypeSizeInBits(RHS->getType()) &&
11191          "LHS and RHS have different sizes?");
11192   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11193              getTypeSizeInBits(FoundRHS->getType()) &&
11194          "FoundLHS and FoundRHS have different sizes?");
11195   // We want to avoid hurting the compile time with analysis of too big trees.
11196   if (Depth > MaxSCEVOperationsImplicationDepth)
11197     return false;
11198 
11199   // We only want to work with GT comparison so far.
11200   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11201     Pred = CmpInst::getSwappedPredicate(Pred);
11202     std::swap(LHS, RHS);
11203     std::swap(FoundLHS, FoundRHS);
11204   }
11205 
11206   // For unsigned, try to reduce it to corresponding signed comparison.
11207   if (Pred == ICmpInst::ICMP_UGT)
11208     // We can replace unsigned predicate with its signed counterpart if all
11209     // involved values are non-negative.
11210     // TODO: We could have better support for unsigned.
11211     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11212       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11213       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11214       // use this fact to prove that LHS and RHS are non-negative.
11215       const SCEV *MinusOne = getMinusOne(LHS->getType());
11216       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11217                                 FoundRHS) &&
11218           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11219                                 FoundRHS))
11220         Pred = ICmpInst::ICMP_SGT;
11221     }
11222 
11223   if (Pred != ICmpInst::ICMP_SGT)
11224     return false;
11225 
11226   auto GetOpFromSExt = [&](const SCEV *S) {
11227     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11228       return Ext->getOperand();
11229     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11230     // the constant in some cases.
11231     return S;
11232   };
11233 
11234   // Acquire values from extensions.
11235   auto *OrigLHS = LHS;
11236   auto *OrigFoundLHS = FoundLHS;
11237   LHS = GetOpFromSExt(LHS);
11238   FoundLHS = GetOpFromSExt(FoundLHS);
11239 
11240   // Is the SGT predicate can be proved trivially or using the found context.
11241   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11242     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11243            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11244                                   FoundRHS, Depth + 1);
11245   };
11246 
11247   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11248     // We want to avoid creation of any new non-constant SCEV. Since we are
11249     // going to compare the operands to RHS, we should be certain that we don't
11250     // need any size extensions for this. So let's decline all cases when the
11251     // sizes of types of LHS and RHS do not match.
11252     // TODO: Maybe try to get RHS from sext to catch more cases?
11253     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11254       return false;
11255 
11256     // Should not overflow.
11257     if (!LHSAddExpr->hasNoSignedWrap())
11258       return false;
11259 
11260     auto *LL = LHSAddExpr->getOperand(0);
11261     auto *LR = LHSAddExpr->getOperand(1);
11262     auto *MinusOne = getMinusOne(RHS->getType());
11263 
11264     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11265     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11266       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11267     };
11268     // Try to prove the following rule:
11269     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11270     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11271     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11272       return true;
11273   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11274     Value *LL, *LR;
11275     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11276 
11277     using namespace llvm::PatternMatch;
11278 
11279     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11280       // Rules for division.
11281       // We are going to perform some comparisons with Denominator and its
11282       // derivative expressions. In general case, creating a SCEV for it may
11283       // lead to a complex analysis of the entire graph, and in particular it
11284       // can request trip count recalculation for the same loop. This would
11285       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11286       // this, we only want to create SCEVs that are constants in this section.
11287       // So we bail if Denominator is not a constant.
11288       if (!isa<ConstantInt>(LR))
11289         return false;
11290 
11291       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11292 
11293       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11294       // then a SCEV for the numerator already exists and matches with FoundLHS.
11295       auto *Numerator = getExistingSCEV(LL);
11296       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11297         return false;
11298 
11299       // Make sure that the numerator matches with FoundLHS and the denominator
11300       // is positive.
11301       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11302         return false;
11303 
11304       auto *DTy = Denominator->getType();
11305       auto *FRHSTy = FoundRHS->getType();
11306       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11307         // One of types is a pointer and another one is not. We cannot extend
11308         // them properly to a wider type, so let us just reject this case.
11309         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11310         // to avoid this check.
11311         return false;
11312 
11313       // Given that:
11314       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11315       auto *WTy = getWiderType(DTy, FRHSTy);
11316       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11317       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11318 
11319       // Try to prove the following rule:
11320       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11321       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11322       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11323       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11324       if (isKnownNonPositive(RHS) &&
11325           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11326         return true;
11327 
11328       // Try to prove the following rule:
11329       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11330       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11331       // If we divide it by Denominator > 2, then:
11332       // 1. If FoundLHS is negative, then the result is 0.
11333       // 2. If FoundLHS is non-negative, then the result is non-negative.
11334       // Anyways, the result is non-negative.
11335       auto *MinusOne = getMinusOne(WTy);
11336       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11337       if (isKnownNegative(RHS) &&
11338           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11339         return true;
11340     }
11341   }
11342 
11343   // If our expression contained SCEVUnknown Phis, and we split it down and now
11344   // need to prove something for them, try to prove the predicate for every
11345   // possible incoming values of those Phis.
11346   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11347     return true;
11348 
11349   return false;
11350 }
11351 
11352 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11353                                         const SCEV *LHS, const SCEV *RHS) {
11354   // zext x u<= sext x, sext x s<= zext x
11355   switch (Pred) {
11356   case ICmpInst::ICMP_SGE:
11357     std::swap(LHS, RHS);
11358     LLVM_FALLTHROUGH;
11359   case ICmpInst::ICMP_SLE: {
11360     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11361     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11362     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11363     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11364       return true;
11365     break;
11366   }
11367   case ICmpInst::ICMP_UGE:
11368     std::swap(LHS, RHS);
11369     LLVM_FALLTHROUGH;
11370   case ICmpInst::ICMP_ULE: {
11371     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11372     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11373     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11374     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11375       return true;
11376     break;
11377   }
11378   default:
11379     break;
11380   };
11381   return false;
11382 }
11383 
11384 bool
11385 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11386                                            const SCEV *LHS, const SCEV *RHS) {
11387   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11388          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11389          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11390          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11391          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11392 }
11393 
11394 bool
11395 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11396                                              const SCEV *LHS, const SCEV *RHS,
11397                                              const SCEV *FoundLHS,
11398                                              const SCEV *FoundRHS) {
11399   switch (Pred) {
11400   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11401   case ICmpInst::ICMP_EQ:
11402   case ICmpInst::ICMP_NE:
11403     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11404       return true;
11405     break;
11406   case ICmpInst::ICMP_SLT:
11407   case ICmpInst::ICMP_SLE:
11408     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11409         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11410       return true;
11411     break;
11412   case ICmpInst::ICMP_SGT:
11413   case ICmpInst::ICMP_SGE:
11414     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11415         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11416       return true;
11417     break;
11418   case ICmpInst::ICMP_ULT:
11419   case ICmpInst::ICMP_ULE:
11420     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11421         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11422       return true;
11423     break;
11424   case ICmpInst::ICMP_UGT:
11425   case ICmpInst::ICMP_UGE:
11426     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11427         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11428       return true;
11429     break;
11430   }
11431 
11432   // Maybe it can be proved via operations?
11433   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11434     return true;
11435 
11436   return false;
11437 }
11438 
11439 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11440                                                      const SCEV *LHS,
11441                                                      const SCEV *RHS,
11442                                                      const SCEV *FoundLHS,
11443                                                      const SCEV *FoundRHS) {
11444   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11445     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11446     // reduce the compile time impact of this optimization.
11447     return false;
11448 
11449   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11450   if (!Addend)
11451     return false;
11452 
11453   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11454 
11455   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11456   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11457   ConstantRange FoundLHSRange =
11458       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11459 
11460   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11461   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11462 
11463   // We can also compute the range of values for `LHS` that satisfy the
11464   // consequent, "`LHS` `Pred` `RHS`":
11465   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11466   // The antecedent implies the consequent if every value of `LHS` that
11467   // satisfies the antecedent also satisfies the consequent.
11468   return LHSRange.icmp(Pred, ConstRHS);
11469 }
11470 
11471 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11472                                         bool IsSigned) {
11473   assert(isKnownPositive(Stride) && "Positive stride expected!");
11474 
11475   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11476   const SCEV *One = getOne(Stride->getType());
11477 
11478   if (IsSigned) {
11479     APInt MaxRHS = getSignedRangeMax(RHS);
11480     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11481     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11482 
11483     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11484     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11485   }
11486 
11487   APInt MaxRHS = getUnsignedRangeMax(RHS);
11488   APInt MaxValue = APInt::getMaxValue(BitWidth);
11489   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11490 
11491   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11492   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11493 }
11494 
11495 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11496                                         bool IsSigned) {
11497 
11498   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11499   const SCEV *One = getOne(Stride->getType());
11500 
11501   if (IsSigned) {
11502     APInt MinRHS = getSignedRangeMin(RHS);
11503     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11504     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11505 
11506     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11507     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11508   }
11509 
11510   APInt MinRHS = getUnsignedRangeMin(RHS);
11511   APInt MinValue = APInt::getMinValue(BitWidth);
11512   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11513 
11514   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11515   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11516 }
11517 
11518 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11519   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11520   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11521   // expression fixes the case of N=0.
11522   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11523   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11524   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11525 }
11526 
11527 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11528                                                     const SCEV *Stride,
11529                                                     const SCEV *End,
11530                                                     unsigned BitWidth,
11531                                                     bool IsSigned) {
11532   // The logic in this function assumes we can represent a positive stride.
11533   // If we can't, the backedge-taken count must be zero.
11534   if (IsSigned && BitWidth == 1)
11535     return getZero(Stride->getType());
11536 
11537   // Calculate the maximum backedge count based on the range of values
11538   // permitted by Start, End, and Stride.
11539   APInt MinStart =
11540       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11541 
11542   APInt MinStride =
11543       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11544 
11545   // We assume either the stride is positive, or the backedge-taken count
11546   // is zero. So force StrideForMaxBECount to be at least one.
11547   APInt One(BitWidth, 1);
11548   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11549                                        : APIntOps::umax(One, MinStride);
11550 
11551   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11552                             : APInt::getMaxValue(BitWidth);
11553   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11554 
11555   // Although End can be a MAX expression we estimate MaxEnd considering only
11556   // the case End = RHS of the loop termination condition. This is safe because
11557   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11558   // taken count.
11559   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11560                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11561 
11562   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11563   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11564                     : APIntOps::umax(MaxEnd, MinStart);
11565 
11566   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11567                          getConstant(StrideForMaxBECount) /* Step */);
11568 }
11569 
11570 ScalarEvolution::ExitLimit
11571 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11572                                   const Loop *L, bool IsSigned,
11573                                   bool ControlsExit, bool AllowPredicates) {
11574   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11575 
11576   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11577   bool PredicatedIV = false;
11578 
11579   if (!IV && AllowPredicates) {
11580     // Try to make this an AddRec using runtime tests, in the first X
11581     // iterations of this loop, where X is the SCEV expression found by the
11582     // algorithm below.
