1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/StackSafetyAnalysis.h" 29 #include "llvm/Analysis/TypeMetadataUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/FileSystem.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "module-summary-analysis" 62 63 // Option to force edges cold which will block importing when the 64 // -import-cold-multiplier is set to 0. Useful for debugging. 65 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 66 FunctionSummary::FSHT_None; 67 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 68 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 69 cl::desc("Force all edges in the function summary to cold"), 70 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 71 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 72 "all-non-critical", "All non-critical edges."), 73 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 74 75 cl::opt<std::string> ModuleSummaryDotFile( 76 "module-summary-dot-file", cl::init(""), cl::Hidden, 77 cl::value_desc("filename"), 78 cl::desc("File to emit dot graph of new summary into.")); 79 80 // Walk through the operands of a given User via worklist iteration and populate 81 // the set of GlobalValue references encountered. Invoked either on an 82 // Instruction or a GlobalVariable (which walks its initializer). 83 // Return true if any of the operands contains blockaddress. This is important 84 // to know when computing summary for global var, because if global variable 85 // references basic block address we can't import it separately from function 86 // containing that basic block. For simplicity we currently don't import such 87 // global vars at all. When importing function we aren't interested if any 88 // instruction in it takes an address of any basic block, because instruction 89 // can only take an address of basic block located in the same function. 90 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 91 SetVector<ValueInfo> &RefEdges, 92 SmallPtrSet<const User *, 8> &Visited) { 93 bool HasBlockAddress = false; 94 SmallVector<const User *, 32> Worklist; 95 if (Visited.insert(CurUser).second) 96 Worklist.push_back(CurUser); 97 98 while (!Worklist.empty()) { 99 const User *U = Worklist.pop_back_val(); 100 const auto *CB = dyn_cast<CallBase>(U); 101 102 for (const auto &OI : U->operands()) { 103 const User *Operand = dyn_cast<User>(OI); 104 if (!Operand) 105 continue; 106 if (isa<BlockAddress>(Operand)) { 107 HasBlockAddress = true; 108 continue; 109 } 110 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 111 // We have a reference to a global value. This should be added to 112 // the reference set unless it is a callee. Callees are handled 113 // specially by WriteFunction and are added to a separate list. 114 if (!(CB && CB->isCallee(&OI))) 115 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 116 continue; 117 } 118 if (Visited.insert(Operand).second) 119 Worklist.push_back(Operand); 120 } 121 } 122 return HasBlockAddress; 123 } 124 125 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 126 ProfileSummaryInfo *PSI) { 127 if (!PSI) 128 return CalleeInfo::HotnessType::Unknown; 129 if (PSI->isHotCount(ProfileCount)) 130 return CalleeInfo::HotnessType::Hot; 131 if (PSI->isColdCount(ProfileCount)) 132 return CalleeInfo::HotnessType::Cold; 133 return CalleeInfo::HotnessType::None; 134 } 135 136 static bool isNonRenamableLocal(const GlobalValue &GV) { 137 return GV.hasSection() && GV.hasLocalLinkage(); 138 } 139 140 /// Determine whether this call has all constant integer arguments (excluding 141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 142 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 143 SetVector<FunctionSummary::VFuncId> &VCalls, 144 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 145 std::vector<uint64_t> Args; 146 // Start from the second argument to skip the "this" pointer. 147 for (auto &Arg : drop_begin(Call.CB.args())) { 148 auto *CI = dyn_cast<ConstantInt>(Arg); 149 if (!CI || CI->getBitWidth() > 64) { 150 VCalls.insert({Guid, Call.Offset}); 151 return; 152 } 153 Args.push_back(CI->getZExtValue()); 154 } 155 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 156 } 157 158 /// If this intrinsic call requires that we add information to the function 159 /// summary, do so via the non-constant reference arguments. 