1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryProfileInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/StackSafetyAnalysis.h" 30 #include "llvm/Analysis/TypeMetadataUtils.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/FileSystem.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <vector> 58 59 using namespace llvm; 60 using namespace llvm::memprof; 61 62 #define DEBUG_TYPE "module-summary-analysis" 63 64 // Option to force edges cold which will block importing when the 65 // -import-cold-multiplier is set to 0. Useful for debugging. 66 namespace llvm { 67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 68 FunctionSummary::FSHT_None; 69 } // namespace llvm 70 71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 73 cl::desc("Force all edges in the function summary to cold"), 74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 75 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 76 "all-non-critical", "All non-critical edges."), 77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 78 79 static cl::opt<std::string> ModuleSummaryDotFile( 80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 81 cl::desc("File to emit dot graph of new summary into")); 82 83 // Walk through the operands of a given User via worklist iteration and populate 84 // the set of GlobalValue references encountered. Invoked either on an 85 // Instruction or a GlobalVariable (which walks its initializer). 86 // Return true if any of the operands contains blockaddress. This is important 87 // to know when computing summary for global var, because if global variable 88 // references basic block address we can't import it separately from function 89 // containing that basic block. For simplicity we currently don't import such 90 // global vars at all. When importing function we aren't interested if any 91 // instruction in it takes an address of any basic block, because instruction 92 // can only take an address of basic block located in the same function. 93 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 94 SetVector<ValueInfo> &RefEdges, 95 SmallPtrSet<const User *, 8> &Visited) { 96 bool HasBlockAddress = false; 97 SmallVector<const User *, 32> Worklist; 98 if (Visited.insert(CurUser).second) 99 Worklist.push_back(CurUser); 100 101 while (!Worklist.empty()) { 102 const User *U = Worklist.pop_back_val(); 103 const auto *CB = dyn_cast<CallBase>(U); 104 105 for (const auto &OI : U->operands()) { 106 const User *Operand = dyn_cast<User>(OI); 107 if (!Operand) 108 continue; 109 if (isa<BlockAddress>(Operand)) { 110 HasBlockAddress = true; 111 continue; 112 } 113 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 114 // We have a reference to a global value. This should be added to 115 // the reference set unless it is a callee. Callees are handled 116 // specially by WriteFunction and are added to a separate list. 117 if (!(CB && CB->isCallee(&OI))) 118 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 119 continue; 120 } 121 if (Visited.insert(Operand).second) 122 Worklist.push_back(Operand); 123 } 124 } 125 return HasBlockAddress; 126 } 127 128 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 129 ProfileSummaryInfo *PSI) { 130 if (!PSI) 131 return CalleeInfo::HotnessType::Unknown; 132 if (PSI->isHotCount(ProfileCount)) 133 return CalleeInfo::HotnessType::Hot; 134 if (PSI->isColdCount(ProfileCount)) 135 return CalleeInfo::HotnessType::Cold; 136 return CalleeInfo::HotnessType::None; 137 } 138 139 static bool isNonRenamableLocal(const GlobalValue &GV) { 140 return GV.hasSection() && GV.hasLocalLinkage(); 141 } 142 143 /// Determine whether this call has all constant integer arguments (excluding 144 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 145 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 146 SetVector<FunctionSummary::VFuncId> &VCalls, 147 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 148 std::vector<uint64_t> Args; 149 // Start from the second argument to skip the "this" pointer. 150 for (auto &Arg : drop_begin(Call.CB.args())) { 151 auto *CI = dyn_cast<ConstantInt>(Arg); 152 if (!CI || CI->getBitWidth() > 64) { 153 VCalls.insert({Guid, Call.Offset}); 154 return; 155 } 156 Args.push_back(CI->getZExtValue()); 157 } 158 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 159 } 160 161 /// If this intrinsic call requires that we add information to the function 162 /// summary, do so via the non-constant reference arguments. 