1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/PhiValues.h" 10 #include "llvm/ADT/SmallPtrSet.h" 11 #include "llvm/ADT/SmallVector.h" 12 #include "llvm/IR/Instructions.h" 13 14 using namespace llvm; 15 16 void PhiValues::PhiValuesCallbackVH::deleted() { 17 PV->invalidateValue(getValPtr()); 18 } 19 20 void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { 21 // We could potentially update the cached values we have with the new value, 22 // but it's simpler to just treat the old value as invalidated. 23 PV->invalidateValue(getValPtr()); 24 } 25 26 bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, 27 FunctionAnalysisManager::Invalidator &) { 28 // PhiValues is invalidated if it isn't preserved. 29 auto PAC = PA.getChecker<PhiValuesAnalysis>(); 30 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); 31 } 32 33 // The goal here is to find all of the non-phi values reachable from this phi, 34 // and to do the same for all of the phis reachable from this phi, as doing so 35 // is necessary anyway in order to get the values for this phi. We do this using 36 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected 37 // components of the phi graph rooted in this phi: 38 // * All phis in a strongly connected component will have the same reachable 39 // non-phi values. The SCC may not be the maximal subgraph for that set of 40 // reachable values, but finding out that isn't really necessary (it would 41 // only reduce the amount of memory needed to store the values). 42 // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it 43 // never completes a component before the components reachable from it have 44 // been completed. This means that when we complete a component we have 45 // everything we need to collect the values reachable from that component. 46 // * We collect both the non-phi values reachable from each SCC, as that's what 47 // we're ultimately interested in, and all of the reachable values, i.e. 48 // including phis, as that makes invalidateValue easier. 49 void PhiValues::processPhi(const PHINode *Phi, 50 SmallVector<const PHINode *, 8> &Stack) { 51 // Initialize the phi with the next depth number. 52 assert(DepthMap.lookup(Phi) == 0); 53 assert(NextDepthNumber != UINT_MAX); 54 unsigned int DepthNumber = ++NextDepthNumber; 55 DepthMap[Phi] = DepthNumber; 56 57 // Recursively process the incoming phis of this phi. 58 TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this)); 59 for (Value *PhiOp : Phi->incoming_values()) { 60 if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) { 61 // Recurse if the phi has not yet been visited. 62 if (DepthMap.lookup(PhiPhiOp) == 0) 63 processPhi(PhiPhiOp, Stack); 64 assert(DepthMap.lookup(PhiPhiOp) != 0); 65 // If the phi did not become part of a component then this phi and that 66 // phi are part of the same component, so adjust the depth number. 67 if (!ReachableMap.count(DepthMap[PhiPhiOp])) 68 DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]); 69 } else { 70 TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this)); 71 } 72 } 73 74 // Now that incoming phis have been handled, push this phi to the stack. 75 Stack.push_back(Phi); 76 77 // If the depth number has not changed then we've finished collecting the phis 78 // of a strongly connected component. 79 if (DepthMap[Phi] == DepthNumber) { 80 // Collect the reachable values for this component. The phis of this 81 // component will be those on top of the depth stach with the same or 82 // greater depth number. 83 ConstValueSet Reachable; 84 while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) { 85 const PHINode *ComponentPhi = Stack.pop_back_val(); 86 Reachable.insert(ComponentPhi); 87 DepthMap[ComponentPhi] = DepthNumber; 88 for (Value *Op : ComponentPhi->incoming_values()) { 89 if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) { 90 // If this phi is not part of the same component then that component 91 // is guaranteed to have been completed before this one. Therefore we 92 // can just add its reachable values to the reachable values of this 93 // component. 94 auto It = ReachableMap.find(DepthMap[PhiOp]); 95 if (It != ReachableMap.end()) 96 Reachable.insert(It->second.begin(), It->second.end()); 97 } else { 98 Reachable.insert(Op); 99 } 100 } 101 } 102 ReachableMap.insert({DepthNumber,Reachable}); 103 104 // Filter out phis to get the non-phi reachable values. 105 ValueSet NonPhi; 106 for (const Value *V : Reachable) 107 if (!isa<PHINode>(V)) 108 NonPhi.insert(const_cast<Value*>(V)); 109 NonPhiReachableMap.insert({DepthNumber,NonPhi}); 110 } 111 } 112 113 const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { 114 if (DepthMap.count(PN) == 0) { 115 SmallVector<const PHINode *, 8> Stack; 116 processPhi(PN, Stack); 117 assert(Stack.empty()); 118 } 119 assert(DepthMap.lookup(PN) != 0); 120 return NonPhiReachableMap[DepthMap[PN]]; 121 } 122 123 void PhiValues::invalidateValue(const Value *V) { 124 // Components that can reach V are invalid. 125 SmallVector<unsigned int, 8> InvalidComponents; 126 for (auto &Pair : ReachableMap) 127 if (Pair.second.count(V)) 128 InvalidComponents.push_back(Pair.first); 129 130 for (unsigned int N : InvalidComponents) { 131 for (const Value *V : ReachableMap[N]) 132 if (const PHINode *PN = dyn_cast<PHINode>(V)) 133 DepthMap.erase(PN); 134 NonPhiReachableMap.erase(N); 135 ReachableMap.erase(N); 136 } 137 // This value is no longer tracked 138 auto It = TrackedValues.find_as(V); 139 if (It != TrackedValues.end()) 140 TrackedValues.erase(It); 141 } 142 143 void PhiValues::releaseMemory() { 144 DepthMap.clear(); 145 NonPhiReachableMap.clear(); 146 ReachableMap.clear(); 147 } 148 149 void PhiValues::print(raw_ostream &OS) const { 150 // Iterate through the phi nodes of the function rather than iterating through 151 // DepthMap in order to get predictable ordering. 152 for (const BasicBlock &BB : F) { 153 for (const PHINode &PN : BB.phis()) { 154 OS << "PHI "; 155 PN.printAsOperand(OS, false); 156 OS << " has values:\n"; 157 unsigned int N = DepthMap.lookup(&PN); 158 auto It = NonPhiReachableMap.find(N); 159 if (It == NonPhiReachableMap.end()) 160 OS << " UNKNOWN\n"; 161 else if (It->second.empty()) 162 OS << " NONE\n"; 163 else 164 for (Value *V : It->second) 165 // Printing of an instruction prints two spaces at the start, so 166 // handle instructions and everything else slightly differently in 167 // order to get consistent indenting. 168 if (Instruction *I = dyn_cast<Instruction>(V)) 169 OS << *I << "\n"; 170 else 171 OS << " " << *V << "\n"; 172 } 173 } 174 } 175 176 AnalysisKey PhiValuesAnalysis::Key; 177 PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { 178 return PhiValues(F); 179 } 180 181 PreservedAnalyses PhiValuesPrinterPass::run(Function &F, 182 FunctionAnalysisManager &AM) { 183 OS << "PHI Values for function: " << F.getName() << "\n"; 184 PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F); 185 for (const BasicBlock &BB : F) 186 for (const PHINode &PN : BB.phis()) 187 PI.getValuesForPhi(&PN); 188 PI.print(OS); 189 return PreservedAnalyses::all(); 190 } 191 192 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { 193 initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); 194 } 195 196 bool PhiValuesWrapperPass::runOnFunction(Function &F) { 197 Result.reset(new PhiValues(F)); 198 return false; 199 } 200 201 void PhiValuesWrapperPass::releaseMemory() { 202 Result->releaseMemory(); 203 } 204 205 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 206 AU.setPreservesAll(); 207 } 208 209 char PhiValuesWrapperPass::ID = 0; 210 211 INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, 212 true) 213