160 static void addIntrinsicToSummary( 161 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 162 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 163 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 164 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 165 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 166 DominatorTree &DT) { 167 switch (CI->getCalledFunction()->getIntrinsicID()) { 168 case Intrinsic::type_test: { 169 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 170 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 171 if (!TypeId) 172 break; 173 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 174 175 // Produce a summary from type.test intrinsics. We only summarize type.test 176 // intrinsics that are used other than by an llvm.assume intrinsic. 177 // Intrinsics that are assumed are relevant only to the devirtualization 178 // pass, not the type test lowering pass. 179 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 180 return !isa<AssumeInst>(CIU.getUser()); 181 }); 182 if (HasNonAssumeUses) 183 TypeTests.insert(Guid); 184 185 SmallVector<DevirtCallSite, 4> DevirtCalls; 186 SmallVector<CallInst *, 4> Assumes; 187 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 188 for (auto &Call : DevirtCalls) 189 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 190 TypeTestAssumeConstVCalls); 191 192 break; 193 } 194 195 case Intrinsic::type_checked_load: { 196 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 197 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 198 if (!TypeId) 199 break; 200 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 201 202 SmallVector<DevirtCallSite, 4> DevirtCalls; 203 SmallVector<Instruction *, 4> LoadedPtrs; 204 SmallVector<Instruction *, 4> Preds; 205 bool HasNonCallUses = false; 206 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 207 HasNonCallUses, CI, DT); 208 // Any non-call uses of the result of llvm.type.checked.load will 209 // prevent us from optimizing away the llvm.type.test. 210 if (HasNonCallUses) 211 TypeTests.insert(Guid); 212 for (auto &Call : DevirtCalls) 213 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 214 TypeCheckedLoadConstVCalls); 215 216 break; 217 } 218 default: 219 break; 220 } 221 } 222 223 static bool isNonVolatileLoad(const Instruction *I) { 224 if (const auto *LI = dyn_cast<LoadInst>(I)) 225 return !LI->isVolatile(); 226 227 return false; 228 } 229 230 static bool isNonVolatileStore(const Instruction *I) { 231 if (const auto *SI = dyn_cast<StoreInst>(I)) 232 return !SI->isVolatile(); 233 234 return false; 235 } 236 237 static void computeFunctionSummary( 238 ModuleSummaryIndex &Index, const Module &M, const Function &F, 239 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 240 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 241 bool IsThinLTO, 242 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 243 // Summary not currently supported for anonymous functions, they should 244 // have been named. 245 assert(F.hasName()); 246 247 unsigned NumInsts = 0; 248 // Map from callee ValueId to profile count. Used to accumulate profile 249 // counts for all static calls to a given callee. 250 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 251 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 252 SetVector<GlobalValue::GUID> TypeTests; 253 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 254 TypeCheckedLoadVCalls; 255 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 256 TypeCheckedLoadConstVCalls; 257 ICallPromotionAnalysis ICallAnalysis; 258 SmallPtrSet<const User *, 8> Visited; 259 260 // Add personality function, prefix data and prologue data to function's ref 261 // list. 262 findRefEdges(Index, &F, RefEdges, Visited); 263 std::vector<const Instruction *> NonVolatileLoads; 264 std::vector<const Instruction *> NonVolatileStores; 265 266 bool HasInlineAsmMaybeReferencingInternal = false; 267 for (const BasicBlock &BB : F) 268 for (const Instruction &I : BB) { 269 if (isa<DbgInfoIntrinsic>(I)) 270 continue; 271 ++NumInsts; 272 // Regular LTO module doesn't participate in ThinLTO import, 273 // so no reference from it can be read/writeonly, since