1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PHITransAddr class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/PHITransAddr.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 static bool CanPHITrans(Instruction *Inst) { 26 if (isa<PHINode>(Inst) || 27 isa<GetElementPtrInst>(Inst)) 28 return true; 29 30 if (isa<CastInst>(Inst) && 31 isSafeToSpeculativelyExecute(Inst)) 32 return true; 33 34 if (Inst->getOpcode() == Instruction::Add && 35 isa<ConstantInt>(Inst->getOperand(1))) 36 return true; 37 38 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 39 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 40 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 41 return false; 42 } 43 44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 45 LLVM_DUMP_METHOD void PHITransAddr::dump() const { 46 if (!Addr) { 47 dbgs() << "PHITransAddr: null\n"; 48 return; 49 } 50 dbgs() << "PHITransAddr: " << *Addr << "\n"; 51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 53 } 54 #endif 55 56 57 static bool VerifySubExpr(Value *Expr, 58 SmallVectorImpl<Instruction*> &InstInputs) { 59 // If this is a non-instruction value, there is nothing to do. 60 Instruction *I = dyn_cast<Instruction>(Expr); 61 if (!I) return true; 62 63 // If it's an instruction, it is either in Tmp or its operands recursively 64 // are. 65 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 66 if (Entry != InstInputs.end()) { 67 InstInputs.erase(Entry); 68 return true; 69 } 70 71 // If it isn't in the InstInputs list it is a subexpr incorporated into the 72 // address. Sanity check that it is phi translatable. 73 if (!CanPHITrans(I)) { 74 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 75 errs() << *I << '\n'; 76 llvm_unreachable("Either something is missing from InstInputs or " 77 "CanPHITrans is wrong."); 78 } 79 80 // Validate the operands of the instruction. 81 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 82 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 83 return false; 84 85 return true; 86 } 87 88 /// Verify - Check internal consistency of this data structure. If the 89 /// structure is valid, it returns true. If invalid, it prints errors and 90 /// returns false. 91 bool PHITransAddr::Verify() const { 92 if (!Addr) return true; 93 94 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 95 96 if (!VerifySubExpr(Addr, Tmp)) 97 return false; 98 99 if (!Tmp.empty()) { 100 errs() << "PHITransAddr contains extra instructions:\n"; 101 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 102 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 103 llvm_unreachable("This is unexpected."); 104 } 105 106 // a-ok. 107 return true; 108 } 109 110 111 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 112 /// if we have some hope of doing it. This should be used as a filter to 113 /// avoid calling PHITranslateValue in hopeless situations. 114 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 115 // If the input value is not an instruction, or if it is not defined in CurBB, 116 // then we don't need to phi translate it. 117 Instruction *Inst = dyn_cast<Instruction>(Addr); 118 return !Inst || CanPHITrans(Inst); 119 } 120 121 122 static void RemoveInstInputs(Value *V, 123 SmallVectorImpl<Instruction*> &InstInputs) { 124 Instruction *I = dyn_cast<Instruction>(V); 125 if (!I) return; 126 127 // If the instruction is in the InstInputs list, remove it. 128 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); 129 if (Entry != InstInputs.end()) { 130 InstInputs.erase(Entry); 131 return; 132 } 133 134 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 135 136 // Otherwise, it must have instruction inputs itself. Zap them recursively. 137 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 138 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 139 RemoveInstInputs(Op, InstInputs); 140 } 141 } 142 143 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 144 BasicBlock *PredBB, 145 const DominatorTree *DT) { 146 // If this is a non-instruction value, it can't require PHI translation. 147 Instruction *Inst = dyn_cast<Instruction>(V); 148 if (!Inst) return V; 149 150 // Determine whether 'Inst' is an input to our PHI translatable expression. 151 bool isInput = is_contained(InstInputs, Inst); 152 153 // Handle inputs instructions if needed. 154 if (isInput) { 155 if (Inst->getParent() != CurBB) { 156 // If it is an input defined in a different block, then it remains an 157 // input. 158 return Inst; 159 } 160 161 // If 'Inst' is defined in this block and is an input that needs to be phi 162 // translated, we need to incorporate the value into the expression or fail. 163 164 // In either case, the instruction itself isn't an input any longer. 