xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MustExecute.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/ADT/StringExtras.h"
12 #include "llvm/Analysis/CFG.h"
13 #include "llvm/Analysis/InstructionSimplify.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/Passes.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/AssemblyAnnotationWriter.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/FormattedStream.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "must-execute"
33 
34 const DenseMap<BasicBlock *, ColorVector> &
35 LoopSafetyInfo::getBlockColors() const {
36   return BlockColors;
37 }
38 
39 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
40   ColorVector &ColorsForNewBlock = BlockColors[New];
41   ColorVector &ColorsForOldBlock = BlockColors[Old];
42   ColorsForNewBlock = ColorsForOldBlock;
43 }
44 
45 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
46   (void)BB;
47   return anyBlockMayThrow();
48 }
49 
50 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
51   return MayThrow;
52 }
53 
54 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
55   assert(CurLoop != nullptr && "CurLoop can't be null");
56   BasicBlock *Header = CurLoop->getHeader();
57   // Iterate over header and compute safety info.
58   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
59   MayThrow = HeaderMayThrow;
60   // Iterate over loop instructions and compute safety info.
61   // Skip header as it has been computed and stored in HeaderMayThrow.
62   // The first block in loopinfo.Blocks is guaranteed to be the header.
63   assert(Header == *CurLoop->getBlocks().begin() &&
64          "First block must be header");
65   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
66                             BBE = CurLoop->block_end();
67        (BB != BBE) && !MayThrow; ++BB)
68     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
69 
70   computeBlockColors(CurLoop);
71 }
72 
73 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
74   return ICF.hasICF(BB);
75 }
76 
77 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
78   return MayThrow;
79 }
80 
81 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
82   assert(CurLoop != nullptr && "CurLoop can't be null");
83   ICF.clear();
84   MW.clear();
85   MayThrow = false;
86   // Figure out the fact that at least one block may throw.
87   for (auto &BB : CurLoop->blocks())
88     if (ICF.hasICF(&*BB)) {
89       MayThrow = true;
90       break;
91     }
92   computeBlockColors(CurLoop);
93 }
94 
95 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
96                                             const BasicBlock *BB) {
97   ICF.insertInstructionTo(Inst, BB);
98   MW.insertInstructionTo(Inst, BB);
99 }
100 
101 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
102   ICF.removeInstruction(Inst);
103   MW.removeInstruction(Inst);
104 }
105 
106 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
107   // Compute funclet colors if we might sink/hoist in a function with a funclet
108   // personality routine.
109   Function *Fn = CurLoop->getHeader()->getParent();
110   if (Fn->hasPersonalityFn())
111     if (Constant *PersonalityFn = Fn->getPersonalityFn())
112       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
113         BlockColors = colorEHFunclets(*Fn);
114 }
115 
116 /// Return true if we can prove that the given ExitBlock is not reached on the
117 /// first iteration of the given loop.  That is, the backedge of the loop must
118 /// be executed before the ExitBlock is executed in any dynamic execution trace.
119 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
120                                            const DominatorTree *DT,
121                                            const Loop *CurLoop) {
122   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
123   if (!CondExitBlock)
124     // expect unique exits
125     return false;
126   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
127   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
128   if (!BI || !BI->isConditional())
129     return false;
130   // If condition is constant and false leads to ExitBlock then we always
131   // execute the true branch.