this 274 // would require importing variable as local copy 275 if (IsThinLTO) { 276 if (isNonVolatileLoad(&I)) { 277 // Postpone processing of non-volatile load instructions 278 // See comments below 279 Visited.insert(&I); 280 NonVolatileLoads.push_back(&I); 281 continue; 282 } else if (isNonVolatileStore(&I)) { 283 Visited.insert(&I); 284 NonVolatileStores.push_back(&I); 285 // All references from second operand of store (destination address) 286 // can be considered write-only if they're not referenced by any 287 // non-store instruction. References from first operand of store 288 // (stored value) can't be treated either as read- or as write-only 289 // so we add them to RefEdges as we do with all other instructions 290 // except non-volatile load. 291 Value *Stored = I.getOperand(0); 292 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 293 // findRefEdges will try to examine GV operands, so instead 294 // of calling it we should add GV to RefEdges directly. 295 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 296 else if (auto *U = dyn_cast<User>(Stored)) 297 findRefEdges(Index, U, RefEdges, Visited); 298 continue; 299 } 300 } 301 findRefEdges(Index, &I, RefEdges, Visited); 302 const auto *CB = dyn_cast<CallBase>(&I); 303 if (!CB) 304 continue; 305 306 const auto *CI = dyn_cast<CallInst>(&I); 307 // Since we don't know exactly which local values are referenced in inline 308 // assembly, conservatively mark the function as possibly referencing 309 // a local value from inline assembly to ensure we don't export a 310 // reference (which would require renaming and promotion of the 311 // referenced value). 312 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 313 HasInlineAsmMaybeReferencingInternal = true; 314 315 auto *CalledValue = CB->getCalledOperand(); 316 auto *CalledFunction = CB->getCalledFunction(); 317 if (CalledValue && !CalledFunction) { 318 CalledValue = CalledValue->stripPointerCasts(); 319 // Stripping pointer casts can reveal a called function. 320 CalledFunction = dyn_cast<Function>(CalledValue); 321 } 322 // Check if this is an alias to a function. If so, get the 323 // called aliasee for the checks below. 324 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 325 assert(!CalledFunction && "Expected null called function in callsite for alias"); 326 CalledFunction = dyn_cast<Function>(GA->getBaseObject()); 327 } 328 // Check if this is a direct call to a known function or a known 329 // intrinsic, or an indirect call with profile data. 330 if (CalledFunction) { 331 if (CI && CalledFunction->isIntrinsic()) { 332 addIntrinsicToSummary( 333 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 334 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 335 continue; 336 } 337 // We should have named any anonymous globals 338 assert(CalledFunction->hasName()); 339 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 340 auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) 341 : CalleeInfo::HotnessType::Unknown; 342 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 343 Hotness = CalleeInfo::HotnessType::Cold; 344 345 // Use the original CalledValue, in case it was an alias. We want 346 // to record the call edge to the alias in that case. Eventually 347 // an alias summary will be created to associate the alias and 348 // aliasee. 349 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 350 cast<GlobalValue>(CalledValue))]; 351 ValueInfo.updateHotness(Hotness); 352 // Add the relative block frequency to CalleeInfo if there is no profile 353 // information. 354 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 355 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 356 uint64_t EntryFreq = BFI->getEntryFreq(); 357 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 358 } 359 } else { 360 // Skip inline assembly calls. 361 if (CI && CI->isInlineAsm()) 362 continue; 363 // Skip direct calls. 364 if (!CalledValue || isa<Constant>(CalledValue)) 365 continue; 366 367 // Check if the instruction has a callees metadata. If so, add callees 368 // to CallGraphEdges to reflect the references from the metadata, and 369 // to enable importing for subsequent indirect call promotion and 370 // inlining. 