xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/StackSafetyAnalysis.h"
29 #include "llvm/Analysis/TypeMetadataUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "module-summary-analysis"
62 
63 // Option to force edges cold which will block importing when the
64 // -import-cold-multiplier is set to 0. Useful for debugging.
65 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
66     FunctionSummary::FSHT_None;
67 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
68     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
69     cl::desc("Force all edges in the function summary to cold"),
70     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
71                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
72                           "all-non-critical", "All non-critical edges."),
73                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
74 
75 cl::opt<std::string> ModuleSummaryDotFile(
76     "module-summary-dot-file", cl::init(""), cl::Hidden,
77     cl::value_desc("filename"),
78     cl::desc("File to emit dot graph of new summary into."));
79 
80 // Walk through the operands of a given User via worklist iteration and populate
81 // the set of GlobalValue references encountered. Invoked either on an
82 // Instruction or a GlobalVariable (which walks its initializer).
83 // Return true if any of the operands contains blockaddress. This is important
84 // to know when computing summary for global var, because if global variable
85 // references basic block address we can't import it separately from function
86 // containing that basic block. For simplicity we currently don't import such
87 // global vars at all. When importing function we aren't interested if any
88 // instruction in it takes an address of any basic block, because instruction
89 // can only take an address of basic block located in the same function.
90 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
91                          SetVector<ValueInfo> &RefEdges,
92                          SmallPtrSet<const User *, 8> &Visited) {
93   bool HasBlockAddress = false;
94   SmallVector<const User *, 32> Worklist;
95   if (Visited.insert(CurUser).second)
96     Worklist.push_back(CurUser);
97 
98   while (!Worklist.empty()) {
99     const User *U = Worklist.pop_back_val();
100     const auto *CB = dyn_cast<CallBase>(U);
101 
102     for (const auto &OI : U->operands()) {
103       const User *Operand = dyn_cast<User>(OI);
104       if (!Operand)
105         continue;
106       if (isa<BlockAddress>(Operand)) {
107         HasBlockAddress = true;
108         continue;
109       }
110       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
111         // We have a reference to a global value. This should be added to
112         // the reference set unless it is a callee. Callees are handled
113         // specially by WriteFunction and are added to a separate list.
114         if (!(CB && CB->isCallee(&OI)))
115           RefEdges.insert(Index.getOrInsertValueInfo(GV));
116         continue;
117       }
118       if (Visited.insert(Operand).second)
119         Worklist.push_back(Operand);
120     }
121   }
122   return HasBlockAddress;
123 }
124 
125 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
126                                           ProfileSummaryInfo *PSI) {
127   if (!PSI)
128     return CalleeInfo::HotnessType::Unknown;
129   if (PSI->isHotCount(ProfileCount))
130     return CalleeInfo::HotnessType::Hot;
131   if (PSI->isColdCount(ProfileCount))
132     return CalleeInfo::HotnessType::Cold;
133   return CalleeInfo::HotnessType::None;
134 }
135 
136 static bool isNonRenamableLocal(const GlobalValue &GV) {
137   return GV.hasSection() && GV.hasLocalLinkage();
138 }
139 
140 /// Determine whether this call has all constant integer arguments (excluding
141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
142 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
143                           SetVector<FunctionSummary::VFuncId> &VCalls,
144                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
145   std::vector<uint64_t> Args;
146   // Start from the second argument to skip the "this" pointer.
147   for (auto &Arg : drop_begin(Call.CB.args())) {
148     auto *CI = dyn_cast<ConstantInt>(Arg);
149     if (!CI || CI->getBitWidth() > 64) {
150       VCalls.insert({Guid, Call.Offset});
151       return;
152     }
153     Args.push_back(CI->getZExtValue());
154   }
155   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
156 }
157 
158 /// If this intrinsic call requires that we add information to the function
159 /// summary, do so via the non-constant reference arguments.