165 InstInputs.erase(find(InstInputs, Inst)); 166 167 // If this is a PHI, go ahead and translate it. 168 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 169 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 170 171 // If this is a non-phi value, and it is analyzable, we can incorporate it 172 // into the expression by making all instruction operands be inputs. 173 if (!CanPHITrans(Inst)) 174 return nullptr; 175 176 // All instruction operands are now inputs (and of course, they may also be 177 // defined in this block, so they may need to be phi translated themselves. 178 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 179 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 180 InstInputs.push_back(Op); 181 } 182 183 // Ok, it must be an intermediate result (either because it started that way 184 // or because we just incorporated it into the expression). See if its 185 // operands need to be phi translated, and if so, reconstruct it. 186 187 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 188 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 189 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 190 if (!PHIIn) return nullptr; 191 if (PHIIn == Cast->getOperand(0)) 192 return Cast; 193 194 // Find an available version of this cast. 195 196 // Constants are trivial to find. 197 if (Constant *C = dyn_cast<Constant>(PHIIn)) 198 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 199 C, Cast->getType())); 200 201 // Otherwise we have to see if a casted version of the incoming pointer 202 // is available. If so, we can use it, otherwise we have to fail. 203 for (User *U : PHIIn->users()) { 204 if (CastInst *CastI = dyn_cast<CastInst>(U)) 205 if (CastI->getOpcode() == Cast->getOpcode() && 206 CastI->getType() == Cast->getType() && 207 (!DT || DT->dominates(CastI->getParent(), PredBB))) 208 return CastI; 209 } 210 return nullptr; 211 } 212 213 // Handle getelementptr with at least one PHI translatable operand. 214 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 215 SmallVector<Value*, 8> GEPOps; 216 bool AnyChanged = false; 217 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 218 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 219 if (!GEPOp) return nullptr; 220 221 AnyChanged |= GEPOp != GEP->getOperand(i); 222 GEPOps.push_back(GEPOp); 223 } 224 225 if (!AnyChanged) 226 return GEP; 227 228 // Simplify the GEP to handle 'gep x, 0' -> x etc. 229 if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(), 230 GEPOps, {DL, TLI, DT, AC})) { 231 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 232 RemoveInstInputs(GEPOps[i], InstInputs); 233 234 return AddAsInput(V); 235 } 236 237 // Scan to see if we have this GEP available. 238 Value *APHIOp = GEPOps[0]; 239 for (User *U : APHIOp->users()) { 240 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 241 if (GEPI->getType() == GEP->getType() && 242 GEPI->getNumOperands() == GEPOps.size() && 243 GEPI->getParent()->getParent() == CurBB->getParent() && 244 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 245 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 246 return GEPI; 247 } 248 } 249 return nullptr; 250 } 251 252 // Handle add with a constant RHS. 253 if (Inst->getOpcode() == Instruction::Add && 254 isa<ConstantInt>(Inst->getOperand(1))) { 255 // PHI translate the LHS. 256 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 257 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 258 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 259 260 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 261 if (!LHS) return nullptr; 262 263 // If the PHI translated LHS is an add of a constant, fold the immediates. 264 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 265 if (BOp->getOpcode() == Instruction::Add) 266 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 267 LHS = BOp->getOperand(0); 268 RHS = ConstantExpr::getAdd(RHS, CI); 269 isNSW = isNUW = false; 270 271 // If the old 'LHS' was an input, add the new 'LHS' as an input. 272 if (is_contained(InstInputs, BOp)) { 273 RemoveInstInputs(BOp, InstInputs); 274 AddAsInput(LHS); 275 } 276 } 277 278 // See if the add simplifies away. 279 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { 280 // If we simplified the operands, the LHS is no longer an input, but Res 281 // is. 282 RemoveInstInputs(LHS, InstInputs); 283 return AddAsInput(Res); 284 } 285 286 // If we didn't modify the add, just return it. 287 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 288 return Inst; 289 290 // Otherwise, see if we have this add available somewhere. 291 for (User *U : LHS->users()) { 292 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 293 if (BO->getOpcode() == Instruction::Add && 294 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 295 BO->getParent()->getParent() == CurBB->getParent() && 296 (!DT || DT->dominates(BO->getParent(), PredBB))) 297 return BO; 298 } 299 300 return nullptr; 301 } 302 303 // Otherwise, we failed. 