1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PHITransAddr class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/PHITransAddr.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 static cl::opt<bool> EnableAddPhiTranslation( 26 "gvn-add-phi-translation", cl::init(false), cl::Hidden, 27 cl::desc("Enable phi-translation of add instructions")); 28 29 static bool canPHITrans(Instruction *Inst) { 30 if (isa<PHINode>(Inst) || isa<GetElementPtrInst>(Inst) || isa<CastInst>(Inst)) 31 return true; 32 33 if (Inst->getOpcode() == Instruction::Add && 34 isa<ConstantInt>(Inst->getOperand(1))) 35 return true; 36 37 return false; 38 } 39 40 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 41 LLVM_DUMP_METHOD void PHITransAddr::dump() const { 42 if (!Addr) { 43 dbgs() << "PHITransAddr: null\n"; 44 return; 45 } 46 dbgs() << "PHITransAddr: " << *Addr << "\n"; 47 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 48 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 49 } 50 #endif 51 52 static bool verifySubExpr(Value *Expr, 53 SmallVectorImpl<Instruction *> &InstInputs) { 54 // If this is a non-instruction value, there is nothing to do. 55 Instruction *I = dyn_cast<Instruction>(Expr); 56 if (!I) return true; 57 58 // If it's an instruction, it is either in Tmp or its operands recursively 59 // are. 60 if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) { 61 InstInputs.erase(Entry); 62 return true; 63 } 64 65 // If it isn't in the InstInputs list it is a subexpr incorporated into the 66 // address. Validate that it is phi translatable. 67 if (!canPHITrans(I)) { 68 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 69 errs() << *I << '\n'; 70 llvm_unreachable("Either something is missing from InstInputs or " 71 "canPHITrans is wrong."); 72 } 73 74 // Validate the operands of the instruction. 75 return all_of(I->operands(), 76 [&](Value *Op) { return verifySubExpr(Op, InstInputs); }); 77 } 78 79 /// verify - Check internal consistency of this data structure. If the 80 /// structure is valid, it returns true. If invalid, it prints errors and 81 /// returns false. 82 bool PHITransAddr::verify() const { 83 if (!Addr) return true; 84 85 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 86 87 if (!verifySubExpr(Addr, Tmp)) 88 return false; 89 90 if (!Tmp.empty()) { 91 errs() << "PHITransAddr contains extra instructions:\n"; 92 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 93 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 94 llvm_unreachable("This is unexpected."); 95 } 96 97 // a-ok. 98 return true; 99 } 100 101 /// isPotentiallyPHITranslatable - If this needs PHI translation, return true 102 /// if we have some hope of doing it. This should be used as a filter to 103 /// avoid calling PHITranslateValue in hopeless situations. 104 bool PHITransAddr::isPotentiallyPHITranslatable() const { 105 // If the input value is not an instruction, or if it is not defined in CurBB, 106 // then we don't need to phi translate it. 107 Instruction *Inst = dyn_cast<Instruction>(Addr); 108 return !Inst || canPHITrans(Inst); 109 } 110 111 static void RemoveInstInputs(Value *V, 112 SmallVectorImpl<Instruction*> &InstInputs) { 113 Instruction *I = dyn_cast<Instruction>(V); 114 if (!I) return; 115 116 // If the instruction is in the InstInputs list, remove it. 117 if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) { 118 InstInputs.erase(Entry); 119 return; 120 } 121 122 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 123 124 // Otherwise, it must have instruction inputs itself. Zap them recursively. 125 for (Value *Op : I->operands()) 126 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 127 RemoveInstInputs(OpInst, InstInputs); 128 } 129 130 Value *PHITransAddr::translateSubExpr(Value *V, BasicBlock *CurBB, 131 BasicBlock *PredBB, 132 const DominatorTree *DT) { 133 // If this is a non-instruction value, it can't require PHI translation. 134 Instruction *Inst = dyn_cast<Instruction>(V); 135 if (!Inst) return V; 136 137 // Determine whether 'Inst' is an input to our PHI translatable expression. 138 bool isInput = is_contained(InstInputs, Inst); 139 140 // Handle inputs instructions if needed. 141 if (isInput) { 142 if (Inst->getParent() != CurBB) { 143 // If it is an input defined in a different block, then it remains an 144 // input. 145 return Inst; 146 } 147 148 // If 'Inst' is defined in this block and is an input that needs to be phi 149 // translated, we need to incorporate the value into the expression or fail. 150 151 // In either case, the instruction itself isn't an input any longer. 152 InstInputs.erase(find(InstInputs, Inst)); 153 154 // If this is a PHI, go ahead and translate it. 155 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 156 return addAsInput(PN->getIncomingValueForBlock(PredBB)); 157 158 // If this is a non-phi value, and it is analyzable, we can incorporate it 159 // into the expression by making all instruction operands be inputs. 