1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PHITransAddr class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/PHITransAddr.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 using namespace llvm; 23 24 static cl::opt<bool> EnableAddPhiTranslation( 25 "gvn-add-phi-translation", cl::init(false), cl::Hidden, 26 cl::desc("Enable phi-translation of add instructions")); 27 28 static bool CanPHITrans(Instruction *Inst) { 29 if (isa<PHINode>(Inst) || 30 isa<GetElementPtrInst>(Inst)) 31 return true; 32 33 if (isa<CastInst>(Inst) && 34 isSafeToSpeculativelyExecute(Inst)) 35 return true; 36 37 if (Inst->getOpcode() == Instruction::Add && 38 isa<ConstantInt>(Inst->getOperand(1))) 39 return true; 40 41 return false; 42 } 43 44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 45 LLVM_DUMP_METHOD void PHITransAddr::dump() const { 46 if (!Addr) { 47 dbgs() << "PHITransAddr: null\n"; 48 return; 49 } 50 dbgs() << "PHITransAddr: " << *Addr << "\n"; 51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 53 } 54 #endif 55 56 57 static bool VerifySubExpr(Value *Expr, 58 SmallVectorImpl<Instruction*> &InstInputs) { 59 // If this is a non-instruction value, there is nothing to do. 60 Instruction *I = dyn_cast<Instruction>(Expr); 61 if (!I) return true; 62 63 // If it's an instruction, it is either in Tmp or its operands recursively 64 // are. 65 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 66 if (Entry != InstInputs.end()) { 67 InstInputs.erase(Entry); 68 return true; 69 } 70 71 // If it isn't in the InstInputs list it is a subexpr incorporated into the 72 // address. Validate that it is phi translatable. 73 if (!CanPHITrans(I)) { 74 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 75 errs() << *I << '\n'; 76 llvm_unreachable("Either something is missing from InstInputs or " 77 "CanPHITrans is wrong."); 78 } 79 80 // Validate the operands of the instruction. 81 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 82 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 83 return false; 84 85 return true; 86 } 87 88 /// Verify - Check internal consistency of this data structure. If the 89 /// structure is valid, it returns true. If invalid, it prints errors and 90 /// returns false. 91 bool PHITransAddr::Verify() const { 92 if (!Addr) return true; 93 94 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 95 96 if (!VerifySubExpr(Addr, Tmp)) 97 return false; 98 99 if (!Tmp.empty()) { 100 errs() << "PHITransAddr contains extra instructions:\n"; 101 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 102 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 103 llvm_unreachable("This is unexpected."); 104 } 105 106 // a-ok. 107 return true; 108 } 109 110 111 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 112 /// if we have some hope of doing it. This should be used as a filter to 113 /// avoid calling PHITranslateValue in hopeless situations. 114 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 115 // If the input value is not an instruction, or if it is not defined in CurBB, 116 // then we don't need to phi translate it. 117 Instruction *Inst = dyn_cast<Instruction>(Addr); 118 return !Inst || CanPHITrans(Inst); 119 } 120 121 122 static void RemoveInstInputs(Value *V, 123 SmallVectorImpl<Instruction*> &InstInputs) { 124 Instruction *I = dyn_cast<Instruction>(V); 125 if (!I) return; 126 127 // If the instruction is in the InstInputs list, remove it. 128 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 129 if (Entry != InstInputs.end()) { 130 InstInputs.erase(Entry); 131 return; 132 } 133 134 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 135 136 // Otherwise, it must have instruction inputs itself. Zap them recursively. 137 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 138 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 139 RemoveInstInputs(Op, InstInputs); 140 } 141 } 142 143 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 144 BasicBlock *PredBB, 145 const DominatorTree *DT) { 146 // If this is a non-instruction value, it can't require PHI translation. 147 Instruction *Inst = dyn_cast<Instruction>(V); 148 if (!Inst) return V; 149 150 // Determine whether 'Inst' is an input to our PHI translatable expression. 151 bool isInput = is_contained(InstInputs, Inst); 152 153 // Handle inputs instructions if needed. 154 if (isInput) { 155 if (Inst->getParent() != CurBB) { 156 // If it is an input defined in a different block, then it remains an 157 // input. 158 return Inst; 159 } 160 161 // If 'Inst' is defined in this block and is an input that needs to be phi 162 // translated, we need to incorporate the value into the expression or fail. 163 164 // In either case, the instruction itself isn't an input any longer. 