163 static void addIntrinsicToSummary( 164 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 165 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 166 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 167 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 168 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 169 DominatorTree &DT) { 170 switch (CI->getCalledFunction()->getIntrinsicID()) { 171 case Intrinsic::type_test: 172 case Intrinsic::public_type_test: { 173 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 174 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 175 if (!TypeId) 176 break; 177 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 178 179 // Produce a summary from type.test intrinsics. We only summarize type.test 180 // intrinsics that are used other than by an llvm.assume intrinsic. 181 // Intrinsics that are assumed are relevant only to the devirtualization 182 // pass, not the type test lowering pass. 183 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 184 return !isa<AssumeInst>(CIU.getUser()); 185 }); 186 if (HasNonAssumeUses) 187 TypeTests.insert(Guid); 188 189 SmallVector<DevirtCallSite, 4> DevirtCalls; 190 SmallVector<CallInst *, 4> Assumes; 191 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 192 for (auto &Call : DevirtCalls) 193 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 194 TypeTestAssumeConstVCalls); 195 196 break; 197 } 198 199 case Intrinsic::type_checked_load: { 200 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 201 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 202 if (!TypeId) 203 break; 204 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 205 206 SmallVector<DevirtCallSite, 4> DevirtCalls; 207 SmallVector<Instruction *, 4> LoadedPtrs; 208 SmallVector<Instruction *, 4> Preds; 209 bool HasNonCallUses = false; 210 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 211 HasNonCallUses, CI, DT); 212 // Any non-call uses of the result of llvm.type.checked.load will 213 // prevent us from optimizing away the llvm.type.test. 214 if (HasNonCallUses) 215 TypeTests.insert(Guid); 216 for (auto &Call : DevirtCalls) 217 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 218 TypeCheckedLoadConstVCalls); 219 220 break; 221 } 222 default: 223 break; 224 } 225 } 226 227 static bool isNonVolatileLoad(const Instruction *I) { 228 if (const auto *LI = dyn_cast<LoadInst>(I)) 229 return !LI->isVolatile(); 230 231 return false; 232 } 233 234 static bool isNonVolatileStore(const Instruction *I) { 235 if (const auto *SI = dyn_cast<StoreInst>(I)) 236 return !SI->isVolatile(); 237 238 return false; 239 } 240 241 // Returns true if the function definition must be unreachable. 242 // 243 // Note if this helper function returns true, `F` is guaranteed 244 // to be unreachable; if it returns false, `F` might still 245 // be unreachable but not covered by this helper function. 246 static bool mustBeUnreachableFunction(const Function &F) { 247 // A function must be unreachable if its entry block ends with an 248 // 'unreachable'. 249 assert(!F.isDeclaration()); 250 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 251 } 252 253 static void computeFunctionSummary( 254 ModuleSummaryIndex &Index, const Module &M, const Function &F, 255 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 256 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 257 bool IsThinLTO, 258 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 259 // Summary not currently supported for anonymous functions, they should 260 // have been named. 261 assert(F.hasName()); 262 263 unsigned NumInsts = 0; 264 // Map from callee ValueId to profile count. Used to accumulate profile 265 // counts for all static calls to a given callee. 266 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 267 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 268 SetVector<GlobalValue::GUID> TypeTests; 269 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 270 TypeCheckedLoadVCalls; 271 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 272 TypeCheckedLoadConstVCalls; 273 ICallPromotionAnalysis ICallAnalysis; 274 SmallPtrSet<const User *, 8> Visited; 275 276 // Add personality function, prefix data and prologue data to function's ref 277 // list. 278 findRefEdges(Index, &F, RefEdges, Visited); 279 std::vector<const Instruction *> NonVolatileLoads; 280 std::vector<const Instruction *> NonVolatileStores; 281 282 std::vector<CallsiteInfo> Callsites; 283 std::vector<AllocInfo> Allocs; 284 285 bool HasInlineAsmMaybeReferencingInternal = false; 286 bool HasIndirBranchToBlockAddress = false; 287 bool HasUnknownCall = false; 288 bool MayThrow = false; 289 for (const BasicBlock &BB : F) { 290 // We don't allow inlining of function with indirect branch to blockaddress. 291 // If the blockaddress escapes the function, e.g., via a global variable, 292 // inlining may lead to an invalid cross-function reference. So we shouldn't 293 // import such function either. 