xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/StackSafetyAnalysis.h"
29 #include "llvm/Analysis/TypeMetadataUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "module-summary-analysis"
62 
63 // Option to force edges cold which will block importing when the
64 // -import-cold-multiplier is set to 0. Useful for debugging.
65 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
66     FunctionSummary::FSHT_None;
67 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
68     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
69     cl::desc("Force all edges in the function summary to cold"),
70     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
71                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
72                           "all-non-critical", "All non-critical edges."),
73                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
74 
75 cl::opt<std::string> ModuleSummaryDotFile(
76     "module-summary-dot-file", cl::init(""), cl::Hidden,
77     cl::value_desc("filename"),
78     cl::desc("File to emit dot graph of new summary into."));
79 
80 // Walk through the operands of a given User via worklist iteration and populate
81 // the set of GlobalValue references encountered. Invoked either on an
82 // Instruction or a GlobalVariable (which walks its initializer).
83 // Return true if any of the operands contains blockaddress. This is important
84 // to know when computing summary for global var, because if global variable
85 // references basic block address we can't import it separately from function
86 // containing that basic block. For simplicity we currently don't import such
87 // global vars at all. When importing function we aren't interested if any
88 // instruction in it takes an address of any basic block, because instruction
89 // can only take an address of basic block located in the same function.
90 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
91                          SetVector<ValueInfo> &RefEdges,
92                          SmallPtrSet<const User *, 8> &Visited) {
93   bool HasBlockAddress = false;
94   SmallVector<const User *, 32> Worklist;
95   if (Visited.insert(CurUser).second)
96     Worklist.push_back(CurUser);
97 
98   while (!Worklist.empty()) {
99     const User *U = Worklist.pop_back_val();
100     const auto *CB = dyn_cast<CallBase>(U);
101 
102     for (const auto &OI : U->operands()) {
103       const User *Operand = dyn_cast<User>(OI);
104       if (!Operand)
105         continue;
106       if (isa<BlockAddress>(Operand)) {
107         HasBlockAddress = true;
108         continue;
109       }
110       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
111         // We have a reference to a global value. This should be added to
112         // the reference set unless it is a callee. Callees are handled
113         // specially by WriteFunction and are added to a separate list.
114         if (!(CB && CB->isCallee(&OI)))
115           RefEdges.insert(Index.getOrInsertValueInfo(GV));
116         continue;
117       }
118       if (Visited.insert(Operand).second)
119         Worklist.push_back(Operand);
120     }
121   }
122   return HasBlockAddress;
123 }
124 
125 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
126                                           ProfileSummaryInfo *PSI) {
127   if (!PSI)
128     return CalleeInfo::HotnessType::Unknown;
129   if (PSI->isHotCount(ProfileCount))
130     return CalleeInfo::HotnessType::Hot;
131   if (PSI->isColdCount(ProfileCount))
132     return CalleeInfo::HotnessType::Cold;
133   return CalleeInfo::HotnessType::None;
134 }
135 
136 static bool isNonRenamableLocal(const GlobalValue &GV) {
137   return GV.hasSection() && GV.hasLocalLinkage();
138 }
139 
140 /// Determine whether this call has all constant integer arguments (excluding
141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
142 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
143                           SetVector<FunctionSummary::VFuncId> &VCalls,
144                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
145   std::vector<uint64_t> Args;
146   // Start from the second argument to skip the "this" pointer.
147   for (auto &Arg : drop_begin(Call.CB.args())) {
148     auto *CI = dyn_cast<ConstantInt>(Arg);
149     if (!CI || CI->getBitWidth() > 64) {
150       VCalls.insert({Guid, Call.Offset});
151       return;
152     }
153     Args.push_back(CI->getZExtValue());
154   }
155   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
156 }
157 
158 /// If this intrinsic call requires that we add information to the function
159 /// summary, do so via the non-constant reference arguments.
160 static void addIntrinsicToSummary(
161     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
162     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
163     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
164     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
165     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
166     DominatorTree &DT) {
167   switch (CI->getCalledFunction()->getIntrinsicID()) {
168   case Intrinsic::type_test: {
169     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
170     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
171     if (!TypeId)
172       break;
173     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
174 
175     // Produce a summary from type.test intrinsics. We only summarize type.test
176     // intrinsics that are used other than by an llvm.assume intrinsic.