132   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
133     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
134   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
135   if (!Cond)
136     return false;
137   // todo: this would be a lot more powerful if we used scev, but all the
138   // plumbing is currently missing to pass a pointer in from the pass
139   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
140   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
141   auto *RHS = Cond->getOperand(1);
142   if (!LHS || LHS->getParent() != CurLoop->getHeader())
143     return false;
144   auto DL = ExitBlock->getModule()->getDataLayout();
145   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
146   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
147                                           IVStart, RHS,
148                                           {DL, /*TLI*/ nullptr,
149                                               DT, /*AC*/ nullptr, BI});
150   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
151   if (!SimpleCst)
152     return false;
153   if (ExitBlock == BI->getSuccessor(0))
154     return SimpleCst->isZeroValue();
155   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
156   return SimpleCst->isAllOnesValue();
157 }
158 
159 /// Collect all blocks from \p CurLoop which lie on all possible paths from
160 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
161 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
162 static void collectTransitivePredecessors(
163     const Loop *CurLoop, const BasicBlock *BB,
164     SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
165   assert(Predecessors.empty() && "Garbage in predecessors set?");
166   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
167   if (BB == CurLoop->getHeader())
168     return;
169   SmallVector<const BasicBlock *, 4> WorkList;
170   for (auto *Pred : predecessors(BB)) {
171     Predecessors.insert(Pred);
172     WorkList.push_back(Pred);
173   }
174   while (!WorkList.empty()) {
175     auto *Pred = WorkList.pop_back_val();
176     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
177     // We are not interested in backedges and we don't want to leave loop.
178     if (Pred == CurLoop->getHeader())
179       continue;
180     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
181     // blocks of this inner loop, even those that are always executed AFTER the
182     // BB. It may make our analysis more conservative than it could be, see test
183     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
184     // We can ignore backedge of all loops containing BB to get a sligtly more
185     // optimistic result.
186     for (auto *PredPred : predecessors(Pred))
187       if (Predecessors.insert(PredPred).second)
188         WorkList.push_back(PredPred);
189   }
190 }
191 
192 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
193                                              const BasicBlock *BB,
194                                              const DominatorTree *DT) const {
195   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
196 
197   // Fast path: header is always reached once the loop is entered.
198   if (BB == CurLoop->getHeader())
199     return true;
200 
201   // Collect all transitive predecessors of BB in the same loop. This set will
202   // be a subset of the blocks within the loop.
203   SmallPtrSet<const BasicBlock *, 4> Predecessors;
204   collectTransitivePredecessors(CurLoop, BB, Predecessors);
205 
206   // Make sure that all successors of, all predecessors of BB which are not
207   // dominated by BB, are either:
208   // 1) BB,
209   // 2) Also predecessors of BB,
210   // 3) Exit blocks which are not taken on 1st iteration.
211   // Memoize blocks we've already checked.
212   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
213   for (auto *Pred : Predecessors) {
214     // Predecessor block may throw, so it has a side exit.
215     if (blockMayThrow(Pred))
216       return false;
217 
218     // BB dominates Pred, so if Pred runs, BB must run.
219     // This is true when Pred is a loop latch.
220     if (DT->dominates(BB, Pred))
221       continue;
222 
223     for (auto *Succ : successors(Pred))
224       if (CheckedSuccessors.insert(Succ).second &&
225           Succ != BB && !Predecessors.count(Succ))
226         // By discharging conditions that are not executed on the 1st iteration,
227         // we guarantee that *at least* on the first iteration all paths from
228         // header that *may* execute will lead us to the block of interest. So
229         // that if we had virtually peeled one iteration away, in this peeled
230         // iteration the set of predecessors would contain only paths from
231         // header to BB without any exiting edges that may execute.
232         //
233         // TODO: We only do it for exiting edges currently. We could use the
234         // same function to skip some of the edges within the loop if we know
235         // that they will not be taken on the 1st iteration.
236         //
237         // TODO: If we somehow know the number of iterations in loop, the same
238         // check may be done for any arbitrary N-th iteration as long as N is
239         // not greater than minimum number of iterations in this loop.
240         if (CurLoop->contains(Succ) ||
241             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
242           return false;
243   }
244 
245   // All predecessors can only lead us to BB.
246   return true;
247 }
248 
249 /// Returns true if the instruction in a loop is guaranteed to execute at least
250 /// once.
251 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
252                                                  const DominatorTree *DT,
253                                                  const Loop *CurLoop) const {
254   // If the instruction is in the header block for the loop (which is very
255   // common), it is always guaranteed to dominate the exit blocks.  Since this
256   // is a common case, and can save some work, check it now.
257   if (Inst.getParent() == CurLoop->getHeader())
258     // If there's a throw in the header block, we can't guarantee we'll reach
259     // Inst unless we can prove that Inst comes before the potential implicit
260     // exit.  At the moment, we use a (cheap) hack for the common case where
261     // the instruction of interest is the first one in the block.
