1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/MustExecute.h" 10 #include "llvm/Analysis/InstructionSimplify.h" 11 #include "llvm/Analysis/LoopInfo.h" 12 #include "llvm/Analysis/Passes.h" 13 #include "llvm/Analysis/ValueTracking.h" 14 #include "llvm/IR/AssemblyAnnotationWriter.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/InstIterator.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/FormattedStream.h" 21 #include "llvm/Support/raw_ostream.h" 22 using namespace llvm; 23 24 const DenseMap<BasicBlock *, ColorVector> & 25 LoopSafetyInfo::getBlockColors() const { 26 return BlockColors; 27 } 28 29 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { 30 ColorVector &ColorsForNewBlock = BlockColors[New]; 31 ColorVector &ColorsForOldBlock = BlockColors[Old]; 32 ColorsForNewBlock = ColorsForOldBlock; 33 } 34 35 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 36 (void)BB; 37 return anyBlockMayThrow(); 38 } 39 40 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { 41 return MayThrow; 42 } 43 44 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 45 assert(CurLoop != nullptr && "CurLoop can't be null"); 46 BasicBlock *Header = CurLoop->getHeader(); 47 // Iterate over header and compute safety info. 48 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); 49 MayThrow = HeaderMayThrow; 50 // Iterate over loop instructions and compute safety info. 51 // Skip header as it has been computed and stored in HeaderMayThrow. 52 // The first block in loopinfo.Blocks is guaranteed to be the header. 53 assert(Header == *CurLoop->getBlocks().begin() && 54 "First block must be header"); 55 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 56 BBE = CurLoop->block_end(); 57 (BB != BBE) && !MayThrow; ++BB) 58 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); 59 60 computeBlockColors(CurLoop); 61 } 62 63 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 64 return ICF.hasICF(BB); 65 } 66 67 bool ICFLoopSafetyInfo::anyBlockMayThrow() const { 68 return MayThrow; 69 } 70 71 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 72 assert(CurLoop != nullptr && "CurLoop can't be null"); 73 ICF.clear(); 74 MW.clear(); 75 MayThrow = false; 76 // Figure out the fact that at least one block may throw. 77 for (auto &BB : CurLoop->blocks()) 78 if (ICF.hasICF(&*BB)) { 79 MayThrow = true; 80 break; 81 } 82 computeBlockColors(CurLoop); 83 } 84 85 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, 86 const BasicBlock *BB) { 87 ICF.insertInstructionTo(Inst, BB); 88 MW.insertInstructionTo(Inst, BB); 89 } 90 91 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { 92 ICF.removeInstruction(Inst); 93 MW.removeInstruction(Inst); 94 } 95 96 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { 97 // Compute funclet colors if we might sink/hoist in a function with a funclet 98 // personality routine. 99 Function *Fn = CurLoop->getHeader()->getParent(); 100 if (Fn->hasPersonalityFn()) 101 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 102 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 103 BlockColors = colorEHFunclets(*Fn); 104 } 105 106 /// Return true if we can prove that the given ExitBlock is not reached on the 107 /// first iteration of the given loop. That is, the backedge of the loop must 108 /// be executed before the ExitBlock is executed in any dynamic execution trace. 109 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, 110 const DominatorTree *DT, 111 const Loop *CurLoop) { 112 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 113 if (!CondExitBlock) 114 // expect unique exits 115 return false; 116 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 117 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 118 if (!BI || !BI->isConditional()) 119 return false; 120 // If condition is constant and false leads to ExitBlock then we always 121 // execute the true branch. 122 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 123 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 124 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 125 if (!Cond) 126 return false; 127 // todo: this would be a lot more powerful if we used scev, but all the 128 // plumbing is currently missing to pass a pointer in from the pass 129 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 130 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 131 auto *RHS = Cond->getOperand(1); 132 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 133 return false; 134 auto DL = ExitBlock->getModule()->getDataLayout(); 135 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 136 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 137 IVStart, RHS, 138 {DL, /*TLI*/ nullptr, 139 DT, /*AC*/ nullptr, BI}); 140 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 141 if (!SimpleCst) 142 return false; 143 if (ExitBlock == BI->getSuccessor(0)) 144 return SimpleCst->isZeroValue(); 145 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 146 return SimpleCst->isAllOnesValue(); 147 } 148 149 /// Collect all blocks from \p CurLoop which lie on all possible paths from 150 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set 151 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. 