1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryProfileInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TypeMetadataUtils.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalAlias.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSummaryIndex.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Object/ModuleSymbolTable.h" 50 #include "llvm/Object/SymbolicFile.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/FileSystem.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <vector> 59 60 using namespace llvm; 61 using namespace llvm::memprof; 62 63 #define DEBUG_TYPE "module-summary-analysis" 64 65 // Option to force edges cold which will block importing when the 66 // -import-cold-multiplier is set to 0. Useful for debugging. 67 namespace llvm { 68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 69 FunctionSummary::FSHT_None; 70 } // namespace llvm 71 72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 73 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 74 cl::desc("Force all edges in the function summary to cold"), 75 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 76 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 77 "all-non-critical", "All non-critical edges."), 78 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 79 80 static cl::opt<std::string> ModuleSummaryDotFile( 81 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 82 cl::desc("File to emit dot graph of new summary into")); 83 84 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; 85 86 extern cl::opt<unsigned> MaxNumVTableAnnotations; 87 88 extern cl::opt<bool> MemProfReportHintedSizes; 89 90 // Walk through the operands of a given User via worklist iteration and populate 91 // the set of GlobalValue references encountered. Invoked either on an 92 // Instruction or a GlobalVariable (which walks its initializer). 93 // Return true if any of the operands contains blockaddress. This is important 94 // to know when computing summary for global var, because if global variable 95 // references basic block address we can't import it separately from function 96 // containing that basic block. For simplicity we currently don't import such 97 // global vars at all. When importing function we aren't interested if any 98 // instruction in it takes an address of any basic block, because instruction 99 // can only take an address of basic block located in the same function. 100 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a 101 // local-linkage ifunc. 102 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 103 SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges, 104 SmallPtrSet<const User *, 8> &Visited, 105 bool &RefLocalLinkageIFunc) { 106 bool HasBlockAddress = false; 107 SmallVector<const User *, 32> Worklist; 108 if (Visited.insert(CurUser).second) 109 Worklist.push_back(CurUser); 110 111 while (!Worklist.empty()) { 112 const User *U = Worklist.pop_back_val(); 113 const auto *CB = dyn_cast<CallBase>(U); 114 115 for (const auto &OI : U->operands()) { 116 const User *Operand = dyn_cast<User>(OI); 117 if (!Operand) 118 continue; 119 if (isa<BlockAddress>(Operand)) { 120 HasBlockAddress = true; 121 continue; 122 } 123 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 124 // We have a reference to a global value. This should be added to 125 // the reference set unless it is a callee. Callees are handled 126 // specially by WriteFunction and are added to a separate list. 127 if (!(CB && CB->isCallee(&OI))) { 128 // If an ifunc has local linkage, do not add it into ref edges, and 129 // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible 130 // for import. An ifunc doesn't have summary and ThinLTO cannot 131 // promote it; importing the referencer may cause linkage errors. 132 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV); 133 GI && GI->hasLocalLinkage()) { 134 RefLocalLinkageIFunc = true; 135 continue; 136 } 137 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 138 } 139 continue; 140 } 141 if (Visited.insert(Operand).second) 142 Worklist.push_back(Operand); 143 } 144 } 145 146 const Instruction *I = dyn_cast<Instruction>(CurUser); 147 if (I) { 148 uint64_t TotalCount = 0; 149 // MaxNumVTableAnnotations is the maximum number of vtables annotated on 150 // the instruction. 151 auto ValueDataArray = getValueProfDataFromInst( 152 *I, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalCount); 153 154 for (const auto &V : ValueDataArray) 155 RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */ 156 V.Value)); 157 } 158 return HasBlockAddress; 159 } 160 161 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 162 ProfileSummaryInfo *PSI) { 163 if (!PSI) 164 return CalleeInfo::HotnessType::Unknown; 165 if (PSI->isHotCount(ProfileCount)) 166 return CalleeInfo::HotnessType::Hot; 167 if (PSI->isColdCount(ProfileCount)) 168 return CalleeInfo::HotnessType::Cold; 169 return CalleeInfo::HotnessType::None; 170 } 171 172 static bool isNonRenamableLocal(const GlobalValue &GV) { 173 return GV.hasSection() && GV.hasLocalLinkage(); 174 } 175 176 /// Determine whether this call has all constant integer arguments (excluding 177 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 178 static void addVCallToSet( 179 DevirtCallSite Call, GlobalValue::GUID Guid, 180 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 181 &VCalls, 182 SetVector<FunctionSummary::ConstVCall, 183 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) { 184 std::vector<uint64_t> Args; 185 // Start from the second argument to skip the "this" pointer. 