11583     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11584     PredicatedIV = true;
11585   }
11586 
11587   // Avoid weird loops
11588   if (!IV || IV->getLoop() != L || !IV->isAffine())
11589     return getCouldNotCompute();
11590 
11591   // A precondition of this method is that the condition being analyzed
11592   // reaches an exiting branch which dominates the latch.  Given that, we can
11593   // assume that an increment which violates the nowrap specification and
11594   // produces poison must cause undefined behavior when the resulting poison
11595   // value is branched upon and thus we can conclude that the backedge is
11596   // taken no more often than would be required to produce that poison value.
11597   // Note that a well defined loop can exit on the iteration which violates
11598   // the nowrap specification if there is another exit (either explicit or
11599   // implicit/exceptional) which causes the loop to execute before the
11600   // exiting instruction we're analyzing would trigger UB.
11601   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11602   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11603   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11604 
11605   const SCEV *Stride = IV->getStepRecurrence(*this);
11606 
11607   bool PositiveStride = isKnownPositive(Stride);
11608 
11609   // Avoid negative or zero stride values.
11610   if (!PositiveStride) {
11611     // We can compute the correct backedge taken count for loops with unknown
11612     // strides if we can prove that the loop is not an infinite loop with side
11613     // effects. Here's the loop structure we are trying to handle -
11614     //
11615     // i = start
11616     // do {
11617     //   A[i] = i;
11618     //   i += s;
11619     // } while (i < end);
11620     //
11621     // The backedge taken count for such loops is evaluated as -
11622     // (max(end, start + stride) - start - 1) /u stride
11623     //
11624     // The additional preconditions that we need to check to prove correctness
11625     // of the above formula is as follows -
11626     //
11627     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11628     //    NoWrap flag).
11629     // b) loop is single exit with no side effects.
11630     //
11631     //
11632     // Precondition a) implies that if the stride is negative, this is a single
11633     // trip loop. The backedge taken count formula reduces to zero in this case.
11634     //
11635     // Precondition b) implies that if rhs is invariant in L, then unknown
11636     // stride being zero means the backedge can't be taken without UB.
11637     //
11638     // The positive stride case is the same as isKnownPositive(Stride) returning
11639     // true (original behavior of the function).
11640     //
11641     // We want to make sure that the stride is truly unknown as there are edge
11642     // cases where ScalarEvolution propagates no wrap flags to the
11643     // post-increment/decrement IV even though the increment/decrement operation
11644     // itself is wrapping. The computed backedge taken count may be wrong in
11645     // such cases. This is prevented by checking that the stride is not known to
11646     // be either positive or non-positive. For example, no wrap flags are
11647     // propagated to the post-increment IV of this loop with a trip count of 2 -
11648     //
11649     // unsigned char i;
11650     // for(i=127; i<128; i+=129)
11651     //   A[i] = i;
11652     //
11653     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11654         !loopIsFiniteByAssumption(L))
11655       return getCouldNotCompute();
11656 
11657     if (!isKnownNonZero(Stride)) {
11658       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11659       // if it might eventually be greater than start and if so, on which
11660       // iteration.  We can't even produce a useful upper bound.
11661       if (!isLoopInvariant(RHS, L))
11662         return getCouldNotCompute();
11663 
11664       // We allow a potentially zero stride, but we need to divide by stride
11665       // below.  Since the loop can't be infinite and this check must control
11666       // the sole exit, we can infer the exit must be taken on the first
11667       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11668       // we know the numerator in the divides below must be zero, so we can
11669       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11670       // and produce the right result.
11671       // FIXME: Handle the case where Stride is poison?
11672       auto wouldZeroStrideBeUB = [&]() {
11673         // Proof by contradiction.  Suppose the stride were zero.  If we can
11674         // prove that the backedge *is* taken on the first iteration, then since
11675         // we know this condition controls the sole exit, we must have an
11676         // infinite loop.  We can't have a (well defined) infinite loop per
11677         // check just above.
11678         // Note: The (Start - Stride) term is used to get the start' term from
11679         // (start' + stride,+,stride). Remember that we only care about the
11680         // result of this expression when stride == 0 at runtime.
11681         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11682         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11683       };
11684       if (!wouldZeroStrideBeUB()) {
11685         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11686       }
11687     }
11688   } else if (!Stride->isOne() && !NoWrap) {
11689     auto isUBOnWrap = [&]() {
11690       // Can we prove this loop *must* be UB if overflow of IV occurs?
11691       // Reasoning goes as follows:
11692       // * Suppose the IV did self wrap.
11693       // * If Stride evenly divides the iteration space, then once wrap
11694       //   occurs, the loop must revisit the same values.
11695       // * We know that RHS is invariant, and that none of those values
11696       //   caused this exit to be taken previously.  Thus, this exit is
11697       //   dynamically dead.
11698       // * If this is the sole exit, then a dead exit implies the loop
11699       //   must be infinite if there are no abnormal exits.
11700       // * If the loop were infinite, then it must either not be mustprogress
11701       //   or have side effects. Otherwise, it must be UB.
11702       // * It can't (by assumption), be UB so we have contradicted our
11703       //   premise and can conclude the IV did not in fact self-wrap.
11704       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11705       // follows trivially from the fact that every (un)signed-wrapped, but
11706       // not self-wrapped value must be LT than the last value before
11707       // (un)signed wrap.  Since we know that last value didn't exit, nor
11708       // will any smaller one.
11709 
11710       if (!isLoopInvariant(RHS, L))
11711         return false;
11712 
11713       auto *StrideC = dyn_cast<SCEVConstant>(Stride);
11714       if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11715         return false;
11716 
11717       if (!ControlsExit || !loopHasNoAbnormalExits(L))
11718         return false;
11719 
11720       return loopIsFiniteByAssumption(L);
11721     };
11722 
11723     // Avoid proven overflow cases: this will ensure that the backedge taken
11724     // count will not generate any unsigned overflow. Relaxed no-overflow
11725     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11726     // undefined behaviors like the case of C language.
11727     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11728       return getCouldNotCompute();
11729   }
11730 
11731   // On all paths just preceeding, we established the following invariant:
11732   //   IV can be assumed not to overflow up to and including the exiting
11733   //   iteration.  We proved this in one of two ways:
11734   //   1) We can show overflow doesn't occur before the exiting iteration
11735   //      1a) canIVOverflowOnLT, and b) step of one
11736   //   2) We can show that if overflow occurs, the loop must execute UB
11737   //      before any possible exit.
11738   // Note that we have not yet proved RHS invariant (in general).
11739 
11740   const SCEV *Start = IV->getStart();
11741 
11742   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11743   // Use integer-typed versions for actual computation.
11744   const SCEV *OrigStart = Start;
11745   const SCEV *OrigRHS = RHS;
11746   if (Start->getType()->isPointerTy()) {
11747     Start = getLosslessPtrToIntExpr(Start);
11748     if (isa<SCEVCouldNotCompute>(Start))
11749       return Start;
11750   }
11751   if (RHS->getType()->isPointerTy()) {
11752     RHS = getLosslessPtrToIntExpr(RHS);
11753     if (isa<SCEVCouldNotCompute>(RHS))
11754       return RHS;
11755   }
11756 
11757   // When the RHS is not invariant, we do not know the end bound of the loop and
11758   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11759   // calculate the MaxBECount, given the start, stride and max value for the end
11760   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11761   // checked above).
11762   if (!isLoopInvariant(RHS, L)) {
11763     const SCEV *MaxBECount = computeMaxBECountForLT(
11764         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11765     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11766                      false /*MaxOrZero*/, Predicates);
11767   }
11768 
11769   // We use the expression (max(End,Start)-Start)/Stride to describe the
11770   // backedge count, as if the backedge is taken at least once max(End,Start)
11771   // is End and so the result is as above, and if not max(End,Start) is Start
11772   // so we get a backedge count of zero.
11773   const SCEV *BECount = nullptr;
11774   auto *StartMinusStride = getMinusSCEV(OrigStart, Stride);
11775   // Can we prove (max(RHS,Start) > Start - Stride?
11776   if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) &&
11777       isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) {
11778     // In this case, we can use a refined formula for computing backedge taken
11779     // count.  The general formula remains:
11780     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11781     // We want to use the alternate formula:
11782     //   "((End - 1) - (Start - Stride)) /u Stride"
11783     // Let's do a quick case analysis to show these are equivalent under
11784     // our precondition that max(RHS,Start) > Start - Stride.
11785     // * For RHS <= Start, the backedge-taken count must be zero.
11786     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11787     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11788     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11789     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11790     //     this to the stride of 1 case.
11791     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11792     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11793     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11794     //   "((RHS - (Start - Stride) - 1) /u Stride".
11795     //   Our preconditions trivially imply no overflow in that form.
11796     const SCEV *MinusOne = getMinusOne(Stride->getType());
11797     const SCEV *Numerator =
11798         getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride);
11799     if (!isa<SCEVCouldNotCompute>(Numerator)) {
11800       BECount = getUDivExpr(Numerator, Stride);
11801     }
11802   }
11803 
11804   const SCEV *BECountIfBackedgeTaken = nullptr;
11805   if (!BECount) {
11806     auto canProveRHSGreaterThanEqualStart = [&]() {
11807       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11808       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11809         return true;
11810 
11811       // (RHS > Start - 1) implies RHS >= Start.
11812       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11813       //   "Start - 1" doesn't overflow.
11814       // * For signed comparison, if Start - 1 does overflow, it's equal
11815       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11816       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11817       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11818       //
11819       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11820       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11821       auto *StartMinusOne = getAddExpr(OrigStart,
11822                                        getMinusOne(OrigStart->getType()));
11823       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11824     };
11825 
11826     // If we know that RHS >= Start in the context of loop, then we know that
11827     // max(RHS, Start) = RHS at this point.
11828     const SCEV *End;
11829     if (canProveRHSGreaterThanEqualStart()) {
11830       End = RHS;
11831     } else {
11832       // If RHS < Start, the backedge will be taken zero times.  So in
11833       // general, we can write the backedge-taken count as:
11834       //
11835       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11836       //
11837       // We convert it to the following to make it more convenient for SCEV:
11838       //
11839       //     ceil(max(RHS, Start) - Start) / Stride
11840       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11841 
11842       // See what would happen if we assume the backedge is taken. This is
11843       // used to compute MaxBECount.
11844       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11845     }
11846 
11847     // At this point, we know:
11848     //
11849     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11850     // 2. The index variable doesn't overflow.
11851     //
11852     // Therefore, we know N exists such that
11853     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11854     // doesn't overflow.
11855     //
11856     // Using this information, try to prove whether the addition in
11857     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11858     const SCEV *One = getOne(Stride->getType());
11859     bool MayAddOverflow = [&] {
11860       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11861         if (StrideC->getAPInt().isPowerOf2()) {
11862           // Suppose Stride is a power of two, and Start/End are unsigned
11863           // integers.  Let UMAX be the largest representable unsigned
11864           // integer.
11865           //
11866           // By the preconditions of this function, we know
11867           // "(Start + Stride * N) >= End", and this doesn't overflow.
