xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
325          I != E; ++I) {
326       OS << **I;
327       if (std::next(I) != E)
328         OS << OpStr;
329     }
330     OS << ")";
331     switch (NAry->getSCEVType()) {
332     case scAddExpr:
333     case scMulExpr:
334       if (NAry->hasNoUnsignedWrap())
335         OS << "<nuw>";
336       if (NAry->hasNoSignedWrap())
337         OS << "<nsw>";
338       break;
339     default:
340       // Nothing to print for other nary expressions.
341       break;
342     }
343     return;
344   }
345   case scUDivExpr: {
346     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
347     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
348     return;
349   }
350   case scUnknown: {
351     const SCEVUnknown *U = cast<SCEVUnknown>(this);
352     Type *AllocTy;
353     if (U->isSizeOf(AllocTy)) {
354       OS << "sizeof(" << *AllocTy << ")";
355       return;
356     }
357     if (U->isAlignOf(AllocTy)) {
358       OS << "alignof(" << *AllocTy << ")";
359       return;
360     }
361 
362     Type *CTy;
363     Constant *FieldNo;
364     if (U->isOffsetOf(CTy, FieldNo)) {
365       OS << "offsetof(" << *CTy << ", ";
366       FieldNo->printAsOperand(OS, false);
367       OS << ")";
368       return;
369     }
370 
371     // Otherwise just print it normally.
372     U->getValue()->printAsOperand(OS, false);
373     return;
374   }
375   case scCouldNotCompute:
376     OS << "***COULDNOTCOMPUTE***";
377     return;
378   }
379   llvm_unreachable("Unknown SCEV kind!");
380 }
381 
382 Type *SCEV::getType() const {
383   switch (getSCEVType()) {
384   case scConstant:
385     return cast<SCEVConstant>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392   case scMulExpr:
393   case scUMaxExpr:
394   case scSMaxExpr:
395   case scUMinExpr:
396   case scSMinExpr:
397     return cast<SCEVNAryExpr>(this)->getType();
398   case scAddExpr:
399     return cast<SCEVAddExpr>(this)->getType();
400   case scUDivExpr:
401     return cast<SCEVUDivExpr>(this)->getType();
402   case scUnknown:
403     return cast<SCEVUnknown>(this)->getType();
404   case scCouldNotCompute:
405     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
406   }
407   llvm_unreachable("Unknown SCEV kind!");
408 }
409 
410 bool SCEV::isZero() const {
411   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
412     return SC->getValue()->isZero();
413   return false;
414 }
415 
416 bool SCEV::isOne() const {
417   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
418     return SC->getValue()->isOne();
419   return false;
420 }
421 
422 bool SCEV::isAllOnesValue() const {
423   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
424     return SC->getValue()->isMinusOne();
425   return false;
426 }
427 
428 bool SCEV::isNonConstantNegative() const {
429   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
430   if (!Mul) return false;
431 
432   // If there is a constant factor, it will be first.
433   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
434   if (!SC) return false;
435 
436   // Return true if the value is negative, this matches things like (-42 * V).
437   return SC->getAPInt().isNegative();
438 }
439 
440 SCEVCouldNotCompute::SCEVCouldNotCompute() :
441   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
442 
443 bool SCEVCouldNotCompute::classof(const SCEV *S) {
444   return S->getSCEVType() == scCouldNotCompute;
445 }
446 
447 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
448   FoldingSetNodeID ID;
449   ID.AddInteger(scConstant);
450   ID.AddPointer(V);
451   void *IP = nullptr;
452   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
453   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
454   UniqueSCEVs.InsertNode(S, IP);
455   return S;
456 }
457 
458 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
459   return getConstant(ConstantInt::get(getContext(), Val));
460 }
461 
462 const SCEV *
463 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
464   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
465   return getConstant(ConstantInt::get(ITy, V, isSigned));
466 }
467 
468 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
469                            const SCEV *op, Type *ty)
470     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
471   Operands[0] = op;
472 }
473 
474 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
475                                    Type *ITy)
476     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
477   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
478          "Must be a non-bit-width-changing pointer-to-integer cast!");
479 }
480 
481 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
482                                            SCEVTypes SCEVTy, const SCEV *op,
483                                            Type *ty)
484     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
485 
486 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
487                                    Type *ty)
488     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
489   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
490          "Cannot truncate non-integer value!");
491 }
492 
493 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
494                                        const SCEV *op, Type *ty)
495     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
496   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
497          "Cannot zero extend non-integer value!");
498 }
499 
500 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
501                                        const SCEV *op, Type *ty)
502     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
503   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
504          "Cannot sign extend non-integer value!");
505 }
506 
507 void SCEVUnknown::deleted() {
508   // Clear this SCEVUnknown from various maps.
509   SE->forgetMemoizedResults(this);
510 
511   // Remove this SCEVUnknown from the uniquing map.
512   SE->UniqueSCEVs.RemoveNode(this);
513 
514   // Release the value.
515   setValPtr(nullptr);
516 }
517 
518 void SCEVUnknown::allUsesReplacedWith(Value *New) {
519   // Remove this SCEVUnknown from the uniquing map.
520   SE->UniqueSCEVs.RemoveNode(this);
521 
522   // Update this SCEVUnknown to point to the new value. This is needed
523   // because there may still be outstanding SCEVs which still point to
524   // this SCEVUnknown.
525   setValPtr(New);
526 }
527 
528 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
529   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
530     if (VCE->getOpcode() == Instruction::PtrToInt)
531       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
532         if (CE->getOpcode() == Instruction::GetElementPtr &&
533             CE->getOperand(0)->isNullValue() &&
534             CE->getNumOperands() == 2)
535           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
536             if (CI->isOne()) {
537               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
538                                  ->getElementType();
539               return true;
540             }
541 
542   return false;
543 }
544 
545 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
546   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
547     if (VCE->getOpcode() == Instruction::PtrToInt)
548       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
549         if (CE->getOpcode() == Instruction::GetElementPtr &&
550             CE->getOperand(0)->isNullValue()) {
551           Type *Ty =
552             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
553           if (StructType *STy = dyn_cast<StructType>(Ty))
554             if (!STy->isPacked() &&
555                 CE->getNumOperands() == 3 &&
556                 CE->getOperand(1)->isNullValue()) {
557               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
558                 if (CI->isOne() &&
559                     STy->getNumElements() == 2 &&
560                     STy->getElementType(0)->isIntegerTy(1)) {
561                   AllocTy = STy->getElementType(1);
562                   return true;
563                 }
564             }
565         }
566 
567   return false;
568 }
569 
570 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
571   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
572     if (VCE->getOpcode() == Instruction::PtrToInt)
573       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
574         if (CE->getOpcode() == Instruction::GetElementPtr &&
575             CE->getNumOperands() == 3 &&
576             CE->getOperand(0)->isNullValue() &&
577             CE->getOperand(1)->isNullValue()) {
578           Type *Ty =
579             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
580           // Ignore vector types here so that ScalarEvolutionExpander doesn't
581           // emit getelementptrs that index into vectors.
582           if (Ty->isStructTy() || Ty->isArrayTy()) {
583             CTy = Ty;
584             FieldNo = CE->getOperand(2);
585             return true;
586           }
587         }
588 
589   return false;
590 }
591 
592 //===----------------------------------------------------------------------===//
593 //                               SCEV Utilities
594 //===----------------------------------------------------------------------===//
595 
596 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
597 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
598 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
599 /// have been previously deemed to be "equally complex" by this routine.  It is
600 /// intended to avoid exponential time complexity in cases like:
601 ///
602 ///   %a = f(%x, %y)
603 ///   %b = f(%a, %a)
604 ///   %c = f(%b, %b)
605 ///
606 ///   %d = f(%x, %y)
607 ///   %e = f(%d, %d)
608 ///   %f = f(%e, %e)
609 ///
610 ///   CompareValueComplexity(%f, %c)
611 ///
612 /// Since we do not continue running this routine on expression trees once we
613 /// have seen unequal values, there is no need to track them in the cache.
614 static int
615 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
616                        const LoopInfo *const LI, Value *LV, Value *RV,
617                        unsigned Depth) {
618   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
619     return 0;
620 
621   // Order pointer values after integer values. This helps SCEVExpander form
622   // GEPs.
623   bool LIsPointer = LV->getType()->isPointerTy(),
624        RIsPointer = RV->getType()->isPointerTy();
625   if (LIsPointer != RIsPointer)
626     return (int)LIsPointer - (int)RIsPointer;
627 
628   // Compare getValueID values.
629   unsigned LID = LV->getValueID(), RID = RV->getValueID();
630   if (LID != RID)
631     return (int)LID - (int)RID;
632 
633   // Sort arguments by their position.
634   if (const auto *LA = dyn_cast<Argument>(LV)) {
635     const auto *RA = cast<Argument>(RV);
636     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
637     return (int)LArgNo - (int)RArgNo;
638   }
639 
640   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
641     const auto *RGV = cast<GlobalValue>(RV);
642 
643     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
644       auto LT = GV->getLinkage();
645       return !(GlobalValue::isPrivateLinkage(LT) ||
646                GlobalValue::isInternalLinkage(LT));
647     };
648 
649     // Use the names to distinguish the two values, but only if the
650     // names are semantically important.
651     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
652       return LGV->getName().compare(RGV->getName());
653   }
654 
655   // For instructions, compare their loop depth, and their operand count.  This
656   // is pretty loose.
657   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
658     const auto *RInst = cast<Instruction>(RV);
659 
660     // Compare loop depths.
661     const BasicBlock *LParent = LInst->getParent(),
662                      *RParent = RInst->getParent();
663     if (LParent != RParent) {
664       unsigned LDepth = LI->getLoopDepth(LParent),
665                RDepth = LI->getLoopDepth(RParent);
666       if (LDepth != RDepth)
667         return (int)LDepth - (int)RDepth;
668     }
669 
670     // Compare the number of operands.
671     unsigned LNumOps = LInst->getNumOperands(),
672              RNumOps = RInst->getNumOperands();
673     if (LNumOps != RNumOps)
674       return (int)LNumOps - (int)RNumOps;
675 
676     for (unsigned Idx : seq(0u, LNumOps)) {
677       int Result =
678           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
679                                  RInst->getOperand(Idx), Depth + 1);
680       if (Result != 0)
681         return Result;
682     }
683   }
684 
685   EqCacheValue.unionSets(LV, RV);
686   return 0;
687 }
688 
689 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
690 // than RHS, respectively. A three-way result allows recursive comparisons to be
691 // more efficient.
692 static int CompareSCEVComplexity(
693     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
694     EquivalenceClasses<const Value *> &EqCacheValue,
695     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
696     DominatorTree &DT, unsigned Depth = 0) {
697   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
698   if (LHS == RHS)
699     return 0;
700 
701   // Primarily, sort the SCEVs by their getSCEVType().
702   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
703   if (LType != RType)
704     return (int)LType - (int)RType;
705 
706   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
707     return 0;
708   // Aside from the getSCEVType() ordering, the particular ordering
709   // isn't very important except that it's beneficial to be consistent,
710   // so that (a + b) and (b + a) don't end up as different expressions.
711   switch (LType) {
712   case scUnknown: {
713     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
714     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
715 
716     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
717                                    RU->getValue(), Depth + 1);
718     if (X == 0)
719       EqCacheSCEV.unionSets(LHS, RHS);
720     return X;
721   }
722 
723   case scConstant: {
724     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
725     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
726 
727     // Compare constant values.
728     const APInt &LA = LC->getAPInt();
729     const APInt &RA = RC->getAPInt();
730     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
731     if (LBitWidth != RBitWidth)
732       return (int)LBitWidth - (int)RBitWidth;
733     return LA.ult(RA) ? -1 : 1;
734   }
735 
736   case scAddRecExpr: {
737     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
738     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
739 
740     // There is always a dominance between two recs that are used by one SCEV,
741     // so we can safely sort recs by loop header dominance. We require such
742     // order in getAddExpr.
743     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
744     if (LLoop != RLoop) {
745       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
746       assert(LHead != RHead && "Two loops share the same header?");
747       if (DT.dominates(LHead, RHead))
748         return 1;
749       else
750         assert(DT.dominates(RHead, LHead) &&
751                "No dominance between recurrences used by one SCEV?");
752       return -1;
753     }
754 
755     // Addrec complexity grows with operand count.
756     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
757     if (LNumOps != RNumOps)
758       return (int)LNumOps - (int)RNumOps;
759 
760     // Lexicographically compare.
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                     LA->getOperand(i), RA->getOperand(i), DT,
764                                     Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scAddExpr:
773   case scMulExpr:
774   case scSMaxExpr:
775   case scUMaxExpr:
776   case scSMinExpr:
777   case scUMinExpr: {
778     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
779     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
780 
781     // Lexicographically compare n-ary expressions.
782     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
783     if (LNumOps != RNumOps)
784       return (int)LNumOps - (int)RNumOps;
785 
786     for (unsigned i = 0; i != LNumOps; ++i) {
787       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
788                                     LC->getOperand(i), RC->getOperand(i), DT,
789                                     Depth + 1);
790       if (X != 0)
791         return X;
792     }
793     EqCacheSCEV.unionSets(LHS, RHS);
794     return 0;
795   }
796 
797   case scUDivExpr: {
798     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
799     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
800 
801     // Lexicographically compare udiv expressions.
802     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
803                                   RC->getLHS(), DT, Depth + 1);
804     if (X != 0)
805       return X;
806     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
807                               RC->getRHS(), DT, Depth + 1);
808     if (X == 0)
809       EqCacheSCEV.unionSets(LHS, RHS);
810     return X;
811   }
812 
813   case scPtrToInt:
814   case scTruncate:
815   case scZeroExtend:
816   case scSignExtend: {
817     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
818     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
819 
820     // Compare cast expressions by operand.
821     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
822                                   LC->getOperand(), RC->getOperand(), DT,
823                                   Depth + 1);
824     if (X == 0)
825       EqCacheSCEV.unionSets(LHS, RHS);
826     return X;
827   }
828 
829   case scCouldNotCompute:
830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
831   }
832   llvm_unreachable("Unknown SCEV kind!");
833 }
834 
835 /// Given a list of SCEV objects, order them by their complexity, and group
836 /// objects of the same complexity together by value.  When this routine is
837 /// finished, we know that any duplicates in the vector are consecutive and that
838 /// complexity is monotonically increasing.
839 ///
840 /// Note that we go take special precautions to ensure that we get deterministic
841 /// results from this routine.  In other words, we don't want the results of
842 /// this to depend on where the addresses of various SCEV objects happened to
843 /// land in memory.
844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
845                               LoopInfo *LI, DominatorTree &DT) {
846   if (Ops.size() < 2) return;  // Noop
847 
848   EquivalenceClasses<const SCEV *> EqCacheSCEV;
849   EquivalenceClasses<const Value *> EqCacheValue;
850   if (Ops.size() == 2) {
851     // This is the common case, which also happens to be trivially simple.
852     // Special case it.
853     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
854     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
855       std::swap(LHS, RHS);
856     return;
857   }
858 
859   // Do the rough sort by complexity.
860   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
861     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
862            0;
863   });
864 
865   // Now that we are sorted by complexity, group elements of the same
866   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
867   // be extremely short in practice.  Note that we take this approach because we
868   // do not want to depend on the addresses of the objects we are grouping.
869   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
870     const SCEV *S = Ops[i];
871     unsigned Complexity = S->getSCEVType();
872 
873     // If there are any objects of the same complexity and same value as this
874     // one, group them.
875     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
876       if (Ops[j] == S) { // Found a duplicate.
877         // Move it to immediately after i'th element.
878         std::swap(Ops[i+1], Ops[j]);
879         ++i;   // no need to rescan it.
880         if (i == e-2) return;  // Done!
881       }
882     }
883   }
884 }
885 
886 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
887 /// least HugeExprThreshold nodes).
888 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
889   return any_of(Ops, [](const SCEV *S) {
890     return S->getExpressionSize() >= HugeExprThreshold;
891   });
892 }
893 
894 //===----------------------------------------------------------------------===//
895 //                      Simple SCEV method implementations
896 //===----------------------------------------------------------------------===//
897 
898 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
899 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
900                                        ScalarEvolution &SE,
901                                        Type *ResultTy) {
902   // Handle the simplest case efficiently.
903   if (K == 1)
904     return SE.getTruncateOrZeroExtend(It, ResultTy);
905 
906   // We are using the following formula for BC(It, K):
907   //
908   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
909   //
910   // Suppose, W is the bitwidth of the return value.  We must be prepared for
911   // overflow.  Hence, we must assure that the result of our computation is
912   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
913   // safe in modular arithmetic.
914   //
915   // However, this code doesn't use exactly that formula; the formula it uses
916   // is something like the following, where T is the number of factors of 2 in
917   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
918   // exponentiation:
919   //
920   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
921   //
922   // This formula is trivially equivalent to the previous formula.  However,
923   // this formula can be implemented much more efficiently.  The trick is that
924   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
925   // arithmetic.  To do exact division in modular arithmetic, all we have
926   // to do is multiply by the inverse.  Therefore, this step can be done at
927   // width W.
928   //
929   // The next issue is how to safely do the division by 2^T.  The way this
930   // is done is by doing the multiplication step at a width of at least W + T
931   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
932   // when we perform the division by 2^T (which is equivalent to a right shift
933   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
934   // truncated out after the division by 2^T.
935   //
936   // In comparison to just directly using the first formula, this technique
937   // is much more efficient; using the first formula requires W * K bits,
938   // but this formula less than W + K bits. Also, the first formula requires
939   // a division step, whereas this formula only requires multiplies and shifts.
940   //
941   // It doesn't matter whether the subtraction step is done in the calculation
942   // width or the input iteration count's width; if the subtraction overflows,
943   // the result must be zero anyway.  We prefer here to do it in the width of
944   // the induction variable because it helps a lot for certain cases; CodeGen
945   // isn't smart enough to ignore the overflow, which leads to much less
946   // efficient code if the width of the subtraction is wider than the native
947   // register width.
948   //
949   // (It's possible to not widen at all by pulling out factors of 2 before
950   // the multiplication; for example, K=2 can be calculated as
951   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
952   // extra arithmetic, so it's not an obvious win, and it gets
953   // much more complicated for K > 3.)
954 
955   // Protection from insane SCEVs; this bound is conservative,
956   // but it probably doesn't matter.
957   if (K > 1000)
958     return SE.getCouldNotCompute();
959 
960   unsigned W = SE.getTypeSizeInBits(ResultTy);
961 
962   // Calculate K! / 2^T and T; we divide out the factors of two before
963   // multiplying for calculating K! / 2^T to avoid overflow.
964   // Other overflow doesn't matter because we only care about the bottom
965   // W bits of the result.
966   APInt OddFactorial(W, 1);
967   unsigned T = 1;
968   for (unsigned i = 3; i <= K; ++i) {
969     APInt Mult(W, i);
970     unsigned TwoFactors = Mult.countTrailingZeros();
971     T += TwoFactors;
972     Mult.lshrInPlace(TwoFactors);
973     OddFactorial *= Mult;
974   }
975 
976   // We need at least W + T bits for the multiplication step
977   unsigned CalculationBits = W + T;
978 
979   // Calculate 2^T, at width T+W.
980   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
981 
982   // Calculate the multiplicative inverse of K! / 2^T;
983   // this multiplication factor will perform the exact division by
984   // K! / 2^T.
985   APInt Mod = APInt::getSignedMinValue(W+1);
986   APInt MultiplyFactor = OddFactorial.zext(W+1);
987   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
988   MultiplyFactor = MultiplyFactor.trunc(W);
989 
990   // Calculate the product, at width T+W
991   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
992                                                       CalculationBits);
993   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
994   for (unsigned i = 1; i != K; ++i) {
995     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
996     Dividend = SE.getMulExpr(Dividend,
997                              SE.getTruncateOrZeroExtend(S, CalculationTy));
998   }
999 
1000   // Divide by 2^T
1001   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1002 
1003   // Truncate the result, and divide by K! / 2^T.
1004 
1005   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1006                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1007 }
1008 
1009 /// Return the value of this chain of recurrences at the specified iteration
1010 /// number.  We can evaluate this recurrence by multiplying each element in the
1011 /// chain by the binomial coefficient corresponding to it.  In other words, we
1012 /// can evaluate {A,+,B,+,C,+,D} as:
1013 ///
1014 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1015 ///
1016 /// where BC(It, k) stands for binomial coefficient.
1017 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1018                                                 ScalarEvolution &SE) const {
1019   const SCEV *Result = getStart();
1020   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1021     // The computation is correct in the face of overflow provided that the
1022     // multiplication is performed _after_ the evaluation of the binomial
1023     // coefficient.
1024     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1025     if (isa<SCEVCouldNotCompute>(Coeff))
1026       return Coeff;
1027 
1028     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1029   }
1030   return Result;
1031 }
1032 
1033 //===----------------------------------------------------------------------===//
1034 //                    SCEV Expression folder implementations
1035 //===----------------------------------------------------------------------===//
1036 
1037 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1038                                              unsigned Depth) {
1039   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1040   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1041 
1042   // We could be called with an integer-typed operands during SCEV rewrites.
1043   // Since the operand is an integer already, just perform zext/trunc/self cast.
1044   if (!Op->getType()->isPointerTy())
1045     return getTruncateOrZeroExtend(Op, Ty);
1046 
1047   // What would be an ID for such a SCEV cast expression?
1048   FoldingSetNodeID ID;
1049   ID.AddInteger(scPtrToInt);
1050   ID.AddPointer(Op);
1051 
1052   void *IP = nullptr;
1053 
1054   // Is there already an expression for such a cast?
1055   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1056     return getTruncateOrZeroExtend(S, Ty);
1057 
1058   // If not, is this expression something we can't reduce any further?
1059   if (isa<SCEVUnknown>(Op)) {
1060     // Create an explicit cast node.
1061     // We can reuse the existing insert position since if we get here,
1062     // we won't have made any changes which would invalidate it.
1063     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1064     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1065                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1066            "We can only model ptrtoint if SCEV's effective (integer) type is "
1067            "sufficiently wide to represent all possible pointer values.");
1068     SCEV *S = new (SCEVAllocator)
1069         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1070     UniqueSCEVs.InsertNode(S, IP);
1071     addToLoopUseLists(S);
1072     return getTruncateOrZeroExtend(S, Ty);
1073   }
1074 
1075   assert(Depth == 0 &&
1076          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1077 
1078   // Otherwise, we've got some expression that is more complex than just a
1079   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1080   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1081   // only, and the expressions must otherwise be integer-typed.
1082   // So sink the cast down to the SCEVUnknown's.
1083 
1084   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1085   /// which computes a pointer-typed value, and rewrites the whole expression
1086   /// tree so that *all* the computations are done on integers, and the only
1087   /// pointer-typed operands in the expression are SCEVUnknown.
1088   class SCEVPtrToIntSinkingRewriter
1089       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1090     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1091 
1092   public:
1093     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1094 
1095     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1096       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1097       return Rewriter.visit(Scev);
1098     }
1099 
1100     const SCEV *visit(const SCEV *S) {
1101       Type *STy = S->getType();
1102       // If the expression is not pointer-typed, just keep it as-is.
1103       if (!STy->isPointerTy())
1104         return S;
1105       // Else, recursively sink the cast down into it.
1106       return Base::visit(S);
1107     }
1108 
1109     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1110       SmallVector<const SCEV *, 2> Operands;
1111       bool Changed = false;
1112       for (auto *Op : Expr->operands()) {
1113         Operands.push_back(visit(Op));
1114         Changed |= Op != Operands.back();
1115       }
1116       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1117     }
1118 
1119     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1120       SmallVector<const SCEV *, 2> Operands;
1121       bool Changed = false;
1122       for (auto *Op : Expr->operands()) {
1123         Operands.push_back(visit(Op));
1124         Changed |= Op != Operands.back();
1125       }
1126       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1127     }
1128 
1129     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1130       Type *ExprPtrTy = Expr->getType();
1131       assert(ExprPtrTy->isPointerTy() &&
1132              "Should only reach pointer-typed SCEVUnknown's.");
1133       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1134       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1135     }
1136   };
1137 
1138   // And actually perform the cast sinking.
1139   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1140   assert(IntOp->getType()->isIntegerTy() &&
1141          "We must have succeeded in sinking the cast, "
1142          "and ending up with an integer-typed expression!");
1143   return getTruncateOrZeroExtend(IntOp, Ty);
1144 }
1145 
1146 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1147                                              unsigned Depth) {
1148   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1149          "This is not a truncating conversion!");
1150   assert(isSCEVable(Ty) &&
1151          "This is not a conversion to a SCEVable type!");
1152   Ty = getEffectiveSCEVType(Ty);
1153 
1154   FoldingSetNodeID ID;
1155   ID.AddInteger(scTruncate);
1156   ID.AddPointer(Op);
1157   ID.AddPointer(Ty);
1158   void *IP = nullptr;
1159   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1160 
1161   // Fold if the operand is constant.
1162   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1163     return getConstant(
1164       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1165 
1166   // trunc(trunc(x)) --> trunc(x)
1167   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1168     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1169 
1170   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1171   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1172     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1173 
1174   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1175   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1177 
1178   if (Depth > MaxCastDepth) {
1179     SCEV *S =
1180         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1181     UniqueSCEVs.InsertNode(S, IP);
1182     addToLoopUseLists(S);
1183     return S;
1184   }
1185 
1186   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1187   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1188   // if after transforming we have at most one truncate, not counting truncates
1189   // that replace other casts.
1190   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1191     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1192     SmallVector<const SCEV *, 4> Operands;
1193     unsigned numTruncs = 0;
1194     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1195          ++i) {
1196       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1197       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1198           isa<SCEVTruncateExpr>(S))
1199         numTruncs++;
1200       Operands.push_back(S);
1201     }
1202     if (numTruncs < 2) {
1203       if (isa<SCEVAddExpr>(Op))
1204         return getAddExpr(Operands);
1205       else if (isa<SCEVMulExpr>(Op))
1206         return getMulExpr(Operands);
1207       else
1208         llvm_unreachable("Unexpected SCEV type for Op.");
1209     }
1210     // Although we checked in the beginning that ID is not in the cache, it is
1211     // possible that during recursion and different modification ID was inserted
1212     // into the cache. So if we find it, just return it.
1213     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1214       return S;
1215   }
1216 
1217   // If the input value is a chrec scev, truncate the chrec's operands.
1218   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1219     SmallVector<const SCEV *, 4> Operands;
1220     for (const SCEV *Op : AddRec->operands())
1221       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1222     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1223   }
1224 
1225   // Return zero if truncating to known zeros.
1226   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1227   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1228     return getZero(Ty);
1229 
1230   // The cast wasn't folded; create an explicit cast node. We can reuse
1231   // the existing insert position since if we get here, we won't have
1232   // made any changes which would invalidate it.
1233   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1234                                                  Op, Ty);
1235   UniqueSCEVs.InsertNode(S, IP);
1236   addToLoopUseLists(S);
1237   return S;
1238 }
1239 
1240 // Get the limit of a recurrence such that incrementing by Step cannot cause
1241 // signed overflow as long as the value of the recurrence within the
1242 // loop does not exceed this limit before incrementing.
1243 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1244                                                  ICmpInst::Predicate *Pred,
1245                                                  ScalarEvolution *SE) {
1246   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1247   if (SE->isKnownPositive(Step)) {
1248     *Pred = ICmpInst::ICMP_SLT;
1249     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1250                            SE->getSignedRangeMax(Step));
1251   }
1252   if (SE->isKnownNegative(Step)) {
1253     *Pred = ICmpInst::ICMP_SGT;
1254     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1255                            SE->getSignedRangeMin(Step));
1256   }
1257   return nullptr;
1258 }
1259 
1260 // Get the limit of a recurrence such that incrementing by Step cannot cause
1261 // unsigned overflow as long as the value of the recurrence within the loop does
1262 // not exceed this limit before incrementing.
1263 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1264                                                    ICmpInst::Predicate *Pred,
1265                                                    ScalarEvolution *SE) {
1266   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1267   *Pred = ICmpInst::ICMP_ULT;
1268 
1269   return SE->getConstant(APInt::getMinValue(BitWidth) -
1270                          SE->getUnsignedRangeMax(Step));
1271 }
1272 
1273 namespace {
1274 
1275 struct ExtendOpTraitsBase {
1276   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1277                                                           unsigned);
1278 };
1279 
1280 // Used to make code generic over signed and unsigned overflow.
1281 template <typename ExtendOp> struct ExtendOpTraits {
1282   // Members present:
1283   //
1284   // static const SCEV::NoWrapFlags WrapType;
1285   //
1286   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1287   //
1288   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1289   //                                           ICmpInst::Predicate *Pred,
1290   //                                           ScalarEvolution *SE);
1291 };
1292 
1293 template <>
1294 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1295   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1296 
1297   static const GetExtendExprTy GetExtendExpr;
1298 
1299   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1300                                              ICmpInst::Predicate *Pred,
1301                                              ScalarEvolution *SE) {
1302     return getSignedOverflowLimitForStep(Step, Pred, SE);
1303   }
1304 };
1305 
1306 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1307     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1308 
1309 template <>
1310 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1311   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1312 
1313   static const GetExtendExprTy GetExtendExpr;
1314 
1315   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1316                                              ICmpInst::Predicate *Pred,
1317                                              ScalarEvolution *SE) {
1318     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1319   }
1320 };
1321 
1322 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1323     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1324 
1325 } // end anonymous namespace
1326 
1327 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1328 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1329 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1330 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1331 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1332 // expression "Step + sext/zext(PreIncAR)" is congruent with
1333 // "sext/zext(PostIncAR)"
1334 template <typename ExtendOpTy>
1335 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1336                                         ScalarEvolution *SE, unsigned Depth) {
1337   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1338   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1339 
1340   const Loop *L = AR->getLoop();
1341   const SCEV *Start = AR->getStart();
1342   const SCEV *Step = AR->getStepRecurrence(*SE);
1343 
1344   // Check for a simple looking step prior to loop entry.
1345   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1346   if (!SA)
1347     return nullptr;
1348 
1349   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1350   // subtraction is expensive. For this purpose, perform a quick and dirty
1351   // difference, by checking for Step in the operand list.
1352   SmallVector<const SCEV *, 4> DiffOps;
1353   for (const SCEV *Op : SA->operands())
1354     if (Op != Step)
1355       DiffOps.push_back(Op);
1356 
1357   if (DiffOps.size() == SA->getNumOperands())
1358     return nullptr;
1359 
1360   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1361   // `Step`:
1362 
1363   // 1. NSW/NUW flags on the step increment.
1364   auto PreStartFlags =
1365     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1366   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1367   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1368       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1369 
1370   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1371   // "S+X does not sign/unsign-overflow".
1372   //
1373 
1374   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1375   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1376       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1377     return PreStart;
1378 
1379   // 2. Direct overflow check on the step operation's expression.
1380   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1381   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1382   const SCEV *OperandExtendedStart =
1383       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1384                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1385   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1386     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1387       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1388       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1389       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1390       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1391     }
1392     return PreStart;
1393   }
1394 
1395   // 3. Loop precondition.
1396   ICmpInst::Predicate Pred;
1397   const SCEV *OverflowLimit =
1398       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1399 
1400   if (OverflowLimit &&
1401       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1402     return PreStart;
1403 
1404   return nullptr;
1405 }
1406 
1407 // Get the normalized zero or sign extended expression for this AddRec's Start.
1408 template <typename ExtendOpTy>
1409 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1410                                         ScalarEvolution *SE,
1411                                         unsigned Depth) {
1412   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1413 
1414   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1415   if (!PreStart)
1416     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1417 
1418   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1419                                              Depth),
1420                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1421 }
1422 
1423 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1424 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1425 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1426 //
1427 // Formally:
1428 //
1429 //     {S,+,X} == {S-T,+,X} + T
1430 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1431 //
1432 // If ({S-T,+,X} + T) does not overflow  ... (1)
1433 //
1434 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1435 //
1436 // If {S-T,+,X} does not overflow  ... (2)
1437 //
1438 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1439 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1440 //
1441 // If (S-T)+T does not overflow  ... (3)
1442 //
1443 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1444 //      == {Ext(S),+,Ext(X)} == LHS
1445 //
1446 // Thus, if (1), (2) and (3) are true for some T, then
1447 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1448 //
1449 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1450 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1451 // to check for (1) and (2).
1452 //
1453 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1454 // is `Delta` (defined below).
1455 template <typename ExtendOpTy>
1456 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1457                                                 const SCEV *Step,
1458                                                 const Loop *L) {
1459   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1460 
1461   // We restrict `Start` to a constant to prevent SCEV from spending too much
1462   // time here.  It is correct (but more expensive) to continue with a
1463   // non-constant `Start` and do a general SCEV subtraction to compute
1464   // `PreStart` below.
1465   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1466   if (!StartC)
1467     return false;
1468 
1469   APInt StartAI = StartC->getAPInt();
1470 
1471   for (unsigned Delta : {-2, -1, 1, 2}) {
1472     const SCEV *PreStart = getConstant(StartAI - Delta);
1473 
1474     FoldingSetNodeID ID;
1475     ID.AddInteger(scAddRecExpr);
1476     ID.AddPointer(PreStart);
1477     ID.AddPointer(Step);
1478     ID.AddPointer(L);
1479     void *IP = nullptr;
1480     const auto *PreAR =
1481       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1482 
1483     // Give up if we don't already have the add recurrence we need because
1484     // actually constructing an add recurrence is relatively expensive.
1485     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1486       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1487       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1488       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1489           DeltaS, &Pred, this);
1490       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1491         return true;
1492     }
1493   }
1494 
1495   return false;
1496 }
1497 
1498 // Finds an integer D for an expression (C + x + y + ...) such that the top
1499 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1500 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1501 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1502 // the (C + x + y + ...) expression is \p WholeAddExpr.
1503 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1504                                             const SCEVConstant *ConstantTerm,
1505                                             const SCEVAddExpr *WholeAddExpr) {
1506   const APInt &C = ConstantTerm->getAPInt();
1507   const unsigned BitWidth = C.getBitWidth();
1508   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1509   uint32_t TZ = BitWidth;
1510   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1511     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1512   if (TZ) {
1513     // Set D to be as many least significant bits of C as possible while still
1514     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1515     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1516   }
1517   return APInt(BitWidth, 0);
1518 }
1519 
1520 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1521 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1522 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1523 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1524 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1525                                             const APInt &ConstantStart,
1526                                             const SCEV *Step) {
1527   const unsigned BitWidth = ConstantStart.getBitWidth();
1528   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1529   if (TZ)
1530     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1531                          : ConstantStart;
1532   return APInt(BitWidth, 0);
1533 }
1534 
1535 const SCEV *
1536 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1537   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1538          "This is not an extending conversion!");
1539   assert(isSCEVable(Ty) &&
1540          "This is not a conversion to a SCEVable type!");
1541   Ty = getEffectiveSCEVType(Ty);
1542 
1543   // Fold if the operand is constant.
1544   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1545     return getConstant(
1546       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1547 
1548   // zext(zext(x)) --> zext(x)
1549   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1550     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1551 
1552   // Before doing any expensive analysis, check to see if we've already
1553   // computed a SCEV for this Op and Ty.
1554   FoldingSetNodeID ID;
1555   ID.AddInteger(scZeroExtend);
1556   ID.AddPointer(Op);
1557   ID.AddPointer(Ty);
1558   void *IP = nullptr;
1559   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1560   if (Depth > MaxCastDepth) {
1561     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1562                                                      Op, Ty);
1563     UniqueSCEVs.InsertNode(S, IP);
1564     addToLoopUseLists(S);
1565     return S;
1566   }
1567 
1568   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1569   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1570     // It's possible the bits taken off by the truncate were all zero bits. If
1571     // so, we should be able to simplify this further.
1572     const SCEV *X = ST->getOperand();
1573     ConstantRange CR = getUnsignedRange(X);
1574     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1575     unsigned NewBits = getTypeSizeInBits(Ty);
1576     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1577             CR.zextOrTrunc(NewBits)))
1578       return getTruncateOrZeroExtend(X, Ty, Depth);
1579   }
1580 
1581   // If the input value is a chrec scev, and we can prove that the value
1582   // did not overflow the old, smaller, value, we can zero extend all of the
1583   // operands (often constants).  This allows analysis of something like
1584   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1585   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1586     if (AR->isAffine()) {
1587       const SCEV *Start = AR->getStart();
1588       const SCEV *Step = AR->getStepRecurrence(*this);
1589       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1590       const Loop *L = AR->getLoop();
1591 
1592       if (!AR->hasNoUnsignedWrap()) {
1593         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1594         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1595       }
1596 
1597       // If we have special knowledge that this addrec won't overflow,
1598       // we don't need to do any further analysis.
1599       if (AR->hasNoUnsignedWrap())
1600         return getAddRecExpr(
1601             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1602             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1603 
1604       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1605       // Note that this serves two purposes: It filters out loops that are
1606       // simply not analyzable, and it covers the case where this code is
1607       // being called from within backedge-taken count analysis, such that
1608       // attempting to ask for the backedge-taken count would likely result
1609       // in infinite recursion. In the later case, the analysis code will
1610       // cope with a conservative value, and it will take care to purge
1611       // that value once it has finished.
1612       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1613       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1614         // Manually compute the final value for AR, checking for overflow.
1615 
1616         // Check whether the backedge-taken count can be losslessly casted to
1617         // the addrec's type. The count is always unsigned.
1618         const SCEV *CastedMaxBECount =
1619             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1620         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1621             CastedMaxBECount, MaxBECount->getType(), Depth);
1622         if (MaxBECount == RecastedMaxBECount) {
1623           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1624           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1625           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1626                                         SCEV::FlagAnyWrap, Depth + 1);
1627           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1628                                                           SCEV::FlagAnyWrap,
1629                                                           Depth + 1),
1630                                                WideTy, Depth + 1);
1631           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1632           const SCEV *WideMaxBECount =
1633             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1634           const SCEV *OperandExtendedAdd =
1635             getAddExpr(WideStart,
1636                        getMulExpr(WideMaxBECount,
1637                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1638                                   SCEV::FlagAnyWrap, Depth + 1),
1639                        SCEV::FlagAnyWrap, Depth + 1);
1640           if (ZAdd == OperandExtendedAdd) {
1641             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1642             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1643             // Return the expression with the addrec on the outside.
1644             return getAddRecExpr(
1645                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1646                                                          Depth + 1),
1647                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1648                 AR->getNoWrapFlags());
1649           }
1650           // Similar to above, only this time treat the step value as signed.
1651           // This covers loops that count down.
1652           OperandExtendedAdd =
1653             getAddExpr(WideStart,
1654                        getMulExpr(WideMaxBECount,
1655                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1656                                   SCEV::FlagAnyWrap, Depth + 1),
1657                        SCEV::FlagAnyWrap, Depth + 1);
1658           if (ZAdd == OperandExtendedAdd) {
1659             // Cache knowledge of AR NW, which is propagated to this AddRec.
1660             // Negative step causes unsigned wrap, but it still can't self-wrap.
1661             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1662             // Return the expression with the addrec on the outside.
1663             return getAddRecExpr(
1664                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1665                                                          Depth + 1),
1666                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1667                 AR->getNoWrapFlags());
1668           }
1669         }
1670       }
1671 
1672       // Normally, in the cases we can prove no-overflow via a
1673       // backedge guarding condition, we can also compute a backedge
1674       // taken count for the loop.  The exceptions are assumptions and
1675       // guards present in the loop -- SCEV is not great at exploiting
1676       // these to compute max backedge taken counts, but can still use
1677       // these to prove lack of overflow.  Use this fact to avoid
1678       // doing extra work that may not pay off.
1679       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1680           !AC.assumptions().empty()) {
1681 
1682         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1683         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1684         if (AR->hasNoUnsignedWrap()) {
1685           // Same as nuw case above - duplicated here to avoid a compile time
1686           // issue.  It's not clear that the order of checks does matter, but
1687           // it's one of two issue possible causes for a change which was
1688           // reverted.  Be conservative for the moment.
1689           return getAddRecExpr(
1690                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1691                                                          Depth + 1),
1692                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1693                 AR->getNoWrapFlags());
1694         }
1695 
1696         // For a negative step, we can extend the operands iff doing so only
1697         // traverses values in the range zext([0,UINT_MAX]).
1698         if (isKnownNegative(Step)) {
1699           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1700                                       getSignedRangeMin(Step));
1701           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1702               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1703             // Cache knowledge of AR NW, which is propagated to this
1704             // AddRec.  Negative step causes unsigned wrap, but it
1705             // still can't self-wrap.
1706             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1707             // Return the expression with the addrec on the outside.
1708             return getAddRecExpr(
1709                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1710                                                          Depth + 1),
1711                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1712                 AR->getNoWrapFlags());
1713           }
1714         }
1715       }
1716 
1717       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1718       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1719       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1720       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1721         const APInt &C = SC->getAPInt();
1722         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1723         if (D != 0) {
1724           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1725           const SCEV *SResidual =
1726               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1727           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1728           return getAddExpr(SZExtD, SZExtR,
1729                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1730                             Depth + 1);
1731         }
1732       }
1733 
1734       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1735         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1736         return getAddRecExpr(
1737             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1738             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1739       }
1740     }
1741 
1742   // zext(A % B) --> zext(A) % zext(B)
1743   {
1744     const SCEV *LHS;
1745     const SCEV *RHS;
1746     if (matchURem(Op, LHS, RHS))
1747       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1748                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1749   }
1750 
1751   // zext(A / B) --> zext(A) / zext(B).
1752   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1753     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1754                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1755 
1756   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1757     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1758     if (SA->hasNoUnsignedWrap()) {
1759       // If the addition does not unsign overflow then we can, by definition,
1760       // commute the zero extension with the addition operation.
1761       SmallVector<const SCEV *, 4> Ops;
1762       for (const auto *Op : SA->operands())
1763         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1764       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1765     }
1766 
1767     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1768     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1769     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1770     //
1771     // Often address arithmetics contain expressions like
1772     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1773     // This transformation is useful while proving that such expressions are
1774     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1775     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1776       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1777       if (D != 0) {
1778         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1779         const SCEV *SResidual =
1780             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1781         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1782         return getAddExpr(SZExtD, SZExtR,
1783                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1784                           Depth + 1);
1785       }
1786     }
1787   }
1788 
1789   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1790     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1791     if (SM->hasNoUnsignedWrap()) {
1792       // If the multiply does not unsign overflow then we can, by definition,
1793       // commute the zero extension with the multiply operation.
1794       SmallVector<const SCEV *, 4> Ops;
1795       for (const auto *Op : SM->operands())
1796         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1797       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1798     }
1799 
1800     // zext(2^K * (trunc X to iN)) to iM ->
1801     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1802     //
1803     // Proof:
1804     //
1805     //     zext(2^K * (trunc X to iN)) to iM
1806     //   = zext((trunc X to iN) << K) to iM
1807     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1808     //     (because shl removes the top K bits)
1809     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1810     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1811     //
1812     if (SM->getNumOperands() == 2)
1813       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1814         if (MulLHS->getAPInt().isPowerOf2())
1815           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1816             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1817                                MulLHS->getAPInt().logBase2();
1818             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1819             return getMulExpr(
1820                 getZeroExtendExpr(MulLHS, Ty),
1821                 getZeroExtendExpr(
1822                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1823                 SCEV::FlagNUW, Depth + 1);
1824           }
1825   }
1826 
1827   // The cast wasn't folded; create an explicit cast node.
1828   // Recompute the insert position, as it may have been invalidated.
1829   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1830   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1831                                                    Op, Ty);
1832   UniqueSCEVs.InsertNode(S, IP);
1833   addToLoopUseLists(S);
1834   return S;
1835 }
1836 
1837 const SCEV *
1838 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1839   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1840          "This is not an extending conversion!");
1841   assert(isSCEVable(Ty) &&
1842          "This is not a conversion to a SCEVable type!");
1843   Ty = getEffectiveSCEVType(Ty);
1844 
1845   // Fold if the operand is constant.
1846   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1847     return getConstant(
1848       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1849 
1850   // sext(sext(x)) --> sext(x)
1851   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1852     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1853 
1854   // sext(zext(x)) --> zext(x)
1855   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1856     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1857 
1858   // Before doing any expensive analysis, check to see if we've already
1859   // computed a SCEV for this Op and Ty.
1860   FoldingSetNodeID ID;
1861   ID.AddInteger(scSignExtend);
1862   ID.AddPointer(Op);
1863   ID.AddPointer(Ty);
1864   void *IP = nullptr;
1865   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1866   // Limit recursion depth.
1867   if (Depth > MaxCastDepth) {
1868     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1869                                                      Op, Ty);
1870     UniqueSCEVs.InsertNode(S, IP);
1871     addToLoopUseLists(S);
1872     return S;
1873   }
1874 
1875   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1876   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1877     // It's possible the bits taken off by the truncate were all sign bits. If
1878     // so, we should be able to simplify this further.
1879     const SCEV *X = ST->getOperand();
1880     ConstantRange CR = getSignedRange(X);
1881     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1882     unsigned NewBits = getTypeSizeInBits(Ty);
1883     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1884             CR.sextOrTrunc(NewBits)))
1885       return getTruncateOrSignExtend(X, Ty, Depth);
1886   }
1887 
1888   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1889     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1890     if (SA->hasNoSignedWrap()) {
1891       // If the addition does not sign overflow then we can, by definition,
1892       // commute the sign extension with the addition operation.
1893       SmallVector<const SCEV *, 4> Ops;
1894       for (const auto *Op : SA->operands())
1895         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1896       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1897     }
1898 
1899     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1900     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1901     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1902     //
1903     // For instance, this will bring two seemingly different expressions:
1904     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1905     //         sext(6 + 20 * %x + 24 * %y)
1906     // to the same form:
1907     //     2 + sext(4 + 20 * %x + 24 * %y)
1908     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1909       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1910       if (D != 0) {
1911         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1912         const SCEV *SResidual =
1913             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1914         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1915         return getAddExpr(SSExtD, SSExtR,
1916                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1917                           Depth + 1);
1918       }
1919     }
1920   }
1921   // If the input value is a chrec scev, and we can prove that the value
1922   // did not overflow the old, smaller, value, we can sign extend all of the
1923   // operands (often constants).  This allows analysis of something like
1924   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1925   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1926     if (AR->isAffine()) {
1927       const SCEV *Start = AR->getStart();
1928       const SCEV *Step = AR->getStepRecurrence(*this);
1929       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1930       const Loop *L = AR->getLoop();
1931 
1932       if (!AR->hasNoSignedWrap()) {
1933         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1934         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1935       }
1936 
1937       // If we have special knowledge that this addrec won't overflow,
1938       // we don't need to do any further analysis.
1939       if (AR->hasNoSignedWrap())
1940         return getAddRecExpr(
1941             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1942             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1943 
1944       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1945       // Note that this serves two purposes: It filters out loops that are
1946       // simply not analyzable, and it covers the case where this code is
1947       // being called from within backedge-taken count analysis, such that
1948       // attempting to ask for the backedge-taken count would likely result
1949       // in infinite recursion. In the later case, the analysis code will
1950       // cope with a conservative value, and it will take care to purge
1951       // that value once it has finished.
1952       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1953       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1954         // Manually compute the final value for AR, checking for
1955         // overflow.
1956 
1957         // Check whether the backedge-taken count can be losslessly casted to
1958         // the addrec's type. The count is always unsigned.
1959         const SCEV *CastedMaxBECount =
1960             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1961         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1962             CastedMaxBECount, MaxBECount->getType(), Depth);
1963         if (MaxBECount == RecastedMaxBECount) {
1964           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1965           // Check whether Start+Step*MaxBECount has no signed overflow.
1966           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1967                                         SCEV::FlagAnyWrap, Depth + 1);
1968           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1969                                                           SCEV::FlagAnyWrap,
1970                                                           Depth + 1),
1971                                                WideTy, Depth + 1);
1972           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1973           const SCEV *WideMaxBECount =
1974             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1975           const SCEV *OperandExtendedAdd =
1976             getAddExpr(WideStart,
1977                        getMulExpr(WideMaxBECount,
1978                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1979                                   SCEV::FlagAnyWrap, Depth + 1),
1980                        SCEV::FlagAnyWrap, Depth + 1);
1981           if (SAdd == OperandExtendedAdd) {
1982             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1983             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1984             // Return the expression with the addrec on the outside.
1985             return getAddRecExpr(
1986                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1987                                                          Depth + 1),
1988                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1989                 AR->getNoWrapFlags());
1990           }
1991           // Similar to above, only this time treat the step value as unsigned.
1992           // This covers loops that count up with an unsigned step.
1993           OperandExtendedAdd =
1994             getAddExpr(WideStart,
1995                        getMulExpr(WideMaxBECount,
1996                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1997                                   SCEV::FlagAnyWrap, Depth + 1),
1998                        SCEV::FlagAnyWrap, Depth + 1);
1999           if (SAdd == OperandExtendedAdd) {
2000             // If AR wraps around then
2001             //
2002             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2003             // => SAdd != OperandExtendedAdd
2004             //
2005             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2006             // (SAdd == OperandExtendedAdd => AR is NW)
2007 
2008             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2009 
2010             // Return the expression with the addrec on the outside.