160 static void addIntrinsicToSummary(
161     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
162     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
163     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
164     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
165     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
166     DominatorTree &DT) {
167   switch (CI->getCalledFunction()->getIntrinsicID()) {
168   case Intrinsic::type_test: {
169     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
170     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
171     if (!TypeId)
172       break;
173     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
174 
175     // Produce a summary from type.test intrinsics. We only summarize type.test
176     // intrinsics that are used other than by an llvm.assume intrinsic.
177     // Intrinsics that are assumed are relevant only to the devirtualization
178     // pass, not the type test lowering pass.
179     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
180       return !isa<AssumeInst>(CIU.getUser());
181     });
182     if (HasNonAssumeUses)
183       TypeTests.insert(Guid);
184 
185     SmallVector<DevirtCallSite, 4> DevirtCalls;
186     SmallVector<CallInst *, 4> Assumes;
187     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
188     for (auto &Call : DevirtCalls)
189       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
190                     TypeTestAssumeConstVCalls);
191 
192     break;
193   }
194 
195   case Intrinsic::type_checked_load: {
196     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
197     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
198     if (!TypeId)
199       break;
200     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
201 
202     SmallVector<DevirtCallSite, 4> DevirtCalls;
203     SmallVector<Instruction *, 4> LoadedPtrs;
204     SmallVector<Instruction *, 4> Preds;
205     bool HasNonCallUses = false;
206     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
207                                                HasNonCallUses, CI, DT);
208     // Any non-call uses of the result of llvm.type.checked.load will
209     // prevent us from optimizing away the llvm.type.test.
210     if (HasNonCallUses)
211       TypeTests.insert(Guid);
212     for (auto &Call : DevirtCalls)
213       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
214                     TypeCheckedLoadConstVCalls);
215 
216     break;
217   }
218   default:
219     break;
220   }
221 }
222 
223 static bool isNonVolatileLoad(const Instruction *I) {
224   if (const auto *LI = dyn_cast<LoadInst>(I))
225     return !LI->isVolatile();
226 
227   return false;
228 }
229 
230 static bool isNonVolatileStore(const Instruction *I) {
231   if (const auto *SI = dyn_cast<StoreInst>(I))
232     return !SI->isVolatile();
233 
234   return false;
235 }
236 
237 static void computeFunctionSummary(
238     ModuleSummaryIndex &Index, const Module &M, const Function &F,
239     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
240     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
241     bool IsThinLTO,
242     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
243   // Summary not currently supported for anonymous functions, they should
244   // have been named.
245   assert(F.hasName());
246 
247   unsigned NumInsts = 0;
248   // Map from callee ValueId to profile count. Used to accumulate profile
249   // counts for all static calls to a given callee.
250   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
251   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
252   SetVector<GlobalValue::GUID> TypeTests;
253   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
254       TypeCheckedLoadVCalls;
255   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
256       TypeCheckedLoadConstVCalls;
257   ICallPromotionAnalysis ICallAnalysis;
258   SmallPtrSet<const User *, 8> Visited;
259 
260   // Add personality function, prefix data and prologue data to function's ref
261   // list.
262   findRefEdges(Index, &F, RefEdges, Visited);
263   std::vector<const Instruction *> NonVolatileLoads;
264   std::vector<const Instruction *> NonVolatileStores;
265 
266   bool HasInlineAsmMaybeReferencingInternal = false;
267   for (const BasicBlock &BB : F)
268     for (const Instruction &I : BB) {
269       if (isa<DbgInfoIntrinsic>(I))
270         continue;
271       ++NumInsts;
272       // Regular LTO module doesn't participate in ThinLTO import,
273       // so no reference from it can be read/writeonly, since this
274       // would require importing variable as local copy
275       if (IsThinLTO) {
276         if (isNonVolatileLoad(&I)) {
277           // Postpone processing of non-volatile load instructions
278           // See comments below
279           Visited.insert(&I);
280           NonVolatileLoads.push_back(&I);
281           continue;
282         } else if (isNonVolatileStore(&I)) {
283           Visited.insert(&I);
284           NonVolatileStores.push_back(&I);
285           // All references from second operand of store (destination address)
286           // can be considered write-only if they're not referenced by any
287           // non-store instruction. References from first operand of store
288           // (stored value) can't be treated either as read- or as write-only
289           // so we add them to RefEdges as we do with all other instructions
290           // except non-volatile load.