11868           // As a formula:
11869           //
11870           //   End <= (Start + Stride * N) <= UMAX
11871           //
11872           // Subtracting Start from all the terms:
11873           //
11874           //   End - Start <= Stride * N <= UMAX - Start
11875           //
11876           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11877           //
11878           //   End - Start <= Stride * N <= UMAX
11879           //
11880           // Stride * N is a multiple of Stride. Therefore,
11881           //
11882           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11883           //
11884           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11885           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11886           //
11887           //   End - Start <= Stride * N <= UMAX - Stride - 1
11888           //
11889           // Dropping the middle term:
11890           //
11891           //   End - Start <= UMAX - Stride - 1
11892           //
11893           // Adding Stride - 1 to both sides:
11894           //
11895           //   (End - Start) + (Stride - 1) <= UMAX
11896           //
11897           // In other words, the addition doesn't have unsigned overflow.
11898           //
11899           // A similar proof works if we treat Start/End as signed values.
11900           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11901           // use signed max instead of unsigned max. Note that we're trying
11902           // to prove a lack of unsigned overflow in either case.
11903           return false;
11904         }
11905       }
11906       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11907         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11908         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11909         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11910         //
11911         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11912         return false;
11913       }
11914       return true;
11915     }();
11916 
11917     const SCEV *Delta = getMinusSCEV(End, Start);
11918     if (!MayAddOverflow) {
11919       // floor((D + (S - 1)) / S)
11920       // We prefer this formulation if it's legal because it's fewer operations.
11921       BECount =
11922           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11923     } else {
11924       BECount = getUDivCeilSCEV(Delta, Stride);
11925     }
11926   }
11927 
11928   const SCEV *MaxBECount;
11929   bool MaxOrZero = false;
11930   if (isa<SCEVConstant>(BECount)) {
11931     MaxBECount = BECount;
11932   } else if (BECountIfBackedgeTaken &&
11933              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11934     // If we know exactly how many times the backedge will be taken if it's
11935     // taken at least once, then the backedge count will either be that or
11936     // zero.
11937     MaxBECount = BECountIfBackedgeTaken;
11938     MaxOrZero = true;
11939   } else {
11940     MaxBECount = computeMaxBECountForLT(
11941         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11942   }
11943 
11944   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11945       !isa<SCEVCouldNotCompute>(BECount))
11946     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11947 
11948   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11949 }
11950 
11951 ScalarEvolution::ExitLimit
11952 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11953                                      const Loop *L, bool IsSigned,
11954                                      bool ControlsExit, bool AllowPredicates) {
11955   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11956   // We handle only IV > Invariant
11957   if (!isLoopInvariant(RHS, L))
11958     return getCouldNotCompute();
11959 
11960   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11961   if (!IV && AllowPredicates)
11962     // Try to make this an AddRec using runtime tests, in the first X
11963     // iterations of this loop, where X is the SCEV expression found by the
11964     // algorithm below.
11965     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11966 
11967   // Avoid weird loops
11968   if (!IV || IV->getLoop() != L || !IV->isAffine())
11969     return getCouldNotCompute();
11970 
11971   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11972   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11973   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11974 
11975   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11976 
11977   // Avoid negative or zero stride values
11978   if (!isKnownPositive(Stride))
11979     return getCouldNotCompute();
11980 
11981   // Avoid proven overflow cases: this will ensure that the backedge taken count
11982   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11983   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11984   // behaviors like the case of C language.
11985   if (!Stride->isOne() && !NoWrap)
11986     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
11987       return getCouldNotCompute();
11988 
11989   const SCEV *Start = IV->getStart();
11990   const SCEV *End = RHS;
11991   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11992     // If we know that Start >= RHS in the context of loop, then we know that
11993     // min(RHS, Start) = RHS at this point.
11994     if (isLoopEntryGuardedByCond(
11995             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11996       End = RHS;
11997     else
11998       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11999   }
12000 
12001   if (Start->getType()->isPointerTy()) {
12002     Start = getLosslessPtrToIntExpr(Start);
12003     if (isa<SCEVCouldNotCompute>(Start))
12004       return Start;
12005   }
12006   if (End->getType()->isPointerTy()) {
12007     End = getLosslessPtrToIntExpr(End);
12008     if (isa<SCEVCouldNotCompute>(End))
12009       return End;
12010   }
12011 
12012   // Compute ((Start - End) + (Stride - 1)) / Stride.
12013   // FIXME: This can overflow. Holding off on fixing this for now;
12014   // howManyGreaterThans will hopefully be gone soon.
12015   const SCEV *One = getOne(Stride->getType());
12016   const SCEV *BECount = getUDivExpr(
12017       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12018 
12019   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12020                             : getUnsignedRangeMax(Start);
12021 
12022   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12023                              : getUnsignedRangeMin(Stride);
12024 
12025   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12026   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12027                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12028 
12029   // Although End can be a MIN expression we estimate MinEnd considering only
12030   // the case End = RHS. This is safe because in the other case (Start - End)
12031   // is zero, leading to a zero maximum backedge taken count.
12032   APInt MinEnd =
12033     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12034              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12035 
12036   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12037                                ? BECount
12038                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12039                                                  getConstant(MinStride));
12040 
12041   if (isa<SCEVCouldNotCompute>(MaxBECount))
12042     MaxBECount = BECount;
12043 
12044   return ExitLimit(BECount, MaxBECount, false, Predicates);
12045 }
12046 
12047 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12048                                                     ScalarEvolution &SE) const {
12049   if (Range.isFullSet())  // Infinite loop.
12050     return SE.getCouldNotCompute();
12051 
12052   // If the start is a non-zero constant, shift the range to simplify things.
12053   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12054     if (!SC->getValue()->isZero()) {
12055       SmallVector<const SCEV *, 4> Operands(operands());
12056       Operands[0] = SE.getZero(SC->getType());
12057       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12058                                              getNoWrapFlags(FlagNW));
12059       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12060         return ShiftedAddRec->getNumIterationsInRange(
12061             Range.subtract(SC->getAPInt()), SE);
12062       // This is strange and shouldn't happen.
12063       return SE.getCouldNotCompute();
12064     }
12065 
12066   // The only time we can solve this is when we have all constant indices.
12067   // Otherwise, we cannot determine the overflow conditions.
12068   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12069     return SE.getCouldNotCompute();
12070 
12071   // Okay at this point we know that all elements of the chrec are constants and
12072   // that the start element is zero.
12073 
12074   // First check to see if the range contains zero.  If not, the first
12075   // iteration exits.
12076   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12077   if (!Range.contains(APInt(BitWidth, 0)))
12078     return SE.getZero(getType());
12079 
12080   if (isAffine()) {
12081     // If this is an affine expression then we have this situation:
12082     //   Solve {0,+,A} in Range  ===  Ax in Range
12083 
12084     // We know that zero is in the range.  If A is positive then we know that
12085     // the upper value of the range must be the first possible exit value.
12086     // If A is negative then the lower of the range is the last possible loop
12087     // value.  Also note that we already checked for a full range.
12088     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12089     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12090 
12091     // The exit value should be (End+A)/A.
12092     APInt ExitVal = (End + A).udiv(A);
12093     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12094 
12095     // Evaluate at the exit value.  If we really did fall out of the valid
12096     // range, then we computed our trip count, otherwise wrap around or other
12097     // things must have happened.
12098     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12099     if (Range.contains(Val->getValue()))
12100       return SE.getCouldNotCompute();  // Something strange happened
12101 
12102     // Ensure that the previous value is in the range.  This is a sanity check.
12103     assert(Range.contains(
12104            EvaluateConstantChrecAtConstant(this,
12105            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12106            "Linear scev computation is off in a bad way!");
12107     return SE.getConstant(ExitValue);
12108   }
12109 
12110   if (isQuadratic()) {
12111     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12112       return SE.getConstant(S.getValue());
12113   }
12114 
12115   return SE.getCouldNotCompute();
12116 }
12117 
12118 const SCEVAddRecExpr *
12119 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12120   assert(getNumOperands() > 1 && "AddRec with zero step?");
12121   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12122   // but in this case we cannot guarantee that the value returned will be an
12123   // AddRec because SCEV does not have a fixed point where it stops
12124   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12125   // may happen if we reach arithmetic depth limit while simplifying. So we
12126   // construct the returned value explicitly.
12127   SmallVector<const SCEV *, 3> Ops;
12128   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12129   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12130   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12131     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12132   // We know that the last operand is not a constant zero (otherwise it would
12133   // have been popped out earlier). This guarantees us that if the result has
12134   // the same last operand, then it will also not be popped out, meaning that
12135   // the returned value will be an AddRec.
12136   const SCEV *Last = getOperand(getNumOperands() - 1);
12137   assert(!Last->isZero() && "Recurrency with zero step?");
12138   Ops.push_back(Last);
12139   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12140                                                SCEV::FlagAnyWrap));
12141 }
12142 
12143 // Return true when S contains at least an undef value.
12144 static inline bool containsUndefs(const SCEV *S) {
12145   return SCEVExprContains(S, [](const SCEV *S) {
12146     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12147       return isa<UndefValue>(SU->getValue());
12148     return false;
12149   });
12150 }
12151 
12152 namespace {
12153 
12154 // Collect all steps of SCEV expressions.
12155 struct SCEVCollectStrides {
12156   ScalarEvolution &SE;
12157   SmallVectorImpl<const SCEV *> &Strides;
12158 
12159   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
12160       : SE(SE), Strides(S) {}
12161 
12162   bool follow(const SCEV *S) {
12163     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
12164       Strides.push_back(AR->getStepRecurrence(SE));
12165     return true;
12166   }
12167 
12168   bool isDone() const { return false; }
12169 };
12170 
12171 // Collect all SCEVUnknown and SCEVMulExpr expressions.
12172 struct SCEVCollectTerms {
12173   SmallVectorImpl<const SCEV *> &Terms;
12174 
12175   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
12176 
12177   bool follow(const SCEV *S) {
12178     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
12179         isa<SCEVSignExtendExpr>(S)) {
12180       if (!containsUndefs(S))
12181         Terms.push_back(S);
12182 
12183       // Stop recursion: once we collected a term, do not walk its operands.
12184       return false;
12185     }
12186 
12187     // Keep looking.
12188     return true;
12189   }
12190 
12191   bool isDone() const { return false; }
12192 };
12193 
12194 // Check if a SCEV contains an AddRecExpr.
12195 struct SCEVHasAddRec {
12196   bool &ContainsAddRec;
12197 
12198   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
12199     ContainsAddRec = false;
12200   }
12201 
12202   bool follow(const SCEV *S) {
12203     if (isa<SCEVAddRecExpr>(S)) {
12204       ContainsAddRec = true;
12205 
12206       // Stop recursion: once we collected a term, do not walk its operands.
12207       return false;
12208     }
12209 
12210     // Keep looking.
12211     return true;
12212   }
12213 
12214   bool isDone() const { return false; }
12215 };
12216 
12217 // Find factors that are multiplied with an expression that (possibly as a
12218 // subexpression) contains an AddRecExpr. In the expression:
12219 //
12220 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
12221 //
12222 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
12223 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
12224 // parameters as they form a product with an induction variable.