2011             return getAddRecExpr(
2012                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2013                                                          Depth + 1),
2014                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2015                 AR->getNoWrapFlags());
2016           }
2017         }
2018       }
2019 
2020       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2021       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2022       if (AR->hasNoSignedWrap()) {
2023         // Same as nsw case above - duplicated here to avoid a compile time
2024         // issue.  It's not clear that the order of checks does matter, but
2025         // it's one of two issue possible causes for a change which was
2026         // reverted.  Be conservative for the moment.
2027         return getAddRecExpr(
2028             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2029             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2030       }
2031 
2032       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2033       // if D + (C - D + Step * n) could be proven to not signed wrap
2034       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2035       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2036         const APInt &C = SC->getAPInt();
2037         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2038         if (D != 0) {
2039           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2040           const SCEV *SResidual =
2041               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2042           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2043           return getAddExpr(SSExtD, SSExtR,
2044                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2045                             Depth + 1);
2046         }
2047       }
2048 
2049       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2050         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2051         return getAddRecExpr(
2052             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2053             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2054       }
2055     }
2056 
2057   // If the input value is provably positive and we could not simplify
2058   // away the sext build a zext instead.
2059   if (isKnownNonNegative(Op))
2060     return getZeroExtendExpr(Op, Ty, Depth + 1);
2061 
2062   // The cast wasn't folded; create an explicit cast node.
2063   // Recompute the insert position, as it may have been invalidated.
2064   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2065   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2066                                                    Op, Ty);
2067   UniqueSCEVs.InsertNode(S, IP);
2068   addToLoopUseLists(S);
2069   return S;
2070 }
2071 
2072 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2073 /// unspecified bits out to the given type.
2074 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2075                                               Type *Ty) {
2076   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2077          "This is not an extending conversion!");
2078   assert(isSCEVable(Ty) &&
2079          "This is not a conversion to a SCEVable type!");
2080   Ty = getEffectiveSCEVType(Ty);
2081 
2082   // Sign-extend negative constants.
2083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2084     if (SC->getAPInt().isNegative())
2085       return getSignExtendExpr(Op, Ty);
2086 
2087   // Peel off a truncate cast.
2088   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2089     const SCEV *NewOp = T->getOperand();
2090     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2091       return getAnyExtendExpr(NewOp, Ty);
2092     return getTruncateOrNoop(NewOp, Ty);
2093   }
2094 
2095   // Next try a zext cast. If the cast is folded, use it.
2096   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2097   if (!isa<SCEVZeroExtendExpr>(ZExt))
2098     return ZExt;
2099 
2100   // Next try a sext cast. If the cast is folded, use it.
2101   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2102   if (!isa<SCEVSignExtendExpr>(SExt))
2103     return SExt;
2104 
2105   // Force the cast to be folded into the operands of an addrec.
2106   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2107     SmallVector<const SCEV *, 4> Ops;
2108     for (const SCEV *Op : AR->operands())
2109       Ops.push_back(getAnyExtendExpr(Op, Ty));
2110     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2111   }
2112 
2113   // If the expression is obviously signed, use the sext cast value.
2114   if (isa<SCEVSMaxExpr>(Op))
2115     return SExt;
2116 
2117   // Absent any other information, use the zext cast value.
2118   return ZExt;
2119 }
2120 
2121 /// Process the given Ops list, which is a list of operands to be added under
2122 /// the given scale, update the given map. This is a helper function for
2123 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2124 /// that would form an add expression like this:
2125 ///
2126 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2127 ///
2128 /// where A and B are constants, update the map with these values:
2129 ///
2130 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2131 ///
2132 /// and add 13 + A*B*29 to AccumulatedConstant.
2133 /// This will allow getAddRecExpr to produce this:
2134 ///
2135 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2136 ///
2137 /// This form often exposes folding opportunities that are hidden in
2138 /// the original operand list.
2139 ///
2140 /// Return true iff it appears that any interesting folding opportunities
2141 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2142 /// the common case where no interesting opportunities are present, and
2143 /// is also used as a check to avoid infinite recursion.
2144 static bool
2145 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2146                              SmallVectorImpl<const SCEV *> &NewOps,
2147                              APInt &AccumulatedConstant,
2148                              const SCEV *const *Ops, size_t NumOperands,
2149                              const APInt &Scale,
2150                              ScalarEvolution &SE) {
2151   bool Interesting = false;
2152 
2153   // Iterate over the add operands. They are sorted, with constants first.
2154   unsigned i = 0;
2155   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2156     ++i;
2157     // Pull a buried constant out to the outside.
2158     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2159       Interesting = true;
2160     AccumulatedConstant += Scale * C->getAPInt();
2161   }
2162 
2163   // Next comes everything else. We're especially interested in multiplies
2164   // here, but they're in the middle, so just visit the rest with one loop.
2165   for (; i != NumOperands; ++i) {
2166     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2167     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2168       APInt NewScale =
2169           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2170       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2171         // A multiplication of a constant with another add; recurse.
2172         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2173         Interesting |=
2174           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2175                                        Add->op_begin(), Add->getNumOperands(),
2176                                        NewScale, SE);
2177       } else {
2178         // A multiplication of a constant with some other value. Update
2179         // the map.
2180         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2181         const SCEV *Key = SE.getMulExpr(MulOps);
2182         auto Pair = M.insert({Key, NewScale});
2183         if (Pair.second) {
2184           NewOps.push_back(Pair.first->first);
2185         } else {
2186           Pair.first->second += NewScale;
2187           // The map already had an entry for this value, which may indicate
2188           // a folding opportunity.
2189           Interesting = true;
2190         }
2191       }
2192     } else {
2193       // An ordinary operand. Update the map.
2194       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2195           M.insert({Ops[i], Scale});
2196       if (Pair.second) {
2197         NewOps.push_back(Pair.first->first);
2198       } else {
2199         Pair.first->second += Scale;
2200         // The map already had an entry for this value, which may indicate
2201         // a folding opportunity.
2202         Interesting = true;
2203       }
2204     }
2205   }
2206 
2207   return Interesting;
2208 }
2209 
2210 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2211 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2212 // can't-overflow flags for the operation if possible.
2213 static SCEV::NoWrapFlags
2214 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2215                       const ArrayRef<const SCEV *> Ops,
2216                       SCEV::NoWrapFlags Flags) {
2217   using namespace std::placeholders;
2218 
2219   using OBO = OverflowingBinaryOperator;
2220 
2221   bool CanAnalyze =
2222       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2223   (void)CanAnalyze;
2224   assert(CanAnalyze && "don't call from other places!");
2225 
2226   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2227   SCEV::NoWrapFlags SignOrUnsignWrap =
2228       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2229 
2230   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2231   auto IsKnownNonNegative = [&](const SCEV *S) {
2232     return SE->isKnownNonNegative(S);
2233   };
2234 
2235   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2236     Flags =
2237         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2238 
2239   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2240 
2241   if (SignOrUnsignWrap != SignOrUnsignMask &&
2242       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2243       isa<SCEVConstant>(Ops[0])) {
2244 
2245     auto Opcode = [&] {
2246       switch (Type) {
2247       case scAddExpr:
2248         return Instruction::Add;
2249       case scMulExpr:
2250         return Instruction::Mul;
2251       default:
2252         llvm_unreachable("Unexpected SCEV op.");
2253       }
2254     }();
2255 
2256     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2257 
2258     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2259     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2260       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2261           Opcode, C, OBO::NoSignedWrap);
2262       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2263         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2264     }
2265 
2266     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2267     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2268       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2269           Opcode, C, OBO::NoUnsignedWrap);
2270       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2271         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2272     }
2273   }
2274 
2275   return Flags;
2276 }
2277 
2278 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2279   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2280 }
2281 
2282 /// Get a canonical add expression, or something simpler if possible.
2283 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2284                                         SCEV::NoWrapFlags OrigFlags,
2285                                         unsigned Depth) {
2286   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2287          "only nuw or nsw allowed");
2288   assert(!Ops.empty() && "Cannot get empty add!");
2289   if (Ops.size() == 1) return Ops[0];
2290 #ifndef NDEBUG
2291   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2292   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2293     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2294            "SCEVAddExpr operand types don't match!");
2295 #endif
2296 
2297   // Sort by complexity, this groups all similar expression types together.
2298   GroupByComplexity(Ops, &LI, DT);
2299 
2300   // If there are any constants, fold them together.
2301   unsigned Idx = 0;
2302   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2303     ++Idx;
2304     assert(Idx < Ops.size());
2305     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2306       // We found two constants, fold them together!
2307       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2308       if (Ops.size() == 2) return Ops[0];
2309       Ops.erase(Ops.begin()+1);  // Erase the folded element
2310       LHSC = cast<SCEVConstant>(Ops[0]);
2311     }
2312 
2313     // If we are left with a constant zero being added, strip it off.
2314     if (LHSC->getValue()->isZero()) {
2315       Ops.erase(Ops.begin());
2316       --Idx;
2317     }
2318 
2319     if (Ops.size() == 1) return Ops[0];
2320   }
2321 
2322   // Delay expensive flag strengthening until necessary.
2323   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2324     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2325   };
2326 
2327   // Limit recursion calls depth.
2328   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2329     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2330 
2331   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2332     // Don't strengthen flags if we have no new information.
2333     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2334     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2335       Add->setNoWrapFlags(ComputeFlags(Ops));
2336     return S;
2337   }
2338 
2339   // Okay, check to see if the same value occurs in the operand list more than
2340   // once.  If so, merge them together into an multiply expression.  Since we
2341   // sorted the list, these values are required to be adjacent.
2342   Type *Ty = Ops[0]->getType();
2343   bool FoundMatch = false;
2344   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2345     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2346       // Scan ahead to count how many equal operands there are.
2347       unsigned Count = 2;
2348       while (i+Count != e && Ops[i+Count] == Ops[i])
2349         ++Count;
2350       // Merge the values into a multiply.
2351       const SCEV *Scale = getConstant(Ty, Count);
2352       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2353       if (Ops.size() == Count)
2354         return Mul;
2355       Ops[i] = Mul;
2356       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2357       --i; e -= Count - 1;
2358       FoundMatch = true;
2359     }
2360   if (FoundMatch)
2361     return getAddExpr(Ops, OrigFlags, Depth + 1);
2362 
2363   // Check for truncates. If all the operands are truncated from the same
2364   // type, see if factoring out the truncate would permit the result to be
2365   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2366   // if the contents of the resulting outer trunc fold to something simple.
2367   auto FindTruncSrcType = [&]() -> Type * {
2368     // We're ultimately looking to fold an addrec of truncs and muls of only
2369     // constants and truncs, so if we find any other types of SCEV
2370     // as operands of the addrec then we bail and return nullptr here.
2371     // Otherwise, we return the type of the operand of a trunc that we find.
2372     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2373       return T->getOperand()->getType();
2374     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2375       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2376       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2377         return T->getOperand()->getType();
2378     }
2379     return nullptr;
2380   };
2381   if (auto *SrcType = FindTruncSrcType()) {
2382     SmallVector<const SCEV *, 8> LargeOps;
2383     bool Ok = true;
2384     // Check all the operands to see if they can be represented in the
2385     // source type of the truncate.
2386     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2387       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2388         if (T->getOperand()->getType() != SrcType) {
2389           Ok = false;
2390           break;
2391         }
2392         LargeOps.push_back(T->getOperand());
2393       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2394         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2395       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2396         SmallVector<const SCEV *, 8> LargeMulOps;
2397         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2398           if (const SCEVTruncateExpr *T =
2399                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2400             if (T->getOperand()->getType() != SrcType) {
2401               Ok = false;
2402               break;
2403             }
2404             LargeMulOps.push_back(T->getOperand());
2405           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2406             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2407           } else {
2408             Ok = false;
2409             break;
2410           }
2411         }
2412         if (Ok)
2413           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2414       } else {
2415         Ok = false;
2416         break;
2417       }
2418     }
2419     if (Ok) {
2420       // Evaluate the expression in the larger type.
2421       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2422       // If it folds to something simple, use it. Otherwise, don't.
2423       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2424         return getTruncateExpr(Fold, Ty);
2425     }
2426   }
2427 
2428   // Skip past any other cast SCEVs.
2429   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2430     ++Idx;
2431 
2432   // If there are add operands they would be next.
2433   if (Idx < Ops.size()) {
2434     bool DeletedAdd = false;
2435     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2436       if (Ops.size() > AddOpsInlineThreshold ||
2437           Add->getNumOperands() > AddOpsInlineThreshold)
2438         break;
2439       // If we have an add, expand the add operands onto the end of the operands
2440       // list.
2441       Ops.erase(Ops.begin()+Idx);
2442       Ops.append(Add->op_begin(), Add->op_end());
2443       DeletedAdd = true;
2444     }
2445 
2446     // If we deleted at least one add, we added operands to the end of the list,
2447     // and they are not necessarily sorted.  Recurse to resort and resimplify
2448     // any operands we just acquired.
2449     if (DeletedAdd)
2450       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2451   }
2452 
2453   // Skip over the add expression until we get to a multiply.
2454   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2455     ++Idx;
2456 
2457   // Check to see if there are any folding opportunities present with
2458   // operands multiplied by constant values.
2459   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2460     uint64_t BitWidth = getTypeSizeInBits(Ty);
2461     DenseMap<const SCEV *, APInt> M;
2462     SmallVector<const SCEV *, 8> NewOps;
2463     APInt AccumulatedConstant(BitWidth, 0);
2464     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2465                                      Ops.data(), Ops.size(),
2466                                      APInt(BitWidth, 1), *this)) {
2467       struct APIntCompare {
2468         bool operator()(const APInt &LHS, const APInt &RHS) const {
2469           return LHS.ult(RHS);
2470         }
2471       };
2472 
2473       // Some interesting folding opportunity is present, so its worthwhile to
2474       // re-generate the operands list. Group the operands by constant scale,
2475       // to avoid multiplying by the same constant scale multiple times.
2476       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2477       for (const SCEV *NewOp : NewOps)
2478         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2479       // Re-generate the operands list.
2480       Ops.clear();
2481       if (AccumulatedConstant != 0)
2482         Ops.push_back(getConstant(AccumulatedConstant));
2483       for (auto &MulOp : MulOpLists)
2484         if (MulOp.first != 0)
2485           Ops.push_back(getMulExpr(
2486               getConstant(MulOp.first),
2487               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2488               SCEV::FlagAnyWrap, Depth + 1));
2489       if (Ops.empty())
2490         return getZero(Ty);
2491       if (Ops.size() == 1)
2492         return Ops[0];
2493       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2494     }
2495   }
2496 
2497   // If we are adding something to a multiply expression, make sure the
2498   // something is not already an operand of the multiply.  If so, merge it into
2499   // the multiply.
2500   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2501     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2502     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2503       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2504       if (isa<SCEVConstant>(MulOpSCEV))
2505         continue;
2506       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2507         if (MulOpSCEV == Ops[AddOp]) {
2508           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2509           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2510           if (Mul->getNumOperands() != 2) {
2511             // If the multiply has more than two operands, we must get the
2512             // Y*Z term.
2513             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2514                                                 Mul->op_begin()+MulOp);
2515             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2516             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2517           }
2518           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2519           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2520           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2521                                             SCEV::FlagAnyWrap, Depth + 1);
2522           if (Ops.size() == 2) return OuterMul;
2523           if (AddOp < Idx) {
2524             Ops.erase(Ops.begin()+AddOp);
2525             Ops.erase(Ops.begin()+Idx-1);
2526           } else {
2527             Ops.erase(Ops.begin()+Idx);
2528             Ops.erase(Ops.begin()+AddOp-1);
2529           }
2530           Ops.push_back(OuterMul);
2531           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2532         }
2533 
2534       // Check this multiply against other multiplies being added together.
2535       for (unsigned OtherMulIdx = Idx+1;
2536            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2537            ++OtherMulIdx) {
2538         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2539         // If MulOp occurs in OtherMul, we can fold the two multiplies
2540         // together.
2541         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2542              OMulOp != e; ++OMulOp)
2543           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2544             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2545             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2546             if (Mul->getNumOperands() != 2) {
2547               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2548                                                   Mul->op_begin()+MulOp);
2549               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2550               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2551             }
2552             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2553             if (OtherMul->getNumOperands() != 2) {
2554               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2555                                                   OtherMul->op_begin()+OMulOp);
2556               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2557               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2558             }
2559             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2560             const SCEV *InnerMulSum =
2561                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2562             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2563                                               SCEV::FlagAnyWrap, Depth + 1);
2564             if (Ops.size() == 2) return OuterMul;
2565             Ops.erase(Ops.begin()+Idx);
2566             Ops.erase(Ops.begin()+OtherMulIdx-1);
2567             Ops.push_back(OuterMul);
2568             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2569           }
2570       }
2571     }
2572   }
2573 
2574   // If there are any add recurrences in the operands list, see if any other
2575   // added values are loop invariant.  If so, we can fold them into the
2576   // recurrence.
2577   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2578     ++Idx;
2579 
2580   // Scan over all recurrences, trying to fold loop invariants into them.
2581   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2582     // Scan all of the other operands to this add and add them to the vector if
2583     // they are loop invariant w.r.t. the recurrence.
2584     SmallVector<const SCEV *, 8> LIOps;
2585     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2586     const Loop *AddRecLoop = AddRec->getLoop();
2587     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2588       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2589         LIOps.push_back(Ops[i]);
2590         Ops.erase(Ops.begin()+i);
2591         --i; --e;
2592       }
2593 
2594     // If we found some loop invariants, fold them into the recurrence.
2595     if (!LIOps.empty()) {
2596       // Compute nowrap flags for the addition of the loop-invariant ops and
2597       // the addrec. Temporarily push it as an operand for that purpose.
2598       LIOps.push_back(AddRec);
2599       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2600       LIOps.pop_back();
2601 
2602       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2603       LIOps.push_back(AddRec->getStart());
2604 
2605       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2606       // This follows from the fact that the no-wrap flags on the outer add
2607       // expression are applicable on the 0th iteration, when the add recurrence
2608       // will be equal to its start value.
2609       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2610 
2611       // Build the new addrec. Propagate the NUW and NSW flags if both the
2612       // outer add and the inner addrec are guaranteed to have no overflow.
2613       // Always propagate NW.
2614       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2615       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2616 
2617       // If all of the other operands were loop invariant, we are done.
2618       if (Ops.size() == 1) return NewRec;
2619 
2620       // Otherwise, add the folded AddRec by the non-invariant parts.
2621       for (unsigned i = 0;; ++i)
2622         if (Ops[i] == AddRec) {
2623           Ops[i] = NewRec;
2624           break;
2625         }
2626       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2627     }
2628 
2629     // Okay, if there weren't any loop invariants to be folded, check to see if
2630     // there are multiple AddRec's with the same loop induction variable being
2631     // added together.  If so, we can fold them.
2632     for (unsigned OtherIdx = Idx+1;
2633          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2634          ++OtherIdx) {
2635       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2636       // so that the 1st found AddRecExpr is dominated by all others.
2637       assert(DT.dominates(
2638            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2639            AddRec->getLoop()->getHeader()) &&
2640         "AddRecExprs are not sorted in reverse dominance order?");
2641       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2642         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2643         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2644         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2645              ++OtherIdx) {
2646           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2647           if (OtherAddRec->getLoop() == AddRecLoop) {
2648             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2649                  i != e; ++i) {
2650               if (i >= AddRecOps.size()) {
2651                 AddRecOps.append(OtherAddRec->op_begin()+i,
2652                                  OtherAddRec->op_end());
2653                 break;
2654               }
2655               SmallVector<const SCEV *, 2> TwoOps = {
2656                   AddRecOps[i], OtherAddRec->getOperand(i)};
2657               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2658             }
2659             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2660           }
2661         }
2662         // Step size has changed, so we cannot guarantee no self-wraparound.
2663         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2664         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2665       }
2666     }
2667 
2668     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2669     // next one.
2670   }
2671 
2672   // Okay, it looks like we really DO need an add expr.  Check to see if we
2673   // already have one, otherwise create a new one.
2674   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2675 }
2676 
2677 const SCEV *
2678 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2679                                     SCEV::NoWrapFlags Flags) {
2680   FoldingSetNodeID ID;
2681   ID.AddInteger(scAddExpr);
2682   for (const SCEV *Op : Ops)
2683     ID.AddPointer(Op);
2684   void *IP = nullptr;
2685   SCEVAddExpr *S =
2686       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2687   if (!S) {
2688     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2689     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2690     S = new (SCEVAllocator)
2691         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2692     UniqueSCEVs.InsertNode(S, IP);
2693     addToLoopUseLists(S);
2694   }
2695   S->setNoWrapFlags(Flags);
2696   return S;
2697 }
2698 
2699 const SCEV *
2700 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2701                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2702   FoldingSetNodeID ID;
2703   ID.AddInteger(scAddRecExpr);
2704   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2705     ID.AddPointer(Ops[i]);
2706   ID.AddPointer(L);
2707   void *IP = nullptr;
2708   SCEVAddRecExpr *S =
2709       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2710   if (!S) {
2711     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2712     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2713     S = new (SCEVAllocator)
2714         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2715     UniqueSCEVs.InsertNode(S, IP);
2716     addToLoopUseLists(S);
2717   }
2718   setNoWrapFlags(S, Flags);
2719   return S;
2720 }
2721 
2722 const SCEV *
2723 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2724                                     SCEV::NoWrapFlags Flags) {
2725   FoldingSetNodeID ID;
2726   ID.AddInteger(scMulExpr);
2727   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2728     ID.AddPointer(Ops[i]);
2729   void *IP = nullptr;
2730   SCEVMulExpr *S =
2731     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2732   if (!S) {
2733     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2734     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2735     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2736                                         O, Ops.size());
2737     UniqueSCEVs.InsertNode(S, IP);
2738     addToLoopUseLists(S);
2739   }
2740   S->setNoWrapFlags(Flags);
2741   return S;
2742 }
2743 
2744 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2745   uint64_t k = i*j;
2746   if (j > 1 && k / j != i) Overflow = true;
2747   return k;
2748 }
2749 
2750 /// Compute the result of "n choose k", the binomial coefficient.  If an
2751 /// intermediate computation overflows, Overflow will be set and the return will
2752 /// be garbage. Overflow is not cleared on absence of overflow.
2753 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2754   // We use the multiplicative formula:
2755   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2756   // At each iteration, we take the n-th term of the numeral and divide by the
2757   // (k-n)th term of the denominator.  This division will always produce an
2758   // integral result, and helps reduce the chance of overflow in the
2759   // intermediate computations. However, we can still overflow even when the
2760   // final result would fit.
2761 
2762   if (n == 0 || n == k) return 1;
2763   if (k > n) return 0;
2764 
2765   if (k > n/2)
2766     k = n-k;
2767 
2768   uint64_t r = 1;
2769   for (uint64_t i = 1; i <= k; ++i) {
2770     r = umul_ov(r, n-(i-1), Overflow);
2771     r /= i;
2772   }
2773   return r;
2774 }
2775 
2776 /// Determine if any of the operands in this SCEV are a constant or if
2777 /// any of the add or multiply expressions in this SCEV contain a constant.
2778 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2779   struct FindConstantInAddMulChain {
2780     bool FoundConstant = false;
2781 
2782     bool follow(const SCEV *S) {
2783       FoundConstant |= isa<SCEVConstant>(S);
2784       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2785     }
2786 
2787     bool isDone() const {
2788       return FoundConstant;
2789     }
2790   };
2791 
2792   FindConstantInAddMulChain F;
2793   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2794   ST.visitAll(StartExpr);
2795   return F.FoundConstant;
2796 }
2797 
2798 /// Get a canonical multiply expression, or something simpler if possible.
2799 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2800                                         SCEV::NoWrapFlags OrigFlags,
2801                                         unsigned Depth) {
2802   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2803          "only nuw or nsw allowed");
2804   assert(!Ops.empty() && "Cannot get empty mul!");
2805   if (Ops.size() == 1) return Ops[0];
2806 #ifndef NDEBUG
2807   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2808   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2809     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2810            "SCEVMulExpr operand types don't match!");
2811 #endif
2812 
2813   // Sort by complexity, this groups all similar expression types together.
2814   GroupByComplexity(Ops, &LI, DT);
2815 
2816   // If there are any constants, fold them together.
2817   unsigned Idx = 0;
2818   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2819     ++Idx;
2820     assert(Idx < Ops.size());
2821     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2822       // We found two constants, fold them together!
2823       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2824       if (Ops.size() == 2) return Ops[0];
2825       Ops.erase(Ops.begin()+1);  // Erase the folded element
2826       LHSC = cast<SCEVConstant>(Ops[0]);
2827     }
2828 
2829     // If we have a multiply of zero, it will always be zero.
2830     if (LHSC->getValue()->isZero())
2831       return LHSC;
2832 
2833     // If we are left with a constant one being multiplied, strip it off.
2834     if (LHSC->getValue()->isOne()) {
2835       Ops.erase(Ops.begin());
2836       --Idx;
2837     }
2838 
2839     if (Ops.size() == 1)
2840       return Ops[0];
2841   }
2842 
2843   // Delay expensive flag strengthening until necessary.
2844   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2845     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2846   };
2847 
2848   // Limit recursion calls depth.
2849   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2850     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2851 
2852   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2853     // Don't strengthen flags if we have no new information.
2854     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2855     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2856       Mul->setNoWrapFlags(ComputeFlags(Ops));
2857     return S;
2858   }
2859 
2860   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2861     if (Ops.size() == 2) {
2862       // C1*(C2+V) -> C1*C2 + C1*V
2863       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2864         // If any of Add's ops are Adds or Muls with a constant, apply this
2865         // transformation as well.
2866         //
2867         // TODO: There are some cases where this transformation is not
2868         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2869         // this transformation should be narrowed down.
2870         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2871           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2872                                        SCEV::FlagAnyWrap, Depth + 1),
2873                             getMulExpr(LHSC, Add->getOperand(1),
2874                                        SCEV::FlagAnyWrap, Depth + 1),
2875                             SCEV::FlagAnyWrap, Depth + 1);
2876 
2877       if (Ops[0]->isAllOnesValue()) {
2878         // If we have a mul by -1 of an add, try distributing the -1 among the
2879         // add operands.
2880         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2881           SmallVector<const SCEV *, 4> NewOps;
2882           bool AnyFolded = false;
2883           for (const SCEV *AddOp : Add->operands()) {
2884             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2885                                          Depth + 1);
2886             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2887             NewOps.push_back(Mul);
2888           }
2889           if (AnyFolded)
2890             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2891         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2892           // Negation preserves a recurrence's no self-wrap property.
2893           SmallVector<const SCEV *, 4> Operands;
2894           for (const SCEV *AddRecOp : AddRec->operands())
2895             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2896                                           Depth + 1));
2897 
2898           return getAddRecExpr(Operands, AddRec->getLoop(),
2899                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2900         }
2901       }
2902     }
2903   }
2904 
2905   // Skip over the add expression until we get to a multiply.
2906   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2907     ++Idx;
2908 
2909   // If there are mul operands inline them all into this expression.
2910   if (Idx < Ops.size()) {
2911     bool DeletedMul = false;
2912     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2913       if (Ops.size() > MulOpsInlineThreshold)
2914         break;
2915       // If we have an mul, expand the mul operands onto the end of the
2916       // operands list.
2917       Ops.erase(Ops.begin()+Idx);
2918       Ops.append(Mul->op_begin(), Mul->op_end());
2919       DeletedMul = true;
2920     }
2921 
2922     // If we deleted at least one mul, we added operands to the end of the
2923     // list, and they are not necessarily sorted.  Recurse to resort and
2924     // resimplify any operands we just acquired.
2925     if (DeletedMul)
2926       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2927   }
2928 
2929   // If there are any add recurrences in the operands list, see if any other
2930   // added values are loop invariant.  If so, we can fold them into the
2931   // recurrence.
2932   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2933     ++Idx;
2934 
2935   // Scan over all recurrences, trying to fold loop invariants into them.
2936   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2937     // Scan all of the other operands to this mul and add them to the vector
2938     // if they are loop invariant w.r.t. the recurrence.
2939     SmallVector<const SCEV *, 8> LIOps;
2940     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2941     const Loop *AddRecLoop = AddRec->getLoop();
2942     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2943       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2944         LIOps.push_back(Ops[i]);
2945         Ops.erase(Ops.begin()+i);
2946         --i; --e;
2947       }
2948 
2949     // If we found some loop invariants, fold them into the recurrence.
2950     if (!LIOps.empty()) {
2951       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2952       SmallVector<const SCEV *, 4> NewOps;
2953       NewOps.reserve(AddRec->getNumOperands());
2954       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2955       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2956         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2957                                     SCEV::FlagAnyWrap, Depth + 1));
2958 
2959       // Build the new addrec. Propagate the NUW and NSW flags if both the
2960       // outer mul and the inner addrec are guaranteed to have no overflow.
2961       //
2962       // No self-wrap cannot be guaranteed after changing the step size, but
2963       // will be inferred if either NUW or NSW is true.
2964       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2965       const SCEV *NewRec = getAddRecExpr(
2966           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2967 
2968       // If all of the other operands were loop invariant, we are done.
2969       if (Ops.size() == 1) return NewRec;
2970 
2971       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2972       for (unsigned i = 0;; ++i)
2973         if (Ops[i] == AddRec) {
2974           Ops[i] = NewRec;
2975           break;
2976         }
2977       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2978     }
2979 
2980     // Okay, if there weren't any loop invariants to be folded, check to see
2981     // if there are multiple AddRec's with the same loop induction variable
2982     // being multiplied together.  If so, we can fold them.
2983 
2984     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2985     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2986     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2987     //   ]]],+,...up to x=2n}.
2988     // Note that the arguments to choose() are always integers with values
2989     // known at compile time, never SCEV objects.
2990     //
2991     // The implementation avoids pointless extra computations when the two
2992     // addrec's are of different length (mathematically, it's equivalent to
2993     // an infinite stream of zeros on the right).
2994     bool OpsModified = false;
2995     for (unsigned OtherIdx = Idx+1;
2996          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2997          ++OtherIdx) {
2998       const SCEVAddRecExpr *OtherAddRec =
2999         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3000       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3001         continue;
3002 
3003       // Limit max number of arguments to avoid creation of unreasonably big
3004       // SCEVAddRecs with very complex operands.
3005       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3006           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3007         continue;
3008 
3009       bool Overflow = false;
3010       Type *Ty = AddRec->getType();
3011       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3012       SmallVector<const SCEV*, 7> AddRecOps;
3013       for (int x = 0, xe = AddRec->getNumOperands() +
3014              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3015         SmallVector <const SCEV *, 7> SumOps;
3016         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3017           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3018           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3019                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3020                z < ze && !Overflow; ++z) {
3021             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3022             uint64_t Coeff;
3023             if (LargerThan64Bits)
3024               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3025             else
3026               Coeff = Coeff1*Coeff2;
3027             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3028             const SCEV *Term1 = AddRec->getOperand(y-z);
3029             const SCEV *Term2 = OtherAddRec->getOperand(z);
3030             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3031                                         SCEV::FlagAnyWrap, Depth + 1));
3032           }
3033         }
3034         if (SumOps.empty())
3035           SumOps.push_back(getZero(Ty));
3036         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3037       }
3038       if (!Overflow) {
3039         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3040                                               SCEV::FlagAnyWrap);
3041         if (Ops.size() == 2) return NewAddRec;
3042         Ops[Idx] = NewAddRec;
3043         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3044         OpsModified = true;
3045         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3046         if (!AddRec)
3047           break;
3048       }
3049     }
3050     if (OpsModified)
3051       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3052 
3053     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3054     // next one.
3055   }
3056 
3057   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3058   // already have one, otherwise create a new one.
3059   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3060 }
3061 
3062 /// Represents an unsigned remainder expression based on unsigned division.
3063 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3064                                          const SCEV *RHS) {
3065   assert(getEffectiveSCEVType(LHS->getType()) ==
3066          getEffectiveSCEVType(RHS->getType()) &&
3067          "SCEVURemExpr operand types don't match!");
3068 
3069   // Short-circuit easy cases
3070   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3071     // If constant is one, the result is trivial
3072     if (RHSC->getValue()->isOne())
3073       return getZero(LHS->getType()); // X urem 1 --> 0
3074 
3075     // If constant is a power of two, fold into a zext(trunc(LHS)).
3076     if (RHSC->getAPInt().isPowerOf2()) {
3077       Type *FullTy = LHS->getType();
3078       Type *TruncTy =
3079           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3080       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3081     }
3082   }
3083 
3084   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3085   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3086   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3087   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3088 }
3089 
3090 /// Get a canonical unsigned division expression, or something simpler if
3091 /// possible.
3092 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3093                                          const SCEV *RHS) {
3094   assert(getEffectiveSCEVType(LHS->getType()) ==
3095          getEffectiveSCEVType(RHS->getType()) &&
3096          "SCEVUDivExpr operand types don't match!");
3097 
3098   FoldingSetNodeID ID;
3099   ID.AddInteger(scUDivExpr);
3100   ID.AddPointer(LHS);
3101   ID.AddPointer(RHS);
3102   void *IP = nullptr;
3103   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3104     return S;
3105 
3106   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3107     if (RHSC->getValue()->isOne())
3108       return LHS;                               // X udiv 1 --> x
3109     // If the denominator is zero, the result of the udiv is undefined. Don't
3110     // try to analyze it, because the resolution chosen here may differ from
3111     // the resolution chosen in other parts of the compiler.
3112     if (!RHSC->getValue()->isZero()) {
3113       // Determine if the division can be folded into the operands of
3114       // its operands.
3115       // TODO: Generalize this to non-constants by using known-bits information.
3116       Type *Ty = LHS->getType();
3117       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3118       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3119       // For non-power-of-two values, effectively round the value up to the
3120       // nearest power of two.
3121       if (!RHSC->getAPInt().isPowerOf2())
3122         ++MaxShiftAmt;
3123       IntegerType *ExtTy =
3124         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3125       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3126         if (const SCEVConstant *Step =
3127             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3128           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3129           const APInt &StepInt = Step->getAPInt();
3130           const APInt &DivInt = RHSC->getAPInt();
3131           if (!StepInt.urem(DivInt) &&
3132               getZeroExtendExpr(AR, ExtTy) ==
3133               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3134                             getZeroExtendExpr(Step, ExtTy),
3135                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3136             SmallVector<const SCEV *, 4> Operands;
3137             for (const SCEV *Op : AR->operands())
3138               Operands.push_back(getUDivExpr(Op, RHS));
3139             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3140           }
3141           /// Get a canonical UDivExpr for a recurrence.
3142           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3143           // We can currently only fold X%N if X is constant.
3144           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3145           if (StartC && !DivInt.urem(StepInt) &&
3146               getZeroExtendExpr(AR, ExtTy) ==
3147               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3148                             getZeroExtendExpr(Step, ExtTy),
3149                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3150             const APInt &StartInt = StartC->getAPInt();
3151             const APInt &StartRem = StartInt.urem(StepInt);
3152             if (StartRem != 0) {
3153               const SCEV *NewLHS =
3154                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3155                                 AR->getLoop(), SCEV::FlagNW);
3156               if (LHS != NewLHS) {
3157                 LHS = NewLHS;
3158 
3159                 // Reset the ID to include the new LHS, and check if it is
3160                 // already cached.
3161                 ID.clear();
3162                 ID.AddInteger(scUDivExpr);
3163                 ID.AddPointer(LHS);
3164                 ID.AddPointer(RHS);
3165                 IP = nullptr;
3166                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3167                   return S;
3168               }
3169             }
3170           }
3171         }
3172       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3173       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3174         SmallVector<const SCEV *, 4> Operands;
3175         for (const SCEV *Op : M->operands())
3176           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3177         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3178           // Find an operand that's safely divisible.
3179           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3180             const SCEV *Op = M->getOperand(i);
3181             const SCEV *Div = getUDivExpr(Op, RHSC);
3182             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3183               Operands = SmallVector<const SCEV *, 4>(M->operands());
3184               Operands[i] = Div;
3185               return getMulExpr(Operands);
3186             }
3187           }
3188       }
3189 
3190       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3191       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3192         if (auto *DivisorConstant =
3193                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3194           bool Overflow = false;
3195           APInt NewRHS =
3196               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3197           if (Overflow) {
3198             return getConstant(RHSC->getType(), 0, false);
3199           }
3200           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3201         }
3202       }
3203 
3204       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3205       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3206         SmallVector<const SCEV *, 4> Operands;
3207         for (const SCEV *Op : A->operands())
3208           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3209         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3210           Operands.clear();
3211           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3212             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3213             if (isa<SCEVUDivExpr>(Op) ||
3214                 getMulExpr(Op, RHS) != A->getOperand(i))
3215               break;
3216             Operands.push_back(Op);
3217           }
3218           if (Operands.size() == A->getNumOperands())
3219             return getAddExpr(Operands);
3220         }
3221       }
3222 
3223       // Fold if both operands are constant.
3224       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3225         Constant *LHSCV = LHSC->getValue();
3226         Constant *RHSCV = RHSC->getValue();
3227         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3228                                                                    RHSCV)));
3229       }
3230     }
3231   }
3232 
3233   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3234   // changes). Make sure we get a new one.
3235   IP = nullptr;
3236   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3237   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3238                                              LHS, RHS);
3239   UniqueSCEVs.InsertNode(S, IP);
3240   addToLoopUseLists(S);
3241   return S;
3242 }
3243 
3244 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3245   APInt A = C1->getAPInt().abs();
3246   APInt B = C2->getAPInt().abs();
3247   uint32_t ABW = A.getBitWidth();
3248   uint32_t BBW = B.getBitWidth();
3249 
3250   if (ABW > BBW)
3251     B = B.zext(ABW);
3252   else if (ABW < BBW)
3253     A = A.zext(BBW);
3254 
3255   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3256 }
3257 
3258 /// Get a canonical unsigned division expression, or something simpler if
3259 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3260 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3261 /// it's not exact because the udiv may be clearing bits.
3262 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3263                                               const SCEV *RHS) {
3264   // TODO: we could try to find factors in all sorts of things, but for now we
3265   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3266   // end of this file for inspiration.
3267 
3268   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3269   if (!Mul || !Mul->hasNoUnsignedWrap())
3270     return getUDivExpr(LHS, RHS);
3271 
3272   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3273     // If the mulexpr multiplies by a constant, then that constant must be the
3274     // first element of the mulexpr.
3275     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3276       if (LHSCst == RHSCst) {
3277         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3278         return getMulExpr(Operands);
3279       }
3280 
3281       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3282       // that there's a factor provided by one of the other terms. We need to
3283       // check.
3284       APInt Factor = gcd(LHSCst, RHSCst);
3285       if (!Factor.isIntN(1)) {
3286         LHSCst =
3287             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3288         RHSCst =
3289             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3290         SmallVector<const SCEV *, 2> Operands;
3291         Operands.push_back(LHSCst);
3292         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3293         LHS = getMulExpr(Operands);
3294         RHS = RHSCst;
3295         Mul = dyn_cast<SCEVMulExpr>(LHS);
3296         if (!Mul)
3297           return getUDivExactExpr(LHS, RHS);
3298       }
3299     }
3300   }
3301 
3302   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3303     if (Mul->getOperand(i) == RHS) {
3304       SmallVector<const SCEV *, 2> Operands;
3305       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3306       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3307       return getMulExpr(Operands);
3308     }
3309   }
3310 
3311   return getUDivExpr(LHS, RHS);
3312 }
3313 
3314 /// Get an add recurrence expression for the specified loop.  Simplify the
3315 /// expression as much as possible.
3316 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3317                                            const Loop *L,
3318                                            SCEV::NoWrapFlags Flags) {
3319   SmallVector<const SCEV *, 4> Operands;
3320   Operands.push_back(Start);
3321   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3322     if (StepChrec->getLoop() == L) {
3323       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3324       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3325     }
3326 
3327   Operands.push_back(Step);
3328   return getAddRecExpr(Operands, L, Flags);
3329 }
3330 
3331 /// Get an add recurrence expression for the specified loop.  Simplify the
3332 /// expression as much as possible.
3333 const SCEV *
3334 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3335                                const Loop *L, SCEV::NoWrapFlags Flags) {
3336   if (Operands.size() == 1) return Operands[0];
3337 #ifndef NDEBUG
3338   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3339   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3340     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3341            "SCEVAddRecExpr operand types don't match!");
3342   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3343     assert(isLoopInvariant(Operands[i], L) &&
3344            "SCEVAddRecExpr operand is not loop-invariant!");
3345 #endif
3346 
3347   if (Operands.back()->isZero()) {
3348     Operands.pop_back();
3349     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3350   }
3351 
3352   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3353   // use that information to infer NUW and NSW flags. However, computing a
3354   // BE count requires calling getAddRecExpr, so we may not yet have a
3355   // meaningful BE count at this point (and if we don't, we'd be stuck
3356   // with a SCEVCouldNotCompute as the cached BE count).
3357 
3358   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3359 
3360   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3361   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3362     const Loop *NestedLoop = NestedAR->getLoop();
3363     if (L->contains(NestedLoop)
3364             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3365             : (!NestedLoop->contains(L) &&
3366                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3367       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3368       Operands[0] = NestedAR->getStart();
3369       // AddRecs require their operands be loop-invariant with respect to their
3370       // loops. Don't perform this transformation if it would break this
3371       // requirement.
3372       bool AllInvariant = all_of(
3373           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3374 
3375       if (AllInvariant) {
3376         // Create a recurrence for the outer loop with the same step size.
3377         //
3378         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3379         // inner recurrence has the same property.
3380         SCEV::NoWrapFlags OuterFlags =
3381           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3382 
3383         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3384         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3385           return isLoopInvariant(Op, NestedLoop);
3386         });
3387 
3388         if (AllInvariant) {
3389           // Ok, both add recurrences are valid after the transformation.
3390           //
3391           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3392           // the outer recurrence has the same property.
3393           SCEV::NoWrapFlags InnerFlags =
3394             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3395           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3396         }
3397       }
3398       // Reset Operands to its original state.
3399       Operands[0] = NestedAR;
3400     }
3401   }
3402 
3403   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3404   // already have one, otherwise create a new one.
3405   return getOrCreateAddRecExpr(Operands, L, Flags);
3406 }
3407 
3408 const SCEV *
3409 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3410                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3411   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3412   // getSCEV(Base)->getType() has the same address space as Base->getType()
3413   // because SCEV::getType() preserves the address space.
3414   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3415   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3416   // instruction to its SCEV, because the Instruction may be guarded by control
3417   // flow and the no-overflow bits may not be valid for the expression in any
3418   // context. This can be fixed similarly to how these flags are handled for
3419   // adds.
3420   SCEV::NoWrapFlags OffsetWrap =
3421       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3422 
3423   Type *CurTy = GEP->getType();
3424   bool FirstIter = true;
3425   SmallVector<const SCEV *, 4> Offsets;
3426   for (const SCEV *IndexExpr : IndexExprs) {
3427     // Compute the (potentially symbolic) offset in bytes for this index.
3428     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3429       // For a struct, add the member offset.
3430       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3431       unsigned FieldNo = Index->getZExtValue();
3432       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3433       Offsets.push_back(FieldOffset);
3434 
3435       // Update CurTy to the type of the field at Index.
3436       CurTy = STy->getTypeAtIndex(Index);
3437     } else {
3438       // Update CurTy to its element type.
3439       if (FirstIter) {
3440         assert(isa<PointerType>(CurTy) &&
3441                "The first index of a GEP indexes a pointer");
3442         CurTy = GEP->getSourceElementType();
3443         FirstIter = false;
3444       } else {
3445         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3446       }
3447       // For an array, add the element offset, explicitly scaled.
3448       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3449       // Getelementptr indices are signed.
3450       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3451 
3452       // Multiply the index by the element size to compute the element offset.
3453       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3454       Offsets.push_back(LocalOffset);
3455     }
3456   }
3457 
3458   // Handle degenerate case of GEP without offsets.
3459   if (Offsets.empty())
3460     return BaseExpr;
3461 
3462   // Add the offsets together, assuming nsw if inbounds.
3463   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3464   // Add the base address and the offset. We cannot use the nsw flag, as the
3465   // base address is unsigned. However, if we know that the offset is
3466   // non-negative, we can use nuw.
3467   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3468                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3469   return getAddExpr(BaseExpr, Offset, BaseWrap);
3470 }
3471 
3472 std::tuple<SCEV *, FoldingSetNodeID, void *>
3473 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3474                                          ArrayRef<const SCEV *> Ops) {
3475   FoldingSetNodeID ID;
3476   void *IP = nullptr;
3477   ID.AddInteger(SCEVType);
3478   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3479     ID.AddPointer(Ops[i]);
3480   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3481       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3482 }
3483 
3484 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3485   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3486   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3487 }
3488 
3489 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3490   Type *Ty = Op->getType();
3491   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3492 }
3493 
3494 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3495                                            SmallVectorImpl<const SCEV *> &Ops) {
3496   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3497   if (Ops.size() == 1) return Ops[0];
3498 #ifndef NDEBUG
3499   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3500   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3501     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3502            "Operand types don't match!");
3503 #endif
3504 
3505   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3506   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3507 
3508   // Sort by complexity, this groups all similar expression types together.
3509   GroupByComplexity(Ops, &LI, DT);
3510 
3511   // Check if we have created the same expression before.
3512   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3513     return S;
3514   }
3515 
3516   // If there are any constants, fold them together.
3517   unsigned Idx = 0;
3518   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3519     ++Idx;
3520     assert(Idx < Ops.size());
3521     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3522       if (Kind == scSMaxExpr)
3523         return APIntOps::smax(LHS, RHS);
3524       else if (Kind == scSMinExpr)
3525         return APIntOps::smin(LHS, RHS);
3526       else if (Kind == scUMaxExpr)
3527         return APIntOps::umax(LHS, RHS);
3528       else if (Kind == scUMinExpr)
3529         return APIntOps::umin(LHS, RHS);
3530       llvm_unreachable("Unknown SCEV min/max opcode");
3531     };
3532 
3533     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3534       // We found two constants, fold them together!
3535       ConstantInt *Fold = ConstantInt::get(
3536           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3537       Ops[0] = getConstant(Fold);
3538       Ops.erase(Ops.begin()+1);  // Erase the folded element
3539       if (Ops.size() == 1) return Ops[0];
3540       LHSC = cast<SCEVConstant>(Ops[0]);
3541     }
3542 
3543     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3544     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3545 
3546     if (IsMax ? IsMinV : IsMaxV) {
3547       // If we are left with a constant minimum(/maximum)-int, strip it off.
3548       Ops.erase(Ops.begin());
3549       --Idx;
3550     } else if (IsMax ? IsMaxV : IsMinV) {
3551       // If we have a max(/min) with a constant maximum(/minimum)-int,
3552       // it will always be the extremum.
3553       return LHSC;
3554     }
3555 
3556     if (Ops.size() == 1) return Ops[0];
3557   }
3558 
3559   // Find the first operation of the same kind
3560   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3561     ++Idx;
3562 
3563   // Check to see if one of the operands is of the same kind. If so, expand its
3564   // operands onto our operand list, and recurse to simplify.
3565   if (Idx < Ops.size()) {
3566     bool DeletedAny = false;
3567     while (Ops[Idx]->getSCEVType() == Kind) {
3568       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3569       Ops.erase(Ops.begin()+Idx);
3570       Ops.append(SMME->op_begin(), SMME->op_end());
3571       DeletedAny = true;
3572     }
3573 
3574     if (DeletedAny)
3575       return getMinMaxExpr(Kind, Ops);
3576   }
3577 
3578   // Okay, check to see if the same value occurs in the operand list twice.  If
3579   // so, delete one.  Since we sorted the list, these values are required to
3580   // be adjacent.
3581   llvm::CmpInst::Predicate GEPred =
3582       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3583   llvm::CmpInst::Predicate LEPred =
3584       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3585   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3586   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3587   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3588     if (Ops[i] == Ops[i + 1] ||
3589         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3590       //  X op Y op Y  -->  X op Y
3591       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3592       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3593       --i;
3594       --e;
3595     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3596                                                Ops[i + 1])) {
3597       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3598       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3599       --i;
3600       --e;
3601     }
3602   }
3603 
3604   if (Ops.size() == 1) return Ops[0];
3605 
3606   assert(!Ops.empty() && "Reduced smax down to nothing!");
3607 
3608   // Okay, it looks like we really DO need an expr.  Check to see if we
3609   // already have one, otherwise create a new one.
