1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PHITransAddr class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/PHITransAddr.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 using namespace llvm; 23 24 static cl::opt<bool> EnableAddPhiTranslation( 25 "gvn-add-phi-translation", cl::init(false), cl::Hidden, 26 cl::desc("Enable phi-translation of add instructions")); 27 28 static bool canPHITrans(Instruction *Inst) { 29 if (isa<PHINode>(Inst) || isa<GetElementPtrInst>(Inst) || isa<CastInst>(Inst)) 30 return true; 31 32 if (Inst->getOpcode() == Instruction::Add && 33 isa<ConstantInt>(Inst->getOperand(1))) 34 return true; 35 36 return false; 37 } 38 39 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 40 LLVM_DUMP_METHOD void PHITransAddr::dump() const { 41 if (!Addr) { 42 dbgs() << "PHITransAddr: null\n"; 43 return; 44 } 45 dbgs() << "PHITransAddr: " << *Addr << "\n"; 46 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 47 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 48 } 49 #endif 50 51 static bool verifySubExpr(Value *Expr, 52 SmallVectorImpl<Instruction *> &InstInputs) { 53 // If this is a non-instruction value, there is nothing to do. 54 Instruction *I = dyn_cast<Instruction>(Expr); 55 if (!I) return true; 56 57 // If it's an instruction, it is either in Tmp or its operands recursively 58 // are. 59 if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) { 60 InstInputs.erase(Entry); 61 return true; 62 } 63 64 // If it isn't in the InstInputs list it is a subexpr incorporated into the 65 // address. Validate that it is phi translatable. 66 if (!canPHITrans(I)) { 67 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 68 errs() << *I << '\n'; 69 llvm_unreachable("Either something is missing from InstInputs or " 70 "canPHITrans is wrong."); 71 } 72 73 // Validate the operands of the instruction. 74 return all_of(I->operands(), 75 [&](Value *Op) { return verifySubExpr(Op, InstInputs); }); 76 } 77 78 /// verify - Check internal consistency of this data structure. If the 79 /// structure is valid, it returns true. If invalid, it prints errors and 80 /// returns false. 81 bool PHITransAddr::verify() const { 82 if (!Addr) return true; 83 84 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 85 86 if (!verifySubExpr(Addr, Tmp)) 87 return false; 88 89 if (!Tmp.empty()) { 90 errs() << "PHITransAddr contains extra instructions:\n"; 91 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 92 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 93 llvm_unreachable("This is unexpected."); 94 } 95 96 // a-ok. 97 return true; 98 } 99 100 /// isPotentiallyPHITranslatable - If this needs PHI translation, return true 101 /// if we have some hope of doing it. This should be used as a filter to 102 /// avoid calling PHITranslateValue in hopeless situations. 103 bool PHITransAddr::isPotentiallyPHITranslatable() const { 104 // If the input value is not an instruction, or if it is not defined in CurBB, 105 // then we don't need to phi translate it. 106 Instruction *Inst = dyn_cast<Instruction>(Addr); 107 return !Inst || canPHITrans(Inst); 108 } 109 110 static void RemoveInstInputs(Value *V, 111 SmallVectorImpl<Instruction*> &InstInputs) { 112 Instruction *I = dyn_cast<Instruction>(V); 113 if (!I) return; 114 115 // If the instruction is in the InstInputs list, remove it. 116 if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) { 117 InstInputs.erase(Entry); 118 return; 119 } 120 121 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 122 123 // Otherwise, it must have instruction inputs itself. Zap them recursively. 124 for (Value *Op : I->operands()) 125 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 126 RemoveInstInputs(OpInst, InstInputs); 127 } 128 129 Value *PHITransAddr::translateSubExpr(Value *V, BasicBlock *CurBB, 130 BasicBlock *PredBB, 131 const DominatorTree *DT) { 132 // If this is a non-instruction value, it can't require PHI translation. 133 Instruction *Inst = dyn_cast<Instruction>(V); 134 if (!Inst) return V; 135 136 // Determine whether 'Inst' is an input to our PHI translatable expression. 137 bool isInput = is_contained(InstInputs, Inst); 138 139 // Handle inputs instructions if needed. 140 if (isInput) { 141 if (Inst->getParent() != CurBB) { 142 // If it is an input defined in a different block, then it remains an 143 // input. 144 return Inst; 145 } 146 147 // If 'Inst' is defined in this block and is an input that needs to be phi 148 // translated, we need to incorporate the value into the expression or fail. 149 150 // In either case, the instruction itself isn't an input any longer. 151 InstInputs.erase(find(InstInputs, Inst)); 152 153 // If this is a PHI, go ahead and translate it. 154 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 155 return addAsInput(PN->getIncomingValueForBlock(PredBB)); 156 157 // If this is a non-phi value, and it is analyzable, we can incorporate it 158 // into the expression by making all instruction operands be inputs. 