186 for (auto &Arg : drop_begin(Call.CB.args())) { 187 auto *CI = dyn_cast<ConstantInt>(Arg); 188 if (!CI || CI->getBitWidth() > 64) { 189 VCalls.insert({Guid, Call.Offset}); 190 return; 191 } 192 Args.push_back(CI->getZExtValue()); 193 } 194 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 195 } 196 197 /// If this intrinsic call requires that we add information to the function 198 /// summary, do so via the non-constant reference arguments. 199 static void addIntrinsicToSummary( 200 const CallInst *CI, 201 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests, 202 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 203 &TypeTestAssumeVCalls, 204 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 205 &TypeCheckedLoadVCalls, 206 SetVector<FunctionSummary::ConstVCall, 207 std::vector<FunctionSummary::ConstVCall>> 208 &TypeTestAssumeConstVCalls, 209 SetVector<FunctionSummary::ConstVCall, 210 std::vector<FunctionSummary::ConstVCall>> 211 &TypeCheckedLoadConstVCalls, 212 DominatorTree &DT) { 213 switch (CI->getCalledFunction()->getIntrinsicID()) { 214 case Intrinsic::type_test: 215 case Intrinsic::public_type_test: { 216 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 217 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 218 if (!TypeId) 219 break; 220 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 221 222 // Produce a summary from type.test intrinsics. We only summarize type.test 223 // intrinsics that are used other than by an llvm.assume intrinsic. 224 // Intrinsics that are assumed are relevant only to the devirtualization 225 // pass, not the type test lowering pass. 226 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 227 return !isa<AssumeInst>(CIU.getUser()); 228 }); 229 if (HasNonAssumeUses) 230 TypeTests.insert(Guid); 231 232 SmallVector<DevirtCallSite, 4> DevirtCalls; 233 SmallVector<CallInst *, 4> Assumes; 234 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 235 for (auto &Call : DevirtCalls) 236 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 237 TypeTestAssumeConstVCalls); 238 239 break; 240 } 241 242 case Intrinsic::type_checked_load_relative: 243 case Intrinsic::type_checked_load: { 244 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 245 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 246 if (!TypeId) 247 break; 248 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 249 250 SmallVector<DevirtCallSite, 4> DevirtCalls; 251 SmallVector<Instruction *, 4> LoadedPtrs; 252 SmallVector<Instruction *, 4> Preds; 253 bool HasNonCallUses = false; 254 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 255 HasNonCallUses, CI, DT); 256 // Any non-call uses of the result of llvm.type.checked.load will 257 // prevent us from optimizing away the llvm.type.test. 258 if (HasNonCallUses) 259 TypeTests.insert(Guid); 260 for (auto &Call : DevirtCalls) 261 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 262 TypeCheckedLoadConstVCalls); 263 264 break; 265 } 266 default: 267 break; 268 } 269 } 270 271 static bool isNonVolatileLoad(const Instruction *I) { 272 if (const auto *LI = dyn_cast<LoadInst>(I)) 273 return !LI->isVolatile(); 274 275 return false; 276 } 277 278 static bool isNonVolatileStore(const Instruction *I) { 279 if (const auto *SI = dyn_cast<StoreInst>(I)) 280 return !SI->isVolatile(); 281 282 return false; 283 } 284 285 // Returns true if the function definition must be unreachable. 286 // 287 // Note if this helper function returns true, `F` is guaranteed 288 // to be unreachable; if it returns false, `F` might still 289 // be unreachable but not covered by this helper function. 290 static bool mustBeUnreachableFunction(const Function &F) { 291 // A function must be unreachable if its entry block ends with an 292 // 'unreachable'. 293 assert(!F.isDeclaration()); 294 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 295 } 296 297 static void computeFunctionSummary( 298 ModuleSummaryIndex &Index, const Module &M, const Function &F, 299 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 300 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 301 bool IsThinLTO, 302 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 303 // Summary not currently supported for anonymous functions, they should 304 // have been named. 305 assert(F.hasName()); 306 307 unsigned NumInsts = 0; 308 // Map from callee ValueId to profile count. Used to accumulate profile 309 // counts for all static calls to a given callee. 310 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, 311 std::vector<std::pair<ValueInfo, CalleeInfo>>> 312 CallGraphEdges; 313 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges, 314 StoreRefEdges; 315 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests; 316 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 317 TypeTestAssumeVCalls, TypeCheckedLoadVCalls; 318 SetVector<FunctionSummary::ConstVCall, 319 std::vector<FunctionSummary::ConstVCall>> 320 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; 321 ICallPromotionAnalysis ICallAnalysis; 322 SmallPtrSet<const User *, 8> Visited; 323 324 // Add personality function, prefix data and prologue data to function's ref 325 // list. 326 bool HasLocalIFuncCallOrRef = false; 327 findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef); 328 std::vector<const Instruction *> NonVolatileLoads; 329 std::vector<const Instruction *> NonVolatileStores; 330 331 std::vector<CallsiteInfo> Callsites; 332 std::vector<AllocInfo> Allocs; 333 334 #ifndef NDEBUG 335 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; 336 #endif 337 338 bool HasInlineAsmMaybeReferencingInternal = false; 339 bool HasIndirBranchToBlockAddress = false; 340 bool HasUnknownCall = false; 341 bool MayThrow = false; 342 for (const BasicBlock &BB : F) { 343 // We don't allow inlining of function with indirect branch to blockaddress. 