177     // Intrinsics that are assumed are relevant only to the devirtualization
178     // pass, not the type test lowering pass.
179     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
180       return !isa<AssumeInst>(CIU.getUser());
181     });
182     if (HasNonAssumeUses)
183       TypeTests.insert(Guid);
184 
185     SmallVector<DevirtCallSite, 4> DevirtCalls;
186     SmallVector<CallInst *, 4> Assumes;
187     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
188     for (auto &Call : DevirtCalls)
189       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
190                     TypeTestAssumeConstVCalls);
191 
192     break;
193   }
194 
195   case Intrinsic::type_checked_load: {
196     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
197     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
198     if (!TypeId)
199       break;
200     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
201 
202     SmallVector<DevirtCallSite, 4> DevirtCalls;
203     SmallVector<Instruction *, 4> LoadedPtrs;
204     SmallVector<Instruction *, 4> Preds;
205     bool HasNonCallUses = false;
206     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
207                                                HasNonCallUses, CI, DT);
208     // Any non-call uses of the result of llvm.type.checked.load will
209     // prevent us from optimizing away the llvm.type.test.
210     if (HasNonCallUses)
211       TypeTests.insert(Guid);
212     for (auto &Call : DevirtCalls)
213       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
214                     TypeCheckedLoadConstVCalls);
215 
216     break;
217   }
218   default:
219     break;
220   }
221 }
222 
223 static bool isNonVolatileLoad(const Instruction *I) {
224   if (const auto *LI = dyn_cast<LoadInst>(I))
225     return !LI->isVolatile();
226 
227   return false;
228 }
229 
230 static bool isNonVolatileStore(const Instruction *I) {
231   if (const auto *SI = dyn_cast<StoreInst>(I))
232     return !SI->isVolatile();
233 
234   return false;
235 }
236 
237 // Returns true if the function definition must be unreachable.
238 //
239 // Note if this helper function returns true, `F` is guaranteed
240 // to be unreachable; if it returns false, `F` might still
241 // be unreachable but not covered by this helper function.
242 static bool mustBeUnreachableFunction(const Function &F) {
243   // A function must be unreachable if its entry block ends with an
244   // 'unreachable'.
245   assert(!F.isDeclaration());
246   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
247 }
248 
249 static void computeFunctionSummary(
250     ModuleSummaryIndex &Index, const Module &M, const Function &F,
251     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
252     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
253     bool IsThinLTO,
254     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
255   // Summary not currently supported for anonymous functions, they should
256   // have been named.
257   assert(F.hasName());
258 
259   unsigned NumInsts = 0;
260   // Map from callee ValueId to profile count. Used to accumulate profile
261   // counts for all static calls to a given callee.
262   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
263   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
264   SetVector<GlobalValue::GUID> TypeTests;
265   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
266       TypeCheckedLoadVCalls;
267   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
268       TypeCheckedLoadConstVCalls;
269   ICallPromotionAnalysis ICallAnalysis;
270   SmallPtrSet<const User *, 8> Visited;
271 
272   // Add personality function, prefix data and prologue data to function's ref
273   // list.
274   findRefEdges(Index, &F, RefEdges, Visited);
275   std::vector<const Instruction *> NonVolatileLoads;
276   std::vector<const Instruction *> NonVolatileStores;
277 
278   bool HasInlineAsmMaybeReferencingInternal = false;
279   bool HasIndirBranchToBlockAddress = false;
280   bool HasUnknownCall = false;
281   bool MayThrow = false;
282   for (const BasicBlock &BB : F) {
283     // We don't allow inlining of function with indirect branch to blockaddress.
284     // If the blockaddress escapes the function, e.g., via a global variable,
285     // inlining may lead to an invalid cross-function reference. So we shouldn't
286     // import such function either.