294 if (BB.hasAddressTaken()) { 295 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 296 if (!isa<CallBrInst>(*U)) { 297 HasIndirBranchToBlockAddress = true; 298 break; 299 } 300 } 301 302 for (const Instruction &I : BB) { 303 if (I.isDebugOrPseudoInst()) 304 continue; 305 ++NumInsts; 306 307 // Regular LTO module doesn't participate in ThinLTO import, 308 // so no reference from it can be read/writeonly, since this 309 // would require importing variable as local copy 310 if (IsThinLTO) { 311 if (isNonVolatileLoad(&I)) { 312 // Postpone processing of non-volatile load instructions 313 // See comments below 314 Visited.insert(&I); 315 NonVolatileLoads.push_back(&I); 316 continue; 317 } else if (isNonVolatileStore(&I)) { 318 Visited.insert(&I); 319 NonVolatileStores.push_back(&I); 320 // All references from second operand of store (destination address) 321 // can be considered write-only if they're not referenced by any 322 // non-store instruction. References from first operand of store 323 // (stored value) can't be treated either as read- or as write-only 324 // so we add them to RefEdges as we do with all other instructions 325 // except non-volatile load. 326 Value *Stored = I.getOperand(0); 327 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 328 // findRefEdges will try to examine GV operands, so instead 329 // of calling it we should add GV to RefEdges directly. 330 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 331 else if (auto *U = dyn_cast<User>(Stored)) 332 findRefEdges(Index, U, RefEdges, Visited); 333 continue; 334 } 335 } 336 findRefEdges(Index, &I, RefEdges, Visited); 337 const auto *CB = dyn_cast<CallBase>(&I); 338 if (!CB) { 339 if (I.mayThrow()) 340 MayThrow = true; 341 continue; 342 } 343 344 const auto *CI = dyn_cast<CallInst>(&I); 345 // Since we don't know exactly which local values are referenced in inline 346 // assembly, conservatively mark the function as possibly referencing 347 // a local value from inline assembly to ensure we don't export a 348 // reference (which would require renaming and promotion of the 349 // referenced value). 350 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 351 HasInlineAsmMaybeReferencingInternal = true; 352 353 auto *CalledValue = CB->getCalledOperand(); 354 auto *CalledFunction = CB->getCalledFunction(); 355 if (CalledValue && !CalledFunction) { 356 CalledValue = CalledValue->stripPointerCasts(); 357 // Stripping pointer casts can reveal a called function. 358 CalledFunction = dyn_cast<Function>(CalledValue); 359 } 360 // Check if this is an alias to a function. If so, get the 361 // called aliasee for the checks below. 362 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 363 assert(!CalledFunction && "Expected null called function in callsite for alias"); 364 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 365 } 366 // Check if this is a direct call to a known function or a known 367 // intrinsic, or an indirect call with profile data. 368 if (CalledFunction) { 369 if (CI && CalledFunction->isIntrinsic()) { 370 addIntrinsicToSummary( 371 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 372 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 373 continue; 374 } 375 // We should have named any anonymous globals 376 assert(CalledFunction->hasName()); 377 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 378 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 379 : CalleeInfo::HotnessType::Unknown; 380 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 381 Hotness = CalleeInfo::HotnessType::Cold; 382 383 // Use the original CalledValue, in case it was an alias. We want 384 // to record the call edge to the alias in that case. Eventually 385 // an alias summary will be created to associate the alias and 386 // aliasee. 387 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 388 cast<GlobalValue>(CalledValue))]; 389 ValueInfo.updateHotness(Hotness); 390 // Add the relative block frequency to CalleeInfo if there is no profile 391 // information. 392 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 393 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 394 uint64_t EntryFreq = BFI->getEntryFreq(); 395 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 396 } 397 } else { 398 HasUnknownCall = true; 399 // Skip inline assembly calls. 400 if (CI && CI->isInlineAsm()) 401 continue; 402 // Skip direct calls. 403 if (!CalledValue || isa<Constant>(CalledValue)) 404 continue; 405 406 // Check if the instruction has a callees metadata. If so, add callees 407 // to CallGraphEdges to reflect the references from the metadata, and 408 // to enable importing for subsequent indirect call promotion and 409 // inlining. 