371 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 372 for (auto &Op : MD->operands()) { 373 Function *Callee = mdconst::extract_or_null<Function>(Op); 374 if (Callee) 375 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 376 } 377 } 378 379 uint32_t NumVals, NumCandidates; 380 uint64_t TotalCount; 381 auto CandidateProfileData = 382 ICallAnalysis.getPromotionCandidatesForInstruction( 383 &I, NumVals, TotalCount, NumCandidates); 384 for (auto &Candidate : CandidateProfileData) 385 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 386 .updateHotness(getHotness(Candidate.Count, PSI)); 387 } 388 } 389 Index.addBlockCount(F.size()); 390 391 std::vector<ValueInfo> Refs; 392 if (IsThinLTO) { 393 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 394 SetVector<ValueInfo> &Edges, 395 SmallPtrSet<const User *, 8> &Cache) { 396 for (const auto *I : Instrs) { 397 Cache.erase(I); 398 findRefEdges(Index, I, Edges, Cache); 399 } 400 }; 401 402 // By now we processed all instructions in a function, except 403 // non-volatile loads and non-volatile value stores. Let's find 404 // ref edges for both of instruction sets 405 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 406 // We can add some values to the Visited set when processing load 407 // instructions which are also used by stores in NonVolatileStores. 408 // For example this can happen if we have following code: 409 // 410 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 411 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 412 // 413 // After processing loads we'll add bitcast to the Visited set, and if 414 // we use the same set while processing stores, we'll never see store 415 // to @bar and @bar will be mistakenly treated as readonly. 416 SmallPtrSet<const llvm::User *, 8> StoreCache; 417 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 418 419 // If both load and store instruction reference the same variable 420 // we won't be able to optimize it. Add all such reference edges 421 // to RefEdges set. 422 for (auto &VI : StoreRefEdges) 423 if (LoadRefEdges.remove(VI)) 424 RefEdges.insert(VI); 425 426 unsigned RefCnt = RefEdges.size(); 427 // All new reference edges inserted in two loops below are either 428 // read or write only. They will be grouped in the end of RefEdges 429 // vector, so we can use a single integer value to identify them. 430 for (auto &VI : LoadRefEdges) 431 RefEdges.insert(VI); 432 433 unsigned FirstWORef = RefEdges.size(); 434 for (auto &VI : StoreRefEdges) 435 RefEdges.insert(VI); 436 437 Refs = RefEdges.takeVector(); 438 for (; RefCnt < FirstWORef; ++RefCnt) 439 Refs[RefCnt].setReadOnly(); 440 441 for (; RefCnt < Refs.size(); ++RefCnt) 442 Refs[RefCnt].setWriteOnly(); 443 } else { 444 Refs = RefEdges.takeVector(); 445 } 446 // Explicit add hot edges to enforce importing for designated GUIDs for 447 // sample PGO, to enable the same inlines as the profiled optimized binary. 448 for (auto &I : F.getImportGUIDs()) 449 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 450 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 451 ? CalleeInfo::HotnessType::Cold 452 : CalleeInfo::HotnessType::Critical); 453 454 bool NonRenamableLocal = isNonRenamableLocal(F); 455 bool NotEligibleForImport = 456 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; 457 GlobalValueSummary::GVFlags Flags( 458 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 459 /* Live = */ false, F.isDSOLocal(), 460 F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); 461 FunctionSummary::FFlags FunFlags{ 462 F.hasFnAttribute(Attribute::ReadNone), 463 F.hasFnAttribute(Attribute::ReadOnly), 464 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 465 // FIXME: refactor this to use the same code that inliner is using. 466 // Don't try to import functions with noinline attribute. 