3610   const SCEV *ExistingSCEV;
3611   FoldingSetNodeID ID;
3612   void *IP;
3613   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3614   if (ExistingSCEV)
3615     return ExistingSCEV;
3616   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3617   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3618   SCEV *S = new (SCEVAllocator)
3619       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3620 
3621   UniqueSCEVs.InsertNode(S, IP);
3622   addToLoopUseLists(S);
3623   return S;
3624 }
3625 
3626 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3627   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3628   return getSMaxExpr(Ops);
3629 }
3630 
3631 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3632   return getMinMaxExpr(scSMaxExpr, Ops);
3633 }
3634 
3635 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3636   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3637   return getUMaxExpr(Ops);
3638 }
3639 
3640 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3641   return getMinMaxExpr(scUMaxExpr, Ops);
3642 }
3643 
3644 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3645                                          const SCEV *RHS) {
3646   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3647   return getSMinExpr(Ops);
3648 }
3649 
3650 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3651   return getMinMaxExpr(scSMinExpr, Ops);
3652 }
3653 
3654 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3655                                          const SCEV *RHS) {
3656   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3657   return getUMinExpr(Ops);
3658 }
3659 
3660 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3661   return getMinMaxExpr(scUMinExpr, Ops);
3662 }
3663 
3664 const SCEV *
3665 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3666                                              ScalableVectorType *ScalableTy) {
3667   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3668   Constant *One = ConstantInt::get(IntTy, 1);
3669   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3670   // Note that the expression we created is the final expression, we don't
3671   // want to simplify it any further Also, if we call a normal getSCEV(),
3672   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3673   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3674 }
3675 
3676 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3677   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3678     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3679   // We can bypass creating a target-independent constant expression and then
3680   // folding it back into a ConstantInt. This is just a compile-time
3681   // optimization.
3682   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3683 }
3684 
3685 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3686   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3687     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3688   // We can bypass creating a target-independent constant expression and then
3689   // folding it back into a ConstantInt. This is just a compile-time
3690   // optimization.
3691   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3692 }
3693 
3694 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3695                                              StructType *STy,
3696                                              unsigned FieldNo) {
3697   // We can bypass creating a target-independent constant expression and then
3698   // folding it back into a ConstantInt. This is just a compile-time
3699   // optimization.
3700   return getConstant(
3701       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3702 }
3703 
3704 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3705   // Don't attempt to do anything other than create a SCEVUnknown object
3706   // here.  createSCEV only calls getUnknown after checking for all other
3707   // interesting possibilities, and any other code that calls getUnknown
3708   // is doing so in order to hide a value from SCEV canonicalization.
3709 
3710   FoldingSetNodeID ID;
3711   ID.AddInteger(scUnknown);
3712   ID.AddPointer(V);
3713   void *IP = nullptr;
3714   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3715     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3716            "Stale SCEVUnknown in uniquing map!");
3717     return S;
3718   }
3719   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3720                                             FirstUnknown);
3721   FirstUnknown = cast<SCEVUnknown>(S);
3722   UniqueSCEVs.InsertNode(S, IP);
3723   return S;
3724 }
3725 
3726 //===----------------------------------------------------------------------===//
3727 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3728 //
3729 
3730 /// Test if values of the given type are analyzable within the SCEV
3731 /// framework. This primarily includes integer types, and it can optionally
3732 /// include pointer types if the ScalarEvolution class has access to
3733 /// target-specific information.
3734 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3735   // Integers and pointers are always SCEVable.
3736   return Ty->isIntOrPtrTy();
3737 }
3738 
3739 /// Return the size in bits of the specified type, for which isSCEVable must
3740 /// return true.
3741 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3742   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3743   if (Ty->isPointerTy())
3744     return getDataLayout().getIndexTypeSizeInBits(Ty);
3745   return getDataLayout().getTypeSizeInBits(Ty);
3746 }
3747 
3748 /// Return a type with the same bitwidth as the given type and which represents
3749 /// how SCEV will treat the given type, for which isSCEVable must return
3750 /// true. For pointer types, this is the pointer index sized integer type.
3751 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3752   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3753 
3754   if (Ty->isIntegerTy())
3755     return Ty;
3756 
3757   // The only other support type is pointer.
3758   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3759   return getDataLayout().getIndexType(Ty);
3760 }
3761 
3762 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3763   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3764 }
3765 
3766 const SCEV *ScalarEvolution::getCouldNotCompute() {
3767   return CouldNotCompute.get();
3768 }
3769 
3770 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3771   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3772     auto *SU = dyn_cast<SCEVUnknown>(S);
3773     return SU && SU->getValue() == nullptr;
3774   });
3775 
3776   return !ContainsNulls;
3777 }
3778 
3779 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3780   HasRecMapType::iterator I = HasRecMap.find(S);
3781   if (I != HasRecMap.end())
3782     return I->second;
3783 
3784   bool FoundAddRec =
3785       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3786   HasRecMap.insert({S, FoundAddRec});
3787   return FoundAddRec;
3788 }
3789 
3790 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3791 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3792 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3793 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3794   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3795   if (!Add)
3796     return {S, nullptr};
3797 
3798   if (Add->getNumOperands() != 2)
3799     return {S, nullptr};
3800 
3801   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3802   if (!ConstOp)
3803     return {S, nullptr};
3804 
3805   return {Add->getOperand(1), ConstOp->getValue()};
3806 }
3807 
3808 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3809 /// by the value and offset from any ValueOffsetPair in the set.
3810 SetVector<ScalarEvolution::ValueOffsetPair> *
3811 ScalarEvolution::getSCEVValues(const SCEV *S) {
3812   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3813   if (SI == ExprValueMap.end())
3814     return nullptr;
3815 #ifndef NDEBUG
3816   if (VerifySCEVMap) {
3817     // Check there is no dangling Value in the set returned.
3818     for (const auto &VE : SI->second)
3819       assert(ValueExprMap.count(VE.first));
3820   }
3821 #endif
3822   return &SI->second;
3823 }
3824 
3825 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3826 /// cannot be used separately. eraseValueFromMap should be used to remove
3827 /// V from ValueExprMap and ExprValueMap at the same time.
3828 void ScalarEvolution::eraseValueFromMap(Value *V) {
3829   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3830   if (I != ValueExprMap.end()) {
3831     const SCEV *S = I->second;
3832     // Remove {V, 0} from the set of ExprValueMap[S]
3833     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3834       SV->remove({V, nullptr});
3835 
3836     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3837     const SCEV *Stripped;
3838     ConstantInt *Offset;
3839     std::tie(Stripped, Offset) = splitAddExpr(S);
3840     if (Offset != nullptr) {
3841       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3842         SV->remove({V, Offset});
3843     }
3844     ValueExprMap.erase(V);
3845   }
3846 }
3847 
3848 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3849 /// TODO: In reality it is better to check the poison recursively
3850 /// but this is better than nothing.
3851 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3852   if (auto *I = dyn_cast<Instruction>(V)) {
3853     if (isa<OverflowingBinaryOperator>(I)) {
3854       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3855         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3856           return true;
3857         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3858           return true;
3859       }
3860     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3861       return true;
3862   }
3863   return false;
3864 }
3865 
3866 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3867 /// create a new one.
3868 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3869   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3870 
3871   const SCEV *S = getExistingSCEV(V);
3872   if (S == nullptr) {
3873     S = createSCEV(V);
3874     // During PHI resolution, it is possible to create two SCEVs for the same
3875     // V, so it is needed to double check whether V->S is inserted into
3876     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3877     std::pair<ValueExprMapType::iterator, bool> Pair =
3878         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3879     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3880       ExprValueMap[S].insert({V, nullptr});
3881 
3882       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3883       // ExprValueMap.
3884       const SCEV *Stripped = S;
3885       ConstantInt *Offset = nullptr;
3886       std::tie(Stripped, Offset) = splitAddExpr(S);
3887       // If stripped is SCEVUnknown, don't bother to save
3888       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3889       // increase the complexity of the expansion code.
3890       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3891       // because it may generate add/sub instead of GEP in SCEV expansion.
3892       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3893           !isa<GetElementPtrInst>(V))
3894         ExprValueMap[Stripped].insert({V, Offset});
3895     }
3896   }
3897   return S;
3898 }
3899 
3900 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3901   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3902 
3903   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3904   if (I != ValueExprMap.end()) {
3905     const SCEV *S = I->second;
3906     if (checkValidity(S))
3907       return S;
3908     eraseValueFromMap(V);
3909     forgetMemoizedResults(S);
3910   }
3911   return nullptr;
3912 }
3913 
3914 /// Return a SCEV corresponding to -V = -1*V
3915 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3916                                              SCEV::NoWrapFlags Flags) {
3917   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3918     return getConstant(
3919                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3920 
3921   Type *Ty = V->getType();
3922   Ty = getEffectiveSCEVType(Ty);
3923   return getMulExpr(V, getMinusOne(Ty), Flags);
3924 }
3925 
3926 /// If Expr computes ~A, return A else return nullptr
3927 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3928   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3929   if (!Add || Add->getNumOperands() != 2 ||
3930       !Add->getOperand(0)->isAllOnesValue())
3931     return nullptr;
3932 
3933   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3934   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3935       !AddRHS->getOperand(0)->isAllOnesValue())
3936     return nullptr;
3937 
3938   return AddRHS->getOperand(1);
3939 }
3940 
3941 /// Return a SCEV corresponding to ~V = -1-V
3942 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3943   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3944     return getConstant(
3945                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3946 
3947   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3948   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3949     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3950       SmallVector<const SCEV *, 2> MatchedOperands;
3951       for (const SCEV *Operand : MME->operands()) {
3952         const SCEV *Matched = MatchNotExpr(Operand);
3953         if (!Matched)
3954           return (const SCEV *)nullptr;
3955         MatchedOperands.push_back(Matched);
3956       }
3957       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3958                            MatchedOperands);
3959     };
3960     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3961       return Replaced;
3962   }
3963 
3964   Type *Ty = V->getType();
3965   Ty = getEffectiveSCEVType(Ty);
3966   return getMinusSCEV(getMinusOne(Ty), V);
3967 }
3968 
3969 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3970                                           SCEV::NoWrapFlags Flags,
3971                                           unsigned Depth) {
3972   // Fast path: X - X --> 0.
3973   if (LHS == RHS)
3974     return getZero(LHS->getType());
3975 
3976   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3977   // makes it so that we cannot make much use of NUW.
3978   auto AddFlags = SCEV::FlagAnyWrap;
3979   const bool RHSIsNotMinSigned =
3980       !getSignedRangeMin(RHS).isMinSignedValue();
3981   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3982     // Let M be the minimum representable signed value. Then (-1)*RHS
3983     // signed-wraps if and only if RHS is M. That can happen even for
3984     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3985     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3986     // (-1)*RHS, we need to prove that RHS != M.
3987     //
3988     // If LHS is non-negative and we know that LHS - RHS does not
3989     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3990     // either by proving that RHS > M or that LHS >= 0.
3991     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3992       AddFlags = SCEV::FlagNSW;
3993     }
3994   }
3995 
3996   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3997   // RHS is NSW and LHS >= 0.
3998   //
3999   // The difficulty here is that the NSW flag may have been proven
4000   // relative to a loop that is to be found in a recurrence in LHS and
4001   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4002   // larger scope than intended.
4003   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4004 
4005   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4006 }
4007 
4008 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4009                                                      unsigned Depth) {
4010   Type *SrcTy = V->getType();
4011   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4012          "Cannot truncate or zero extend with non-integer arguments!");
4013   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4014     return V;  // No conversion
4015   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4016     return getTruncateExpr(V, Ty, Depth);
4017   return getZeroExtendExpr(V, Ty, Depth);
4018 }
4019 
4020 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4021                                                      unsigned Depth) {
4022   Type *SrcTy = V->getType();
4023   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4024          "Cannot truncate or zero extend with non-integer arguments!");
4025   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4026     return V;  // No conversion
4027   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4028     return getTruncateExpr(V, Ty, Depth);
4029   return getSignExtendExpr(V, Ty, Depth);
4030 }
4031 
4032 const SCEV *
4033 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4034   Type *SrcTy = V->getType();
4035   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4036          "Cannot noop or zero extend with non-integer arguments!");
4037   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4038          "getNoopOrZeroExtend cannot truncate!");
4039   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4040     return V;  // No conversion
4041   return getZeroExtendExpr(V, Ty);
4042 }
4043 
4044 const SCEV *
4045 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4046   Type *SrcTy = V->getType();
4047   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4048          "Cannot noop or sign extend with non-integer arguments!");
4049   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4050          "getNoopOrSignExtend cannot truncate!");
4051   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4052     return V;  // No conversion
4053   return getSignExtendExpr(V, Ty);
4054 }
4055 
4056 const SCEV *
4057 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4058   Type *SrcTy = V->getType();
4059   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4060          "Cannot noop or any extend with non-integer arguments!");
4061   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4062          "getNoopOrAnyExtend cannot truncate!");
4063   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4064     return V;  // No conversion
4065   return getAnyExtendExpr(V, Ty);
4066 }
4067 
4068 const SCEV *
4069 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4070   Type *SrcTy = V->getType();
4071   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4072          "Cannot truncate or noop with non-integer arguments!");
4073   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4074          "getTruncateOrNoop cannot extend!");
4075   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4076     return V;  // No conversion
4077   return getTruncateExpr(V, Ty);
4078 }
4079 
4080 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4081                                                         const SCEV *RHS) {
4082   const SCEV *PromotedLHS = LHS;
4083   const SCEV *PromotedRHS = RHS;
4084 
4085   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4086     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4087   else
4088     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4089 
4090   return getUMaxExpr(PromotedLHS, PromotedRHS);
4091 }
4092 
4093 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4094                                                         const SCEV *RHS) {
4095   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4096   return getUMinFromMismatchedTypes(Ops);
4097 }
4098 
4099 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4100     SmallVectorImpl<const SCEV *> &Ops) {
4101   assert(!Ops.empty() && "At least one operand must be!");
4102   // Trivial case.
4103   if (Ops.size() == 1)
4104     return Ops[0];
4105 
4106   // Find the max type first.
4107   Type *MaxType = nullptr;
4108   for (auto *S : Ops)
4109     if (MaxType)
4110       MaxType = getWiderType(MaxType, S->getType());
4111     else
4112       MaxType = S->getType();
4113   assert(MaxType && "Failed to find maximum type!");
4114 
4115   // Extend all ops to max type.
4116   SmallVector<const SCEV *, 2> PromotedOps;
4117   for (auto *S : Ops)
4118     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4119 
4120   // Generate umin.
4121   return getUMinExpr(PromotedOps);
4122 }
4123 
4124 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4125   // A pointer operand may evaluate to a nonpointer expression, such as null.
4126   if (!V->getType()->isPointerTy())
4127     return V;
4128 
4129   while (true) {
4130     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4131       V = Cast->getOperand();
4132     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4133       const SCEV *PtrOp = nullptr;
4134       for (const SCEV *NAryOp : NAry->operands()) {
4135         if (NAryOp->getType()->isPointerTy()) {
4136           // Cannot find the base of an expression with multiple pointer ops.
4137           if (PtrOp)
4138             return V;
4139           PtrOp = NAryOp;
4140         }
4141       }
4142       if (!PtrOp) // All operands were non-pointer.
4143         return V;
4144       V = PtrOp;
4145     } else // Not something we can look further into.
4146       return V;
4147   }
4148 }
4149 
4150 /// Push users of the given Instruction onto the given Worklist.
4151 static void
4152 PushDefUseChildren(Instruction *I,
4153                    SmallVectorImpl<Instruction *> &Worklist) {
4154   // Push the def-use children onto the Worklist stack.
4155   for (User *U : I->users())
4156     Worklist.push_back(cast<Instruction>(U));
4157 }
4158 
4159 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4160   SmallVector<Instruction *, 16> Worklist;
4161   PushDefUseChildren(PN, Worklist);
4162 
4163   SmallPtrSet<Instruction *, 8> Visited;
4164   Visited.insert(PN);
4165   while (!Worklist.empty()) {
4166     Instruction *I = Worklist.pop_back_val();
4167     if (!Visited.insert(I).second)
4168       continue;
4169 
4170     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4171     if (It != ValueExprMap.end()) {
4172       const SCEV *Old = It->second;
4173 
4174       // Short-circuit the def-use traversal if the symbolic name
4175       // ceases to appear in expressions.
4176       if (Old != SymName && !hasOperand(Old, SymName))
4177         continue;
4178 
4179       // SCEVUnknown for a PHI either means that it has an unrecognized
4180       // structure, it's a PHI that's in the progress of being computed
4181       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4182       // additional loop trip count information isn't going to change anything.
4183       // In the second case, createNodeForPHI will perform the necessary
4184       // updates on its own when it gets to that point. In the third, we do
4185       // want to forget the SCEVUnknown.
4186       if (!isa<PHINode>(I) ||
4187           !isa<SCEVUnknown>(Old) ||
4188           (I != PN && Old == SymName)) {
4189         eraseValueFromMap(It->first);
4190         forgetMemoizedResults(Old);
4191       }
4192     }
4193 
4194     PushDefUseChildren(I, Worklist);
4195   }
4196 }
4197 
4198 namespace {
4199 
4200 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4201 /// expression in case its Loop is L. If it is not L then
4202 /// if IgnoreOtherLoops is true then use AddRec itself
4203 /// otherwise rewrite cannot be done.
4204 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4205 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4206 public:
4207   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4208                              bool IgnoreOtherLoops = true) {
4209     SCEVInitRewriter Rewriter(L, SE);
4210     const SCEV *Result = Rewriter.visit(S);
4211     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4212       return SE.getCouldNotCompute();
4213     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4214                ? SE.getCouldNotCompute()
4215                : Result;
4216   }
4217 
4218   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4219     if (!SE.isLoopInvariant(Expr, L))
4220       SeenLoopVariantSCEVUnknown = true;
4221     return Expr;
4222   }
4223 
4224   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4225     // Only re-write AddRecExprs for this loop.
4226     if (Expr->getLoop() == L)
4227       return Expr->getStart();
4228     SeenOtherLoops = true;
4229     return Expr;
4230   }
4231 
4232   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4233 
4234   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4235 
4236 private:
4237   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4238       : SCEVRewriteVisitor(SE), L(L) {}
4239 
4240   const Loop *L;
4241   bool SeenLoopVariantSCEVUnknown = false;
4242   bool SeenOtherLoops = false;
4243 };
4244 
4245 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4246 /// increment expression in case its Loop is L. If it is not L then
4247 /// use AddRec itself.
4248 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4249 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4250 public:
4251   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4252     SCEVPostIncRewriter Rewriter(L, SE);
4253     const SCEV *Result = Rewriter.visit(S);
4254     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4255         ? SE.getCouldNotCompute()
4256         : Result;
4257   }
4258 
4259   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4260     if (!SE.isLoopInvariant(Expr, L))
4261       SeenLoopVariantSCEVUnknown = true;
4262     return Expr;
4263   }
4264 
4265   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4266     // Only re-write AddRecExprs for this loop.
4267     if (Expr->getLoop() == L)
4268       return Expr->getPostIncExpr(SE);
4269     SeenOtherLoops = true;
4270     return Expr;
4271   }
4272 
4273   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4274 
4275   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4276 
4277 private:
4278   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4279       : SCEVRewriteVisitor(SE), L(L) {}
4280 
4281   const Loop *L;
4282   bool SeenLoopVariantSCEVUnknown = false;
4283   bool SeenOtherLoops = false;
4284 };
4285 
4286 /// This class evaluates the compare condition by matching it against the
4287 /// condition of loop latch. If there is a match we assume a true value
4288 /// for the condition while building SCEV nodes.
4289 class SCEVBackedgeConditionFolder
4290     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4291 public:
4292   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4293                              ScalarEvolution &SE) {
4294     bool IsPosBECond = false;
4295     Value *BECond = nullptr;
4296     if (BasicBlock *Latch = L->getLoopLatch()) {
4297       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4298       if (BI && BI->isConditional()) {
4299         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4300                "Both outgoing branches should not target same header!");
4301         BECond = BI->getCondition();
4302         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4303       } else {
4304         return S;
4305       }
4306     }
4307     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4308     return Rewriter.visit(S);
4309   }
4310 
4311   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4312     const SCEV *Result = Expr;
4313     bool InvariantF = SE.isLoopInvariant(Expr, L);
4314 
4315     if (!InvariantF) {
4316       Instruction *I = cast<Instruction>(Expr->getValue());
4317       switch (I->getOpcode()) {
4318       case Instruction::Select: {
4319         SelectInst *SI = cast<SelectInst>(I);
4320         Optional<const SCEV *> Res =
4321             compareWithBackedgeCondition(SI->getCondition());
4322         if (Res.hasValue()) {
4323           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4324           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4325         }
4326         break;
4327       }
4328       default: {
4329         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4330         if (Res.hasValue())
4331           Result = Res.getValue();
4332         break;
4333       }
4334       }
4335     }
4336     return Result;
4337   }
4338 
4339 private:
4340   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4341                                        bool IsPosBECond, ScalarEvolution &SE)
4342       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4343         IsPositiveBECond(IsPosBECond) {}
4344 
4345   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4346 
4347   const Loop *L;
4348   /// Loop back condition.
4349   Value *BackedgeCond = nullptr;
4350   /// Set to true if loop back is on positive branch condition.
4351   bool IsPositiveBECond;
4352 };
4353 
4354 Optional<const SCEV *>
4355 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4356 
4357   // If value matches the backedge condition for loop latch,
4358   // then return a constant evolution node based on loopback
4359   // branch taken.
4360   if (BackedgeCond == IC)
4361     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4362                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4363   return None;
4364 }
4365 
4366 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4367 public:
4368   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4369                              ScalarEvolution &SE) {
4370     SCEVShiftRewriter Rewriter(L, SE);
4371     const SCEV *Result = Rewriter.visit(S);
4372     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4373   }
4374 
4375   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4376     // Only allow AddRecExprs for this loop.
4377     if (!SE.isLoopInvariant(Expr, L))
4378       Valid = false;
4379     return Expr;
4380   }
4381 
4382   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4383     if (Expr->getLoop() == L && Expr->isAffine())
4384       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4385     Valid = false;
4386     return Expr;
4387   }
4388 
4389   bool isValid() { return Valid; }
4390 
4391 private:
4392   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4393       : SCEVRewriteVisitor(SE), L(L) {}
4394 
4395   const Loop *L;
4396   bool Valid = true;
4397 };
4398 
4399 } // end anonymous namespace
4400 
4401 SCEV::NoWrapFlags
4402 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4403   if (!AR->isAffine())
4404     return SCEV::FlagAnyWrap;
4405 
4406   using OBO = OverflowingBinaryOperator;
4407 
4408   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4409 
4410   if (!AR->hasNoSignedWrap()) {
4411     ConstantRange AddRecRange = getSignedRange(AR);
4412     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4413 
4414     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4415         Instruction::Add, IncRange, OBO::NoSignedWrap);
4416     if (NSWRegion.contains(AddRecRange))
4417       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4418   }
4419 
4420   if (!AR->hasNoUnsignedWrap()) {
4421     ConstantRange AddRecRange = getUnsignedRange(AR);
4422     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4423 
4424     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4425         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4426     if (NUWRegion.contains(AddRecRange))
4427       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4428   }
4429 
4430   return Result;
4431 }
4432 
4433 SCEV::NoWrapFlags
4434 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4435   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4436 
4437   if (AR->hasNoSignedWrap())
4438     return Result;
4439 
4440   if (!AR->isAffine())
4441     return Result;
4442 
4443   const SCEV *Step = AR->getStepRecurrence(*this);
4444   const Loop *L = AR->getLoop();
4445 
4446   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4447   // Note that this serves two purposes: It filters out loops that are
4448   // simply not analyzable, and it covers the case where this code is
4449   // being called from within backedge-taken count analysis, such that
4450   // attempting to ask for the backedge-taken count would likely result
4451   // in infinite recursion. In the later case, the analysis code will
4452   // cope with a conservative value, and it will take care to purge
4453   // that value once it has finished.
4454   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4455 
4456   // Normally, in the cases we can prove no-overflow via a
4457   // backedge guarding condition, we can also compute a backedge
4458   // taken count for the loop.  The exceptions are assumptions and
4459   // guards present in the loop -- SCEV is not great at exploiting
4460   // these to compute max backedge taken counts, but can still use
4461   // these to prove lack of overflow.  Use this fact to avoid
4462   // doing extra work that may not pay off.
4463 
4464   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4465       AC.assumptions().empty())
4466     return Result;
4467 
4468   // If the backedge is guarded by a comparison with the pre-inc  value the
4469   // addrec is safe. Also, if the entry is guarded by a comparison with the
4470   // start value and the backedge is guarded by a comparison with the post-inc
4471   // value, the addrec is safe.
4472   ICmpInst::Predicate Pred;
4473   const SCEV *OverflowLimit =
4474     getSignedOverflowLimitForStep(Step, &Pred, this);
4475   if (OverflowLimit &&
4476       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4477        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4478     Result = setFlags(Result, SCEV::FlagNSW);
4479   }
4480   return Result;
4481 }
4482 SCEV::NoWrapFlags
4483 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4484   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4485 
4486   if (AR->hasNoUnsignedWrap())
4487     return Result;
4488 
4489   if (!AR->isAffine())
4490     return Result;
4491 
4492   const SCEV *Step = AR->getStepRecurrence(*this);
4493   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4494   const Loop *L = AR->getLoop();
4495 
4496   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4497   // Note that this serves two purposes: It filters out loops that are
4498   // simply not analyzable, and it covers the case where this code is
4499   // being called from within backedge-taken count analysis, such that
4500   // attempting to ask for the backedge-taken count would likely result
4501   // in infinite recursion. In the later case, the analysis code will
4502   // cope with a conservative value, and it will take care to purge
4503   // that value once it has finished.
4504   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4505 
4506   // Normally, in the cases we can prove no-overflow via a
4507   // backedge guarding condition, we can also compute a backedge
4508   // taken count for the loop.  The exceptions are assumptions and
4509   // guards present in the loop -- SCEV is not great at exploiting
4510   // these to compute max backedge taken counts, but can still use
4511   // these to prove lack of overflow.  Use this fact to avoid
4512   // doing extra work that may not pay off.
4513 
4514   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4515       AC.assumptions().empty())
4516     return Result;
4517 
4518   // If the backedge is guarded by a comparison with the pre-inc  value the
4519   // addrec is safe. Also, if the entry is guarded by a comparison with the
4520   // start value and the backedge is guarded by a comparison with the post-inc
4521   // value, the addrec is safe.
4522   if (isKnownPositive(Step)) {
4523     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4524                                 getUnsignedRangeMax(Step));
4525     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4526         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4527       Result = setFlags(Result, SCEV::FlagNUW);
4528     }
4529   }
4530 
4531   return Result;
4532 }
4533 
4534 namespace {
4535 
4536 /// Represents an abstract binary operation.  This may exist as a
4537 /// normal instruction or constant expression, or may have been
4538 /// derived from an expression tree.
4539 struct BinaryOp {
4540   unsigned Opcode;
4541   Value *LHS;
4542   Value *RHS;
4543   bool IsNSW = false;
4544   bool IsNUW = false;
4545   bool IsExact = false;
4546 
4547   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4548   /// constant expression.
4549   Operator *Op = nullptr;
4550 
4551   explicit BinaryOp(Operator *Op)
4552       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4553         Op(Op) {
4554     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4555       IsNSW = OBO->hasNoSignedWrap();
4556       IsNUW = OBO->hasNoUnsignedWrap();
4557     }
4558     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4559       IsExact = PEO->isExact();
4560   }
4561 
4562   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4563                     bool IsNUW = false, bool IsExact = false)
4564       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4565         IsExact(IsExact) {}
4566 };
4567 
4568 } // end anonymous namespace
4569 
4570 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4571 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4572   auto *Op = dyn_cast<Operator>(V);
4573   if (!Op)
4574     return None;
4575 
4576   // Implementation detail: all the cleverness here should happen without
4577   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4578   // SCEV expressions when possible, and we should not break that.
4579 
4580   switch (Op->getOpcode()) {
4581   case Instruction::Add:
4582   case Instruction::Sub:
4583   case Instruction::Mul:
4584   case Instruction::UDiv:
4585   case Instruction::URem:
4586   case Instruction::And:
4587   case Instruction::Or:
4588   case Instruction::AShr:
4589   case Instruction::Shl:
4590     return BinaryOp(Op);
4591 
4592   case Instruction::Xor:
4593     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4594       // If the RHS of the xor is a signmask, then this is just an add.
4595       // Instcombine turns add of signmask into xor as a strength reduction step.
4596       if (RHSC->getValue().isSignMask())
4597         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4598     return BinaryOp(Op);
4599 
4600   case Instruction::LShr:
4601     // Turn logical shift right of a constant into a unsigned divide.
4602     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4603       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4604 
4605       // If the shift count is not less than the bitwidth, the result of
4606       // the shift is undefined. Don't try to analyze it, because the
4607       // resolution chosen here may differ from the resolution chosen in
4608       // other parts of the compiler.
4609       if (SA->getValue().ult(BitWidth)) {
4610         Constant *X =
4611             ConstantInt::get(SA->getContext(),
4612                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4613         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4614       }
4615     }
4616     return BinaryOp(Op);
4617 
4618   case Instruction::ExtractValue: {
4619     auto *EVI = cast<ExtractValueInst>(Op);
4620     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4621       break;
4622 
4623     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4624     if (!WO)
4625       break;
4626 
4627     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4628     bool Signed = WO->isSigned();
4629     // TODO: Should add nuw/nsw flags for mul as well.
4630     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4631       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4632 
4633     // Now that we know that all uses of the arithmetic-result component of
4634     // CI are guarded by the overflow check, we can go ahead and pretend
4635     // that the arithmetic is non-overflowing.
4636     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4637                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4638   }
4639 
4640   default:
4641     break;
4642   }
4643 
4644   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4645   // semantics as a Sub, return a binary sub expression.
4646   if (auto *II = dyn_cast<IntrinsicInst>(V))
4647     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4648       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4649 
4650   return None;
4651 }
4652 
4653 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4654 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4655 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4656 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4657 /// follows one of the following patterns:
4658 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4659 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4660 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4661 /// we return the type of the truncation operation, and indicate whether the
4662 /// truncated type should be treated as signed/unsigned by setting
4663 /// \p Signed to true/false, respectively.
4664 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4665                                bool &Signed, ScalarEvolution &SE) {
4666   // The case where Op == SymbolicPHI (that is, with no type conversions on
4667   // the way) is handled by the regular add recurrence creating logic and
4668   // would have already been triggered in createAddRecForPHI. Reaching it here
4669   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4670   // because one of the other operands of the SCEVAddExpr updating this PHI is
4671   // not invariant).
4672   //
4673   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4674   // this case predicates that allow us to prove that Op == SymbolicPHI will
4675   // be added.
4676   if (Op == SymbolicPHI)
4677     return nullptr;
4678 
4679   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4680   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4681   if (SourceBits != NewBits)
4682     return nullptr;
4683 
4684   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4685   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4686   if (!SExt && !ZExt)
4687     return nullptr;
4688   const SCEVTruncateExpr *Trunc =
4689       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4690            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4691   if (!Trunc)
4692     return nullptr;
4693   const SCEV *X = Trunc->getOperand();
4694   if (X != SymbolicPHI)
4695     return nullptr;
4696   Signed = SExt != nullptr;
4697   return Trunc->getType();
4698 }
4699 
4700 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4701   if (!PN->getType()->isIntegerTy())
4702     return nullptr;
4703   const Loop *L = LI.getLoopFor(PN->getParent());
4704   if (!L || L->getHeader() != PN->getParent())
4705     return nullptr;
4706   return L;
4707 }
4708 
4709 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4710 // computation that updates the phi follows the following pattern:
4711 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4712 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4713 // If so, try to see if it can be rewritten as an AddRecExpr under some
4714 // Predicates. If successful, return them as a pair. Also cache the results
4715 // of the analysis.
4716 //
4717 // Example usage scenario:
4718 //    Say the Rewriter is called for the following SCEV:
4719 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4720 //    where:
4721 //         %X = phi i64 (%Start, %BEValue)
4722 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4723 //    and call this function with %SymbolicPHI = %X.
4724 //
4725 //    The analysis will find that the value coming around the backedge has
4726 //    the following SCEV:
4727 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4728 //    Upon concluding that this matches the desired pattern, the function
4729 //    will return the pair {NewAddRec, SmallPredsVec} where:
4730 //         NewAddRec = {%Start,+,%Step}
4731 //         SmallPredsVec = {P1, P2, P3} as follows:
4732 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4733 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4734 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4735 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4736 //    under the predicates {P1,P2,P3}.
4737 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4738 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4739 //
4740 // TODO's:
4741 //
4742 // 1) Extend the Induction descriptor to also support inductions that involve
4743 //    casts: When needed (namely, when we are called in the context of the
4744 //    vectorizer induction analysis), a Set of cast instructions will be
4745 //    populated by this method, and provided back to isInductionPHI. This is
4746 //    needed to allow the vectorizer to properly record them to be ignored by
4747 //    the cost model and to avoid vectorizing them (otherwise these casts,
4748 //    which are redundant under the runtime overflow checks, will be
4749 //    vectorized, which can be costly).
4750 //
4751 // 2) Support additional induction/PHISCEV patterns: We also want to support
4752 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4753 //    after the induction update operation (the induction increment):
4754 //
4755 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4756 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4757 //
4758 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4759 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4760 //
4761 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4762 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4763 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4764   SmallVector<const SCEVPredicate *, 3> Predicates;
4765 
4766   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4767   // return an AddRec expression under some predicate.
4768 
4769   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4770   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4771   assert(L && "Expecting an integer loop header phi");
4772 
4773   // The loop may have multiple entrances or multiple exits; we can analyze
4774   // this phi as an addrec if it has a unique entry value and a unique
4775   // backedge value.
4776   Value *BEValueV = nullptr, *StartValueV = nullptr;
4777   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4778     Value *V = PN->getIncomingValue(i);
4779     if (L->contains(PN->getIncomingBlock(i))) {
4780       if (!BEValueV) {
4781         BEValueV = V;
4782       } else if (BEValueV != V) {
4783         BEValueV = nullptr;
4784         break;
4785       }
4786     } else if (!StartValueV) {
4787       StartValueV = V;
4788     } else if (StartValueV != V) {
4789       StartValueV = nullptr;
4790       break;
4791     }
4792   }
4793   if (!BEValueV || !StartValueV)
4794     return None;
4795 
4796   const SCEV *BEValue = getSCEV(BEValueV);
4797 
4798   // If the value coming around the backedge is an add with the symbolic
4799   // value we just inserted, possibly with casts that we can ignore under
4800   // an appropriate runtime guard, then we found a simple induction variable!
4801   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4802   if (!Add)
4803     return None;
4804 
4805   // If there is a single occurrence of the symbolic value, possibly
4806   // casted, replace it with a recurrence.
4807   unsigned FoundIndex = Add->getNumOperands();
4808   Type *TruncTy = nullptr;
4809   bool Signed;
4810   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4811     if ((TruncTy =
4812              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4813       if (FoundIndex == e) {
4814         FoundIndex = i;
4815         break;
4816       }
4817 
4818   if (FoundIndex == Add->getNumOperands())
4819     return None;
4820 
4821   // Create an add with everything but the specified operand.
4822   SmallVector<const SCEV *, 8> Ops;
4823   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4824     if (i != FoundIndex)
4825       Ops.push_back(Add->getOperand(i));
4826   const SCEV *Accum = getAddExpr(Ops);
4827 
4828   // The runtime checks will not be valid if the step amount is
4829   // varying inside the loop.
4830   if (!isLoopInvariant(Accum, L))
4831     return None;
4832 
4833   // *** Part2: Create the predicates
4834 
4835   // Analysis was successful: we have a phi-with-cast pattern for which we
4836   // can return an AddRec expression under the following predicates:
4837   //
4838   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4839   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4840   // P2: An Equal predicate that guarantees that
4841   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4842   // P3: An Equal predicate that guarantees that
4843   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4844   //
4845   // As we next prove, the above predicates guarantee that:
4846   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4847   //
4848   //
4849   // More formally, we want to prove that:
4850   //     Expr(i+1) = Start + (i+1) * Accum
4851   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4852   //
4853   // Given that:
4854   // 1) Expr(0) = Start
4855   // 2) Expr(1) = Start + Accum
4856   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4857   // 3) Induction hypothesis (step i):
4858   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4859   //
4860   // Proof:
4861   //  Expr(i+1) =
4862   //   = Start + (i+1)*Accum
4863   //   = (Start + i*Accum) + Accum
4864   //   = Expr(i) + Accum
4865   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4866   //                                                             :: from step i
4867   //
4868   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4869   //
4870   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4871   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4872   //     + Accum                                                     :: from P3
4873   //
4874   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4875   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4876   //
4877   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4878   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4879   //
4880   // By induction, the same applies to all iterations 1<=i<n:
4881   //
4882 
4883   // Create a truncated addrec for which we will add a no overflow check (P1).
4884   const SCEV *StartVal = getSCEV(StartValueV);
4885   const SCEV *PHISCEV =
4886       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4887                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4888 
4889   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4890   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4891   // will be constant.
4892   //
4893   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4894   // add P1.
4895   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4896     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4897         Signed ? SCEVWrapPredicate::IncrementNSSW
4898                : SCEVWrapPredicate::IncrementNUSW;
4899     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4900     Predicates.push_back(AddRecPred);
4901   }
4902 
4903   // Create the Equal Predicates P2,P3:
4904 
4905   // It is possible that the predicates P2 and/or P3 are computable at
4906   // compile time due to StartVal and/or Accum being constants.
4907   // If either one is, then we can check that now and escape if either P2
4908   // or P3 is false.
4909 
4910   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4911   // for each of StartVal and Accum
4912   auto getExtendedExpr = [&](const SCEV *Expr,
4913                              bool CreateSignExtend) -> const SCEV * {
4914     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4915     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4916     const SCEV *ExtendedExpr =
4917         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4918                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4919     return ExtendedExpr;
4920   };
4921 
4922   // Given:
4923   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4924   //               = getExtendedExpr(Expr)
4925   // Determine whether the predicate P: Expr == ExtendedExpr
4926   // is known to be false at compile time
4927   auto PredIsKnownFalse = [&](const SCEV *Expr,
4928                               const SCEV *ExtendedExpr) -> bool {
4929     return Expr != ExtendedExpr &&
4930            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4931   };
4932 
4933   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4934   if (PredIsKnownFalse(StartVal, StartExtended)) {
4935     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4936     return None;
4937   }
4938 
4939   // The Step is always Signed (because the overflow checks are either
4940   // NSSW or NUSW)
4941   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4942   if (PredIsKnownFalse(Accum, AccumExtended)) {
4943     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4944     return None;
4945   }
4946 
4947   auto AppendPredicate = [&](const SCEV *Expr,
4948                              const SCEV *ExtendedExpr) -> void {
4949     if (Expr != ExtendedExpr &&
4950         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4951       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4952       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4953       Predicates.push_back(Pred);
4954     }
4955   };
4956 
4957   AppendPredicate(StartVal, StartExtended);
4958   AppendPredicate(Accum, AccumExtended);
4959 
4960   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4961   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4962   // into NewAR if it will also add the runtime overflow checks specified in
4963   // Predicates.
4964   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4965 
4966   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4967       std::make_pair(NewAR, Predicates);
4968   // Remember the result of the analysis for this SCEV at this locayyytion.
4969   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4970   return PredRewrite;
4971 }
4972 
4973 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4974 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4975   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4976   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4977   if (!L)
4978     return None;
4979 
4980   // Check to see if we already analyzed this PHI.
4981   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4982   if (I != PredicatedSCEVRewrites.end()) {
4983     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4984         I->second;
4985     // Analysis was done before and failed to create an AddRec:
4986     if (Rewrite.first == SymbolicPHI)
4987       return None;
4988     // Analysis was done before and succeeded to create an AddRec under
4989     // a predicate:
4990     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4991     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4992     return Rewrite;
4993   }
4994 
4995   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4996     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4997 
4998   // Record in the cache that the analysis failed
4999   if (!Rewrite) {
5000     SmallVector<const SCEVPredicate *, 3> Predicates;
5001     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5002     return None;
5003   }
5004 
5005   return Rewrite;
5006 }
5007 
5008 // FIXME: This utility is currently required because the Rewriter currently
5009 // does not rewrite this expression:
5010 // {0, +, (sext ix (trunc iy to ix) to iy)}
5011 // into {0, +, %step},
5012 // even when the following Equal predicate exists:
5013 // "%step == (sext ix (trunc iy to ix) to iy)".
5014 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5015     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5016   if (AR1 == AR2)
5017     return true;
5018 
5019   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5020     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5021         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5022       return false;
5023     return true;
5024   };
5025 
5026   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5027       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5028     return false;
5029   return true;
5030 }
5031 
5032 /// A helper function for createAddRecFromPHI to handle simple cases.
5033 ///
5034 /// This function tries to find an AddRec expression for the simplest (yet most
5035 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5036 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5037 /// technique for finding the AddRec expression.
5038 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5039                                                       Value *BEValueV,
5040                                                       Value *StartValueV) {
5041   const Loop *L = LI.getLoopFor(PN->getParent());
5042   assert(L && L->getHeader() == PN->getParent());
5043   assert(BEValueV && StartValueV);
5044 
5045   auto BO = MatchBinaryOp(BEValueV, DT);
5046   if (!BO)
5047     return nullptr;
5048 
5049   if (BO->Opcode != Instruction::Add)
5050     return nullptr;
5051 
5052   const SCEV *Accum = nullptr;
5053   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5054     Accum = getSCEV(BO->RHS);
5055   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5056     Accum = getSCEV(BO->LHS);
5057 
5058   if (!Accum)
5059     return nullptr;
5060 
5061   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5062   if (BO->IsNUW)
5063     Flags = setFlags(Flags, SCEV::FlagNUW);
5064   if (BO->IsNSW)
5065     Flags = setFlags(Flags, SCEV::FlagNSW);
5066 
5067   const SCEV *StartVal = getSCEV(StartValueV);
5068   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5069 
5070   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5071 
5072   // We can add Flags to the post-inc expression only if we
5073   // know that it is *undefined behavior* for BEValueV to
5074   // overflow.
5075   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5076     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5077       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5078 
5079   return PHISCEV;
5080 }
5081 
5082 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5083   const Loop *L = LI.getLoopFor(PN->getParent());
5084   if (!L || L->getHeader() != PN->getParent())
5085     return nullptr;
5086 
5087   // The loop may have multiple entrances or multiple exits; we can analyze
5088   // this phi as an addrec if it has a unique entry value and a unique
5089   // backedge value.
5090   Value *BEValueV = nullptr, *StartValueV = nullptr;
5091   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5092     Value *V = PN->getIncomingValue(i);
5093     if (L->contains(PN->getIncomingBlock(i))) {
5094       if (!BEValueV) {
5095         BEValueV = V;
5096       } else if (BEValueV != V) {
5097         BEValueV = nullptr;
5098         break;
5099       }
5100     } else if (!StartValueV) {
5101       StartValueV = V;
5102     } else if (StartValueV != V) {
5103       StartValueV = nullptr;
5104       break;
5105     }
5106   }
5107   if (!BEValueV || !StartValueV)
5108     return nullptr;
5109 
5110   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5111          "PHI node already processed?");
5112 
5113   // First, try to find AddRec expression without creating a fictituos symbolic
5114   // value for PN.
5115   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5116     return S;
5117 
5118   // Handle PHI node value symbolically.
5119   const SCEV *SymbolicName = getUnknown(PN);
5120   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5121 
5122   // Using this symbolic name for the PHI, analyze the value coming around
5123   // the back-edge.
5124   const SCEV *BEValue = getSCEV(BEValueV);
5125 
5126   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5127   // has a special value for the first iteration of the loop.
5128 
5129   // If the value coming around the backedge is an add with the symbolic
5130   // value we just inserted, then we found a simple induction variable!
5131   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5132     // If there is a single occurrence of the symbolic value, replace it
5133     // with a recurrence.
5134     unsigned FoundIndex = Add->getNumOperands();
5135     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5136       if (Add->getOperand(i) == SymbolicName)
5137         if (FoundIndex == e) {
5138           FoundIndex = i;
5139           break;
5140         }
5141 
5142     if (FoundIndex != Add->getNumOperands()) {
5143       // Create an add with everything but the specified operand.
5144       SmallVector<const SCEV *, 8> Ops;
5145       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5146         if (i != FoundIndex)
5147           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5148                                                              L, *this));
5149       const SCEV *Accum = getAddExpr(Ops);
5150 
5151       // This is not a valid addrec if the step amount is varying each
5152       // loop iteration, but is not itself an addrec in this loop.
5153       if (isLoopInvariant(Accum, L) ||
5154           (isa<SCEVAddRecExpr>(Accum) &&
5155            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5156         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5157 
5158         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5159           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5160             if (BO->IsNUW)
5161               Flags = setFlags(Flags, SCEV::FlagNUW);
5162             if (BO->IsNSW)
5163               Flags = setFlags(Flags, SCEV::FlagNSW);
5164           }
5165         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5166           // If the increment is an inbounds GEP, then we know the address
5167           // space cannot be wrapped around. We cannot make any guarantee
5168           // about signed or unsigned overflow because pointers are
5169           // unsigned but we may have a negative index from the base
5170           // pointer. We can guarantee that no unsigned wrap occurs if the
5171           // indices form a positive value.
5172           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5173             Flags = setFlags(Flags, SCEV::FlagNW);
5174 
5175             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5176             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5177               Flags = setFlags(Flags, SCEV::FlagNUW);
5178           }
5179 
5180           // We cannot transfer nuw and nsw flags from subtraction
5181           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5182           // for instance.
5183         }
5184 
5185         const SCEV *StartVal = getSCEV(StartValueV);
5186         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5187 
5188         // Okay, for the entire analysis of this edge we assumed the PHI
5189         // to be symbolic.  We now need to go back and purge all of the
5190         // entries for the scalars that use the symbolic expression.
5191         forgetSymbolicName(PN, SymbolicName);
5192         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5193 
5194         // We can add Flags to the post-inc expression only if we
5195         // know that it is *undefined behavior* for BEValueV to
5196         // overflow.
5197         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5198           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5199             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5200 
5201         return PHISCEV;
5202       }
5203     }
5204   } else {
5205     // Otherwise, this could be a loop like this:
5206     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5207     // In this case, j = {1,+,1}  and BEValue is j.
5208     // Because the other in-value of i (0) fits the evolution of BEValue
5209     // i really is an addrec evolution.
5210     //
5211     // We can generalize this saying that i is the shifted value of BEValue
5212     // by one iteration:
5213     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5214     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5215     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5216     if (Shifted != getCouldNotCompute() &&
5217         Start != getCouldNotCompute()) {
5218       const SCEV *StartVal = getSCEV(StartValueV);
5219       if (Start == StartVal) {
5220         // Okay, for the entire analysis of this edge we assumed the PHI
5221         // to be symbolic.  We now need to go back and purge all of the
5222         // entries for the scalars that use the symbolic expression.
5223         forgetSymbolicName(PN, SymbolicName);
5224         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5225         return Shifted;
5226       }
5227     }
5228   }
5229 
5230   // Remove the temporary PHI node SCEV that has been inserted while intending
5231   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5232   // as it will prevent later (possibly simpler) SCEV expressions to be added
5233   // to the ValueExprMap.
5234   eraseValueFromMap(PN);
5235 
5236   return nullptr;
5237 }
5238 
5239 // Checks if the SCEV S is available at BB.  S is considered available at BB
5240 // if S can be materialized at BB without introducing a fault.
5241 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5242                                BasicBlock *BB) {
5243   struct CheckAvailable {
5244     bool TraversalDone = false;
5245     bool Available = true;
5246 
5247     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5248     BasicBlock *BB = nullptr;
5249     DominatorTree &DT;
5250 
5251     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5252       : L(L), BB(BB), DT(DT) {}
5253 
5254     bool setUnavailable() {
5255       TraversalDone = true;
5256       Available = false;
5257       return false;
5258     }
5259 
5260     bool follow(const SCEV *S) {
5261       switch (S->getSCEVType()) {
5262       case scConstant:
5263       case scPtrToInt:
5264       case scTruncate:
5265       case scZeroExtend:
5266       case scSignExtend:
5267       case scAddExpr:
5268       case scMulExpr:
5269       case scUMaxExpr:
5270       case scSMaxExpr:
5271       case scUMinExpr:
5272       case scSMinExpr:
5273         // These expressions are available if their operand(s) is/are.
5274         return true;
5275 
5276       case scAddRecExpr: {
5277         // We allow add recurrences that are on the loop BB is in, or some
5278         // outer loop.  This guarantees availability because the value of the
5279         // add recurrence at BB is simply the "current" value of the induction
5280         // variable.  We can relax this in the future; for instance an add
5281         // recurrence on a sibling dominating loop is also available at BB.
5282         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5283         if (L && (ARLoop == L || ARLoop->contains(L)))
5284           return true;
5285 
5286         return setUnavailable();
5287       }
5288 
5289       case scUnknown: {
5290         // For SCEVUnknown, we check for simple dominance.