287     if (BB.hasAddressTaken()) {
288       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
289         if (!isa<CallBrInst>(*U)) {
290           HasIndirBranchToBlockAddress = true;
291           break;
292         }
293     }
294 
295     for (const Instruction &I : BB) {
296       if (I.isDebugOrPseudoInst())
297         continue;
298       ++NumInsts;
299 
300       // Regular LTO module doesn't participate in ThinLTO import,
301       // so no reference from it can be read/writeonly, since this
302       // would require importing variable as local copy
303       if (IsThinLTO) {
304         if (isNonVolatileLoad(&I)) {
305           // Postpone processing of non-volatile load instructions
306           // See comments below
307           Visited.insert(&I);
308           NonVolatileLoads.push_back(&I);
309           continue;
310         } else if (isNonVolatileStore(&I)) {
311           Visited.insert(&I);
312           NonVolatileStores.push_back(&I);
313           // All references from second operand of store (destination address)
314           // can be considered write-only if they're not referenced by any
315           // non-store instruction. References from first operand of store
316           // (stored value) can't be treated either as read- or as write-only
317           // so we add them to RefEdges as we do with all other instructions
318           // except non-volatile load.
319           Value *Stored = I.getOperand(0);
320           if (auto *GV = dyn_cast<GlobalValue>(Stored))
321             // findRefEdges will try to examine GV operands, so instead
322             // of calling it we should add GV to RefEdges directly.
323             RefEdges.insert(Index.getOrInsertValueInfo(GV));
324           else if (auto *U = dyn_cast<User>(Stored))
325             findRefEdges(Index, U, RefEdges, Visited);
326           continue;
327         }
328       }
329       findRefEdges(Index, &I, RefEdges, Visited);
330       const auto *CB = dyn_cast<CallBase>(&I);
331       if (!CB) {
332         if (I.mayThrow())
333           MayThrow = true;
334         continue;
335       }
336 
337       const auto *CI = dyn_cast<CallInst>(&I);
338       // Since we don't know exactly which local values are referenced in inline
339       // assembly, conservatively mark the function as possibly referencing
340       // a local value from inline assembly to ensure we don't export a
341       // reference (which would require renaming and promotion of the
342       // referenced value).
343       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
344         HasInlineAsmMaybeReferencingInternal = true;
345 
346       auto *CalledValue = CB->getCalledOperand();
347       auto *CalledFunction = CB->getCalledFunction();
348       if (CalledValue && !CalledFunction) {
349         CalledValue = CalledValue->stripPointerCasts();
350         // Stripping pointer casts can reveal a called function.
351         CalledFunction = dyn_cast<Function>(CalledValue);
352       }
353       // Check if this is an alias to a function. If so, get the
354       // called aliasee for the checks below.
355       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
356         assert(!CalledFunction && "Expected null called function in callsite for alias");
357         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
358       }
359       // Check if this is a direct call to a known function or a known
360       // intrinsic, or an indirect call with profile data.
361       if (CalledFunction) {
362         if (CI && CalledFunction->isIntrinsic()) {
363           addIntrinsicToSummary(
364               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
365               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
366           continue;
367         }
368         // We should have named any anonymous globals
369         assert(CalledFunction->hasName());
370         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
371         auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
372                                    : CalleeInfo::HotnessType::Unknown;
373         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
374           Hotness = CalleeInfo::HotnessType::Cold;
375 
376         // Use the original CalledValue, in case it was an alias. We want
377         // to record the call edge to the alias in that case. Eventually
378         // an alias summary will be created to associate the alias and
379         // aliasee.
380         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
381             cast<GlobalValue>(CalledValue))];
382         ValueInfo.updateHotness(Hotness);
383         // Add the relative block frequency to CalleeInfo if there is no profile
384         // information.
385         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
386           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
387           uint64_t EntryFreq = BFI->getEntryFreq();
388           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
389         }
390       } else {
391         HasUnknownCall = true;
392         // Skip inline assembly calls.
393         if (CI && CI->isInlineAsm())
394           continue;
395         // Skip direct calls.
396         if (!CalledValue || isa<Constant>(CalledValue))
397           continue;
398 
399         // Check if the instruction has a callees metadata. If so, add callees
400         // to CallGraphEdges to reflect the references from the metadata, and
401         // to enable importing for subsequent indirect call promotion and
402         // inlining.