467 F.getAttributes().hasFnAttribute(Attribute::NoInline), 468 F.hasFnAttribute(Attribute::AlwaysInline)}; 469 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 470 if (auto *SSI = GetSSICallback(F)) 471 ParamAccesses = SSI->getParamAccesses(Index); 472 auto FuncSummary = std::make_unique<FunctionSummary>( 473 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 474 CallGraphEdges.takeVector(), TypeTests.takeVector(), 475 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 476 TypeTestAssumeConstVCalls.takeVector(), 477 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses)); 478 if (NonRenamableLocal) 479 CantBePromoted.insert(F.getGUID()); 480 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 481 } 482 483 /// Find function pointers referenced within the given vtable initializer 484 /// (or subset of an initializer) \p I. The starting offset of \p I within 485 /// the vtable initializer is \p StartingOffset. Any discovered function 486 /// pointers are added to \p VTableFuncs along with their cumulative offset 487 /// within the initializer. 488 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 489 const Module &M, ModuleSummaryIndex &Index, 490 VTableFuncList &VTableFuncs) { 491 // First check if this is a function pointer. 492 if (I->getType()->isPointerTy()) { 493 auto Fn = dyn_cast<Function>(I->stripPointerCasts()); 494 // We can disregard __cxa_pure_virtual as a possible call target, as 495 // calls to pure virtuals are UB. 496 if (Fn && Fn->getName() != "__cxa_pure_virtual") 497 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); 498 return; 499 } 500 501 // Walk through the elements in the constant struct or array and recursively 502 // look for virtual function pointers. 503 const DataLayout &DL = M.getDataLayout(); 504 if (auto *C = dyn_cast<ConstantStruct>(I)) { 505 StructType *STy = dyn_cast<StructType>(C->getType()); 506 assert(STy); 507 const StructLayout *SL = DL.getStructLayout(C->getType()); 508 509 for (auto EI : llvm::enumerate(STy->elements())) { 510 auto Offset = SL->getElementOffset(EI.index()); 511 unsigned Op = SL->getElementContainingOffset(Offset); 512 findFuncPointers(cast<Constant>(I->getOperand(Op)), 513 StartingOffset + Offset, M, Index, VTableFuncs); 514 } 515 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 516 ArrayType *ATy = C->getType(); 517 Type *EltTy = ATy->getElementType(); 518 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 519 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 520 findFuncPointers(cast<Constant>(I->getOperand(i)), 521 StartingOffset + i * EltSize, M, Index, VTableFuncs); 522 } 523 } 524 } 525 526 // Identify the function pointers referenced by vtable definition \p V. 527 static void computeVTableFuncs(ModuleSummaryIndex &Index, 528 const GlobalVariable &V, const Module &M, 529 VTableFuncList &VTableFuncs) { 530 if (!V.isConstant()) 531 return; 532 533 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 534 VTableFuncs); 535 536 #ifndef NDEBUG 537 // Validate that the VTableFuncs list is ordered by offset. 538 uint64_t PrevOffset = 0; 539 for (auto &P : VTableFuncs) { 540 // The findVFuncPointers traversal should have encountered the 541 // functions in offset order. We need to use ">=" since PrevOffset 542 // starts at 0. 543 assert(P.VTableOffset >= PrevOffset); 544 PrevOffset = P.VTableOffset; 545 } 546 #endif 547 } 548 549 /// Record vtable definition \p V for each type metadata it references. 550 static void 551 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 552 const GlobalVariable &V, 553 SmallVectorImpl<MDNode *> &Types) { 554 for (MDNode *Type : Types) { 555 auto TypeID = Type->getOperand(1).get(); 556 557 uint64_t Offset = 558 cast<ConstantInt>( 559 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 560 ->getZExtValue(); 561 562 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 563 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 564 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 565 } 566 } 567 568 static void computeVariableSummary(ModuleSummaryIndex &Index, 569 const GlobalVariable &V, 570 DenseSet<GlobalValue::GUID> &CantBePromoted, 571 const Module &M, 572 SmallVectorImpl<MDNode *> &Types) { 573 SetVector<ValueInfo> RefEdges; 574 SmallPtrSet<const User *, 8> Visited; 575 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 576 bool NonRenamableLocal = isNonRenamableLocal(V); 577 GlobalValueSummary::GVFlags Flags( 578 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 579 /* Live = */ false, V.isDSOLocal(), 580 V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); 581 582 VTableFuncList VTableFuncs; 583 // If splitting is not enabled, then we compute the summary information 584 // necessary for index-based whole program devirtualization. 