262     return !HeaderMayThrow ||
263            Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
264 
265   // If there is a path from header to exit or latch that doesn't lead to our
266   // instruction's block, return false.
267   return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
268 }
269 
270 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
271                                               const DominatorTree *DT,
272                                               const Loop *CurLoop) const {
273   return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
274          allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
275 }
276 
277 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
278                                                  const Loop *CurLoop) const {
279   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
280 
281   // Fast path: there are no instructions before header.
282   if (BB == CurLoop->getHeader())
283     return true;
284 
285   // Collect all transitive predecessors of BB in the same loop. This set will
286   // be a subset of the blocks within the loop.
287   SmallPtrSet<const BasicBlock *, 4> Predecessors;
288   collectTransitivePredecessors(CurLoop, BB, Predecessors);
289   // Find if there any instruction in either predecessor that could write
290   // to memory.
291   for (auto *Pred : Predecessors)
292     if (MW.mayWriteToMemory(Pred))
293       return false;
294   return true;
295 }
296 
297 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
298                                                  const Loop *CurLoop) const {
299   auto *BB = I.getParent();
300   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
301   return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
302          doesNotWriteMemoryBefore(BB, CurLoop);
303 }
304 
305 namespace {
306 struct MustExecutePrinter : public FunctionPass {
307 
308   static char ID; // Pass identification, replacement for typeid
309   MustExecutePrinter() : FunctionPass(ID) {
310     initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
311   }
312   void getAnalysisUsage(AnalysisUsage &AU) const override {
313     AU.setPreservesAll();
314     AU.addRequired<DominatorTreeWrapperPass>();
315     AU.addRequired<LoopInfoWrapperPass>();
316   }
317   bool runOnFunction(Function &F) override;
318 };
319 struct MustBeExecutedContextPrinter : public ModulePass {
320   static char ID;
321 
322   MustBeExecutedContextPrinter() : ModulePass(ID) {
323     initializeMustBeExecutedContextPrinterPass(
324         *PassRegistry::getPassRegistry());
325   }
326   void getAnalysisUsage(AnalysisUsage &AU) const override {
327     AU.setPreservesAll();
328   }
329   bool runOnModule(Module &M) override;
330 };
331 }
332 
333 char MustExecutePrinter::ID = 0;
334 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
335                       "Instructions which execute on loop entry", false, true)
336 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
338 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
339                     "Instructions which execute on loop entry", false, true)
340 
341 FunctionPass *llvm::createMustExecutePrinter() {
342   return new MustExecutePrinter();
343 }
344 
345 char MustBeExecutedContextPrinter::ID = 0;
346 INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
347                       "print-must-be-executed-contexts",
348                       "print the must-be-executed-context for all instructions",
349                       false, true)
350 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
352 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
353 INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
354                     "print-must-be-executed-contexts",
355                     "print the must-be-executed-context for all instructions",
356                     false, true)
357 
358 ModulePass *llvm::createMustBeExecutedContextPrinter() {
359   return new MustBeExecutedContextPrinter();
360 }
361 
362 bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
363   // We provide non-PM analysis here because the old PM doesn't like to query
364   // function passes from a module pass.
365   SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
366   SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
367   SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
368 
369   GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
370     DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
371     LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
372     return LIs.back().get();
373   };
374   GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
375     DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
376     return DTs.back().get();
377   };
378   GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
379     PDTs.push_back(
380         std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
381     return PDTs.back().get();
382   };
383   MustBeExecutedContextExplorer Explorer(
384       /* ExploreInterBlock */ true,
385       /* ExploreCFGForward */ true,
386       /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
387 
388   for (Function &F : M) {
389     for (Instruction &I : instructions(F)) {
390       dbgs() << "-- Explore context of: " << I << "\n";
391       for (const Instruction *CI : Explorer.range(&I))
392         dbgs() << "  [F: " << CI->getFunction()->getName() << "] " << *CI
393                << "\n";
394     }
395   }
396 
397   return false;
398 }
399 
400 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
401   // TODO: merge these two routines.  For the moment, we display the best
402   // result obtained by *either* implementation.  This is a bit unfair since no
403   // caller actually gets the full power at the moment.
