xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/PhiValues.cpp (revision f157ca4696f5922275d5d451736005b9332eb136)
1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/PhiValues.h"
10 #include "llvm/ADT/SmallPtrSet.h"
11 #include "llvm/ADT/SmallVector.h"
12 #include "llvm/IR/Instructions.h"
13 
14 using namespace llvm;
15 
16 void PhiValues::PhiValuesCallbackVH::deleted() {
17   PV->invalidateValue(getValPtr());
18 }
19 
20 void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) {
21   // We could potentially update the cached values we have with the new value,
22   // but it's simpler to just treat the old value as invalidated.
23   PV->invalidateValue(getValPtr());
24 }
25 
26 bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA,
27                            FunctionAnalysisManager::Invalidator &) {
28   // PhiValues is invalidated if it isn't preserved.
29   auto PAC = PA.getChecker<PhiValuesAnalysis>();
30   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
31 }
32 
33 // The goal here is to find all of the non-phi values reachable from this phi,
34 // and to do the same for all of the phis reachable from this phi, as doing so
35 // is necessary anyway in order to get the values for this phi. We do this using
36 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected
37 // components of the phi graph rooted in this phi:
38 //  * All phis in a strongly connected component will have the same reachable
39 //    non-phi values. The SCC may not be the maximal subgraph for that set of
40 //    reachable values, but finding out that isn't really necessary (it would
41 //    only reduce the amount of memory needed to store the values).
42 //  * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
43 //    never completes a component before the components reachable from it have
44 //    been completed. This means that when we complete a component we have
45 //    everything we need to collect the values reachable from that component.
46 //  * We collect both the non-phi values reachable from each SCC, as that's what
47 //    we're ultimately interested in, and all of the reachable values, i.e.
48 //    including phis, as that makes invalidateValue easier.
49 void PhiValues::processPhi(const PHINode *Phi,
50                            SmallVector<const PHINode *, 8> &Stack) {
51   // Initialize the phi with the next depth number.
52   assert(DepthMap.lookup(Phi) == 0);
53   assert(NextDepthNumber != UINT_MAX);
54   unsigned int DepthNumber = ++NextDepthNumber;
55   DepthMap[Phi] = DepthNumber;
56 
57   // Recursively process the incoming phis of this phi.
58   TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this));
59   for (Value *PhiOp : Phi->incoming_values()) {
60     if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) {
61       // Recurse if the phi has not yet been visited.
62       if (DepthMap.lookup(PhiPhiOp) == 0)
63         processPhi(PhiPhiOp, Stack);
64       assert(DepthMap.lookup(PhiPhiOp) != 0);
65       // If the phi did not become part of a component then this phi and that
66       // phi are part of the same component, so adjust the depth number.
67       if (!ReachableMap.count(DepthMap[PhiPhiOp]))
68         DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]);
69     } else {
70       TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this));
71     }
72   }
73 
74   // Now that incoming phis have been handled, push this phi to the stack.
75   Stack.push_back(Phi);
76 
77   // If the depth number has not changed then we've finished collecting the phis
78   // of a strongly connected component.
79   if (DepthMap[Phi] == DepthNumber) {
80     // Collect the reachable values for this component. The phis of this
81     // component will be those on top of the depth stach with the same or
82     // greater depth number.
83     ConstValueSet Reachable;
84     while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) {
85       const PHINode *ComponentPhi = Stack.pop_back_val();
86       Reachable.insert(ComponentPhi);
87       DepthMap[ComponentPhi] = DepthNumber;
88       for (Value *Op : ComponentPhi->incoming_values()) {
89         if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) {
90           // If this phi is not part of the same component then that component
91           // is guaranteed to have been completed before this one. Therefore we
92           // can just add its reachable values to the reachable values of this
93           // component.