344 // If the blockaddress escapes the function, e.g., via a global variable, 345 // inlining may lead to an invalid cross-function reference. So we shouldn't 346 // import such function either. 347 if (BB.hasAddressTaken()) { 348 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 349 if (!isa<CallBrInst>(*U)) { 350 HasIndirBranchToBlockAddress = true; 351 break; 352 } 353 } 354 355 for (const Instruction &I : BB) { 356 if (I.isDebugOrPseudoInst()) 357 continue; 358 ++NumInsts; 359 360 // Regular LTO module doesn't participate in ThinLTO import, 361 // so no reference from it can be read/writeonly, since this 362 // would require importing variable as local copy 363 if (IsThinLTO) { 364 if (isNonVolatileLoad(&I)) { 365 // Postpone processing of non-volatile load instructions 366 // See comments below 367 Visited.insert(&I); 368 NonVolatileLoads.push_back(&I); 369 continue; 370 } else if (isNonVolatileStore(&I)) { 371 Visited.insert(&I); 372 NonVolatileStores.push_back(&I); 373 // All references from second operand of store (destination address) 374 // can be considered write-only if they're not referenced by any 375 // non-store instruction. References from first operand of store 376 // (stored value) can't be treated either as read- or as write-only 377 // so we add them to RefEdges as we do with all other instructions 378 // except non-volatile load. 379 Value *Stored = I.getOperand(0); 380 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 381 // findRefEdges will try to examine GV operands, so instead 382 // of calling it we should add GV to RefEdges directly. 383 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 384 else if (auto *U = dyn_cast<User>(Stored)) 385 findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef); 386 continue; 387 } 388 } 389 findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef); 390 const auto *CB = dyn_cast<CallBase>(&I); 391 if (!CB) { 392 if (I.mayThrow()) 393 MayThrow = true; 394 continue; 395 } 396 397 const auto *CI = dyn_cast<CallInst>(&I); 398 // Since we don't know exactly which local values are referenced in inline 399 // assembly, conservatively mark the function as possibly referencing 400 // a local value from inline assembly to ensure we don't export a 401 // reference (which would require renaming and promotion of the 402 // referenced value). 403 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 404 HasInlineAsmMaybeReferencingInternal = true; 405 406 auto *CalledValue = CB->getCalledOperand(); 407 auto *CalledFunction = CB->getCalledFunction(); 408 if (CalledValue && !CalledFunction) { 409 CalledValue = CalledValue->stripPointerCasts(); 410 // Stripping pointer casts can reveal a called function. 411 CalledFunction = dyn_cast<Function>(CalledValue); 412 } 413 // Check if this is an alias to a function. If so, get the 414 // called aliasee for the checks below. 415 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 416 assert(!CalledFunction && "Expected null called function in callsite for alias"); 417 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 418 } 419 // Check if this is a direct call to a known function or a known 420 // intrinsic, or an indirect call with profile data. 421 if (CalledFunction) { 422 if (CI && CalledFunction->isIntrinsic()) { 423 addIntrinsicToSummary( 424 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 425 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 426 continue; 427 } 428 // We should have named any anonymous globals 429 assert(CalledFunction->hasName()); 430 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 431 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 432 : CalleeInfo::HotnessType::Unknown; 433 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 434 Hotness = CalleeInfo::HotnessType::Cold; 435 436 // Use the original CalledValue, in case it was an alias. We want 437 // to record the call edge to the alias in that case. Eventually 438 // an alias summary will be created to associate the alias and 439 // aliasee. 440 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 441 cast<GlobalValue>(CalledValue))]; 442 ValueInfo.updateHotness(Hotness); 443 if (CB->isTailCall()) 444 ValueInfo.setHasTailCall(true); 445 // Add the relative block frequency to CalleeInfo if there is no profile 446 // information. 447 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 448 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 449 uint64_t EntryFreq = BFI->getEntryFreq().getFrequency(); 450 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 451 } 452 } else { 453 HasUnknownCall = true; 454 // If F is imported, a local linkage ifunc (e.g. target_clones on a 455 // static function) called by F will be cloned. Since summaries don't 456 // track ifunc, we do not know implementation functions referenced by 457 // the ifunc resolver need to be promoted in the exporter, and we will 458 // get linker errors due to cloned declarations for implementation 459 // functions. As a simple fix, just mark F as not eligible for import. 460 // Non-local ifunc is not cloned and does not have the issue. 461 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue)) 462 if (GI->hasLocalLinkage()) 463 HasLocalIFuncCallOrRef = true; 464 // Skip inline assembly calls. 465 if (CI && CI->isInlineAsm()) 466 continue; 467 // Skip direct calls. 468 if (!CalledValue || isa<Constant>(CalledValue)) 469 continue; 470 471 // Check if the instruction has a callees metadata. If so, add callees 472 // to CallGraphEdges to reflect the references from the metadata, and 473 // to enable importing for subsequent indirect call promotion and 474 // inlining. 