585 if (!Index.enableSplitLTOUnit()) { 586 Types.clear(); 587 V.getMetadata(LLVMContext::MD_type, Types); 588 if (!Types.empty()) { 589 // Identify the function pointers referenced by this vtable definition. 590 computeVTableFuncs(Index, V, M, VTableFuncs); 591 592 // Record this vtable definition for each type metadata it references. 593 recordTypeIdCompatibleVtableReferences(Index, V, Types); 594 } 595 } 596 597 // Don't mark variables we won't be able to internalize as read/write-only. 598 bool CanBeInternalized = 599 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 600 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 601 bool Constant = V.isConstant(); 602 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 603 Constant ? false : CanBeInternalized, 604 Constant, V.getVCallVisibility()); 605 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 606 RefEdges.takeVector()); 607 if (NonRenamableLocal) 608 CantBePromoted.insert(V.getGUID()); 609 if (HasBlockAddress) 610 GVarSummary->setNotEligibleToImport(); 611 if (!VTableFuncs.empty()) 612 GVarSummary->setVTableFuncs(VTableFuncs); 613 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 614 } 615 616 static void 617 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 618 DenseSet<GlobalValue::GUID> &CantBePromoted) { 619 bool NonRenamableLocal = isNonRenamableLocal(A); 620 GlobalValueSummary::GVFlags Flags( 621 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 622 /* Live = */ false, A.isDSOLocal(), 623 A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); 624 auto AS = std::make_unique<AliasSummary>(Flags); 625 auto *Aliasee = A.getBaseObject(); 626 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 627 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 628 assert(AliaseeVI.getSummaryList().size() == 1 && 629 "Expected a single entry per aliasee in per-module index"); 630 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 631 if (NonRenamableLocal) 632 CantBePromoted.insert(A.getGUID()); 633 Index.addGlobalValueSummary(A, std::move(AS)); 634 } 635 636 // Set LiveRoot flag on entries matching the given value name. 637 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 638 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 639 for (auto &Summary : VI.getSummaryList()) 640 Summary->setLive(true); 641 } 642 643 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 644 const Module &M, 645 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 646 ProfileSummaryInfo *PSI, 647 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 648 assert(PSI); 649 bool EnableSplitLTOUnit = false; 650 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 651 M.getModuleFlag("EnableSplitLTOUnit"))) 652 EnableSplitLTOUnit = MD->getZExtValue(); 653 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); 654 655 // Identify the local values in the llvm.used and llvm.compiler.used sets, 656 // which should not be exported as they would then require renaming and 657 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 658 // here because we use this information to mark functions containing inline 659 // assembly calls as not importable. 660 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 661 SmallVector<GlobalValue *, 4> Used; 662 // First collect those in the llvm.used set. 663 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 664 // Next collect those in the llvm.compiler.used set. 665 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 666 DenseSet<GlobalValue::GUID> CantBePromoted; 667 for (auto *V : Used) { 668 if (V->hasLocalLinkage()) { 669 LocalsUsed.insert(V); 670 CantBePromoted.insert(V->getGUID()); 671 } 672 } 673 674 bool HasLocalInlineAsmSymbol = false; 675 if (!M.getModuleInlineAsm().empty()) { 676 // Collect the local values defined by module level asm, and set up 677 // summaries for these symbols so that they can be marked as NoRename, 678 // to prevent export of any use of them in regular IR that would require 679 // renaming within the module level asm. Note we don't need to create a 680 // summary for weak or global defs, as they don't need to be flagged as 681 // NoRename, and defs in module level asm can't be imported anyway. 