403         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
404           for (auto &Op : MD->operands()) {
405             Function *Callee = mdconst::extract_or_null<Function>(Op);
406             if (Callee)
407               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
408           }
409         }
410 
411         uint32_t NumVals, NumCandidates;
412         uint64_t TotalCount;
413         auto CandidateProfileData =
414             ICallAnalysis.getPromotionCandidatesForInstruction(
415                 &I, NumVals, TotalCount, NumCandidates);
416         for (auto &Candidate : CandidateProfileData)
417           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
418               .updateHotness(getHotness(Candidate.Count, PSI));
419       }
420     }
421   }
422   Index.addBlockCount(F.size());
423 
424   std::vector<ValueInfo> Refs;
425   if (IsThinLTO) {
426     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
427                            SetVector<ValueInfo> &Edges,
428                            SmallPtrSet<const User *, 8> &Cache) {
429       for (const auto *I : Instrs) {
430         Cache.erase(I);
431         findRefEdges(Index, I, Edges, Cache);
432       }
433     };
434 
435     // By now we processed all instructions in a function, except
436     // non-volatile loads and non-volatile value stores. Let's find
437     // ref edges for both of instruction sets
438     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
439     // We can add some values to the Visited set when processing load
440     // instructions which are also used by stores in NonVolatileStores.
441     // For example this can happen if we have following code:
442     //
443     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
444     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
445     //
446     // After processing loads we'll add bitcast to the Visited set, and if
447     // we use the same set while processing stores, we'll never see store
448     // to @bar and @bar will be mistakenly treated as readonly.
449     SmallPtrSet<const llvm::User *, 8> StoreCache;
450     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
451 
452     // If both load and store instruction reference the same variable
453     // we won't be able to optimize it. Add all such reference edges
454     // to RefEdges set.
455     for (auto &VI : StoreRefEdges)
456       if (LoadRefEdges.remove(VI))
457         RefEdges.insert(VI);
458 
459     unsigned RefCnt = RefEdges.size();
460     // All new reference edges inserted in two loops below are either
461     // read or write only. They will be grouped in the end of RefEdges
462     // vector, so we can use a single integer value to identify them.
463     for (auto &VI : LoadRefEdges)
464       RefEdges.insert(VI);
465 
466     unsigned FirstWORef = RefEdges.size();
467     for (auto &VI : StoreRefEdges)
468       RefEdges.insert(VI);
469 
470     Refs = RefEdges.takeVector();
471     for (; RefCnt < FirstWORef; ++RefCnt)
472       Refs[RefCnt].setReadOnly();
473 
474     for (; RefCnt < Refs.size(); ++RefCnt)
475       Refs[RefCnt].setWriteOnly();
476   } else {
477     Refs = RefEdges.takeVector();
478   }
479   // Explicit add hot edges to enforce importing for designated GUIDs for
480   // sample PGO, to enable the same inlines as the profiled optimized binary.
481   for (auto &I : F.getImportGUIDs())
482     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
483         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
484             ? CalleeInfo::HotnessType::Cold
485             : CalleeInfo::HotnessType::Critical);
486 
487   bool NonRenamableLocal = isNonRenamableLocal(F);
488   bool NotEligibleForImport = NonRenamableLocal ||
489                               HasInlineAsmMaybeReferencingInternal ||
490                               HasIndirBranchToBlockAddress;
491   GlobalValueSummary::GVFlags Flags(
492       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
493       /* Live = */ false, F.isDSOLocal(),
494       F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
495   FunctionSummary::FFlags FunFlags{
496       F.hasFnAttribute(Attribute::ReadNone),
497       F.hasFnAttribute(Attribute::ReadOnly),
498       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
499       // FIXME: refactor this to use the same code that inliner is using.
500       // Don't try to import functions with noinline attribute.