410 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 411 for (const auto &Op : MD->operands()) { 412 Function *Callee = mdconst::extract_or_null<Function>(Op); 413 if (Callee) 414 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 415 } 416 } 417 418 uint32_t NumVals, NumCandidates; 419 uint64_t TotalCount; 420 auto CandidateProfileData = 421 ICallAnalysis.getPromotionCandidatesForInstruction( 422 &I, NumVals, TotalCount, NumCandidates); 423 for (const auto &Candidate : CandidateProfileData) 424 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 425 .updateHotness(getHotness(Candidate.Count, PSI)); 426 } 427 428 // TODO: Skip indirect calls for now. Need to handle these better, likely 429 // by creating multiple Callsites, one per target, then speculatively 430 // devirtualize while applying clone info in the ThinLTO backends. This 431 // will also be important because we will have a different set of clone 432 // versions per target. This handling needs to match that in the ThinLTO 433 // backend so we handle things consistently for matching of callsite 434 // summaries to instructions. 435 if (!CalledFunction) 436 continue; 437 438 // Compute the list of stack ids first (so we can trim them from the stack 439 // ids on any MIBs). 440 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 441 I.getMetadata(LLVMContext::MD_callsite)); 442 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 443 if (MemProfMD) { 444 std::vector<MIBInfo> MIBs; 445 for (auto &MDOp : MemProfMD->operands()) { 446 auto *MIBMD = cast<const MDNode>(MDOp); 447 MDNode *StackNode = getMIBStackNode(MIBMD); 448 assert(StackNode); 449 SmallVector<unsigned> StackIdIndices; 450 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 451 // Collapse out any on the allocation call (inlining). 452 for (auto ContextIter = 453 StackContext.beginAfterSharedPrefix(InstCallsite); 454 ContextIter != StackContext.end(); ++ContextIter) { 455 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 456 // If this is a direct recursion, simply skip the duplicate 457 // entries. If this is mutual recursion, handling is left to 458 // the LTO link analysis client. 459 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 460 StackIdIndices.push_back(StackIdIdx); 461 } 462 MIBs.push_back( 463 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 464 } 465 Allocs.push_back(AllocInfo(std::move(MIBs))); 466 } else if (!InstCallsite.empty()) { 467 SmallVector<unsigned> StackIdIndices; 468 for (auto StackId : InstCallsite) 469 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 470 // Use the original CalledValue, in case it was an alias. We want 471 // to record the call edge to the alias in that case. Eventually 472 // an alias summary will be created to associate the alias and 473 // aliasee. 474 auto CalleeValueInfo = 475 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 476 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 477 } 478 } 479 } 480 Index.addBlockCount(F.size()); 481 482 std::vector<ValueInfo> Refs; 483 if (IsThinLTO) { 484 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 485 SetVector<ValueInfo> &Edges, 486 SmallPtrSet<const User *, 8> &Cache) { 487 for (const auto *I : Instrs) { 488 Cache.erase(I); 489 findRefEdges(Index, I, Edges, Cache); 490 } 491 }; 492 493 // By now we processed all instructions in a function, except 494 // non-volatile loads and non-volatile value stores. Let's find 495 // ref edges for both of instruction sets 496 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 497 // We can add some values to the Visited set when processing load 498 // instructions which are also used by stores in NonVolatileStores. 499 // For example this can happen if we have following code: 500 // 501 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 502 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 503 // 504 // After processing loads we'll add bitcast to the Visited set, and if 505 // we use the same set while processing stores, we'll never see store 506 // to @bar and @bar will be mistakenly treated as readonly. 507 SmallPtrSet<const llvm::User *, 8> StoreCache; 508 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 509 510 // If both load and store instruction reference the same variable 511 // we won't be able to optimize it. Add all such reference edges 512 // to RefEdges set. 513 for (const auto &VI : StoreRefEdges) 514 if (LoadRefEdges.remove(VI)) 515 RefEdges.insert(VI); 516 517 unsigned RefCnt = RefEdges.size(); 518 // All new reference edges inserted in two loops below are either 519 // read or write only. They will be grouped in the end of RefEdges 520 // vector, so we can use a single integer value to identify them. 521 for (const auto &VI : LoadRefEdges) 522 RefEdges.insert(VI); 523 524 unsigned FirstWORef = RefEdges.size(); 525 for (const auto &VI : StoreRefEdges) 526 RefEdges.insert(VI); 527 528 Refs = RefEdges.takeVector(); 529 for (; RefCnt < FirstWORef; ++RefCnt) 530 Refs[RefCnt].setReadOnly(); 531 532 for (; RefCnt < Refs.size(); ++RefCnt) 533 Refs[RefCnt].setWriteOnly(); 534 } else { 535 Refs = RefEdges.takeVector(); 536 } 537 // Explicit add hot edges to enforce importing for designated GUIDs for 538 // sample PGO, to enable the same inlines as the profiled optimized binary. 