152 static void collectTransitivePredecessors( 153 const Loop *CurLoop, const BasicBlock *BB, 154 SmallPtrSetImpl<const BasicBlock *> &Predecessors) { 155 assert(Predecessors.empty() && "Garbage in predecessors set?"); 156 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 157 if (BB == CurLoop->getHeader()) 158 return; 159 SmallVector<const BasicBlock *, 4> WorkList; 160 for (auto *Pred : predecessors(BB)) { 161 Predecessors.insert(Pred); 162 WorkList.push_back(Pred); 163 } 164 while (!WorkList.empty()) { 165 auto *Pred = WorkList.pop_back_val(); 166 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); 167 // We are not interested in backedges and we don't want to leave loop. 168 if (Pred == CurLoop->getHeader()) 169 continue; 170 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all 171 // blocks of this inner loop, even those that are always executed AFTER the 172 // BB. It may make our analysis more conservative than it could be, see test 173 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. 174 // We can ignore backedge of all loops containing BB to get a sligtly more 175 // optimistic result. 176 for (auto *PredPred : predecessors(Pred)) 177 if (Predecessors.insert(PredPred).second) 178 WorkList.push_back(PredPred); 179 } 180 } 181 182 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, 183 const BasicBlock *BB, 184 const DominatorTree *DT) const { 185 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 186 187 // Fast path: header is always reached once the loop is entered. 188 if (BB == CurLoop->getHeader()) 189 return true; 190 191 // Collect all transitive predecessors of BB in the same loop. This set will 192 // be a subset of the blocks within the loop. 193 SmallPtrSet<const BasicBlock *, 4> Predecessors; 194 collectTransitivePredecessors(CurLoop, BB, Predecessors); 195 196 // Make sure that all successors of, all predecessors of BB which are not 197 // dominated by BB, are either: 198 // 1) BB, 199 // 2) Also predecessors of BB, 200 // 3) Exit blocks which are not taken on 1st iteration. 201 // Memoize blocks we've already checked. 202 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; 203 for (auto *Pred : Predecessors) { 204 // Predecessor block may throw, so it has a side exit. 205 if (blockMayThrow(Pred)) 206 return false; 207 208 // BB dominates Pred, so if Pred runs, BB must run. 209 // This is true when Pred is a loop latch. 210 if (DT->dominates(BB, Pred)) 211 continue; 212 213 for (auto *Succ : successors(Pred)) 214 if (CheckedSuccessors.insert(Succ).second && 215 Succ != BB && !Predecessors.count(Succ)) 216 // By discharging conditions that are not executed on the 1st iteration, 217 // we guarantee that *at least* on the first iteration all paths from 218 // header that *may* execute will lead us to the block of interest. So 219 // that if we had virtually peeled one iteration away, in this peeled 220 // iteration the set of predecessors would contain only paths from 221 // header to BB without any exiting edges that may execute. 222 // 223 // TODO: We only do it for exiting edges currently. We could use the 224 // same function to skip some of the edges within the loop if we know 225 // that they will not be taken on the 1st iteration. 226 // 227 // TODO: If we somehow know the number of iterations in loop, the same 228 // check may be done for any arbitrary N-th iteration as long as N is 229 // not greater than minimum number of iterations in this loop. 230 if (CurLoop->contains(Succ) || 231 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) 232 return false; 233 } 234 235 // All predecessors can only lead us to BB. 236 return true; 237 } 238 239 /// Returns true if the instruction in a loop is guaranteed to execute at least 240 /// once. 241 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 242 const DominatorTree *DT, 243 const Loop *CurLoop) const { 244 // If the instruction is in the header block for the loop (which is very 245 // common), it is always guaranteed to dominate the exit blocks. Since this 246 // is a common case, and can save some work, check it now. 247 if (Inst.getParent() == CurLoop->getHeader()) 248 // If there's a throw in the header block, we can't guarantee we'll reach 249 // Inst unless we can prove that Inst comes before the potential implicit 250 // exit. At the moment, we use a (cheap) hack for the common case where 251 // the instruction of interest is the first one in the block. 