12225 //
12226 // This collector expects all array size parameters to be in the same MulExpr.
12227 // It might be necessary to later add support for collecting parameters that are
12228 // spread over different nested MulExpr.
12229 struct SCEVCollectAddRecMultiplies {
12230   SmallVectorImpl<const SCEV *> &Terms;
12231   ScalarEvolution &SE;
12232 
12233   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
12234       : Terms(T), SE(SE) {}
12235 
12236   bool follow(const SCEV *S) {
12237     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
12238       bool HasAddRec = false;
12239       SmallVector<const SCEV *, 0> Operands;
12240       for (auto Op : Mul->operands()) {
12241         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
12242         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
12243           Operands.push_back(Op);
12244         } else if (Unknown) {
12245           HasAddRec = true;
12246         } else {
12247           bool ContainsAddRec = false;
12248           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
12249           visitAll(Op, ContiansAddRec);
12250           HasAddRec |= ContainsAddRec;
12251         }
12252       }
12253       if (Operands.size() == 0)
12254         return true;
12255 
12256       if (!HasAddRec)
12257         return false;
12258 
12259       Terms.push_back(SE.getMulExpr(Operands));
12260       // Stop recursion: once we collected a term, do not walk its operands.
12261       return false;
12262     }
12263 
12264     // Keep looking.
12265     return true;
12266   }
12267 
12268   bool isDone() const { return false; }
12269 };
12270 
12271 } // end anonymous namespace
12272 
12273 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
12274 /// two places:
12275 ///   1) The strides of AddRec expressions.
12276 ///   2) Unknowns that are multiplied with AddRec expressions.
12277 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
12278     SmallVectorImpl<const SCEV *> &Terms) {
12279   SmallVector<const SCEV *, 4> Strides;
12280   SCEVCollectStrides StrideCollector(*this, Strides);
12281   visitAll(Expr, StrideCollector);
12282 
12283   LLVM_DEBUG({
12284     dbgs() << "Strides:\n";
12285     for (const SCEV *S : Strides)
12286       dbgs() << *S << "\n";
12287   });
12288 
12289   for (const SCEV *S : Strides) {
12290     SCEVCollectTerms TermCollector(Terms);
12291     visitAll(S, TermCollector);
12292   }
12293 
12294   LLVM_DEBUG({
12295     dbgs() << "Terms:\n";
12296     for (const SCEV *T : Terms)
12297       dbgs() << *T << "\n";
12298   });
12299 
12300   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
12301   visitAll(Expr, MulCollector);
12302 }
12303 
12304 static bool findArrayDimensionsRec(ScalarEvolution &SE,
12305                                    SmallVectorImpl<const SCEV *> &Terms,
12306                                    SmallVectorImpl<const SCEV *> &Sizes) {
12307   int Last = Terms.size() - 1;
12308   const SCEV *Step = Terms[Last];
12309 
12310   // End of recursion.
12311   if (Last == 0) {
12312     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
12313       SmallVector<const SCEV *, 2> Qs;
12314       for (const SCEV *Op : M->operands())
12315         if (!isa<SCEVConstant>(Op))
12316           Qs.push_back(Op);
12317 
12318       Step = SE.getMulExpr(Qs);
12319     }
12320 
12321     Sizes.push_back(Step);
12322     return true;
12323   }
12324 
12325   for (const SCEV *&Term : Terms) {
12326     // Normalize the terms before the next call to findArrayDimensionsRec.
12327     const SCEV *Q, *R;
12328     SCEVDivision::divide(SE, Term, Step, &Q, &R);
12329 
12330     // Bail out when GCD does not evenly divide one of the terms.
12331     if (!R->isZero())
12332       return false;
12333 
12334     Term = Q;
12335   }
12336 
12337   // Remove all SCEVConstants.
12338   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
12339 
12340   if (Terms.size() > 0)
12341     if (!findArrayDimensionsRec(SE, Terms, Sizes))
12342       return false;
12343 
12344   Sizes.push_back(Step);
12345   return true;
12346 }
12347 
12348 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
12349 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
12350   for (const SCEV *T : Terms)
12351     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
12352       return true;
12353 
12354   return false;
12355 }
12356 
12357 // Return the number of product terms in S.
12358 static inline int numberOfTerms(const SCEV *S) {
12359   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
12360     return Expr->getNumOperands();
12361   return 1;
12362 }
12363 
12364 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
12365   if (isa<SCEVConstant>(T))
12366     return nullptr;
12367 
12368   if (isa<SCEVUnknown>(T))
12369     return T;
12370 
12371   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
12372     SmallVector<const SCEV *, 2> Factors;
12373     for (const SCEV *Op : M->operands())
12374       if (!isa<SCEVConstant>(Op))
12375         Factors.push_back(Op);
12376 
12377     return SE.getMulExpr(Factors);
12378   }
12379 
12380   return T;
12381 }
12382 
12383 /// Return the size of an element read or written by Inst.
12384 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12385   Type *Ty;
12386   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12387     Ty = Store->getValueOperand()->getType();
12388   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12389     Ty = Load->getType();
12390   else
12391     return nullptr;
12392 
12393   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12394   return getSizeOfExpr(ETy, Ty);
12395 }
12396 
12397 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
12398                                           SmallVectorImpl<const SCEV *> &Sizes,
12399                                           const SCEV *ElementSize) {
12400   if (Terms.size() < 1 || !ElementSize)
12401     return;
12402 
12403   // Early return when Terms do not contain parameters: we do not delinearize
12404   // non parametric SCEVs.
12405   if (!containsParameters(Terms))
12406     return;
12407 
12408   LLVM_DEBUG({
12409     dbgs() << "Terms:\n";
12410     for (const SCEV *T : Terms)
12411       dbgs() << *T << "\n";
12412   });
12413 
12414   // Remove duplicates.
12415   array_pod_sort(Terms.begin(), Terms.end());
12416   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
12417 
12418   // Put larger terms first.
12419   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
12420     return numberOfTerms(LHS) > numberOfTerms(RHS);
12421   });
12422 
12423   // Try to divide all terms by the element size. If term is not divisible by
12424   // element size, proceed with the original term.
12425   for (const SCEV *&Term : Terms) {
12426     const SCEV *Q, *R;
12427     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
12428     if (!Q->isZero())
12429       Term = Q;
12430   }
12431 
12432   SmallVector<const SCEV *, 4> NewTerms;
12433 
12434   // Remove constant factors.
12435   for (const SCEV *T : Terms)
12436     if (const SCEV *NewT = removeConstantFactors(*this, T))
12437       NewTerms.push_back(NewT);
12438 
12439   LLVM_DEBUG({
12440     dbgs() << "Terms after sorting:\n";
12441     for (const SCEV *T : NewTerms)
12442       dbgs() << *T << "\n";
12443   });
12444 
12445   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
12446     Sizes.clear();
12447     return;
12448   }
12449 
12450   // The last element to be pushed into Sizes is the size of an element.
12451   Sizes.push_back(ElementSize);
12452 
12453   LLVM_DEBUG({
12454     dbgs() << "Sizes:\n";
12455     for (const SCEV *S : Sizes)
12456       dbgs() << *S << "\n";
12457   });
12458 }
12459 
12460 void ScalarEvolution::computeAccessFunctions(
12461     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
12462     SmallVectorImpl<const SCEV *> &Sizes) {
12463   // Early exit in case this SCEV is not an affine multivariate function.
12464   if (Sizes.empty())
12465     return;
12466 
12467   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
12468     if (!AR->isAffine())
12469       return;
12470 
12471   const SCEV *Res = Expr;
12472   int Last = Sizes.size() - 1;
12473   for (int i = Last; i >= 0; i--) {
12474     const SCEV *Q, *R;
12475     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
12476 
12477     LLVM_DEBUG({
12478       dbgs() << "Res: " << *Res << "\n";
12479       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
12480       dbgs() << "Res divided by Sizes[i]:\n";
12481       dbgs() << "Quotient: " << *Q << "\n";
12482       dbgs() << "Remainder: " << *R << "\n";
12483     });
12484 
12485     Res = Q;
12486 
12487     // Do not record the last subscript corresponding to the size of elements in
12488     // the array.
12489     if (i == Last) {
12490 
12491       // Bail out if the remainder is too complex.
12492       if (isa<SCEVAddRecExpr>(R)) {
12493         Subscripts.clear();
12494         Sizes.clear();
12495         return;
12496       }
12497 
12498       continue;
12499     }
12500 
12501     // Record the access function for the current subscript.
12502     Subscripts.push_back(R);
12503   }
12504 
12505   // Also push in last position the remainder of the last division: it will be
12506   // the access function of the innermost dimension.
12507   Subscripts.push_back(Res);
12508 
12509   std::reverse(Subscripts.begin(), Subscripts.end());
12510 
12511   LLVM_DEBUG({
12512     dbgs() << "Subscripts:\n";
12513     for (const SCEV *S : Subscripts)
12514       dbgs() << *S << "\n";
12515   });
12516 }
12517 
12518 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
12519 /// sizes of an array access. Returns the remainder of the delinearization that
12520 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
12521 /// the multiples of SCEV coefficients: that is a pattern matching of sub
12522 /// expressions in the stride and base of a SCEV corresponding to the
12523 /// computation of a GCD (greatest common divisor) of base and stride.  When
12524 /// SCEV->delinearize fails, it returns the SCEV unchanged.
12525 ///
12526 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
12527 ///
12528 ///  void foo(long n, long m, long o, double A[n][m][o]) {
12529 ///
12530 ///    for (long i = 0; i < n; i++)
12531 ///      for (long j = 0; j < m; j++)
12532 ///        for (long k = 0; k < o; k++)
12533 ///          A[i][j][k] = 1.0;
12534 ///  }
12535 ///
12536 /// the delinearization input is the following AddRec SCEV:
12537 ///
12538 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12539 ///
12540 /// From this SCEV, we are able to say that the base offset of the access is %A
12541 /// because it appears as an offset that does not divide any of the strides in
12542 /// the loops:
12543 ///
12544 ///  CHECK: Base offset: %A
12545 ///
12546 /// and then SCEV->delinearize determines the size of some of the dimensions of
12547 /// the array as these are the multiples by which the strides are happening:
12548 ///
12549 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12550 ///
12551 /// Note that the outermost dimension remains of UnknownSize because there are
12552 /// no strides that would help identifying the size of the last dimension: when
12553 /// the array has been statically allocated, one could compute the size of that
12554 /// dimension by dividing the overall size of the array by the size of the known
12555 /// dimensions: %m * %o * 8.
12556 ///
12557 /// Finally delinearize provides the access functions for the array reference
12558 /// that does correspond to A[i][j][k] of the above C testcase:
12559 ///
12560 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12561 ///
12562 /// The testcases are checking the output of a function pass:
12563 /// DelinearizationPass that walks through all loads and stores of a function
12564 /// asking for the SCEV of the memory access with respect to all enclosing
12565 /// loops, calling SCEV->delinearize on that and printing the results.