539 for (auto &I : F.getImportGUIDs()) 540 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 541 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 542 ? CalleeInfo::HotnessType::Cold 543 : CalleeInfo::HotnessType::Critical); 544 545 bool NonRenamableLocal = isNonRenamableLocal(F); 546 bool NotEligibleForImport = NonRenamableLocal || 547 HasInlineAsmMaybeReferencingInternal || 548 HasIndirBranchToBlockAddress; 549 GlobalValueSummary::GVFlags Flags( 550 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 551 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable()); 552 FunctionSummary::FFlags FunFlags{ 553 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 554 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 555 // FIXME: refactor this to use the same code that inliner is using. 556 // Don't try to import functions with noinline attribute. 557 F.getAttributes().hasFnAttr(Attribute::NoInline), 558 F.hasFnAttribute(Attribute::AlwaysInline), 559 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 560 mustBeUnreachableFunction(F)}; 561 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 562 if (auto *SSI = GetSSICallback(F)) 563 ParamAccesses = SSI->getParamAccesses(Index); 564 auto FuncSummary = std::make_unique<FunctionSummary>( 565 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 566 CallGraphEdges.takeVector(), TypeTests.takeVector(), 567 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 568 TypeTestAssumeConstVCalls.takeVector(), 569 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 570 std::move(Callsites), std::move(Allocs)); 571 if (NonRenamableLocal) 572 CantBePromoted.insert(F.getGUID()); 573 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 574 } 575 576 /// Find function pointers referenced within the given vtable initializer 577 /// (or subset of an initializer) \p I. The starting offset of \p I within 578 /// the vtable initializer is \p StartingOffset. Any discovered function 579 /// pointers are added to \p VTableFuncs along with their cumulative offset 580 /// within the initializer. 581 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 582 const Module &M, ModuleSummaryIndex &Index, 583 VTableFuncList &VTableFuncs) { 584 // First check if this is a function pointer. 585 if (I->getType()->isPointerTy()) { 586 auto Fn = dyn_cast<Function>(I->stripPointerCasts()); 587 // We can disregard __cxa_pure_virtual as a possible call target, as 588 // calls to pure virtuals are UB. 589 if (Fn && Fn->getName() != "__cxa_pure_virtual") 590 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); 591 return; 592 } 593 594 // Walk through the elements in the constant struct or array and recursively 595 // look for virtual function pointers. 596 const DataLayout &DL = M.getDataLayout(); 597 if (auto *C = dyn_cast<ConstantStruct>(I)) { 598 StructType *STy = dyn_cast<StructType>(C->getType()); 599 assert(STy); 600 const StructLayout *SL = DL.getStructLayout(C->getType()); 601 602 for (auto EI : llvm::enumerate(STy->elements())) { 603 auto Offset = SL->getElementOffset(EI.index()); 604 unsigned Op = SL->getElementContainingOffset(Offset); 605 findFuncPointers(cast<Constant>(I->getOperand(Op)), 606 StartingOffset + Offset, M, Index, VTableFuncs); 607 } 608 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 609 ArrayType *ATy = C->getType(); 610 Type *EltTy = ATy->getElementType(); 611 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 612 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 613 findFuncPointers(cast<Constant>(I->getOperand(i)), 614 StartingOffset + i * EltSize, M, Index, VTableFuncs); 615 } 616 } 617 } 618 619 // Identify the function pointers referenced by vtable definition \p V. 620 static void computeVTableFuncs(ModuleSummaryIndex &Index, 621 const GlobalVariable &V, const Module &M, 622 VTableFuncList &VTableFuncs) { 623 if (!V.isConstant()) 624 return; 625 626 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 627 VTableFuncs); 628 629 #ifndef NDEBUG 630 // Validate that the VTableFuncs list is ordered by offset. 631 uint64_t PrevOffset = 0; 632 for (auto &P : VTableFuncs) { 633 // The findVFuncPointers traversal should have encountered the 634 // functions in offset order. We need to use ">=" since PrevOffset 635 // starts at 0. 636 assert(P.VTableOffset >= PrevOffset); 637 PrevOffset = P.VTableOffset; 638 } 639 #endif 640 } 641 642 /// Record vtable definition \p V for each type metadata it references. 