xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/PHITransAddr.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PHITransAddr class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/PHITransAddr.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 static cl::opt<bool> EnableAddPhiTranslation(
26     "gvn-add-phi-translation", cl::init(false), cl::Hidden,
27     cl::desc("Enable phi-translation of add instructions"));
28 
29 static bool canPHITrans(Instruction *Inst) {
30   if (isa<PHINode>(Inst) || isa<GetElementPtrInst>(Inst) || isa<CastInst>(Inst))
31     return true;
32 
33   if (Inst->getOpcode() == Instruction::Add &&
34       isa<ConstantInt>(Inst->getOperand(1)))
35     return true;
36 
37   return false;
38 }
39 
40 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
41 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
42   if (!Addr) {
43     dbgs() << "PHITransAddr: null\n";
44     return;
45   }
46   dbgs() << "PHITransAddr: " << *Addr << "\n";
47   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
48     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
49 }
50 #endif
51 
52 static bool verifySubExpr(Value *Expr,
53                           SmallVectorImpl<Instruction *> &InstInputs) {
54   // If this is a non-instruction value, there is nothing to do.
55   Instruction *I = dyn_cast<Instruction>(Expr);
56   if (!I) return true;
57 
58   // If it's an instruction, it is either in Tmp or its operands recursively
59   // are.
60   if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) {
61     InstInputs.erase(Entry);
62     return true;
63   }
64 
65   // If it isn't in the InstInputs list it is a subexpr incorporated into the
66   // address.  Validate that it is phi translatable.
67   if (!canPHITrans(I)) {
68     errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
69     errs() << *I << '\n';
70     llvm_unreachable("Either something is missing from InstInputs or "
71                      "canPHITrans is wrong.");
72   }
73 
74   // Validate the operands of the instruction.
75   return all_of(I->operands(),
76                 [&](Value *Op) { return verifySubExpr(Op, InstInputs); });
77 }
78 
79 /// verify - Check internal consistency of this data structure.  If the
80 /// structure is valid, it returns true.  If invalid, it prints errors and
81 /// returns false.
82 bool PHITransAddr::verify() const {
83   if (!Addr) return true;
84 
85   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
86 
87   if (!verifySubExpr(Addr, Tmp))
88     return false;
89 
90   if (!Tmp.empty()) {
91     errs() << "PHITransAddr contains extra instructions:\n";
92     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
93       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
94     llvm_unreachable("This is unexpected.");
95   }
96 
97   // a-ok.
98   return true;
99 }
100 
101 /// isPotentiallyPHITranslatable - If this needs PHI translation, return true
102 /// if we have some hope of doing it.  This should be used as a filter to
103 /// avoid calling PHITranslateValue in hopeless situations.
104 bool PHITransAddr::isPotentiallyPHITranslatable() const {
105   // If the input value is not an instruction, or if it is not defined in CurBB,
106   // then we don't need to phi translate it.
107   Instruction *Inst = dyn_cast<Instruction>(Addr);
108   return !Inst || canPHITrans(Inst);
109 }
110 
111 static void RemoveInstInputs(Value *V,
112                              SmallVectorImpl<Instruction*> &InstInputs) {
113   Instruction *I = dyn_cast<Instruction>(V);
114   if (!I) return;
115 
116   // If the instruction is in the InstInputs list, remove it.
117   if (auto Entry = find(InstInputs, I); Entry != InstInputs.end()) {
118     InstInputs.erase(Entry);
119     return;
120   }
121 
122   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
123 
124   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
125   for (Value *Op : I->operands())
126     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
127       RemoveInstInputs(OpInst, InstInputs);
128 }
129 
130 Value *PHITransAddr::translateSubExpr(Value *V, BasicBlock *CurBB,
131                                       BasicBlock *PredBB,
132                                       const DominatorTree *DT) {
133   // If this is a non-instruction value, it can't require PHI translation.
134   Instruction *Inst = dyn_cast<Instruction>(V);
135   if (!Inst) return V;
136 
137   // Determine whether 'Inst' is an input to our PHI translatable expression.
138   bool isInput = is_contained(InstInputs, Inst);
139 
140   // Handle inputs instructions if needed.
141   if (isInput) {
142     if (Inst->getParent() != CurBB) {
143       // If it is an input defined in a different block, then it remains an
144       // input.
145       return Inst;
146     }
147 
148     // If 'Inst' is defined in this block and is an input that needs to be phi
149     // translated, we need to incorporate the value into the expression or fail.
150 
151     // In either case, the instruction itself isn't an input any longer.
152     InstInputs.erase(find(InstInputs, Inst));
153 
154     // If this is a PHI, go ahead and translate it.
155     if (PHINode *PN = dyn_cast<PHINode>(Inst))
156       return addAsInput(PN->getIncomingValueForBlock(PredBB));
157 
158     // If this is a non-phi value, and it is analyzable, we can incorporate it
159     // into the expression by making all instruction operands be inputs.