159 if (!canPHITrans(Inst)) 160 return nullptr; 161 162 // All instruction operands are now inputs (and of course, they may also be 163 // defined in this block, so they may need to be phi translated themselves. 164 for (Value *Op : Inst->operands()) 165 addAsInput(Op); 166 } 167 168 // Ok, it must be an intermediate result (either because it started that way 169 // or because we just incorporated it into the expression). See if its 170 // operands need to be phi translated, and if so, reconstruct it. 171 172 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 173 Value *PHIIn = translateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 174 if (!PHIIn) return nullptr; 175 if (PHIIn == Cast->getOperand(0)) 176 return Cast; 177 178 // Find an available version of this cast. 179 180 // Try to simplify cast first. 181 if (Value *V = simplifyCastInst(Cast->getOpcode(), PHIIn, Cast->getType(), 182 {DL, TLI, DT, AC})) { 183 RemoveInstInputs(PHIIn, InstInputs); 184 return addAsInput(V); 185 } 186 187 // Otherwise we have to see if a casted version of the incoming pointer 188 // is available. If so, we can use it, otherwise we have to fail. 189 for (User *U : PHIIn->users()) { 190 if (CastInst *CastI = dyn_cast<CastInst>(U)) 191 if (CastI->getOpcode() == Cast->getOpcode() && 192 CastI->getType() == Cast->getType() && 193 (!DT || DT->dominates(CastI->getParent(), PredBB))) 194 return CastI; 195 } 196 return nullptr; 197 } 198 199 // Handle getelementptr with at least one PHI translatable operand. 200 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 201 SmallVector<Value*, 8> GEPOps; 202 bool AnyChanged = false; 203 for (Value *Op : GEP->operands()) { 204 Value *GEPOp = translateSubExpr(Op, CurBB, PredBB, DT); 205 if (!GEPOp) return nullptr; 206 207 AnyChanged |= GEPOp != Op; 208 GEPOps.push_back(GEPOp); 209 } 210 211 if (!AnyChanged) 212 return GEP; 213 214 // Simplify the GEP to handle 'gep x, 0' -> x etc. 215 if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0], 216 ArrayRef<Value *>(GEPOps).slice(1), 217 GEP->isInBounds(), {DL, TLI, DT, AC})) { 218 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 219 RemoveInstInputs(GEPOps[i], InstInputs); 220 221 return addAsInput(V); 222 } 223 224 // Scan to see if we have this GEP available. 225 Value *APHIOp = GEPOps[0]; 226 for (User *U : APHIOp->users()) { 227 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 228 if (GEPI->getType() == GEP->getType() && 229 GEPI->getSourceElementType() == GEP->getSourceElementType() && 230 GEPI->getNumOperands() == GEPOps.size() && 231 GEPI->getParent()->getParent() == CurBB->getParent() && 232 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 233 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 234 return GEPI; 235 } 236 } 237 return nullptr; 238 } 239 240 // Handle add with a constant RHS. 241 if (Inst->getOpcode() == Instruction::Add && 242 isa<ConstantInt>(Inst->getOperand(1))) { 243 // PHI translate the LHS. 244 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 245 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 246 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 247 248 Value *LHS = translateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 249 if (!LHS) return nullptr; 250 251 // If the PHI translated LHS is an add of a constant, fold the immediates. 252 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 253 if (BOp->getOpcode() == Instruction::Add) 254 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 255 LHS = BOp->getOperand(0); 256 RHS = ConstantExpr::getAdd(RHS, CI); 257 isNSW = isNUW = false; 258 259 // If the old 'LHS' was an input, add the new 'LHS' as an input. 260 if (is_contained(InstInputs, BOp)) { 261 RemoveInstInputs(BOp, InstInputs); 262 addAsInput(LHS); 263 } 264 } 265 266 // See if the add simplifies away. 267 if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { 268 // If we simplified the operands, the LHS is no longer an input, but Res 269 // is. 270 RemoveInstInputs(LHS, InstInputs); 271 return addAsInput(Res); 272 } 273 274 // If we didn't modify the add, just return it. 275 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 276 return Inst; 277 278 // Otherwise, see if we have this add available somewhere. 279 for (User *U : LHS->users()) { 280 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 281 if (BO->getOpcode() == Instruction::Add && 282 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 283 BO->getParent()->getParent() == CurBB->getParent() && 284 (!DT || DT->dominates(BO->getParent(), PredBB))) 285 return BO; 286 } 287 288 return nullptr; 289 } 290 291 // Otherwise, we failed. 