5291         const auto *SU = cast<SCEVUnknown>(S);
5292         Value *V = SU->getValue();
5293 
5294         if (isa<Argument>(V))
5295           return false;
5296 
5297         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5298           return false;
5299 
5300         return setUnavailable();
5301       }
5302 
5303       case scUDivExpr:
5304       case scCouldNotCompute:
5305         // We do not try to smart about these at all.
5306         return setUnavailable();
5307       }
5308       llvm_unreachable("Unknown SCEV kind!");
5309     }
5310 
5311     bool isDone() { return TraversalDone; }
5312   };
5313 
5314   CheckAvailable CA(L, BB, DT);
5315   SCEVTraversal<CheckAvailable> ST(CA);
5316 
5317   ST.visitAll(S);
5318   return CA.Available;
5319 }
5320 
5321 // Try to match a control flow sequence that branches out at BI and merges back
5322 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5323 // match.
5324 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5325                           Value *&C, Value *&LHS, Value *&RHS) {
5326   C = BI->getCondition();
5327 
5328   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5329   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5330 
5331   if (!LeftEdge.isSingleEdge())
5332     return false;
5333 
5334   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5335 
5336   Use &LeftUse = Merge->getOperandUse(0);
5337   Use &RightUse = Merge->getOperandUse(1);
5338 
5339   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5340     LHS = LeftUse;
5341     RHS = RightUse;
5342     return true;
5343   }
5344 
5345   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5346     LHS = RightUse;
5347     RHS = LeftUse;
5348     return true;
5349   }
5350 
5351   return false;
5352 }
5353 
5354 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5355   auto IsReachable =
5356       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5357   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5358     const Loop *L = LI.getLoopFor(PN->getParent());
5359 
5360     // We don't want to break LCSSA, even in a SCEV expression tree.
5361     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5362       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5363         return nullptr;
5364 
5365     // Try to match
5366     //
5367     //  br %cond, label %left, label %right
5368     // left:
5369     //  br label %merge
5370     // right:
5371     //  br label %merge
5372     // merge:
5373     //  V = phi [ %x, %left ], [ %y, %right ]
5374     //
5375     // as "select %cond, %x, %y"
5376 
5377     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5378     assert(IDom && "At least the entry block should dominate PN");
5379 
5380     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5381     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5382 
5383     if (BI && BI->isConditional() &&
5384         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5385         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5386         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5387       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5388   }
5389 
5390   return nullptr;
5391 }
5392 
5393 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5394   if (const SCEV *S = createAddRecFromPHI(PN))
5395     return S;
5396 
5397   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5398     return S;
5399 
5400   // If the PHI has a single incoming value, follow that value, unless the
5401   // PHI's incoming blocks are in a different loop, in which case doing so
5402   // risks breaking LCSSA form. Instcombine would normally zap these, but
5403   // it doesn't have DominatorTree information, so it may miss cases.
5404   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5405     if (LI.replacementPreservesLCSSAForm(PN, V))
5406       return getSCEV(V);
5407 
5408   // If it's not a loop phi, we can't handle it yet.
5409   return getUnknown(PN);
5410 }
5411 
5412 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5413                                                       Value *Cond,
5414                                                       Value *TrueVal,
5415                                                       Value *FalseVal) {
5416   // Handle "constant" branch or select. This can occur for instance when a
5417   // loop pass transforms an inner loop and moves on to process the outer loop.
5418   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5419     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5420 
5421   // Try to match some simple smax or umax patterns.
5422   auto *ICI = dyn_cast<ICmpInst>(Cond);
5423   if (!ICI)
5424     return getUnknown(I);
5425 
5426   Value *LHS = ICI->getOperand(0);
5427   Value *RHS = ICI->getOperand(1);
5428 
5429   switch (ICI->getPredicate()) {
5430   case ICmpInst::ICMP_SLT:
5431   case ICmpInst::ICMP_SLE:
5432     std::swap(LHS, RHS);
5433     LLVM_FALLTHROUGH;
5434   case ICmpInst::ICMP_SGT:
5435   case ICmpInst::ICMP_SGE:
5436     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5437     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5438     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5439       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5440       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5441       const SCEV *LA = getSCEV(TrueVal);
5442       const SCEV *RA = getSCEV(FalseVal);
5443       const SCEV *LDiff = getMinusSCEV(LA, LS);
5444       const SCEV *RDiff = getMinusSCEV(RA, RS);
5445       if (LDiff == RDiff)
5446         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5447       LDiff = getMinusSCEV(LA, RS);
5448       RDiff = getMinusSCEV(RA, LS);
5449       if (LDiff == RDiff)
5450         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5451     }
5452     break;
5453   case ICmpInst::ICMP_ULT:
5454   case ICmpInst::ICMP_ULE:
5455     std::swap(LHS, RHS);
5456     LLVM_FALLTHROUGH;
5457   case ICmpInst::ICMP_UGT:
5458   case ICmpInst::ICMP_UGE:
5459     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5460     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5461     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5462       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5463       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5464       const SCEV *LA = getSCEV(TrueVal);
5465       const SCEV *RA = getSCEV(FalseVal);
5466       const SCEV *LDiff = getMinusSCEV(LA, LS);
5467       const SCEV *RDiff = getMinusSCEV(RA, RS);
5468       if (LDiff == RDiff)
5469         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5470       LDiff = getMinusSCEV(LA, RS);
5471       RDiff = getMinusSCEV(RA, LS);
5472       if (LDiff == RDiff)
5473         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5474     }
5475     break;
5476   case ICmpInst::ICMP_NE:
5477     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5478     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5479         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5480       const SCEV *One = getOne(I->getType());
5481       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5482       const SCEV *LA = getSCEV(TrueVal);
5483       const SCEV *RA = getSCEV(FalseVal);
5484       const SCEV *LDiff = getMinusSCEV(LA, LS);
5485       const SCEV *RDiff = getMinusSCEV(RA, One);
5486       if (LDiff == RDiff)
5487         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5488     }
5489     break;
5490   case ICmpInst::ICMP_EQ:
5491     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5492     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5493         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5494       const SCEV *One = getOne(I->getType());
5495       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5496       const SCEV *LA = getSCEV(TrueVal);
5497       const SCEV *RA = getSCEV(FalseVal);
5498       const SCEV *LDiff = getMinusSCEV(LA, One);
5499       const SCEV *RDiff = getMinusSCEV(RA, LS);
5500       if (LDiff == RDiff)
5501         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5502     }
5503     break;
5504   default:
5505     break;
5506   }
5507 
5508   return getUnknown(I);
5509 }
5510 
5511 /// Expand GEP instructions into add and multiply operations. This allows them
5512 /// to be analyzed by regular SCEV code.
5513 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5514   // Don't attempt to analyze GEPs over unsized objects.
5515   if (!GEP->getSourceElementType()->isSized())
5516     return getUnknown(GEP);
5517 
5518   SmallVector<const SCEV *, 4> IndexExprs;
5519   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5520     IndexExprs.push_back(getSCEV(*Index));
5521   return getGEPExpr(GEP, IndexExprs);
5522 }
5523 
5524 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5525   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5526     return C->getAPInt().countTrailingZeros();
5527 
5528   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5529     return GetMinTrailingZeros(I->getOperand());
5530 
5531   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5532     return std::min(GetMinTrailingZeros(T->getOperand()),
5533                     (uint32_t)getTypeSizeInBits(T->getType()));
5534 
5535   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5536     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5537     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5538                ? getTypeSizeInBits(E->getType())
5539                : OpRes;
5540   }
5541 
5542   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5543     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5544     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5545                ? getTypeSizeInBits(E->getType())
5546                : OpRes;
5547   }
5548 
5549   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5550     // The result is the min of all operands results.
5551     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5552     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5553       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5554     return MinOpRes;
5555   }
5556 
5557   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5558     // The result is the sum of all operands results.
5559     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5560     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5561     for (unsigned i = 1, e = M->getNumOperands();
5562          SumOpRes != BitWidth && i != e; ++i)
5563       SumOpRes =
5564           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5565     return SumOpRes;
5566   }
5567 
5568   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5569     // The result is the min of all operands results.
5570     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5571     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5572       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5573     return MinOpRes;
5574   }
5575 
5576   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5577     // The result is the min of all operands results.
5578     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5579     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5580       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5581     return MinOpRes;
5582   }
5583 
5584   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5585     // The result is the min of all operands results.
5586     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5587     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5588       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5589     return MinOpRes;
5590   }
5591 
5592   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5593     // For a SCEVUnknown, ask ValueTracking.
5594     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5595     return Known.countMinTrailingZeros();
5596   }
5597 
5598   // SCEVUDivExpr
5599   return 0;
5600 }
5601 
5602 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5603   auto I = MinTrailingZerosCache.find(S);
5604   if (I != MinTrailingZerosCache.end())
5605     return I->second;
5606 
5607   uint32_t Result = GetMinTrailingZerosImpl(S);
5608   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5609   assert(InsertPair.second && "Should insert a new key");
5610   return InsertPair.first->second;
5611 }
5612 
5613 /// Helper method to assign a range to V from metadata present in the IR.
5614 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5615   if (Instruction *I = dyn_cast<Instruction>(V))
5616     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5617       return getConstantRangeFromMetadata(*MD);
5618 
5619   return None;
5620 }
5621 
5622 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5623                                      SCEV::NoWrapFlags Flags) {
5624   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5625     AddRec->setNoWrapFlags(Flags);
5626     UnsignedRanges.erase(AddRec);
5627     SignedRanges.erase(AddRec);
5628   }
5629 }
5630 
5631 /// Determine the range for a particular SCEV.  If SignHint is
5632 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5633 /// with a "cleaner" unsigned (resp. signed) representation.
5634 const ConstantRange &
5635 ScalarEvolution::getRangeRef(const SCEV *S,
5636                              ScalarEvolution::RangeSignHint SignHint) {
5637   DenseMap<const SCEV *, ConstantRange> &Cache =
5638       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5639                                                        : SignedRanges;
5640   ConstantRange::PreferredRangeType RangeType =
5641       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5642           ? ConstantRange::Unsigned : ConstantRange::Signed;
5643 
5644   // See if we've computed this range already.
5645   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5646   if (I != Cache.end())
5647     return I->second;
5648 
5649   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5650     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5651 
5652   unsigned BitWidth = getTypeSizeInBits(S->getType());
5653   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5654   using OBO = OverflowingBinaryOperator;
5655 
5656   // If the value has known zeros, the maximum value will have those known zeros
5657   // as well.
5658   uint32_t TZ = GetMinTrailingZeros(S);
5659   if (TZ != 0) {
5660     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5661       ConservativeResult =
5662           ConstantRange(APInt::getMinValue(BitWidth),
5663                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5664     else
5665       ConservativeResult = ConstantRange(
5666           APInt::getSignedMinValue(BitWidth),
5667           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5668   }
5669 
5670   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5671     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5672     unsigned WrapType = OBO::AnyWrap;
5673     if (Add->hasNoSignedWrap())
5674       WrapType |= OBO::NoSignedWrap;
5675     if (Add->hasNoUnsignedWrap())
5676       WrapType |= OBO::NoUnsignedWrap;
5677     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5678       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5679                           WrapType, RangeType);
5680     return setRange(Add, SignHint,
5681                     ConservativeResult.intersectWith(X, RangeType));
5682   }
5683 
5684   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5685     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5686     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5687       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5688     return setRange(Mul, SignHint,
5689                     ConservativeResult.intersectWith(X, RangeType));
5690   }
5691 
5692   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5693     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5694     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5695       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5696     return setRange(SMax, SignHint,
5697                     ConservativeResult.intersectWith(X, RangeType));
5698   }
5699 
5700   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5701     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5702     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5703       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5704     return setRange(UMax, SignHint,
5705                     ConservativeResult.intersectWith(X, RangeType));
5706   }
5707 
5708   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5709     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5710     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5711       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5712     return setRange(SMin, SignHint,
5713                     ConservativeResult.intersectWith(X, RangeType));
5714   }
5715 
5716   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5717     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5718     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5719       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5720     return setRange(UMin, SignHint,
5721                     ConservativeResult.intersectWith(X, RangeType));
5722   }
5723 
5724   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5725     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5726     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5727     return setRange(UDiv, SignHint,
5728                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5729   }
5730 
5731   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5732     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5733     return setRange(ZExt, SignHint,
5734                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5735                                                      RangeType));
5736   }
5737 
5738   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5739     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5740     return setRange(SExt, SignHint,
5741                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5742                                                      RangeType));
5743   }
5744 
5745   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5746     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5747     return setRange(PtrToInt, SignHint, X);
5748   }
5749 
5750   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5751     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5752     return setRange(Trunc, SignHint,
5753                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5754                                                      RangeType));
5755   }
5756 
5757   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5758     // If there's no unsigned wrap, the value will never be less than its
5759     // initial value.
5760     if (AddRec->hasNoUnsignedWrap()) {
5761       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5762       if (!UnsignedMinValue.isNullValue())
5763         ConservativeResult = ConservativeResult.intersectWith(
5764             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5765     }
5766 
5767     // If there's no signed wrap, and all the operands except initial value have
5768     // the same sign or zero, the value won't ever be:
5769     // 1: smaller than initial value if operands are non negative,
5770     // 2: bigger than initial value if operands are non positive.
5771     // For both cases, value can not cross signed min/max boundary.
5772     if (AddRec->hasNoSignedWrap()) {
5773       bool AllNonNeg = true;
5774       bool AllNonPos = true;
5775       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5776         if (!isKnownNonNegative(AddRec->getOperand(i)))
5777           AllNonNeg = false;
5778         if (!isKnownNonPositive(AddRec->getOperand(i)))
5779           AllNonPos = false;
5780       }
5781       if (AllNonNeg)
5782         ConservativeResult = ConservativeResult.intersectWith(
5783             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5784                                        APInt::getSignedMinValue(BitWidth)),
5785             RangeType);
5786       else if (AllNonPos)
5787         ConservativeResult = ConservativeResult.intersectWith(
5788             ConstantRange::getNonEmpty(
5789                 APInt::getSignedMinValue(BitWidth),
5790                 getSignedRangeMax(AddRec->getStart()) + 1),
5791             RangeType);
5792     }
5793 
5794     // TODO: non-affine addrec
5795     if (AddRec->isAffine()) {
5796       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5797       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5798           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5799         auto RangeFromAffine = getRangeForAffineAR(
5800             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5801             BitWidth);
5802         ConservativeResult =
5803             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5804 
5805         auto RangeFromFactoring = getRangeViaFactoring(
5806             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5807             BitWidth);
5808         ConservativeResult =
5809             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5810       }
5811 
5812       // Now try symbolic BE count and more powerful methods.
5813       if (UseExpensiveRangeSharpening) {
5814         const SCEV *SymbolicMaxBECount =
5815             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5816         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5817             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5818             AddRec->hasNoSelfWrap()) {
5819           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5820               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5821           ConservativeResult =
5822               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5823         }
5824       }
5825     }
5826 
5827     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5828   }
5829 
5830   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5831     // Check if the IR explicitly contains !range metadata.
5832     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5833     if (MDRange.hasValue())
5834       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5835                                                             RangeType);
5836 
5837     // Split here to avoid paying the compile-time cost of calling both
5838     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5839     // if needed.
5840     const DataLayout &DL = getDataLayout();
5841     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5842       // For a SCEVUnknown, ask ValueTracking.
5843       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5844       if (Known.getBitWidth() != BitWidth)
5845         Known = Known.zextOrTrunc(BitWidth);
5846       // If Known does not result in full-set, intersect with it.
5847       if (Known.getMinValue() != Known.getMaxValue() + 1)
5848         ConservativeResult = ConservativeResult.intersectWith(
5849             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5850             RangeType);
5851     } else {
5852       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5853              "generalize as needed!");
5854       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5855       // If the pointer size is larger than the index size type, this can cause
5856       // NS to be larger than BitWidth. So compensate for this.
5857       if (U->getType()->isPointerTy()) {
5858         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5859         int ptrIdxDiff = ptrSize - BitWidth;
5860         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5861           NS -= ptrIdxDiff;
5862       }
5863 
5864       if (NS > 1)
5865         ConservativeResult = ConservativeResult.intersectWith(
5866             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5867                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5868             RangeType);
5869     }
5870 
5871     // A range of Phi is a subset of union of all ranges of its input.
5872     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5873       // Make sure that we do not run over cycled Phis.
5874       if (PendingPhiRanges.insert(Phi).second) {
5875         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5876         for (auto &Op : Phi->operands()) {
5877           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5878           RangeFromOps = RangeFromOps.unionWith(OpRange);
5879           // No point to continue if we already have a full set.
5880           if (RangeFromOps.isFullSet())
5881             break;
5882         }
5883         ConservativeResult =
5884             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5885         bool Erased = PendingPhiRanges.erase(Phi);
5886         assert(Erased && "Failed to erase Phi properly?");
5887         (void) Erased;
5888       }
5889     }
5890 
5891     return setRange(U, SignHint, std::move(ConservativeResult));
5892   }
5893 
5894   return setRange(S, SignHint, std::move(ConservativeResult));
5895 }
5896 
5897 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5898 // values that the expression can take. Initially, the expression has a value
5899 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5900 // argument defines if we treat Step as signed or unsigned.
5901 static ConstantRange getRangeForAffineARHelper(APInt Step,
5902                                                const ConstantRange &StartRange,
5903                                                const APInt &MaxBECount,
5904                                                unsigned BitWidth, bool Signed) {
5905   // If either Step or MaxBECount is 0, then the expression won't change, and we
5906   // just need to return the initial range.
5907   if (Step == 0 || MaxBECount == 0)
5908     return StartRange;
5909 
5910   // If we don't know anything about the initial value (i.e. StartRange is
5911   // FullRange), then we don't know anything about the final range either.
5912   // Return FullRange.
5913   if (StartRange.isFullSet())
5914     return ConstantRange::getFull(BitWidth);
5915 
5916   // If Step is signed and negative, then we use its absolute value, but we also
5917   // note that we're moving in the opposite direction.
5918   bool Descending = Signed && Step.isNegative();
5919 
5920   if (Signed)
5921     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5922     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5923     // This equations hold true due to the well-defined wrap-around behavior of
5924     // APInt.
5925     Step = Step.abs();
5926 
5927   // Check if Offset is more than full span of BitWidth. If it is, the
5928   // expression is guaranteed to overflow.
5929   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5930     return ConstantRange::getFull(BitWidth);
5931 
5932   // Offset is by how much the expression can change. Checks above guarantee no
5933   // overflow here.
5934   APInt Offset = Step * MaxBECount;
5935 
5936   // Minimum value of the final range will match the minimal value of StartRange
5937   // if the expression is increasing and will be decreased by Offset otherwise.
5938   // Maximum value of the final range will match the maximal value of StartRange
5939   // if the expression is decreasing and will be increased by Offset otherwise.
5940   APInt StartLower = StartRange.getLower();
5941   APInt StartUpper = StartRange.getUpper() - 1;
5942   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5943                                    : (StartUpper + std::move(Offset));
5944 
5945   // It's possible that the new minimum/maximum value will fall into the initial
5946   // range (due to wrap around). This means that the expression can take any
5947   // value in this bitwidth, and we have to return full range.
5948   if (StartRange.contains(MovedBoundary))
5949     return ConstantRange::getFull(BitWidth);
5950 
5951   APInt NewLower =
5952       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5953   APInt NewUpper =
5954       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5955   NewUpper += 1;
5956 
5957   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5958   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5959 }
5960 
5961 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5962                                                    const SCEV *Step,
5963                                                    const SCEV *MaxBECount,
5964                                                    unsigned BitWidth) {
5965   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5966          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5967          "Precondition!");
5968 
5969   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5970   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5971 
5972   // First, consider step signed.
5973   ConstantRange StartSRange = getSignedRange(Start);
5974   ConstantRange StepSRange = getSignedRange(Step);
5975 
5976   // If Step can be both positive and negative, we need to find ranges for the
5977   // maximum absolute step values in both directions and union them.
5978   ConstantRange SR =
5979       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5980                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5981   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5982                                               StartSRange, MaxBECountValue,
5983                                               BitWidth, /* Signed = */ true));
5984 
5985   // Next, consider step unsigned.
5986   ConstantRange UR = getRangeForAffineARHelper(
5987       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5988       MaxBECountValue, BitWidth, /* Signed = */ false);
5989 
5990   // Finally, intersect signed and unsigned ranges.
5991   return SR.intersectWith(UR, ConstantRange::Smallest);
5992 }
5993 
5994 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
5995     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
5996     ScalarEvolution::RangeSignHint SignHint) {
5997   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
5998   assert(AddRec->hasNoSelfWrap() &&
5999          "This only works for non-self-wrapping AddRecs!");
6000   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6001   const SCEV *Step = AddRec->getStepRecurrence(*this);
6002   // Only deal with constant step to save compile time.
6003   if (!isa<SCEVConstant>(Step))
6004     return ConstantRange::getFull(BitWidth);
6005   // Let's make sure that we can prove that we do not self-wrap during
6006   // MaxBECount iterations. We need this because MaxBECount is a maximum
6007   // iteration count estimate, and we might infer nw from some exit for which we
6008   // do not know max exit count (or any other side reasoning).
6009   // TODO: Turn into assert at some point.
6010   if (getTypeSizeInBits(MaxBECount->getType()) >
6011       getTypeSizeInBits(AddRec->getType()))
6012     return ConstantRange::getFull(BitWidth);
6013   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6014   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6015   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6016   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6017   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6018                                          MaxItersWithoutWrap))
6019     return ConstantRange::getFull(BitWidth);
6020 
6021   ICmpInst::Predicate LEPred =
6022       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6023   ICmpInst::Predicate GEPred =
6024       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6025   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6026 
6027   // We know that there is no self-wrap. Let's take Start and End values and
6028   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6029   // the iteration. They either lie inside the range [Min(Start, End),
6030   // Max(Start, End)] or outside it:
6031   //
6032   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6033   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6034   //
6035   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6036   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6037   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6038   // Start <= End and step is positive, or Start >= End and step is negative.
6039   const SCEV *Start = AddRec->getStart();
6040   ConstantRange StartRange = getRangeRef(Start, SignHint);
6041   ConstantRange EndRange = getRangeRef(End, SignHint);
6042   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6043   // If they already cover full iteration space, we will know nothing useful
6044   // even if we prove what we want to prove.
6045   if (RangeBetween.isFullSet())
6046     return RangeBetween;
6047   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6048   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6049                                : RangeBetween.isWrappedSet();
6050   if (IsWrappedSet)
6051     return ConstantRange::getFull(BitWidth);
6052 
6053   if (isKnownPositive(Step) &&
6054       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6055     return RangeBetween;
6056   else if (isKnownNegative(Step) &&
6057            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6058     return RangeBetween;
6059   return ConstantRange::getFull(BitWidth);
6060 }
6061 
6062 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6063                                                     const SCEV *Step,
6064                                                     const SCEV *MaxBECount,
6065                                                     unsigned BitWidth) {
6066   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6067   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6068 
6069   struct SelectPattern {
6070     Value *Condition = nullptr;
6071     APInt TrueValue;
6072     APInt FalseValue;
6073 
6074     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6075                            const SCEV *S) {
6076       Optional<unsigned> CastOp;
6077       APInt Offset(BitWidth, 0);
6078 
6079       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6080              "Should be!");
6081 
6082       // Peel off a constant offset:
6083       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6084         // In the future we could consider being smarter here and handle
6085         // {Start+Step,+,Step} too.
6086         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6087           return;
6088 
6089         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6090         S = SA->getOperand(1);
6091       }
6092 
6093       // Peel off a cast operation
6094       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6095         CastOp = SCast->getSCEVType();
6096         S = SCast->getOperand();
6097       }
6098 
6099       using namespace llvm::PatternMatch;
6100 
6101       auto *SU = dyn_cast<SCEVUnknown>(S);
6102       const APInt *TrueVal, *FalseVal;
6103       if (!SU ||
6104           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6105                                           m_APInt(FalseVal)))) {
6106         Condition = nullptr;
6107         return;
6108       }
6109 
6110       TrueValue = *TrueVal;
6111       FalseValue = *FalseVal;
6112 
6113       // Re-apply the cast we peeled off earlier
6114       if (CastOp.hasValue())
6115         switch (*CastOp) {
6116         default:
6117           llvm_unreachable("Unknown SCEV cast type!");
6118 
6119         case scTruncate:
6120           TrueValue = TrueValue.trunc(BitWidth);
6121           FalseValue = FalseValue.trunc(BitWidth);
6122           break;
6123         case scZeroExtend:
6124           TrueValue = TrueValue.zext(BitWidth);
6125           FalseValue = FalseValue.zext(BitWidth);
6126           break;
6127         case scSignExtend:
6128           TrueValue = TrueValue.sext(BitWidth);
6129           FalseValue = FalseValue.sext(BitWidth);
6130           break;
6131         }
6132 
6133       // Re-apply the constant offset we peeled off earlier
6134       TrueValue += Offset;
6135       FalseValue += Offset;
6136     }
6137 
6138     bool isRecognized() { return Condition != nullptr; }
6139   };
6140 
6141   SelectPattern StartPattern(*this, BitWidth, Start);
6142   if (!StartPattern.isRecognized())
6143     return ConstantRange::getFull(BitWidth);
6144 
6145   SelectPattern StepPattern(*this, BitWidth, Step);
6146   if (!StepPattern.isRecognized())
6147     return ConstantRange::getFull(BitWidth);
6148 
6149   if (StartPattern.Condition != StepPattern.Condition) {
6150     // We don't handle this case today; but we could, by considering four
6151     // possibilities below instead of two. I'm not sure if there are cases where
6152     // that will help over what getRange already does, though.
6153     return ConstantRange::getFull(BitWidth);
6154   }
6155 
6156   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6157   // construct arbitrary general SCEV expressions here.  This function is called
6158   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6159   // say) can end up caching a suboptimal value.
6160 
6161   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6162   // C2352 and C2512 (otherwise it isn't needed).
6163 
6164   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6165   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6166   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6167   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6168 
6169   ConstantRange TrueRange =
6170       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6171   ConstantRange FalseRange =
6172       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6173 
6174   return TrueRange.unionWith(FalseRange);
6175 }
6176 
6177 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6178   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6179   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6180 
6181   // Return early if there are no flags to propagate to the SCEV.
6182   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6183   if (BinOp->hasNoUnsignedWrap())
6184     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6185   if (BinOp->hasNoSignedWrap())
6186     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6187   if (Flags == SCEV::FlagAnyWrap)
6188     return SCEV::FlagAnyWrap;
6189 
6190   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6191 }
6192 
6193 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6194   // Here we check that I is in the header of the innermost loop containing I,
6195   // since we only deal with instructions in the loop header. The actual loop we
6196   // need to check later will come from an add recurrence, but getting that
6197   // requires computing the SCEV of the operands, which can be expensive. This
6198   // check we can do cheaply to rule out some cases early.
6199   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6200   if (InnermostContainingLoop == nullptr ||
6201       InnermostContainingLoop->getHeader() != I->getParent())
6202     return false;
6203 
6204   // Only proceed if we can prove that I does not yield poison.
6205   if (!programUndefinedIfPoison(I))
6206     return false;
6207 
6208   // At this point we know that if I is executed, then it does not wrap
6209   // according to at least one of NSW or NUW. If I is not executed, then we do
6210   // not know if the calculation that I represents would wrap. Multiple
6211   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6212   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6213   // derived from other instructions that map to the same SCEV. We cannot make
6214   // that guarantee for cases where I is not executed. So we need to find the
6215   // loop that I is considered in relation to and prove that I is executed for
6216   // every iteration of that loop. That implies that the value that I
6217   // calculates does not wrap anywhere in the loop, so then we can apply the
6218   // flags to the SCEV.
6219   //
6220   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6221   // from different loops, so that we know which loop to prove that I is
6222   // executed in.
6223   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6224     // I could be an extractvalue from a call to an overflow intrinsic.
6225     // TODO: We can do better here in some cases.
6226     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6227       return false;
6228     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6229     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6230       bool AllOtherOpsLoopInvariant = true;
6231       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6232            ++OtherOpIndex) {
6233         if (OtherOpIndex != OpIndex) {
6234           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6235           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6236             AllOtherOpsLoopInvariant = false;
6237             break;
6238           }
6239         }
6240       }
6241       if (AllOtherOpsLoopInvariant &&
6242           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6243         return true;
6244     }
6245   }
6246   return false;
6247 }
6248 
6249 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6250   // If we know that \c I can never be poison period, then that's enough.
6251   if (isSCEVExprNeverPoison(I))
6252     return true;
6253 
6254   // For an add recurrence specifically, we assume that infinite loops without
6255   // side effects are undefined behavior, and then reason as follows:
6256   //
6257   // If the add recurrence is poison in any iteration, it is poison on all
6258   // future iterations (since incrementing poison yields poison). If the result
6259   // of the add recurrence is fed into the loop latch condition and the loop
6260   // does not contain any throws or exiting blocks other than the latch, we now
6261   // have the ability to "choose" whether the backedge is taken or not (by
6262   // choosing a sufficiently evil value for the poison feeding into the branch)
6263   // for every iteration including and after the one in which \p I first became
6264   // poison.  There are two possibilities (let's call the iteration in which \p
6265   // I first became poison as K):
6266   //
6267   //  1. In the set of iterations including and after K, the loop body executes
6268   //     no side effects.  In this case executing the backege an infinte number
6269   //     of times will yield undefined behavior.
6270   //
6271   //  2. In the set of iterations including and after K, the loop body executes
6272   //     at least one side effect.  In this case, that specific instance of side
6273   //     effect is control dependent on poison, which also yields undefined
6274   //     behavior.
6275 
6276   auto *ExitingBB = L->getExitingBlock();
6277   auto *LatchBB = L->getLoopLatch();
6278   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6279     return false;
6280 
6281   SmallPtrSet<const Instruction *, 16> Pushed;
6282   SmallVector<const Instruction *, 8> PoisonStack;
6283 
6284   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6285   // things that are known to be poison under that assumption go on the
6286   // PoisonStack.
6287   Pushed.insert(I);
6288   PoisonStack.push_back(I);
6289 
6290   bool LatchControlDependentOnPoison = false;
6291   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6292     const Instruction *Poison = PoisonStack.pop_back_val();
6293 
6294     for (auto *PoisonUser : Poison->users()) {
6295       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6296         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6297           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6298       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6299         assert(BI->isConditional() && "Only possibility!");
6300         if (BI->getParent() == LatchBB) {
6301           LatchControlDependentOnPoison = true;
6302           break;
6303         }
6304       }
6305     }
6306   }
6307 
6308   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6309 }
6310 
6311 ScalarEvolution::LoopProperties
6312 ScalarEvolution::getLoopProperties(const Loop *L) {
6313   using LoopProperties = ScalarEvolution::LoopProperties;
6314 
6315   auto Itr = LoopPropertiesCache.find(L);
6316   if (Itr == LoopPropertiesCache.end()) {
6317     auto HasSideEffects = [](Instruction *I) {
6318       if (auto *SI = dyn_cast<StoreInst>(I))
6319         return !SI->isSimple();
6320 
6321       return I->mayHaveSideEffects();
6322     };
6323 
6324     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6325                          /*HasNoSideEffects*/ true};
6326 
6327     for (auto *BB : L->getBlocks())
6328       for (auto &I : *BB) {
6329         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6330           LP.HasNoAbnormalExits = false;
6331         if (HasSideEffects(&I))
6332           LP.HasNoSideEffects = false;
6333         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6334           break; // We're already as pessimistic as we can get.
6335       }
6336 
6337     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6338     assert(InsertPair.second && "We just checked!");
6339     Itr = InsertPair.first;
6340   }
6341 
6342   return Itr->second;
6343 }
6344 
6345 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6346   if (!isSCEVable(V->getType()))
6347     return getUnknown(V);
6348 
6349   if (Instruction *I = dyn_cast<Instruction>(V)) {
6350     // Don't attempt to analyze instructions in blocks that aren't
6351     // reachable. Such instructions don't matter, and they aren't required
6352     // to obey basic rules for definitions dominating uses which this
6353     // analysis depends on.
6354     if (!DT.isReachableFromEntry(I->getParent()))
6355       return getUnknown(UndefValue::get(V->getType()));
6356   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6357     return getConstant(CI);
6358   else if (isa<ConstantPointerNull>(V))
6359     // FIXME: we shouldn't special-case null pointer constant.
6360     return getZero(V->getType());
6361   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6362     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6363   else if (!isa<ConstantExpr>(V))
6364     return getUnknown(V);
6365 
6366   Operator *U = cast<Operator>(V);
6367   if (auto BO = MatchBinaryOp(U, DT)) {
6368     switch (BO->Opcode) {
6369     case Instruction::Add: {
6370       // The simple thing to do would be to just call getSCEV on both operands
6371       // and call getAddExpr with the result. However if we're looking at a
6372       // bunch of things all added together, this can be quite inefficient,
6373       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6374       // Instead, gather up all the operands and make a single getAddExpr call.
6375       // LLVM IR canonical form means we need only traverse the left operands.
6376       SmallVector<const SCEV *, 4> AddOps;
6377       do {
6378         if (BO->Op) {
6379           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6380             AddOps.push_back(OpSCEV);
6381             break;
6382           }
6383 
6384           // If a NUW or NSW flag can be applied to the SCEV for this
6385           // addition, then compute the SCEV for this addition by itself
6386           // with a separate call to getAddExpr. We need to do that
6387           // instead of pushing the operands of the addition onto AddOps,
6388           // since the flags are only known to apply to this particular
6389           // addition - they may not apply to other additions that can be
6390           // formed with operands from AddOps.
6391           const SCEV *RHS = getSCEV(BO->RHS);
6392           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6393           if (Flags != SCEV::FlagAnyWrap) {
6394             const SCEV *LHS = getSCEV(BO->LHS);
6395             if (BO->Opcode == Instruction::Sub)
6396               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6397             else
6398               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6399             break;
6400           }
6401         }
6402 
6403         if (BO->Opcode == Instruction::Sub)
6404           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6405         else
6406           AddOps.push_back(getSCEV(BO->RHS));
6407 
6408         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6409         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6410                        NewBO->Opcode != Instruction::Sub)) {
6411           AddOps.push_back(getSCEV(BO->LHS));
6412           break;
6413         }
6414         BO = NewBO;
6415       } while (true);
6416 
6417       return getAddExpr(AddOps);
6418     }
6419 
6420     case Instruction::Mul: {
6421       SmallVector<const SCEV *, 4> MulOps;
6422       do {
6423         if (BO->Op) {
6424           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6425             MulOps.push_back(OpSCEV);
6426             break;
6427           }
6428 
6429           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6430           if (Flags != SCEV::FlagAnyWrap) {
6431             MulOps.push_back(
6432                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6433             break;
6434           }
6435         }
6436 
6437         MulOps.push_back(getSCEV(BO->RHS));
6438         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6439         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6440           MulOps.push_back(getSCEV(BO->LHS));
6441           break;
6442         }
6443         BO = NewBO;
6444       } while (true);
6445 
6446       return getMulExpr(MulOps);
6447     }
6448     case Instruction::UDiv:
6449       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6450     case Instruction::URem:
6451       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6452     case Instruction::Sub: {
6453       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6454       if (BO->Op)
6455         Flags = getNoWrapFlagsFromUB(BO->Op);
6456       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6457     }
6458     case Instruction::And:
6459       // For an expression like x&255 that merely masks off the high bits,
6460       // use zext(trunc(x)) as the SCEV expression.
6461       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6462         if (CI->isZero())
6463           return getSCEV(BO->RHS);
6464         if (CI->isMinusOne())
6465           return getSCEV(BO->LHS);
6466         const APInt &A = CI->getValue();
6467 
6468         // Instcombine's ShrinkDemandedConstant may strip bits out of
6469         // constants, obscuring what would otherwise be a low-bits mask.
6470         // Use computeKnownBits to compute what ShrinkDemandedConstant
6471         // knew about to reconstruct a low-bits mask value.
6472         unsigned LZ = A.countLeadingZeros();
6473         unsigned TZ = A.countTrailingZeros();
6474         unsigned BitWidth = A.getBitWidth();
6475         KnownBits Known(BitWidth);
6476         computeKnownBits(BO->LHS, Known, getDataLayout(),
6477                          0, &AC, nullptr, &DT);
6478 
6479         APInt EffectiveMask =
6480             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6481         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6482           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6483           const SCEV *LHS = getSCEV(BO->LHS);
6484           const SCEV *ShiftedLHS = nullptr;
6485           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6486             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6487               // For an expression like (x * 8) & 8, simplify the multiply.
6488               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6489               unsigned GCD = std::min(MulZeros, TZ);
6490               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6491               SmallVector<const SCEV*, 4> MulOps;
6492               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6493               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6494               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6495               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6496             }
6497           }
6498           if (!ShiftedLHS)
6499             ShiftedLHS = getUDivExpr(LHS, MulCount);
6500           return getMulExpr(
6501               getZeroExtendExpr(
6502                   getTruncateExpr(ShiftedLHS,
6503                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6504                   BO->LHS->getType()),
6505               MulCount);
6506         }
6507       }
6508       break;
6509 
6510     case Instruction::Or:
6511       // If the RHS of the Or is a constant, we may have something like:
6512       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6513       // optimizations will transparently handle this case.
6514       //
6515       // In order for this transformation to be safe, the LHS must be of the
6516       // form X*(2^n) and the Or constant must be less than 2^n.
6517       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6518         const SCEV *LHS = getSCEV(BO->LHS);
6519         const APInt &CIVal = CI->getValue();
6520         if (GetMinTrailingZeros(LHS) >=
6521             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6522           // Build a plain add SCEV.
6523           return getAddExpr(LHS, getSCEV(CI),
6524                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6525         }
6526       }
6527       break;
6528 
6529     case Instruction::Xor:
6530       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6531         // If the RHS of xor is -1, then this is a not operation.
6532         if (CI->isMinusOne())
6533           return getNotSCEV(getSCEV(BO->LHS));
6534 
6535         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6536         // This is a variant of the check for xor with -1, and it handles
6537         // the case where instcombine has trimmed non-demanded bits out
6538         // of an xor with -1.
6539         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6540           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6541             if (LBO->getOpcode() == Instruction::And &&
6542                 LCI->getValue() == CI->getValue())
6543               if (const SCEVZeroExtendExpr *Z =
6544                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6545                 Type *UTy = BO->LHS->getType();
6546                 const SCEV *Z0 = Z->getOperand();
6547                 Type *Z0Ty = Z0->getType();
6548                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6549 
6550                 // If C is a low-bits mask, the zero extend is serving to
6551                 // mask off the high bits. Complement the operand and
6552                 // re-apply the zext.
6553                 if (CI->getValue().isMask(Z0TySize))
6554                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6555 
6556                 // If C is a single bit, it may be in the sign-bit position
6557                 // before the zero-extend. In this case, represent the xor
6558                 // using an add, which is equivalent, and re-apply the zext.
6559                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6560                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6561                     Trunc.isSignMask())
6562                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6563                                            UTy);
6564               }
6565       }
6566       break;
6567 
6568     case Instruction::Shl:
6569       // Turn shift left of a constant amount into a multiply.
6570       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6571         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6572 
6573         // If the shift count is not less than the bitwidth, the result of
6574         // the shift is undefined. Don't try to analyze it, because the
6575         // resolution chosen here may differ from the resolution chosen in
6576         // other parts of the compiler.
6577         if (SA->getValue().uge(BitWidth))
6578           break;
6579 
6580         // We can safely preserve the nuw flag in all cases. It's also safe to
6581         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6582         // requires special handling. It can be preserved as long as we're not
6583         // left shifting by bitwidth - 1.
6584         auto Flags = SCEV::FlagAnyWrap;
6585         if (BO->Op) {
6586           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6587           if ((MulFlags & SCEV::FlagNSW) &&
6588               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6589             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6590           if (MulFlags & SCEV::FlagNUW)
6591             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6592         }
6593 
6594         Constant *X = ConstantInt::get(
6595             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6596         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6597       }
6598       break;
6599 
6600     case Instruction::AShr: {
6601       // AShr X, C, where C is a constant.
6602       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6603       if (!CI)
6604         break;
6605 
6606       Type *OuterTy = BO->LHS->getType();
6607       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6608       // If the shift count is not less than the bitwidth, the result of
6609       // the shift is undefined. Don't try to analyze it, because the
6610       // resolution chosen here may differ from the resolution chosen in
6611       // other parts of the compiler.
6612       if (CI->getValue().uge(BitWidth))
6613         break;
6614 
6615       if (CI->isZero())
6616         return getSCEV(BO->LHS); // shift by zero --> noop
6617 
6618       uint64_t AShrAmt = CI->getZExtValue();
6619       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6620 
6621       Operator *L = dyn_cast<Operator>(BO->LHS);
6622       if (L && L->getOpcode() == Instruction::Shl) {
6623         // X = Shl A, n
6624         // Y = AShr X, m
6625         // Both n and m are constant.
6626 
6627         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6628         if (L->getOperand(1) == BO->RHS)
6629           // For a two-shift sext-inreg, i.e. n = m,
6630           // use sext(trunc(x)) as the SCEV expression.
6631           return getSignExtendExpr(
6632               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6633 
6634         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6635         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6636           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6637           if (ShlAmt > AShrAmt) {
6638             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6639             // expression. We already checked that ShlAmt < BitWidth, so
6640             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6641             // ShlAmt - AShrAmt < Amt.
6642             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6643                                             ShlAmt - AShrAmt);
6644             return getSignExtendExpr(
6645                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6646                 getConstant(Mul)), OuterTy);
6647           }
6648         }
6649       }
6650       if (BO->IsExact) {
6651         // Given exact arithmetic in-bounds right-shift by a constant,
6652         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6653         const SCEV *X = getSCEV(BO->LHS);
6654         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6655         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6656         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6657         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6658       }
6659       break;
6660     }
6661     }
6662   }
6663 
6664   switch (U->getOpcode()) {
6665   case Instruction::Trunc:
6666     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6667 
6668   case Instruction::ZExt:
6669     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6670 
6671   case Instruction::SExt:
6672     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6673       // The NSW flag of a subtract does not always survive the conversion to
6674       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6675       // more likely to preserve NSW and allow later AddRec optimisations.
6676       //
6677       // NOTE: This is effectively duplicating this logic from getSignExtend:
6678       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6679       // but by that point the NSW information has potentially been lost.
6680       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6681         Type *Ty = U->getType();
6682         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6683         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6684         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6685       }
6686     }
6687     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6688 
6689   case Instruction::BitCast:
6690     // BitCasts are no-op casts so we just eliminate the cast.
6691     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6692       return getSCEV(U->getOperand(0));
6693     break;
6694 
6695   case Instruction::PtrToInt: {
6696     // Pointer to integer cast is straight-forward, so do model it.
6697     Value *Ptr = U->getOperand(0);
6698     const SCEV *Op = getSCEV(Ptr);
6699     Type *DstIntTy = U->getType();
6700     // SCEV doesn't have constant pointer expression type, but it supports
6701     // nullptr constant (and only that one), which is modelled in SCEV as a
6702     // zero integer constant. So just skip the ptrtoint cast for constants.
6703     if (isa<SCEVConstant>(Op))
6704       return getTruncateOrZeroExtend(Op, DstIntTy);
6705     Type *PtrTy = Ptr->getType();
6706     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6707     // But only if effective SCEV (integer) type is wide enough to represent
6708     // all possible pointer values.
6709     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6710         getDataLayout().getTypeSizeInBits(IntPtrTy))
6711       return getUnknown(V);
6712     return getPtrToIntExpr(Op, DstIntTy);
6713   }
6714   case Instruction::IntToPtr:
6715     // Just don't deal with inttoptr casts.
6716     return getUnknown(V);
6717 
6718   case Instruction::SDiv:
6719     // If both operands are non-negative, this is just an udiv.
6720     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6721         isKnownNonNegative(getSCEV(U->getOperand(1))))
6722       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6723     break;
6724 
6725   case Instruction::SRem:
6726     // If both operands are non-negative, this is just an urem.
6727     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6728         isKnownNonNegative(getSCEV(U->getOperand(1))))
6729       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6730     break;
6731 
6732   case Instruction::GetElementPtr:
6733     return createNodeForGEP(cast<GEPOperator>(U));
6734 
6735   case Instruction::PHI:
6736     return createNodeForPHI(cast<PHINode>(U));
6737 
6738   case Instruction::Select:
6739     // U can also be a select constant expr, which let fall through.  Since
6740     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6741     // constant expressions cannot have instructions as operands, we'd have
6742     // returned getUnknown for a select constant expressions anyway.
6743     if (isa<Instruction>(U))
6744       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6745                                       U->getOperand(1), U->getOperand(2));
6746     break;
6747 
6748   case Instruction::Call:
6749   case Instruction::Invoke:
6750     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6751       return getSCEV(RV);
6752 
6753     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6754       switch (II->getIntrinsicID()) {
6755       case Intrinsic::abs:
6756         return getAbsExpr(
6757             getSCEV(II->getArgOperand(0)),
6758             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6759       case Intrinsic::umax:
6760         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6761                            getSCEV(II->getArgOperand(1)));
6762       case Intrinsic::umin:
6763         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6764                            getSCEV(II->getArgOperand(1)));
6765       case Intrinsic::smax:
6766         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6767                            getSCEV(II->getArgOperand(1)));
6768       case Intrinsic::smin:
6769         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6770                            getSCEV(II->getArgOperand(1)));
6771       case Intrinsic::usub_sat: {
6772         const SCEV *X = getSCEV(II->getArgOperand(0));
6773         const SCEV *Y = getSCEV(II->getArgOperand(1));
6774         const SCEV *ClampedY = getUMinExpr(X, Y);
6775         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6776       }
6777       case Intrinsic::uadd_sat: {
6778         const SCEV *X = getSCEV(II->getArgOperand(0));
6779         const SCEV *Y = getSCEV(II->getArgOperand(1));
6780         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6781         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6782       }
6783       case Intrinsic::start_loop_iterations:
6784         // A start_loop_iterations is just equivalent to the first operand for
6785         // SCEV purposes.
6786         return getSCEV(II->getArgOperand(0));
6787       default:
6788         break;
6789       }
6790     }
6791     break;
6792   }
6793 
6794   return getUnknown(V);
6795 }
6796 
6797 //===----------------------------------------------------------------------===//
6798 //                   Iteration Count Computation Code
6799 //
6800 
6801 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6802   if (!ExitCount)
6803     return 0;
6804 
6805   ConstantInt *ExitConst = ExitCount->getValue();
6806 
6807   // Guard against huge trip counts.
6808   if (ExitConst->getValue().getActiveBits() > 32)
6809     return 0;
6810 
6811   // In case of integer overflow, this returns 0, which is correct.
6812   return ((unsigned)ExitConst->getZExtValue()) + 1;
6813 }
6814 
6815 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6816   if (BasicBlock *ExitingBB = L->getExitingBlock())
6817     return getSmallConstantTripCount(L, ExitingBB);
6818 
6819   // No trip count information for multiple exits.
6820   return 0;
6821 }
6822 
6823 unsigned
6824 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6825                                            const BasicBlock *ExitingBlock) {
6826   assert(ExitingBlock && "Must pass a non-null exiting block!");
6827   assert(L->isLoopExiting(ExitingBlock) &&
6828          "Exiting block must actually branch out of the loop!");
6829   const SCEVConstant *ExitCount =
6830       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6831   return getConstantTripCount(ExitCount);
6832 }
6833 
6834 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6835   const auto *MaxExitCount =
6836       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6837   return getConstantTripCount(MaxExitCount);
6838 }
6839 
6840 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6841   if (BasicBlock *ExitingBB = L->getExitingBlock())
6842     return getSmallConstantTripMultiple(L, ExitingBB);
6843 
6844   // No trip multiple information for multiple exits.
6845   return 0;
6846 }
6847 
6848 /// Returns the largest constant divisor of the trip count of this loop as a
6849 /// normal unsigned value, if possible. This means that the actual trip count is
6850 /// always a multiple of the returned value (don't forget the trip count could
6851 /// very well be zero as well!).
6852 ///
6853 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6854 /// multiple of a constant (which is also the case if the trip count is simply
6855 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6856 /// if the trip count is very large (>= 2^32).
6857 ///
6858 /// As explained in the comments for getSmallConstantTripCount, this assumes
6859 /// that control exits the loop via ExitingBlock.
6860 unsigned
6861 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6862                                               const BasicBlock *ExitingBlock) {
6863   assert(ExitingBlock && "Must pass a non-null exiting block!");
6864   assert(L->isLoopExiting(ExitingBlock) &&
6865          "Exiting block must actually branch out of the loop!");
6866   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6867   if (ExitCount == getCouldNotCompute())
6868     return 1;
6869 
6870   // Get the trip count from the BE count by adding 1.
6871   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6872 
6873   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6874   if (!TC)
6875     // Attempt to factor more general cases. Returns the greatest power of
6876     // two divisor. If overflow happens, the trip count expression is still
6877     // divisible by the greatest power of 2 divisor returned.