12566 void ScalarEvolution::delinearize(const SCEV *Expr,
12567                                  SmallVectorImpl<const SCEV *> &Subscripts,
12568                                  SmallVectorImpl<const SCEV *> &Sizes,
12569                                  const SCEV *ElementSize) {
12570   // First step: collect parametric terms.
12571   SmallVector<const SCEV *, 4> Terms;
12572   collectParametricTerms(Expr, Terms);
12573 
12574   if (Terms.empty())
12575     return;
12576 
12577   // Second step: find subscript sizes.
12578   findArrayDimensions(Terms, Sizes, ElementSize);
12579 
12580   if (Sizes.empty())
12581     return;
12582 
12583   // Third step: compute the access functions for each subscript.
12584   computeAccessFunctions(Expr, Subscripts, Sizes);
12585 
12586   if (Subscripts.empty())
12587     return;
12588 
12589   LLVM_DEBUG({
12590     dbgs() << "succeeded to delinearize " << *Expr << "\n";
12591     dbgs() << "ArrayDecl[UnknownSize]";
12592     for (const SCEV *S : Sizes)
12593       dbgs() << "[" << *S << "]";
12594 
12595     dbgs() << "\nArrayRef";
12596     for (const SCEV *S : Subscripts)
12597       dbgs() << "[" << *S << "]";
12598     dbgs() << "\n";
12599   });
12600 }
12601 
12602 bool ScalarEvolution::getIndexExpressionsFromGEP(
12603     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12604     SmallVectorImpl<int> &Sizes) {
12605   assert(Subscripts.empty() && Sizes.empty() &&
12606          "Expected output lists to be empty on entry to this function.");
12607   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12608   Type *Ty = nullptr;
12609   bool DroppedFirstDim = false;
12610   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12611     const SCEV *Expr = getSCEV(GEP->getOperand(i));
12612     if (i == 1) {
12613       Ty = GEP->getSourceElementType();
12614       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12615         if (Const->getValue()->isZero()) {
12616           DroppedFirstDim = true;
12617           continue;
12618         }
12619       Subscripts.push_back(Expr);
12620       continue;
12621     }
12622 
12623     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12624     if (!ArrayTy) {
12625       Subscripts.clear();
12626       Sizes.clear();
12627       return false;
12628     }
12629 
12630     Subscripts.push_back(Expr);
12631     if (!(DroppedFirstDim && i == 2))
12632       Sizes.push_back(ArrayTy->getNumElements());
12633 
12634     Ty = ArrayTy->getElementType();
12635   }
12636   return !Subscripts.empty();
12637 }
12638 
12639 //===----------------------------------------------------------------------===//
12640 //                   SCEVCallbackVH Class Implementation
12641 //===----------------------------------------------------------------------===//
12642 
12643 void ScalarEvolution::SCEVCallbackVH::deleted() {
12644   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12645   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12646     SE->ConstantEvolutionLoopExitValue.erase(PN);
12647   SE->eraseValueFromMap(getValPtr());
12648   // this now dangles!
12649 }
12650 
12651 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12652   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12653 
12654   // Forget all the expressions associated with users of the old value,
12655   // so that future queries will recompute the expressions using the new
12656   // value.
12657   Value *Old = getValPtr();
12658   SmallVector<User *, 16> Worklist(Old->users());
12659   SmallPtrSet<User *, 8> Visited;
12660   while (!Worklist.empty()) {
12661     User *U = Worklist.pop_back_val();
12662     // Deleting the Old value will cause this to dangle. Postpone
12663     // that until everything else is done.
12664     if (U == Old)
12665       continue;
12666     if (!Visited.insert(U).second)
12667       continue;
12668     if (PHINode *PN = dyn_cast<PHINode>(U))
12669       SE->ConstantEvolutionLoopExitValue.erase(PN);
12670     SE->eraseValueFromMap(U);
12671     llvm::append_range(Worklist, U->users());
12672   }
12673   // Delete the Old value.
12674   if (PHINode *PN = dyn_cast<PHINode>(Old))
12675     SE->ConstantEvolutionLoopExitValue.erase(PN);
12676   SE->eraseValueFromMap(Old);
12677   // this now dangles!
12678 }
12679 
12680 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12681   : CallbackVH(V), SE(se) {}
12682 
12683 //===----------------------------------------------------------------------===//
12684 //                   ScalarEvolution Class Implementation
12685 //===----------------------------------------------------------------------===//
12686 
12687 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12688                                  AssumptionCache &AC, DominatorTree &DT,
12689                                  LoopInfo &LI)
12690     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12691       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12692       LoopDispositions(64), BlockDispositions(64) {
12693   // To use guards for proving predicates, we need to scan every instruction in
12694   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12695   // time if the IR does not actually contain any calls to
12696   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12697   //
12698   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12699   // to _add_ guards to the module when there weren't any before, and wants
12700   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12701   // efficient in lieu of being smart in that rather obscure case.
12702 
12703   auto *GuardDecl = F.getParent()->getFunction(
12704       Intrinsic::getName(Intrinsic::experimental_guard));
12705   HasGuards = GuardDecl && !GuardDecl->use_empty();
12706 }
12707 
12708 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12709     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12710       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12711       ValueExprMap(std::move(Arg.ValueExprMap)),
12712       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12713       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12714       PendingMerges(std::move(Arg.PendingMerges)),
12715       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12716       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12717       PredicatedBackedgeTakenCounts(
12718           std::move(Arg.PredicatedBackedgeTakenCounts)),
12719       ConstantEvolutionLoopExitValue(
12720           std::move(Arg.ConstantEvolutionLoopExitValue)),
12721       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12722       LoopDispositions(std::move(Arg.LoopDispositions)),
12723       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12724       BlockDispositions(std::move(Arg.BlockDispositions)),
12725       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12726       SignedRanges(std::move(Arg.SignedRanges)),
12727       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12728       UniquePreds(std::move(Arg.UniquePreds)),
12729       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12730       LoopUsers(std::move(Arg.LoopUsers)),
12731       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12732       FirstUnknown(Arg.FirstUnknown) {
12733   Arg.FirstUnknown = nullptr;
12734 }
12735 
12736 ScalarEvolution::~ScalarEvolution() {
12737   // Iterate through all the SCEVUnknown instances and call their
12738   // destructors, so that they release their references to their values.
12739   for (SCEVUnknown *U = FirstUnknown; U;) {
12740     SCEVUnknown *Tmp = U;
12741     U = U->Next;
12742     Tmp->~SCEVUnknown();
12743   }
12744   FirstUnknown = nullptr;
12745 
12746   ExprValueMap.clear();
12747   ValueExprMap.clear();
12748   HasRecMap.clear();
12749   BackedgeTakenCounts.clear();
12750   PredicatedBackedgeTakenCounts.clear();
12751 
12752   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12753   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12754   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12755   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12756   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12757 }
12758 
12759 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12760   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12761 }
12762 
12763 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12764                           const Loop *L) {
12765   // Print all inner loops first
12766   for (Loop *I : *L)
12767     PrintLoopInfo(OS, SE, I);
12768 
12769   OS << "Loop ";
12770   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12771   OS << ": ";
12772 
12773   SmallVector<BasicBlock *, 8> ExitingBlocks;
12774   L->getExitingBlocks(ExitingBlocks);
12775   if (ExitingBlocks.size() != 1)
12776     OS << "<multiple exits> ";
12777 
12778   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12779     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12780   else
12781     OS << "Unpredictable backedge-taken count.\n";
12782 
12783   if (ExitingBlocks.size() > 1)
12784     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12785       OS << "  exit count for " << ExitingBlock->getName() << ": "
12786          << *SE->getExitCount(L, ExitingBlock) << "\n";
12787     }
12788 
12789   OS << "Loop ";
12790   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12791   OS << ": ";
12792 
12793   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12794     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12795     if (SE->isBackedgeTakenCountMaxOrZero(L))
12796       OS << ", actual taken count either this or zero.";
12797   } else {
12798     OS << "Unpredictable max backedge-taken count. ";
12799   }
12800 
12801   OS << "\n"
12802         "Loop ";
12803   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12804   OS << ": ";
12805 
12806   SCEVUnionPredicate Pred;
12807   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12808   if (!isa<SCEVCouldNotCompute>(PBT)) {
12809     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12810     OS << " Predicates:\n";
12811     Pred.print(OS, 4);
12812   } else {
12813     OS << "Unpredictable predicated backedge-taken count. ";
12814   }
12815   OS << "\n";
12816 
12817   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12818     OS << "Loop ";
12819     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12820     OS << ": ";
12821     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12822   }
12823 }
12824 
12825 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12826   switch (LD) {
12827   case ScalarEvolution::LoopVariant:
12828     return "Variant";
12829   case ScalarEvolution::LoopInvariant:
12830     return "Invariant";
12831   case ScalarEvolution::LoopComputable:
12832     return "Computable";
12833   }
12834   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12835 }
12836 
12837 void ScalarEvolution::print(raw_ostream &OS) const {
12838   // ScalarEvolution's implementation of the print method is to print
12839   // out SCEV values of all instructions that are interesting. Doing
12840   // this potentially causes it to create new SCEV objects though,
12841   // which technically conflicts with the const qualifier. This isn't
12842   // observable from outside the class though, so casting away the
12843   // const isn't dangerous.
12844   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12845 
12846   if (ClassifyExpressions) {
12847     OS << "Classifying expressions for: ";
12848     F.printAsOperand(OS, /*PrintType=*/false);
12849     OS << "\n";
12850     for (Instruction &I : instructions(F))
12851       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12852         OS << I << '\n';
12853         OS << "  -->  ";
12854         const SCEV *SV = SE.getSCEV(&I);
12855         SV->print(OS);
12856         if (!isa<SCEVCouldNotCompute>(SV)) {
12857           OS << " U: ";
12858           SE.getUnsignedRange(SV).print(OS);
12859           OS << " S: ";
12860           SE.getSignedRange(SV).print(OS);
12861         }
12862 
12863         const Loop *L = LI.getLoopFor(I.getParent());
12864 
12865         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12866         if (AtUse != SV) {
12867           OS << "  -->  ";
12868           AtUse->print(OS);
12869           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12870             OS << " U: ";
12871             SE.getUnsignedRange(AtUse).print(OS);
12872             OS << " S: ";
12873             SE.getSignedRange(AtUse).print(OS);
12874           }
12875         }
12876 
12877         if (L) {
12878           OS << "\t\t" "Exits: ";
12879           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12880           if (!SE.isLoopInvariant(ExitValue, L)) {
12881             OS << "<<Unknown>>";
12882           } else {
12883             OS << *ExitValue;
12884           }
12885 
12886           bool First = true;
12887           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12888             if (First) {
12889               OS << "\t\t" "LoopDispositions: { ";
12890               First = false;
12891             } else {
12892               OS << ", ";
12893             }
12894 
12895             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12896             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12897           }
12898 
12899           for (auto *InnerL : depth_first(L)) {
12900             if (InnerL == L)
12901               continue;
12902             if (First) {
12903               OS << "\t\t" "LoopDispositions: { ";
12904               First = false;
12905             } else {
12906               OS << ", ";
12907             }
12908 
12909             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12910             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12911           }
12912 
12913           OS << " }";
12914         }
12915 
12916         OS << "\n";
12917       }
12918   }
12919 
12920   OS << "Determining loop execution counts for: ";
12921   F.printAsOperand(OS, /*PrintType=*/false);
12922   OS << "\n";
12923   for (Loop *I : LI)
12924     PrintLoopInfo(OS, &SE, I);
12925 }
12926 
12927 ScalarEvolution::LoopDisposition
12928 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12929   auto &Values = LoopDispositions[S];
12930   for (auto &V : Values) {
12931     if (V.getPointer() == L)
12932       return V.getInt();
12933   }
12934   Values.emplace_back(L, LoopVariant);
12935   LoopDisposition D = computeLoopDisposition(S, L);
12936   auto &Values2 = LoopDispositions[S];
12937   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12938     if (V.getPointer() == L) {
12939       V.setInt(D);
12940       break;
12941     }
12942   }
12943   return D;
12944 }
12945 
12946 ScalarEvolution::LoopDisposition
12947 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12948   switch (S->getSCEVType()) {
12949   case scConstant:
12950     return LoopInvariant;
12951   case scPtrToInt:
12952   case scTruncate:
12953   case scZeroExtend:
12954   case scSignExtend:
12955     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12956   case scAddRecExpr: {
12957     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12958 
12959     // If L is the addrec's loop, it's computable.