292 return nullptr; 293 } 294 295 /// PHITranslateValue - PHI translate the current address up the CFG from 296 /// CurBB to Pred, updating our state to reflect any needed changes. If 297 /// 'MustDominate' is true, the translated value must dominate PredBB. 298 Value *PHITransAddr::translateValue(BasicBlock *CurBB, BasicBlock *PredBB, 299 const DominatorTree *DT, 300 bool MustDominate) { 301 assert(DT || !MustDominate); 302 assert(verify() && "Invalid PHITransAddr!"); 303 if (DT && DT->isReachableFromEntry(PredBB)) 304 Addr = translateSubExpr(Addr, CurBB, PredBB, DT); 305 else 306 Addr = nullptr; 307 assert(verify() && "Invalid PHITransAddr!"); 308 309 if (MustDominate) 310 // Make sure the value is live in the predecessor. 311 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 312 if (!DT->dominates(Inst->getParent(), PredBB)) 313 Addr = nullptr; 314 315 return Addr; 316 } 317 318 /// PHITranslateWithInsertion - PHI translate this value into the specified 319 /// predecessor block, inserting a computation of the value if it is 320 /// unavailable. 321 /// 322 /// All newly created instructions are added to the NewInsts list. This 323 /// returns null on failure. 324 /// 325 Value * 326 PHITransAddr::translateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 327 const DominatorTree &DT, 328 SmallVectorImpl<Instruction *> &NewInsts) { 329 unsigned NISize = NewInsts.size(); 330 331 // Attempt to PHI translate with insertion. 332 Addr = insertTranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 333 334 // If successful, return the new value. 335 if (Addr) return Addr; 336 337 // If not, destroy any intermediate instructions inserted. 338 while (NewInsts.size() != NISize) 339 NewInsts.pop_back_val()->eraseFromParent(); 340 return nullptr; 341 } 342 343 /// insertTranslatedSubExpr - Insert a computation of the PHI translated 344 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 345 /// block. All newly created instructions are added to the NewInsts list. 346 /// This returns null on failure. 347 /// 348 Value *PHITransAddr::insertTranslatedSubExpr( 349 Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB, 350 const DominatorTree &DT, SmallVectorImpl<Instruction *> &NewInsts) { 351 // See if we have a version of this value already available and dominating 352 // PredBB. If so, there is no need to insert a new instance of it. 353 PHITransAddr Tmp(InVal, DL, AC); 354 if (Value *Addr = 355 Tmp.translateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 356 return Addr; 357 358 // We don't need to PHI translate values which aren't instructions. 359 auto *Inst = dyn_cast<Instruction>(InVal); 360 if (!Inst) 361 return nullptr; 362 363 // Handle cast of PHI translatable value. 364 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 365 Value *OpVal = insertTranslatedSubExpr(Cast->getOperand(0), CurBB, PredBB, 366 DT, NewInsts); 367 if (!OpVal) return nullptr; 368 369 // Otherwise insert a cast at the end of PredBB. 370 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 371 InVal->getName() + ".phi.trans.insert", 372 PredBB->getTerminator()); 373 New->setDebugLoc(Inst->getDebugLoc()); 374 NewInsts.push_back(New); 375 return New; 376 } 377 378 // Handle getelementptr with at least one PHI operand. 379 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 380 SmallVector<Value*, 8> GEPOps; 381 BasicBlock *CurBB = GEP->getParent(); 382 for (Value *Op : GEP->operands()) { 383 Value *OpVal = insertTranslatedSubExpr(Op, CurBB, PredBB, DT, NewInsts); 384 if (!OpVal) return nullptr; 385 GEPOps.push_back(OpVal); 386 } 387 388 GetElementPtrInst *Result = GetElementPtrInst::Create( 389 GEP->getSourceElementType(), GEPOps[0], ArrayRef(GEPOps).slice(1), 390 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); 391 Result->setDebugLoc(Inst->getDebugLoc()); 392 Result->setIsInBounds(GEP->isInBounds()); 393 NewInsts.push_back(Result); 394 return Result; 395 } 396 397 // Handle add with a constant RHS. 398 if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add && 399 isa<ConstantInt>(Inst->getOperand(1))) { 400 401 // FIXME: This code works, but it is unclear that we actually want to insert 402 // a big chain of computation in order to make a value available in a block. 403 // This needs to be evaluated carefully to consider its cost trade offs. 404 405 // PHI translate the LHS. 406 Value *OpVal = insertTranslatedSubExpr(Inst->getOperand(0), CurBB, PredBB, 407 DT, NewInsts); 408 if (OpVal == nullptr) 409 return nullptr; 410 411 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 412 InVal->getName()+".phi.trans.insert", 413 PredBB->getTerminator()); 414 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 415 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 416 NewInsts.push_back(Res); 417 return Res; 418 } 419 420 return nullptr; 421 } 422