6878     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6879 
6880   ConstantInt *Result = TC->getValue();
6881 
6882   // Guard against huge trip counts (this requires checking
6883   // for zero to handle the case where the trip count == -1 and the
6884   // addition wraps).
6885   if (!Result || Result->getValue().getActiveBits() > 32 ||
6886       Result->getValue().getActiveBits() == 0)
6887     return 1;
6888 
6889   return (unsigned)Result->getZExtValue();
6890 }
6891 
6892 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6893                                           const BasicBlock *ExitingBlock,
6894                                           ExitCountKind Kind) {
6895   switch (Kind) {
6896   case Exact:
6897   case SymbolicMaximum:
6898     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6899   case ConstantMaximum:
6900     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6901   };
6902   llvm_unreachable("Invalid ExitCountKind!");
6903 }
6904 
6905 const SCEV *
6906 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6907                                                  SCEVUnionPredicate &Preds) {
6908   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6909 }
6910 
6911 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6912                                                    ExitCountKind Kind) {
6913   switch (Kind) {
6914   case Exact:
6915     return getBackedgeTakenInfo(L).getExact(L, this);
6916   case ConstantMaximum:
6917     return getBackedgeTakenInfo(L).getConstantMax(this);
6918   case SymbolicMaximum:
6919     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6920   };
6921   llvm_unreachable("Invalid ExitCountKind!");
6922 }
6923 
6924 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6925   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6926 }
6927 
6928 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6929 static void
6930 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6931   BasicBlock *Header = L->getHeader();
6932 
6933   // Push all Loop-header PHIs onto the Worklist stack.
6934   for (PHINode &PN : Header->phis())
6935     Worklist.push_back(&PN);
6936 }
6937 
6938 const ScalarEvolution::BackedgeTakenInfo &
6939 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6940   auto &BTI = getBackedgeTakenInfo(L);
6941   if (BTI.hasFullInfo())
6942     return BTI;
6943 
6944   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6945 
6946   if (!Pair.second)
6947     return Pair.first->second;
6948 
6949   BackedgeTakenInfo Result =
6950       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6951 
6952   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6953 }
6954 
6955 ScalarEvolution::BackedgeTakenInfo &
6956 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6957   // Initially insert an invalid entry for this loop. If the insertion
6958   // succeeds, proceed to actually compute a backedge-taken count and
6959   // update the value. The temporary CouldNotCompute value tells SCEV
6960   // code elsewhere that it shouldn't attempt to request a new
6961   // backedge-taken count, which could result in infinite recursion.
6962   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6963       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6964   if (!Pair.second)
6965     return Pair.first->second;
6966 
6967   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6968   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6969   // must be cleared in this scope.
6970   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6971 
6972   // In product build, there are no usage of statistic.
6973   (void)NumTripCountsComputed;
6974   (void)NumTripCountsNotComputed;
6975 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6976   const SCEV *BEExact = Result.getExact(L, this);
6977   if (BEExact != getCouldNotCompute()) {
6978     assert(isLoopInvariant(BEExact, L) &&
6979            isLoopInvariant(Result.getConstantMax(this), L) &&
6980            "Computed backedge-taken count isn't loop invariant for loop!");
6981     ++NumTripCountsComputed;
6982   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6983              isa<PHINode>(L->getHeader()->begin())) {
6984     // Only count loops that have phi nodes as not being computable.
6985     ++NumTripCountsNotComputed;
6986   }
6987 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6988 
6989   // Now that we know more about the trip count for this loop, forget any
6990   // existing SCEV values for PHI nodes in this loop since they are only
6991   // conservative estimates made without the benefit of trip count
6992   // information. This is similar to the code in forgetLoop, except that
6993   // it handles SCEVUnknown PHI nodes specially.
6994   if (Result.hasAnyInfo()) {
6995     SmallVector<Instruction *, 16> Worklist;
6996     PushLoopPHIs(L, Worklist);
6997 
6998     SmallPtrSet<Instruction *, 8> Discovered;
6999     while (!Worklist.empty()) {
7000       Instruction *I = Worklist.pop_back_val();
7001 
7002       ValueExprMapType::iterator It =
7003         ValueExprMap.find_as(static_cast<Value *>(I));
7004       if (It != ValueExprMap.end()) {
7005         const SCEV *Old = It->second;
7006 
7007         // SCEVUnknown for a PHI either means that it has an unrecognized
7008         // structure, or it's a PHI that's in the progress of being computed
7009         // by createNodeForPHI.  In the former case, additional loop trip
7010         // count information isn't going to change anything. In the later
7011         // case, createNodeForPHI will perform the necessary updates on its
7012         // own when it gets to that point.
7013         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7014           eraseValueFromMap(It->first);
7015           forgetMemoizedResults(Old);
7016         }
7017         if (PHINode *PN = dyn_cast<PHINode>(I))
7018           ConstantEvolutionLoopExitValue.erase(PN);
7019       }
7020 
7021       // Since we don't need to invalidate anything for correctness and we're
7022       // only invalidating to make SCEV's results more precise, we get to stop
7023       // early to avoid invalidating too much.  This is especially important in
7024       // cases like:
7025       //
7026       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7027       // loop0:
7028       //   %pn0 = phi
7029       //   ...
7030       // loop1:
7031       //   %pn1 = phi
7032       //   ...
7033       //
7034       // where both loop0 and loop1's backedge taken count uses the SCEV
7035       // expression for %v.  If we don't have the early stop below then in cases
7036       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7037       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7038       // count for loop1, effectively nullifying SCEV's trip count cache.
7039       for (auto *U : I->users())
7040         if (auto *I = dyn_cast<Instruction>(U)) {
7041           auto *LoopForUser = LI.getLoopFor(I->getParent());
7042           if (LoopForUser && L->contains(LoopForUser) &&
7043               Discovered.insert(I).second)
7044             Worklist.push_back(I);
7045         }
7046     }
7047   }
7048 
7049   // Re-lookup the insert position, since the call to
7050   // computeBackedgeTakenCount above could result in a
7051   // recusive call to getBackedgeTakenInfo (on a different
7052   // loop), which would invalidate the iterator computed
7053   // earlier.
7054   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7055 }
7056 
7057 void ScalarEvolution::forgetAllLoops() {
7058   // This method is intended to forget all info about loops. It should
7059   // invalidate caches as if the following happened:
7060   // - The trip counts of all loops have changed arbitrarily
7061   // - Every llvm::Value has been updated in place to produce a different
7062   // result.
7063   BackedgeTakenCounts.clear();
7064   PredicatedBackedgeTakenCounts.clear();
7065   LoopPropertiesCache.clear();
7066   ConstantEvolutionLoopExitValue.clear();
7067   ValueExprMap.clear();
7068   ValuesAtScopes.clear();
7069   LoopDispositions.clear();
7070   BlockDispositions.clear();
7071   UnsignedRanges.clear();
7072   SignedRanges.clear();
7073   ExprValueMap.clear();
7074   HasRecMap.clear();
7075   MinTrailingZerosCache.clear();
7076   PredicatedSCEVRewrites.clear();
7077 }
7078 
7079 void ScalarEvolution::forgetLoop(const Loop *L) {
7080   // Drop any stored trip count value.
7081   auto RemoveLoopFromBackedgeMap =
7082       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7083         auto BTCPos = Map.find(L);
7084         if (BTCPos != Map.end()) {
7085           BTCPos->second.clear();
7086           Map.erase(BTCPos);
7087         }
7088       };
7089 
7090   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7091   SmallVector<Instruction *, 32> Worklist;
7092   SmallPtrSet<Instruction *, 16> Visited;
7093 
7094   // Iterate over all the loops and sub-loops to drop SCEV information.
7095   while (!LoopWorklist.empty()) {
7096     auto *CurrL = LoopWorklist.pop_back_val();
7097 
7098     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7099     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7100 
7101     // Drop information about predicated SCEV rewrites for this loop.
7102     for (auto I = PredicatedSCEVRewrites.begin();
7103          I != PredicatedSCEVRewrites.end();) {
7104       std::pair<const SCEV *, const Loop *> Entry = I->first;
7105       if (Entry.second == CurrL)
7106         PredicatedSCEVRewrites.erase(I++);
7107       else
7108         ++I;
7109     }
7110 
7111     auto LoopUsersItr = LoopUsers.find(CurrL);
7112     if (LoopUsersItr != LoopUsers.end()) {
7113       for (auto *S : LoopUsersItr->second)
7114         forgetMemoizedResults(S);
7115       LoopUsers.erase(LoopUsersItr);
7116     }
7117 
7118     // Drop information about expressions based on loop-header PHIs.
7119     PushLoopPHIs(CurrL, Worklist);
7120 
7121     while (!Worklist.empty()) {
7122       Instruction *I = Worklist.pop_back_val();
7123       if (!Visited.insert(I).second)
7124         continue;
7125 
7126       ValueExprMapType::iterator It =
7127           ValueExprMap.find_as(static_cast<Value *>(I));
7128       if (It != ValueExprMap.end()) {
7129         eraseValueFromMap(It->first);
7130         forgetMemoizedResults(It->second);
7131         if (PHINode *PN = dyn_cast<PHINode>(I))
7132           ConstantEvolutionLoopExitValue.erase(PN);
7133       }
7134 
7135       PushDefUseChildren(I, Worklist);
7136     }
7137 
7138     LoopPropertiesCache.erase(CurrL);
7139     // Forget all contained loops too, to avoid dangling entries in the
7140     // ValuesAtScopes map.
7141     LoopWorklist.append(CurrL->begin(), CurrL->end());
7142   }
7143 }
7144 
7145 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7146   while (Loop *Parent = L->getParentLoop())
7147     L = Parent;
7148   forgetLoop(L);
7149 }
7150 
7151 void ScalarEvolution::forgetValue(Value *V) {
7152   Instruction *I = dyn_cast<Instruction>(V);
7153   if (!I) return;
7154 
7155   // Drop information about expressions based on loop-header PHIs.
7156   SmallVector<Instruction *, 16> Worklist;
7157   Worklist.push_back(I);
7158 
7159   SmallPtrSet<Instruction *, 8> Visited;
7160   while (!Worklist.empty()) {
7161     I = Worklist.pop_back_val();
7162     if (!Visited.insert(I).second)
7163       continue;
7164 
7165     ValueExprMapType::iterator It =
7166       ValueExprMap.find_as(static_cast<Value *>(I));
7167     if (It != ValueExprMap.end()) {
7168       eraseValueFromMap(It->first);
7169       forgetMemoizedResults(It->second);
7170       if (PHINode *PN = dyn_cast<PHINode>(I))
7171         ConstantEvolutionLoopExitValue.erase(PN);
7172     }
7173 
7174     PushDefUseChildren(I, Worklist);
7175   }
7176 }
7177 
7178 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7179   LoopDispositions.clear();
7180 }
7181 
7182 /// Get the exact loop backedge taken count considering all loop exits. A
7183 /// computable result can only be returned for loops with all exiting blocks
7184 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7185 /// is never skipped. This is a valid assumption as long as the loop exits via
7186 /// that test. For precise results, it is the caller's responsibility to specify
7187 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7188 const SCEV *
7189 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7190                                              SCEVUnionPredicate *Preds) const {
7191   // If any exits were not computable, the loop is not computable.
7192   if (!isComplete() || ExitNotTaken.empty())
7193     return SE->getCouldNotCompute();
7194 
7195   const BasicBlock *Latch = L->getLoopLatch();
7196   // All exiting blocks we have collected must dominate the only backedge.
7197   if (!Latch)
7198     return SE->getCouldNotCompute();
7199 
7200   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7201   // count is simply a minimum out of all these calculated exit counts.
7202   SmallVector<const SCEV *, 2> Ops;
7203   for (auto &ENT : ExitNotTaken) {
7204     const SCEV *BECount = ENT.ExactNotTaken;
7205     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7206     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7207            "We should only have known counts for exiting blocks that dominate "
7208            "latch!");
7209 
7210     Ops.push_back(BECount);
7211 
7212     if (Preds && !ENT.hasAlwaysTruePredicate())
7213       Preds->add(ENT.Predicate.get());
7214 
7215     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7216            "Predicate should be always true!");
7217   }
7218 
7219   return SE->getUMinFromMismatchedTypes(Ops);
7220 }
7221 
7222 /// Get the exact not taken count for this loop exit.
7223 const SCEV *
7224 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7225                                              ScalarEvolution *SE) const {
7226   for (auto &ENT : ExitNotTaken)
7227     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7228       return ENT.ExactNotTaken;
7229 
7230   return SE->getCouldNotCompute();
7231 }
7232 
7233 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7234     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7235   for (auto &ENT : ExitNotTaken)
7236     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7237       return ENT.MaxNotTaken;
7238 
7239   return SE->getCouldNotCompute();
7240 }
7241 
7242 /// getConstantMax - Get the constant max backedge taken count for the loop.
7243 const SCEV *
7244 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7245   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7246     return !ENT.hasAlwaysTruePredicate();
7247   };
7248 
7249   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7250     return SE->getCouldNotCompute();
7251 
7252   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7253           isa<SCEVConstant>(getConstantMax())) &&
7254          "No point in having a non-constant max backedge taken count!");
7255   return getConstantMax();
7256 }
7257 
7258 const SCEV *
7259 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7260                                                    ScalarEvolution *SE) {
7261   if (!SymbolicMax)
7262     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7263   return SymbolicMax;
7264 }
7265 
7266 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7267     ScalarEvolution *SE) const {
7268   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7269     return !ENT.hasAlwaysTruePredicate();
7270   };
7271   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7272 }
7273 
7274 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7275                                                     ScalarEvolution *SE) const {
7276   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7277       SE->hasOperand(getConstantMax(), S))
7278     return true;
7279 
7280   for (auto &ENT : ExitNotTaken)
7281     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7282         SE->hasOperand(ENT.ExactNotTaken, S))
7283       return true;
7284 
7285   return false;
7286 }
7287 
7288 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7289     : ExactNotTaken(E), MaxNotTaken(E) {
7290   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7291           isa<SCEVConstant>(MaxNotTaken)) &&
7292          "No point in having a non-constant max backedge taken count!");
7293 }
7294 
7295 ScalarEvolution::ExitLimit::ExitLimit(
7296     const SCEV *E, const SCEV *M, bool MaxOrZero,
7297     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7298     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7299   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7300           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7301          "Exact is not allowed to be less precise than Max");
7302   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7303           isa<SCEVConstant>(MaxNotTaken)) &&
7304          "No point in having a non-constant max backedge taken count!");
7305   for (auto *PredSet : PredSetList)
7306     for (auto *P : *PredSet)
7307       addPredicate(P);
7308 }
7309 
7310 ScalarEvolution::ExitLimit::ExitLimit(
7311     const SCEV *E, const SCEV *M, bool MaxOrZero,
7312     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7313     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7314   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7315           isa<SCEVConstant>(MaxNotTaken)) &&
7316          "No point in having a non-constant max backedge taken count!");
7317 }
7318 
7319 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7320                                       bool MaxOrZero)
7321     : ExitLimit(E, M, MaxOrZero, None) {
7322   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7323           isa<SCEVConstant>(MaxNotTaken)) &&
7324          "No point in having a non-constant max backedge taken count!");
7325 }
7326 
7327 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7328 /// computable exit into a persistent ExitNotTakenInfo array.
7329 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7330     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7331     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7332     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7333   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7334 
7335   ExitNotTaken.reserve(ExitCounts.size());
7336   std::transform(
7337       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7338       [&](const EdgeExitInfo &EEI) {
7339         BasicBlock *ExitBB = EEI.first;
7340         const ExitLimit &EL = EEI.second;
7341         if (EL.Predicates.empty())
7342           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7343                                   nullptr);
7344 
7345         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7346         for (auto *Pred : EL.Predicates)
7347           Predicate->add(Pred);
7348 
7349         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7350                                 std::move(Predicate));
7351       });
7352   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7353           isa<SCEVConstant>(ConstantMax)) &&
7354          "No point in having a non-constant max backedge taken count!");
7355 }
7356 
7357 /// Invalidate this result and free the ExitNotTakenInfo array.
7358 void ScalarEvolution::BackedgeTakenInfo::clear() {
7359   ExitNotTaken.clear();
7360 }
7361 
7362 /// Compute the number of times the backedge of the specified loop will execute.
7363 ScalarEvolution::BackedgeTakenInfo
7364 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7365                                            bool AllowPredicates) {
7366   SmallVector<BasicBlock *, 8> ExitingBlocks;
7367   L->getExitingBlocks(ExitingBlocks);
7368 
7369   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7370 
7371   SmallVector<EdgeExitInfo, 4> ExitCounts;
7372   bool CouldComputeBECount = true;
7373   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7374   const SCEV *MustExitMaxBECount = nullptr;
7375   const SCEV *MayExitMaxBECount = nullptr;
7376   bool MustExitMaxOrZero = false;
7377 
7378   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7379   // and compute maxBECount.
7380   // Do a union of all the predicates here.
7381   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7382     BasicBlock *ExitBB = ExitingBlocks[i];
7383 
7384     // We canonicalize untaken exits to br (constant), ignore them so that
7385     // proving an exit untaken doesn't negatively impact our ability to reason
7386     // about the loop as whole.
7387     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7388       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7389         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7390         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7391           continue;
7392       }
7393 
7394     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7395 
7396     assert((AllowPredicates || EL.Predicates.empty()) &&
7397            "Predicated exit limit when predicates are not allowed!");
7398 
7399     // 1. For each exit that can be computed, add an entry to ExitCounts.
7400     // CouldComputeBECount is true only if all exits can be computed.
7401     if (EL.ExactNotTaken == getCouldNotCompute())
7402       // We couldn't compute an exact value for this exit, so
7403       // we won't be able to compute an exact value for the loop.
7404       CouldComputeBECount = false;
7405     else
7406       ExitCounts.emplace_back(ExitBB, EL);
7407 
7408     // 2. Derive the loop's MaxBECount from each exit's max number of
7409     // non-exiting iterations. Partition the loop exits into two kinds:
7410     // LoopMustExits and LoopMayExits.
7411     //
7412     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7413     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7414     // MaxBECount is the minimum EL.MaxNotTaken of computable
7415     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7416     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7417     // computable EL.MaxNotTaken.
7418     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7419         DT.dominates(ExitBB, Latch)) {
7420       if (!MustExitMaxBECount) {
7421         MustExitMaxBECount = EL.MaxNotTaken;
7422         MustExitMaxOrZero = EL.MaxOrZero;
7423       } else {
7424         MustExitMaxBECount =
7425             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7426       }
7427     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7428       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7429         MayExitMaxBECount = EL.MaxNotTaken;
7430       else {
7431         MayExitMaxBECount =
7432             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7433       }
7434     }
7435   }
7436   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7437     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7438   // The loop backedge will be taken the maximum or zero times if there's
7439   // a single exit that must be taken the maximum or zero times.
7440   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7441   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7442                            MaxBECount, MaxOrZero);
7443 }
7444 
7445 ScalarEvolution::ExitLimit
7446 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7447                                       bool AllowPredicates) {
7448   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7449   // If our exiting block does not dominate the latch, then its connection with
7450   // loop's exit limit may be far from trivial.
7451   const BasicBlock *Latch = L->getLoopLatch();
7452   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7453     return getCouldNotCompute();
7454 
7455   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7456   Instruction *Term = ExitingBlock->getTerminator();
7457   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7458     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7459     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7460     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7461            "It should have one successor in loop and one exit block!");
7462     // Proceed to the next level to examine the exit condition expression.
7463     return computeExitLimitFromCond(
7464         L, BI->getCondition(), ExitIfTrue,
7465         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7466   }
7467 
7468   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7469     // For switch, make sure that there is a single exit from the loop.
7470     BasicBlock *Exit = nullptr;
7471     for (auto *SBB : successors(ExitingBlock))
7472       if (!L->contains(SBB)) {
7473         if (Exit) // Multiple exit successors.
7474           return getCouldNotCompute();
7475         Exit = SBB;
7476       }
7477     assert(Exit && "Exiting block must have at least one exit");
7478     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7479                                                 /*ControlsExit=*/IsOnlyExit);
7480   }
7481 
7482   return getCouldNotCompute();
7483 }
7484 
7485 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7486     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7487     bool ControlsExit, bool AllowPredicates) {
7488   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7489   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7490                                         ControlsExit, AllowPredicates);
7491 }
7492 
7493 Optional<ScalarEvolution::ExitLimit>
7494 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7495                                       bool ExitIfTrue, bool ControlsExit,
7496                                       bool AllowPredicates) {
7497   (void)this->L;
7498   (void)this->ExitIfTrue;
7499   (void)this->AllowPredicates;
7500 
7501   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7502          this->AllowPredicates == AllowPredicates &&
7503          "Variance in assumed invariant key components!");
7504   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7505   if (Itr == TripCountMap.end())
7506     return None;
7507   return Itr->second;
7508 }
7509 
7510 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7511                                              bool ExitIfTrue,
7512                                              bool ControlsExit,
7513                                              bool AllowPredicates,
7514                                              const ExitLimit &EL) {
7515   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7516          this->AllowPredicates == AllowPredicates &&
7517          "Variance in assumed invariant key components!");
7518 
7519   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7520   assert(InsertResult.second && "Expected successful insertion!");
7521   (void)InsertResult;
7522   (void)ExitIfTrue;
7523 }
7524 
7525 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7526     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7527     bool ControlsExit, bool AllowPredicates) {
7528 
7529   if (auto MaybeEL =
7530           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7531     return *MaybeEL;
7532 
7533   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7534                                               ControlsExit, AllowPredicates);
7535   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7536   return EL;
7537 }
7538 
7539 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7540     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7541     bool ControlsExit, bool AllowPredicates) {
7542   // Handle BinOp conditions (And, Or).
7543   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7544           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7545     return *LimitFromBinOp;
7546 
7547   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7548   // Proceed to the next level to examine the icmp.
7549   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7550     ExitLimit EL =
7551         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7552     if (EL.hasFullInfo() || !AllowPredicates)
7553       return EL;
7554 
7555     // Try again, but use SCEV predicates this time.
7556     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7557                                     /*AllowPredicates=*/true);
7558   }
7559 
7560   // Check for a constant condition. These are normally stripped out by
7561   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7562   // preserve the CFG and is temporarily leaving constant conditions
7563   // in place.
7564   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7565     if (ExitIfTrue == !CI->getZExtValue())
7566       // The backedge is always taken.
7567       return getCouldNotCompute();
7568     else
7569       // The backedge is never taken.
7570       return getZero(CI->getType());
7571   }
7572 
7573   // If it's not an integer or pointer comparison then compute it the hard way.
7574   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7575 }
7576 
7577 Optional<ScalarEvolution::ExitLimit>
7578 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7579     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7580     bool ControlsExit, bool AllowPredicates) {
7581   // Check if the controlling expression for this loop is an And or Or.
7582   Value *Op0, *Op1;
7583   bool IsAnd = false;
7584   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7585     IsAnd = true;
7586   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7587     IsAnd = false;
7588   else
7589     return None;
7590 
7591   // EitherMayExit is true in these two cases:
7592   //   br (and Op0 Op1), loop, exit
7593   //   br (or  Op0 Op1), exit, loop
7594   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7595   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7596                                                  ControlsExit && !EitherMayExit,
7597                                                  AllowPredicates);
7598   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7599                                                  ControlsExit && !EitherMayExit,
7600                                                  AllowPredicates);
7601 
7602   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7603   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7604   if (isa<ConstantInt>(Op1))
7605     return Op1 == NeutralElement ? EL0 : EL1;
7606   if (isa<ConstantInt>(Op0))
7607     return Op0 == NeutralElement ? EL1 : EL0;
7608 
7609   const SCEV *BECount = getCouldNotCompute();
7610   const SCEV *MaxBECount = getCouldNotCompute();
7611   if (EitherMayExit) {
7612     // Both conditions must be same for the loop to continue executing.
7613     // Choose the less conservative count.
7614     // If ExitCond is a short-circuit form (select), using
7615     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7616     // To see the detailed examples, please see
7617     // test/Analysis/ScalarEvolution/exit-count-select.ll
7618     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7619     if (!PoisonSafe)
7620       // Even if ExitCond is select, we can safely derive BECount using both
7621       // EL0 and EL1 in these cases:
7622       // (1) EL0.ExactNotTaken is non-zero
7623       // (2) EL1.ExactNotTaken is non-poison
7624       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7625       //     it cannot be umin(0, ..))
7626       // The PoisonSafe assignment below is simplified and the assertion after
7627       // BECount calculation fully guarantees the condition (3).
7628       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7629                    isa<SCEVConstant>(EL1.ExactNotTaken);
7630     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7631         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7632       BECount =
7633           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7634 
7635       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7636       // it should have been simplified to zero (see the condition (3) above)
7637       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7638              BECount->isZero());
7639     }
7640     if (EL0.MaxNotTaken == getCouldNotCompute())
7641       MaxBECount = EL1.MaxNotTaken;
7642     else if (EL1.MaxNotTaken == getCouldNotCompute())
7643       MaxBECount = EL0.MaxNotTaken;
7644     else
7645       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7646   } else {
7647     // Both conditions must be same at the same time for the loop to exit.
7648     // For now, be conservative.
7649     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7650       BECount = EL0.ExactNotTaken;
7651   }
7652 
7653   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7654   // to be more aggressive when computing BECount than when computing
7655   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7656   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7657   // to not.
7658   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7659       !isa<SCEVCouldNotCompute>(BECount))
7660     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7661 
7662   return ExitLimit(BECount, MaxBECount, false,
7663                    { &EL0.Predicates, &EL1.Predicates });
7664 }
7665 
7666 ScalarEvolution::ExitLimit
7667 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7668                                           ICmpInst *ExitCond,
7669                                           bool ExitIfTrue,
7670                                           bool ControlsExit,
7671                                           bool AllowPredicates) {
7672   // If the condition was exit on true, convert the condition to exit on false
7673   ICmpInst::Predicate Pred;
7674   if (!ExitIfTrue)
7675     Pred = ExitCond->getPredicate();
7676   else
7677     Pred = ExitCond->getInversePredicate();
7678   const ICmpInst::Predicate OriginalPred = Pred;
7679 
7680   // Handle common loops like: for (X = "string"; *X; ++X)
7681   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7682     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7683       ExitLimit ItCnt =
7684         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7685       if (ItCnt.hasAnyInfo())
7686         return ItCnt;
7687     }
7688 
7689   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7690   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7691 
7692   // Try to evaluate any dependencies out of the loop.
7693   LHS = getSCEVAtScope(LHS, L);
7694   RHS = getSCEVAtScope(RHS, L);
7695 
7696   // At this point, we would like to compute how many iterations of the
7697   // loop the predicate will return true for these inputs.
7698   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7699     // If there is a loop-invariant, force it into the RHS.
7700     std::swap(LHS, RHS);
7701     Pred = ICmpInst::getSwappedPredicate(Pred);
7702   }
7703 
7704   // Simplify the operands before analyzing them.
7705   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7706 
7707   // If we have a comparison of a chrec against a constant, try to use value
7708   // ranges to answer this query.
7709   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7710     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7711       if (AddRec->getLoop() == L) {
7712         // Form the constant range.
7713         ConstantRange CompRange =
7714             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7715 
7716         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7717         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7718       }
7719 
7720   switch (Pred) {
7721   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7722     // Convert to: while (X-Y != 0)
7723     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7724                                 AllowPredicates);
7725     if (EL.hasAnyInfo()) return EL;
7726     break;
7727   }
7728   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7729     // Convert to: while (X-Y == 0)
7730     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7731     if (EL.hasAnyInfo()) return EL;
7732     break;
7733   }
7734   case ICmpInst::ICMP_SLT:
7735   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7736     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7737     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7738                                     AllowPredicates);
7739     if (EL.hasAnyInfo()) return EL;
7740     break;
7741   }
7742   case ICmpInst::ICMP_SGT:
7743   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7744     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7745     ExitLimit EL =
7746         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7747                             AllowPredicates);
7748     if (EL.hasAnyInfo()) return EL;
7749     break;
7750   }
7751   default:
7752     break;
7753   }
7754 
7755   auto *ExhaustiveCount =
7756       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7757 
7758   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7759     return ExhaustiveCount;
7760 
7761   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7762                                       ExitCond->getOperand(1), L, OriginalPred);
7763 }
7764 
7765 ScalarEvolution::ExitLimit
7766 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7767                                                       SwitchInst *Switch,
7768                                                       BasicBlock *ExitingBlock,
7769                                                       bool ControlsExit) {
7770   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7771 
7772   // Give up if the exit is the default dest of a switch.
7773   if (Switch->getDefaultDest() == ExitingBlock)
7774     return getCouldNotCompute();
7775 
7776   assert(L->contains(Switch->getDefaultDest()) &&
7777          "Default case must not exit the loop!");
7778   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7779   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7780 
7781   // while (X != Y) --> while (X-Y != 0)
7782   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7783   if (EL.hasAnyInfo())
7784     return EL;
7785 
7786   return getCouldNotCompute();
7787 }
7788 
7789 static ConstantInt *
7790 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7791                                 ScalarEvolution &SE) {
7792   const SCEV *InVal = SE.getConstant(C);
7793   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7794   assert(isa<SCEVConstant>(Val) &&
7795          "Evaluation of SCEV at constant didn't fold correctly?");
7796   return cast<SCEVConstant>(Val)->getValue();
7797 }
7798 
7799 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7800 /// compute the backedge execution count.
7801 ScalarEvolution::ExitLimit
7802 ScalarEvolution::computeLoadConstantCompareExitLimit(
7803   LoadInst *LI,
7804   Constant *RHS,
7805   const Loop *L,
7806   ICmpInst::Predicate predicate) {
7807   if (LI->isVolatile()) return getCouldNotCompute();
7808 
7809   // Check to see if the loaded pointer is a getelementptr of a global.
7810   // TODO: Use SCEV instead of manually grubbing with GEPs.
7811   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7812   if (!GEP) return getCouldNotCompute();
7813 
7814   // Make sure that it is really a constant global we are gepping, with an
7815   // initializer, and make sure the first IDX is really 0.
7816   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7817   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7818       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7819       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7820     return getCouldNotCompute();
7821 
7822   // Okay, we allow one non-constant index into the GEP instruction.
7823   Value *VarIdx = nullptr;
7824   std::vector<Constant*> Indexes;
7825   unsigned VarIdxNum = 0;
7826   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7827     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7828       Indexes.push_back(CI);
7829     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7830       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7831       VarIdx = GEP->getOperand(i);
7832       VarIdxNum = i-2;
7833       Indexes.push_back(nullptr);
7834     }
7835 
7836   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7837   if (!VarIdx)
7838     return getCouldNotCompute();
7839 
7840   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7841   // Check to see if X is a loop variant variable value now.
7842   const SCEV *Idx = getSCEV(VarIdx);
7843   Idx = getSCEVAtScope(Idx, L);
7844 
7845   // We can only recognize very limited forms of loop index expressions, in
7846   // particular, only affine AddRec's like {C1,+,C2}.
7847   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7848   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7849       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7850       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7851     return getCouldNotCompute();
7852 
7853   unsigned MaxSteps = MaxBruteForceIterations;
7854   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7855     ConstantInt *ItCst = ConstantInt::get(
7856                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7857     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7858 
7859     // Form the GEP offset.
7860     Indexes[VarIdxNum] = Val;
7861 
7862     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7863                                                          Indexes);
7864     if (!Result) break;  // Cannot compute!
7865 
7866     // Evaluate the condition for this iteration.
7867     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7868     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7869     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7870       ++NumArrayLenItCounts;
7871       return getConstant(ItCst);   // Found terminating iteration!
7872     }
7873   }
7874   return getCouldNotCompute();
7875 }
7876 
7877 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7878     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7879   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7880   if (!RHS)
7881     return getCouldNotCompute();
7882 
7883   const BasicBlock *Latch = L->getLoopLatch();
7884   if (!Latch)
7885     return getCouldNotCompute();
7886 
7887   const BasicBlock *Predecessor = L->getLoopPredecessor();
7888   if (!Predecessor)
7889     return getCouldNotCompute();
7890 
7891   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7892   // Return LHS in OutLHS and shift_opt in OutOpCode.
7893   auto MatchPositiveShift =
7894       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7895 
7896     using namespace PatternMatch;
7897 
7898     ConstantInt *ShiftAmt;
7899     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7900       OutOpCode = Instruction::LShr;
7901     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7902       OutOpCode = Instruction::AShr;
7903     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7904       OutOpCode = Instruction::Shl;
7905     else
7906       return false;
7907 
7908     return ShiftAmt->getValue().isStrictlyPositive();
7909   };
7910 
7911   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7912   //
7913   // loop:
7914   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7915   //   %iv.shifted = lshr i32 %iv, <positive constant>
7916   //
7917   // Return true on a successful match.  Return the corresponding PHI node (%iv
7918   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7919   auto MatchShiftRecurrence =
7920       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7921     Optional<Instruction::BinaryOps> PostShiftOpCode;
7922 
7923     {
7924       Instruction::BinaryOps OpC;
7925       Value *V;
7926 
7927       // If we encounter a shift instruction, "peel off" the shift operation,
7928       // and remember that we did so.  Later when we inspect %iv's backedge
7929       // value, we will make sure that the backedge value uses the same
7930       // operation.
7931       //
7932       // Note: the peeled shift operation does not have to be the same
7933       // instruction as the one feeding into the PHI's backedge value.  We only
7934       // really care about it being the same *kind* of shift instruction --
7935       // that's all that is required for our later inferences to hold.
7936       if (MatchPositiveShift(LHS, V, OpC)) {
7937         PostShiftOpCode = OpC;
7938         LHS = V;
7939       }
7940     }
7941 
7942     PNOut = dyn_cast<PHINode>(LHS);
7943     if (!PNOut || PNOut->getParent() != L->getHeader())
7944       return false;
7945 
7946     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7947     Value *OpLHS;
7948 
7949     return
7950         // The backedge value for the PHI node must be a shift by a positive
7951         // amount
7952         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7953 
7954         // of the PHI node itself
7955         OpLHS == PNOut &&
7956 
7957         // and the kind of shift should be match the kind of shift we peeled
7958         // off, if any.
7959         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7960   };
7961 
7962   PHINode *PN;
7963   Instruction::BinaryOps OpCode;
7964   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7965     return getCouldNotCompute();
7966 
7967   const DataLayout &DL = getDataLayout();
7968 
7969   // The key rationale for this optimization is that for some kinds of shift
7970   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7971   // within a finite number of iterations.  If the condition guarding the
7972   // backedge (in the sense that the backedge is taken if the condition is true)
7973   // is false for the value the shift recurrence stabilizes to, then we know
7974   // that the backedge is taken only a finite number of times.
7975 
7976   ConstantInt *StableValue = nullptr;
7977   switch (OpCode) {
7978   default:
7979     llvm_unreachable("Impossible case!");
7980 
7981   case Instruction::AShr: {
7982     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7983     // bitwidth(K) iterations.
7984     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7985     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7986                                        Predecessor->getTerminator(), &DT);
7987     auto *Ty = cast<IntegerType>(RHS->getType());
7988     if (Known.isNonNegative())
7989       StableValue = ConstantInt::get(Ty, 0);
7990     else if (Known.isNegative())
7991       StableValue = ConstantInt::get(Ty, -1, true);
7992     else
7993       return getCouldNotCompute();
7994 
7995     break;
7996   }
7997   case Instruction::LShr:
7998   case Instruction::Shl:
7999     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8000     // stabilize to 0 in at most bitwidth(K) iterations.
8001     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8002     break;
8003   }
8004 
8005   auto *Result =
8006       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8007   assert(Result->getType()->isIntegerTy(1) &&
8008          "Otherwise cannot be an operand to a branch instruction");
8009 
8010   if (Result->isZeroValue()) {
8011     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8012     const SCEV *UpperBound =
8013         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8014     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8015   }
8016 
8017   return getCouldNotCompute();
8018 }
8019 
8020 /// Return true if we can constant fold an instruction of the specified type,
8021 /// assuming that all operands were constants.
8022 static bool CanConstantFold(const Instruction *I) {
8023   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8024       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8025       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8026     return true;
8027 
8028   if (const CallInst *CI = dyn_cast<CallInst>(I))
8029     if (const Function *F = CI->getCalledFunction())
8030       return canConstantFoldCallTo(CI, F);
8031   return false;
8032 }
8033 
8034 /// Determine whether this instruction can constant evolve within this loop
8035 /// assuming its operands can all constant evolve.
8036 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8037   // An instruction outside of the loop can't be derived from a loop PHI.
8038   if (!L->contains(I)) return false;
8039 
8040   if (isa<PHINode>(I)) {
8041     // We don't currently keep track of the control flow needed to evaluate
8042     // PHIs, so we cannot handle PHIs inside of loops.
8043     return L->getHeader() == I->getParent();
8044   }
8045 
8046   // If we won't be able to constant fold this expression even if the operands
8047   // are constants, bail early.
8048   return CanConstantFold(I);
8049 }
8050 
8051 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8052 /// recursing through each instruction operand until reaching a loop header phi.
8053 static PHINode *
8054 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8055                                DenseMap<Instruction *, PHINode *> &PHIMap,
8056                                unsigned Depth) {
8057   if (Depth > MaxConstantEvolvingDepth)
8058     return nullptr;
8059 
8060   // Otherwise, we can evaluate this instruction if all of its operands are
8061   // constant or derived from a PHI node themselves.
8062   PHINode *PHI = nullptr;
8063   for (Value *Op : UseInst->operands()) {
8064     if (isa<Constant>(Op)) continue;
8065 
8066     Instruction *OpInst = dyn_cast<Instruction>(Op);
8067     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8068 
8069     PHINode *P = dyn_cast<PHINode>(OpInst);
8070     if (!P)
8071       // If this operand is already visited, reuse the prior result.
8072       // We may have P != PHI if this is the deepest point at which the
8073       // inconsistent paths meet.
8074       P = PHIMap.lookup(OpInst);
8075     if (!P) {
8076       // Recurse and memoize the results, whether a phi is found or not.
8077       // This recursive call invalidates pointers into PHIMap.
8078       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8079       PHIMap[OpInst] = P;
8080     }
8081     if (!P)
8082       return nullptr;  // Not evolving from PHI
8083     if (PHI && PHI != P)
8084       return nullptr;  // Evolving from multiple different PHIs.
8085     PHI = P;
8086   }
8087   // This is a expression evolving from a constant PHI!
8088   return PHI;
8089 }
8090 
8091 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8092 /// in the loop that V is derived from.  We allow arbitrary operations along the
8093 /// way, but the operands of an operation must either be constants or a value
8094 /// derived from a constant PHI.  If this expression does not fit with these
8095 /// constraints, return null.
8096 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8097   Instruction *I = dyn_cast<Instruction>(V);
8098   if (!I || !canConstantEvolve(I, L)) return nullptr;
8099 
8100   if (PHINode *PN = dyn_cast<PHINode>(I))
8101     return PN;
8102 
8103   // Record non-constant instructions contained by the loop.
8104   DenseMap<Instruction *, PHINode *> PHIMap;
8105   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8106 }
8107 
8108 /// EvaluateExpression - Given an expression that passes the
8109 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8110 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8111 /// reason, return null.
8112 static Constant *EvaluateExpression(Value *V, const Loop *L,
8113                                     DenseMap<Instruction *, Constant *> &Vals,
8114                                     const DataLayout &DL,
8115                                     const TargetLibraryInfo *TLI) {
8116   // Convenient constant check, but redundant for recursive calls.
8117   if (Constant *C = dyn_cast<Constant>(V)) return C;
8118   Instruction *I = dyn_cast<Instruction>(V);
8119   if (!I) return nullptr;
8120 
8121   if (Constant *C = Vals.lookup(I)) return C;
8122 
8123   // An instruction inside the loop depends on a value outside the loop that we
8124   // weren't given a mapping for, or a value such as a call inside the loop.
8125   if (!canConstantEvolve(I, L)) return nullptr;
8126 
8127   // An unmapped PHI can be due to a branch or another loop inside this loop,
8128   // or due to this not being the initial iteration through a loop where we
8129   // couldn't compute the evolution of this particular PHI last time.
8130   if (isa<PHINode>(I)) return nullptr;
8131 
8132   std::vector<Constant*> Operands(I->getNumOperands());
8133 
8134   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8135     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8136     if (!Operand) {
8137       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8138       if (!Operands[i]) return nullptr;
8139       continue;
8140     }
8141     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8142     Vals[Operand] = C;
8143     if (!C) return nullptr;
8144     Operands[i] = C;
8145   }
8146 
8147   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8148     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8149                                            Operands[1], DL, TLI);
8150   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8151     if (!LI->isVolatile())
8152       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8153   }
8154   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8155 }
8156 
8157 
8158 // If every incoming value to PN except the one for BB is a specific Constant,
8159 // return that, else return nullptr.
8160 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8161   Constant *IncomingVal = nullptr;
8162 
8163   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8164     if (PN->getIncomingBlock(i) == BB)
8165       continue;
8166 
8167     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8168     if (!CurrentVal)
8169       return nullptr;
8170 
8171     if (IncomingVal != CurrentVal) {
8172       if (IncomingVal)
8173         return nullptr;
8174       IncomingVal = CurrentVal;
8175     }
8176   }
8177 
8178   return IncomingVal;
8179 }
8180 
8181 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8182 /// in the header of its containing loop, we know the loop executes a
8183 /// constant number of times, and the PHI node is just a recurrence
8184 /// involving constants, fold it.
8185 Constant *
8186 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8187                                                    const APInt &BEs,
8188                                                    const Loop *L) {
8189   auto I = ConstantEvolutionLoopExitValue.find(PN);
8190   if (I != ConstantEvolutionLoopExitValue.end())
8191     return I->second;
8192 
8193   if (BEs.ugt(MaxBruteForceIterations))
8194     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8195 
8196   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8197 
8198   DenseMap<Instruction *, Constant *> CurrentIterVals;
8199   BasicBlock *Header = L->getHeader();
8200   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8201 
8202   BasicBlock *Latch = L->getLoopLatch();
8203   if (!Latch)
8204     return nullptr;
8205 
8206   for (PHINode &PHI : Header->phis()) {
8207     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8208       CurrentIterVals[&PHI] = StartCST;
8209   }
8210   if (!CurrentIterVals.count(PN))
8211     return RetVal = nullptr;
8212 
8213   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8214 
8215   // Execute the loop symbolically to determine the exit value.
8216   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8217          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8218 
8219   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8220   unsigned IterationNum = 0;
8221   const DataLayout &DL = getDataLayout();
8222   for (; ; ++IterationNum) {
8223     if (IterationNum == NumIterations)
8224       return RetVal = CurrentIterVals[PN];  // Got exit value!
8225 
8226     // Compute the value of the PHIs for the next iteration.
8227     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8228     DenseMap<Instruction *, Constant *> NextIterVals;
8229     Constant *NextPHI =
8230         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8231     if (!NextPHI)
8232       return nullptr;        // Couldn't evaluate!
8233     NextIterVals[PN] = NextPHI;
8234 
8235     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8236 
8237     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8238     // cease to be able to evaluate one of them or if they stop evolving,
8239     // because that doesn't necessarily prevent us from computing PN.
8240     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8241     for (const auto &I : CurrentIterVals) {
8242       PHINode *PHI = dyn_cast<PHINode>(I.first);
8243       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8244       PHIsToCompute.emplace_back(PHI, I.second);
8245     }
8246     // We use two distinct loops because EvaluateExpression may invalidate any
8247     // iterators into CurrentIterVals.
8248     for (const auto &I : PHIsToCompute) {
8249       PHINode *PHI = I.first;
8250       Constant *&NextPHI = NextIterVals[PHI];
8251       if (!NextPHI) {   // Not already computed.
8252         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8253         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8254       }
8255       if (NextPHI != I.second)
8256         StoppedEvolving = false;
8257     }
8258 
8259     // If all entries in CurrentIterVals == NextIterVals then we can stop
8260     // iterating, the loop can't continue to change.
8261     if (StoppedEvolving)
8262       return RetVal = CurrentIterVals[PN];
8263 
8264     CurrentIterVals.swap(NextIterVals);
8265   }
8266 }
8267 
8268 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8269                                                           Value *Cond,
8270                                                           bool ExitWhen) {
8271   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8272   if (!PN) return getCouldNotCompute();
8273 
8274   // If the loop is canonicalized, the PHI will have exactly two entries.
8275   // That's the only form we support here.
8276   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8277 
8278   DenseMap<Instruction *, Constant *> CurrentIterVals;
8279   BasicBlock *Header = L->getHeader();
8280   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8281 
8282   BasicBlock *Latch = L->getLoopLatch();
8283   assert(Latch && "Should follow from NumIncomingValues == 2!");
8284 
8285   for (PHINode &PHI : Header->phis()) {
8286     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8287       CurrentIterVals[&PHI] = StartCST;
8288   }
8289   if (!CurrentIterVals.count(PN))
8290     return getCouldNotCompute();
8291 
8292   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8293   // the loop symbolically to determine when the condition gets a value of
8294   // "ExitWhen".
8295   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8296   const DataLayout &DL = getDataLayout();
8297   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8298     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8299         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8300 
8301     // Couldn't symbolically evaluate.
8302     if (!CondVal) return getCouldNotCompute();
8303 
8304     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8305       ++NumBruteForceTripCountsComputed;
8306       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8307     }
8308 
8309     // Update all the PHI nodes for the next iteration.
8310     DenseMap<Instruction *, Constant *> NextIterVals;
8311 
8312     // Create a list of which PHIs we need to compute. We want to do this before
8313     // calling EvaluateExpression on them because that may invalidate iterators
8314     // into CurrentIterVals.
8315     SmallVector<PHINode *, 8> PHIsToCompute;
8316     for (const auto &I : CurrentIterVals) {
8317       PHINode *PHI = dyn_cast<PHINode>(I.first);
8318       if (!PHI || PHI->getParent() != Header) continue;
8319       PHIsToCompute.push_back(PHI);
8320     }
8321     for (PHINode *PHI : PHIsToCompute) {
8322       Constant *&NextPHI = NextIterVals[PHI];
8323       if (NextPHI) continue;    // Already computed!
8324 
8325       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8326       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8327     }
8328     CurrentIterVals.swap(NextIterVals);
8329   }
8330 
8331   // Too many iterations were needed to evaluate.
8332   return getCouldNotCompute();
8333 }
8334 
8335 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8336   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8337       ValuesAtScopes[V];
8338   // Check to see if we've folded this expression at this loop before.
8339   for (auto &LS : Values)
8340     if (LS.first == L)
8341       return LS.second ? LS.second : V;
8342 
8343   Values.emplace_back(L, nullptr);
8344 
8345   // Otherwise compute it.
8346   const SCEV *C = computeSCEVAtScope(V, L);
8347   for (auto &LS : reverse(ValuesAtScopes[V]))
8348     if (LS.first == L) {
8349       LS.second = C;
8350       break;
8351     }
8352   return C;
8353 }
8354 
8355 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8356 /// will return Constants for objects which aren't represented by a
8357 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8358 /// Returns NULL if the SCEV isn't representable as a Constant.
8359 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8360   switch (V->getSCEVType()) {
8361   case scCouldNotCompute:
8362   case scAddRecExpr:
8363     return nullptr;
8364   case scConstant:
8365     return cast<SCEVConstant>(V)->getValue();
8366   case scUnknown:
8367     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8368   case scSignExtend: {
8369     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8370     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8371       return ConstantExpr::getSExt(CastOp, SS->getType());
8372     return nullptr;
8373   }
8374   case scZeroExtend: {
8375     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8376     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8377       return ConstantExpr::getZExt(CastOp, SZ->getType());
8378     return nullptr;
8379   }
8380   case scPtrToInt: {
8381     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8382     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8383       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8384 
8385     return nullptr;
8386   }
8387   case scTruncate: {
8388     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8389     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8390       return ConstantExpr::getTrunc(CastOp, ST->getType());
8391     return nullptr;
8392   }
8393   case scAddExpr: {
8394     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8395     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8396       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8397         unsigned AS = PTy->getAddressSpace();
8398         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8399         C = ConstantExpr::getBitCast(C, DestPtrTy);
8400       }
8401       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8402         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8403         if (!C2)
8404           return nullptr;
8405 
8406         // First pointer!
8407         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8408           unsigned AS = C2->getType()->getPointerAddressSpace();
8409           std::swap(C, C2);
8410           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8411           // The offsets have been converted to bytes.  We can add bytes to an
8412           // i8* by GEP with the byte count in the first index.
8413           C = ConstantExpr::getBitCast(C, DestPtrTy);
8414         }
8415 
8416         // Don't bother trying to sum two pointers. We probably can't
8417         // statically compute a load that results from it anyway.