501       F.getAttributes().hasFnAttr(Attribute::NoInline),
502       F.hasFnAttribute(Attribute::AlwaysInline),
503       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
504       mustBeUnreachableFunction(F)};
505   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
506   if (auto *SSI = GetSSICallback(F))
507     ParamAccesses = SSI->getParamAccesses(Index);
508   auto FuncSummary = std::make_unique<FunctionSummary>(
509       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
510       CallGraphEdges.takeVector(), TypeTests.takeVector(),
511       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
512       TypeTestAssumeConstVCalls.takeVector(),
513       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
514   if (NonRenamableLocal)
515     CantBePromoted.insert(F.getGUID());
516   Index.addGlobalValueSummary(F, std::move(FuncSummary));
517 }
518 
519 /// Find function pointers referenced within the given vtable initializer
520 /// (or subset of an initializer) \p I. The starting offset of \p I within
521 /// the vtable initializer is \p StartingOffset. Any discovered function
522 /// pointers are added to \p VTableFuncs along with their cumulative offset
523 /// within the initializer.
524 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
525                              const Module &M, ModuleSummaryIndex &Index,
526                              VTableFuncList &VTableFuncs) {
527   // First check if this is a function pointer.
528   if (I->getType()->isPointerTy()) {
529     auto Fn = dyn_cast<Function>(I->stripPointerCasts());
530     // We can disregard __cxa_pure_virtual as a possible call target, as
531     // calls to pure virtuals are UB.
532     if (Fn && Fn->getName() != "__cxa_pure_virtual")
533       VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
534     return;
535   }
536 
537   // Walk through the elements in the constant struct or array and recursively
538   // look for virtual function pointers.
539   const DataLayout &DL = M.getDataLayout();
540   if (auto *C = dyn_cast<ConstantStruct>(I)) {
541     StructType *STy = dyn_cast<StructType>(C->getType());
542     assert(STy);
543     const StructLayout *SL = DL.getStructLayout(C->getType());
544 
545     for (auto EI : llvm::enumerate(STy->elements())) {
546       auto Offset = SL->getElementOffset(EI.index());
547       unsigned Op = SL->getElementContainingOffset(Offset);
548       findFuncPointers(cast<Constant>(I->getOperand(Op)),
549                        StartingOffset + Offset, M, Index, VTableFuncs);
550     }
551   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
552     ArrayType *ATy = C->getType();
553     Type *EltTy = ATy->getElementType();
554     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
555     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
556       findFuncPointers(cast<Constant>(I->getOperand(i)),
557                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
558     }
559   }
560 }
561 
562 // Identify the function pointers referenced by vtable definition \p V.
563 static void computeVTableFuncs(ModuleSummaryIndex &Index,
564                                const GlobalVariable &V, const Module &M,
565                                VTableFuncList &VTableFuncs) {
566   if (!V.isConstant())
567     return;
568 
569   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
570                    VTableFuncs);
571 
572 #ifndef NDEBUG
573   // Validate that the VTableFuncs list is ordered by offset.
574   uint64_t PrevOffset = 0;
575   for (auto &P : VTableFuncs) {
576     // The findVFuncPointers traversal should have encountered the
577     // functions in offset order. We need to use ">=" since PrevOffset
578     // starts at 0.
579     assert(P.VTableOffset >= PrevOffset);
580     PrevOffset = P.VTableOffset;
581   }
582 #endif
583 }
584 
585 /// Record vtable definition \p V for each type metadata it references.
586 static void
587 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
588                                        const GlobalVariable &V,
589                                        SmallVectorImpl<MDNode *> &Types) {
590   for (MDNode *Type : Types) {
591     auto TypeID = Type->getOperand(1).get();
592 
593     uint64_t Offset =
594         cast<ConstantInt>(
595             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
596             ->getZExtValue();
597 
598     if (auto *TypeId = dyn_cast<MDString>(TypeID))
599       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
600           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
601   }
602 }
603 
604 static void computeVariableSummary(ModuleSummaryIndex &Index,
605                                    const GlobalVariable &V,
606                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
607                                    const Module &M,
608                                    SmallVectorImpl<MDNode *> &Types) {
609   SetVector<ValueInfo> RefEdges;
610   SmallPtrSet<const User *, 8> Visited;
611   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
612   bool NonRenamableLocal = isNonRenamableLocal(V);
613   GlobalValueSummary::GVFlags Flags(
614       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
615       /* Live = */ false, V.isDSOLocal(),
616       V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
617 
618   VTableFuncList VTableFuncs;
619   // If splitting is not enabled, then we compute the summary information
620   // necessary for index-based whole program devirtualization.