291           Value *Stored = I.getOperand(0);
292           if (auto *GV = dyn_cast<GlobalValue>(Stored))
293             // findRefEdges will try to examine GV operands, so instead
294             // of calling it we should add GV to RefEdges directly.
295             RefEdges.insert(Index.getOrInsertValueInfo(GV));
296           else if (auto *U = dyn_cast<User>(Stored))
297             findRefEdges(Index, U, RefEdges, Visited);
298           continue;
299         }
300       }
301       findRefEdges(Index, &I, RefEdges, Visited);
302       const auto *CB = dyn_cast<CallBase>(&I);
303       if (!CB)
304         continue;
305 
306       const auto *CI = dyn_cast<CallInst>(&I);
307       // Since we don't know exactly which local values are referenced in inline
308       // assembly, conservatively mark the function as possibly referencing
309       // a local value from inline assembly to ensure we don't export a
310       // reference (which would require renaming and promotion of the
311       // referenced value).
312       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
313         HasInlineAsmMaybeReferencingInternal = true;
314 
315       auto *CalledValue = CB->getCalledOperand();
316       auto *CalledFunction = CB->getCalledFunction();
317       if (CalledValue && !CalledFunction) {
318         CalledValue = CalledValue->stripPointerCasts();
319         // Stripping pointer casts can reveal a called function.
320         CalledFunction = dyn_cast<Function>(CalledValue);
321       }
322       // Check if this is an alias to a function. If so, get the
323       // called aliasee for the checks below.
324       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
325         assert(!CalledFunction && "Expected null called function in callsite for alias");
326         CalledFunction = dyn_cast<Function>(GA->getBaseObject());
327       }
328       // Check if this is a direct call to a known function or a known
329       // intrinsic, or an indirect call with profile data.
330       if (CalledFunction) {
331         if (CI && CalledFunction->isIntrinsic()) {
332           addIntrinsicToSummary(
333               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
334               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
335           continue;
336         }
337         // We should have named any anonymous globals
338         assert(CalledFunction->hasName());
339         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
340         auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
341                                    : CalleeInfo::HotnessType::Unknown;
342         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
343           Hotness = CalleeInfo::HotnessType::Cold;
344 
345         // Use the original CalledValue, in case it was an alias. We want
346         // to record the call edge to the alias in that case. Eventually
347         // an alias summary will be created to associate the alias and
348         // aliasee.
349         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
350             cast<GlobalValue>(CalledValue))];
351         ValueInfo.updateHotness(Hotness);
352         // Add the relative block frequency to CalleeInfo if there is no profile
353         // information.
354         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
355           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
356           uint64_t EntryFreq = BFI->getEntryFreq();
357           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
358         }
359       } else {
360         // Skip inline assembly calls.
361         if (CI && CI->isInlineAsm())
362           continue;
363         // Skip direct calls.
364         if (!CalledValue || isa<Constant>(CalledValue))
365           continue;
366 
367         // Check if the instruction has a callees metadata. If so, add callees
368         // to CallGraphEdges to reflect the references from the metadata, and
369         // to enable importing for subsequent indirect call promotion and
370         // inlining.