404   SimpleLoopSafetyInfo LSI;
405   LSI.computeLoopSafetyInfo(L);
406   return LSI.isGuaranteedToExecute(I, DT, L) ||
407     isGuaranteedToExecuteForEveryIteration(&I, L);
408 }
409 
410 namespace {
411 /// An assembly annotator class to print must execute information in
412 /// comments.
413 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
414   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
415 
416 public:
417   MustExecuteAnnotatedWriter(const Function &F,
418                              DominatorTree &DT, LoopInfo &LI) {
419     for (auto &I: instructions(F)) {
420       Loop *L = LI.getLoopFor(I.getParent());
421       while (L) {
422         if (isMustExecuteIn(I, L, &DT)) {
423           MustExec[&I].push_back(L);
424         }
425         L = L->getParentLoop();
426       };
427     }
428   }
429   MustExecuteAnnotatedWriter(const Module &M,
430                              DominatorTree &DT, LoopInfo &LI) {
431     for (auto &F : M)
432     for (auto &I: instructions(F)) {
433       Loop *L = LI.getLoopFor(I.getParent());
434       while (L) {
435         if (isMustExecuteIn(I, L, &DT)) {
436           MustExec[&I].push_back(L);
437         }
438         L = L->getParentLoop();
439       };
440     }
441   }
442 
443 
444   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
445     if (!MustExec.count(&V))
446       return;
447 
448     const auto &Loops = MustExec.lookup(&V);
449     const auto NumLoops = Loops.size();
450     if (NumLoops > 1)
451       OS << " ; (mustexec in " << NumLoops << " loops: ";
452     else
453       OS << " ; (mustexec in: ";
454 
455     ListSeparator LS;
456     for (const Loop *L : Loops)
457       OS << LS << L->getHeader()->getName();
458     OS << ")";
459   }
460 };
461 } // namespace
462 
463 bool MustExecutePrinter::runOnFunction(Function &F) {
464   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
465   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
466 
467   MustExecuteAnnotatedWriter Writer(F, DT, LI);
468   F.print(dbgs(), &Writer);
469 
470   return false;
471 }
472 
473 /// Return true if \p L might be an endless loop.
474 static bool maybeEndlessLoop(const Loop &L) {
475   if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
476     return false;
477   // TODO: Actually try to prove it is not.
478   // TODO: If maybeEndlessLoop is going to be expensive, cache it.
479   return true;
480 }
481 
482 bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
483   if (!LI)
484     return false;
485   using RPOTraversal = ReversePostOrderTraversal<const Function *>;
486   RPOTraversal FuncRPOT(&F);
487   return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
488                                 const LoopInfo>(FuncRPOT, *LI);
489 }
490 
491 /// Lookup \p Key in \p Map and return the result, potentially after
492 /// initializing the optional through \p Fn(\p args).
493 template <typename K, typename V, typename FnTy, typename... ArgsTy>
494 static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
495                                    FnTy &&Fn, ArgsTy&&... args) {
496   Optional<V> &OptVal = Map[Key];
497   if (!OptVal.hasValue())
498     OptVal = Fn(std::forward<ArgsTy>(args)...);
499   return OptVal.getValue();
500 }
501 
502 const BasicBlock *
503 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
504   const LoopInfo *LI = LIGetter(*InitBB->getParent());
505   const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
506 
507   LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
508                     << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
509 
510   const Function &F = *InitBB->getParent();
511   const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
512   const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
513   bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
514                                (L && !maybeEndlessLoop(*L))) &&
515                               F.doesNotThrow();
516   LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
517                     << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
518                     << "\n");
519 
520   // Determine the adjacent blocks in the given direction but exclude (self)
521   // loops under certain circumstances.
