1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/PhiValues.h" 10 #include "llvm/ADT/SmallPtrSet.h" 11 #include "llvm/ADT/SmallVector.h" 12 #include "llvm/IR/Instructions.h" 13 #include "llvm/InitializePasses.h" 14 15 using namespace llvm; 16 17 void PhiValues::PhiValuesCallbackVH::deleted() { 18 PV->invalidateValue(getValPtr()); 19 } 20 21 void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { 22 // We could potentially update the cached values we have with the new value, 23 // but it's simpler to just treat the old value as invalidated. 24 PV->invalidateValue(getValPtr()); 25 } 26 27 bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, 28 FunctionAnalysisManager::Invalidator &) { 29 // PhiValues is invalidated if it isn't preserved. 30 auto PAC = PA.getChecker<PhiValuesAnalysis>(); 31 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); 32 } 33 34 // The goal here is to find all of the non-phi values reachable from this phi, 35 // and to do the same for all of the phis reachable from this phi, as doing so 36 // is necessary anyway in order to get the values for this phi. We do this using 37 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected 38 // components of the phi graph rooted in this phi: 39 // * All phis in a strongly connected component will have the same reachable 40 // non-phi values. The SCC may not be the maximal subgraph for that set of 41 // reachable values, but finding out that isn't really necessary (it would 42 // only reduce the amount of memory needed to store the values). 43 // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it 44 // never completes a component before the components reachable from it have 45 // been completed. This means that when we complete a component we have 46 // everything we need to collect the values reachable from that component. 47 // * We collect both the non-phi values reachable from each SCC, as that's what 48 // we're ultimately interested in, and all of the reachable values, i.e. 49 // including phis, as that makes invalidateValue easier. 50 void PhiValues::processPhi(const PHINode *Phi, 51 SmallVectorImpl<const PHINode *> &Stack) { 52 // Initialize the phi with the next depth number. 53 assert(DepthMap.lookup(Phi) == 0); 54 assert(NextDepthNumber != UINT_MAX); 55 unsigned int RootDepthNumber = ++NextDepthNumber; 56 DepthMap[Phi] = RootDepthNumber; 57 58 // Recursively process the incoming phis of this phi. 59 TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this)); 60 for (Value *PhiOp : Phi->incoming_values()) { 61 if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) { 62 // Recurse if the phi has not yet been visited. 63 unsigned int OpDepthNumber = DepthMap.lookup(PhiPhiOp); 64 if (OpDepthNumber == 0) { 65 processPhi(PhiPhiOp, Stack); 66 OpDepthNumber = DepthMap.lookup(PhiPhiOp); 67 assert(OpDepthNumber != 0); 68 } 69 // If the phi did not become part of a component then this phi and that 70 // phi are part of the same component, so adjust the depth number. 71 if (!ReachableMap.count(OpDepthNumber)) 72 DepthMap[Phi] = std::min(DepthMap[Phi], OpDepthNumber); 73 } else { 74 TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this)); 75 } 76 } 77 78 // Now that incoming phis have been handled, push this phi to the stack. 79 Stack.push_back(Phi); 80 81 // If the depth number has not changed then we've finished collecting the phis 82 // of a strongly connected component. 83 if (DepthMap[Phi] == RootDepthNumber) { 84 // Collect the reachable values for this component. The phis of this 85 // component will be those on top of the depth stack with the same or 86 // greater depth number. 87 ConstValueSet &Reachable = ReachableMap[RootDepthNumber]; 88 while (true) { 89 const PHINode *ComponentPhi = Stack.pop_back_val(); 90 Reachable.insert(ComponentPhi); 91 92 for (Value *Op : ComponentPhi->incoming_values()) { 93 if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) { 94 // If this phi is not part of the same component then that component 95 // is guaranteed to have been completed before this one. Therefore we 96 // can just add its reachable values to the reachable values of this 97 // component. 