371         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
372           for (auto &Op : MD->operands()) {
373             Function *Callee = mdconst::extract_or_null<Function>(Op);
374             if (Callee)
375               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
376           }
377         }
378 
379         uint32_t NumVals, NumCandidates;
380         uint64_t TotalCount;
381         auto CandidateProfileData =
382             ICallAnalysis.getPromotionCandidatesForInstruction(
383                 &I, NumVals, TotalCount, NumCandidates);
384         for (auto &Candidate : CandidateProfileData)
385           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
386               .updateHotness(getHotness(Candidate.Count, PSI));
387       }
388     }
389   Index.addBlockCount(F.size());
390 
391   std::vector<ValueInfo> Refs;
392   if (IsThinLTO) {
393     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
394                            SetVector<ValueInfo> &Edges,
395                            SmallPtrSet<const User *, 8> &Cache) {
396       for (const auto *I : Instrs) {
397         Cache.erase(I);
398         findRefEdges(Index, I, Edges, Cache);
399       }
400     };
401 
402     // By now we processed all instructions in a function, except
403     // non-volatile loads and non-volatile value stores. Let's find
404     // ref edges for both of instruction sets
405     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
406     // We can add some values to the Visited set when processing load
407     // instructions which are also used by stores in NonVolatileStores.
408     // For example this can happen if we have following code:
409     //
410     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
411     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
412     //
413     // After processing loads we'll add bitcast to the Visited set, and if
414     // we use the same set while processing stores, we'll never see store
415     // to @bar and @bar will be mistakenly treated as readonly.
416     SmallPtrSet<const llvm::User *, 8> StoreCache;
417     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
418 
419     // If both load and store instruction reference the same variable
420     // we won't be able to optimize it. Add all such reference edges
421     // to RefEdges set.
422     for (auto &VI : StoreRefEdges)
423       if (LoadRefEdges.remove(VI))
424         RefEdges.insert(VI);
425 
426     unsigned RefCnt = RefEdges.size();
427     // All new reference edges inserted in two loops below are either
428     // read or write only. They will be grouped in the end of RefEdges
429     // vector, so we can use a single integer value to identify them.
430     for (auto &VI : LoadRefEdges)
431       RefEdges.insert(VI);
432 
433     unsigned FirstWORef = RefEdges.size();
434     for (auto &VI : StoreRefEdges)
435       RefEdges.insert(VI);
436 
437     Refs = RefEdges.takeVector();
438     for (; RefCnt < FirstWORef; ++RefCnt)
439       Refs[RefCnt].setReadOnly();
440 
441     for (; RefCnt < Refs.size(); ++RefCnt)
442       Refs[RefCnt].setWriteOnly();
443   } else {
444     Refs = RefEdges.takeVector();
445   }
446   // Explicit add hot edges to enforce importing for designated GUIDs for
447   // sample PGO, to enable the same inlines as the profiled optimized binary.
448   for (auto &I : F.getImportGUIDs())
449     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
450         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
451             ? CalleeInfo::HotnessType::Cold
452             : CalleeInfo::HotnessType::Critical);
453 
454   bool NonRenamableLocal = isNonRenamableLocal(F);
455   bool NotEligibleForImport =
456       NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
457   GlobalValueSummary::GVFlags Flags(
458       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
459       /* Live = */ false, F.isDSOLocal(),
460       F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
461   FunctionSummary::FFlags FunFlags{
462       F.hasFnAttribute(Attribute::ReadNone),
463       F.hasFnAttribute(Attribute::ReadOnly),
464       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
465       // FIXME: refactor this to use the same code that inliner is using.
466       // Don't try to import functions with noinline attribute.
467       F.getAttributes().hasFnAttribute(Attribute::NoInline),
468       F.hasFnAttribute(Attribute::AlwaysInline)};
469   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
470   if (auto *SSI = GetSSICallback(F))
471     ParamAccesses = SSI->getParamAccesses(Index);
472   auto FuncSummary = std::make_unique<FunctionSummary>(
473       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
474       CallGraphEdges.takeVector(), TypeTests.takeVector(),
475       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
476       TypeTestAssumeConstVCalls.takeVector(),
477       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
478   if (NonRenamableLocal)
479     CantBePromoted.insert(F.getGUID());
480   Index.addGlobalValueSummary(F, std::move(FuncSummary));
481 }
482 
483 /// Find function pointers referenced within the given vtable initializer
484 /// (or subset of an initializer) \p I. The starting offset of \p I within
485 /// the vtable initializer is \p StartingOffset. Any discovered function
486 /// pointers are added to \p VTableFuncs along with their cumulative offset
487 /// within the initializer.