682 // Also, any values used but not defined within module level asm should 683 // be listed on the llvm.used or llvm.compiler.used global and marked as 684 // referenced from there. 685 ModuleSymbolTable::CollectAsmSymbols( 686 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 687 // Symbols not marked as Weak or Global are local definitions. 688 if (Flags & (object::BasicSymbolRef::SF_Weak | 689 object::BasicSymbolRef::SF_Global)) 690 return; 691 HasLocalInlineAsmSymbol = true; 692 GlobalValue *GV = M.getNamedValue(Name); 693 if (!GV) 694 return; 695 assert(GV->isDeclaration() && "Def in module asm already has definition"); 696 GlobalValueSummary::GVFlags GVFlags( 697 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 698 /* NotEligibleToImport = */ true, 699 /* Live = */ true, 700 /* Local */ GV->isDSOLocal(), 701 GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); 702 CantBePromoted.insert(GV->getGUID()); 703 // Create the appropriate summary type. 704 if (Function *F = dyn_cast<Function>(GV)) { 705 std::unique_ptr<FunctionSummary> Summary = 706 std::make_unique<FunctionSummary>( 707 GVFlags, /*InstCount=*/0, 708 FunctionSummary::FFlags{ 709 F->hasFnAttribute(Attribute::ReadNone), 710 F->hasFnAttribute(Attribute::ReadOnly), 711 F->hasFnAttribute(Attribute::NoRecurse), 712 F->returnDoesNotAlias(), 713 /* NoInline = */ false, 714 F->hasFnAttribute(Attribute::AlwaysInline)}, 715 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 716 ArrayRef<FunctionSummary::EdgeTy>{}, 717 ArrayRef<GlobalValue::GUID>{}, 718 ArrayRef<FunctionSummary::VFuncId>{}, 719 ArrayRef<FunctionSummary::VFuncId>{}, 720 ArrayRef<FunctionSummary::ConstVCall>{}, 721 ArrayRef<FunctionSummary::ConstVCall>{}, 722 ArrayRef<FunctionSummary::ParamAccess>{}); 723 Index.addGlobalValueSummary(*GV, std::move(Summary)); 724 } else { 725 std::unique_ptr<GlobalVarSummary> Summary = 726 std::make_unique<GlobalVarSummary>( 727 GVFlags, 728 GlobalVarSummary::GVarFlags( 729 false, false, cast<GlobalVariable>(GV)->isConstant(), 730 GlobalObject::VCallVisibilityPublic), 731 ArrayRef<ValueInfo>{}); 732 Index.addGlobalValueSummary(*GV, std::move(Summary)); 733 } 734 }); 735 } 736 737 bool IsThinLTO = true; 738 if (auto *MD = 739 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 740 IsThinLTO = MD->getZExtValue(); 741 742 // Compute summaries for all functions defined in module, and save in the 743 // index. 744 for (auto &F : M) { 745 if (F.isDeclaration()) 746 continue; 747 748 DominatorTree DT(const_cast<Function &>(F)); 749 BlockFrequencyInfo *BFI = nullptr; 750 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 751 if (GetBFICallback) 752 BFI = GetBFICallback(F); 753 else if (F.hasProfileData()) { 754 LoopInfo LI{DT}; 755 BranchProbabilityInfo BPI{F, LI}; 756 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 757 BFI = BFIPtr.get(); 758 } 759 760 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 761 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 762 CantBePromoted, IsThinLTO, GetSSICallback); 763 } 764 765 // Compute summaries for all variables defined in module, and save in the 766 // index. 767 SmallVector<MDNode *, 2> Types; 768 for (const GlobalVariable &G : M.globals()) { 769 if (G.isDeclaration()) 770 continue; 771 computeVariableSummary(Index, G, CantBePromoted, M, Types); 772 } 773 774 // Compute summaries for all aliases defined in module, and save in the 775 // index. 776 for (const GlobalAlias &A : M.aliases()) 777 computeAliasSummary(Index, A, CantBePromoted); 778 779 for (auto *V : LocalsUsed) { 780 auto *Summary = Index.getGlobalValueSummary(*V); 781 assert(Summary && "Missing summary for global value"); 782 Summary->setNotEligibleToImport(); 783 } 784 785 // The linker doesn't know about these LLVM produced values, so we need 786 // to flag them as live in the index to ensure index-based dead value 787 // analysis treats them as live roots of the analysis. 788 setLiveRoot(Index, "llvm.used"); 789 setLiveRoot(Index, "llvm.compiler.used"); 790 setLiveRoot(Index, "llvm.global_ctors"); 791 setLiveRoot(Index, "llvm.global_dtors"); 792 setLiveRoot(Index, "llvm.global.annotations"); 793 794 for (auto &GlobalList : Index) { 795 // Ignore entries for references that are undefined in the current module. 