8418         if (C2->getType()->isPointerTy())
8419           return nullptr;
8420 
8421         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8422           if (PTy->getElementType()->isStructTy())
8423             C2 = ConstantExpr::getIntegerCast(
8424                 C2, Type::getInt32Ty(C->getContext()), true);
8425           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8426         } else
8427           C = ConstantExpr::getAdd(C, C2);
8428       }
8429       return C;
8430     }
8431     return nullptr;
8432   }
8433   case scMulExpr: {
8434     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8435     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8436       // Don't bother with pointers at all.
8437       if (C->getType()->isPointerTy())
8438         return nullptr;
8439       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8440         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8441         if (!C2 || C2->getType()->isPointerTy())
8442           return nullptr;
8443         C = ConstantExpr::getMul(C, C2);
8444       }
8445       return C;
8446     }
8447     return nullptr;
8448   }
8449   case scUDivExpr: {
8450     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8451     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8452       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8453         if (LHS->getType() == RHS->getType())
8454           return ConstantExpr::getUDiv(LHS, RHS);
8455     return nullptr;
8456   }
8457   case scSMaxExpr:
8458   case scUMaxExpr:
8459   case scSMinExpr:
8460   case scUMinExpr:
8461     return nullptr; // TODO: smax, umax, smin, umax.
8462   }
8463   llvm_unreachable("Unknown SCEV kind!");
8464 }
8465 
8466 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8467   if (isa<SCEVConstant>(V)) return V;
8468 
8469   // If this instruction is evolved from a constant-evolving PHI, compute the
8470   // exit value from the loop without using SCEVs.
8471   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8472     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8473       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8474         const Loop *CurrLoop = this->LI[I->getParent()];
8475         // Looking for loop exit value.
8476         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8477             PN->getParent() == CurrLoop->getHeader()) {
8478           // Okay, there is no closed form solution for the PHI node.  Check
8479           // to see if the loop that contains it has a known backedge-taken
8480           // count.  If so, we may be able to force computation of the exit
8481           // value.
8482           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8483           // This trivial case can show up in some degenerate cases where
8484           // the incoming IR has not yet been fully simplified.
8485           if (BackedgeTakenCount->isZero()) {
8486             Value *InitValue = nullptr;
8487             bool MultipleInitValues = false;
8488             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8489               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8490                 if (!InitValue)
8491                   InitValue = PN->getIncomingValue(i);
8492                 else if (InitValue != PN->getIncomingValue(i)) {
8493                   MultipleInitValues = true;
8494                   break;
8495                 }
8496               }
8497             }
8498             if (!MultipleInitValues && InitValue)
8499               return getSCEV(InitValue);
8500           }
8501           // Do we have a loop invariant value flowing around the backedge
8502           // for a loop which must execute the backedge?
8503           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8504               isKnownPositive(BackedgeTakenCount) &&
8505               PN->getNumIncomingValues() == 2) {
8506 
8507             unsigned InLoopPred =
8508                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8509             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8510             if (CurrLoop->isLoopInvariant(BackedgeVal))
8511               return getSCEV(BackedgeVal);
8512           }
8513           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8514             // Okay, we know how many times the containing loop executes.  If
8515             // this is a constant evolving PHI node, get the final value at
8516             // the specified iteration number.
8517             Constant *RV = getConstantEvolutionLoopExitValue(
8518                 PN, BTCC->getAPInt(), CurrLoop);
8519             if (RV) return getSCEV(RV);
8520           }
8521         }
8522 
8523         // If there is a single-input Phi, evaluate it at our scope. If we can
8524         // prove that this replacement does not break LCSSA form, use new value.
8525         if (PN->getNumOperands() == 1) {
8526           const SCEV *Input = getSCEV(PN->getOperand(0));
8527           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8528           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8529           // for the simplest case just support constants.
8530           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8531         }
8532       }
8533 
8534       // Okay, this is an expression that we cannot symbolically evaluate
8535       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8536       // the arguments into constants, and if so, try to constant propagate the
8537       // result.  This is particularly useful for computing loop exit values.
8538       if (CanConstantFold(I)) {
8539         SmallVector<Constant *, 4> Operands;
8540         bool MadeImprovement = false;
8541         for (Value *Op : I->operands()) {
8542           if (Constant *C = dyn_cast<Constant>(Op)) {
8543             Operands.push_back(C);
8544             continue;
8545           }
8546 
8547           // If any of the operands is non-constant and if they are
8548           // non-integer and non-pointer, don't even try to analyze them
8549           // with scev techniques.
8550           if (!isSCEVable(Op->getType()))
8551             return V;
8552 
8553           const SCEV *OrigV = getSCEV(Op);
8554           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8555           MadeImprovement |= OrigV != OpV;
8556 
8557           Constant *C = BuildConstantFromSCEV(OpV);
8558           if (!C) return V;
8559           if (C->getType() != Op->getType())
8560             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8561                                                               Op->getType(),
8562                                                               false),
8563                                       C, Op->getType());
8564           Operands.push_back(C);
8565         }
8566 
8567         // Check to see if getSCEVAtScope actually made an improvement.
8568         if (MadeImprovement) {
8569           Constant *C = nullptr;
8570           const DataLayout &DL = getDataLayout();
8571           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8572             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8573                                                 Operands[1], DL, &TLI);
8574           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8575             if (!Load->isVolatile())
8576               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8577                                                DL);
8578           } else
8579             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8580           if (!C) return V;
8581           return getSCEV(C);
8582         }
8583       }
8584     }
8585 
8586     // This is some other type of SCEVUnknown, just return it.
8587     return V;
8588   }
8589 
8590   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8591     // Avoid performing the look-up in the common case where the specified
8592     // expression has no loop-variant portions.
8593     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8594       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8595       if (OpAtScope != Comm->getOperand(i)) {
8596         // Okay, at least one of these operands is loop variant but might be
8597         // foldable.  Build a new instance of the folded commutative expression.
8598         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8599                                             Comm->op_begin()+i);
8600         NewOps.push_back(OpAtScope);
8601 
8602         for (++i; i != e; ++i) {
8603           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8604           NewOps.push_back(OpAtScope);
8605         }
8606         if (isa<SCEVAddExpr>(Comm))
8607           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8608         if (isa<SCEVMulExpr>(Comm))
8609           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8610         if (isa<SCEVMinMaxExpr>(Comm))
8611           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8612         llvm_unreachable("Unknown commutative SCEV type!");
8613       }
8614     }
8615     // If we got here, all operands are loop invariant.
8616     return Comm;
8617   }
8618 
8619   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8620     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8621     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8622     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8623       return Div;   // must be loop invariant
8624     return getUDivExpr(LHS, RHS);
8625   }
8626 
8627   // If this is a loop recurrence for a loop that does not contain L, then we
8628   // are dealing with the final value computed by the loop.
8629   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8630     // First, attempt to evaluate each operand.
8631     // Avoid performing the look-up in the common case where the specified
8632     // expression has no loop-variant portions.
8633     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8634       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8635       if (OpAtScope == AddRec->getOperand(i))
8636         continue;
8637 
8638       // Okay, at least one of these operands is loop variant but might be
8639       // foldable.  Build a new instance of the folded commutative expression.
8640       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8641                                           AddRec->op_begin()+i);
8642       NewOps.push_back(OpAtScope);
8643       for (++i; i != e; ++i)
8644         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8645 
8646       const SCEV *FoldedRec =
8647         getAddRecExpr(NewOps, AddRec->getLoop(),
8648                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8649       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8650       // The addrec may be folded to a nonrecurrence, for example, if the
8651       // induction variable is multiplied by zero after constant folding. Go
8652       // ahead and return the folded value.
8653       if (!AddRec)
8654         return FoldedRec;
8655       break;
8656     }
8657 
8658     // If the scope is outside the addrec's loop, evaluate it by using the
8659     // loop exit value of the addrec.
8660     if (!AddRec->getLoop()->contains(L)) {
8661       // To evaluate this recurrence, we need to know how many times the AddRec
8662       // loop iterates.  Compute this now.
8663       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8664       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8665 
8666       // Then, evaluate the AddRec.
8667       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8668     }
8669 
8670     return AddRec;
8671   }
8672 
8673   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8674     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8675     if (Op == Cast->getOperand())
8676       return Cast;  // must be loop invariant
8677     return getZeroExtendExpr(Op, Cast->getType());
8678   }
8679 
8680   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8681     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8682     if (Op == Cast->getOperand())
8683       return Cast;  // must be loop invariant
8684     return getSignExtendExpr(Op, Cast->getType());
8685   }
8686 
8687   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8688     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8689     if (Op == Cast->getOperand())
8690       return Cast;  // must be loop invariant
8691     return getTruncateExpr(Op, Cast->getType());
8692   }
8693 
8694   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8695     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8696     if (Op == Cast->getOperand())
8697       return Cast; // must be loop invariant
8698     return getPtrToIntExpr(Op, Cast->getType());
8699   }
8700 
8701   llvm_unreachable("Unknown SCEV type!");
8702 }
8703 
8704 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8705   return getSCEVAtScope(getSCEV(V), L);
8706 }
8707 
8708 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8709   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8710     return stripInjectiveFunctions(ZExt->getOperand());
8711   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8712     return stripInjectiveFunctions(SExt->getOperand());
8713   return S;
8714 }
8715 
8716 /// Finds the minimum unsigned root of the following equation:
8717 ///
8718 ///     A * X = B (mod N)
8719 ///
8720 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8721 /// A and B isn't important.
8722 ///
8723 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8724 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8725                                                ScalarEvolution &SE) {
8726   uint32_t BW = A.getBitWidth();
8727   assert(BW == SE.getTypeSizeInBits(B->getType()));
8728   assert(A != 0 && "A must be non-zero.");
8729 
8730   // 1. D = gcd(A, N)
8731   //
8732   // The gcd of A and N may have only one prime factor: 2. The number of
8733   // trailing zeros in A is its multiplicity
8734   uint32_t Mult2 = A.countTrailingZeros();
8735   // D = 2^Mult2
8736 
8737   // 2. Check if B is divisible by D.
8738   //
8739   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8740   // is not less than multiplicity of this prime factor for D.
8741   if (SE.GetMinTrailingZeros(B) < Mult2)
8742     return SE.getCouldNotCompute();
8743 
8744   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8745   // modulo (N / D).
8746   //
8747   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8748   // (N / D) in general. The inverse itself always fits into BW bits, though,
8749   // so we immediately truncate it.
8750   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8751   APInt Mod(BW + 1, 0);
8752   Mod.setBit(BW - Mult2);  // Mod = N / D
8753   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8754 
8755   // 4. Compute the minimum unsigned root of the equation:
8756   // I * (B / D) mod (N / D)
8757   // To simplify the computation, we factor out the divide by D:
8758   // (I * B mod N) / D
8759   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8760   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8761 }
8762 
8763 /// For a given quadratic addrec, generate coefficients of the corresponding
8764 /// quadratic equation, multiplied by a common value to ensure that they are
8765 /// integers.
8766 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8767 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8768 /// were multiplied by, and BitWidth is the bit width of the original addrec
8769 /// coefficients.
8770 /// This function returns None if the addrec coefficients are not compile-
8771 /// time constants.
8772 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8773 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8774   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8775   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8776   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8777   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8778   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8779                     << *AddRec << '\n');
8780 
8781   // We currently can only solve this if the coefficients are constants.
8782   if (!LC || !MC || !NC) {
8783     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8784     return None;
8785   }
8786 
8787   APInt L = LC->getAPInt();
8788   APInt M = MC->getAPInt();
8789   APInt N = NC->getAPInt();
8790   assert(!N.isNullValue() && "This is not a quadratic addrec");
8791 
8792   unsigned BitWidth = LC->getAPInt().getBitWidth();
8793   unsigned NewWidth = BitWidth + 1;
8794   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8795                     << BitWidth << '\n');
8796   // The sign-extension (as opposed to a zero-extension) here matches the
8797   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8798   N = N.sext(NewWidth);
8799   M = M.sext(NewWidth);
8800   L = L.sext(NewWidth);
8801 
8802   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8803   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8804   //   L+M, L+2M+N, L+3M+3N, ...
8805   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8806   //
8807   // The equation Acc = 0 is then
8808   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8809   // In a quadratic form it becomes:
8810   //   N n^2 + (2M-N) n + 2L = 0.
8811 
8812   APInt A = N;
8813   APInt B = 2 * M - A;
8814   APInt C = 2 * L;
8815   APInt T = APInt(NewWidth, 2);
8816   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8817                     << "x + " << C << ", coeff bw: " << NewWidth
8818                     << ", multiplied by " << T << '\n');
8819   return std::make_tuple(A, B, C, T, BitWidth);
8820 }
8821 
8822 /// Helper function to compare optional APInts:
8823 /// (a) if X and Y both exist, return min(X, Y),
8824 /// (b) if neither X nor Y exist, return None,
8825 /// (c) if exactly one of X and Y exists, return that value.
8826 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8827   if (X.hasValue() && Y.hasValue()) {
8828     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8829     APInt XW = X->sextOrSelf(W);
8830     APInt YW = Y->sextOrSelf(W);
8831     return XW.slt(YW) ? *X : *Y;
8832   }
8833   if (!X.hasValue() && !Y.hasValue())
8834     return None;
8835   return X.hasValue() ? *X : *Y;
8836 }
8837 
8838 /// Helper function to truncate an optional APInt to a given BitWidth.
8839 /// When solving addrec-related equations, it is preferable to return a value
8840 /// that has the same bit width as the original addrec's coefficients. If the
8841 /// solution fits in the original bit width, truncate it (except for i1).
8842 /// Returning a value of a different bit width may inhibit some optimizations.
8843 ///
8844 /// In general, a solution to a quadratic equation generated from an addrec
8845 /// may require BW+1 bits, where BW is the bit width of the addrec's
8846 /// coefficients. The reason is that the coefficients of the quadratic
8847 /// equation are BW+1 bits wide (to avoid truncation when converting from
8848 /// the addrec to the equation).
8849 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8850   if (!X.hasValue())
8851     return None;
8852   unsigned W = X->getBitWidth();
8853   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8854     return X->trunc(BitWidth);
8855   return X;
8856 }
8857 
8858 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8859 /// iterations. The values L, M, N are assumed to be signed, and they
8860 /// should all have the same bit widths.
8861 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8862 /// where BW is the bit width of the addrec's coefficients.
8863 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8864 /// returned as such, otherwise the bit width of the returned value may
8865 /// be greater than BW.
8866 ///
8867 /// This function returns None if
8868 /// (a) the addrec coefficients are not constant, or
8869 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8870 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8871 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8872 static Optional<APInt>
8873 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8874   APInt A, B, C, M;
8875   unsigned BitWidth;
8876   auto T = GetQuadraticEquation(AddRec);
8877   if (!T.hasValue())
8878     return None;
8879 
8880   std::tie(A, B, C, M, BitWidth) = *T;
8881   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8882   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8883   if (!X.hasValue())
8884     return None;
8885 
8886   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8887   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8888   if (!V->isZero())
8889     return None;
8890 
8891   return TruncIfPossible(X, BitWidth);
8892 }
8893 
8894 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8895 /// iterations. The values M, N are assumed to be signed, and they
8896 /// should all have the same bit widths.
8897 /// Find the least n such that c(n) does not belong to the given range,
8898 /// while c(n-1) does.
8899 ///
8900 /// This function returns None if
8901 /// (a) the addrec coefficients are not constant, or
8902 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8903 ///     bounds of the range.
8904 static Optional<APInt>
8905 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8906                           const ConstantRange &Range, ScalarEvolution &SE) {
8907   assert(AddRec->getOperand(0)->isZero() &&
8908          "Starting value of addrec should be 0");
8909   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8910                     << Range << ", addrec " << *AddRec << '\n');
8911   // This case is handled in getNumIterationsInRange. Here we can assume that
8912   // we start in the range.
8913   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8914          "Addrec's initial value should be in range");
8915 
8916   APInt A, B, C, M;
8917   unsigned BitWidth;
8918   auto T = GetQuadraticEquation(AddRec);
8919   if (!T.hasValue())
8920     return None;
8921 
8922   // Be careful about the return value: there can be two reasons for not
8923   // returning an actual number. First, if no solutions to the equations
8924   // were found, and second, if the solutions don't leave the given range.
8925   // The first case means that the actual solution is "unknown", the second
8926   // means that it's known, but not valid. If the solution is unknown, we
8927   // cannot make any conclusions.
8928   // Return a pair: the optional solution and a flag indicating if the
8929   // solution was found.
8930   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8931     // Solve for signed overflow and unsigned overflow, pick the lower
8932     // solution.
8933     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8934                       << Bound << " (before multiplying by " << M << ")\n");
8935     Bound *= M; // The quadratic equation multiplier.
8936 
8937     Optional<APInt> SO = None;
8938     if (BitWidth > 1) {
8939       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8940                            "signed overflow\n");
8941       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8942     }
8943     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8944                          "unsigned overflow\n");
8945     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8946                                                               BitWidth+1);
8947 
8948     auto LeavesRange = [&] (const APInt &X) {
8949       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8950       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8951       if (Range.contains(V0->getValue()))
8952         return false;
8953       // X should be at least 1, so X-1 is non-negative.
8954       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8955       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8956       if (Range.contains(V1->getValue()))
8957         return true;
8958       return false;
8959     };
8960 
8961     // If SolveQuadraticEquationWrap returns None, it means that there can
8962     // be a solution, but the function failed to find it. We cannot treat it
8963     // as "no solution".
8964     if (!SO.hasValue() || !UO.hasValue())
8965       return { None, false };
8966 
8967     // Check the smaller value first to see if it leaves the range.
8968     // At this point, both SO and UO must have values.
8969     Optional<APInt> Min = MinOptional(SO, UO);
8970     if (LeavesRange(*Min))
8971       return { Min, true };
8972     Optional<APInt> Max = Min == SO ? UO : SO;
8973     if (LeavesRange(*Max))
8974       return { Max, true };
8975 
8976     // Solutions were found, but were eliminated, hence the "true".
8977     return { None, true };
8978   };
8979 
8980   std::tie(A, B, C, M, BitWidth) = *T;
8981   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8982   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8983   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8984   auto SL = SolveForBoundary(Lower);
8985   auto SU = SolveForBoundary(Upper);
8986   // If any of the solutions was unknown, no meaninigful conclusions can
8987   // be made.
8988   if (!SL.second || !SU.second)
8989     return None;
8990 
8991   // Claim: The correct solution is not some value between Min and Max.
8992   //
8993   // Justification: Assuming that Min and Max are different values, one of
8994   // them is when the first signed overflow happens, the other is when the
8995   // first unsigned overflow happens. Crossing the range boundary is only
8996   // possible via an overflow (treating 0 as a special case of it, modeling
8997   // an overflow as crossing k*2^W for some k).
8998   //
8999   // The interesting case here is when Min was eliminated as an invalid
9000   // solution, but Max was not. The argument is that if there was another
9001   // overflow between Min and Max, it would also have been eliminated if
9002   // it was considered.
9003   //
9004   // For a given boundary, it is possible to have two overflows of the same
9005   // type (signed/unsigned) without having the other type in between: this
9006   // can happen when the vertex of the parabola is between the iterations
9007   // corresponding to the overflows. This is only possible when the two
9008   // overflows cross k*2^W for the same k. In such case, if the second one
9009   // left the range (and was the first one to do so), the first overflow
9010   // would have to enter the range, which would mean that either we had left
9011   // the range before or that we started outside of it. Both of these cases
9012   // are contradictions.
9013   //
9014   // Claim: In the case where SolveForBoundary returns None, the correct
9015   // solution is not some value between the Max for this boundary and the
9016   // Min of the other boundary.
9017   //
9018   // Justification: Assume that we had such Max_A and Min_B corresponding
9019   // to range boundaries A and B and such that Max_A < Min_B. If there was
9020   // a solution between Max_A and Min_B, it would have to be caused by an
9021   // overflow corresponding to either A or B. It cannot correspond to B,
9022   // since Min_B is the first occurrence of such an overflow. If it
9023   // corresponded to A, it would have to be either a signed or an unsigned
9024   // overflow that is larger than both eliminated overflows for A. But
9025   // between the eliminated overflows and this overflow, the values would
9026   // cover the entire value space, thus crossing the other boundary, which
9027   // is a contradiction.
9028 
9029   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9030 }
9031 
9032 ScalarEvolution::ExitLimit
9033 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9034                               bool AllowPredicates) {
9035 
9036   // This is only used for loops with a "x != y" exit test. The exit condition
9037   // is now expressed as a single expression, V = x-y. So the exit test is
9038   // effectively V != 0.  We know and take advantage of the fact that this
9039   // expression only being used in a comparison by zero context.
9040 
9041   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9042   // If the value is a constant
9043   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9044     // If the value is already zero, the branch will execute zero times.
9045     if (C->getValue()->isZero()) return C;
9046     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9047   }
9048 
9049   const SCEVAddRecExpr *AddRec =
9050       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9051 
9052   if (!AddRec && AllowPredicates)
9053     // Try to make this an AddRec using runtime tests, in the first X
9054     // iterations of this loop, where X is the SCEV expression found by the
9055     // algorithm below.
9056     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9057 
9058   if (!AddRec || AddRec->getLoop() != L)
9059     return getCouldNotCompute();
9060 
9061   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9062   // the quadratic equation to solve it.
9063   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9064     // We can only use this value if the chrec ends up with an exact zero
9065     // value at this index.  When solving for "X*X != 5", for example, we
9066     // should not accept a root of 2.
9067     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9068       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9069       return ExitLimit(R, R, false, Predicates);
9070     }
9071     return getCouldNotCompute();
9072   }
9073 
9074   // Otherwise we can only handle this if it is affine.
9075   if (!AddRec->isAffine())
9076     return getCouldNotCompute();
9077 
9078   // If this is an affine expression, the execution count of this branch is
9079   // the minimum unsigned root of the following equation:
9080   //
9081   //     Start + Step*N = 0 (mod 2^BW)
9082   //
9083   // equivalent to:
9084   //
9085   //             Step*N = -Start (mod 2^BW)
9086   //
9087   // where BW is the common bit width of Start and Step.
9088 
9089   // Get the initial value for the loop.
9090   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9091   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9092 
9093   // For now we handle only constant steps.
9094   //
9095   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9096   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9097   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9098   // We have not yet seen any such cases.
9099   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9100   if (!StepC || StepC->getValue()->isZero())
9101     return getCouldNotCompute();
9102 
9103   // For positive steps (counting up until unsigned overflow):
9104   //   N = -Start/Step (as unsigned)
9105   // For negative steps (counting down to zero):
9106   //   N = Start/-Step
9107   // First compute the unsigned distance from zero in the direction of Step.
9108   bool CountDown = StepC->getAPInt().isNegative();
9109   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9110 
9111   // Handle unitary steps, which cannot wraparound.
9112   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9113   //   N = Distance (as unsigned)
9114   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9115     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9116     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9117     if (MaxBECountBase.ult(MaxBECount))
9118       MaxBECount = MaxBECountBase;
9119 
9120     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9121     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9122     // case, and see if we can improve the bound.
9123     //
9124     // Explicitly handling this here is necessary because getUnsignedRange
9125     // isn't context-sensitive; it doesn't know that we only care about the
9126     // range inside the loop.
9127     const SCEV *Zero = getZero(Distance->getType());
9128     const SCEV *One = getOne(Distance->getType());
9129     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9130     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9131       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9132       // as "unsigned_max(Distance + 1) - 1".
9133       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9134       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9135     }
9136     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9137   }
9138 
9139   // If the condition controls loop exit (the loop exits only if the expression
9140   // is true) and the addition is no-wrap we can use unsigned divide to
9141   // compute the backedge count.  In this case, the step may not divide the
9142   // distance, but we don't care because if the condition is "missed" the loop
9143   // will have undefined behavior due to wrapping.
9144   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9145       loopHasNoAbnormalExits(AddRec->getLoop())) {
9146     const SCEV *Exact =
9147         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9148     const SCEV *Max =
9149         Exact == getCouldNotCompute()
9150             ? Exact
9151             : getConstant(getUnsignedRangeMax(Exact));
9152     return ExitLimit(Exact, Max, false, Predicates);
9153   }
9154 
9155   // Solve the general equation.
9156   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9157                                                getNegativeSCEV(Start), *this);
9158   const SCEV *M = E == getCouldNotCompute()
9159                       ? E
9160                       : getConstant(getUnsignedRangeMax(E));
9161   return ExitLimit(E, M, false, Predicates);
9162 }
9163 
9164 ScalarEvolution::ExitLimit
9165 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9166   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9167   // handle them yet except for the trivial case.  This could be expanded in the
9168   // future as needed.
9169 
9170   // If the value is a constant, check to see if it is known to be non-zero
9171   // already.  If so, the backedge will execute zero times.
9172   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9173     if (!C->getValue()->isZero())
9174       return getZero(C->getType());
9175     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9176   }
9177 
9178   // We could implement others, but I really doubt anyone writes loops like
9179   // this, and if they did, they would already be constant folded.
9180   return getCouldNotCompute();
9181 }
9182 
9183 std::pair<const BasicBlock *, const BasicBlock *>
9184 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9185     const {
9186   // If the block has a unique predecessor, then there is no path from the
9187   // predecessor to the block that does not go through the direct edge
9188   // from the predecessor to the block.
9189   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9190     return {Pred, BB};
9191 
9192   // A loop's header is defined to be a block that dominates the loop.
9193   // If the header has a unique predecessor outside the loop, it must be
9194   // a block that has exactly one successor that can reach the loop.
9195   if (const Loop *L = LI.getLoopFor(BB))
9196     return {L->getLoopPredecessor(), L->getHeader()};
9197 
9198   return {nullptr, nullptr};
9199 }
9200 
9201 /// SCEV structural equivalence is usually sufficient for testing whether two
9202 /// expressions are equal, however for the purposes of looking for a condition
9203 /// guarding a loop, it can be useful to be a little more general, since a
9204 /// front-end may have replicated the controlling expression.
9205 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9206   // Quick check to see if they are the same SCEV.
9207   if (A == B) return true;
9208 
9209   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9210     // Not all instructions that are "identical" compute the same value.  For
9211     // instance, two distinct alloca instructions allocating the same type are
9212     // identical and do not read memory; but compute distinct values.
9213     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9214   };
9215 
9216   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9217   // two different instructions with the same value. Check for this case.
9218   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9219     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9220       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9221         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9222           if (ComputesEqualValues(AI, BI))
9223             return true;
9224 
9225   // Otherwise assume they may have a different value.
9226   return false;
9227 }
9228 
9229 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9230                                            const SCEV *&LHS, const SCEV *&RHS,
9231                                            unsigned Depth) {
9232   bool Changed = false;
9233   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9234   // '0 != 0'.
9235   auto TrivialCase = [&](bool TriviallyTrue) {
9236     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9237     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9238     return true;
9239   };
9240   // If we hit the max recursion limit bail out.
9241   if (Depth >= 3)
9242     return false;
9243 
9244   // Canonicalize a constant to the right side.
9245   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9246     // Check for both operands constant.
9247     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9248       if (ConstantExpr::getICmp(Pred,
9249                                 LHSC->getValue(),
9250                                 RHSC->getValue())->isNullValue())
9251         return TrivialCase(false);
9252       else
9253         return TrivialCase(true);
9254     }
9255     // Otherwise swap the operands to put the constant on the right.
9256     std::swap(LHS, RHS);
9257     Pred = ICmpInst::getSwappedPredicate(Pred);
9258     Changed = true;
9259   }
9260 
9261   // If we're comparing an addrec with a value which is loop-invariant in the
9262   // addrec's loop, put the addrec on the left. Also make a dominance check,
9263   // as both operands could be addrecs loop-invariant in each other's loop.
9264   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9265     const Loop *L = AR->getLoop();
9266     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9267       std::swap(LHS, RHS);
9268       Pred = ICmpInst::getSwappedPredicate(Pred);
9269       Changed = true;
9270     }
9271   }
9272 
9273   // If there's a constant operand, canonicalize comparisons with boundary
9274   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9275   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9276     const APInt &RA = RC->getAPInt();
9277 
9278     bool SimplifiedByConstantRange = false;
9279 
9280     if (!ICmpInst::isEquality(Pred)) {
9281       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9282       if (ExactCR.isFullSet())
9283         return TrivialCase(true);
9284       else if (ExactCR.isEmptySet())
9285         return TrivialCase(false);
9286 
9287       APInt NewRHS;
9288       CmpInst::Predicate NewPred;
9289       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9290           ICmpInst::isEquality(NewPred)) {
9291         // We were able to convert an inequality to an equality.
9292         Pred = NewPred;
9293         RHS = getConstant(NewRHS);
9294         Changed = SimplifiedByConstantRange = true;
9295       }
9296     }
9297 
9298     if (!SimplifiedByConstantRange) {
9299       switch (Pred) {
9300       default:
9301         break;
9302       case ICmpInst::ICMP_EQ:
9303       case ICmpInst::ICMP_NE:
9304         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9305         if (!RA)
9306           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9307             if (const SCEVMulExpr *ME =
9308                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9309               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9310                   ME->getOperand(0)->isAllOnesValue()) {
9311                 RHS = AE->getOperand(1);
9312                 LHS = ME->getOperand(1);
9313                 Changed = true;
9314               }
9315         break;
9316 
9317 
9318         // The "Should have been caught earlier!" messages refer to the fact
9319         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9320         // should have fired on the corresponding cases, and canonicalized the
9321         // check to trivial case.
9322 
9323       case ICmpInst::ICMP_UGE:
9324         assert(!RA.isMinValue() && "Should have been caught earlier!");
9325         Pred = ICmpInst::ICMP_UGT;
9326         RHS = getConstant(RA - 1);
9327         Changed = true;
9328         break;
9329       case ICmpInst::ICMP_ULE:
9330         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9331         Pred = ICmpInst::ICMP_ULT;
9332         RHS = getConstant(RA + 1);
9333         Changed = true;
9334         break;
9335       case ICmpInst::ICMP_SGE:
9336         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9337         Pred = ICmpInst::ICMP_SGT;
9338         RHS = getConstant(RA - 1);
9339         Changed = true;
9340         break;
9341       case ICmpInst::ICMP_SLE:
9342         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9343         Pred = ICmpInst::ICMP_SLT;
9344         RHS = getConstant(RA + 1);
9345         Changed = true;
9346         break;
9347       }
9348     }
9349   }
9350 
9351   // Check for obvious equality.
9352   if (HasSameValue(LHS, RHS)) {
9353     if (ICmpInst::isTrueWhenEqual(Pred))
9354       return TrivialCase(true);
9355     if (ICmpInst::isFalseWhenEqual(Pred))
9356       return TrivialCase(false);
9357   }
9358 
9359   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9360   // adding or subtracting 1 from one of the operands.
9361   switch (Pred) {
9362   case ICmpInst::ICMP_SLE:
9363     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9364       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9365                        SCEV::FlagNSW);
9366       Pred = ICmpInst::ICMP_SLT;
9367       Changed = true;
9368     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9369       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9370                        SCEV::FlagNSW);
9371       Pred = ICmpInst::ICMP_SLT;
9372       Changed = true;
9373     }
9374     break;
9375   case ICmpInst::ICMP_SGE:
9376     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9377       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9378                        SCEV::FlagNSW);
9379       Pred = ICmpInst::ICMP_SGT;
9380       Changed = true;
9381     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9382       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9383                        SCEV::FlagNSW);
9384       Pred = ICmpInst::ICMP_SGT;
9385       Changed = true;
9386     }
9387     break;
9388   case ICmpInst::ICMP_ULE:
9389     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9390       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9391                        SCEV::FlagNUW);
9392       Pred = ICmpInst::ICMP_ULT;
9393       Changed = true;
9394     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9395       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9396       Pred = ICmpInst::ICMP_ULT;
9397       Changed = true;
9398     }
9399     break;
9400   case ICmpInst::ICMP_UGE:
9401     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9402       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9403       Pred = ICmpInst::ICMP_UGT;
9404       Changed = true;
9405     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9406       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9407                        SCEV::FlagNUW);
9408       Pred = ICmpInst::ICMP_UGT;
9409       Changed = true;
9410     }
9411     break;
9412   default:
9413     break;
9414   }
9415 
9416   // TODO: More simplifications are possible here.
9417 
9418   // Recursively simplify until we either hit a recursion limit or nothing
9419   // changes.
9420   if (Changed)
9421     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9422 
9423   return Changed;
9424 }
9425 
9426 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9427   return getSignedRangeMax(S).isNegative();
9428 }
9429 
9430 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9431   return getSignedRangeMin(S).isStrictlyPositive();
9432 }
9433 
9434 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9435   return !getSignedRangeMin(S).isNegative();
9436 }
9437 
9438 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9439   return !getSignedRangeMax(S).isStrictlyPositive();
9440 }
9441 
9442 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9443   return isKnownNegative(S) || isKnownPositive(S);
9444 }
9445 
9446 std::pair<const SCEV *, const SCEV *>
9447 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9448   // Compute SCEV on entry of loop L.
9449   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9450   if (Start == getCouldNotCompute())
9451     return { Start, Start };
9452   // Compute post increment SCEV for loop L.
9453   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9454   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9455   return { Start, PostInc };
9456 }
9457 
9458 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9459                                           const SCEV *LHS, const SCEV *RHS) {
9460   // First collect all loops.
9461   SmallPtrSet<const Loop *, 8> LoopsUsed;
9462   getUsedLoops(LHS, LoopsUsed);
9463   getUsedLoops(RHS, LoopsUsed);
9464 
9465   if (LoopsUsed.empty())
9466     return false;
9467 
9468   // Domination relationship must be a linear order on collected loops.
9469 #ifndef NDEBUG
9470   for (auto *L1 : LoopsUsed)
9471     for (auto *L2 : LoopsUsed)
9472       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9473               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9474              "Domination relationship is not a linear order");
9475 #endif
9476 
9477   const Loop *MDL =
9478       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9479                         [&](const Loop *L1, const Loop *L2) {
9480          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9481        });
9482 
9483   // Get init and post increment value for LHS.
9484   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9485   // if LHS contains unknown non-invariant SCEV then bail out.
9486   if (SplitLHS.first == getCouldNotCompute())
9487     return false;
9488   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9489   // Get init and post increment value for RHS.
9490   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9491   // if RHS contains unknown non-invariant SCEV then bail out.
9492   if (SplitRHS.first == getCouldNotCompute())
9493     return false;
9494   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9495   // It is possible that init SCEV contains an invariant load but it does
9496   // not dominate MDL and is not available at MDL loop entry, so we should
9497   // check it here.
9498   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9499       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9500     return false;
9501 
9502   // It seems backedge guard check is faster than entry one so in some cases
9503   // it can speed up whole estimation by short circuit
9504   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9505                                      SplitRHS.second) &&
9506          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9507 }
9508 
9509 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9510                                        const SCEV *LHS, const SCEV *RHS) {
9511   // Canonicalize the inputs first.
9512   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9513 
9514   if (isKnownViaInduction(Pred, LHS, RHS))
9515     return true;
9516 
9517   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9518     return true;
9519 
9520   // Otherwise see what can be done with some simple reasoning.
9521   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9522 }
9523 
9524 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9525                                          const SCEV *LHS, const SCEV *RHS,
9526                                          const Instruction *Context) {
9527   // TODO: Analyze guards and assumes from Context's block.
9528   return isKnownPredicate(Pred, LHS, RHS) ||
9529          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9530 }
9531 
9532 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9533                                               const SCEVAddRecExpr *LHS,
9534                                               const SCEV *RHS) {
9535   const Loop *L = LHS->getLoop();
9536   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9537          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9538 }
9539 
9540 Optional<ScalarEvolution::MonotonicPredicateType>
9541 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9542                                            ICmpInst::Predicate Pred) {
9543   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9544 
9545 #ifndef NDEBUG
9546   // Verify an invariant: inverting the predicate should turn a monotonically
9547   // increasing change to a monotonically decreasing one, and vice versa.
9548   if (Result) {
9549     auto ResultSwapped =
9550         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9551 
9552     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9553     assert(ResultSwapped.getValue() != Result.getValue() &&
9554            "monotonicity should flip as we flip the predicate");
9555   }
9556 #endif
9557 
9558   return Result;
9559 }
9560 
9561 Optional<ScalarEvolution::MonotonicPredicateType>
9562 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9563                                                ICmpInst::Predicate Pred) {
9564   // A zero step value for LHS means the induction variable is essentially a
9565   // loop invariant value. We don't really depend on the predicate actually
9566   // flipping from false to true (for increasing predicates, and the other way
9567   // around for decreasing predicates), all we care about is that *if* the
9568   // predicate changes then it only changes from false to true.
9569   //
9570   // A zero step value in itself is not very useful, but there may be places
9571   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9572   // as general as possible.
9573 
9574   // Only handle LE/LT/GE/GT predicates.
9575   if (!ICmpInst::isRelational(Pred))
9576     return None;
9577 
9578   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9579   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9580          "Should be greater or less!");
9581 
9582   // Check that AR does not wrap.
9583   if (ICmpInst::isUnsigned(Pred)) {
9584     if (!LHS->hasNoUnsignedWrap())
9585       return None;
9586     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9587   } else {
9588     assert(ICmpInst::isSigned(Pred) &&
9589            "Relational predicate is either signed or unsigned!");
9590     if (!LHS->hasNoSignedWrap())
9591       return None;
9592 
9593     const SCEV *Step = LHS->getStepRecurrence(*this);
9594 
9595     if (isKnownNonNegative(Step))
9596       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9597 
9598     if (isKnownNonPositive(Step))
9599       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9600 
9601     return None;
9602   }
9603 }
9604 
9605 Optional<ScalarEvolution::LoopInvariantPredicate>
9606 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9607                                            const SCEV *LHS, const SCEV *RHS,
9608                                            const Loop *L) {
9609 
9610   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9611   if (!isLoopInvariant(RHS, L)) {
9612     if (!isLoopInvariant(LHS, L))
9613       return None;
9614 
9615     std::swap(LHS, RHS);
9616     Pred = ICmpInst::getSwappedPredicate(Pred);
9617   }
9618 
9619   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9620   if (!ArLHS || ArLHS->getLoop() != L)
9621     return None;
9622 
9623   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9624   if (!MonotonicType)
9625     return None;
9626   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9627   // true as the loop iterates, and the backedge is control dependent on
9628   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9629   //
9630   //   * if the predicate was false in the first iteration then the predicate
9631   //     is never evaluated again, since the loop exits without taking the
9632   //     backedge.
9633   //   * if the predicate was true in the first iteration then it will
9634   //     continue to be true for all future iterations since it is
9635   //     monotonically increasing.
9636   //
9637   // For both the above possibilities, we can replace the loop varying
9638   // predicate with its value on the first iteration of the loop (which is
9639   // loop invariant).
9640   //
9641   // A similar reasoning applies for a monotonically decreasing predicate, by
9642   // replacing true with false and false with true in the above two bullets.
9643   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9644   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9645 
9646   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9647     return None;
9648 
9649   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9650 }
9651 
9652 Optional<ScalarEvolution::LoopInvariantPredicate>
9653 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9654     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9655     const Instruction *Context, const SCEV *MaxIter) {
9656   // Try to prove the following set of facts:
9657   // - The predicate is monotonic in the iteration space.
9658   // - If the check does not fail on the 1st iteration:
9659   //   - No overflow will happen during first MaxIter iterations;
9660   //   - It will not fail on the MaxIter'th iteration.
9661   // If the check does fail on the 1st iteration, we leave the loop and no
9662   // other checks matter.
9663 
9664   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9665   if (!isLoopInvariant(RHS, L)) {
9666     if (!isLoopInvariant(LHS, L))
9667       return None;
9668 
9669     std::swap(LHS, RHS);
9670     Pred = ICmpInst::getSwappedPredicate(Pred);
9671   }
9672 
9673   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9674   if (!AR || AR->getLoop() != L)
9675     return None;
9676 
9677   // The predicate must be relational (i.e. <, <=, >=, >).
9678   if (!ICmpInst::isRelational(Pred))
9679     return None;
9680 
9681   // TODO: Support steps other than +/- 1.
9682   const SCEV *Step = AR->getStepRecurrence(*this);
9683   auto *One = getOne(Step->getType());
9684   auto *MinusOne = getNegativeSCEV(One);
9685   if (Step != One && Step != MinusOne)
9686     return None;
9687 
9688   // Type mismatch here means that MaxIter is potentially larger than max
9689   // unsigned value in start type, which mean we cannot prove no wrap for the
9690   // indvar.
9691   if (AR->getType() != MaxIter->getType())
9692     return None;
9693 
9694   // Value of IV on suggested last iteration.
9695   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9696   // Does it still meet the requirement?
9697   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9698     return None;
9699   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9700   // not exceed max unsigned value of this type), this effectively proves
9701   // that there is no wrap during the iteration. To prove that there is no
9702   // signed/unsigned wrap, we need to check that
9703   // Start <= Last for step = 1 or Start >= Last for step = -1.
9704   ICmpInst::Predicate NoOverflowPred =
9705       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9706   if (Step == MinusOne)
9707     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9708   const SCEV *Start = AR->getStart();
9709   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9710     return None;
9711 
9712   // Everything is fine.
9713   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9714 }
9715 
9716 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9717     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9718   if (HasSameValue(LHS, RHS))
9719     return ICmpInst::isTrueWhenEqual(Pred);
9720 
9721   // This code is split out from isKnownPredicate because it is called from
9722   // within isLoopEntryGuardedByCond.
9723 
9724   auto CheckRanges =
9725       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9726     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9727         .contains(RangeLHS);
9728   };
9729 
9730   // The check at the top of the function catches the case where the values are
9731   // known to be equal.
9732   if (Pred == CmpInst::ICMP_EQ)
9733     return false;
9734 
9735   if (Pred == CmpInst::ICMP_NE)
9736     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9737            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9738            isKnownNonZero(getMinusSCEV(LHS, RHS));
9739 
9740   if (CmpInst::isSigned(Pred))
9741     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9742 
9743   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9744 }
9745 
9746 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9747                                                     const SCEV *LHS,
9748                                                     const SCEV *RHS) {
9749   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9750   // Return Y via OutY.
9751   auto MatchBinaryAddToConst =
9752       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9753              SCEV::NoWrapFlags ExpectedFlags) {
9754     const SCEV *NonConstOp, *ConstOp;
9755     SCEV::NoWrapFlags FlagsPresent;
9756 
9757     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9758         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9759       return false;
9760 
9761     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9762     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9763   };
9764 
9765   APInt C;
9766 
9767   switch (Pred) {
9768   default:
9769     break;
9770 
9771   case ICmpInst::ICMP_SGE:
9772     std::swap(LHS, RHS);
9773     LLVM_FALLTHROUGH;
9774   case ICmpInst::ICMP_SLE:
9775     // X s<= (X + C)<nsw> if C >= 0
9776     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9777       return true;
9778 
9779     // (X + C)<nsw> s<= X if C <= 0
9780     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9781         !C.isStrictlyPositive())
9782       return true;
9783     break;
9784 
9785   case ICmpInst::ICMP_SGT:
9786     std::swap(LHS, RHS);
9787     LLVM_FALLTHROUGH;
9788   case ICmpInst::ICMP_SLT:
9789     // X s< (X + C)<nsw> if C > 0
9790     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9791         C.isStrictlyPositive())
9792       return true;
9793 
9794     // (X + C)<nsw> s< X if C < 0
9795     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9796       return true;
9797     break;
9798 
9799   case ICmpInst::ICMP_UGE:
9800     std::swap(LHS, RHS);
9801     LLVM_FALLTHROUGH;
9802   case ICmpInst::ICMP_ULE:
9803     // X u<= (X + C)<nuw> for any C
9804     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9805       return true;
9806     break;
9807 
9808   case ICmpInst::ICMP_UGT:
9809     std::swap(LHS, RHS);
9810     LLVM_FALLTHROUGH;
9811   case ICmpInst::ICMP_ULT:
9812     // X u< (X + C)<nuw> if C != 0
9813     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9814       return true;
9815     break;
9816   }
9817 
9818   return false;
9819 }
9820 
9821 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9822                                                    const SCEV *LHS,
9823                                                    const SCEV *RHS) {
9824   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9825     return false;
9826 
9827   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9828   // the stack can result in exponential time complexity.
9829   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9830 
9831   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9832   //
9833   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9834   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9835   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9836   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9837   // use isKnownPredicate later if needed.
9838   return isKnownNonNegative(RHS) &&
9839          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9840          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9841 }
9842 
9843 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9844                                         ICmpInst::Predicate Pred,
9845                                         const SCEV *LHS, const SCEV *RHS) {
9846   // No need to even try if we know the module has no guards.
9847   if (!HasGuards)
9848     return false;
9849 
9850   return any_of(*BB, [&](const Instruction &I) {
9851     using namespace llvm::PatternMatch;
9852 
9853     Value *Condition;
9854     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9855                          m_Value(Condition))) &&
9856            isImpliedCond(Pred, LHS, RHS, Condition, false);
9857   });
9858 }
9859 
9860 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9861 /// protected by a conditional between LHS and RHS.  This is used to
9862 /// to eliminate casts.
9863 bool
9864 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9865                                              ICmpInst::Predicate Pred,
9866                                              const SCEV *LHS, const SCEV *RHS) {
9867   // Interpret a null as meaning no loop, where there is obviously no guard
9868   // (interprocedural conditions notwithstanding).
9869   if (!L) return true;
9870 
9871   if (VerifyIR)
9872     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9873            "This cannot be done on broken IR!");
9874 
9875 
9876   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9877     return true;
9878 
9879   BasicBlock *Latch = L->getLoopLatch();
9880   if (!Latch)
9881     return false;
9882 
9883   BranchInst *LoopContinuePredicate =
9884     dyn_cast<BranchInst>(Latch->getTerminator());
9885   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9886       isImpliedCond(Pred, LHS, RHS,
9887                     LoopContinuePredicate->getCondition(),
9888                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9889     return true;
9890 
9891   // We don't want more than one activation of the following loops on the stack
9892   // -- that can lead to O(n!) time complexity.
9893   if (WalkingBEDominatingConds)
9894     return false;
9895 
9896   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9897 
9898   // See if we can exploit a trip count to prove the predicate.
9899   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9900   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9901   if (LatchBECount != getCouldNotCompute()) {
9902     // We know that Latch branches back to the loop header exactly
9903     // LatchBECount times.  This means the backdege condition at Latch is
9904     // equivalent to  "{0,+,1} u< LatchBECount".
9905     Type *Ty = LatchBECount->getType();
9906     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9907     const SCEV *LoopCounter =
9908       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9909     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9910                       LatchBECount))
9911       return true;
9912   }
9913 
9914   // Check conditions due to any @llvm.assume intrinsics.
9915   for (auto &AssumeVH : AC.assumptions()) {
9916     if (!AssumeVH)
9917       continue;
9918     auto *CI = cast<CallInst>(AssumeVH);
9919     if (!DT.dominates(CI, Latch->getTerminator()))
9920       continue;
9921 
9922     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9923       return true;
9924   }
9925 
9926   // If the loop is not reachable from the entry block, we risk running into an
9927   // infinite loop as we walk up into the dom tree.  These loops do not matter
9928   // anyway, so we just return a conservative answer when we see them.
9929   if (!DT.isReachableFromEntry(L->getHeader()))
9930     return false;
9931 
9932   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9933     return true;
9934 
9935   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9936        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9937     assert(DTN && "should reach the loop header before reaching the root!");
9938 
9939     BasicBlock *BB = DTN->getBlock();
9940     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9941       return true;
9942 
9943     BasicBlock *PBB = BB->getSinglePredecessor();
9944     if (!PBB)
9945       continue;
9946 
9947     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9948     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9949       continue;
9950 
9951     Value *Condition = ContinuePredicate->getCondition();
9952 
9953     // If we have an edge `E` within the loop body that dominates the only
9954     // latch, the condition guarding `E` also guards the backedge.  This
9955     // reasoning works only for loops with a single latch.
9956 
9957     BasicBlockEdge DominatingEdge(PBB, BB);
9958     if (DominatingEdge.isSingleEdge()) {
9959       // We're constructively (and conservatively) enumerating edges within the
9960       // loop body that dominate the latch.  The dominator tree better agree
9961       // with us on this:
9962       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9963 
9964       if (isImpliedCond(Pred, LHS, RHS, Condition,
9965                         BB != ContinuePredicate->getSuccessor(0)))
9966         return true;
9967     }
9968   }
9969 
9970   return false;
9971 }
9972 
9973 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9974                                                      ICmpInst::Predicate Pred,
9975                                                      const SCEV *LHS,
9976                                                      const SCEV *RHS) {
9977   if (VerifyIR)
9978     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9979            "This cannot be done on broken IR!");
9980 
9981   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9982     return true;
9983 
9984   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9985   // the facts (a >= b && a != b) separately. A typical situation is when the
9986   // non-strict comparison is known from ranges and non-equality is known from
9987   // dominating predicates. If we are proving strict comparison, we always try
9988   // to prove non-equality and non-strict comparison separately.