621   if (!Index.enableSplitLTOUnit()) {
622     Types.clear();
623     V.getMetadata(LLVMContext::MD_type, Types);
624     if (!Types.empty()) {
625       // Identify the function pointers referenced by this vtable definition.
626       computeVTableFuncs(Index, V, M, VTableFuncs);
627 
628       // Record this vtable definition for each type metadata it references.
629       recordTypeIdCompatibleVtableReferences(Index, V, Types);
630     }
631   }
632 
633   // Don't mark variables we won't be able to internalize as read/write-only.
634   bool CanBeInternalized =
635       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
636       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
637   bool Constant = V.isConstant();
638   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
639                                        Constant ? false : CanBeInternalized,
640                                        Constant, V.getVCallVisibility());
641   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
642                                                          RefEdges.takeVector());
643   if (NonRenamableLocal)
644     CantBePromoted.insert(V.getGUID());
645   if (HasBlockAddress)
646     GVarSummary->setNotEligibleToImport();
647   if (!VTableFuncs.empty())
648     GVarSummary->setVTableFuncs(VTableFuncs);
649   Index.addGlobalValueSummary(V, std::move(GVarSummary));
650 }
651 
652 static void
653 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
654                     DenseSet<GlobalValue::GUID> &CantBePromoted) {
655   bool NonRenamableLocal = isNonRenamableLocal(A);
656   GlobalValueSummary::GVFlags Flags(
657       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
658       /* Live = */ false, A.isDSOLocal(),
659       A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
660   auto AS = std::make_unique<AliasSummary>(Flags);
661   auto *Aliasee = A.getAliaseeObject();
662   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
663   assert(AliaseeVI && "Alias expects aliasee summary to be available");
664   assert(AliaseeVI.getSummaryList().size() == 1 &&
665          "Expected a single entry per aliasee in per-module index");
666   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
667   if (NonRenamableLocal)
668     CantBePromoted.insert(A.getGUID());
669   Index.addGlobalValueSummary(A, std::move(AS));
670 }
671 
672 // Set LiveRoot flag on entries matching the given value name.
673 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
674   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
675     for (auto &Summary : VI.getSummaryList())
676       Summary->setLive(true);
677 }
678 
679 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
680     const Module &M,
681     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
682     ProfileSummaryInfo *PSI,
683     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
684   assert(PSI);
685   bool EnableSplitLTOUnit = false;
686   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
687           M.getModuleFlag("EnableSplitLTOUnit")))
688     EnableSplitLTOUnit = MD->getZExtValue();
689   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
690 
691   // Identify the local values in the llvm.used and llvm.compiler.used sets,
692   // which should not be exported as they would then require renaming and
693   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
694   // here because we use this information to mark functions containing inline
695   // assembly calls as not importable.
696   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
697   SmallVector<GlobalValue *, 4> Used;
698   // First collect those in the llvm.used set.
699   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
700   // Next collect those in the llvm.compiler.used set.
701   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
702   DenseSet<GlobalValue::GUID> CantBePromoted;
703   for (auto *V : Used) {
704     if (V->hasLocalLinkage()) {
705       LocalsUsed.insert(V);
706       CantBePromoted.insert(V->getGUID());
707     }
708   }
709 
710   bool HasLocalInlineAsmSymbol = false;
711   if (!M.getModuleInlineAsm().empty()) {
712     // Collect the local values defined by module level asm, and set up
713     // summaries for these symbols so that they can be marked as NoRename,
714     // to prevent export of any use of them in regular IR that would require
715     // renaming within the module level asm. Note we don't need to create a
716     // summary for weak or global defs, as they don't need to be flagged as
717     // NoRename, and defs in module level asm can't be imported anyway.
718     // Also, any values used but not defined within module level asm should
719     // be listed on the llvm.used or llvm.compiler.used global and marked as
720     // referenced from there.
721     ModuleSymbolTable::CollectAsmSymbols(
722         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
723           // Symbols not marked as Weak or Global are local definitions.