522   SmallVector<const BasicBlock *, 8> Worklist;
523   for (const BasicBlock *SuccBB : successors(InitBB)) {
524     bool IsLatch = SuccBB == HeaderBB;
525     // Loop latches are ignored in forward propagation if the loop cannot be
526     // endless and may not throw: control has to go somewhere.
527     if (!WillReturnAndNoThrow || !IsLatch)
528       Worklist.push_back(SuccBB);
529   }
530   LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
531 
532   // If there are no other adjacent blocks, there is no join point.
533   if (Worklist.empty())
534     return nullptr;
535 
536   // If there is one adjacent block, it is the join point.
537   if (Worklist.size() == 1)
538     return Worklist[0];
539 
540   // Try to determine a join block through the help of the post-dominance
541   // tree. If no tree was provided, we perform simple pattern matching for one
542   // block conditionals and one block loops only.
543   const BasicBlock *JoinBB = nullptr;
544   if (PDT)
545     if (const auto *InitNode = PDT->getNode(InitBB))
546       if (const auto *IDomNode = InitNode->getIDom())
547         JoinBB = IDomNode->getBlock();
548 
549   if (!JoinBB && Worklist.size() == 2) {
550     const BasicBlock *Succ0 = Worklist[0];
551     const BasicBlock *Succ1 = Worklist[1];
552     const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
553     const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
554     if (Succ0UniqueSucc == InitBB) {
555       // InitBB -> Succ0 -> InitBB
556       // InitBB -> Succ1  = JoinBB
557       JoinBB = Succ1;
558     } else if (Succ1UniqueSucc == InitBB) {
559       // InitBB -> Succ1 -> InitBB
560       // InitBB -> Succ0  = JoinBB
561       JoinBB = Succ0;
562     } else if (Succ0 == Succ1UniqueSucc) {
563       // InitBB ->          Succ0 = JoinBB
564       // InitBB -> Succ1 -> Succ0 = JoinBB
565       JoinBB = Succ0;
566     } else if (Succ1 == Succ0UniqueSucc) {
567       // InitBB -> Succ0 -> Succ1 = JoinBB
568       // InitBB ->          Succ1 = JoinBB
569       JoinBB = Succ1;
570     } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
571       // InitBB -> Succ0 -> JoinBB
572       // InitBB -> Succ1 -> JoinBB
573       JoinBB = Succ0UniqueSucc;
574     }
575   }
576 
577   if (!JoinBB && L)
578     JoinBB = L->getUniqueExitBlock();
579 
580   if (!JoinBB)
581     return nullptr;
582 
583   LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
584 
585   // In forward direction we check if control will for sure reach JoinBB from
586   // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
587   // are: infinite loops and instructions that do not necessarily transfer
588   // execution to their successor. To check for them we traverse the CFG from
589   // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
590 
591   // If we know the function is "will-return" and "no-throw" there is no need
592   // for futher checks.
593   if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
594 
595     auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
596       return isGuaranteedToTransferExecutionToSuccessor(BB);
597     };
598 
599     SmallPtrSet<const BasicBlock *, 16> Visited;
600     while (!Worklist.empty()) {
601       const BasicBlock *ToBB = Worklist.pop_back_val();
602       if (ToBB == JoinBB)
603         continue;
604 
605       // Make sure all loops in-between are finite.
606       if (!Visited.insert(ToBB).second) {
607         if (!F.hasFnAttribute(Attribute::WillReturn)) {
608           if (!LI)
609             return nullptr;
610 
611           bool MayContainIrreducibleControl = getOrCreateCachedOptional(
612               &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
613           if (MayContainIrreducibleControl)
614             return nullptr;
615 
616           const Loop *L = LI->getLoopFor(ToBB);
617           if (L && maybeEndlessLoop(*L))
618             return nullptr;
619         }
620 
621         continue;
622       }
623 
624       // Make sure the block has no instructions that could stop control
625       // transfer.