475 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 476 for (const auto &Op : MD->operands()) { 477 Function *Callee = mdconst::extract_or_null<Function>(Op); 478 if (Callee) 479 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 480 } 481 } 482 483 uint32_t NumCandidates; 484 uint64_t TotalCount; 485 auto CandidateProfileData = 486 ICallAnalysis.getPromotionCandidatesForInstruction(&I, TotalCount, 487 NumCandidates); 488 for (const auto &Candidate : CandidateProfileData) 489 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 490 .updateHotness(getHotness(Candidate.Count, PSI)); 491 } 492 493 // Summarize memprof related metadata. This is only needed for ThinLTO. 494 if (!IsThinLTO) 495 continue; 496 497 // TODO: Skip indirect calls for now. Need to handle these better, likely 498 // by creating multiple Callsites, one per target, then speculatively 499 // devirtualize while applying clone info in the ThinLTO backends. This 500 // will also be important because we will have a different set of clone 501 // versions per target. This handling needs to match that in the ThinLTO 502 // backend so we handle things consistently for matching of callsite 503 // summaries to instructions. 504 if (!CalledFunction) 505 continue; 506 507 // Ensure we keep this analysis in sync with the handling in the ThinLTO 508 // backend (see MemProfContextDisambiguation::applyImport). Save this call 509 // so that we can skip it in checking the reverse case later. 510 assert(mayHaveMemprofSummary(CB)); 511 #ifndef NDEBUG 512 CallsThatMayHaveMemprofSummary.insert(CB); 513 #endif 514 515 // Compute the list of stack ids first (so we can trim them from the stack 516 // ids on any MIBs). 517 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 518 I.getMetadata(LLVMContext::MD_callsite)); 519 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 520 if (MemProfMD) { 521 std::vector<MIBInfo> MIBs; 522 std::vector<uint64_t> TotalSizes; 523 for (auto &MDOp : MemProfMD->operands()) { 524 auto *MIBMD = cast<const MDNode>(MDOp); 525 MDNode *StackNode = getMIBStackNode(MIBMD); 526 assert(StackNode); 527 SmallVector<unsigned> StackIdIndices; 528 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 529 // Collapse out any on the allocation call (inlining). 530 for (auto ContextIter = 531 StackContext.beginAfterSharedPrefix(InstCallsite); 532 ContextIter != StackContext.end(); ++ContextIter) { 533 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 534 // If this is a direct recursion, simply skip the duplicate 535 // entries. If this is mutual recursion, handling is left to 536 // the LTO link analysis client. 537 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 538 StackIdIndices.push_back(StackIdIdx); 539 } 540 MIBs.push_back( 541 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 542 if (MemProfReportHintedSizes) { 543 auto TotalSize = getMIBTotalSize(MIBMD); 544 assert(TotalSize); 545 TotalSizes.push_back(TotalSize); 546 } 547 } 548 Allocs.push_back(AllocInfo(std::move(MIBs))); 549 if (MemProfReportHintedSizes) { 550 assert(Allocs.back().MIBs.size() == TotalSizes.size()); 551 Allocs.back().TotalSizes = std::move(TotalSizes); 552 } 553 } else if (!InstCallsite.empty()) { 554 SmallVector<unsigned> StackIdIndices; 555 for (auto StackId : InstCallsite) 556 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 557 // Use the original CalledValue, in case it was an alias. We want 558 // to record the call edge to the alias in that case. Eventually 559 // an alias summary will be created to associate the alias and 560 // aliasee. 561 auto CalleeValueInfo = 562 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 563 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 564 } 565 } 566 } 567 568 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) 569 Index.addBlockCount(F.size()); 570 571 std::vector<ValueInfo> Refs; 572 if (IsThinLTO) { 573 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 574 SetVector<ValueInfo, std::vector<ValueInfo>> &Edges, 575 SmallPtrSet<const User *, 8> &Cache) { 576 for (const auto *I : Instrs) { 577 Cache.erase(I); 578 findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef); 579 } 580 }; 581 582 // By now we processed all instructions in a function, except 583 // non-volatile loads and non-volatile value stores. Let's find 584 // ref edges for both of instruction sets 585 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 586 // We can add some values to the Visited set when processing load 587 // instructions which are also used by stores in NonVolatileStores. 588 // For example this can happen if we have following code: 589 // 590 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 591 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 592 // 593 // After processing loads we'll add bitcast to the Visited set, and if 594 // we use the same set while processing stores, we'll never see store 595 // to @bar and @bar will be mistakenly treated as readonly. 596 SmallPtrSet<const llvm::User *, 8> StoreCache; 597 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 598 599 // If both load and store instruction reference the same variable 600 // we won't be able to optimize it. Add all such reference edges 601 // to RefEdges set. 602 for (const auto &VI : StoreRefEdges) 603 if (LoadRefEdges.remove(VI)) 604 RefEdges.insert(VI); 605 606 unsigned RefCnt = RefEdges.size(); 607 // All new reference edges inserted in two loops below are either 608 // read or write only. They will be grouped in the end of RefEdges 609 // vector, so we can use a single integer value to identify them. 610 for (const auto &VI : LoadRefEdges) 611 RefEdges.insert(VI); 612 613 unsigned FirstWORef = RefEdges.size(); 614 for (const auto &VI : StoreRefEdges) 615 RefEdges.insert(VI); 616 617 Refs = RefEdges.takeVector(); 618 for (; RefCnt < FirstWORef; ++RefCnt) 619 Refs[RefCnt].setReadOnly(); 620 621 for (; RefCnt < Refs.size(); ++RefCnt) 622 Refs[RefCnt].setWriteOnly(); 623 } else { 624 Refs = RefEdges.takeVector(); 625 } 626 // Explicit add hot edges to enforce importing for designated GUIDs for 627 // sample PGO, to enable the same inlines as the profiled optimized binary. 