252 return !HeaderMayThrow || 253 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; 254 255 // If there is a path from header to exit or latch that doesn't lead to our 256 // instruction's block, return false. 257 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 258 } 259 260 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 261 const DominatorTree *DT, 262 const Loop *CurLoop) const { 263 return !ICF.isDominatedByICFIFromSameBlock(&Inst) && 264 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 265 } 266 267 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, 268 const Loop *CurLoop) const { 269 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 270 271 // Fast path: there are no instructions before header. 272 if (BB == CurLoop->getHeader()) 273 return true; 274 275 // Collect all transitive predecessors of BB in the same loop. This set will 276 // be a subset of the blocks within the loop. 277 SmallPtrSet<const BasicBlock *, 4> Predecessors; 278 collectTransitivePredecessors(CurLoop, BB, Predecessors); 279 // Find if there any instruction in either predecessor that could write 280 // to memory. 281 for (auto *Pred : Predecessors) 282 if (MW.mayWriteToMemory(Pred)) 283 return false; 284 return true; 285 } 286 287 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, 288 const Loop *CurLoop) const { 289 auto *BB = I.getParent(); 290 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 291 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && 292 doesNotWriteMemoryBefore(BB, CurLoop); 293 } 294 295 namespace { 296 struct MustExecutePrinter : public FunctionPass { 297 298 static char ID; // Pass identification, replacement for typeid 299 MustExecutePrinter() : FunctionPass(ID) { 300 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 301 } 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.setPreservesAll(); 304 AU.addRequired<DominatorTreeWrapperPass>(); 305 AU.addRequired<LoopInfoWrapperPass>(); 306 } 307 bool runOnFunction(Function &F) override; 308 }; 309 } 310 311 char MustExecutePrinter::ID = 0; 312 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 313 "Instructions which execute on loop entry", false, true) 314 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 315 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 316 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 317 "Instructions which execute on loop entry", false, true) 318 319 FunctionPass *llvm::createMustExecutePrinter() { 320 return new MustExecutePrinter(); 321 } 322 323 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 324 // TODO: merge these two routines. For the moment, we display the best 325 // result obtained by *either* implementation. This is a bit unfair since no 326 // caller actually gets the full power at the moment. 327 SimpleLoopSafetyInfo LSI; 328 LSI.computeLoopSafetyInfo(L); 329 return LSI.isGuaranteedToExecute(I, DT, L) || 330 isGuaranteedToExecuteForEveryIteration(&I, L); 331 } 332 333 namespace { 334 /// An assembly annotator class to print must execute information in 335 /// comments. 336 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 337 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 338 339 public: 340 MustExecuteAnnotatedWriter(const Function &F, 341 DominatorTree &DT, LoopInfo &LI) { 342 for (auto &I: instructions(F)) { 343 Loop *L = LI.getLoopFor(I.getParent()); 344 while (L) { 345 if (isMustExecuteIn(I, L, &DT)) { 346 MustExec[&I].push_back(L); 347 } 348 L = L->getParentLoop(); 349 }; 350 } 351 } 352 MustExecuteAnnotatedWriter(const Module &M, 353 DominatorTree &DT, LoopInfo &LI) { 354 for (auto &F : M) 355 for (auto &I: instructions(F)) { 356 Loop *L = LI.getLoopFor(I.getParent()); 357 while (L) { 358 if (isMustExecuteIn(I, L, &DT)) { 359 MustExec[&I].push_back(L); 360 } 361 L = L->getParentLoop(); 362 }; 363 } 364 } 365 366 367 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 368 if (!MustExec.count(&V)) 369 return; 370 371 const auto &Loops = MustExec.lookup(&V); 372 const auto NumLoops = Loops.size(); 373 if (NumLoops > 1) 374 OS << " ; (mustexec in " << NumLoops << " loops: "; 375 else 376 OS << " ; (mustexec in: "; 377 378 bool first = true; 379 for (const Loop *L : Loops) { 380 if (!first) 381 OS << ", "; 382 first = false; 383 OS << L->getHeader()->getName(); 384 } 385 OS << ")"; 386 } 387 }; 388 } // namespace 389 390 bool MustExecutePrinter::runOnFunction(Function &F) { 391 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 392 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 393 394 MustExecuteAnnotatedWriter Writer(F, DT, LI); 395 F.print(dbgs(), &Writer); 396 397 return false; 398 } 399