626       bool TransfersExecution = getOrCreateCachedOptional(
627           ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
628       if (!TransfersExecution)
629         return nullptr;
630 
631       append_range(Worklist, successors(ToBB));
632     }
633   }
634 
635   LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
636   return JoinBB;
637 }
638 const BasicBlock *
639 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
640   const LoopInfo *LI = LIGetter(*InitBB->getParent());
641   const DominatorTree *DT = DTGetter(*InitBB->getParent());
642   LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
643                     << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
644 
645   // Try to determine a join block through the help of the dominance tree. If no
646   // tree was provided, we perform simple pattern matching for one block
647   // conditionals only.
648   if (DT)
649     if (const auto *InitNode = DT->getNode(InitBB))
650       if (const auto *IDomNode = InitNode->getIDom())
651         return IDomNode->getBlock();
652 
653   const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
654   const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
655 
656   // Determine the predecessor blocks but ignore backedges.
657   SmallVector<const BasicBlock *, 8> Worklist;
658   for (const BasicBlock *PredBB : predecessors(InitBB)) {
659     bool IsBackedge =
660         (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
661     // Loop backedges are ignored in backwards propagation: control has to come
662     // from somewhere.
663     if (!IsBackedge)
664       Worklist.push_back(PredBB);
665   }
666 
667   // If there are no other predecessor blocks, there is no join point.
668   if (Worklist.empty())
669     return nullptr;
670 
671   // If there is one predecessor block, it is the join point.
672   if (Worklist.size() == 1)
673     return Worklist[0];
674 
675   const BasicBlock *JoinBB = nullptr;
676   if (Worklist.size() == 2) {
677     const BasicBlock *Pred0 = Worklist[0];
678     const BasicBlock *Pred1 = Worklist[1];
679     const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
680     const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
681     if (Pred0 == Pred1UniquePred) {
682       // InitBB <-          Pred0 = JoinBB
683       // InitBB <- Pred1 <- Pred0 = JoinBB
684       JoinBB = Pred0;
685     } else if (Pred1 == Pred0UniquePred) {
686       // InitBB <- Pred0 <- Pred1 = JoinBB
687       // InitBB <-          Pred1 = JoinBB
688       JoinBB = Pred1;
689     } else if (Pred0UniquePred == Pred1UniquePred) {
690       // InitBB <- Pred0 <- JoinBB
691       // InitBB <- Pred1 <- JoinBB
692       JoinBB = Pred0UniquePred;
693     }
694   }
695 
696   if (!JoinBB && L)
697     JoinBB = L->getHeader();
698 
699   // In backwards direction there is no need to show termination of previous
700   // instructions. If they do not terminate, the code afterward is dead, making
701   // any information/transformation correct anyway.
702   return JoinBB;
703 }
704 
705 const Instruction *
706 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
707     MustBeExecutedIterator &It, const Instruction *PP) {
708   if (!PP)
709     return PP;
710   LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
711 
712   // If we explore only inside a given basic block we stop at terminators.
713   if (!ExploreInterBlock && PP->isTerminator()) {
714     LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
715     return nullptr;
716   }
717 
718   // If we do not traverse the call graph we check if we can make progress in
719   // the current function. First, check if the instruction is guaranteed to
720   // transfer execution to the successor.
721   bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
722   if (!TransfersExecution)
723     return nullptr;
724 
725   // If this is not a terminator we know that there is a single instruction
726   // after this one that is executed next if control is transfered. If not,
727   // we can try to go back to a call site we entered earlier. If none exists, we
728   // do not know any instruction that has to be executd next.
729   if (!PP->isTerminator()) {
730     const Instruction *NextPP = PP->getNextNode();
731     LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
732     return NextPP;
733   }
734 
735   // Finally, we have to handle terminators, trivial ones first.
736   assert(PP->isTerminator() && "Expected a terminator!");
737 
738   // A terminator without a successor is not handled yet.
739   if (PP->getNumSuccessors() == 0) {
740     LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
741     return nullptr;
742   }
743 
744   // A terminator with a single successor, we will continue at the beginning of
745   // that one.
746   if (PP->getNumSuccessors() == 1) {
747     LLVM_DEBUG(
748         dbgs() << "\tUnconditional terminator, continue with successor\n");
749     return &PP->getSuccessor(0)->front();
750   }
751 
752   // Multiple successors mean we need to find the join point where control flow
753   // converges again. We use the findForwardJoinPoint helper function with
754   // information about the function and helper analyses, if available.