12960     if (AR->getLoop() == L)
12961       return LoopComputable;
12962 
12963     // Add recurrences are never invariant in the function-body (null loop).
12964     if (!L)
12965       return LoopVariant;
12966 
12967     // Everything that is not defined at loop entry is variant.
12968     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12969       return LoopVariant;
12970     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12971            " dominate the contained loop's header?");
12972 
12973     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12974     if (AR->getLoop()->contains(L))
12975       return LoopInvariant;
12976 
12977     // This recurrence is variant w.r.t. L if any of its operands
12978     // are variant.
12979     for (auto *Op : AR->operands())
12980       if (!isLoopInvariant(Op, L))
12981         return LoopVariant;
12982 
12983     // Otherwise it's loop-invariant.
12984     return LoopInvariant;
12985   }
12986   case scAddExpr:
12987   case scMulExpr:
12988   case scUMaxExpr:
12989   case scSMaxExpr:
12990   case scUMinExpr:
12991   case scSMinExpr: {
12992     bool HasVarying = false;
12993     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12994       LoopDisposition D = getLoopDisposition(Op, L);
12995       if (D == LoopVariant)
12996         return LoopVariant;
12997       if (D == LoopComputable)
12998         HasVarying = true;
12999     }
13000     return HasVarying ? LoopComputable : LoopInvariant;
13001   }
13002   case scUDivExpr: {
13003     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13004     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13005     if (LD == LoopVariant)
13006       return LoopVariant;
13007     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13008     if (RD == LoopVariant)
13009       return LoopVariant;
13010     return (LD == LoopInvariant && RD == LoopInvariant) ?
13011            LoopInvariant : LoopComputable;
13012   }
13013   case scUnknown:
13014     // All non-instruction values are loop invariant.  All instructions are loop
13015     // invariant if they are not contained in the specified loop.
13016     // Instructions are never considered invariant in the function body
13017     // (null loop) because they are defined within the "loop".
13018     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13019       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13020     return LoopInvariant;
13021   case scCouldNotCompute:
13022     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13023   }
13024   llvm_unreachable("Unknown SCEV kind!");
13025 }
13026 
13027 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13028   return getLoopDisposition(S, L) == LoopInvariant;
13029 }
13030 
13031 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13032   return getLoopDisposition(S, L) == LoopComputable;
13033 }
13034 
13035 ScalarEvolution::BlockDisposition
13036 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13037   auto &Values = BlockDispositions[S];
13038   for (auto &V : Values) {
13039     if (V.getPointer() == BB)
13040       return V.getInt();
13041   }
13042   Values.emplace_back(BB, DoesNotDominateBlock);
13043   BlockDisposition D = computeBlockDisposition(S, BB);
13044   auto &Values2 = BlockDispositions[S];
13045   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
13046     if (V.getPointer() == BB) {
13047       V.setInt(D);
13048       break;
13049     }
13050   }
13051   return D;
13052 }
13053 
13054 ScalarEvolution::BlockDisposition
13055 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13056   switch (S->getSCEVType()) {
13057   case scConstant:
13058     return ProperlyDominatesBlock;
13059   case scPtrToInt:
13060   case scTruncate:
13061   case scZeroExtend:
13062   case scSignExtend:
13063     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13064   case scAddRecExpr: {
13065     // This uses a "dominates" query instead of "properly dominates" query
13066     // to test for proper dominance too, because the instruction which
13067     // produces the addrec's value is a PHI, and a PHI effectively properly
13068     // dominates its entire containing block.
13069     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13070     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13071       return DoesNotDominateBlock;
13072 
13073     // Fall through into SCEVNAryExpr handling.
13074     LLVM_FALLTHROUGH;
13075   }
13076   case scAddExpr:
13077   case scMulExpr:
13078   case scUMaxExpr:
13079   case scSMaxExpr:
13080   case scUMinExpr:
13081   case scSMinExpr: {
13082     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13083     bool Proper = true;
13084     for (const SCEV *NAryOp : NAry->operands()) {
13085       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13086       if (D == DoesNotDominateBlock)
13087         return DoesNotDominateBlock;
13088       if (D == DominatesBlock)
13089         Proper = false;
13090     }
13091     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13092   }
13093   case scUDivExpr: {
13094     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13095     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13096     BlockDisposition LD = getBlockDisposition(LHS, BB);
13097     if (LD == DoesNotDominateBlock)
13098       return DoesNotDominateBlock;
13099     BlockDisposition RD = getBlockDisposition(RHS, BB);
13100     if (RD == DoesNotDominateBlock)
13101       return DoesNotDominateBlock;
13102     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13103       ProperlyDominatesBlock : DominatesBlock;
13104   }
13105   case scUnknown:
13106     if (Instruction *I =
13107           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13108       if (I->getParent() == BB)
13109         return DominatesBlock;
13110       if (DT.properlyDominates(I->getParent(), BB))
13111         return ProperlyDominatesBlock;
13112       return DoesNotDominateBlock;
13113     }
13114     return ProperlyDominatesBlock;
13115   case scCouldNotCompute:
13116     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13117   }
13118   llvm_unreachable("Unknown SCEV kind!");
13119 }
13120 
13121 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13122   return getBlockDisposition(S, BB) >= DominatesBlock;
13123 }
13124 
13125 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13126   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13127 }
13128 
13129 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13130   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13131 }
13132 
13133 void
13134 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
13135   ValuesAtScopes.erase(S);
13136   LoopDispositions.erase(S);
13137   BlockDispositions.erase(S);
13138   UnsignedRanges.erase(S);
13139   SignedRanges.erase(S);
13140   ExprValueMap.erase(S);
13141   HasRecMap.erase(S);
13142   MinTrailingZerosCache.erase(S);
13143 
13144   for (auto I = PredicatedSCEVRewrites.begin();
13145        I != PredicatedSCEVRewrites.end();) {
13146     std::pair<const SCEV *, const Loop *> Entry = I->first;
13147     if (Entry.first == S)
13148       PredicatedSCEVRewrites.erase(I++);
13149     else
13150       ++I;
13151   }
13152 
13153   auto RemoveSCEVFromBackedgeMap =
13154       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
13155         for (auto I = Map.begin(), E = Map.end(); I != E;) {
13156           BackedgeTakenInfo &BEInfo = I->second;
13157           if (BEInfo.hasOperand(S))
13158             Map.erase(I++);
13159           else
13160             ++I;
13161         }
13162       };
13163 
13164   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
13165   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
13166 }
13167 
13168 void
13169 ScalarEvolution::getUsedLoops(const SCEV *S,
13170                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13171   struct FindUsedLoops {
13172     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13173         : LoopsUsed(LoopsUsed) {}
13174     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13175     bool follow(const SCEV *S) {
13176       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13177         LoopsUsed.insert(AR->getLoop());
13178       return true;
13179     }
13180 
13181     bool isDone() const { return false; }
13182   };
13183 
13184   FindUsedLoops F(LoopsUsed);
13185   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13186 }
13187 
13188 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
13189   SmallPtrSet<const Loop *, 8> LoopsUsed;
13190   getUsedLoops(S, LoopsUsed);
13191   for (auto *L : LoopsUsed)
13192     LoopUsers[L].push_back(S);
13193 }
13194 
13195 void ScalarEvolution::verify() const {
13196   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13197   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13198 
13199   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13200 
13201   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13202   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13203     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13204 
13205     const SCEV *visitConstant(const SCEVConstant *Constant) {
13206       return SE.getConstant(Constant->getAPInt());
13207     }
13208 
13209     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13210       return SE.getUnknown(Expr->getValue());
13211     }
13212 
13213     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13214       return SE.getCouldNotCompute();
13215     }
13216   };
13217 
13218   SCEVMapper SCM(SE2);
13219 
13220   while (!LoopStack.empty()) {
13221     auto *L = LoopStack.pop_back_val();
13222     llvm::append_range(LoopStack, *L);
13223 
13224     auto *CurBECount = SCM.visit(
13225         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13226     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13227 
13228     if (CurBECount == SE2.getCouldNotCompute() ||
13229         NewBECount == SE2.getCouldNotCompute()) {
13230       // NB! This situation is legal, but is very suspicious -- whatever pass
13231       // change the loop to make a trip count go from could not compute to
13232       // computable or vice-versa *should have* invalidated SCEV.  However, we
13233       // choose not to assert here (for now) since we don't want false
13234       // positives.
13235       continue;
13236     }
13237 
13238     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13239       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13240       // not propagate undef aggressively).  This means we can (and do) fail
13241       // verification in cases where a transform makes the trip count of a loop
13242       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13243       // both cases the loop iterates "undef" times, but SCEV thinks we
13244       // increased the trip count of the loop by 1 incorrectly.
13245       continue;
13246     }
13247 
13248     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13249         SE.getTypeSizeInBits(NewBECount->getType()))
13250       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13251     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13252              SE.getTypeSizeInBits(NewBECount->getType()))
13253       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13254 
13255     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13256 
13257     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13258     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13259       dbgs() << "Trip Count for " << *L << " Changed!\n";
13260       dbgs() << "Old: " << *CurBECount << "\n";
13261       dbgs() << "New: " << *NewBECount << "\n";
13262       dbgs() << "Delta: " << *Delta << "\n";
13263       std::abort();
13264     }
13265   }
13266 
13267   // Collect all valid loops currently in LoopInfo.
13268   SmallPtrSet<Loop *, 32> ValidLoops;
13269   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13270   while (!Worklist.empty()) {
13271     Loop *L = Worklist.pop_back_val();
13272     if (ValidLoops.contains(L))
13273       continue;
13274     ValidLoops.insert(L);
13275     Worklist.append(L->begin(), L->end());
13276   }
13277   // Check for SCEV expressions referencing invalid/deleted loops.