9989   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9990   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9991   bool ProvedNonStrictComparison = false;
9992   bool ProvedNonEquality = false;
9993 
9994   if (ProvingStrictComparison) {
9995     ProvedNonStrictComparison =
9996         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9997     ProvedNonEquality =
9998         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9999     if (ProvedNonStrictComparison && ProvedNonEquality)
10000       return true;
10001   }
10002 
10003   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10004   auto ProveViaGuard = [&](const BasicBlock *Block) {
10005     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10006       return true;
10007     if (ProvingStrictComparison) {
10008       if (!ProvedNonStrictComparison)
10009         ProvedNonStrictComparison =
10010             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
10011       if (!ProvedNonEquality)
10012         ProvedNonEquality =
10013             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
10014       if (ProvedNonStrictComparison && ProvedNonEquality)
10015         return true;
10016     }
10017     return false;
10018   };
10019 
10020   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10021   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10022     const Instruction *Context = &BB->front();
10023     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10024       return true;
10025     if (ProvingStrictComparison) {
10026       if (!ProvedNonStrictComparison)
10027         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
10028                                                   Condition, Inverse, Context);
10029       if (!ProvedNonEquality)
10030         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
10031                                           Condition, Inverse, Context);
10032       if (ProvedNonStrictComparison && ProvedNonEquality)
10033         return true;
10034     }
10035     return false;
10036   };
10037 
10038   // Starting at the block's predecessor, climb up the predecessor chain, as long
10039   // as there are predecessors that can be found that have unique successors
10040   // leading to the original block.
10041   const Loop *ContainingLoop = LI.getLoopFor(BB);
10042   const BasicBlock *PredBB;
10043   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10044     PredBB = ContainingLoop->getLoopPredecessor();
10045   else
10046     PredBB = BB->getSinglePredecessor();
10047   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10048        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10049     if (ProveViaGuard(Pair.first))
10050       return true;
10051 
10052     const BranchInst *LoopEntryPredicate =
10053         dyn_cast<BranchInst>(Pair.first->getTerminator());
10054     if (!LoopEntryPredicate ||
10055         LoopEntryPredicate->isUnconditional())
10056       continue;
10057 
10058     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10059                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10060       return true;
10061   }
10062 
10063   // Check conditions due to any @llvm.assume intrinsics.
10064   for (auto &AssumeVH : AC.assumptions()) {
10065     if (!AssumeVH)
10066       continue;
10067     auto *CI = cast<CallInst>(AssumeVH);
10068     if (!DT.dominates(CI, BB))
10069       continue;
10070 
10071     if (ProveViaCond(CI->getArgOperand(0), false))
10072       return true;
10073   }
10074 
10075   return false;
10076 }
10077 
10078 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10079                                                ICmpInst::Predicate Pred,
10080                                                const SCEV *LHS,
10081                                                const SCEV *RHS) {
10082   // Interpret a null as meaning no loop, where there is obviously no guard
10083   // (interprocedural conditions notwithstanding).
10084   if (!L)
10085     return false;
10086 
10087   // Both LHS and RHS must be available at loop entry.
10088   assert(isAvailableAtLoopEntry(LHS, L) &&
10089          "LHS is not available at Loop Entry");
10090   assert(isAvailableAtLoopEntry(RHS, L) &&
10091          "RHS is not available at Loop Entry");
10092   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10093 }
10094 
10095 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10096                                     const SCEV *RHS,
10097                                     const Value *FoundCondValue, bool Inverse,
10098                                     const Instruction *Context) {
10099   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10100     return false;
10101 
10102   auto ClearOnExit =
10103       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10104 
10105   // Recursively handle And and Or conditions.
10106   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10107     if (BO->getOpcode() == Instruction::And) {
10108       if (!Inverse)
10109         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10110                              Context) ||
10111                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10112                              Context);
10113     } else if (BO->getOpcode() == Instruction::Or) {
10114       if (Inverse)
10115         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10116                              Context) ||
10117                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10118                              Context);
10119     }
10120   }
10121 
10122   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10123   if (!ICI) return false;
10124 
10125   // Now that we found a conditional branch that dominates the loop or controls
10126   // the loop latch. Check to see if it is the comparison we are looking for.
10127   ICmpInst::Predicate FoundPred;
10128   if (Inverse)
10129     FoundPred = ICI->getInversePredicate();
10130   else
10131     FoundPred = ICI->getPredicate();
10132 
10133   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10134   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10135 
10136   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10137 }
10138 
10139 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10140                                     const SCEV *RHS,
10141                                     ICmpInst::Predicate FoundPred,
10142                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10143                                     const Instruction *Context) {
10144   // Balance the types.
10145   if (getTypeSizeInBits(LHS->getType()) <
10146       getTypeSizeInBits(FoundLHS->getType())) {
10147     // For unsigned and equality predicates, try to prove that both found
10148     // operands fit into narrow unsigned range. If so, try to prove facts in
10149     // narrow types.
10150     if (!CmpInst::isSigned(FoundPred)) {
10151       auto *NarrowType = LHS->getType();
10152       auto *WideType = FoundLHS->getType();
10153       auto BitWidth = getTypeSizeInBits(NarrowType);
10154       const SCEV *MaxValue = getZeroExtendExpr(
10155           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10156       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10157           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10158         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10159         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10160         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10161                                        TruncFoundRHS, Context))
10162           return true;
10163       }
10164     }
10165 
10166     if (CmpInst::isSigned(Pred)) {
10167       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10168       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10169     } else {
10170       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10171       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10172     }
10173   } else if (getTypeSizeInBits(LHS->getType()) >
10174       getTypeSizeInBits(FoundLHS->getType())) {
10175     if (CmpInst::isSigned(FoundPred)) {
10176       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10177       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10178     } else {
10179       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10180       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10181     }
10182   }
10183   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10184                                     FoundRHS, Context);
10185 }
10186 
10187 bool ScalarEvolution::isImpliedCondBalancedTypes(
10188     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10189     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10190     const Instruction *Context) {
10191   assert(getTypeSizeInBits(LHS->getType()) ==
10192              getTypeSizeInBits(FoundLHS->getType()) &&
10193          "Types should be balanced!");
10194   // Canonicalize the query to match the way instcombine will have
10195   // canonicalized the comparison.
10196   if (SimplifyICmpOperands(Pred, LHS, RHS))
10197     if (LHS == RHS)
10198       return CmpInst::isTrueWhenEqual(Pred);
10199   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10200     if (FoundLHS == FoundRHS)
10201       return CmpInst::isFalseWhenEqual(FoundPred);
10202 
10203   // Check to see if we can make the LHS or RHS match.
10204   if (LHS == FoundRHS || RHS == FoundLHS) {
10205     if (isa<SCEVConstant>(RHS)) {
10206       std::swap(FoundLHS, FoundRHS);
10207       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10208     } else {
10209       std::swap(LHS, RHS);
10210       Pred = ICmpInst::getSwappedPredicate(Pred);
10211     }
10212   }
10213 
10214   // Check whether the found predicate is the same as the desired predicate.
10215   if (FoundPred == Pred)
10216     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10217 
10218   // Check whether swapping the found predicate makes it the same as the
10219   // desired predicate.
10220   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10221     if (isa<SCEVConstant>(RHS))
10222       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10223     else
10224       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10225                                    LHS, FoundLHS, FoundRHS, Context);
10226   }
10227 
10228   // Unsigned comparison is the same as signed comparison when both the operands
10229   // are non-negative.
10230   if (CmpInst::isUnsigned(FoundPred) &&
10231       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10232       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10233     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10234 
10235   // Check if we can make progress by sharpening ranges.
10236   if (FoundPred == ICmpInst::ICMP_NE &&
10237       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10238 
10239     const SCEVConstant *C = nullptr;
10240     const SCEV *V = nullptr;
10241 
10242     if (isa<SCEVConstant>(FoundLHS)) {
10243       C = cast<SCEVConstant>(FoundLHS);
10244       V = FoundRHS;
10245     } else {
10246       C = cast<SCEVConstant>(FoundRHS);
10247       V = FoundLHS;
10248     }
10249 
10250     // The guarding predicate tells us that C != V. If the known range
10251     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10252     // range we consider has to correspond to same signedness as the
10253     // predicate we're interested in folding.
10254 
10255     APInt Min = ICmpInst::isSigned(Pred) ?
10256         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10257 
10258     if (Min == C->getAPInt()) {
10259       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10260       // This is true even if (Min + 1) wraps around -- in case of
10261       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10262 
10263       APInt SharperMin = Min + 1;
10264 
10265       switch (Pred) {
10266         case ICmpInst::ICMP_SGE:
10267         case ICmpInst::ICMP_UGE:
10268           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10269           // RHS, we're done.
10270           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10271                                     Context))
10272             return true;
10273           LLVM_FALLTHROUGH;
10274 
10275         case ICmpInst::ICMP_SGT:
10276         case ICmpInst::ICMP_UGT:
10277           // We know from the range information that (V `Pred` Min ||
10278           // V == Min).  We know from the guarding condition that !(V
10279           // == Min).  This gives us
10280           //
10281           //       V `Pred` Min || V == Min && !(V == Min)
10282           //   =>  V `Pred` Min
10283           //
10284           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10285 
10286           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10287                                     Context))
10288             return true;
10289           break;
10290 
10291         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10292         case ICmpInst::ICMP_SLE:
10293         case ICmpInst::ICMP_ULE:
10294           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10295                                     LHS, V, getConstant(SharperMin), Context))
10296             return true;
10297           LLVM_FALLTHROUGH;
10298 
10299         case ICmpInst::ICMP_SLT:
10300         case ICmpInst::ICMP_ULT:
10301           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10302                                     LHS, V, getConstant(Min), Context))
10303             return true;
10304           break;
10305 
10306         default:
10307           // No change
10308           break;
10309       }
10310     }
10311   }
10312 
10313   // Check whether the actual condition is beyond sufficient.
10314   if (FoundPred == ICmpInst::ICMP_EQ)
10315     if (ICmpInst::isTrueWhenEqual(Pred))
10316       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10317         return true;
10318   if (Pred == ICmpInst::ICMP_NE)
10319     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10320       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10321                                 Context))
10322         return true;
10323 
10324   // Otherwise assume the worst.
10325   return false;
10326 }
10327 
10328 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10329                                      const SCEV *&L, const SCEV *&R,
10330                                      SCEV::NoWrapFlags &Flags) {
10331   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10332   if (!AE || AE->getNumOperands() != 2)
10333     return false;
10334 
10335   L = AE->getOperand(0);
10336   R = AE->getOperand(1);
10337   Flags = AE->getNoWrapFlags();
10338   return true;
10339 }
10340 
10341 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10342                                                            const SCEV *Less) {
10343   // We avoid subtracting expressions here because this function is usually
10344   // fairly deep in the call stack (i.e. is called many times).
10345 
10346   // X - X = 0.
10347   if (More == Less)
10348     return APInt(getTypeSizeInBits(More->getType()), 0);
10349 
10350   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10351     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10352     const auto *MAR = cast<SCEVAddRecExpr>(More);
10353 
10354     if (LAR->getLoop() != MAR->getLoop())
10355       return None;
10356 
10357     // We look at affine expressions only; not for correctness but to keep
10358     // getStepRecurrence cheap.
10359     if (!LAR->isAffine() || !MAR->isAffine())
10360       return None;
10361 
10362     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10363       return None;
10364 
10365     Less = LAR->getStart();
10366     More = MAR->getStart();
10367 
10368     // fall through
10369   }
10370 
10371   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10372     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10373     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10374     return M - L;
10375   }
10376 
10377   SCEV::NoWrapFlags Flags;
10378   const SCEV *LLess = nullptr, *RLess = nullptr;
10379   const SCEV *LMore = nullptr, *RMore = nullptr;
10380   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10381   // Compare (X + C1) vs X.
10382   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10383     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10384       if (RLess == More)
10385         return -(C1->getAPInt());
10386 
10387   // Compare X vs (X + C2).
10388   if (splitBinaryAdd(More, LMore, RMore, Flags))
10389     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10390       if (RMore == Less)
10391         return C2->getAPInt();
10392 
10393   // Compare (X + C1) vs (X + C2).
10394   if (C1 && C2 && RLess == RMore)
10395     return C2->getAPInt() - C1->getAPInt();
10396 
10397   return None;
10398 }
10399 
10400 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10401     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10402     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10403   // Try to recognize the following pattern:
10404   //
10405   //   FoundRHS = ...
10406   // ...
10407   // loop:
10408   //   FoundLHS = {Start,+,W}
10409   // context_bb: // Basic block from the same loop
10410   //   known(Pred, FoundLHS, FoundRHS)
10411   //
10412   // If some predicate is known in the context of a loop, it is also known on
10413   // each iteration of this loop, including the first iteration. Therefore, in
10414   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10415   // prove the original pred using this fact.
10416   if (!Context)
10417     return false;
10418   const BasicBlock *ContextBB = Context->getParent();
10419   // Make sure AR varies in the context block.
10420   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10421     const Loop *L = AR->getLoop();
10422     // Make sure that context belongs to the loop and executes on 1st iteration
10423     // (if it ever executes at all).
10424     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10425       return false;
10426     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10427       return false;
10428     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10429   }
10430 
10431   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10432     const Loop *L = AR->getLoop();
10433     // Make sure that context belongs to the loop and executes on 1st iteration
10434     // (if it ever executes at all).
10435     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10436       return false;
10437     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10438       return false;
10439     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10440   }
10441 
10442   return false;
10443 }
10444 
10445 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10446     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10447     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10448   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10449     return false;
10450 
10451   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10452   if (!AddRecLHS)
10453     return false;
10454 
10455   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10456   if (!AddRecFoundLHS)
10457     return false;
10458 
10459   // We'd like to let SCEV reason about control dependencies, so we constrain
10460   // both the inequalities to be about add recurrences on the same loop.  This
10461   // way we can use isLoopEntryGuardedByCond later.
10462 
10463   const Loop *L = AddRecFoundLHS->getLoop();
10464   if (L != AddRecLHS->getLoop())
10465     return false;
10466 
10467   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10468   //
10469   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10470   //                                                                  ... (2)
10471   //
10472   // Informal proof for (2), assuming (1) [*]:
10473   //
10474   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10475   //
10476   // Then
10477   //
10478   //       FoundLHS s< FoundRHS s< INT_MIN - C
10479   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10480   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10481   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10482   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10483   // <=>  FoundLHS + C s< FoundRHS + C
10484   //
10485   // [*]: (1) can be proved by ruling out overflow.
10486   //
10487   // [**]: This can be proved by analyzing all the four possibilities:
10488   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10489   //    (A s>= 0, B s>= 0).
10490   //
10491   // Note:
10492   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10493   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10494   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10495   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10496   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10497   // C)".
10498 
10499   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10500   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10501   if (!LDiff || !RDiff || *LDiff != *RDiff)
10502     return false;
10503 
10504   if (LDiff->isMinValue())
10505     return true;
10506 
10507   APInt FoundRHSLimit;
10508 
10509   if (Pred == CmpInst::ICMP_ULT) {
10510     FoundRHSLimit = -(*RDiff);
10511   } else {
10512     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10513     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10514   }
10515 
10516   // Try to prove (1) or (2), as needed.
10517   return isAvailableAtLoopEntry(FoundRHS, L) &&
10518          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10519                                   getConstant(FoundRHSLimit));
10520 }
10521 
10522 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10523                                         const SCEV *LHS, const SCEV *RHS,
10524                                         const SCEV *FoundLHS,
10525                                         const SCEV *FoundRHS, unsigned Depth) {
10526   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10527 
10528   auto ClearOnExit = make_scope_exit([&]() {
10529     if (LPhi) {
10530       bool Erased = PendingMerges.erase(LPhi);
10531       assert(Erased && "Failed to erase LPhi!");
10532       (void)Erased;
10533     }
10534     if (RPhi) {
10535       bool Erased = PendingMerges.erase(RPhi);
10536       assert(Erased && "Failed to erase RPhi!");
10537       (void)Erased;
10538     }
10539   });
10540 
10541   // Find respective Phis and check that they are not being pending.
10542   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10543     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10544       if (!PendingMerges.insert(Phi).second)
10545         return false;
10546       LPhi = Phi;
10547     }
10548   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10549     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10550       // If we detect a loop of Phi nodes being processed by this method, for
10551       // example:
10552       //
10553       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10554       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10555       //
10556       // we don't want to deal with a case that complex, so return conservative
10557       // answer false.
10558       if (!PendingMerges.insert(Phi).second)
10559         return false;
10560       RPhi = Phi;
10561     }
10562 
10563   // If none of LHS, RHS is a Phi, nothing to do here.
10564   if (!LPhi && !RPhi)
10565     return false;
10566 
10567   // If there is a SCEVUnknown Phi we are interested in, make it left.
10568   if (!LPhi) {
10569     std::swap(LHS, RHS);
10570     std::swap(FoundLHS, FoundRHS);
10571     std::swap(LPhi, RPhi);
10572     Pred = ICmpInst::getSwappedPredicate(Pred);
10573   }
10574 
10575   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10576   const BasicBlock *LBB = LPhi->getParent();
10577   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10578 
10579   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10580     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10581            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10582            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10583   };
10584 
10585   if (RPhi && RPhi->getParent() == LBB) {
10586     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10587     // If we compare two Phis from the same block, and for each entry block
10588     // the predicate is true for incoming values from this block, then the
10589     // predicate is also true for the Phis.
10590     for (const BasicBlock *IncBB : predecessors(LBB)) {
10591       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10592       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10593       if (!ProvedEasily(L, R))
10594         return false;
10595     }
10596   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10597     // Case two: RHS is also a Phi from the same basic block, and it is an
10598     // AddRec. It means that there is a loop which has both AddRec and Unknown
10599     // PHIs, for it we can compare incoming values of AddRec from above the loop
10600     // and latch with their respective incoming values of LPhi.
10601     // TODO: Generalize to handle loops with many inputs in a header.
10602     if (LPhi->getNumIncomingValues() != 2) return false;
10603 
10604     auto *RLoop = RAR->getLoop();
10605     auto *Predecessor = RLoop->getLoopPredecessor();
10606     assert(Predecessor && "Loop with AddRec with no predecessor?");
10607     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10608     if (!ProvedEasily(L1, RAR->getStart()))
10609       return false;
10610     auto *Latch = RLoop->getLoopLatch();
10611     assert(Latch && "Loop with AddRec with no latch?");
10612     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10613     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10614       return false;
10615   } else {
10616     // In all other cases go over inputs of LHS and compare each of them to RHS,
10617     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10618     // At this point RHS is either a non-Phi, or it is a Phi from some block
10619     // different from LBB.
10620     for (const BasicBlock *IncBB : predecessors(LBB)) {
10621       // Check that RHS is available in this block.
10622       if (!dominates(RHS, IncBB))
10623         return false;
10624       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10625       // Make sure L does not refer to a value from a potentially previous
10626       // iteration of a loop.
10627       if (!properlyDominates(L, IncBB))
10628         return false;
10629       if (!ProvedEasily(L, RHS))
10630         return false;
10631     }
10632   }
10633   return true;
10634 }
10635 
10636 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10637                                             const SCEV *LHS, const SCEV *RHS,
10638                                             const SCEV *FoundLHS,
10639                                             const SCEV *FoundRHS,
10640                                             const Instruction *Context) {
10641   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10642     return true;
10643 
10644   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10645     return true;
10646 
10647   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10648                                           Context))
10649     return true;
10650 
10651   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10652                                      FoundLHS, FoundRHS) ||
10653          // ~x < ~y --> x > y
10654          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10655                                      getNotSCEV(FoundRHS),
10656                                      getNotSCEV(FoundLHS));
10657 }
10658 
10659 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10660 template <typename MinMaxExprType>
10661 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10662                                  const SCEV *Candidate) {
10663   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10664   if (!MinMaxExpr)
10665     return false;
10666 
10667   return is_contained(MinMaxExpr->operands(), Candidate);
10668 }
10669 
10670 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10671                                            ICmpInst::Predicate Pred,
10672                                            const SCEV *LHS, const SCEV *RHS) {
10673   // If both sides are affine addrecs for the same loop, with equal
10674   // steps, and we know the recurrences don't wrap, then we only
10675   // need to check the predicate on the starting values.
10676 
10677   if (!ICmpInst::isRelational(Pred))
10678     return false;
10679 
10680   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10681   if (!LAR)
10682     return false;
10683   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10684   if (!RAR)
10685     return false;
10686   if (LAR->getLoop() != RAR->getLoop())
10687     return false;
10688   if (!LAR->isAffine() || !RAR->isAffine())
10689     return false;
10690 
10691   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10692     return false;
10693 
10694   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10695                          SCEV::FlagNSW : SCEV::FlagNUW;
10696   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10697     return false;
10698 
10699   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10700 }
10701 
10702 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10703 /// expression?
10704 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10705                                         ICmpInst::Predicate Pred,
10706                                         const SCEV *LHS, const SCEV *RHS) {
10707   switch (Pred) {
10708   default:
10709     return false;
10710 
10711   case ICmpInst::ICMP_SGE:
10712     std::swap(LHS, RHS);
10713     LLVM_FALLTHROUGH;
10714   case ICmpInst::ICMP_SLE:
10715     return
10716         // min(A, ...) <= A
10717         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10718         // A <= max(A, ...)
10719         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10720 
10721   case ICmpInst::ICMP_UGE:
10722     std::swap(LHS, RHS);
10723     LLVM_FALLTHROUGH;
10724   case ICmpInst::ICMP_ULE:
10725     return
10726         // min(A, ...) <= A
10727         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10728         // A <= max(A, ...)
10729         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10730   }
10731 
10732   llvm_unreachable("covered switch fell through?!");
10733 }
10734 
10735 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10736                                              const SCEV *LHS, const SCEV *RHS,
10737                                              const SCEV *FoundLHS,
10738                                              const SCEV *FoundRHS,
10739                                              unsigned Depth) {
10740   assert(getTypeSizeInBits(LHS->getType()) ==
10741              getTypeSizeInBits(RHS->getType()) &&
10742          "LHS and RHS have different sizes?");
10743   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10744              getTypeSizeInBits(FoundRHS->getType()) &&
10745          "FoundLHS and FoundRHS have different sizes?");
10746   // We want to avoid hurting the compile time with analysis of too big trees.
10747   if (Depth > MaxSCEVOperationsImplicationDepth)
10748     return false;
10749 
10750   // We only want to work with GT comparison so far.
10751   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10752     Pred = CmpInst::getSwappedPredicate(Pred);
10753     std::swap(LHS, RHS);
10754     std::swap(FoundLHS, FoundRHS);
10755   }
10756 
10757   // For unsigned, try to reduce it to corresponding signed comparison.
10758   if (Pred == ICmpInst::ICMP_UGT)
10759     // We can replace unsigned predicate with its signed counterpart if all
10760     // involved values are non-negative.
10761     // TODO: We could have better support for unsigned.
10762     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10763       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10764       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10765       // use this fact to prove that LHS and RHS are non-negative.
10766       const SCEV *MinusOne = getMinusOne(LHS->getType());
10767       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10768                                 FoundRHS) &&
10769           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10770                                 FoundRHS))
10771         Pred = ICmpInst::ICMP_SGT;
10772     }
10773 
10774   if (Pred != ICmpInst::ICMP_SGT)
10775     return false;
10776 
10777   auto GetOpFromSExt = [&](const SCEV *S) {
10778     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10779       return Ext->getOperand();
10780     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10781     // the constant in some cases.
10782     return S;
10783   };
10784 
10785   // Acquire values from extensions.
10786   auto *OrigLHS = LHS;
10787   auto *OrigFoundLHS = FoundLHS;
10788   LHS = GetOpFromSExt(LHS);
10789   FoundLHS = GetOpFromSExt(FoundLHS);
10790 
10791   // Is the SGT predicate can be proved trivially or using the found context.
10792   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10793     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10794            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10795                                   FoundRHS, Depth + 1);
10796   };
10797 
10798   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10799     // We want to avoid creation of any new non-constant SCEV. Since we are
10800     // going to compare the operands to RHS, we should be certain that we don't
10801     // need any size extensions for this. So let's decline all cases when the
10802     // sizes of types of LHS and RHS do not match.
10803     // TODO: Maybe try to get RHS from sext to catch more cases?
10804     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10805       return false;
10806 
10807     // Should not overflow.
10808     if (!LHSAddExpr->hasNoSignedWrap())
10809       return false;
10810 
10811     auto *LL = LHSAddExpr->getOperand(0);
10812     auto *LR = LHSAddExpr->getOperand(1);
10813     auto *MinusOne = getMinusOne(RHS->getType());
10814 
10815     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10816     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10817       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10818     };
10819     // Try to prove the following rule:
10820     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10821     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10822     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10823       return true;
10824   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10825     Value *LL, *LR;
10826     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10827 
10828     using namespace llvm::PatternMatch;
10829 
10830     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10831       // Rules for division.
10832       // We are going to perform some comparisons with Denominator and its
10833       // derivative expressions. In general case, creating a SCEV for it may
10834       // lead to a complex analysis of the entire graph, and in particular it
10835       // can request trip count recalculation for the same loop. This would
10836       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10837       // this, we only want to create SCEVs that are constants in this section.
10838       // So we bail if Denominator is not a constant.
10839       if (!isa<ConstantInt>(LR))
10840         return false;
10841 
10842       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10843 
10844       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10845       // then a SCEV for the numerator already exists and matches with FoundLHS.
10846       auto *Numerator = getExistingSCEV(LL);
10847       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10848         return false;
10849 
10850       // Make sure that the numerator matches with FoundLHS and the denominator
10851       // is positive.
10852       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10853         return false;
10854 
10855       auto *DTy = Denominator->getType();
10856       auto *FRHSTy = FoundRHS->getType();
10857       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10858         // One of types is a pointer and another one is not. We cannot extend
10859         // them properly to a wider type, so let us just reject this case.
10860         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10861         // to avoid this check.
10862         return false;
10863 
10864       // Given that:
10865       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10866       auto *WTy = getWiderType(DTy, FRHSTy);
10867       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10868       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10869 
10870       // Try to prove the following rule:
10871       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10872       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10873       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10874       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10875       if (isKnownNonPositive(RHS) &&
10876           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10877         return true;
10878 
10879       // Try to prove the following rule:
10880       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10881       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10882       // If we divide it by Denominator > 2, then:
10883       // 1. If FoundLHS is negative, then the result is 0.
10884       // 2. If FoundLHS is non-negative, then the result is non-negative.
10885       // Anyways, the result is non-negative.
10886       auto *MinusOne = getMinusOne(WTy);
10887       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10888       if (isKnownNegative(RHS) &&
10889           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10890         return true;
10891     }
10892   }
10893 
10894   // If our expression contained SCEVUnknown Phis, and we split it down and now
10895   // need to prove something for them, try to prove the predicate for every
10896   // possible incoming values of those Phis.
10897   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10898     return true;
10899 
10900   return false;
10901 }
10902 
10903 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10904                                         const SCEV *LHS, const SCEV *RHS) {
10905   // zext x u<= sext x, sext x s<= zext x
10906   switch (Pred) {
10907   case ICmpInst::ICMP_SGE:
10908     std::swap(LHS, RHS);
10909     LLVM_FALLTHROUGH;
10910   case ICmpInst::ICMP_SLE: {
10911     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10912     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10913     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10914     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10915       return true;
10916     break;
10917   }
10918   case ICmpInst::ICMP_UGE:
10919     std::swap(LHS, RHS);
10920     LLVM_FALLTHROUGH;
10921   case ICmpInst::ICMP_ULE: {
10922     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10923     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10924     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10925     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10926       return true;
10927     break;
10928   }
10929   default:
10930     break;
10931   };
10932   return false;
10933 }
10934 
10935 bool
10936 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10937                                            const SCEV *LHS, const SCEV *RHS) {
10938   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10939          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10940          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10941          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10942          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10943 }
10944 
10945 bool
10946 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10947                                              const SCEV *LHS, const SCEV *RHS,
10948                                              const SCEV *FoundLHS,
10949                                              const SCEV *FoundRHS) {
10950   switch (Pred) {
10951   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10952   case ICmpInst::ICMP_EQ:
10953   case ICmpInst::ICMP_NE:
10954     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10955       return true;
10956     break;
10957   case ICmpInst::ICMP_SLT:
10958   case ICmpInst::ICMP_SLE:
10959     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10960         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10961       return true;
10962     break;
10963   case ICmpInst::ICMP_SGT:
10964   case ICmpInst::ICMP_SGE:
10965     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10966         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10967       return true;
10968     break;
10969   case ICmpInst::ICMP_ULT:
10970   case ICmpInst::ICMP_ULE:
10971     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10972         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10973       return true;
10974     break;
10975   case ICmpInst::ICMP_UGT:
10976   case ICmpInst::ICMP_UGE:
10977     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10978         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10979       return true;
10980     break;
10981   }
10982 
10983   // Maybe it can be proved via operations?
10984   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10985     return true;
10986 
10987   return false;
10988 }
10989 
10990 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10991                                                      const SCEV *LHS,
10992                                                      const SCEV *RHS,
10993                                                      const SCEV *FoundLHS,
10994                                                      const SCEV *FoundRHS) {
10995   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10996     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10997     // reduce the compile time impact of this optimization.
10998     return false;
10999 
11000   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11001   if (!Addend)
11002     return false;
11003 
11004   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11005 
11006   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11007   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11008   ConstantRange FoundLHSRange =
11009       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11010 
11011   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11012   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11013 
11014   // We can also compute the range of values for `LHS` that satisfy the
11015   // consequent, "`LHS` `Pred` `RHS`":
11016   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11017   ConstantRange SatisfyingLHSRange =
11018       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
11019 
11020   // The antecedent implies the consequent if every value of `LHS` that
11021   // satisfies the antecedent also satisfies the consequent.
11022   return SatisfyingLHSRange.contains(LHSRange);
11023 }
11024 
11025 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11026                                          bool IsSigned, bool NoWrap) {
11027   assert(isKnownPositive(Stride) && "Positive stride expected!");
11028 
11029   if (NoWrap) return false;
11030 
11031   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11032   const SCEV *One = getOne(Stride->getType());
11033 
11034   if (IsSigned) {
11035     APInt MaxRHS = getSignedRangeMax(RHS);
11036     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11037     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11038 
11039     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11040     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11041   }
11042 
11043   APInt MaxRHS = getUnsignedRangeMax(RHS);
11044   APInt MaxValue = APInt::getMaxValue(BitWidth);
11045   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11046 
11047   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11048   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11049 }
11050 
11051 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11052                                          bool IsSigned, bool NoWrap) {
11053   if (NoWrap) return false;
11054 
11055   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11056   const SCEV *One = getOne(Stride->getType());
11057 
11058   if (IsSigned) {
11059     APInt MinRHS = getSignedRangeMin(RHS);
11060     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11061     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11062 
11063     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11064     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11065   }
11066 
11067   APInt MinRHS = getUnsignedRangeMin(RHS);
11068   APInt MinValue = APInt::getMinValue(BitWidth);
11069   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11070 
11071   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11072   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11073 }
11074 
11075 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11076                                             bool Equality) {
11077   const SCEV *One = getOne(Step->getType());
11078   Delta = Equality ? getAddExpr(Delta, Step)
11079                    : getAddExpr(Delta, getMinusSCEV(Step, One));
11080   return getUDivExpr(Delta, Step);
11081 }
11082 
11083 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11084                                                     const SCEV *Stride,
11085                                                     const SCEV *End,
11086                                                     unsigned BitWidth,
11087                                                     bool IsSigned) {
11088 
11089   assert(!isKnownNonPositive(Stride) &&
11090          "Stride is expected strictly positive!");
11091   // Calculate the maximum backedge count based on the range of values
11092   // permitted by Start, End, and Stride.
11093   const SCEV *MaxBECount;
11094   APInt MinStart =
11095       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11096 
11097   APInt StrideForMaxBECount =
11098       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11099 
11100   // We already know that the stride is positive, so we paper over conservatism
11101   // in our range computation by forcing StrideForMaxBECount to be at least one.
11102   // In theory this is unnecessary, but we expect MaxBECount to be a
11103   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11104   // is nothing to constant fold it to).
11105   APInt One(BitWidth, 1, IsSigned);
11106   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11107 
11108   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11109                             : APInt::getMaxValue(BitWidth);
11110   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11111 
11112   // Although End can be a MAX expression we estimate MaxEnd considering only
11113   // the case End = RHS of the loop termination condition. This is safe because
11114   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11115   // taken count.
11116   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11117                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11118 
11119   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11120                               getConstant(StrideForMaxBECount) /* Step */,
11121                               false /* Equality */);
11122 
11123   return MaxBECount;
11124 }
11125 
11126 ScalarEvolution::ExitLimit
11127 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11128                                   const Loop *L, bool IsSigned,
11129                                   bool ControlsExit, bool AllowPredicates) {
11130   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11131 
11132   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11133   bool PredicatedIV = false;
11134 
11135   if (!IV && AllowPredicates) {
11136     // Try to make this an AddRec using runtime tests, in the first X
11137     // iterations of this loop, where X is the SCEV expression found by the
11138     // algorithm below.
11139     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11140     PredicatedIV = true;
11141   }
11142 
11143   // Avoid weird loops
11144   if (!IV || IV->getLoop() != L || !IV->isAffine())
11145     return getCouldNotCompute();
11146 
11147   bool NoWrap = ControlsExit &&
11148                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11149 
11150   const SCEV *Stride = IV->getStepRecurrence(*this);
11151 
11152   bool PositiveStride = isKnownPositive(Stride);
11153 
11154   // Avoid negative or zero stride values.
11155   if (!PositiveStride) {
11156     // We can compute the correct backedge taken count for loops with unknown
11157     // strides if we can prove that the loop is not an infinite loop with side
11158     // effects. Here's the loop structure we are trying to handle -
11159     //
11160     // i = start
11161     // do {
11162     //   A[i] = i;
11163     //   i += s;
11164     // } while (i < end);
11165     //
11166     // The backedge taken count for such loops is evaluated as -
11167     // (max(end, start + stride) - start - 1) /u stride
11168     //
11169     // The additional preconditions that we need to check to prove correctness
11170     // of the above formula is as follows -
11171     //
11172     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11173     //    NoWrap flag).
11174     // b) loop is single exit with no side effects.
11175     //
11176     //
11177     // Precondition a) implies that if the stride is negative, this is a single
11178     // trip loop. The backedge taken count formula reduces to zero in this case.
11179     //
11180     // Precondition b) implies that the unknown stride cannot be zero otherwise
11181     // we have UB.
11182     //
11183     // The positive stride case is the same as isKnownPositive(Stride) returning
11184     // true (original behavior of the function).
11185     //
11186     // We want to make sure that the stride is truly unknown as there are edge
11187     // cases where ScalarEvolution propagates no wrap flags to the
11188     // post-increment/decrement IV even though the increment/decrement operation
11189     // itself is wrapping. The computed backedge taken count may be wrong in
11190     // such cases. This is prevented by checking that the stride is not known to
11191     // be either positive or non-positive. For example, no wrap flags are
11192     // propagated to the post-increment IV of this loop with a trip count of 2 -
11193     //
11194     // unsigned char i;
11195     // for(i=127; i<128; i+=129)
11196     //   A[i] = i;
11197     //
11198     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11199         !loopHasNoSideEffects(L))
11200       return getCouldNotCompute();
11201   } else if (!Stride->isOne() &&
11202              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11203     // Avoid proven overflow cases: this will ensure that the backedge taken
11204     // count will not generate any unsigned overflow. Relaxed no-overflow
11205     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11206     // undefined behaviors like the case of C language.
11207     return getCouldNotCompute();
11208 
11209   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11210                                       : ICmpInst::ICMP_ULT;
11211   const SCEV *Start = IV->getStart();
11212   const SCEV *End = RHS;
11213   // When the RHS is not invariant, we do not know the end bound of the loop and
11214   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11215   // calculate the MaxBECount, given the start, stride and max value for the end
11216   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11217   // checked above).
11218   if (!isLoopInvariant(RHS, L)) {
11219     const SCEV *MaxBECount = computeMaxBECountForLT(
11220         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11221     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11222                      false /*MaxOrZero*/, Predicates);
11223   }
11224   // If the backedge is taken at least once, then it will be taken
11225   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11226   // is the LHS value of the less-than comparison the first time it is evaluated
11227   // and End is the RHS.
11228   const SCEV *BECountIfBackedgeTaken =
11229     computeBECount(getMinusSCEV(End, Start), Stride, false);
11230   // If the loop entry is guarded by the result of the backedge test of the
11231   // first loop iteration, then we know the backedge will be taken at least
11232   // once and so the backedge taken count is as above. If not then we use the
11233   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11234   // as if the backedge is taken at least once max(End,Start) is End and so the
11235   // result is as above, and if not max(End,Start) is Start so we get a backedge
11236   // count of zero.
11237   const SCEV *BECount;
11238   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11239     BECount = BECountIfBackedgeTaken;
11240   else {
11241     // If we know that RHS >= Start in the context of loop, then we know that
11242     // max(RHS, Start) = RHS at this point.
11243     if (isLoopEntryGuardedByCond(
11244             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11245       End = RHS;
11246     else
11247       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11248     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11249   }
11250 
11251   const SCEV *MaxBECount;
11252   bool MaxOrZero = false;
11253   if (isa<SCEVConstant>(BECount))
11254     MaxBECount = BECount;
11255   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11256     // If we know exactly how many times the backedge will be taken if it's
11257     // taken at least once, then the backedge count will either be that or
11258     // zero.
11259     MaxBECount = BECountIfBackedgeTaken;
11260     MaxOrZero = true;
11261   } else {
11262     MaxBECount = computeMaxBECountForLT(
11263         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11264   }
11265 
11266   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11267       !isa<SCEVCouldNotCompute>(BECount))
11268     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11269 
11270   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11271 }
11272 
11273 ScalarEvolution::ExitLimit
11274 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11275                                      const Loop *L, bool IsSigned,
11276                                      bool ControlsExit, bool AllowPredicates) {
11277   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11278   // We handle only IV > Invariant
11279   if (!isLoopInvariant(RHS, L))
11280     return getCouldNotCompute();
11281 
11282   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11283   if (!IV && AllowPredicates)
11284     // Try to make this an AddRec using runtime tests, in the first X
11285     // iterations of this loop, where X is the SCEV expression found by the
11286     // algorithm below.
11287     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11288 
11289   // Avoid weird loops
11290   if (!IV || IV->getLoop() != L || !IV->isAffine())
11291     return getCouldNotCompute();
11292 
11293   bool NoWrap = ControlsExit &&
11294                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11295 
11296   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11297 
11298   // Avoid negative or zero stride values
11299   if (!isKnownPositive(Stride))
11300     return getCouldNotCompute();
11301 
11302   // Avoid proven overflow cases: this will ensure that the backedge taken count
11303   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11304   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11305   // behaviors like the case of C language.
11306   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11307     return getCouldNotCompute();
11308 
11309   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11310                                       : ICmpInst::ICMP_UGT;
11311 
11312   const SCEV *Start = IV->getStart();
11313   const SCEV *End = RHS;
11314   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11315     // If we know that Start >= RHS in the context of loop, then we know that
11316     // min(RHS, Start) = RHS at this point.
11317     if (isLoopEntryGuardedByCond(
11318             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11319       End = RHS;
11320     else
11321       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11322   }
11323 
11324   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11325 
11326   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11327                             : getUnsignedRangeMax(Start);
11328 
11329   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11330                              : getUnsignedRangeMin(Stride);
11331 
11332   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11333   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11334                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11335 
11336   // Although End can be a MIN expression we estimate MinEnd considering only
11337   // the case End = RHS. This is safe because in the other case (Start - End)
11338   // is zero, leading to a zero maximum backedge taken count.
11339   APInt MinEnd =
11340     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11341              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11342 
11343   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11344                                ? BECount
11345                                : computeBECount(getConstant(MaxStart - MinEnd),
11346                                                 getConstant(MinStride), false);
11347 
11348   if (isa<SCEVCouldNotCompute>(MaxBECount))
11349     MaxBECount = BECount;
11350 
11351   return ExitLimit(BECount, MaxBECount, false, Predicates);
11352 }
11353 
11354 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11355                                                     ScalarEvolution &SE) const {
11356   if (Range.isFullSet())  // Infinite loop.
11357     return SE.getCouldNotCompute();
11358 
11359   // If the start is a non-zero constant, shift the range to simplify things.
11360   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11361     if (!SC->getValue()->isZero()) {
11362       SmallVector<const SCEV *, 4> Operands(operands());
11363       Operands[0] = SE.getZero(SC->getType());
11364       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11365                                              getNoWrapFlags(FlagNW));
11366       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11367         return ShiftedAddRec->getNumIterationsInRange(
11368             Range.subtract(SC->getAPInt()), SE);
11369       // This is strange and shouldn't happen.
11370       return SE.getCouldNotCompute();
11371     }
11372 
11373   // The only time we can solve this is when we have all constant indices.
11374   // Otherwise, we cannot determine the overflow conditions.
11375   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11376     return SE.getCouldNotCompute();
11377 
11378   // Okay at this point we know that all elements of the chrec are constants and
11379   // that the start element is zero.
11380 
11381   // First check to see if the range contains zero.  If not, the first
11382   // iteration exits.
11383   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11384   if (!Range.contains(APInt(BitWidth, 0)))
11385     return SE.getZero(getType());
11386 
11387   if (isAffine()) {
11388     // If this is an affine expression then we have this situation:
11389     //   Solve {0,+,A} in Range  ===  Ax in Range
11390 
11391     // We know that zero is in the range.  If A is positive then we know that
11392     // the upper value of the range must be the first possible exit value.
11393     // If A is negative then the lower of the range is the last possible loop
11394     // value.  Also note that we already checked for a full range.
11395     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11396     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11397 
11398     // The exit value should be (End+A)/A.
11399     APInt ExitVal = (End + A).udiv(A);
11400     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11401 
11402     // Evaluate at the exit value.  If we really did fall out of the valid
11403     // range, then we computed our trip count, otherwise wrap around or other
11404     // things must have happened.
11405     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11406     if (Range.contains(Val->getValue()))
11407       return SE.getCouldNotCompute();  // Something strange happened
11408 
11409     // Ensure that the previous value is in the range.  This is a sanity check.
11410     assert(Range.contains(
11411            EvaluateConstantChrecAtConstant(this,
11412            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11413            "Linear scev computation is off in a bad way!");
11414     return SE.getConstant(ExitValue);
11415   }
11416 
11417   if (isQuadratic()) {
11418     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11419       return SE.getConstant(S.getValue());
11420   }
11421 
11422   return SE.getCouldNotCompute();
11423 }
11424 
11425 const SCEVAddRecExpr *
11426 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11427   assert(getNumOperands() > 1 && "AddRec with zero step?");
11428   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11429   // but in this case we cannot guarantee that the value returned will be an
11430   // AddRec because SCEV does not have a fixed point where it stops
11431   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11432   // may happen if we reach arithmetic depth limit while simplifying. So we
11433   // construct the returned value explicitly.
11434   SmallVector<const SCEV *, 3> Ops;
11435   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11436   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11437   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11438     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11439   // We know that the last operand is not a constant zero (otherwise it would
11440   // have been popped out earlier). This guarantees us that if the result has
11441   // the same last operand, then it will also not be popped out, meaning that
11442   // the returned value will be an AddRec.
11443   const SCEV *Last = getOperand(getNumOperands() - 1);
11444   assert(!Last->isZero() && "Recurrency with zero step?");
11445   Ops.push_back(Last);
11446   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11447                                                SCEV::FlagAnyWrap));
11448 }
11449 
11450 // Return true when S contains at least an undef value.
11451 static inline bool containsUndefs(const SCEV *S) {
11452   return SCEVExprContains(S, [](const SCEV *S) {
11453     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11454       return isa<UndefValue>(SU->getValue());
11455     return false;
11456   });
11457 }
11458 
11459 namespace {
11460 
11461 // Collect all steps of SCEV expressions.
11462 struct SCEVCollectStrides {
11463   ScalarEvolution &SE;
11464   SmallVectorImpl<const SCEV *> &Strides;
11465 
11466   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11467       : SE(SE), Strides(S) {}
11468 
11469   bool follow(const SCEV *S) {
11470     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11471       Strides.push_back(AR->getStepRecurrence(SE));
11472     return true;
11473   }
11474 
11475   bool isDone() const { return false; }
11476 };
11477 
11478 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11479 struct SCEVCollectTerms {
11480   SmallVectorImpl<const SCEV *> &Terms;
11481 
11482   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11483 
11484   bool follow(const SCEV *S) {
11485     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11486         isa<SCEVSignExtendExpr>(S)) {
11487       if (!containsUndefs(S))
11488         Terms.push_back(S);
11489 
11490       // Stop recursion: once we collected a term, do not walk its operands.
11491       return false;
11492     }
11493 
11494     // Keep looking.
11495     return true;
11496   }
11497 
11498   bool isDone() const { return false; }
11499 };
11500 
11501 // Check if a SCEV contains an AddRecExpr.
11502 struct SCEVHasAddRec {
11503   bool &ContainsAddRec;
11504 
11505   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11506     ContainsAddRec = false;
11507   }
11508 
11509   bool follow(const SCEV *S) {
11510     if (isa<SCEVAddRecExpr>(S)) {
11511       ContainsAddRec = true;
11512 
11513       // Stop recursion: once we collected a term, do not walk its operands.
11514       return false;
11515     }
11516 
11517     // Keep looking.
11518     return true;
11519   }
11520 
11521   bool isDone() const { return false; }
11522 };
11523 
11524 // Find factors that are multiplied with an expression that (possibly as a
11525 // subexpression) contains an AddRecExpr. In the expression:
11526 //
11527 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11528 //
11529 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11530 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11531 // parameters as they form a product with an induction variable.
11532 //
11533 // This collector expects all array size parameters to be in the same MulExpr.
11534 // It might be necessary to later add support for collecting parameters that are
11535 // spread over different nested MulExpr.
11536 struct SCEVCollectAddRecMultiplies {
11537   SmallVectorImpl<const SCEV *> &Terms;
11538   ScalarEvolution &SE;
11539 
11540   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11541       : Terms(T), SE(SE) {}
11542 
11543   bool follow(const SCEV *S) {
11544     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11545       bool HasAddRec = false;
11546       SmallVector<const SCEV *, 0> Operands;
11547       for (auto Op : Mul->operands()) {
11548         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11549         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11550           Operands.push_back(Op);
11551         } else if (Unknown) {
11552           HasAddRec = true;
11553         } else {
11554           bool ContainsAddRec = false;
11555           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11556           visitAll(Op, ContiansAddRec);
11557           HasAddRec |= ContainsAddRec;
11558         }
11559       }
11560       if (Operands.size() == 0)
11561         return true;
11562 
11563       if (!HasAddRec)
11564         return false;
11565 
11566       Terms.push_back(SE.getMulExpr(Operands));
11567       // Stop recursion: once we collected a term, do not walk its operands.
11568       return false;
11569     }
11570 
11571     // Keep looking.
11572     return true;
11573   }
11574 
11575   bool isDone() const { return false; }
11576 };
11577 
11578 } // end anonymous namespace
11579 
11580 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11581 /// two places:
11582 ///   1) The strides of AddRec expressions.
11583 ///   2) Unknowns that are multiplied with AddRec expressions.
11584 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11585     SmallVectorImpl<const SCEV *> &Terms) {
11586   SmallVector<const SCEV *, 4> Strides;
11587   SCEVCollectStrides StrideCollector(*this, Strides);
11588   visitAll(Expr, StrideCollector);
11589 
11590   LLVM_DEBUG({
11591     dbgs() << "Strides:\n";
11592     for (const SCEV *S : Strides)
11593       dbgs() << *S << "\n";
11594   });
11595 
11596   for (const SCEV *S : Strides) {
11597     SCEVCollectTerms TermCollector(Terms);
11598     visitAll(S, TermCollector);
11599   }
11600 
11601   LLVM_DEBUG({
11602     dbgs() << "Terms:\n";
11603     for (const SCEV *T : Terms)
11604       dbgs() << *T << "\n";
11605   });
11606 
11607   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11608   visitAll(Expr, MulCollector);
11609 }
11610 
11611 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11612                                    SmallVectorImpl<const SCEV *> &Terms,
11613                                    SmallVectorImpl<const SCEV *> &Sizes) {
11614   int Last = Terms.size() - 1;
11615   const SCEV *Step = Terms[Last];
11616 
11617   // End of recursion.
11618   if (Last == 0) {
11619     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11620       SmallVector<const SCEV *, 2> Qs;
11621       for (const SCEV *Op : M->operands())
11622         if (!isa<SCEVConstant>(Op))
11623           Qs.push_back(Op);
11624 
11625       Step = SE.getMulExpr(Qs);
11626     }
11627 
11628     Sizes.push_back(Step);
11629     return true;
11630   }
11631 
11632   for (const SCEV *&Term : Terms) {
11633     // Normalize the terms before the next call to findArrayDimensionsRec.
11634     const SCEV *Q, *R;
11635     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11636 
11637     // Bail out when GCD does not evenly divide one of the terms.
