xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MustExecute.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/Analysis/InstructionSimplify.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/Passes.h"
13 #include "llvm/Analysis/ValueTracking.h"
14 #include "llvm/IR/AssemblyAnnotationWriter.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/InstIterator.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/FormattedStream.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
23 
24 const DenseMap<BasicBlock *, ColorVector> &
25 LoopSafetyInfo::getBlockColors() const {
26   return BlockColors;
27 }
28 
29 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
30   ColorVector &ColorsForNewBlock = BlockColors[New];
31   ColorVector &ColorsForOldBlock = BlockColors[Old];
32   ColorsForNewBlock = ColorsForOldBlock;
33 }
34 
35 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
36   (void)BB;
37   return anyBlockMayThrow();
38 }
39 
40 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
41   return MayThrow;
42 }
43 
44 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
45   assert(CurLoop != nullptr && "CurLoop can't be null");
46   BasicBlock *Header = CurLoop->getHeader();
47   // Iterate over header and compute safety info.
48   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
49   MayThrow = HeaderMayThrow;
50   // Iterate over loop instructions and compute safety info.
51   // Skip header as it has been computed and stored in HeaderMayThrow.
52   // The first block in loopinfo.Blocks is guaranteed to be the header.
53   assert(Header == *CurLoop->getBlocks().begin() &&
54          "First block must be header");
55   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
56                             BBE = CurLoop->block_end();
57        (BB != BBE) && !MayThrow; ++BB)
58     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
59 
60   computeBlockColors(CurLoop);
61 }
62 
63 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
64   return ICF.hasICF(BB);
65 }
66 
67 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
68   return MayThrow;
69 }
70 
71 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
72   assert(CurLoop != nullptr && "CurLoop can't be null");
73   ICF.clear();
74   MW.clear();
75   MayThrow = false;
76   // Figure out the fact that at least one block may throw.
77   for (auto &BB : CurLoop->blocks())
78     if (ICF.hasICF(&*BB)) {
79       MayThrow = true;
80       break;
81     }
82   computeBlockColors(CurLoop);
83 }
84 
85 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
86                                             const BasicBlock *BB) {
87   ICF.insertInstructionTo(Inst, BB);
88   MW.insertInstructionTo(Inst, BB);
89 }
90 
91 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
92   ICF.removeInstruction(Inst);
93   MW.removeInstruction(Inst);
94 }
95 
96 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
97   // Compute funclet colors if we might sink/hoist in a function with a funclet
98   // personality routine.
99   Function *Fn = CurLoop->getHeader()->getParent();
100   if (Fn->hasPersonalityFn())
101     if (Constant *PersonalityFn = Fn->getPersonalityFn())
102       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
103         BlockColors = colorEHFunclets(*Fn);
104 }
105 
106 /// Return true if we can prove that the given ExitBlock is not reached on the
107 /// first iteration of the given loop.  That is, the backedge of the loop must
108 /// be executed before the ExitBlock is executed in any dynamic execution trace.
109 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
110                                            const DominatorTree *DT,
111                                            const Loop *CurLoop) {
112   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
113   if (!CondExitBlock)
114     // expect unique exits
115     return false;
116   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
117   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
118   if (!BI || !BI->isConditional())
119     return false;
120   // If condition is constant and false leads to ExitBlock then we always
121   // execute the true branch.
122   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
123     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
124   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
125   if (!Cond)
126     return false;
127   // todo: this would be a lot more powerful if we used scev, but all the
128   // plumbing is currently missing to pass a pointer in from the pass
129   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
130   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
131   auto *RHS = Cond->getOperand(1);
132   if (!LHS || LHS->getParent() != CurLoop->getHeader())
133     return false;
134   auto DL = ExitBlock->getModule()->getDataLayout();
135   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
136   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
137                                           IVStart, RHS,
138                                           {DL, /*TLI*/ nullptr,
139                                               DT, /*AC*/ nullptr, BI});
140   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
141   if (!SimpleCst)
142     return false;
143   if (ExitBlock == BI->getSuccessor(0))
144     return SimpleCst->isZeroValue();
145   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
146   return SimpleCst->isAllOnesValue();
147 }
148 
149 /// Collect all blocks from \p CurLoop which lie on all possible paths from
150 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
151 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
152 static void collectTransitivePredecessors(
153     const Loop *CurLoop, const BasicBlock *BB,
154     SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
155   assert(Predecessors.empty() && "Garbage in predecessors set?");
156   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
157   if (BB == CurLoop->getHeader())
158     return;
159   SmallVector<const BasicBlock *, 4> WorkList;
160   for (auto *Pred : predecessors(BB)) {
161     Predecessors.insert(Pred);
162     WorkList.push_back(Pred);
163   }
164   while (!WorkList.empty()) {
165     auto *Pred = WorkList.pop_back_val();
166     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
167     // We are not interested in backedges and we don't want to leave loop.