13278   for (auto &KV : ValueExprMap) {
13279     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
13280     if (!AR)
13281       continue;
13282     assert(ValidLoops.contains(AR->getLoop()) &&
13283            "AddRec references invalid loop");
13284   }
13285 }
13286 
13287 bool ScalarEvolution::invalidate(
13288     Function &F, const PreservedAnalyses &PA,
13289     FunctionAnalysisManager::Invalidator &Inv) {
13290   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13291   // of its dependencies is invalidated.
13292   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13293   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13294          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13295          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13296          Inv.invalidate<LoopAnalysis>(F, PA);
13297 }
13298 
13299 AnalysisKey ScalarEvolutionAnalysis::Key;
13300 
13301 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13302                                              FunctionAnalysisManager &AM) {
13303   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13304                          AM.getResult<AssumptionAnalysis>(F),
13305                          AM.getResult<DominatorTreeAnalysis>(F),
13306                          AM.getResult<LoopAnalysis>(F));
13307 }
13308 
13309 PreservedAnalyses
13310 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13311   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13312   return PreservedAnalyses::all();
13313 }
13314 
13315 PreservedAnalyses
13316 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13317   // For compatibility with opt's -analyze feature under legacy pass manager
13318   // which was not ported to NPM. This keeps tests using
13319   // update_analyze_test_checks.py working.
13320   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13321      << F.getName() << "':\n";
13322   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13323   return PreservedAnalyses::all();
13324 }
13325 
13326 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13327                       "Scalar Evolution Analysis", false, true)
13328 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13329 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13330 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13331 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13332 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13333                     "Scalar Evolution Analysis", false, true)
13334 
13335 char ScalarEvolutionWrapperPass::ID = 0;
13336 
13337 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13338   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13339 }
13340 
13341 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13342   SE.reset(new ScalarEvolution(
13343       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13344       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13345       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13346       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13347   return false;
13348 }
13349 
13350 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13351 
13352 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13353   SE->print(OS);
13354 }
13355 
13356 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13357   if (!VerifySCEV)
13358     return;
13359 
13360   SE->verify();
13361 }
13362 
13363 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13364   AU.setPreservesAll();
13365   AU.addRequiredTransitive<AssumptionCacheTracker>();
13366   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13367   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13368   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13369 }
13370 
13371 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13372                                                         const SCEV *RHS) {
13373   FoldingSetNodeID ID;
13374   assert(LHS->getType() == RHS->getType() &&
13375          "Type mismatch between LHS and RHS");
13376   // Unique this node based on the arguments
13377   ID.AddInteger(SCEVPredicate::P_Equal);
13378   ID.AddPointer(LHS);
13379   ID.AddPointer(RHS);
13380   void *IP = nullptr;
13381   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13382     return S;
13383   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13384       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13385   UniquePreds.InsertNode(Eq, IP);
13386   return Eq;
13387 }
13388 
13389 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13390     const SCEVAddRecExpr *AR,
13391     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13392   FoldingSetNodeID ID;
13393   // Unique this node based on the arguments
13394   ID.AddInteger(SCEVPredicate::P_Wrap);
13395   ID.AddPointer(AR);
13396   ID.AddInteger(AddedFlags);
13397   void *IP = nullptr;
13398   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13399     return S;
13400   auto *OF = new (SCEVAllocator)
13401       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13402   UniquePreds.InsertNode(OF, IP);
13403   return OF;
13404 }
13405 
13406 namespace {
13407 
13408 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13409 public:
13410 
13411   /// Rewrites \p S in the context of a loop L and the SCEV predication
13412   /// infrastructure.
13413   ///
13414   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13415   /// equivalences present in \p Pred.
13416   ///
13417   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13418   /// \p NewPreds such that the result will be an AddRecExpr.
13419   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13420                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13421                              SCEVUnionPredicate *Pred) {
13422     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13423     return Rewriter.visit(S);
13424   }
13425 
13426   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13427     if (Pred) {
13428       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13429       for (auto *Pred : ExprPreds)
13430         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13431           if (IPred->getLHS() == Expr)
13432             return IPred->getRHS();
13433     }
13434     return convertToAddRecWithPreds(Expr);
13435   }
13436 
13437   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13438     const SCEV *Operand = visit(Expr->getOperand());
13439     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13440     if (AR && AR->getLoop() == L && AR->isAffine()) {
13441       // This couldn't be folded because the operand didn't have the nuw
13442       // flag. Add the nusw flag as an assumption that we could make.
13443       const SCEV *Step = AR->getStepRecurrence(SE);
13444       Type *Ty = Expr->getType();
13445       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13446         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13447                                 SE.getSignExtendExpr(Step, Ty), L,
13448                                 AR->getNoWrapFlags());
13449     }
13450     return SE.getZeroExtendExpr(Operand, Expr->getType());
13451   }
13452 
13453   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13454     const SCEV *Operand = visit(Expr->getOperand());
13455     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13456     if (AR && AR->getLoop() == L && AR->isAffine()) {
13457       // This couldn't be folded because the operand didn't have the nsw
13458       // flag. Add the nssw flag as an assumption that we could make.
13459       const SCEV *Step = AR->getStepRecurrence(SE);
13460       Type *Ty = Expr->getType();
13461       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13462         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13463                                 SE.getSignExtendExpr(Step, Ty), L,
13464                                 AR->getNoWrapFlags());
13465     }
13466     return SE.getSignExtendExpr(Operand, Expr->getType());
13467   }
13468 
13469 private:
13470   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13471                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13472                         SCEVUnionPredicate *Pred)
13473       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13474 
13475   bool addOverflowAssumption(const SCEVPredicate *P) {
13476     if (!NewPreds) {
13477       // Check if we've already made this assumption.
13478       return Pred && Pred->implies(P);
13479     }
13480     NewPreds->insert(P);
13481     return true;
13482   }
13483 
13484   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13485                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13486     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13487     return addOverflowAssumption(A);
13488   }
13489 
13490   // If \p Expr represents a PHINode, we try to see if it can be represented
13491   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13492   // to add this predicate as a runtime overflow check, we return the AddRec.
13493   // If \p Expr does not meet these conditions (is not a PHI node, or we
13494   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13495   // return \p Expr.
13496   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13497     if (!isa<PHINode>(Expr->getValue()))
13498       return Expr;
13499     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13500     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13501     if (!PredicatedRewrite)
13502       return Expr;
13503     for (auto *P : PredicatedRewrite->second){
13504       // Wrap predicates from outer loops are not supported.
13505       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13506         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13507         if (L != AR->getLoop())
13508           return Expr;
13509       }
13510       if (!addOverflowAssumption(P))
13511         return Expr;
13512     }
13513     return PredicatedRewrite->first;
13514   }
13515 
13516   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13517   SCEVUnionPredicate *Pred;
13518   const Loop *L;
13519 };
13520 
13521 } // end anonymous namespace
13522 
13523 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13524                                                    SCEVUnionPredicate &Preds) {
13525   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13526 }
13527 
13528 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13529     const SCEV *S, const Loop *L,
13530     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13531   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13532   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13533   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13534 
13535   if (!AddRec)
13536     return nullptr;
13537 
13538   // Since the transformation was successful, we can now transfer the SCEV
13539   // predicates.
13540   for (auto *P : TransformPreds)
13541     Preds.insert(P);
13542 
13543   return AddRec;
13544 }
13545 
13546 /// SCEV predicates
13547 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13548                              SCEVPredicateKind Kind)
13549     : FastID(ID), Kind(Kind) {}
13550 
13551 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13552                                        const SCEV *LHS, const SCEV *RHS)
13553     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13554   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13555   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13556 }
13557 
13558 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13559   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13560 
13561   if (!Op)
13562     return false;
13563 
13564   return Op->LHS == LHS && Op->RHS == RHS;
13565 }
13566 
13567 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13568 
13569 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13570 
13571 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13572   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13573 }
13574 
13575 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13576                                      const SCEVAddRecExpr *AR,
13577                                      IncrementWrapFlags Flags)
13578     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13579 
13580 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13581 
13582 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13583   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13584 
13585   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13586 }
13587 
13588 bool SCEVWrapPredicate::isAlwaysTrue() const {
13589   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13590   IncrementWrapFlags IFlags = Flags;
13591 
13592   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13593     IFlags = clearFlags(IFlags, IncrementNSSW);
13594 
13595   return IFlags == IncrementAnyWrap;
13596 }
13597 
13598 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13599   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13600   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13601     OS << "<nusw>";
13602   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13603     OS << "<nssw>";
13604   OS << "\n";
13605 }
13606 
13607 SCEVWrapPredicate::IncrementWrapFlags
13608 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13609                                    ScalarEvolution &SE) {
13610   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13611   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13612 
13613   // We can safely transfer the NSW flag as NSSW.
13614   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13615     ImpliedFlags = IncrementNSSW;
13616 
13617   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13618     // If the increment is positive, the SCEV NUW flag will also imply the
13619     // WrapPredicate NUSW flag.
13620     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13621       if (Step->getValue()->getValue().isNonNegative())
13622         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13623   }
13624 
13625   return ImpliedFlags;
13626 }
13627 
13628 /// Union predicates don't get cached so create a dummy set ID for it.
13629 SCEVUnionPredicate::SCEVUnionPredicate()
13630     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13631 
13632 bool SCEVUnionPredicate::isAlwaysTrue() const {
13633   return all_of(Preds,
13634                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13635 }
13636 
13637 ArrayRef<const SCEVPredicate *>
13638 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13639   auto I = SCEVToPreds.find(Expr);
13640   if (I == SCEVToPreds.end())
13641     return ArrayRef<const SCEVPredicate *>();
13642   return I->second;
13643 }
13644 
13645 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13646   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13647     return all_of(Set->Preds,
13648                   [this](const SCEVPredicate *I) { return this->implies(I); });
13649 
13650   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13651   if (ScevPredsIt == SCEVToPreds.end())
13652     return false;
13653   auto &SCEVPreds = ScevPredsIt->second;
13654 
13655   return any_of(SCEVPreds,
13656                 [N](const SCEVPredicate *I) { return I->implies(N); });
13657 }
13658 
13659 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13660 
13661 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13662   for (auto Pred : Preds)
13663     Pred->print(OS, Depth);
13664 }
13665 
13666 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13667   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13668     for (auto Pred : Set->Preds)
13669       add(Pred);
13670     return;
13671   }
13672 
13673   if (implies(N))
13674     return;
13675 
13676   const SCEV *Key = N->getExpr();
13677   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13678                 " associated expression!");
13679 
13680   SCEVToPreds[Key].push_back(N);
13681   Preds.push_back(N);
13682 }
13683 
13684 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13685                                                      Loop &L)
13686     : SE(SE), L(L) {}
13687 
13688 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13689   const SCEV *Expr = SE.getSCEV(V);
13690   RewriteEntry &Entry = RewriteMap[Expr];
13691 
13692   // If we already have an entry and the version matches, return it.
13693   if (Entry.second && Generation == Entry.first)
13694     return Entry.second;
13695 
13696   // We found an entry but it's stale. Rewrite the stale entry
13697   // according to the current predicate.