643 static void 644 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 645 const GlobalVariable &V, 646 SmallVectorImpl<MDNode *> &Types) { 647 for (MDNode *Type : Types) { 648 auto TypeID = Type->getOperand(1).get(); 649 650 uint64_t Offset = 651 cast<ConstantInt>( 652 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 653 ->getZExtValue(); 654 655 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 656 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 657 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 658 } 659 } 660 661 static void computeVariableSummary(ModuleSummaryIndex &Index, 662 const GlobalVariable &V, 663 DenseSet<GlobalValue::GUID> &CantBePromoted, 664 const Module &M, 665 SmallVectorImpl<MDNode *> &Types) { 666 SetVector<ValueInfo> RefEdges; 667 SmallPtrSet<const User *, 8> Visited; 668 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 669 bool NonRenamableLocal = isNonRenamableLocal(V); 670 GlobalValueSummary::GVFlags Flags( 671 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 672 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable()); 673 674 VTableFuncList VTableFuncs; 675 // If splitting is not enabled, then we compute the summary information 676 // necessary for index-based whole program devirtualization. 677 if (!Index.enableSplitLTOUnit()) { 678 Types.clear(); 679 V.getMetadata(LLVMContext::MD_type, Types); 680 if (!Types.empty()) { 681 // Identify the function pointers referenced by this vtable definition. 682 computeVTableFuncs(Index, V, M, VTableFuncs); 683 684 // Record this vtable definition for each type metadata it references. 685 recordTypeIdCompatibleVtableReferences(Index, V, Types); 686 } 687 } 688 689 // Don't mark variables we won't be able to internalize as read/write-only. 690 bool CanBeInternalized = 691 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 692 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 693 bool Constant = V.isConstant(); 694 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 695 Constant ? false : CanBeInternalized, 696 Constant, V.getVCallVisibility()); 697 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 698 RefEdges.takeVector()); 699 if (NonRenamableLocal) 700 CantBePromoted.insert(V.getGUID()); 701 if (HasBlockAddress) 702 GVarSummary->setNotEligibleToImport(); 703 if (!VTableFuncs.empty()) 704 GVarSummary->setVTableFuncs(VTableFuncs); 705 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 706 } 707 708 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 709 DenseSet<GlobalValue::GUID> &CantBePromoted) { 710 // Skip summary for indirect function aliases as summary for aliasee will not 711 // be emitted. 712 const GlobalObject *Aliasee = A.getAliaseeObject(); 713 if (isa<GlobalIFunc>(Aliasee)) 714 return; 715 bool NonRenamableLocal = isNonRenamableLocal(A); 716 GlobalValueSummary::GVFlags Flags( 717 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 718 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable()); 719 auto AS = std::make_unique<AliasSummary>(Flags); 720 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 721 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 722 assert(AliaseeVI.getSummaryList().size() == 1 && 723 "Expected a single entry per aliasee in per-module index"); 724 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 725 if (NonRenamableLocal) 726 CantBePromoted.insert(A.getGUID()); 727 Index.addGlobalValueSummary(A, std::move(AS)); 728 } 729 730 // Set LiveRoot flag on entries matching the given value name. 731 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 732 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 733 for (const auto &Summary : VI.getSummaryList()) 734 Summary->setLive(true); 735 } 736 737 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 738 const Module &M, 739 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 740 ProfileSummaryInfo *PSI, 741 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 742 assert(PSI); 743 bool EnableSplitLTOUnit = false; 744 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 745 M.getModuleFlag("EnableSplitLTOUnit"))) 746 EnableSplitLTOUnit = MD->getZExtValue(); 747 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); 748 749 // Identify the local values in the llvm.used and llvm.compiler.used sets, 750 // which should not be exported as they would then require renaming and 751 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 752 // here because we use this information to mark functions containing inline 753 // assembly calls as not importable. 