160     if (!canPHITrans(Inst))
161       return nullptr;
162 
163     // All instruction operands are now inputs (and of course, they may also be
164     // defined in this block, so they may need to be phi translated themselves.
165     for (Value *Op : Inst->operands())
166       addAsInput(Op);
167   }
168 
169   // Ok, it must be an intermediate result (either because it started that way
170   // or because we just incorporated it into the expression).  See if its
171   // operands need to be phi translated, and if so, reconstruct it.
172 
173   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
174     Value *PHIIn = translateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
175     if (!PHIIn) return nullptr;
176     if (PHIIn == Cast->getOperand(0))
177       return Cast;
178 
179     // Find an available version of this cast.
180 
181     // Try to simplify cast first.
182     if (Value *V = simplifyCastInst(Cast->getOpcode(), PHIIn, Cast->getType(),
183                                     {DL, TLI, DT, AC})) {
184       RemoveInstInputs(PHIIn, InstInputs);
185       return addAsInput(V);
186     }
187 
188     // Otherwise we have to see if a casted version of the incoming pointer
189     // is available.  If so, we can use it, otherwise we have to fail.
190     for (User *U : PHIIn->users()) {
191       if (CastInst *CastI = dyn_cast<CastInst>(U))
192         if (CastI->getOpcode() == Cast->getOpcode() &&
193             CastI->getType() == Cast->getType() &&
194             (!DT || DT->dominates(CastI->getParent(), PredBB)))
195           return CastI;
196     }
197     return nullptr;
198   }
199 
200   // Handle getelementptr with at least one PHI translatable operand.
201   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
202     SmallVector<Value*, 8> GEPOps;
203     bool AnyChanged = false;
204     for (Value *Op : GEP->operands()) {
205       Value *GEPOp = translateSubExpr(Op, CurBB, PredBB, DT);
206       if (!GEPOp) return nullptr;
207 
208       AnyChanged |= GEPOp != Op;
209       GEPOps.push_back(GEPOp);
210     }
211 
212     if (!AnyChanged)
213       return GEP;
214 
215     // Simplify the GEP to handle 'gep x, 0' -> x etc.
216     if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0],
217                                    ArrayRef<Value *>(GEPOps).slice(1),
218                                    GEP->getNoWrapFlags(), {DL, TLI, DT, AC})) {
219       for (Value *Op : GEPOps)
220         RemoveInstInputs(Op, InstInputs);
221 
222       return addAsInput(V);
223     }
224 
225     // Scan to see if we have this GEP available.
226     Value *APHIOp = GEPOps[0];
227     for (User *U : APHIOp->users()) {
228       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
229         if (GEPI->getType() == GEP->getType() &&
230             GEPI->getSourceElementType() == GEP->getSourceElementType() &&
231             GEPI->getNumOperands() == GEPOps.size() &&
232             GEPI->getParent()->getParent() == CurBB->getParent() &&
233             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
234           if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
235             return GEPI;
236         }
237     }
238     return nullptr;
239   }
240 
241   // Handle add with a constant RHS.
242   if (Inst->getOpcode() == Instruction::Add &&
243       isa<ConstantInt>(Inst->getOperand(1))) {
244     // PHI translate the LHS.
245     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
246     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
247     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
248 
249     Value *LHS = translateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
250     if (!LHS) return nullptr;
251 
252     // If the PHI translated LHS is an add of a constant, fold the immediates.
253     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
254       if (BOp->getOpcode() == Instruction::Add)
255         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
256           LHS = BOp->getOperand(0);
257           RHS = ConstantExpr::getAdd(RHS, CI);
258           isNSW = isNUW = false;
259 
260           // If the old 'LHS' was an input, add the new 'LHS' as an input.
261           if (is_contained(InstInputs, BOp)) {
262             RemoveInstInputs(BOp, InstInputs);
263             addAsInput(LHS);
264           }
265         }
266 
267     // See if the add simplifies away.
268     if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
269       // If we simplified the operands, the LHS is no longer an input, but Res
270       // is.
271       RemoveInstInputs(LHS, InstInputs);
272       return addAsInput(Res);
273     }
274 
275     // If we didn't modify the add, just return it.
276     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
277       return Inst;
278 
279     // Otherwise, see if we have this add available somewhere.
280     for (User *U : LHS->users()) {
281       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
282         if (BO->getOpcode() == Instruction::Add &&
283             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
284             BO->getParent()->getParent() == CurBB->getParent() &&
285             (!DT || DT->dominates(BO->getParent(), PredBB)))
286           return BO;
287     }
288 
289     return nullptr;
290   }
291 
292   // Otherwise, we failed.
293   return nullptr;
294 }
295 
296 /// PHITranslateValue - PHI translate the current address up the CFG from
297 /// CurBB to Pred, updating our state to reflect any needed changes.  If
298 /// 'MustDominate' is true, the translated value must dominate PredBB.