724           if (Flags & (object::BasicSymbolRef::SF_Weak |
725                        object::BasicSymbolRef::SF_Global))
726             return;
727           HasLocalInlineAsmSymbol = true;
728           GlobalValue *GV = M.getNamedValue(Name);
729           if (!GV)
730             return;
731           assert(GV->isDeclaration() && "Def in module asm already has definition");
732           GlobalValueSummary::GVFlags GVFlags(
733               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
734               /* NotEligibleToImport = */ true,
735               /* Live = */ true,
736               /* Local */ GV->isDSOLocal(),
737               GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
738           CantBePromoted.insert(GV->getGUID());
739           // Create the appropriate summary type.
740           if (Function *F = dyn_cast<Function>(GV)) {
741             std::unique_ptr<FunctionSummary> Summary =
742                 std::make_unique<FunctionSummary>(
743                     GVFlags, /*InstCount=*/0,
744                     FunctionSummary::FFlags{
745                         F->hasFnAttribute(Attribute::ReadNone),
746                         F->hasFnAttribute(Attribute::ReadOnly),
747                         F->hasFnAttribute(Attribute::NoRecurse),
748                         F->returnDoesNotAlias(),
749                         /* NoInline = */ false,
750                         F->hasFnAttribute(Attribute::AlwaysInline),
751                         F->hasFnAttribute(Attribute::NoUnwind),
752                         /* MayThrow */ true,
753                         /* HasUnknownCall */ true,
754                         /* MustBeUnreachable */ false},
755                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
756                     ArrayRef<FunctionSummary::EdgeTy>{},
757                     ArrayRef<GlobalValue::GUID>{},
758                     ArrayRef<FunctionSummary::VFuncId>{},
759                     ArrayRef<FunctionSummary::VFuncId>{},
760                     ArrayRef<FunctionSummary::ConstVCall>{},
761                     ArrayRef<FunctionSummary::ConstVCall>{},
762                     ArrayRef<FunctionSummary::ParamAccess>{});
763             Index.addGlobalValueSummary(*GV, std::move(Summary));
764           } else {
765             std::unique_ptr<GlobalVarSummary> Summary =
766                 std::make_unique<GlobalVarSummary>(
767                     GVFlags,
768                     GlobalVarSummary::GVarFlags(
769                         false, false, cast<GlobalVariable>(GV)->isConstant(),
770                         GlobalObject::VCallVisibilityPublic),
771                     ArrayRef<ValueInfo>{});
772             Index.addGlobalValueSummary(*GV, std::move(Summary));
773           }
774         });
775   }
776 
777   bool IsThinLTO = true;
778   if (auto *MD =
779           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
780     IsThinLTO = MD->getZExtValue();
781 
782   // Compute summaries for all functions defined in module, and save in the
783   // index.
784   for (auto &F : M) {
785     if (F.isDeclaration())
786       continue;
787 
788     DominatorTree DT(const_cast<Function &>(F));
789     BlockFrequencyInfo *BFI = nullptr;
790     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
791     if (GetBFICallback)
792       BFI = GetBFICallback(F);
793     else if (F.hasProfileData()) {
794       LoopInfo LI{DT};
795       BranchProbabilityInfo BPI{F, LI};
796       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
797       BFI = BFIPtr.get();
798     }
799 
800     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
801                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
802                            CantBePromoted, IsThinLTO, GetSSICallback);
803   }
804 
805   // Compute summaries for all variables defined in module, and save in the
806   // index.
807   SmallVector<MDNode *, 2> Types;
808   for (const GlobalVariable &G : M.globals()) {
809     if (G.isDeclaration())
810       continue;
811     computeVariableSummary(Index, G, CantBePromoted, M, Types);
812   }
813 
814   // Compute summaries for all aliases defined in module, and save in the
815   // index.
816   for (const GlobalAlias &A : M.aliases())
817     computeAliasSummary(Index, A, CantBePromoted);
818 
819   for (auto *V : LocalsUsed) {
820     auto *Summary = Index.getGlobalValueSummary(*V);
821     assert(Summary && "Missing summary for global value");
822     Summary->setNotEligibleToImport();
823   }
824 
825   // The linker doesn't know about these LLVM produced values, so we need
826   // to flag them as live in the index to ensure index-based dead value
827   // analysis treats them as live roots of the analysis.