98 unsigned int OpDepthNumber = DepthMap[PhiOp]; 99 if (OpDepthNumber != RootDepthNumber) { 100 auto It = ReachableMap.find(OpDepthNumber); 101 if (It != ReachableMap.end()) 102 Reachable.insert(It->second.begin(), It->second.end()); 103 } 104 } else 105 Reachable.insert(Op); 106 } 107 108 if (Stack.empty()) 109 break; 110 111 unsigned int &ComponentDepthNumber = DepthMap[Stack.back()]; 112 if (ComponentDepthNumber < RootDepthNumber) 113 break; 114 115 ComponentDepthNumber = RootDepthNumber; 116 } 117 118 // Filter out phis to get the non-phi reachable values. 119 ValueSet &NonPhi = NonPhiReachableMap[RootDepthNumber]; 120 for (const Value *V : Reachable) 121 if (!isa<PHINode>(V)) 122 NonPhi.insert(const_cast<Value *>(V)); 123 } 124 } 125 126 const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { 127 unsigned int DepthNumber = DepthMap.lookup(PN); 128 if (DepthNumber == 0) { 129 SmallVector<const PHINode *, 8> Stack; 130 processPhi(PN, Stack); 131 DepthNumber = DepthMap.lookup(PN); 132 assert(Stack.empty()); 133 assert(DepthNumber != 0); 134 } 135 return NonPhiReachableMap[DepthNumber]; 136 } 137 138 void PhiValues::invalidateValue(const Value *V) { 139 // Components that can reach V are invalid. 140 SmallVector<unsigned int, 8> InvalidComponents; 141 for (auto &Pair : ReachableMap) 142 if (Pair.second.count(V)) 143 InvalidComponents.push_back(Pair.first); 144 145 for (unsigned int N : InvalidComponents) { 146 for (const Value *V : ReachableMap[N]) 147 if (const PHINode *PN = dyn_cast<PHINode>(V)) 148 DepthMap.erase(PN); 149 NonPhiReachableMap.erase(N); 150 ReachableMap.erase(N); 151 } 152 // This value is no longer tracked 153 auto It = TrackedValues.find_as(V); 154 if (It != TrackedValues.end()) 155 TrackedValues.erase(It); 156 } 157 158 void PhiValues::releaseMemory() { 159 DepthMap.clear(); 160 NonPhiReachableMap.clear(); 161 ReachableMap.clear(); 162 } 163 164 void PhiValues::print(raw_ostream &OS) const { 165 // Iterate through the phi nodes of the function rather than iterating through 166 // DepthMap in order to get predictable ordering. 167 for (const BasicBlock &BB : F) { 168 for (const PHINode &PN : BB.phis()) { 169 OS << "PHI "; 170 PN.printAsOperand(OS, false); 171 OS << " has values:\n"; 172 unsigned int N = DepthMap.lookup(&PN); 173 auto It = NonPhiReachableMap.find(N); 174 if (It == NonPhiReachableMap.end()) 175 OS << " UNKNOWN\n"; 176 else if (It->second.empty()) 177 OS << " NONE\n"; 178 else 179 for (Value *V : It->second) 180 // Printing of an instruction prints two spaces at the start, so 181 // handle instructions and everything else slightly differently in 182 // order to get consistent indenting. 183 if (Instruction *I = dyn_cast<Instruction>(V)) 184 OS << *I << "\n"; 185 else 186 OS << " " << *V << "\n"; 187 } 188 } 189 } 190 191 AnalysisKey PhiValuesAnalysis::Key; 192 PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { 193 return PhiValues(F); 194 } 195 196 PreservedAnalyses PhiValuesPrinterPass::run(Function &F, 197 FunctionAnalysisManager &AM) { 198 OS << "PHI Values for function: " << F.getName() << "\n"; 199 PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F); 200 for (const BasicBlock &BB : F) 201 for (const PHINode &PN : BB.phis()) 202 PI.getValuesForPhi(&PN); 203 PI.print(OS); 204 return PreservedAnalyses::all(); 205 } 206 207 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { 208 initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); 209 } 210 211 bool PhiValuesWrapperPass::runOnFunction(Function &F) { 212 Result.reset(new PhiValues(F)); 213 return false; 214 } 215 216 void PhiValuesWrapperPass::releaseMemory() { 217 Result->releaseMemory(); 218 } 219 220 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 221 AU.setPreservesAll(); 222 } 223 224 char PhiValuesWrapperPass::ID = 0; 225 226 INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, 227 true) 228