755   if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
756     return &JoinBB->front();
757 
758   LLVM_DEBUG(dbgs() << "\tNo join point found\n");
759   return nullptr;
760 }
761 
762 const Instruction *
763 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
764     MustBeExecutedIterator &It, const Instruction *PP) {
765   if (!PP)
766     return PP;
767 
768   bool IsFirst = !(PP->getPrevNode());
769   LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
770                     << (IsFirst ? " [IsFirst]" : "") << "\n");
771 
772   // If we explore only inside a given basic block we stop at the first
773   // instruction.
774   if (!ExploreInterBlock && IsFirst) {
775     LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
776     return nullptr;
777   }
778 
779   // The block and function that contains the current position.
780   const BasicBlock *PPBlock = PP->getParent();
781 
782   // If we are inside a block we know what instruction was executed before, the
783   // previous one.
784   if (!IsFirst) {
785     const Instruction *PrevPP = PP->getPrevNode();
786     LLVM_DEBUG(
787         dbgs() << "\tIntermediate instruction, continue with previous\n");
788     // We did not enter a callee so we simply return the previous instruction.
789     return PrevPP;
790   }
791 
792   // Finally, we have to handle the case where the program point is the first in
793   // a block but not in the function. We use the findBackwardJoinPoint helper
794   // function with information about the function and helper analyses, if
795   // available.
796   if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
797     return &JoinBB->back();
798 
799   LLVM_DEBUG(dbgs() << "\tNo join point found\n");
800   return nullptr;
801 }
802 
803 MustBeExecutedIterator::MustBeExecutedIterator(
804     MustBeExecutedContextExplorer &Explorer, const Instruction *I)
805     : Explorer(Explorer), CurInst(I) {
806   reset(I);
807 }
808 
809 void MustBeExecutedIterator::reset(const Instruction *I) {
810   Visited.clear();
811   resetInstruction(I);
812 }
813 
814 void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
815   CurInst = I;
816   Head = Tail = nullptr;
817   Visited.insert({I, ExplorationDirection::FORWARD});
818   Visited.insert({I, ExplorationDirection::BACKWARD});
819   if (Explorer.ExploreCFGForward)
820     Head = I;
821   if (Explorer.ExploreCFGBackward)
822     Tail = I;
823 }
824 
825 const Instruction *MustBeExecutedIterator::advance() {
826   assert(CurInst && "Cannot advance an end iterator!");
827   Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
828   if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
829     return Head;
830   Head = nullptr;
831 
832   Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
833   if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
834     return Tail;
835   Tail = nullptr;
836   return nullptr;
837 }
838 
839 PreservedAnalyses MustExecutePrinterPass::run(Function &F,
840                                               FunctionAnalysisManager &AM) {
841   auto &LI = AM.getResult<LoopAnalysis>(F);
842   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
843 
844   MustExecuteAnnotatedWriter Writer(F, DT, LI);
845   F.print(OS, &Writer);
846   return PreservedAnalyses::all();
847 }
848 
849 PreservedAnalyses
850 MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
851   FunctionAnalysisManager &FAM =
852       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
853   GetterTy<const LoopInfo> LIGetter = [&](const Function &F) {
854     return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F));
855   };
856   GetterTy<const DominatorTree> DTGetter = [&](const Function &F) {
857     return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
858   };
859   GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) {
860     return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F));
861   };
862 
863   MustBeExecutedContextExplorer Explorer(
864       /* ExploreInterBlock */ true,
865       /* ExploreCFGForward */ true,
866       /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
867 
868   for (Function &F : M) {
869     for (Instruction &I : instructions(F)) {
870       OS << "-- Explore context of: " << I << "\n";
871       for (const Instruction *CI : Explorer.range(&I))
872         OS << "  [F: " << CI->getFunction()->getName() << "] " << *CI << "\n";
873     }
874   }
875   return PreservedAnalyses::all();
876 }
877