94           auto It = ReachableMap.find(DepthMap[PhiOp]);
95           if (It != ReachableMap.end())
96             Reachable.insert(It->second.begin(), It->second.end());
97         } else {
98           Reachable.insert(Op);
99         }
100       }
101     }
102     ReachableMap.insert({DepthNumber,Reachable});
103 
104     // Filter out phis to get the non-phi reachable values.
105     ValueSet NonPhi;
106     for (const Value *V : Reachable)
107       if (!isa<PHINode>(V))
108         NonPhi.insert(const_cast<Value*>(V));
109     NonPhiReachableMap.insert({DepthNumber,NonPhi});
110   }
111 }
112 
113 const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) {
114   if (DepthMap.count(PN) == 0) {
115     SmallVector<const PHINode *, 8> Stack;
116     processPhi(PN, Stack);
117     assert(Stack.empty());
118   }
119   assert(DepthMap.lookup(PN) != 0);
120   return NonPhiReachableMap[DepthMap[PN]];
121 }
122 
123 void PhiValues::invalidateValue(const Value *V) {
124   // Components that can reach V are invalid.
125   SmallVector<unsigned int, 8> InvalidComponents;
126   for (auto &Pair : ReachableMap)
127     if (Pair.second.count(V))
128       InvalidComponents.push_back(Pair.first);
129 
130   for (unsigned int N : InvalidComponents) {
131     for (const Value *V : ReachableMap[N])
132       if (const PHINode *PN = dyn_cast<PHINode>(V))
133         DepthMap.erase(PN);
134     NonPhiReachableMap.erase(N);
135     ReachableMap.erase(N);
136   }
137   // This value is no longer tracked
138   auto It = TrackedValues.find_as(V);
139   if (It != TrackedValues.end())
140     TrackedValues.erase(It);
141 }
142 
143 void PhiValues::releaseMemory() {
144   DepthMap.clear();
145   NonPhiReachableMap.clear();
146   ReachableMap.clear();
147 }
148 
149 void PhiValues::print(raw_ostream &OS) const {
150   // Iterate through the phi nodes of the function rather than iterating through
151   // DepthMap in order to get predictable ordering.
152   for (const BasicBlock &BB : F) {
153     for (const PHINode &PN : BB.phis()) {
154       OS << "PHI ";
155       PN.printAsOperand(OS, false);
156       OS << " has values:\n";
157       unsigned int N = DepthMap.lookup(&PN);
158       auto It = NonPhiReachableMap.find(N);
159       if (It == NonPhiReachableMap.end())
160         OS << "  UNKNOWN\n";
161       else if (It->second.empty())
162         OS << "  NONE\n";
163       else
164         for (Value *V : It->second)
165           // Printing of an instruction prints two spaces at the start, so
166           // handle instructions and everything else slightly differently in
167           // order to get consistent indenting.
168           if (Instruction *I = dyn_cast<Instruction>(V))
169             OS << *I << "\n";
170           else
171             OS << "  " << *V << "\n";
172     }
173   }
174 }
175 
176 AnalysisKey PhiValuesAnalysis::Key;
177 PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) {
178   return PhiValues(F);
179 }
180 
181 PreservedAnalyses PhiValuesPrinterPass::run(Function &F,
182                                             FunctionAnalysisManager &AM) {
183   OS << "PHI Values for function: " << F.getName() << "\n";
184   PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F);
185   for (const BasicBlock &BB : F)
186     for (const PHINode &PN : BB.phis())
187       PI.getValuesForPhi(&PN);
188   PI.print(OS);
189   return PreservedAnalyses::all();
190 }
191 
192 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {
193   initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
194 }
195 
196 bool PhiValuesWrapperPass::runOnFunction(Function &F) {
197   Result.reset(new PhiValues(F));
198   return false;
199 }
200 
201 void PhiValuesWrapperPass::releaseMemory() {
202   Result->releaseMemory();
203 }
204 
205 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
206   AU.setPreservesAll();
207 }
208 
209 char PhiValuesWrapperPass::ID = 0;
210 
211 INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false,
212                 true)
213