304 return nullptr; 305 } 306 307 308 /// PHITranslateValue - PHI translate the current address up the CFG from 309 /// CurBB to Pred, updating our state to reflect any needed changes. If 310 /// 'MustDominate' is true, the translated value must dominate 311 /// PredBB. This returns true on failure and sets Addr to null. 312 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 313 const DominatorTree *DT, 314 bool MustDominate) { 315 assert(DT || !MustDominate); 316 assert(Verify() && "Invalid PHITransAddr!"); 317 if (DT && DT->isReachableFromEntry(PredBB)) 318 Addr = 319 PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); 320 else 321 Addr = nullptr; 322 assert(Verify() && "Invalid PHITransAddr!"); 323 324 if (MustDominate) 325 // Make sure the value is live in the predecessor. 326 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 327 if (!DT->dominates(Inst->getParent(), PredBB)) 328 Addr = nullptr; 329 330 return Addr == nullptr; 331 } 332 333 /// PHITranslateWithInsertion - PHI translate this value into the specified 334 /// predecessor block, inserting a computation of the value if it is 335 /// unavailable. 336 /// 337 /// All newly created instructions are added to the NewInsts list. This 338 /// returns null on failure. 339 /// 340 Value *PHITransAddr:: 341 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 342 const DominatorTree &DT, 343 SmallVectorImpl<Instruction*> &NewInsts) { 344 unsigned NISize = NewInsts.size(); 345 346 // Attempt to PHI translate with insertion. 347 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 348 349 // If successful, return the new value. 350 if (Addr) return Addr; 351 352 // If not, destroy any intermediate instructions inserted. 353 while (NewInsts.size() != NISize) 354 NewInsts.pop_back_val()->eraseFromParent(); 355 return nullptr; 356 } 357 358 359 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 360 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 361 /// block. All newly created instructions are added to the NewInsts list. 362 /// This returns null on failure. 363 /// 364 Value *PHITransAddr:: 365 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 366 BasicBlock *PredBB, const DominatorTree &DT, 367 SmallVectorImpl<Instruction*> &NewInsts) { 368 // See if we have a version of this value already available and dominating 369 // PredBB. If so, there is no need to insert a new instance of it. 370 PHITransAddr Tmp(InVal, DL, AC); 371 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 372 return Tmp.getAddr(); 373 374 // We don't need to PHI translate values which aren't instructions. 375 auto *Inst = dyn_cast<Instruction>(InVal); 376 if (!Inst) 377 return nullptr; 378 379 // Handle cast of PHI translatable value. 380 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 381 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 382 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 383 CurBB, PredBB, DT, NewInsts); 384 if (!OpVal) return nullptr; 385 386 // Otherwise insert a cast at the end of PredBB. 387 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 388 InVal->getName() + ".phi.trans.insert", 389 PredBB->getTerminator()); 390 New->setDebugLoc(Inst->getDebugLoc()); 391 NewInsts.push_back(New); 392 return New; 393 } 394 395 // Handle getelementptr with at least one PHI operand. 396 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 397 SmallVector<Value*, 8> GEPOps; 398 BasicBlock *CurBB = GEP->getParent(); 399 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 400 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 401 CurBB, PredBB, DT, NewInsts); 402 if (!OpVal) return nullptr; 403 GEPOps.push_back(OpVal); 404 } 405 406 GetElementPtrInst *Result = GetElementPtrInst::Create( 407 GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), 408 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); 409 Result->setDebugLoc(Inst->getDebugLoc()); 410 Result->setIsInBounds(GEP->isInBounds()); 411 NewInsts.push_back(Result); 412 return Result; 413 } 414 415 #if 0 416 // FIXME: This code works, but it is unclear that we actually want to insert 417 // a big chain of computation in order to make a value available in a block. 418 // This needs to be evaluated carefully to consider its cost trade offs. 419 420 // Handle add with a constant RHS. 421 if (Inst->getOpcode() == Instruction::Add && 422 isa<ConstantInt>(Inst->getOperand(1))) { 423 // PHI translate the LHS. 424 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 425 CurBB, PredBB, DT, NewInsts); 426 if (OpVal == 0) return 0; 427 428 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 429 InVal->getName()+".phi.trans.insert", 430 PredBB->getTerminator()); 431 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 432 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 433 NewInsts.push_back(Res); 434 return Res; 435 } 436 #endif 437 438 return nullptr; 439 } 440