488 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
489                              const Module &M, ModuleSummaryIndex &Index,
490                              VTableFuncList &VTableFuncs) {
491   // First check if this is a function pointer.
492   if (I->getType()->isPointerTy()) {
493     auto Fn = dyn_cast<Function>(I->stripPointerCasts());
494     // We can disregard __cxa_pure_virtual as a possible call target, as
495     // calls to pure virtuals are UB.
496     if (Fn && Fn->getName() != "__cxa_pure_virtual")
497       VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
498     return;
499   }
500 
501   // Walk through the elements in the constant struct or array and recursively
502   // look for virtual function pointers.
503   const DataLayout &DL = M.getDataLayout();
504   if (auto *C = dyn_cast<ConstantStruct>(I)) {
505     StructType *STy = dyn_cast<StructType>(C->getType());
506     assert(STy);
507     const StructLayout *SL = DL.getStructLayout(C->getType());
508 
509     for (auto EI : llvm::enumerate(STy->elements())) {
510       auto Offset = SL->getElementOffset(EI.index());
511       unsigned Op = SL->getElementContainingOffset(Offset);
512       findFuncPointers(cast<Constant>(I->getOperand(Op)),
513                        StartingOffset + Offset, M, Index, VTableFuncs);
514     }
515   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
516     ArrayType *ATy = C->getType();
517     Type *EltTy = ATy->getElementType();
518     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
519     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
520       findFuncPointers(cast<Constant>(I->getOperand(i)),
521                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
522     }
523   }
524 }
525 
526 // Identify the function pointers referenced by vtable definition \p V.
527 static void computeVTableFuncs(ModuleSummaryIndex &Index,
528                                const GlobalVariable &V, const Module &M,
529                                VTableFuncList &VTableFuncs) {
530   if (!V.isConstant())
531     return;
532 
533   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
534                    VTableFuncs);
535 
536 #ifndef NDEBUG
537   // Validate that the VTableFuncs list is ordered by offset.
538   uint64_t PrevOffset = 0;
539   for (auto &P : VTableFuncs) {
540     // The findVFuncPointers traversal should have encountered the
541     // functions in offset order. We need to use ">=" since PrevOffset
542     // starts at 0.
543     assert(P.VTableOffset >= PrevOffset);
544     PrevOffset = P.VTableOffset;
545   }
546 #endif
547 }
548 
549 /// Record vtable definition \p V for each type metadata it references.
550 static void
551 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
552                                        const GlobalVariable &V,
553                                        SmallVectorImpl<MDNode *> &Types) {
554   for (MDNode *Type : Types) {
555     auto TypeID = Type->getOperand(1).get();
556 
557     uint64_t Offset =
558         cast<ConstantInt>(
559             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
560             ->getZExtValue();
561 
562     if (auto *TypeId = dyn_cast<MDString>(TypeID))
563       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
564           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
565   }
566 }
567 
568 static void computeVariableSummary(ModuleSummaryIndex &Index,
569                                    const GlobalVariable &V,
570                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
571                                    const Module &M,
572                                    SmallVectorImpl<MDNode *> &Types) {
573   SetVector<ValueInfo> RefEdges;
574   SmallPtrSet<const User *, 8> Visited;
575   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
576   bool NonRenamableLocal = isNonRenamableLocal(V);
577   GlobalValueSummary::GVFlags Flags(
578       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
579       /* Live = */ false, V.isDSOLocal(),
580       V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
581 
582   VTableFuncList VTableFuncs;
583   // If splitting is not enabled, then we compute the summary information
584   // necessary for index-based whole program devirtualization.
585   if (!Index.enableSplitLTOUnit()) {
586     Types.clear();
587     V.getMetadata(LLVMContext::MD_type, Types);
588     if (!Types.empty()) {
589       // Identify the function pointers referenced by this vtable definition.