754 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 755 SmallVector<GlobalValue *, 4> Used; 756 // First collect those in the llvm.used set. 757 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 758 // Next collect those in the llvm.compiler.used set. 759 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 760 DenseSet<GlobalValue::GUID> CantBePromoted; 761 for (auto *V : Used) { 762 if (V->hasLocalLinkage()) { 763 LocalsUsed.insert(V); 764 CantBePromoted.insert(V->getGUID()); 765 } 766 } 767 768 bool HasLocalInlineAsmSymbol = false; 769 if (!M.getModuleInlineAsm().empty()) { 770 // Collect the local values defined by module level asm, and set up 771 // summaries for these symbols so that they can be marked as NoRename, 772 // to prevent export of any use of them in regular IR that would require 773 // renaming within the module level asm. Note we don't need to create a 774 // summary for weak or global defs, as they don't need to be flagged as 775 // NoRename, and defs in module level asm can't be imported anyway. 776 // Also, any values used but not defined within module level asm should 777 // be listed on the llvm.used or llvm.compiler.used global and marked as 778 // referenced from there. 779 ModuleSymbolTable::CollectAsmSymbols( 780 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 781 // Symbols not marked as Weak or Global are local definitions. 782 if (Flags & (object::BasicSymbolRef::SF_Weak | 783 object::BasicSymbolRef::SF_Global)) 784 return; 785 HasLocalInlineAsmSymbol = true; 786 GlobalValue *GV = M.getNamedValue(Name); 787 if (!GV) 788 return; 789 assert(GV->isDeclaration() && "Def in module asm already has definition"); 790 GlobalValueSummary::GVFlags GVFlags( 791 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 792 /* NotEligibleToImport = */ true, 793 /* Live = */ true, 794 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable()); 795 CantBePromoted.insert(GV->getGUID()); 796 // Create the appropriate summary type. 797 if (Function *F = dyn_cast<Function>(GV)) { 798 std::unique_ptr<FunctionSummary> Summary = 799 std::make_unique<FunctionSummary>( 800 GVFlags, /*InstCount=*/0, 801 FunctionSummary::FFlags{ 802 F->hasFnAttribute(Attribute::ReadNone), 803 F->hasFnAttribute(Attribute::ReadOnly), 804 F->hasFnAttribute(Attribute::NoRecurse), 805 F->returnDoesNotAlias(), 806 /* NoInline = */ false, 807 F->hasFnAttribute(Attribute::AlwaysInline), 808 F->hasFnAttribute(Attribute::NoUnwind), 809 /* MayThrow */ true, 810 /* HasUnknownCall */ true, 811 /* MustBeUnreachable */ false}, 812 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 813 ArrayRef<FunctionSummary::EdgeTy>{}, 814 ArrayRef<GlobalValue::GUID>{}, 815 ArrayRef<FunctionSummary::VFuncId>{}, 816 ArrayRef<FunctionSummary::VFuncId>{}, 817 ArrayRef<FunctionSummary::ConstVCall>{}, 818 ArrayRef<FunctionSummary::ConstVCall>{}, 819 ArrayRef<FunctionSummary::ParamAccess>{}, 820 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 821 Index.addGlobalValueSummary(*GV, std::move(Summary)); 822 } else { 823 std::unique_ptr<GlobalVarSummary> Summary = 824 std::make_unique<GlobalVarSummary>( 825 GVFlags, 826 GlobalVarSummary::GVarFlags( 827 false, false, cast<GlobalVariable>(GV)->isConstant(), 828 GlobalObject::VCallVisibilityPublic), 829 ArrayRef<ValueInfo>{}); 830 Index.addGlobalValueSummary(*GV, std::move(Summary)); 831 } 832 }); 833 } 834 835 bool IsThinLTO = true; 836 if (auto *MD = 837 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 838 IsThinLTO = MD->getZExtValue(); 839 840 // Compute summaries for all functions defined in module, and save in the 841 // index. 842 for (const auto &F : M) { 843 if (F.isDeclaration()) 844 continue; 845 846 DominatorTree DT(const_cast<Function &>(F)); 847 BlockFrequencyInfo *BFI = nullptr; 848 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 849 if (GetBFICallback) 850 BFI = GetBFICallback(F); 851 else if (F.hasProfileData()) { 852 LoopInfo LI{DT}; 853 BranchProbabilityInfo BPI{F, LI}; 854 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 855 BFI = BFIPtr.get(); 856 } 857 858 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 859 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 860 CantBePromoted, IsThinLTO, GetSSICallback); 861 } 862 863 // Compute summaries for all variables defined in module, and save in the 864 // index. 865 SmallVector<MDNode *, 2> Types; 866 for (const GlobalVariable &G : M.globals()) { 867 if (G.isDeclaration()) 868 continue; 869 computeVariableSummary(Index, G, CantBePromoted, M, Types); 870 } 871 872 // Compute summaries for all aliases defined in module, and save in the 873 // index. 874 for (const GlobalAlias &A : M.aliases()) 875 computeAliasSummary(Index, A, CantBePromoted); 876 877 // Iterate through ifuncs, set their resolvers all alive. 878 for (const GlobalIFunc &I : M.ifuncs()) { 879 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 880 Index.getGlobalValueSummary(GV)->setLive(true); 881 }); 882 } 883 884 for (auto *V : LocalsUsed) { 885 auto *Summary = Index.getGlobalValueSummary(*V); 886 assert(Summary && "Missing summary for global value"); 887 Summary->setNotEligibleToImport(); 888 } 889 890 // The linker doesn't know about these LLVM produced values, so we need 891 // to flag them as live in the index to ensure index-based dead value 892 // analysis treats them as live roots of the analysis. 