160 if (!canPHITrans(Inst)) 161 return nullptr; 162 163 // All instruction operands are now inputs (and of course, they may also be 164 // defined in this block, so they may need to be phi translated themselves. 165 for (Value *Op : Inst->operands()) 166 addAsInput(Op); 167 } 168 169 // Ok, it must be an intermediate result (either because it started that way 170 // or because we just incorporated it into the expression). See if its 171 // operands need to be phi translated, and if so, reconstruct it. 172 173 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 174 Value *PHIIn = translateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 175 if (!PHIIn) return nullptr; 176 if (PHIIn == Cast->getOperand(0)) 177 return Cast; 178 179 // Find an available version of this cast. 180 181 // Try to simplify cast first. 182 if (Value *V = simplifyCastInst(Cast->getOpcode(), PHIIn, Cast->getType(), 183 {DL, TLI, DT, AC})) { 184 RemoveInstInputs(PHIIn, InstInputs); 185 return addAsInput(V); 186 } 187 188 // Otherwise we have to see if a casted version of the incoming pointer 189 // is available. If so, we can use it, otherwise we have to fail. 190 for (User *U : PHIIn->users()) { 191 if (CastInst *CastI = dyn_cast<CastInst>(U)) 192 if (CastI->getOpcode() == Cast->getOpcode() && 193 CastI->getType() == Cast->getType() && 194 (!DT || DT->dominates(CastI->getParent(), PredBB))) 195 return CastI; 196 } 197 return nullptr; 198 } 199 200 // Handle getelementptr with at least one PHI translatable operand. 201 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 202 SmallVector<Value*, 8> GEPOps; 203 bool AnyChanged = false; 204 for (Value *Op : GEP->operands()) { 205 Value *GEPOp = translateSubExpr(Op, CurBB, PredBB, DT); 206 if (!GEPOp) return nullptr; 207 208 AnyChanged |= GEPOp != Op; 209 GEPOps.push_back(GEPOp); 210 } 211 212 if (!AnyChanged) 213 return GEP; 214 215 // Simplify the GEP to handle 'gep x, 0' -> x etc. 216 if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0], 217 ArrayRef<Value *>(GEPOps).slice(1), 218 GEP->getNoWrapFlags(), {DL, TLI, DT, AC})) { 219 for (Value *Op : GEPOps) 220 RemoveInstInputs(Op, InstInputs); 221 222 return addAsInput(V); 223 } 224 225 // Scan to see if we have this GEP available. 226 Value *APHIOp = GEPOps[0]; 227 for (User *U : APHIOp->users()) { 228 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 229 if (GEPI->getType() == GEP->getType() && 230 GEPI->getSourceElementType() == GEP->getSourceElementType() && 231 GEPI->getNumOperands() == GEPOps.size() && 232 GEPI->getParent()->getParent() == CurBB->getParent() && 233 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 234 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 235 return GEPI; 236 } 237 } 238 return nullptr; 239 } 240 241 // Handle add with a constant RHS. 242 if (Inst->getOpcode() == Instruction::Add && 243 isa<ConstantInt>(Inst->getOperand(1))) { 244 // PHI translate the LHS. 245 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 246 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 247 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 248 249 Value *LHS = translateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 250 if (!LHS) return nullptr; 251 252 // If the PHI translated LHS is an add of a constant, fold the immediates. 253 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 254 if (BOp->getOpcode() == Instruction::Add) 255 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 256 LHS = BOp->getOperand(0); 257 RHS = ConstantExpr::getAdd(RHS, CI); 258 isNSW = isNUW = false; 259 260 // If the old 'LHS' was an input, add the new 'LHS' as an input. 261 if (is_contained(InstInputs, BOp)) { 262 RemoveInstInputs(BOp, InstInputs); 263 addAsInput(LHS); 264 } 265 } 266 267 // See if the add simplifies away. 268 if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { 269 // If we simplified the operands, the LHS is no longer an input, but Res 270 // is. 271 RemoveInstInputs(LHS, InstInputs); 272 return addAsInput(Res); 273 } 274 275 // If we didn't modify the add, just return it. 276 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 277 return Inst; 278 279 // Otherwise, see if we have this add available somewhere. 280 for (User *U : LHS->users()) { 281 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 282 if (BO->getOpcode() == Instruction::Add && 283 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 284 BO->getParent()->getParent() == CurBB->getParent() && 285 (!DT || DT->dominates(BO->getParent(), PredBB))) 286 return BO; 287 } 288 289 return nullptr; 290 } 291 292 // Otherwise, we failed. 