168     if (Pred == CurLoop->getHeader())
169       continue;
170     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
171     // blocks of this inner loop, even those that are always executed AFTER the
172     // BB. It may make our analysis more conservative than it could be, see test
173     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
174     // We can ignore backedge of all loops containing BB to get a sligtly more
175     // optimistic result.
176     for (auto *PredPred : predecessors(Pred))
177       if (Predecessors.insert(PredPred).second)
178         WorkList.push_back(PredPred);
179   }
180 }
181 
182 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
183                                              const BasicBlock *BB,
184                                              const DominatorTree *DT) const {
185   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
186 
187   // Fast path: header is always reached once the loop is entered.
188   if (BB == CurLoop->getHeader())
189     return true;
190 
191   // Collect all transitive predecessors of BB in the same loop. This set will
192   // be a subset of the blocks within the loop.
193   SmallPtrSet<const BasicBlock *, 4> Predecessors;
194   collectTransitivePredecessors(CurLoop, BB, Predecessors);
195 
196   // Make sure that all successors of, all predecessors of BB which are not
197   // dominated by BB, are either:
198   // 1) BB,
199   // 2) Also predecessors of BB,
200   // 3) Exit blocks which are not taken on 1st iteration.
201   // Memoize blocks we've already checked.
202   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
203   for (auto *Pred : Predecessors) {
204     // Predecessor block may throw, so it has a side exit.
205     if (blockMayThrow(Pred))
206       return false;
207 
208     // BB dominates Pred, so if Pred runs, BB must run.
209     // This is true when Pred is a loop latch.
210     if (DT->dominates(BB, Pred))
211       continue;
212 
213     for (auto *Succ : successors(Pred))
214       if (CheckedSuccessors.insert(Succ).second &&
215           Succ != BB && !Predecessors.count(Succ))
216         // By discharging conditions that are not executed on the 1st iteration,
217         // we guarantee that *at least* on the first iteration all paths from
218         // header that *may* execute will lead us to the block of interest. So
219         // that if we had virtually peeled one iteration away, in this peeled
220         // iteration the set of predecessors would contain only paths from
221         // header to BB without any exiting edges that may execute.
222         //
223         // TODO: We only do it for exiting edges currently. We could use the
224         // same function to skip some of the edges within the loop if we know
225         // that they will not be taken on the 1st iteration.
226         //
227         // TODO: If we somehow know the number of iterations in loop, the same
228         // check may be done for any arbitrary N-th iteration as long as N is
229         // not greater than minimum number of iterations in this loop.
230         if (CurLoop->contains(Succ) ||
231             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
232           return false;
233   }
234 
235   // All predecessors can only lead us to BB.
236   return true;
237 }
238 
239 /// Returns true if the instruction in a loop is guaranteed to execute at least
240 /// once.
241 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
242                                                  const DominatorTree *DT,
243                                                  const Loop *CurLoop) const {
244   // If the instruction is in the header block for the loop (which is very
245   // common), it is always guaranteed to dominate the exit blocks.  Since this
246   // is a common case, and can save some work, check it now.
247   if (Inst.getParent() == CurLoop->getHeader())
248     // If there's a throw in the header block, we can't guarantee we'll reach
249     // Inst unless we can prove that Inst comes before the potential implicit
250     // exit.  At the moment, we use a (cheap) hack for the common case where
251     // the instruction of interest is the first one in the block.
252     return !HeaderMayThrow ||
253            Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
254 
255   // If there is a path from header to exit or latch that doesn't lead to our
256   // instruction's block, return false.