11638     if (!R->isZero())
11639       return false;
11640 
11641     Term = Q;
11642   }
11643 
11644   // Remove all SCEVConstants.
11645   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11646 
11647   if (Terms.size() > 0)
11648     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11649       return false;
11650 
11651   Sizes.push_back(Step);
11652   return true;
11653 }
11654 
11655 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11656 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11657   for (const SCEV *T : Terms)
11658     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11659       return true;
11660 
11661   return false;
11662 }
11663 
11664 // Return the number of product terms in S.
11665 static inline int numberOfTerms(const SCEV *S) {
11666   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11667     return Expr->getNumOperands();
11668   return 1;
11669 }
11670 
11671 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11672   if (isa<SCEVConstant>(T))
11673     return nullptr;
11674 
11675   if (isa<SCEVUnknown>(T))
11676     return T;
11677 
11678   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11679     SmallVector<const SCEV *, 2> Factors;
11680     for (const SCEV *Op : M->operands())
11681       if (!isa<SCEVConstant>(Op))
11682         Factors.push_back(Op);
11683 
11684     return SE.getMulExpr(Factors);
11685   }
11686 
11687   return T;
11688 }
11689 
11690 /// Return the size of an element read or written by Inst.
11691 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11692   Type *Ty;
11693   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11694     Ty = Store->getValueOperand()->getType();
11695   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11696     Ty = Load->getType();
11697   else
11698     return nullptr;
11699 
11700   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11701   return getSizeOfExpr(ETy, Ty);
11702 }
11703 
11704 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11705                                           SmallVectorImpl<const SCEV *> &Sizes,
11706                                           const SCEV *ElementSize) {
11707   if (Terms.size() < 1 || !ElementSize)
11708     return;
11709 
11710   // Early return when Terms do not contain parameters: we do not delinearize
11711   // non parametric SCEVs.
11712   if (!containsParameters(Terms))
11713     return;
11714 
11715   LLVM_DEBUG({
11716     dbgs() << "Terms:\n";
11717     for (const SCEV *T : Terms)
11718       dbgs() << *T << "\n";
11719   });
11720 
11721   // Remove duplicates.
11722   array_pod_sort(Terms.begin(), Terms.end());
11723   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11724 
11725   // Put larger terms first.
11726   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11727     return numberOfTerms(LHS) > numberOfTerms(RHS);
11728   });
11729 
11730   // Try to divide all terms by the element size. If term is not divisible by
11731   // element size, proceed with the original term.
11732   for (const SCEV *&Term : Terms) {
11733     const SCEV *Q, *R;
11734     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11735     if (!Q->isZero())
11736       Term = Q;
11737   }
11738 
11739   SmallVector<const SCEV *, 4> NewTerms;
11740 
11741   // Remove constant factors.
11742   for (const SCEV *T : Terms)
11743     if (const SCEV *NewT = removeConstantFactors(*this, T))
11744       NewTerms.push_back(NewT);
11745 
11746   LLVM_DEBUG({
11747     dbgs() << "Terms after sorting:\n";
11748     for (const SCEV *T : NewTerms)
11749       dbgs() << *T << "\n";
11750   });
11751 
11752   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11753     Sizes.clear();
11754     return;
11755   }
11756 
11757   // The last element to be pushed into Sizes is the size of an element.
11758   Sizes.push_back(ElementSize);
11759 
11760   LLVM_DEBUG({
11761     dbgs() << "Sizes:\n";
11762     for (const SCEV *S : Sizes)
11763       dbgs() << *S << "\n";
11764   });
11765 }
11766 
11767 void ScalarEvolution::computeAccessFunctions(
11768     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11769     SmallVectorImpl<const SCEV *> &Sizes) {
11770   // Early exit in case this SCEV is not an affine multivariate function.
11771   if (Sizes.empty())
11772     return;
11773 
11774   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11775     if (!AR->isAffine())
11776       return;
11777 
11778   const SCEV *Res = Expr;
11779   int Last = Sizes.size() - 1;
11780   for (int i = Last; i >= 0; i--) {
11781     const SCEV *Q, *R;
11782     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11783 
11784     LLVM_DEBUG({
11785       dbgs() << "Res: " << *Res << "\n";
11786       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11787       dbgs() << "Res divided by Sizes[i]:\n";
11788       dbgs() << "Quotient: " << *Q << "\n";
11789       dbgs() << "Remainder: " << *R << "\n";
11790     });
11791 
11792     Res = Q;
11793 
11794     // Do not record the last subscript corresponding to the size of elements in
11795     // the array.
11796     if (i == Last) {
11797 
11798       // Bail out if the remainder is too complex.
11799       if (isa<SCEVAddRecExpr>(R)) {
11800         Subscripts.clear();
11801         Sizes.clear();
11802         return;
11803       }
11804 
11805       continue;
11806     }
11807 
11808     // Record the access function for the current subscript.
11809     Subscripts.push_back(R);
11810   }
11811 
11812   // Also push in last position the remainder of the last division: it will be
11813   // the access function of the innermost dimension.
11814   Subscripts.push_back(Res);
11815 
11816   std::reverse(Subscripts.begin(), Subscripts.end());
11817 
11818   LLVM_DEBUG({
11819     dbgs() << "Subscripts:\n";
11820     for (const SCEV *S : Subscripts)
11821       dbgs() << *S << "\n";
11822   });
11823 }
11824 
11825 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11826 /// sizes of an array access. Returns the remainder of the delinearization that
11827 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11828 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11829 /// expressions in the stride and base of a SCEV corresponding to the
11830 /// computation of a GCD (greatest common divisor) of base and stride.  When
11831 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11832 ///
11833 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11834 ///
11835 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11836 ///
11837 ///    for (long i = 0; i < n; i++)
11838 ///      for (long j = 0; j < m; j++)
11839 ///        for (long k = 0; k < o; k++)
11840 ///          A[i][j][k] = 1.0;
11841 ///  }
11842 ///
11843 /// the delinearization input is the following AddRec SCEV:
11844 ///
11845 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11846 ///
11847 /// From this SCEV, we are able to say that the base offset of the access is %A
11848 /// because it appears as an offset that does not divide any of the strides in
11849 /// the loops:
11850 ///
11851 ///  CHECK: Base offset: %A
11852 ///
11853 /// and then SCEV->delinearize determines the size of some of the dimensions of
11854 /// the array as these are the multiples by which the strides are happening:
11855 ///
11856 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11857 ///
11858 /// Note that the outermost dimension remains of UnknownSize because there are
11859 /// no strides that would help identifying the size of the last dimension: when
11860 /// the array has been statically allocated, one could compute the size of that
11861 /// dimension by dividing the overall size of the array by the size of the known
11862 /// dimensions: %m * %o * 8.
11863 ///
11864 /// Finally delinearize provides the access functions for the array reference
11865 /// that does correspond to A[i][j][k] of the above C testcase:
11866 ///
11867 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11868 ///
11869 /// The testcases are checking the output of a function pass:
11870 /// DelinearizationPass that walks through all loads and stores of a function
11871 /// asking for the SCEV of the memory access with respect to all enclosing
11872 /// loops, calling SCEV->delinearize on that and printing the results.
11873 void ScalarEvolution::delinearize(const SCEV *Expr,
11874                                  SmallVectorImpl<const SCEV *> &Subscripts,
11875                                  SmallVectorImpl<const SCEV *> &Sizes,
11876                                  const SCEV *ElementSize) {
11877   // First step: collect parametric terms.
11878   SmallVector<const SCEV *, 4> Terms;
11879   collectParametricTerms(Expr, Terms);
11880 
11881   if (Terms.empty())
11882     return;
11883 
11884   // Second step: find subscript sizes.
11885   findArrayDimensions(Terms, Sizes, ElementSize);
11886 
11887   if (Sizes.empty())
11888     return;
11889 
11890   // Third step: compute the access functions for each subscript.
11891   computeAccessFunctions(Expr, Subscripts, Sizes);
11892 
11893   if (Subscripts.empty())
11894     return;
11895 
11896   LLVM_DEBUG({
11897     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11898     dbgs() << "ArrayDecl[UnknownSize]";
11899     for (const SCEV *S : Sizes)
11900       dbgs() << "[" << *S << "]";
11901 
11902     dbgs() << "\nArrayRef";
11903     for (const SCEV *S : Subscripts)
11904       dbgs() << "[" << *S << "]";
11905     dbgs() << "\n";
11906   });
11907 }
11908 
11909 bool ScalarEvolution::getIndexExpressionsFromGEP(
11910     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11911     SmallVectorImpl<int> &Sizes) {
11912   assert(Subscripts.empty() && Sizes.empty() &&
11913          "Expected output lists to be empty on entry to this function.");
11914   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11915   Type *Ty = GEP->getPointerOperandType();
11916   bool DroppedFirstDim = false;
11917   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11918     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11919     if (i == 1) {
11920       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11921         Ty = PtrTy->getElementType();
11922       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11923         Ty = ArrayTy->getElementType();
11924       } else {
11925         Subscripts.clear();
11926         Sizes.clear();
11927         return false;
11928       }
11929       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11930         if (Const->getValue()->isZero()) {
11931           DroppedFirstDim = true;
11932           continue;
11933         }
11934       Subscripts.push_back(Expr);
11935       continue;
11936     }
11937 
11938     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11939     if (!ArrayTy) {
11940       Subscripts.clear();
11941       Sizes.clear();
11942       return false;
11943     }
11944 
11945     Subscripts.push_back(Expr);
11946     if (!(DroppedFirstDim && i == 2))
11947       Sizes.push_back(ArrayTy->getNumElements());
11948 
11949     Ty = ArrayTy->getElementType();
11950   }
11951   return !Subscripts.empty();
11952 }
11953 
11954 //===----------------------------------------------------------------------===//
11955 //                   SCEVCallbackVH Class Implementation
11956 //===----------------------------------------------------------------------===//
11957 
11958 void ScalarEvolution::SCEVCallbackVH::deleted() {
11959   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11960   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11961     SE->ConstantEvolutionLoopExitValue.erase(PN);
11962   SE->eraseValueFromMap(getValPtr());
11963   // this now dangles!
11964 }
11965 
11966 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11967   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11968 
11969   // Forget all the expressions associated with users of the old value,
11970   // so that future queries will recompute the expressions using the new
11971   // value.
11972   Value *Old = getValPtr();
11973   SmallVector<User *, 16> Worklist(Old->users());
11974   SmallPtrSet<User *, 8> Visited;
11975   while (!Worklist.empty()) {
11976     User *U = Worklist.pop_back_val();
11977     // Deleting the Old value will cause this to dangle. Postpone
11978     // that until everything else is done.
11979     if (U == Old)
11980       continue;
11981     if (!Visited.insert(U).second)
11982       continue;
11983     if (PHINode *PN = dyn_cast<PHINode>(U))
11984       SE->ConstantEvolutionLoopExitValue.erase(PN);
11985     SE->eraseValueFromMap(U);
11986     llvm::append_range(Worklist, U->users());
11987   }
11988   // Delete the Old value.
11989   if (PHINode *PN = dyn_cast<PHINode>(Old))
11990     SE->ConstantEvolutionLoopExitValue.erase(PN);
11991   SE->eraseValueFromMap(Old);
11992   // this now dangles!
11993 }
11994 
11995 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11996   : CallbackVH(V), SE(se) {}
11997 
11998 //===----------------------------------------------------------------------===//
11999 //                   ScalarEvolution Class Implementation
12000 //===----------------------------------------------------------------------===//
12001 
12002 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12003                                  AssumptionCache &AC, DominatorTree &DT,
12004                                  LoopInfo &LI)
12005     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12006       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12007       LoopDispositions(64), BlockDispositions(64) {
12008   // To use guards for proving predicates, we need to scan every instruction in
12009   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12010   // time if the IR does not actually contain any calls to
12011   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12012   //
12013   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12014   // to _add_ guards to the module when there weren't any before, and wants
12015   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12016   // efficient in lieu of being smart in that rather obscure case.
12017 
12018   auto *GuardDecl = F.getParent()->getFunction(
12019       Intrinsic::getName(Intrinsic::experimental_guard));
12020   HasGuards = GuardDecl && !GuardDecl->use_empty();
12021 }
12022 
12023 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12024     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12025       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12026       ValueExprMap(std::move(Arg.ValueExprMap)),
12027       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12028       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12029       PendingMerges(std::move(Arg.PendingMerges)),
12030       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12031       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12032       PredicatedBackedgeTakenCounts(
12033           std::move(Arg.PredicatedBackedgeTakenCounts)),
12034       ConstantEvolutionLoopExitValue(
12035           std::move(Arg.ConstantEvolutionLoopExitValue)),
12036       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12037       LoopDispositions(std::move(Arg.LoopDispositions)),
12038       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12039       BlockDispositions(std::move(Arg.BlockDispositions)),
12040       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12041       SignedRanges(std::move(Arg.SignedRanges)),
12042       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12043       UniquePreds(std::move(Arg.UniquePreds)),
12044       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12045       LoopUsers(std::move(Arg.LoopUsers)),
12046       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12047       FirstUnknown(Arg.FirstUnknown) {
12048   Arg.FirstUnknown = nullptr;
12049 }
12050 
12051 ScalarEvolution::~ScalarEvolution() {
12052   // Iterate through all the SCEVUnknown instances and call their
12053   // destructors, so that they release their references to their values.
12054   for (SCEVUnknown *U = FirstUnknown; U;) {
12055     SCEVUnknown *Tmp = U;
12056     U = U->Next;
12057     Tmp->~SCEVUnknown();
12058   }
12059   FirstUnknown = nullptr;
12060 
12061   ExprValueMap.clear();
12062   ValueExprMap.clear();
12063   HasRecMap.clear();
12064 
12065   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12066   // that a loop had multiple computable exits.
12067   for (auto &BTCI : BackedgeTakenCounts)
12068     BTCI.second.clear();
12069   for (auto &BTCI : PredicatedBackedgeTakenCounts)
12070     BTCI.second.clear();
12071 
12072   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12073   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12074   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12075   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12076   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12077 }
12078 
12079 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12080   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12081 }
12082 
12083 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12084                           const Loop *L) {
12085   // Print all inner loops first
12086   for (Loop *I : *L)
12087     PrintLoopInfo(OS, SE, I);
12088 
12089   OS << "Loop ";
12090   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12091   OS << ": ";
12092 
12093   SmallVector<BasicBlock *, 8> ExitingBlocks;
12094   L->getExitingBlocks(ExitingBlocks);
12095   if (ExitingBlocks.size() != 1)
12096     OS << "<multiple exits> ";
12097 
12098   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12099     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12100   else
12101     OS << "Unpredictable backedge-taken count.\n";
12102 
12103   if (ExitingBlocks.size() > 1)
12104     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12105       OS << "  exit count for " << ExitingBlock->getName() << ": "
12106          << *SE->getExitCount(L, ExitingBlock) << "\n";
12107     }
12108 
12109   OS << "Loop ";
12110   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12111   OS << ": ";
12112 
12113   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12114     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12115     if (SE->isBackedgeTakenCountMaxOrZero(L))
12116       OS << ", actual taken count either this or zero.";
12117   } else {
12118     OS << "Unpredictable max backedge-taken count. ";
12119   }
12120 
12121   OS << "\n"
12122         "Loop ";
12123   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12124   OS << ": ";
12125 
12126   SCEVUnionPredicate Pred;
12127   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12128   if (!isa<SCEVCouldNotCompute>(PBT)) {
12129     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12130     OS << " Predicates:\n";
12131     Pred.print(OS, 4);
12132   } else {
12133     OS << "Unpredictable predicated backedge-taken count. ";
12134   }
12135   OS << "\n";
12136 
12137   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12138     OS << "Loop ";
12139     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12140     OS << ": ";
12141     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12142   }
12143 }
12144 
12145 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12146   switch (LD) {
12147   case ScalarEvolution::LoopVariant:
12148     return "Variant";
12149   case ScalarEvolution::LoopInvariant:
12150     return "Invariant";
12151   case ScalarEvolution::LoopComputable:
12152     return "Computable";
12153   }
12154   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12155 }
12156 
12157 void ScalarEvolution::print(raw_ostream &OS) const {
12158   // ScalarEvolution's implementation of the print method is to print
12159   // out SCEV values of all instructions that are interesting. Doing
12160   // this potentially causes it to create new SCEV objects though,
12161   // which technically conflicts with the const qualifier. This isn't
12162   // observable from outside the class though, so casting away the
12163   // const isn't dangerous.
12164   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12165 
12166   if (ClassifyExpressions) {
12167     OS << "Classifying expressions for: ";
12168     F.printAsOperand(OS, /*PrintType=*/false);
12169     OS << "\n";
12170     for (Instruction &I : instructions(F))
12171       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12172         OS << I << '\n';
12173         OS << "  -->  ";
12174         const SCEV *SV = SE.getSCEV(&I);
12175         SV->print(OS);
12176         if (!isa<SCEVCouldNotCompute>(SV)) {
12177           OS << " U: ";
12178           SE.getUnsignedRange(SV).print(OS);
12179           OS << " S: ";
12180           SE.getSignedRange(SV).print(OS);
12181         }
12182 
12183         const Loop *L = LI.getLoopFor(I.getParent());
12184 
12185         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12186         if (AtUse != SV) {
12187           OS << "  -->  ";
12188           AtUse->print(OS);
12189           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12190             OS << " U: ";
12191             SE.getUnsignedRange(AtUse).print(OS);
12192             OS << " S: ";
12193             SE.getSignedRange(AtUse).print(OS);
12194           }
12195         }
12196 
12197         if (L) {
12198           OS << "\t\t" "Exits: ";
12199           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12200           if (!SE.isLoopInvariant(ExitValue, L)) {
12201             OS << "<<Unknown>>";
12202           } else {
12203             OS << *ExitValue;
12204           }
12205 
12206           bool First = true;
12207           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12208             if (First) {
12209               OS << "\t\t" "LoopDispositions: { ";
12210               First = false;
12211             } else {
12212               OS << ", ";
12213             }
12214 
12215             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12216             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12217           }
12218 
12219           for (auto *InnerL : depth_first(L)) {
12220             if (InnerL == L)
12221               continue;
12222             if (First) {
12223               OS << "\t\t" "LoopDispositions: { ";
12224               First = false;
12225             } else {
12226               OS << ", ";
12227             }
12228 
12229             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12230             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12231           }
12232 
12233           OS << " }";
12234         }
12235 
12236         OS << "\n";
12237       }
12238   }
12239 
12240   OS << "Determining loop execution counts for: ";
12241   F.printAsOperand(OS, /*PrintType=*/false);
12242   OS << "\n";
12243   for (Loop *I : LI)
12244     PrintLoopInfo(OS, &SE, I);
12245 }
12246 
12247 ScalarEvolution::LoopDisposition
12248 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12249   auto &Values = LoopDispositions[S];
12250   for (auto &V : Values) {
12251     if (V.getPointer() == L)
12252       return V.getInt();
12253   }
12254   Values.emplace_back(L, LoopVariant);
12255   LoopDisposition D = computeLoopDisposition(S, L);
12256   auto &Values2 = LoopDispositions[S];
12257   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12258     if (V.getPointer() == L) {
12259       V.setInt(D);
12260       break;
12261     }
12262   }
12263   return D;
12264 }
12265 
12266 ScalarEvolution::LoopDisposition
12267 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12268   switch (S->getSCEVType()) {
12269   case scConstant:
12270     return LoopInvariant;
12271   case scPtrToInt:
12272   case scTruncate:
12273   case scZeroExtend:
12274   case scSignExtend:
12275     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12276   case scAddRecExpr: {
12277     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12278 
12279     // If L is the addrec's loop, it's computable.
12280     if (AR->getLoop() == L)
12281       return LoopComputable;
12282 
12283     // Add recurrences are never invariant in the function-body (null loop).
12284     if (!L)
12285       return LoopVariant;
12286 
12287     // Everything that is not defined at loop entry is variant.
12288     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12289       return LoopVariant;
12290     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12291            " dominate the contained loop's header?");
12292 
12293     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12294     if (AR->getLoop()->contains(L))
12295       return LoopInvariant;
12296 
12297     // This recurrence is variant w.r.t. L if any of its operands
12298     // are variant.
12299     for (auto *Op : AR->operands())
12300       if (!isLoopInvariant(Op, L))
12301         return LoopVariant;
12302 
12303     // Otherwise it's loop-invariant.
12304     return LoopInvariant;
12305   }
12306   case scAddExpr:
12307   case scMulExpr:
12308   case scUMaxExpr:
12309   case scSMaxExpr:
12310   case scUMinExpr:
12311   case scSMinExpr: {
12312     bool HasVarying = false;
12313     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12314       LoopDisposition D = getLoopDisposition(Op, L);
12315       if (D == LoopVariant)
12316         return LoopVariant;
12317       if (D == LoopComputable)
12318         HasVarying = true;
12319     }
12320     return HasVarying ? LoopComputable : LoopInvariant;
12321   }
12322   case scUDivExpr: {
12323     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12324     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12325     if (LD == LoopVariant)
12326       return LoopVariant;
12327     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12328     if (RD == LoopVariant)
12329       return LoopVariant;
12330     return (LD == LoopInvariant && RD == LoopInvariant) ?
12331            LoopInvariant : LoopComputable;
12332   }
12333   case scUnknown:
12334     // All non-instruction values are loop invariant.  All instructions are loop
12335     // invariant if they are not contained in the specified loop.
12336     // Instructions are never considered invariant in the function body
12337     // (null loop) because they are defined within the "loop".
12338     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12339       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12340     return LoopInvariant;
12341   case scCouldNotCompute:
12342     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12343   }
12344   llvm_unreachable("Unknown SCEV kind!");
12345 }
12346 
12347 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12348   return getLoopDisposition(S, L) == LoopInvariant;
12349 }
12350 
12351 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12352   return getLoopDisposition(S, L) == LoopComputable;
12353 }
12354 
12355 ScalarEvolution::BlockDisposition
12356 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12357   auto &Values = BlockDispositions[S];
12358   for (auto &V : Values) {
12359     if (V.getPointer() == BB)
12360       return V.getInt();
12361   }
12362   Values.emplace_back(BB, DoesNotDominateBlock);
12363   BlockDisposition D = computeBlockDisposition(S, BB);
12364   auto &Values2 = BlockDispositions[S];
12365   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12366     if (V.getPointer() == BB) {
12367       V.setInt(D);
12368       break;
12369     }
12370   }
12371   return D;
12372 }
12373 
12374 ScalarEvolution::BlockDisposition
12375 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12376   switch (S->getSCEVType()) {
12377   case scConstant:
12378     return ProperlyDominatesBlock;
12379   case scPtrToInt:
12380   case scTruncate:
12381   case scZeroExtend:
12382   case scSignExtend:
12383     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12384   case scAddRecExpr: {
12385     // This uses a "dominates" query instead of "properly dominates" query
12386     // to test for proper dominance too, because the instruction which
12387     // produces the addrec's value is a PHI, and a PHI effectively properly
12388     // dominates its entire containing block.
12389     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12390     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12391       return DoesNotDominateBlock;
12392 
12393     // Fall through into SCEVNAryExpr handling.
12394     LLVM_FALLTHROUGH;
12395   }
12396   case scAddExpr:
12397   case scMulExpr:
12398   case scUMaxExpr:
12399   case scSMaxExpr:
12400   case scUMinExpr:
12401   case scSMinExpr: {
12402     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12403     bool Proper = true;
12404     for (const SCEV *NAryOp : NAry->operands()) {
12405       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12406       if (D == DoesNotDominateBlock)
12407         return DoesNotDominateBlock;
12408       if (D == DominatesBlock)
12409         Proper = false;
12410     }
12411     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12412   }
12413   case scUDivExpr: {
12414     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12415     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12416     BlockDisposition LD = getBlockDisposition(LHS, BB);
12417     if (LD == DoesNotDominateBlock)
12418       return DoesNotDominateBlock;
12419     BlockDisposition RD = getBlockDisposition(RHS, BB);
12420     if (RD == DoesNotDominateBlock)
12421       return DoesNotDominateBlock;
12422     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12423       ProperlyDominatesBlock : DominatesBlock;
12424   }
12425   case scUnknown:
12426     if (Instruction *I =
12427           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12428       if (I->getParent() == BB)
12429         return DominatesBlock;
12430       if (DT.properlyDominates(I->getParent(), BB))
12431         return ProperlyDominatesBlock;
12432       return DoesNotDominateBlock;
12433     }
12434     return ProperlyDominatesBlock;
12435   case scCouldNotCompute:
12436     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12437   }
12438   llvm_unreachable("Unknown SCEV kind!");
12439 }
12440 
12441 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12442   return getBlockDisposition(S, BB) >= DominatesBlock;
12443 }
12444 
12445 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12446   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12447 }
12448 
12449 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12450   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12451 }
12452 
12453 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12454   auto IsS = [&](const SCEV *X) { return S == X; };
12455   auto ContainsS = [&](const SCEV *X) {
12456     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12457   };
12458   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12459 }
12460 
12461 void
12462 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12463   ValuesAtScopes.erase(S);
12464   LoopDispositions.erase(S);
12465   BlockDispositions.erase(S);
12466   UnsignedRanges.erase(S);
12467   SignedRanges.erase(S);
12468   ExprValueMap.erase(S);
12469   HasRecMap.erase(S);
12470   MinTrailingZerosCache.erase(S);
12471 
12472   for (auto I = PredicatedSCEVRewrites.begin();
12473        I != PredicatedSCEVRewrites.end();) {
12474     std::pair<const SCEV *, const Loop *> Entry = I->first;
12475     if (Entry.first == S)
12476       PredicatedSCEVRewrites.erase(I++);
12477     else
12478       ++I;
12479   }
12480 
12481   auto RemoveSCEVFromBackedgeMap =
12482       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12483         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12484           BackedgeTakenInfo &BEInfo = I->second;
12485           if (BEInfo.hasOperand(S, this)) {
12486             BEInfo.clear();
12487             Map.erase(I++);
12488           } else
12489             ++I;
12490         }
12491       };
12492 
12493   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12494   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12495 }
12496 
12497 void
12498 ScalarEvolution::getUsedLoops(const SCEV *S,
12499                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12500   struct FindUsedLoops {
12501     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12502         : LoopsUsed(LoopsUsed) {}
12503     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12504     bool follow(const SCEV *S) {
12505       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12506         LoopsUsed.insert(AR->getLoop());
12507       return true;
12508     }
12509 
12510     bool isDone() const { return false; }
12511   };
12512 
12513   FindUsedLoops F(LoopsUsed);
12514   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12515 }
12516 
12517 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12518   SmallPtrSet<const Loop *, 8> LoopsUsed;
12519   getUsedLoops(S, LoopsUsed);
12520   for (auto *L : LoopsUsed)
12521     LoopUsers[L].push_back(S);
12522 }
12523 
12524 void ScalarEvolution::verify() const {
12525   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12526   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12527 
12528   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12529 
12530   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12531   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12532     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12533 
12534     const SCEV *visitConstant(const SCEVConstant *Constant) {
12535       return SE.getConstant(Constant->getAPInt());
12536     }
12537 
12538     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12539       return SE.getUnknown(Expr->getValue());
12540     }
12541 
12542     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12543       return SE.getCouldNotCompute();
12544     }
12545   };
12546 
12547   SCEVMapper SCM(SE2);
12548 
12549   while (!LoopStack.empty()) {
12550     auto *L = LoopStack.pop_back_val();
12551     llvm::append_range(LoopStack, *L);
12552 
12553     auto *CurBECount = SCM.visit(
12554         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12555     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12556 
12557     if (CurBECount == SE2.getCouldNotCompute() ||
12558         NewBECount == SE2.getCouldNotCompute()) {
12559       // NB! This situation is legal, but is very suspicious -- whatever pass
12560       // change the loop to make a trip count go from could not compute to
12561       // computable or vice-versa *should have* invalidated SCEV.  However, we
12562       // choose not to assert here (for now) since we don't want false
12563       // positives.
12564       continue;
12565     }
12566 
12567     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12568       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12569       // not propagate undef aggressively).  This means we can (and do) fail
12570       // verification in cases where a transform makes the trip count of a loop
12571       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12572       // both cases the loop iterates "undef" times, but SCEV thinks we
12573       // increased the trip count of the loop by 1 incorrectly.
12574       continue;
12575     }
12576 
12577     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12578         SE.getTypeSizeInBits(NewBECount->getType()))
12579       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12580     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12581              SE.getTypeSizeInBits(NewBECount->getType()))
12582       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12583 
12584     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12585 
12586     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12587     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12588       dbgs() << "Trip Count for " << *L << " Changed!\n";
12589       dbgs() << "Old: " << *CurBECount << "\n";
12590       dbgs() << "New: " << *NewBECount << "\n";
12591       dbgs() << "Delta: " << *Delta << "\n";
12592       std::abort();
12593     }
12594   }
12595 
12596   // Collect all valid loops currently in LoopInfo.
12597   SmallPtrSet<Loop *, 32> ValidLoops;
12598   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12599   while (!Worklist.empty()) {
12600     Loop *L = Worklist.pop_back_val();
12601     if (ValidLoops.contains(L))
12602       continue;
12603     ValidLoops.insert(L);
12604     Worklist.append(L->begin(), L->end());
12605   }
12606   // Check for SCEV expressions referencing invalid/deleted loops.
12607   for (auto &KV : ValueExprMap) {
12608     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12609     if (!AR)
12610       continue;
12611     assert(ValidLoops.contains(AR->getLoop()) &&
12612            "AddRec references invalid loop");
12613   }
12614 }
12615 
12616 bool ScalarEvolution::invalidate(
12617     Function &F, const PreservedAnalyses &PA,
12618     FunctionAnalysisManager::Invalidator &Inv) {
12619   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12620   // of its dependencies is invalidated.
12621   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12622   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12623          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12624          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12625          Inv.invalidate<LoopAnalysis>(F, PA);
12626 }
12627 
12628 AnalysisKey ScalarEvolutionAnalysis::Key;
12629 
12630 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12631                                              FunctionAnalysisManager &AM) {
12632   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12633                          AM.getResult<AssumptionAnalysis>(F),
12634                          AM.getResult<DominatorTreeAnalysis>(F),
12635                          AM.getResult<LoopAnalysis>(F));
12636 }
12637 
12638 PreservedAnalyses
12639 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12640   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12641   return PreservedAnalyses::all();
12642 }
12643 
12644 PreservedAnalyses
12645 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12646   // For compatibility with opt's -analyze feature under legacy pass manager
12647   // which was not ported to NPM. This keeps tests using
12648   // update_analyze_test_checks.py working.
12649   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12650      << F.getName() << "':\n";
12651   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12652   return PreservedAnalyses::all();
12653 }
12654 
12655 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12656                       "Scalar Evolution Analysis", false, true)
12657 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12658 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12659 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12660 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12661 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12662                     "Scalar Evolution Analysis", false, true)
12663 
12664 char ScalarEvolutionWrapperPass::ID = 0;
12665 
12666 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12667   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12668 }
12669 
12670 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12671   SE.reset(new ScalarEvolution(
12672       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12673       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12674       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12675       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12676   return false;
12677 }
12678 
12679 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12680 
12681 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12682   SE->print(OS);
12683 }
12684 
12685 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12686   if (!VerifySCEV)
12687     return;
12688 
12689   SE->verify();
12690 }
12691 
12692 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12693   AU.setPreservesAll();
12694   AU.addRequiredTransitive<AssumptionCacheTracker>();
12695   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12696   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12697   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12698 }
12699 
12700 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12701                                                         const SCEV *RHS) {
12702   FoldingSetNodeID ID;
12703   assert(LHS->getType() == RHS->getType() &&
12704          "Type mismatch between LHS and RHS");
12705   // Unique this node based on the arguments
12706   ID.AddInteger(SCEVPredicate::P_Equal);
12707   ID.AddPointer(LHS);
12708   ID.AddPointer(RHS);
12709   void *IP = nullptr;
12710   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12711     return S;
12712   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12713       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12714   UniquePreds.InsertNode(Eq, IP);
12715   return Eq;
12716 }
12717 
12718 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12719     const SCEVAddRecExpr *AR,
12720     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12721   FoldingSetNodeID ID;
12722   // Unique this node based on the arguments
12723   ID.AddInteger(SCEVPredicate::P_Wrap);
12724   ID.AddPointer(AR);
12725   ID.AddInteger(AddedFlags);
12726   void *IP = nullptr;
12727   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12728     return S;
12729   auto *OF = new (SCEVAllocator)
12730       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12731   UniquePreds.InsertNode(OF, IP);
12732   return OF;
12733 }
12734 
12735 namespace {
12736 
12737 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12738 public:
12739 
12740   /// Rewrites \p S in the context of a loop L and the SCEV predication
12741   /// infrastructure.
12742   ///
12743   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12744   /// equivalences present in \p Pred.
12745   ///
12746   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12747   /// \p NewPreds such that the result will be an AddRecExpr.
12748   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12749                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12750                              SCEVUnionPredicate *Pred) {
12751     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12752     return Rewriter.visit(S);
12753   }
12754 
12755   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12756     if (Pred) {
12757       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12758       for (auto *Pred : ExprPreds)
12759         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12760           if (IPred->getLHS() == Expr)
12761             return IPred->getRHS();
12762     }
12763     return convertToAddRecWithPreds(Expr);
12764   }
12765 
12766   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12767     const SCEV *Operand = visit(Expr->getOperand());
12768     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12769     if (AR && AR->getLoop() == L && AR->isAffine()) {
12770       // This couldn't be folded because the operand didn't have the nuw
12771       // flag. Add the nusw flag as an assumption that we could make.
12772       const SCEV *Step = AR->getStepRecurrence(SE);
12773       Type *Ty = Expr->getType();
12774       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12775         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12776                                 SE.getSignExtendExpr(Step, Ty), L,
12777                                 AR->getNoWrapFlags());
12778     }
12779     return SE.getZeroExtendExpr(Operand, Expr->getType());
12780   }
12781 
12782   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12783     const SCEV *Operand = visit(Expr->getOperand());
12784     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12785     if (AR && AR->getLoop() == L && AR->isAffine()) {
12786       // This couldn't be folded because the operand didn't have the nsw
12787       // flag. Add the nssw flag as an assumption that we could make.
12788       const SCEV *Step = AR->getStepRecurrence(SE);
12789       Type *Ty = Expr->getType();
12790       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12791         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12792                                 SE.getSignExtendExpr(Step, Ty), L,
12793                                 AR->getNoWrapFlags());
12794     }
12795     return SE.getSignExtendExpr(Operand, Expr->getType());
12796   }
12797 
12798 private:
12799   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12800                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12801                         SCEVUnionPredicate *Pred)
12802       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12803 
12804   bool addOverflowAssumption(const SCEVPredicate *P) {
12805     if (!NewPreds) {
12806       // Check if we've already made this assumption.
12807       return Pred && Pred->implies(P);
12808     }
12809     NewPreds->insert(P);
12810     return true;
12811   }
12812 
12813   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12814                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12815     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12816     return addOverflowAssumption(A);
12817   }
12818 
12819   // If \p Expr represents a PHINode, we try to see if it can be represented
12820   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12821   // to add this predicate as a runtime overflow check, we return the AddRec.
12822   // If \p Expr does not meet these conditions (is not a PHI node, or we
12823   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12824   // return \p Expr.
12825   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12826     if (!isa<PHINode>(Expr->getValue()))
12827       return Expr;
12828     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12829     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12830     if (!PredicatedRewrite)
12831       return Expr;
12832     for (auto *P : PredicatedRewrite->second){
12833       // Wrap predicates from outer loops are not supported.
12834       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12835         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12836         if (L != AR->getLoop())
12837           return Expr;
12838       }
12839       if (!addOverflowAssumption(P))
12840         return Expr;
12841     }
12842     return PredicatedRewrite->first;
12843   }
12844 
12845   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12846   SCEVUnionPredicate *Pred;
12847   const Loop *L;
12848 };
12849 
12850 } // end anonymous namespace
12851 
12852 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12853                                                    SCEVUnionPredicate &Preds) {
12854   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12855 }
12856 
12857 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12858     const SCEV *S, const Loop *L,
12859     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12860   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12861   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12862   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12863 
12864   if (!AddRec)
12865     return nullptr;
12866 
12867   // Since the transformation was successful, we can now transfer the SCEV
12868   // predicates.
12869   for (auto *P : TransformPreds)
12870     Preds.insert(P);
12871 
12872   return AddRec;
12873 }
12874 
12875 /// SCEV predicates
12876 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12877                              SCEVPredicateKind Kind)
12878     : FastID(ID), Kind(Kind) {}
12879 
12880 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12881                                        const SCEV *LHS, const SCEV *RHS)
12882     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12883   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12884   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12885 }
12886 
12887 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12888   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12889 
12890   if (!Op)
12891     return false;
12892 
12893   return Op->LHS == LHS && Op->RHS == RHS;
12894 }
12895 
12896 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12897 
12898 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12899 
12900 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12901   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12902 }
12903 
12904 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12905                                      const SCEVAddRecExpr *AR,
12906                                      IncrementWrapFlags Flags)
12907     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12908 
12909 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12910 
12911 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12912   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12913 
12914   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12915 }
12916 
12917 bool SCEVWrapPredicate::isAlwaysTrue() const {
12918   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12919   IncrementWrapFlags IFlags = Flags;
12920 
12921   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12922     IFlags = clearFlags(IFlags, IncrementNSSW);
12923 
12924   return IFlags == IncrementAnyWrap;
12925 }
12926 
12927 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12928   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12929   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12930     OS << "<nusw>";
12931   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12932     OS << "<nssw>";
12933   OS << "\n";
12934 }
12935 
12936 SCEVWrapPredicate::IncrementWrapFlags
12937 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12938                                    ScalarEvolution &SE) {
12939   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12940   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12941 
12942   // We can safely transfer the NSW flag as NSSW.
12943   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12944     ImpliedFlags = IncrementNSSW;
12945 
12946   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12947     // If the increment is positive, the SCEV NUW flag will also imply the
12948     // WrapPredicate NUSW flag.
12949     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12950       if (Step->getValue()->getValue().isNonNegative())
12951         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12952   }
12953 
12954   return ImpliedFlags;
12955 }
12956 
12957 /// Union predicates don't get cached so create a dummy set ID for it.
12958 SCEVUnionPredicate::SCEVUnionPredicate()
12959     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12960 
12961 bool SCEVUnionPredicate::isAlwaysTrue() const {
12962   return all_of(Preds,
12963                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12964 }
12965 
12966 ArrayRef<const SCEVPredicate *>
12967 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12968   auto I = SCEVToPreds.find(Expr);
12969   if (I == SCEVToPreds.end())
12970     return ArrayRef<const SCEVPredicate *>();
12971   return I->second;
12972 }
12973 
12974 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12975   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12976     return all_of(Set->Preds,
12977                   [this](const SCEVPredicate *I) { return this->implies(I); });
12978 
12979   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12980   if (ScevPredsIt == SCEVToPreds.end())
12981     return false;
12982   auto &SCEVPreds = ScevPredsIt->second;
12983 
12984   return any_of(SCEVPreds,
12985                 [N](const SCEVPredicate *I) { return I->implies(N); });
12986 }
12987 
12988 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12989 
12990 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12991   for (auto Pred : Preds)
12992     Pred->print(OS, Depth);
12993 }
12994 
12995 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12996   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12997     for (auto Pred : Set->Preds)
12998       add(Pred);
12999     return;
13000   }
13001 
13002   if (implies(N))
13003     return;
13004 
13005   const SCEV *Key = N->getExpr();
13006   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13007                 " associated expression!");
13008 
13009   SCEVToPreds[Key].push_back(N);
13010   Preds.push_back(N);
13011 }
13012 
13013 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13014                                                      Loop &L)
13015     : SE(SE), L(L) {}
13016 
13017 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13018   const SCEV *Expr = SE.getSCEV(V);
13019   RewriteEntry &Entry = RewriteMap[Expr];
13020 
13021   // If we already have an entry and the version matches, return it.
13022   if (Entry.second && Generation == Entry.first)
13023     return Entry.second;
13024 
13025   // We found an entry but it's stale. Rewrite the stale entry
13026   // according to the current predicate.
13027   if (Entry.second)
13028     Expr = Entry.second;
13029 
13030   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13031   Entry = {Generation, NewSCEV};
13032 
13033   return NewSCEV;
13034 }
13035 
13036 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13037   if (!BackedgeCount) {
13038     SCEVUnionPredicate BackedgePred;
13039     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13040     addPredicate(BackedgePred);
13041   }
13042   return BackedgeCount;
13043 }
13044 
13045 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13046   if (Preds.implies(&Pred))
13047     return;
13048   Preds.add(&Pred);
13049   updateGeneration();
13050 }
13051 
13052 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13053   return Preds;
13054 }
13055 
13056 void PredicatedScalarEvolution::updateGeneration() {
13057   // If the generation number wrapped recompute everything.
13058   if (++Generation == 0) {
13059     for (auto &II : RewriteMap) {
13060       const SCEV *Rewritten = II.second.second;
13061       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13062     }
13063   }
13064 }
13065 
13066 void PredicatedScalarEvolution::setNoOverflow(
13067     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13068   const SCEV *Expr = getSCEV(V);
13069   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13070 
13071   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13072 
13073   // Clear the statically implied flags.
13074   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13075   addPredicate(*SE.getWrapPredicate(AR, Flags));
13076 
13077   auto II = FlagsMap.insert({V, Flags});
13078   if (!II.second)
13079     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13080 }
13081 
13082 bool PredicatedScalarEvolution::hasNoOverflow(
13083     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13084   const SCEV *Expr = getSCEV(V);
13085   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13086 
13087   Flags = SCEVWrapPredicate::clearFlags(
13088       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13089 
13090   auto II = FlagsMap.find(V);
13091 
13092   if (II != FlagsMap.end())
13093     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13094 
13095   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13096 }
13097 
13098 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13099   const SCEV *Expr = this->getSCEV(V);
13100   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13101   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13102 
13103   if (!New)
13104     return nullptr;
13105 
13106   for (auto *P : NewPreds)
13107     Preds.add(P);
13108 
13109   updateGeneration();
13110   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13111   return New;
13112 }
13113 
13114 PredicatedScalarEvolution::PredicatedScalarEvolution(
13115     const PredicatedScalarEvolution &Init)
13116     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13117       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13118   for (auto I : Init.FlagsMap)
13119     FlagsMap.insert(I);
13120 }
13121 
13122 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13123   // For each block.
13124   for (auto *BB : L.getBlocks())
13125     for (auto &I : *BB) {
13126       if (!SE.isSCEVable(I.getType()))
13127         continue;
13128 
13129       auto *Expr = SE.getSCEV(&I);
13130       auto II = RewriteMap.find(Expr);
13131 
13132       if (II == RewriteMap.end())
13133         continue;
13134 
13135       // Don't print things that are not interesting.
13136       if (II->second.second == Expr)
13137         continue;
13138 
13139       OS.indent(Depth) << "[PSE]" << I << ":\n";
13140       OS.indent(Depth + 2) << *Expr << "\n";
13141       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13142     }
13143 }
13144 
13145 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13146 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13147 // for URem with constant power-of-2 second operands.
13148 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13149 // 4, A / B becomes X / 8).
13150 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13151                                 const SCEV *&RHS) {
13152   // Try to match 'zext (trunc A to iB) to iY', which is used
13153   // for URem with constant power-of-2 second operands. Make sure the size of
13154   // the operand A matches the size of the whole expressions.
13155   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13156     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13157       LHS = Trunc->getOperand();
13158       if (LHS->getType() != Expr->getType())
13159         LHS = getZeroExtendExpr(LHS, Expr->getType());
13160       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13161                         << getTypeSizeInBits(Trunc->getType()));
13162       return true;
13163     }
13164   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13165   if (Add == nullptr || Add->getNumOperands() != 2)
13166     return false;
13167 
13168   const SCEV *A = Add->getOperand(1);
13169   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13170 
13171   if (Mul == nullptr)
13172     return false;
13173 
13174   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13175     // (SomeExpr + (-(SomeExpr / B) * B)).
13176     if (Expr == getURemExpr(A, B)) {
13177       LHS = A;
13178       RHS = B;
13179       return true;
13180     }
13181     return false;
13182   };
13183 
13184   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13185   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13186     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13187            MatchURemWithDivisor(Mul->getOperand(2));
13188 
13189   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13190   if (Mul->getNumOperands() == 2)
13191     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13192            MatchURemWithDivisor(Mul->getOperand(0)) ||
13193            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13194            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13195   return false;
13196 }
13197 
13198 const SCEV *
13199 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13200   SmallVector<BasicBlock*, 16> ExitingBlocks;
13201   L->getExitingBlocks(ExitingBlocks);
13202 
13203   // Form an expression for the maximum exit count possible for this loop. We
13204   // merge the max and exact information to approximate a version of
13205   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13206   SmallVector<const SCEV*, 4> ExitCounts;
13207   for (BasicBlock *ExitingBB : ExitingBlocks) {
13208     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13209     if (isa<SCEVCouldNotCompute>(ExitCount))
13210       ExitCount = getExitCount(L, ExitingBB,
13211                                   ScalarEvolution::ConstantMaximum);
13212     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13213       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13214              "We should only have known counts for exiting blocks that "
13215              "dominate latch!");
13216       ExitCounts.push_back(ExitCount);
13217     }
13218   }
13219   if (ExitCounts.empty())
13220     return getCouldNotCompute();
13221   return getUMinFromMismatchedTypes(ExitCounts);
13222 }
13223 
13224 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13225 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13226 /// we cannot guarantee that the replacement is loop invariant in the loop of
13227 /// the AddRec.
13228 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13229   ValueToSCEVMapTy &Map;
13230 
13231 public:
13232   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13233       : SCEVRewriteVisitor(SE), Map(M) {}
13234 
13235   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13236 
13237   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13238     auto I = Map.find(Expr->getValue());
13239     if (I == Map.end())
13240       return Expr;
13241     return I->second;
13242   }
13243 };
13244 
13245 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13246   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13247                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13248     if (!isa<SCEVUnknown>(LHS)) {
13249       std::swap(LHS, RHS);
13250       Predicate = CmpInst::getSwappedPredicate(Predicate);
13251     }
13252 
13253     // For now, limit to conditions that provide information about unknown
13254     // expressions.
13255     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13256     if (!LHSUnknown)
13257       return;
13258 
13259     // TODO: use information from more predicates.
13260     switch (Predicate) {
13261     case CmpInst::ICMP_ULT: {
13262       if (!containsAddRecurrence(RHS)) {
13263         const SCEV *Base = LHS;
13264         auto I = RewriteMap.find(LHSUnknown->getValue());
13265         if (I != RewriteMap.end())
13266           Base = I->second;
13267 
13268         RewriteMap[LHSUnknown->getValue()] =
13269             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13270       }
13271       break;
13272     }
13273     case CmpInst::ICMP_ULE: {
13274       if (!containsAddRecurrence(RHS)) {
13275         const SCEV *Base = LHS;
13276         auto I = RewriteMap.find(LHSUnknown->getValue());
13277         if (I != RewriteMap.end())
13278           Base = I->second;
13279         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13280       }
13281       break;
13282     }
13283     case CmpInst::ICMP_EQ:
13284       if (isa<SCEVConstant>(RHS))
13285         RewriteMap[LHSUnknown->getValue()] = RHS;
13286       break;
13287     case CmpInst::ICMP_NE:
13288       if (isa<SCEVConstant>(RHS) &&
13289           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13290         RewriteMap[LHSUnknown->getValue()] =
13291             getUMaxExpr(LHS, getOne(RHS->getType()));
13292       break;
13293     default:
13294       break;
13295     }
13296   };
13297   // Starting at the loop predecessor, climb up the predecessor chain, as long
13298   // as there are predecessors that can be found that have unique successors
13299   // leading to the original header.
13300   // TODO: share this logic with isLoopEntryGuardedByCond.
13301   ValueToSCEVMapTy RewriteMap;
13302   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13303            L->getLoopPredecessor(), L->getHeader());
13304        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13305 
13306     const BranchInst *LoopEntryPredicate =
13307         dyn_cast<BranchInst>(Pair.first->getTerminator());
13308     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13309       continue;
13310 
13311     // TODO: use information from more complex conditions, e.g. AND expressions.
13312     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13313     if (!Cmp)
13314       continue;
13315 
13316     auto Predicate = Cmp->getPredicate();
13317     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13318       Predicate = CmpInst::getInversePredicate(Predicate);
13319     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13320                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13321   }
13322 
13323   // Also collect information from assumptions dominating the loop.
13324   for (auto &AssumeVH : AC.assumptions()) {
13325     if (!AssumeVH)
13326       continue;
13327     auto *AssumeI = cast<CallInst>(AssumeVH);
13328     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13329     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13330       continue;
13331     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13332                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13333   }
13334 
13335   if (RewriteMap.empty())
13336     return Expr;
13337   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13338   return Rewriter.visit(Expr);
13339 }
13340