293 return nullptr; 294 } 295 296 /// PHITranslateValue - PHI translate the current address up the CFG from 297 /// CurBB to Pred, updating our state to reflect any needed changes. If 298 /// 'MustDominate' is true, the translated value must dominate PredBB. 299 Value *PHITransAddr::translateValue(BasicBlock *CurBB, BasicBlock *PredBB, 300 const DominatorTree *DT, 301 bool MustDominate) { 302 assert(DT || !MustDominate); 303 assert(verify() && "Invalid PHITransAddr!"); 304 if (DT && DT->isReachableFromEntry(PredBB)) 305 Addr = translateSubExpr(Addr, CurBB, PredBB, DT); 306 else 307 Addr = nullptr; 308 assert(verify() && "Invalid PHITransAddr!"); 309 310 if (MustDominate) 311 // Make sure the value is live in the predecessor. 312 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 313 if (!DT->dominates(Inst->getParent(), PredBB)) 314 Addr = nullptr; 315 316 return Addr; 317 } 318 319 /// PHITranslateWithInsertion - PHI translate this value into the specified 320 /// predecessor block, inserting a computation of the value if it is 321 /// unavailable. 322 /// 323 /// All newly created instructions are added to the NewInsts list. This 324 /// returns null on failure. 325 /// 326 Value * 327 PHITransAddr::translateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 328 const DominatorTree &DT, 329 SmallVectorImpl<Instruction *> &NewInsts) { 330 unsigned NISize = NewInsts.size(); 331 332 // Attempt to PHI translate with insertion. 333 Addr = insertTranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 334 335 // If successful, return the new value. 336 if (Addr) return Addr; 337 338 // If not, destroy any intermediate instructions inserted. 339 while (NewInsts.size() != NISize) 340 NewInsts.pop_back_val()->eraseFromParent(); 341 return nullptr; 342 } 343 344 /// insertTranslatedSubExpr - Insert a computation of the PHI translated 345 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 346 /// block. All newly created instructions are added to the NewInsts list. 347 /// This returns null on failure. 348 /// 349 Value *PHITransAddr::insertTranslatedSubExpr( 350 Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB, 351 const DominatorTree &DT, SmallVectorImpl<Instruction *> &NewInsts) { 352 // See if we have a version of this value already available and dominating 353 // PredBB. If so, there is no need to insert a new instance of it. 354 PHITransAddr Tmp(InVal, DL, AC); 355 if (Value *Addr = 356 Tmp.translateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 357 return Addr; 358 359 // We don't need to PHI translate values which aren't instructions. 360 auto *Inst = dyn_cast<Instruction>(InVal); 361 if (!Inst) 362 return nullptr; 363 364 // Handle cast of PHI translatable value. 365 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 366 Value *OpVal = insertTranslatedSubExpr(Cast->getOperand(0), CurBB, PredBB, 367 DT, NewInsts); 368 if (!OpVal) return nullptr; 369 370 // Otherwise insert a cast at the end of PredBB. 371 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 372 InVal->getName() + ".phi.trans.insert", 373 PredBB->getTerminator()->getIterator()); 374 New->setDebugLoc(Inst->getDebugLoc()); 375 NewInsts.push_back(New); 376 return New; 377 } 378 379 // Handle getelementptr with at least one PHI operand. 380 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 381 SmallVector<Value*, 8> GEPOps; 382 BasicBlock *CurBB = GEP->getParent(); 383 for (Value *Op : GEP->operands()) { 384 Value *OpVal = insertTranslatedSubExpr(Op, CurBB, PredBB, DT, NewInsts); 385 if (!OpVal) return nullptr; 386 GEPOps.push_back(OpVal); 387 } 388 389 GetElementPtrInst *Result = GetElementPtrInst::Create( 390 GEP->getSourceElementType(), GEPOps[0], ArrayRef(GEPOps).slice(1), 391 InVal->getName() + ".phi.trans.insert", 392 PredBB->getTerminator()->getIterator()); 393 Result->setDebugLoc(Inst->getDebugLoc()); 394 Result->setNoWrapFlags(GEP->getNoWrapFlags()); 395 NewInsts.push_back(Result); 396 return Result; 397 } 398 399 // Handle add with a constant RHS. 400 if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add && 401 isa<ConstantInt>(Inst->getOperand(1))) { 402 403 // FIXME: This code works, but it is unclear that we actually want to insert 404 // a big chain of computation in order to make a value available in a block. 405 // This needs to be evaluated carefully to consider its cost trade offs. 406 407 // PHI translate the LHS. 408 Value *OpVal = insertTranslatedSubExpr(Inst->getOperand(0), CurBB, PredBB, 409 DT, NewInsts); 410 if (OpVal == nullptr) 411 return nullptr; 412 413 BinaryOperator *Res = BinaryOperator::CreateAdd( 414 OpVal, Inst->getOperand(1), InVal->getName() + ".phi.trans.insert", 415 PredBB->getTerminator()->getIterator()); 416 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 417 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 418 NewInsts.push_back(Res); 419 return Res; 420 } 421 422 return nullptr; 423 } 424