893 setLiveRoot(Index, "llvm.used"); 894 setLiveRoot(Index, "llvm.compiler.used"); 895 setLiveRoot(Index, "llvm.global_ctors"); 896 setLiveRoot(Index, "llvm.global_dtors"); 897 setLiveRoot(Index, "llvm.global.annotations"); 898 899 for (auto &GlobalList : Index) { 900 // Ignore entries for references that are undefined in the current module. 901 if (GlobalList.second.SummaryList.empty()) 902 continue; 903 904 assert(GlobalList.second.SummaryList.size() == 1 && 905 "Expected module's index to have one summary per GUID"); 906 auto &Summary = GlobalList.second.SummaryList[0]; 907 if (!IsThinLTO) { 908 Summary->setNotEligibleToImport(); 909 continue; 910 } 911 912 bool AllRefsCanBeExternallyReferenced = 913 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 914 return !CantBePromoted.count(VI.getGUID()); 915 }); 916 if (!AllRefsCanBeExternallyReferenced) { 917 Summary->setNotEligibleToImport(); 918 continue; 919 } 920 921 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 922 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 923 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 924 return !CantBePromoted.count(Edge.first.getGUID()); 925 }); 926 if (!AllCallsCanBeExternallyReferenced) 927 Summary->setNotEligibleToImport(); 928 } 929 } 930 931 if (!ModuleSummaryDotFile.empty()) { 932 std::error_code EC; 933 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 934 if (EC) 935 report_fatal_error(Twine("Failed to open dot file ") + 936 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 937 Index.exportToDot(OSDot, {}); 938 } 939 940 return Index; 941 } 942 943 AnalysisKey ModuleSummaryIndexAnalysis::Key; 944 945 ModuleSummaryIndex 946 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 947 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 948 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 949 bool NeedSSI = needsParamAccessSummary(M); 950 return buildModuleSummaryIndex( 951 M, 952 [&FAM](const Function &F) { 953 return &FAM.getResult<BlockFrequencyAnalysis>( 954 *const_cast<Function *>(&F)); 955 }, 956 &PSI, 957 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 958 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 959 const_cast<Function &>(F)) 960 : nullptr; 961 }); 962 } 963 964 char ModuleSummaryIndexWrapperPass::ID = 0; 965 966 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 967 "Module Summary Analysis", false, true) 968 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 969 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 970 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 971 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 972 "Module Summary Analysis", false, true) 973 974 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 975 return new ModuleSummaryIndexWrapperPass(); 976 } 977 978 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 979 : ModulePass(ID) { 980 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 981 } 982 983 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 984 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 985 bool NeedSSI = needsParamAccessSummary(M); 986 Index.emplace(buildModuleSummaryIndex( 987 M, 988 [this](const Function &F) { 989 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 990 *const_cast<Function *>(&F)) 991 .getBFI()); 992 }, 993 PSI, 994 [&](const Function &F) -> const StackSafetyInfo * { 995 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 996 const_cast<Function &>(F)) 997 .getResult() 998 : nullptr; 999 })); 1000 return false; 1001 } 1002 1003 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1004 Index.reset(); 1005 return false; 1006 } 1007 1008 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1009 AU.setPreservesAll(); 1010 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1011 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1012 AU.addRequired<StackSafetyInfoWrapperPass>(); 1013 } 1014 1015 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1016 1017 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1018 const ModuleSummaryIndex *Index) 1019 : ImmutablePass(ID), Index(Index) { 1020 initializeImmutableModuleSummaryIndexWrapperPassPass( 1021 *PassRegistry::getPassRegistry()); 1022 } 1023 1024 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1025 AnalysisUsage &AU) const { 1026 AU.setPreservesAll(); 1027 } 1028 1029 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1030 const ModuleSummaryIndex *Index) { 1031 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1032 } 1033 1034 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1035 "Module summary info", false, true) 1036