13698   if (Entry.second)
13699     Expr = Entry.second;
13700 
13701   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13702   Entry = {Generation, NewSCEV};
13703 
13704   return NewSCEV;
13705 }
13706 
13707 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13708   if (!BackedgeCount) {
13709     SCEVUnionPredicate BackedgePred;
13710     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13711     addPredicate(BackedgePred);
13712   }
13713   return BackedgeCount;
13714 }
13715 
13716 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13717   if (Preds.implies(&Pred))
13718     return;
13719   Preds.add(&Pred);
13720   updateGeneration();
13721 }
13722 
13723 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13724   return Preds;
13725 }
13726 
13727 void PredicatedScalarEvolution::updateGeneration() {
13728   // If the generation number wrapped recompute everything.
13729   if (++Generation == 0) {
13730     for (auto &II : RewriteMap) {
13731       const SCEV *Rewritten = II.second.second;
13732       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13733     }
13734   }
13735 }
13736 
13737 void PredicatedScalarEvolution::setNoOverflow(
13738     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13739   const SCEV *Expr = getSCEV(V);
13740   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13741 
13742   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13743 
13744   // Clear the statically implied flags.
13745   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13746   addPredicate(*SE.getWrapPredicate(AR, Flags));
13747 
13748   auto II = FlagsMap.insert({V, Flags});
13749   if (!II.second)
13750     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13751 }
13752 
13753 bool PredicatedScalarEvolution::hasNoOverflow(
13754     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13755   const SCEV *Expr = getSCEV(V);
13756   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13757 
13758   Flags = SCEVWrapPredicate::clearFlags(
13759       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13760 
13761   auto II = FlagsMap.find(V);
13762 
13763   if (II != FlagsMap.end())
13764     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13765 
13766   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13767 }
13768 
13769 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13770   const SCEV *Expr = this->getSCEV(V);
13771   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13772   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13773 
13774   if (!New)
13775     return nullptr;
13776 
13777   for (auto *P : NewPreds)
13778     Preds.add(P);
13779 
13780   updateGeneration();
13781   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13782   return New;
13783 }
13784 
13785 PredicatedScalarEvolution::PredicatedScalarEvolution(
13786     const PredicatedScalarEvolution &Init)
13787     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13788       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13789   for (auto I : Init.FlagsMap)
13790     FlagsMap.insert(I);
13791 }
13792 
13793 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13794   // For each block.
13795   for (auto *BB : L.getBlocks())
13796     for (auto &I : *BB) {
13797       if (!SE.isSCEVable(I.getType()))
13798         continue;
13799 
13800       auto *Expr = SE.getSCEV(&I);
13801       auto II = RewriteMap.find(Expr);
13802 
13803       if (II == RewriteMap.end())
13804         continue;
13805 
13806       // Don't print things that are not interesting.
13807       if (II->second.second == Expr)
13808         continue;
13809 
13810       OS.indent(Depth) << "[PSE]" << I << ":\n";
13811       OS.indent(Depth + 2) << *Expr << "\n";
13812       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13813     }
13814 }
13815 
13816 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13817 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13818 // for URem with constant power-of-2 second operands.
13819 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13820 // 4, A / B becomes X / 8).
13821 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13822                                 const SCEV *&RHS) {
13823   // Try to match 'zext (trunc A to iB) to iY', which is used
13824   // for URem with constant power-of-2 second operands. Make sure the size of
13825   // the operand A matches the size of the whole expressions.
13826   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13827     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13828       LHS = Trunc->getOperand();
13829       // Bail out if the type of the LHS is larger than the type of the
13830       // expression for now.
13831       if (getTypeSizeInBits(LHS->getType()) >
13832           getTypeSizeInBits(Expr->getType()))
13833         return false;
13834       if (LHS->getType() != Expr->getType())
13835         LHS = getZeroExtendExpr(LHS, Expr->getType());
13836       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13837                         << getTypeSizeInBits(Trunc->getType()));
13838       return true;
13839     }
13840   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13841   if (Add == nullptr || Add->getNumOperands() != 2)
13842     return false;
13843 
13844   const SCEV *A = Add->getOperand(1);
13845   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13846 
13847   if (Mul == nullptr)
13848     return false;
13849 
13850   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13851     // (SomeExpr + (-(SomeExpr / B) * B)).
13852     if (Expr == getURemExpr(A, B)) {
13853       LHS = A;
13854       RHS = B;
13855       return true;
13856     }
13857     return false;
13858   };
13859 
13860   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13861   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13862     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13863            MatchURemWithDivisor(Mul->getOperand(2));
13864 
13865   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13866   if (Mul->getNumOperands() == 2)
13867     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13868            MatchURemWithDivisor(Mul->getOperand(0)) ||
13869            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13870            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13871   return false;
13872 }
13873 
13874 const SCEV *
13875 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13876   SmallVector<BasicBlock*, 16> ExitingBlocks;
13877   L->getExitingBlocks(ExitingBlocks);
13878 
13879   // Form an expression for the maximum exit count possible for this loop. We
13880   // merge the max and exact information to approximate a version of
13881   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13882   SmallVector<const SCEV*, 4> ExitCounts;
13883   for (BasicBlock *ExitingBB : ExitingBlocks) {
13884     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13885     if (isa<SCEVCouldNotCompute>(ExitCount))
13886       ExitCount = getExitCount(L, ExitingBB,
13887                                   ScalarEvolution::ConstantMaximum);
13888     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13889       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13890              "We should only have known counts for exiting blocks that "
13891              "dominate latch!");
13892       ExitCounts.push_back(ExitCount);
13893     }
13894   }
13895   if (ExitCounts.empty())
13896     return getCouldNotCompute();
13897   return getUMinFromMismatchedTypes(ExitCounts);
13898 }
13899 
13900 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13901 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13902 /// we cannot guarantee that the replacement is loop invariant in the loop of
13903 /// the AddRec.
13904 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13905   ValueToSCEVMapTy &Map;
13906 
13907 public:
13908   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13909       : SCEVRewriteVisitor(SE), Map(M) {}
13910 
13911   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13912 
13913   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13914     auto I = Map.find(Expr->getValue());
13915     if (I == Map.end())
13916       return Expr;
13917     return I->second;
13918   }
13919 };
13920 
13921 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13922   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13923                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13924     // If we have LHS == 0, check if LHS is computing a property of some unknown
13925     // SCEV %v which we can rewrite %v to express explicitly.
13926     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13927     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13928         RHSC->getValue()->isNullValue()) {
13929       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13930       // explicitly express that.
13931       const SCEV *URemLHS = nullptr;
13932       const SCEV *URemRHS = nullptr;
13933       if (matchURem(LHS, URemLHS, URemRHS)) {
13934         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13935           Value *V = LHSUnknown->getValue();
13936           auto Multiple =
13937               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13938                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13939           RewriteMap[V] = Multiple;
13940           return;
13941         }
13942       }
13943     }
13944 
13945     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13946       std::swap(LHS, RHS);
13947       Predicate = CmpInst::getSwappedPredicate(Predicate);
13948     }
13949 
13950     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13951     // create this form when combining two checks of the form (X u< C2 + C1) and
13952     // (X >=u C1).
13953     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13954       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13955       if (!AddExpr || AddExpr->getNumOperands() != 2)
13956         return false;
13957 
13958       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13959       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13960       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13961       if (!C1 || !C2 || !LHSUnknown)
13962         return false;
13963 
13964       auto ExactRegion =
13965           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13966               .sub(C1->getAPInt());
13967 
13968       // Bail out, unless we have a non-wrapping, monotonic range.
13969       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13970         return false;
13971       auto I = RewriteMap.find(LHSUnknown->getValue());
13972       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13973       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13974           getConstant(ExactRegion.getUnsignedMin()),
13975           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13976       return true;
13977     };
13978     if (MatchRangeCheckIdiom())
13979       return;
13980 
13981     // For now, limit to conditions that provide information about unknown
13982     // expressions. RHS also cannot contain add recurrences.
13983     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13984     if (!LHSUnknown || containsAddRecurrence(RHS))
13985       return;
13986 
13987     // Check whether LHS has already been rewritten. In that case we want to
13988     // chain further rewrites onto the already rewritten value.
13989     auto I = RewriteMap.find(LHSUnknown->getValue());
13990     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13991     const SCEV *RewrittenRHS = nullptr;
13992     switch (Predicate) {
13993     case CmpInst::ICMP_ULT:
13994       RewrittenRHS =
13995           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13996       break;
13997     case CmpInst::ICMP_SLT:
13998       RewrittenRHS =
13999           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14000       break;
14001     case CmpInst::ICMP_ULE:
14002       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14003       break;
14004     case CmpInst::ICMP_SLE:
14005       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14006       break;
14007     case CmpInst::ICMP_UGT:
14008       RewrittenRHS =
14009           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14010       break;
14011     case CmpInst::ICMP_SGT:
14012       RewrittenRHS =
14013           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14014       break;
14015     case CmpInst::ICMP_UGE:
14016       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14017       break;
14018     case CmpInst::ICMP_SGE:
14019       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14020       break;
14021     case CmpInst::ICMP_EQ:
14022       if (isa<SCEVConstant>(RHS))
14023         RewrittenRHS = RHS;
14024       break;
14025     case CmpInst::ICMP_NE:
14026       if (isa<SCEVConstant>(RHS) &&
14027           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14028         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14029       break;
14030     default:
14031       break;
14032     }
14033 
14034     if (RewrittenRHS)
14035       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
14036   };
14037   // Starting at the loop predecessor, climb up the predecessor chain, as long
14038   // as there are predecessors that can be found that have unique successors
14039   // leading to the original header.
14040   // TODO: share this logic with isLoopEntryGuardedByCond.
14041   ValueToSCEVMapTy RewriteMap;
14042   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14043            L->getLoopPredecessor(), L->getHeader());
14044        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14045 
14046     const BranchInst *LoopEntryPredicate =
14047         dyn_cast<BranchInst>(Pair.first->getTerminator());
14048     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14049       continue;
14050 
14051     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
14052     SmallVector<Value *, 8> Worklist;
14053     SmallPtrSet<Value *, 8> Visited;
14054     Worklist.push_back(LoopEntryPredicate->getCondition());
14055     while (!Worklist.empty()) {
14056       Value *Cond = Worklist.pop_back_val();
14057       if (!Visited.insert(Cond).second)
14058         continue;
14059 
14060       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14061         auto Predicate =
14062             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14063         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14064                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14065         continue;
14066       }
14067 
14068       Value *L, *R;
14069       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14070                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14071         Worklist.push_back(L);
14072         Worklist.push_back(R);
14073       }
14074     }
14075   }
14076 
14077   // Also collect information from assumptions dominating the loop.
14078   for (auto &AssumeVH : AC.assumptions()) {
14079     if (!AssumeVH)
14080       continue;
14081     auto *AssumeI = cast<CallInst>(AssumeVH);
14082     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14083     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14084       continue;
14085     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14086                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14087   }
14088 
14089   if (RewriteMap.empty())
14090     return Expr;
14091   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14092   return Rewriter.visit(Expr);
14093 }
14094