628 for (auto &I : F.getImportGUIDs()) 629 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 630 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 631 ? CalleeInfo::HotnessType::Cold 632 : CalleeInfo::HotnessType::Critical); 633 634 #ifndef NDEBUG 635 // Make sure that all calls we decided could not have memprof summaries get a 636 // false value for mayHaveMemprofSummary, to ensure that this handling remains 637 // in sync with the ThinLTO backend handling. 638 if (IsThinLTO) { 639 for (const BasicBlock &BB : F) { 640 for (const Instruction &I : BB) { 641 const auto *CB = dyn_cast<CallBase>(&I); 642 if (!CB) 643 continue; 644 // We already checked these above. 645 if (CallsThatMayHaveMemprofSummary.count(CB)) 646 continue; 647 assert(!mayHaveMemprofSummary(CB)); 648 } 649 } 650 } 651 #endif 652 653 bool NonRenamableLocal = isNonRenamableLocal(F); 654 bool NotEligibleForImport = 655 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal || 656 HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef; 657 GlobalValueSummary::GVFlags Flags( 658 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 659 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(), 660 GlobalValueSummary::ImportKind::Definition); 661 FunctionSummary::FFlags FunFlags{ 662 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 663 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 664 // FIXME: refactor this to use the same code that inliner is using. 665 // Don't try to import functions with noinline attribute. 666 F.getAttributes().hasFnAttr(Attribute::NoInline), 667 F.hasFnAttribute(Attribute::AlwaysInline), 668 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 669 mustBeUnreachableFunction(F)}; 670 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 671 if (auto *SSI = GetSSICallback(F)) 672 ParamAccesses = SSI->getParamAccesses(Index); 673 auto FuncSummary = std::make_unique<FunctionSummary>( 674 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 675 CallGraphEdges.takeVector(), TypeTests.takeVector(), 676 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 677 TypeTestAssumeConstVCalls.takeVector(), 678 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 679 std::move(Callsites), std::move(Allocs)); 680 if (NonRenamableLocal) 681 CantBePromoted.insert(F.getGUID()); 682 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 683 } 684 685 /// Find function pointers referenced within the given vtable initializer 686 /// (or subset of an initializer) \p I. The starting offset of \p I within 687 /// the vtable initializer is \p StartingOffset. Any discovered function 688 /// pointers are added to \p VTableFuncs along with their cumulative offset 689 /// within the initializer. 690 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 691 const Module &M, ModuleSummaryIndex &Index, 692 VTableFuncList &VTableFuncs, 693 const GlobalVariable &OrigGV) { 694 // First check if this is a function pointer. 695 if (I->getType()->isPointerTy()) { 696 auto C = I->stripPointerCasts(); 697 auto A = dyn_cast<GlobalAlias>(C); 698 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) { 699 auto GV = dyn_cast<GlobalValue>(C); 700 assert(GV); 701 // We can disregard __cxa_pure_virtual as a possible call target, as 702 // calls to pure virtuals are UB. 703 if (GV && GV->getName() != "__cxa_pure_virtual") 704 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset}); 705 return; 706 } 707 } 708 709 // Walk through the elements in the constant struct or array and recursively 710 // look for virtual function pointers. 711 const DataLayout &DL = M.getDataLayout(); 712 if (auto *C = dyn_cast<ConstantStruct>(I)) { 713 StructType *STy = dyn_cast<StructType>(C->getType()); 714 assert(STy); 715 const StructLayout *SL = DL.getStructLayout(C->getType()); 716 717 for (auto EI : llvm::enumerate(STy->elements())) { 718 auto Offset = SL->getElementOffset(EI.index()); 719 unsigned Op = SL->getElementContainingOffset(Offset); 720 findFuncPointers(cast<Constant>(I->getOperand(Op)), 721 StartingOffset + Offset, M, Index, VTableFuncs, OrigGV); 722 } 723 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 724 ArrayType *ATy = C->getType(); 725 Type *EltTy = ATy->getElementType(); 726 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 727 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 728 findFuncPointers(cast<Constant>(I->getOperand(i)), 729 StartingOffset + i * EltSize, M, Index, VTableFuncs, 730 OrigGV); 731 } 732 } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) { 733 // For relative vtables, the next sub-component should be a trunc. 734 if (CE->getOpcode() != Instruction::Trunc || 735 !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0)))) 736 return; 737 738 // If this constant can be reduced to the offset between a function and a 739 // global, then we know this is a valid virtual function if the RHS is the 740 // original vtable we're scanning through. 741 if (CE->getOpcode() == Instruction::Sub) { 742 GlobalValue *LHS, *RHS; 743 APSInt LHSOffset, RHSOffset; 744 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) && 745 IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) && 746 RHS == &OrigGV && 747 748 // For relative vtables, this component should point to the callable 749 // function without any offsets. 750 LHSOffset == 0 && 751 752 // Also, the RHS should always point to somewhere within the vtable. 