590       computeVTableFuncs(Index, V, M, VTableFuncs);
591 
592       // Record this vtable definition for each type metadata it references.
593       recordTypeIdCompatibleVtableReferences(Index, V, Types);
594     }
595   }
596 
597   // Don't mark variables we won't be able to internalize as read/write-only.
598   bool CanBeInternalized =
599       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
600       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
601   bool Constant = V.isConstant();
602   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
603                                        Constant ? false : CanBeInternalized,
604                                        Constant, V.getVCallVisibility());
605   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
606                                                          RefEdges.takeVector());
607   if (NonRenamableLocal)
608     CantBePromoted.insert(V.getGUID());
609   if (HasBlockAddress)
610     GVarSummary->setNotEligibleToImport();
611   if (!VTableFuncs.empty())
612     GVarSummary->setVTableFuncs(VTableFuncs);
613   Index.addGlobalValueSummary(V, std::move(GVarSummary));
614 }
615 
616 static void
617 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
618                     DenseSet<GlobalValue::GUID> &CantBePromoted) {
619   bool NonRenamableLocal = isNonRenamableLocal(A);
620   GlobalValueSummary::GVFlags Flags(
621       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
622       /* Live = */ false, A.isDSOLocal(),
623       A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
624   auto AS = std::make_unique<AliasSummary>(Flags);
625   auto *Aliasee = A.getBaseObject();
626   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
627   assert(AliaseeVI && "Alias expects aliasee summary to be available");
628   assert(AliaseeVI.getSummaryList().size() == 1 &&
629          "Expected a single entry per aliasee in per-module index");
630   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
631   if (NonRenamableLocal)
632     CantBePromoted.insert(A.getGUID());
633   Index.addGlobalValueSummary(A, std::move(AS));
634 }
635 
636 // Set LiveRoot flag on entries matching the given value name.
637 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
638   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
639     for (auto &Summary : VI.getSummaryList())
640       Summary->setLive(true);
641 }
642 
643 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
644     const Module &M,
645     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
646     ProfileSummaryInfo *PSI,
647     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
648   assert(PSI);
649   bool EnableSplitLTOUnit = false;
650   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
651           M.getModuleFlag("EnableSplitLTOUnit")))
652     EnableSplitLTOUnit = MD->getZExtValue();
653   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
654 
655   // Identify the local values in the llvm.used and llvm.compiler.used sets,
656   // which should not be exported as they would then require renaming and
657   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
658   // here because we use this information to mark functions containing inline
659   // assembly calls as not importable.
660   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
661   SmallVector<GlobalValue *, 4> Used;
662   // First collect those in the llvm.used set.
663   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
664   // Next collect those in the llvm.compiler.used set.
665   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
666   DenseSet<GlobalValue::GUID> CantBePromoted;
667   for (auto *V : Used) {
668     if (V->hasLocalLinkage()) {
669       LocalsUsed.insert(V);
670       CantBePromoted.insert(V->getGUID());
671     }
672   }
673 
674   bool HasLocalInlineAsmSymbol = false;
675   if (!M.getModuleInlineAsm().empty()) {
676     // Collect the local values defined by module level asm, and set up
677     // summaries for these symbols so that they can be marked as NoRename,
678     // to prevent export of any use of them in regular IR that would require
679     // renaming within the module level asm. Note we don't need to create a
680     // summary for weak or global defs, as they don't need to be flagged as
681     // NoRename, and defs in module level asm can't be imported anyway.
682     // Also, any values used but not defined within module level asm should
683     // be listed on the llvm.used or llvm.compiler.used global and marked as
684     // referenced from there.
685     ModuleSymbolTable::CollectAsmSymbols(
686         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
687           // Symbols not marked as Weak or Global are local definitions.