165 InstInputs.erase(find(InstInputs, Inst)); 166 167 // If this is a PHI, go ahead and translate it. 168 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 169 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 170 171 // If this is a non-phi value, and it is analyzable, we can incorporate it 172 // into the expression by making all instruction operands be inputs. 173 if (!CanPHITrans(Inst)) 174 return nullptr; 175 176 // All instruction operands are now inputs (and of course, they may also be 177 // defined in this block, so they may need to be phi translated themselves. 178 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 179 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 180 InstInputs.push_back(Op); 181 } 182 183 // Ok, it must be an intermediate result (either because it started that way 184 // or because we just incorporated it into the expression). See if its 185 // operands need to be phi translated, and if so, reconstruct it. 186 187 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 188 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 189 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 190 if (!PHIIn) return nullptr; 191 if (PHIIn == Cast->getOperand(0)) 192 return Cast; 193 194 // Find an available version of this cast. 195 196 // Constants are trivial to find. 197 if (Constant *C = dyn_cast<Constant>(PHIIn)) 198 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 199 C, Cast->getType())); 200 201 // Otherwise we have to see if a casted version of the incoming pointer 202 // is available. If so, we can use it, otherwise we have to fail. 203 for (User *U : PHIIn->users()) { 204 if (CastInst *CastI = dyn_cast<CastInst>(U)) 205 if (CastI->getOpcode() == Cast->getOpcode() && 206 CastI->getType() == Cast->getType() && 207 (!DT || DT->dominates(CastI->getParent(), PredBB))) 208 return CastI; 209 } 210 return nullptr; 211 } 212 213 // Handle getelementptr with at least one PHI translatable operand. 214 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 215 SmallVector<Value*, 8> GEPOps; 216 bool AnyChanged = false; 217 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 218 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 219 if (!GEPOp) return nullptr; 220 221 AnyChanged |= GEPOp != GEP->getOperand(i); 222 GEPOps.push_back(GEPOp); 223 } 224 225 if (!AnyChanged) 226 return GEP; 227 228 // Simplify the GEP to handle 'gep x, 0' -> x etc. 229 if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0], 230 ArrayRef<Value *>(GEPOps).slice(1), 231 GEP->isInBounds(), {DL, TLI, DT, AC})) { 232 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 233 RemoveInstInputs(GEPOps[i], InstInputs); 234 235 return AddAsInput(V); 236 } 237 238 // Scan to see if we have this GEP available. 239 Value *APHIOp = GEPOps[0]; 240 for (User *U : APHIOp->users()) { 241 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 242 if (GEPI->getType() == GEP->getType() && 243 GEPI->getSourceElementType() == GEP->getSourceElementType() && 244 GEPI->getNumOperands() == GEPOps.size() && 245 GEPI->getParent()->getParent() == CurBB->getParent() && 246 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 247 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 248 return GEPI; 249 } 250 } 251 return nullptr; 252 } 253 254 // Handle add with a constant RHS. 255 if (Inst->getOpcode() == Instruction::Add && 256 isa<ConstantInt>(Inst->getOperand(1))) { 257 // PHI translate the LHS. 258 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 259 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 260 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 261 262 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 263 if (!LHS) return nullptr; 264 265 // If the PHI translated LHS is an add of a constant, fold the immediates. 266 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 267 if (BOp->getOpcode() == Instruction::Add) 268 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 269 LHS = BOp->getOperand(0); 270 RHS = ConstantExpr::getAdd(RHS, CI); 271 isNSW = isNUW = false; 272 273 // If the old 'LHS' was an input, add the new 'LHS' as an input. 274 if (is_contained(InstInputs, BOp)) { 275 RemoveInstInputs(BOp, InstInputs); 276 AddAsInput(LHS); 277 } 278 } 279 280 // See if the add simplifies away. 281 if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { 282 // If we simplified the operands, the LHS is no longer an input, but Res 283 // is. 284 RemoveInstInputs(LHS, InstInputs); 285 return AddAsInput(Res); 286 } 287 288 // If we didn't modify the add, just return it. 289 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 290 return Inst; 291 292 // Otherwise, see if we have this add available somewhere. 293 for (User *U : LHS->users()) { 294 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 295 if (BO->getOpcode() == Instruction::Add && 296 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 297 BO->getParent()->getParent() == CurBB->getParent() && 298 (!DT || DT->dominates(BO->getParent(), PredBB))) 299 return BO; 300 } 301 302 return nullptr; 303 } 304 305 // Otherwise, we failed. 