753 RHSOffset <= 754 static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) { 755 findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV); 756 } 757 } 758 } 759 } 760 761 // Identify the function pointers referenced by vtable definition \p V. 762 static void computeVTableFuncs(ModuleSummaryIndex &Index, 763 const GlobalVariable &V, const Module &M, 764 VTableFuncList &VTableFuncs) { 765 if (!V.isConstant()) 766 return; 767 768 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 769 VTableFuncs, V); 770 771 #ifndef NDEBUG 772 // Validate that the VTableFuncs list is ordered by offset. 773 uint64_t PrevOffset = 0; 774 for (auto &P : VTableFuncs) { 775 // The findVFuncPointers traversal should have encountered the 776 // functions in offset order. We need to use ">=" since PrevOffset 777 // starts at 0. 778 assert(P.VTableOffset >= PrevOffset); 779 PrevOffset = P.VTableOffset; 780 } 781 #endif 782 } 783 784 /// Record vtable definition \p V for each type metadata it references. 785 static void 786 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 787 const GlobalVariable &V, 788 SmallVectorImpl<MDNode *> &Types) { 789 for (MDNode *Type : Types) { 790 auto TypeID = Type->getOperand(1).get(); 791 792 uint64_t Offset = 793 cast<ConstantInt>( 794 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 795 ->getZExtValue(); 796 797 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 798 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 799 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 800 } 801 } 802 803 static void computeVariableSummary(ModuleSummaryIndex &Index, 804 const GlobalVariable &V, 805 DenseSet<GlobalValue::GUID> &CantBePromoted, 806 const Module &M, 807 SmallVectorImpl<MDNode *> &Types) { 808 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges; 809 SmallPtrSet<const User *, 8> Visited; 810 bool RefLocalIFunc = false; 811 bool HasBlockAddress = 812 findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc); 813 const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc); 814 bool NonRenamableLocal = isNonRenamableLocal(V); 815 GlobalValueSummary::GVFlags Flags( 816 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 817 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(), 818 GlobalValueSummary::Definition); 819 820 VTableFuncList VTableFuncs; 821 // If splitting is not enabled, then we compute the summary information 822 // necessary for index-based whole program devirtualization. 823 if (!Index.enableSplitLTOUnit()) { 824 Types.clear(); 825 V.getMetadata(LLVMContext::MD_type, Types); 826 if (!Types.empty()) { 827 // Identify the function pointers referenced by this vtable definition. 828 computeVTableFuncs(Index, V, M, VTableFuncs); 829 830 // Record this vtable definition for each type metadata it references. 831 recordTypeIdCompatibleVtableReferences(Index, V, Types); 832 } 833 } 834 835 // Don't mark variables we won't be able to internalize as read/write-only. 836 bool CanBeInternalized = 837 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 838 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 839 bool Constant = V.isConstant(); 840 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 841 Constant ? false : CanBeInternalized, 842 Constant, V.getVCallVisibility()); 843 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 844 RefEdges.takeVector()); 845 if (NonRenamableLocal) 846 CantBePromoted.insert(V.getGUID()); 847 if (NotEligibleForImport) 848 GVarSummary->setNotEligibleToImport(); 849 if (!VTableFuncs.empty()) 850 GVarSummary->setVTableFuncs(VTableFuncs); 851 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 852 } 853 854 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 855 DenseSet<GlobalValue::GUID> &CantBePromoted) { 856 // Skip summary for indirect function aliases as summary for aliasee will not 857 // be emitted. 858 const GlobalObject *Aliasee = A.getAliaseeObject(); 859 if (isa<GlobalIFunc>(Aliasee)) 860 return; 861 bool NonRenamableLocal = isNonRenamableLocal(A); 862 GlobalValueSummary::GVFlags Flags( 863 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 864 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(), 865 GlobalValueSummary::Definition); 866 auto AS = std::make_unique<AliasSummary>(Flags); 867 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 868 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 869 assert(AliaseeVI.getSummaryList().size() == 1 && 870 "Expected a single entry per aliasee in per-module index"); 871 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 872 if (NonRenamableLocal) 873 CantBePromoted.insert(A.getGUID()); 874 Index.addGlobalValueSummary(A, std::move(AS)); 875 } 876 877 // Set LiveRoot flag on entries matching the given value name. 878 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 879 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 880 for (const auto &Summary : VI.getSummaryList()) 881 Summary->setLive(true); 882 } 883 884 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 885 const Module &M, 886 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 887 ProfileSummaryInfo *PSI, 888 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 889 assert(PSI); 890 bool EnableSplitLTOUnit = false; 891 bool UnifiedLTO = false; 892 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 893 M.getModuleFlag("EnableSplitLTOUnit"))) 894 EnableSplitLTOUnit = MD->getZExtValue(); 895 if (auto *MD = 896 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 897 UnifiedLTO = MD->getZExtValue(); 898 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); 899 900 // Identify the local values in the llvm.used and llvm.compiler.used sets, 901 // which should not be exported as they would then require renaming and 902 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 903 // here because we use this information to mark functions containing inline 904 // assembly calls as not importable. 