796 if (GlobalList.second.SummaryList.empty()) 797 continue; 798 799 assert(GlobalList.second.SummaryList.size() == 1 && 800 "Expected module's index to have one summary per GUID"); 801 auto &Summary = GlobalList.second.SummaryList[0]; 802 if (!IsThinLTO) { 803 Summary->setNotEligibleToImport(); 804 continue; 805 } 806 807 bool AllRefsCanBeExternallyReferenced = 808 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 809 return !CantBePromoted.count(VI.getGUID()); 810 }); 811 if (!AllRefsCanBeExternallyReferenced) { 812 Summary->setNotEligibleToImport(); 813 continue; 814 } 815 816 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 817 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 818 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 819 return !CantBePromoted.count(Edge.first.getGUID()); 820 }); 821 if (!AllCallsCanBeExternallyReferenced) 822 Summary->setNotEligibleToImport(); 823 } 824 } 825 826 if (!ModuleSummaryDotFile.empty()) { 827 std::error_code EC; 828 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 829 if (EC) 830 report_fatal_error(Twine("Failed to open dot file ") + 831 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 832 Index.exportToDot(OSDot, {}); 833 } 834 835 return Index; 836 } 837 838 AnalysisKey ModuleSummaryIndexAnalysis::Key; 839 840 ModuleSummaryIndex 841 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 842 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 843 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 844 bool NeedSSI = needsParamAccessSummary(M); 845 return buildModuleSummaryIndex( 846 M, 847 [&FAM](const Function &F) { 848 return &FAM.getResult<BlockFrequencyAnalysis>( 849 *const_cast<Function *>(&F)); 850 }, 851 &PSI, 852 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 853 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 854 const_cast<Function &>(F)) 855 : nullptr; 856 }); 857 } 858 859 char ModuleSummaryIndexWrapperPass::ID = 0; 860 861 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 862 "Module Summary Analysis", false, true) 863 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 864 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 865 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 866 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 867 "Module Summary Analysis", false, true) 868 869 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 870 return new ModuleSummaryIndexWrapperPass(); 871 } 872 873 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 874 : ModulePass(ID) { 875 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 876 } 877 878 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 879 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 880 bool NeedSSI = needsParamAccessSummary(M); 881 Index.emplace(buildModuleSummaryIndex( 882 M, 883 [this](const Function &F) { 884 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 885 *const_cast<Function *>(&F)) 886 .getBFI()); 887 }, 888 PSI, 889 [&](const Function &F) -> const StackSafetyInfo * { 890 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 891 const_cast<Function &>(F)) 892 .getResult() 893 : nullptr; 894 })); 895 return false; 896 } 897 898 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 899 Index.reset(); 900 return false; 901 } 902 903 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 904 AU.setPreservesAll(); 905 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 906 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 907 AU.addRequired<StackSafetyInfoWrapperPass>(); 908 } 909 910 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 911 912 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 913 const ModuleSummaryIndex *Index) 914 : ImmutablePass(ID), Index(Index) { 915 initializeImmutableModuleSummaryIndexWrapperPassPass( 916 *PassRegistry::getPassRegistry()); 917 } 918 919 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 920 AnalysisUsage &AU) const { 921 AU.setPreservesAll(); 922 } 923 924 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 925 const ModuleSummaryIndex *Index) { 926 return new ImmutableModuleSummaryIndexWrapperPass(Index); 927 } 928 929 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 930 "Module summary info", false, true) 931