257   return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
258 }
259 
260 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
261                                               const DominatorTree *DT,
262                                               const Loop *CurLoop) const {
263   return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
264          allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
265 }
266 
267 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
268                                                  const Loop *CurLoop) const {
269   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
270 
271   // Fast path: there are no instructions before header.
272   if (BB == CurLoop->getHeader())
273     return true;
274 
275   // Collect all transitive predecessors of BB in the same loop. This set will
276   // be a subset of the blocks within the loop.
277   SmallPtrSet<const BasicBlock *, 4> Predecessors;
278   collectTransitivePredecessors(CurLoop, BB, Predecessors);
279   // Find if there any instruction in either predecessor that could write
280   // to memory.
281   for (auto *Pred : Predecessors)
282     if (MW.mayWriteToMemory(Pred))
283       return false;
284   return true;
285 }
286 
287 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
288                                                  const Loop *CurLoop) const {
289   auto *BB = I.getParent();
290   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
291   return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
292          doesNotWriteMemoryBefore(BB, CurLoop);
293 }
294 
295 namespace {
296   struct MustExecutePrinter : public FunctionPass {
297 
298     static char ID; // Pass identification, replacement for typeid
299     MustExecutePrinter() : FunctionPass(ID) {
300       initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
301     }
302     void getAnalysisUsage(AnalysisUsage &AU) const override {
303       AU.setPreservesAll();
304       AU.addRequired<DominatorTreeWrapperPass>();
305       AU.addRequired<LoopInfoWrapperPass>();
306     }
307     bool runOnFunction(Function &F) override;
308   };
309 }
310 
311 char MustExecutePrinter::ID = 0;
312 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
313                       "Instructions which execute on loop entry", false, true)
314 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
315 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
316 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
317                     "Instructions which execute on loop entry", false, true)
318 
319 FunctionPass *llvm::createMustExecutePrinter() {
320   return new MustExecutePrinter();
321 }
322 
323 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
324   // TODO: merge these two routines.  For the moment, we display the best
325   // result obtained by *either* implementation.  This is a bit unfair since no
326   // caller actually gets the full power at the moment.
327   SimpleLoopSafetyInfo LSI;
328   LSI.computeLoopSafetyInfo(L);
329   return LSI.isGuaranteedToExecute(I, DT, L) ||
330     isGuaranteedToExecuteForEveryIteration(&I, L);
331 }
332 
333 namespace {
334 /// An assembly annotator class to print must execute information in
335 /// comments.
336 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
337   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
338 
339 public:
340   MustExecuteAnnotatedWriter(const Function &F,
341                              DominatorTree &DT, LoopInfo &LI) {
342     for (auto &I: instructions(F)) {
343       Loop *L = LI.getLoopFor(I.getParent());
344       while (L) {
345         if (isMustExecuteIn(I, L, &DT)) {
346           MustExec[&I].push_back(L);
347         }
348         L = L->getParentLoop();
349       };
350     }
351   }
352   MustExecuteAnnotatedWriter(const Module &M,
353                              DominatorTree &DT, LoopInfo &LI) {
354     for (auto &F : M)
355     for (auto &I: instructions(F)) {
356       Loop *L = LI.getLoopFor(I.getParent());
357       while (L) {
358         if (isMustExecuteIn(I, L, &DT)) {
359           MustExec[&I].push_back(L);
360         }
361         L = L->getParentLoop();
362       };
363     }
364   }
365 
366 
367   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
368     if (!MustExec.count(&V))
369       return;
370 
371     const auto &Loops = MustExec.lookup(&V);
372     const auto NumLoops = Loops.size();
373     if (NumLoops > 1)
374       OS << " ; (mustexec in " << NumLoops << " loops: ";
375     else
376       OS << " ; (mustexec in: ";
377 
378     bool first = true;
379     for (const Loop *L : Loops) {
380       if (!first)
381         OS << ", ";
382       first = false;
383       OS << L->getHeader()->getName();
384     }
385     OS << ")";
386   }
387 };
388 } // namespace
389 
390 bool MustExecutePrinter::runOnFunction(Function &F) {
391   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
392   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
393 
394   MustExecuteAnnotatedWriter Writer(F, DT, LI);
395   F.print(dbgs(), &Writer);
396 
397   return false;
398 }
399