905 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 906 SmallVector<GlobalValue *, 4> Used; 907 // First collect those in the llvm.used set. 908 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 909 // Next collect those in the llvm.compiler.used set. 910 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 911 DenseSet<GlobalValue::GUID> CantBePromoted; 912 for (auto *V : Used) { 913 if (V->hasLocalLinkage()) { 914 LocalsUsed.insert(V); 915 CantBePromoted.insert(V->getGUID()); 916 } 917 } 918 919 bool HasLocalInlineAsmSymbol = false; 920 if (!M.getModuleInlineAsm().empty()) { 921 // Collect the local values defined by module level asm, and set up 922 // summaries for these symbols so that they can be marked as NoRename, 923 // to prevent export of any use of them in regular IR that would require 924 // renaming within the module level asm. Note we don't need to create a 925 // summary for weak or global defs, as they don't need to be flagged as 926 // NoRename, and defs in module level asm can't be imported anyway. 927 // Also, any values used but not defined within module level asm should 928 // be listed on the llvm.used or llvm.compiler.used global and marked as 929 // referenced from there. 930 ModuleSymbolTable::CollectAsmSymbols( 931 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 932 // Symbols not marked as Weak or Global are local definitions. 933 if (Flags & (object::BasicSymbolRef::SF_Weak | 934 object::BasicSymbolRef::SF_Global)) 935 return; 936 HasLocalInlineAsmSymbol = true; 937 GlobalValue *GV = M.getNamedValue(Name); 938 if (!GV) 939 return; 940 assert(GV->isDeclaration() && "Def in module asm already has definition"); 941 GlobalValueSummary::GVFlags GVFlags( 942 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 943 /* NotEligibleToImport = */ true, 944 /* Live = */ true, 945 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(), 946 GlobalValueSummary::Definition); 947 CantBePromoted.insert(GV->getGUID()); 948 // Create the appropriate summary type. 949 if (Function *F = dyn_cast<Function>(GV)) { 950 std::unique_ptr<FunctionSummary> Summary = 951 std::make_unique<FunctionSummary>( 952 GVFlags, /*InstCount=*/0, 953 FunctionSummary::FFlags{ 954 F->hasFnAttribute(Attribute::ReadNone), 955 F->hasFnAttribute(Attribute::ReadOnly), 956 F->hasFnAttribute(Attribute::NoRecurse), 957 F->returnDoesNotAlias(), 958 /* NoInline = */ false, 959 F->hasFnAttribute(Attribute::AlwaysInline), 960 F->hasFnAttribute(Attribute::NoUnwind), 961 /* MayThrow */ true, 962 /* HasUnknownCall */ true, 963 /* MustBeUnreachable */ false}, 964 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 965 ArrayRef<FunctionSummary::EdgeTy>{}, 966 ArrayRef<GlobalValue::GUID>{}, 967 ArrayRef<FunctionSummary::VFuncId>{}, 968 ArrayRef<FunctionSummary::VFuncId>{}, 969 ArrayRef<FunctionSummary::ConstVCall>{}, 970 ArrayRef<FunctionSummary::ConstVCall>{}, 971 ArrayRef<FunctionSummary::ParamAccess>{}, 972 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 973 Index.addGlobalValueSummary(*GV, std::move(Summary)); 974 } else { 975 std::unique_ptr<GlobalVarSummary> Summary = 976 std::make_unique<GlobalVarSummary>( 977 GVFlags, 978 GlobalVarSummary::GVarFlags( 979 false, false, cast<GlobalVariable>(GV)->isConstant(), 980 GlobalObject::VCallVisibilityPublic), 981 ArrayRef<ValueInfo>{}); 982 Index.addGlobalValueSummary(*GV, std::move(Summary)); 983 } 984 }); 985 } 986 987 bool IsThinLTO = true; 988 if (auto *MD = 989 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 990 IsThinLTO = MD->getZExtValue(); 991 992 // Compute summaries for all functions defined in module, and save in the 993 // index. 994 for (const auto &F : M) { 995 if (F.isDeclaration()) 996 continue; 997 998 DominatorTree DT(const_cast<Function &>(F)); 999 BlockFrequencyInfo *BFI = nullptr; 1000 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 1001 if (GetBFICallback) 1002 BFI = GetBFICallback(F); 1003 else if (F.hasProfileData()) { 1004 LoopInfo LI{DT}; 1005 BranchProbabilityInfo BPI{F, LI}; 1006 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 1007 BFI = BFIPtr.get(); 1008 } 1009 1010 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 1011 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 1012 CantBePromoted, IsThinLTO, GetSSICallback); 1013 } 1014 1015 // Compute summaries for all variables defined in module, and save in the 1016 // index. 1017 SmallVector<MDNode *, 2> Types; 1018 for (const GlobalVariable &G : M.globals()) { 1019 if (G.isDeclaration()) 1020 continue; 1021 computeVariableSummary(Index, G, CantBePromoted, M, Types); 1022 } 1023 1024 // Compute summaries for all aliases defined in module, and save in the 1025 // index. 1026 for (const GlobalAlias &A : M.aliases()) 1027 computeAliasSummary(Index, A, CantBePromoted); 1028 1029 // Iterate through ifuncs, set their resolvers all alive. 1030 for (const GlobalIFunc &I : M.ifuncs()) { 1031 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 1032 Index.getGlobalValueSummary(GV)->setLive(true); 1033 }); 1034 } 1035 1036 for (auto *V : LocalsUsed) { 1037 auto *Summary = Index.getGlobalValueSummary(*V); 1038 assert(Summary && "Missing summary for global value"); 1039 Summary->setNotEligibleToImport(); 1040 } 1041 1042 // The linker doesn't know about these LLVM produced values, so we need 1043 // to flag them as live in the index to ensure index-based dead value 1044 // analysis treats them as live roots of the analysis. 1045 setLiveRoot(Index, "llvm.used"); 1046 setLiveRoot(Index, "llvm.compiler.used"); 1047 setLiveRoot(Index, "llvm.global_ctors"); 1048 setLiveRoot(Index, "llvm.global_dtors"); 1049 setLiveRoot(Index, "llvm.global.annotations"); 1050 1051 for (auto &GlobalList : Index) { 1052 // Ignore entries for references that are undefined in the current module. 