688           if (Flags & (object::BasicSymbolRef::SF_Weak |
689                        object::BasicSymbolRef::SF_Global))
690             return;
691           HasLocalInlineAsmSymbol = true;
692           GlobalValue *GV = M.getNamedValue(Name);
693           if (!GV)
694             return;
695           assert(GV->isDeclaration() && "Def in module asm already has definition");
696           GlobalValueSummary::GVFlags GVFlags(
697               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
698               /* NotEligibleToImport = */ true,
699               /* Live = */ true,
700               /* Local */ GV->isDSOLocal(),
701               GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
702           CantBePromoted.insert(GV->getGUID());
703           // Create the appropriate summary type.
704           if (Function *F = dyn_cast<Function>(GV)) {
705             std::unique_ptr<FunctionSummary> Summary =
706                 std::make_unique<FunctionSummary>(
707                     GVFlags, /*InstCount=*/0,
708                     FunctionSummary::FFlags{
709                         F->hasFnAttribute(Attribute::ReadNone),
710                         F->hasFnAttribute(Attribute::ReadOnly),
711                         F->hasFnAttribute(Attribute::NoRecurse),
712                         F->returnDoesNotAlias(),
713                         /* NoInline = */ false,
714                         F->hasFnAttribute(Attribute::AlwaysInline)},
715                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
716                     ArrayRef<FunctionSummary::EdgeTy>{},
717                     ArrayRef<GlobalValue::GUID>{},
718                     ArrayRef<FunctionSummary::VFuncId>{},
719                     ArrayRef<FunctionSummary::VFuncId>{},
720                     ArrayRef<FunctionSummary::ConstVCall>{},
721                     ArrayRef<FunctionSummary::ConstVCall>{},
722                     ArrayRef<FunctionSummary::ParamAccess>{});
723             Index.addGlobalValueSummary(*GV, std::move(Summary));
724           } else {
725             std::unique_ptr<GlobalVarSummary> Summary =
726                 std::make_unique<GlobalVarSummary>(
727                     GVFlags,
728                     GlobalVarSummary::GVarFlags(
729                         false, false, cast<GlobalVariable>(GV)->isConstant(),
730                         GlobalObject::VCallVisibilityPublic),
731                     ArrayRef<ValueInfo>{});
732             Index.addGlobalValueSummary(*GV, std::move(Summary));
733           }
734         });
735   }
736 
737   bool IsThinLTO = true;
738   if (auto *MD =
739           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
740     IsThinLTO = MD->getZExtValue();
741 
742   // Compute summaries for all functions defined in module, and save in the
743   // index.
744   for (auto &F : M) {
745     if (F.isDeclaration())
746       continue;
747 
748     DominatorTree DT(const_cast<Function &>(F));
749     BlockFrequencyInfo *BFI = nullptr;
750     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
751     if (GetBFICallback)
752       BFI = GetBFICallback(F);
753     else if (F.hasProfileData()) {
754       LoopInfo LI{DT};
755       BranchProbabilityInfo BPI{F, LI};
756       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
757       BFI = BFIPtr.get();
758     }
759 
760     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
761                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
762                            CantBePromoted, IsThinLTO, GetSSICallback);
763   }
764 
765   // Compute summaries for all variables defined in module, and save in the
766   // index.
767   SmallVector<MDNode *, 2> Types;
768   for (const GlobalVariable &G : M.globals()) {
769     if (G.isDeclaration())
770       continue;
771     computeVariableSummary(Index, G, CantBePromoted, M, Types);
772   }
773 
774   // Compute summaries for all aliases defined in module, and save in the
775   // index.
776   for (const GlobalAlias &A : M.aliases())
777     computeAliasSummary(Index, A, CantBePromoted);
778 
779   for (auto *V : LocalsUsed) {
780     auto *Summary = Index.getGlobalValueSummary(*V);
781     assert(Summary && "Missing summary for global value");
782     Summary->setNotEligibleToImport();
783   }
784 
785   // The linker doesn't know about these LLVM produced values, so we need
786   // to flag them as live in the index to ensure index-based dead value
787   // analysis treats them as live roots of the analysis.