306 return nullptr; 307 } 308 309 310 /// PHITranslateValue - PHI translate the current address up the CFG from 311 /// CurBB to Pred, updating our state to reflect any needed changes. If 312 /// 'MustDominate' is true, the translated value must dominate 313 /// PredBB. This returns true on failure and sets Addr to null. 314 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 315 const DominatorTree *DT, 316 bool MustDominate) { 317 assert(DT || !MustDominate); 318 assert(Verify() && "Invalid PHITransAddr!"); 319 if (DT && DT->isReachableFromEntry(PredBB)) 320 Addr = 321 PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); 322 else 323 Addr = nullptr; 324 assert(Verify() && "Invalid PHITransAddr!"); 325 326 if (MustDominate) 327 // Make sure the value is live in the predecessor. 328 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 329 if (!DT->dominates(Inst->getParent(), PredBB)) 330 Addr = nullptr; 331 332 return Addr == nullptr; 333 } 334 335 /// PHITranslateWithInsertion - PHI translate this value into the specified 336 /// predecessor block, inserting a computation of the value if it is 337 /// unavailable. 338 /// 339 /// All newly created instructions are added to the NewInsts list. This 340 /// returns null on failure. 341 /// 342 Value *PHITransAddr:: 343 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 344 const DominatorTree &DT, 345 SmallVectorImpl<Instruction*> &NewInsts) { 346 unsigned NISize = NewInsts.size(); 347 348 // Attempt to PHI translate with insertion. 349 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 350 351 // If successful, return the new value. 352 if (Addr) return Addr; 353 354 // If not, destroy any intermediate instructions inserted. 355 while (NewInsts.size() != NISize) 356 NewInsts.pop_back_val()->eraseFromParent(); 357 return nullptr; 358 } 359 360 361 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 362 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 363 /// block. All newly created instructions are added to the NewInsts list. 364 /// This returns null on failure. 365 /// 366 Value *PHITransAddr:: 367 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 368 BasicBlock *PredBB, const DominatorTree &DT, 369 SmallVectorImpl<Instruction*> &NewInsts) { 370 // See if we have a version of this value already available and dominating 371 // PredBB. If so, there is no need to insert a new instance of it. 372 PHITransAddr Tmp(InVal, DL, AC); 373 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 374 return Tmp.getAddr(); 375 376 // We don't need to PHI translate values which aren't instructions. 377 auto *Inst = dyn_cast<Instruction>(InVal); 378 if (!Inst) 379 return nullptr; 380 381 // Handle cast of PHI translatable value. 382 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 383 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 384 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 385 CurBB, PredBB, DT, NewInsts); 386 if (!OpVal) return nullptr; 387 388 // Otherwise insert a cast at the end of PredBB. 389 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 390 InVal->getName() + ".phi.trans.insert", 391 PredBB->getTerminator()); 392 New->setDebugLoc(Inst->getDebugLoc()); 393 NewInsts.push_back(New); 394 return New; 395 } 396 397 // Handle getelementptr with at least one PHI operand. 398 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 399 SmallVector<Value*, 8> GEPOps; 400 BasicBlock *CurBB = GEP->getParent(); 401 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 402 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 403 CurBB, PredBB, DT, NewInsts); 404 if (!OpVal) return nullptr; 405 GEPOps.push_back(OpVal); 406 } 407 408 GetElementPtrInst *Result = GetElementPtrInst::Create( 409 GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), 410 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); 411 Result->setDebugLoc(Inst->getDebugLoc()); 412 Result->setIsInBounds(GEP->isInBounds()); 413 NewInsts.push_back(Result); 414 return Result; 415 } 416 417 // Handle add with a constant RHS. 418 if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add && 419 isa<ConstantInt>(Inst->getOperand(1))) { 420 421 // FIXME: This code works, but it is unclear that we actually want to insert 422 // a big chain of computation in order to make a value available in a block. 423 // This needs to be evaluated carefully to consider its cost trade offs. 424 425 // PHI translate the LHS. 426 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 427 CurBB, PredBB, DT, NewInsts); 428 if (OpVal == 0) return 0; 429 430 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 431 InVal->getName()+".phi.trans.insert", 432 PredBB->getTerminator()); 433 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 434 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 435 NewInsts.push_back(Res); 436 return Res; 437 } 438 439 return nullptr; 440 } 441