1053 if (GlobalList.second.SummaryList.empty()) 1054 continue; 1055 1056 assert(GlobalList.second.SummaryList.size() == 1 && 1057 "Expected module's index to have one summary per GUID"); 1058 auto &Summary = GlobalList.second.SummaryList[0]; 1059 if (!IsThinLTO) { 1060 Summary->setNotEligibleToImport(); 1061 continue; 1062 } 1063 1064 bool AllRefsCanBeExternallyReferenced = 1065 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 1066 return !CantBePromoted.count(VI.getGUID()); 1067 }); 1068 if (!AllRefsCanBeExternallyReferenced) { 1069 Summary->setNotEligibleToImport(); 1070 continue; 1071 } 1072 1073 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 1074 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 1075 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 1076 return !CantBePromoted.count(Edge.first.getGUID()); 1077 }); 1078 if (!AllCallsCanBeExternallyReferenced) 1079 Summary->setNotEligibleToImport(); 1080 } 1081 } 1082 1083 if (!ModuleSummaryDotFile.empty()) { 1084 std::error_code EC; 1085 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text); 1086 if (EC) 1087 report_fatal_error(Twine("Failed to open dot file ") + 1088 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 1089 Index.exportToDot(OSDot, {}); 1090 } 1091 1092 return Index; 1093 } 1094 1095 AnalysisKey ModuleSummaryIndexAnalysis::Key; 1096 1097 ModuleSummaryIndex 1098 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1099 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1100 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1101 bool NeedSSI = needsParamAccessSummary(M); 1102 return buildModuleSummaryIndex( 1103 M, 1104 [&FAM](const Function &F) { 1105 return &FAM.getResult<BlockFrequencyAnalysis>( 1106 *const_cast<Function *>(&F)); 1107 }, 1108 &PSI, 1109 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 1110 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 1111 const_cast<Function &>(F)) 1112 : nullptr; 1113 }); 1114 } 1115 1116 char ModuleSummaryIndexWrapperPass::ID = 0; 1117 1118 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1119 "Module Summary Analysis", false, true) 1120 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 1121 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1122 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1123 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1124 "Module Summary Analysis", false, true) 1125 1126 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 1127 return new ModuleSummaryIndexWrapperPass(); 1128 } 1129 1130 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 1131 : ModulePass(ID) { 1132 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 1133 } 1134 1135 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 1136 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1137 bool NeedSSI = needsParamAccessSummary(M); 1138 Index.emplace(buildModuleSummaryIndex( 1139 M, 1140 [this](const Function &F) { 1141 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 1142 *const_cast<Function *>(&F)) 1143 .getBFI()); 1144 }, 1145 PSI, 1146 [&](const Function &F) -> const StackSafetyInfo * { 1147 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 1148 const_cast<Function &>(F)) 1149 .getResult() 1150 : nullptr; 1151 })); 1152 return false; 1153 } 1154 1155 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1156 Index.reset(); 1157 return false; 1158 } 1159 1160 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1161 AU.setPreservesAll(); 1162 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1163 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1164 AU.addRequired<StackSafetyInfoWrapperPass>(); 1165 } 1166 1167 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1168 1169 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1170 const ModuleSummaryIndex *Index) 1171 : ImmutablePass(ID), Index(Index) { 1172 initializeImmutableModuleSummaryIndexWrapperPassPass( 1173 *PassRegistry::getPassRegistry()); 1174 } 1175 1176 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1177 AnalysisUsage &AU) const { 1178 AU.setPreservesAll(); 1179 } 1180 1181 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1182 const ModuleSummaryIndex *Index) { 1183 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1184 } 1185 1186 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1187 "Module summary info", false, true) 1188 1189 bool llvm::mayHaveMemprofSummary(const CallBase *CB) { 1190 if (!CB) 1191 return false; 1192 if (CB->isDebugOrPseudoInst()) 1193 return false; 1194 auto *CI = dyn_cast<CallInst>(CB); 1195 auto *CalledValue = CB->getCalledOperand(); 1196 auto *CalledFunction = CB->getCalledFunction(); 1197 if (CalledValue && !CalledFunction) { 1198 CalledValue = CalledValue->stripPointerCasts(); 1199 // Stripping pointer casts can reveal a called function. 1200 CalledFunction = dyn_cast<Function>(CalledValue); 1201 } 1202 // Check if this is an alias to a function. If so, get the 1203 // called aliasee for the checks below. 1204 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 1205 assert(!CalledFunction && 1206 "Expected null called function in callsite for alias"); 1207 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 1208 } 1209 // Check if this is a direct call to a known function or a known 1210 // intrinsic, or an indirect call with profile data. 1211 if (CalledFunction) { 1212 if (CI && CalledFunction->isIntrinsic()) 1213 return false; 1214 } else { 1215 // TODO: For now skip indirect calls. See comments in 1216 // computeFunctionSummary for what is needed to handle this. 1217 return false; 1218 } 1219 return true; 1220 } 1221