299 Value *PHITransAddr::translateValue(BasicBlock *CurBB, BasicBlock *PredBB,
300                                     const DominatorTree *DT,
301                                     bool MustDominate) {
302   assert(DT || !MustDominate);
303   assert(verify() && "Invalid PHITransAddr!");
304   if (DT && DT->isReachableFromEntry(PredBB))
305     Addr = translateSubExpr(Addr, CurBB, PredBB, DT);
306   else
307     Addr = nullptr;
308   assert(verify() && "Invalid PHITransAddr!");
309 
310   if (MustDominate)
311     // Make sure the value is live in the predecessor.
312     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
313       if (!DT->dominates(Inst->getParent(), PredBB))
314         Addr = nullptr;
315 
316   return Addr;
317 }
318 
319 /// PHITranslateWithInsertion - PHI translate this value into the specified
320 /// predecessor block, inserting a computation of the value if it is
321 /// unavailable.
322 ///
323 /// All newly created instructions are added to the NewInsts list.  This
324 /// returns null on failure.
325 ///
326 Value *
327 PHITransAddr::translateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
328                                      const DominatorTree &DT,
329                                      SmallVectorImpl<Instruction *> &NewInsts) {
330   unsigned NISize = NewInsts.size();
331 
332   // Attempt to PHI translate with insertion.
333   Addr = insertTranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
334 
335   // If successful, return the new value.
336   if (Addr) return Addr;
337 
338   // If not, destroy any intermediate instructions inserted.
339   while (NewInsts.size() != NISize)
340     NewInsts.pop_back_val()->eraseFromParent();
341   return nullptr;
342 }
343 
344 /// insertTranslatedSubExpr - Insert a computation of the PHI translated
345 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
346 /// block.  All newly created instructions are added to the NewInsts list.
347 /// This returns null on failure.
348 ///
349 Value *PHITransAddr::insertTranslatedSubExpr(
350     Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB,
351     const DominatorTree &DT, SmallVectorImpl<Instruction *> &NewInsts) {
352   // See if we have a version of this value already available and dominating
353   // PredBB.  If so, there is no need to insert a new instance of it.
354   PHITransAddr Tmp(InVal, DL, AC);
355   if (Value *Addr =
356           Tmp.translateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
357     return Addr;
358 
359   // We don't need to PHI translate values which aren't instructions.
360   auto *Inst = dyn_cast<Instruction>(InVal);
361   if (!Inst)
362     return nullptr;
363 
364   // Handle cast of PHI translatable value.
365   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
366     Value *OpVal = insertTranslatedSubExpr(Cast->getOperand(0), CurBB, PredBB,
367                                            DT, NewInsts);
368     if (!OpVal) return nullptr;
369 
370     // Otherwise insert a cast at the end of PredBB.
371     CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
372                                      InVal->getName() + ".phi.trans.insert",
373                                      PredBB->getTerminator()->getIterator());
374     New->setDebugLoc(Inst->getDebugLoc());
375     NewInsts.push_back(New);
376     return New;
377   }
378 
379   // Handle getelementptr with at least one PHI operand.
380   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
381     SmallVector<Value*, 8> GEPOps;
382     BasicBlock *CurBB = GEP->getParent();
383     for (Value *Op : GEP->operands()) {
384       Value *OpVal = insertTranslatedSubExpr(Op, CurBB, PredBB, DT, NewInsts);
385       if (!OpVal) return nullptr;
386       GEPOps.push_back(OpVal);
387     }
388 
389     GetElementPtrInst *Result = GetElementPtrInst::Create(
390         GEP->getSourceElementType(), GEPOps[0], ArrayRef(GEPOps).slice(1),
391         InVal->getName() + ".phi.trans.insert",
392         PredBB->getTerminator()->getIterator());
393     Result->setDebugLoc(Inst->getDebugLoc());
394     Result->setNoWrapFlags(GEP->getNoWrapFlags());
395     NewInsts.push_back(Result);
396     return Result;
397   }
398 
399   // Handle add with a constant RHS.
400   if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add &&
401       isa<ConstantInt>(Inst->getOperand(1))) {
402 
403     // FIXME: This code works, but it is unclear that we actually want to insert
404     // a big chain of computation in order to make a value available in a block.
405     // This needs to be evaluated carefully to consider its cost trade offs.
406 
407     // PHI translate the LHS.
408     Value *OpVal = insertTranslatedSubExpr(Inst->getOperand(0), CurBB, PredBB,
409                                            DT, NewInsts);
410     if (OpVal == nullptr)
411       return nullptr;
412 
413     BinaryOperator *Res = BinaryOperator::CreateAdd(
414         OpVal, Inst->getOperand(1), InVal->getName() + ".phi.trans.insert",
415         PredBB->getTerminator()->getIterator());
416     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
417     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
418     NewInsts.push_back(Res);
419     return Res;
420   }
421 
422   return nullptr;
423 }
424