828   setLiveRoot(Index, "llvm.used");
829   setLiveRoot(Index, "llvm.compiler.used");
830   setLiveRoot(Index, "llvm.global_ctors");
831   setLiveRoot(Index, "llvm.global_dtors");
832   setLiveRoot(Index, "llvm.global.annotations");
833 
834   for (auto &GlobalList : Index) {
835     // Ignore entries for references that are undefined in the current module.
836     if (GlobalList.second.SummaryList.empty())
837       continue;
838 
839     assert(GlobalList.second.SummaryList.size() == 1 &&
840            "Expected module's index to have one summary per GUID");
841     auto &Summary = GlobalList.second.SummaryList[0];
842     if (!IsThinLTO) {
843       Summary->setNotEligibleToImport();
844       continue;
845     }
846 
847     bool AllRefsCanBeExternallyReferenced =
848         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
849           return !CantBePromoted.count(VI.getGUID());
850         });
851     if (!AllRefsCanBeExternallyReferenced) {
852       Summary->setNotEligibleToImport();
853       continue;
854     }
855 
856     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
857       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
858           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
859             return !CantBePromoted.count(Edge.first.getGUID());
860           });
861       if (!AllCallsCanBeExternallyReferenced)
862         Summary->setNotEligibleToImport();
863     }
864   }
865 
866   if (!ModuleSummaryDotFile.empty()) {
867     std::error_code EC;
868     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
869     if (EC)
870       report_fatal_error(Twine("Failed to open dot file ") +
871                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
872     Index.exportToDot(OSDot, {});
873   }
874 
875   return Index;
876 }
877 
878 AnalysisKey ModuleSummaryIndexAnalysis::Key;
879 
880 ModuleSummaryIndex
881 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
882   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
883   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
884   bool NeedSSI = needsParamAccessSummary(M);
885   return buildModuleSummaryIndex(
886       M,
887       [&FAM](const Function &F) {
888         return &FAM.getResult<BlockFrequencyAnalysis>(
889             *const_cast<Function *>(&F));
890       },
891       &PSI,
892       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
893         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
894                              const_cast<Function &>(F))
895                        : nullptr;
896       });
897 }
898 
899 char ModuleSummaryIndexWrapperPass::ID = 0;
900 
901 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
902                       "Module Summary Analysis", false, true)
903 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
904 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
905 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
906 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
907                     "Module Summary Analysis", false, true)
908 
909 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
910   return new ModuleSummaryIndexWrapperPass();
911 }
912 
913 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
914     : ModulePass(ID) {
915   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
916 }
917 
918 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
919   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
920   bool NeedSSI = needsParamAccessSummary(M);
921   Index.emplace(buildModuleSummaryIndex(
922       M,
923       [this](const Function &F) {
924         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
925                          *const_cast<Function *>(&F))
926                      .getBFI());
927       },
928       PSI,
929       [&](const Function &F) -> const StackSafetyInfo * {
930         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
931                               const_cast<Function &>(F))
932                               .getResult()
933                        : nullptr;
934       }));
935   return false;
936 }
937 
938 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
939   Index.reset();
940   return false;
941 }
942 
943 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
944   AU.setPreservesAll();
945   AU.addRequired<BlockFrequencyInfoWrapperPass>();
946   AU.addRequired<ProfileSummaryInfoWrapperPass>();
947   AU.addRequired<StackSafetyInfoWrapperPass>();
948 }
949 
950 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
951 
952 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
953     const ModuleSummaryIndex *Index)
954     : ImmutablePass(ID), Index(Index) {
955   initializeImmutableModuleSummaryIndexWrapperPassPass(
956       *PassRegistry::getPassRegistry());
957 }
958 
959 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
960     AnalysisUsage &AU) const {
961   AU.setPreservesAll();
962 }
963 
964 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
965     const ModuleSummaryIndex *Index) {
966   return new ImmutableModuleSummaryIndexWrapperPass(Index);
967 }
968 
969 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
970                 "Module summary info", false, true)
971