788   setLiveRoot(Index, "llvm.used");
789   setLiveRoot(Index, "llvm.compiler.used");
790   setLiveRoot(Index, "llvm.global_ctors");
791   setLiveRoot(Index, "llvm.global_dtors");
792   setLiveRoot(Index, "llvm.global.annotations");
793 
794   for (auto &GlobalList : Index) {
795     // Ignore entries for references that are undefined in the current module.
796     if (GlobalList.second.SummaryList.empty())
797       continue;
798 
799     assert(GlobalList.second.SummaryList.size() == 1 &&
800            "Expected module's index to have one summary per GUID");
801     auto &Summary = GlobalList.second.SummaryList[0];
802     if (!IsThinLTO) {
803       Summary->setNotEligibleToImport();
804       continue;
805     }
806 
807     bool AllRefsCanBeExternallyReferenced =
808         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
809           return !CantBePromoted.count(VI.getGUID());
810         });
811     if (!AllRefsCanBeExternallyReferenced) {
812       Summary->setNotEligibleToImport();
813       continue;
814     }
815 
816     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
817       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
818           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
819             return !CantBePromoted.count(Edge.first.getGUID());
820           });
821       if (!AllCallsCanBeExternallyReferenced)
822         Summary->setNotEligibleToImport();
823     }
824   }
825 
826   if (!ModuleSummaryDotFile.empty()) {
827     std::error_code EC;
828     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
829     if (EC)
830       report_fatal_error(Twine("Failed to open dot file ") +
831                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
832     Index.exportToDot(OSDot, {});
833   }
834 
835   return Index;
836 }
837 
838 AnalysisKey ModuleSummaryIndexAnalysis::Key;
839 
840 ModuleSummaryIndex
841 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
842   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
843   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
844   bool NeedSSI = needsParamAccessSummary(M);
845   return buildModuleSummaryIndex(
846       M,
847       [&FAM](const Function &F) {
848         return &FAM.getResult<BlockFrequencyAnalysis>(
849             *const_cast<Function *>(&F));
850       },
851       &PSI,
852       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
853         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
854                              const_cast<Function &>(F))
855                        : nullptr;
856       });
857 }
858 
859 char ModuleSummaryIndexWrapperPass::ID = 0;
860 
861 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
862                       "Module Summary Analysis", false, true)
863 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
864 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
865 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
866 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
867                     "Module Summary Analysis", false, true)
868 
869 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
870   return new ModuleSummaryIndexWrapperPass();
871 }
872 
873 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
874     : ModulePass(ID) {
875   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
876 }
877 
878 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
879   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
880   bool NeedSSI = needsParamAccessSummary(M);
881   Index.emplace(buildModuleSummaryIndex(
882       M,
883       [this](const Function &F) {
884         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
885                          *const_cast<Function *>(&F))
886                      .getBFI());
887       },
888       PSI,
889       [&](const Function &F) -> const StackSafetyInfo * {
890         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
891                               const_cast<Function &>(F))
892                               .getResult()
893                        : nullptr;
894       }));
895   return false;
896 }
897 
898 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
899   Index.reset();
900   return false;
901 }
902 
903 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
904   AU.setPreservesAll();
905   AU.addRequired<BlockFrequencyInfoWrapperPass>();
906   AU.addRequired<ProfileSummaryInfoWrapperPass>();
907   AU.addRequired<StackSafetyInfoWrapperPass>();
908 }
909 
910 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
911 
912 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
913     const ModuleSummaryIndex *Index)
914     : ImmutablePass(ID), Index(Index) {
915   initializeImmutableModuleSummaryIndexWrapperPassPass(
916       *PassRegistry::getPassRegistry());
917 }
918 
919 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
920     AnalysisUsage &AU) const {
921   AU.setPreservesAll();
922 }
923 
924 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
925     const ModuleSummaryIndex *Index) {
926   return new ImmutableModuleSummaryIndexWrapperPass(Index);
927 }
928 
929 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
930                 "Module summary info", false, true)
931