xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "module-summary-analysis"
61 
62 // Option to force edges cold which will block importing when the
63 // -import-cold-multiplier is set to 0. Useful for debugging.
64 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
65     FunctionSummary::FSHT_None;
66 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
67     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
68     cl::desc("Force all edges in the function summary to cold"),
69     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
70                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
71                           "all-non-critical", "All non-critical edges."),
72                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
73 
74 cl::opt<std::string> ModuleSummaryDotFile(
75     "module-summary-dot-file", cl::init(""), cl::Hidden,
76     cl::value_desc("filename"),
77     cl::desc("File to emit dot graph of new summary into."));
78 
79 // Walk through the operands of a given User via worklist iteration and populate
80 // the set of GlobalValue references encountered. Invoked either on an
81 // Instruction or a GlobalVariable (which walks its initializer).
82 // Return true if any of the operands contains blockaddress. This is important
83 // to know when computing summary for global var, because if global variable
84 // references basic block address we can't import it separately from function
85 // containing that basic block. For simplicity we currently don't import such
86 // global vars at all. When importing function we aren't interested if any
87 // instruction in it takes an address of any basic block, because instruction
88 // can only take an address of basic block located in the same function.
89 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
90                          SetVector<ValueInfo> &RefEdges,
91                          SmallPtrSet<const User *, 8> &Visited) {
92   bool HasBlockAddress = false;
93   SmallVector<const User *, 32> Worklist;
94   Worklist.push_back(CurUser);
95 
96   while (!Worklist.empty()) {
97     const User *U = Worklist.pop_back_val();
98 
99     if (!Visited.insert(U).second)
100       continue;
101 
102     ImmutableCallSite CS(U);
103 
104     for (const auto &OI : U->operands()) {
105       const User *Operand = dyn_cast<User>(OI);
106       if (!Operand)
107         continue;
108       if (isa<BlockAddress>(Operand)) {
109         HasBlockAddress = true;
110         continue;
111       }
112       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
113         // We have a reference to a global value. This should be added to
114         // the reference set unless it is a callee. Callees are handled
115         // specially by WriteFunction and are added to a separate list.
116         if (!(CS && CS.isCallee(&OI)))
117           RefEdges.insert(Index.getOrInsertValueInfo(GV));
118         continue;
119       }
120       Worklist.push_back(Operand);
121     }
122   }
123   return HasBlockAddress;
124 }
125 
126 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
127                                           ProfileSummaryInfo *PSI) {
128   if (!PSI)
129     return CalleeInfo::HotnessType::Unknown;
130   if (PSI->isHotCount(ProfileCount))
131     return CalleeInfo::HotnessType::Hot;
132   if (PSI->isColdCount(ProfileCount))
133     return CalleeInfo::HotnessType::Cold;
134   return CalleeInfo::HotnessType::None;
135 }
136 
137 static bool isNonRenamableLocal(const GlobalValue &GV) {
138   return GV.hasSection() && GV.hasLocalLinkage();
139 }
140 
141 /// Determine whether this call has all constant integer arguments (excluding
142 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
143 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
144                           SetVector<FunctionSummary::VFuncId> &VCalls,
145                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
146   std::vector<uint64_t> Args;
147   // Start from the second argument to skip the "this" pointer.
148   for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) {
149     auto *CI = dyn_cast<ConstantInt>(Arg);
150     if (!CI || CI->getBitWidth() > 64) {
151       VCalls.insert({Guid, Call.Offset});
152       return;
153     }
154     Args.push_back(CI->getZExtValue());
155   }
156   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
157 }
158 
159 /// If this intrinsic call requires that we add information to the function
160 /// summary, do so via the non-constant reference arguments.
161 static void addIntrinsicToSummary(
162     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
163     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
164     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
165     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
166     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
167     DominatorTree &DT) {
168   switch (CI->getCalledFunction()->getIntrinsicID()) {
169   case Intrinsic::type_test: {
170     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
171     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
172     if (!TypeId)
173       break;
174     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
175 
176     // Produce a summary from type.test intrinsics. We only summarize type.test
177     // intrinsics that are used other than by an llvm.assume intrinsic.
178     // Intrinsics that are assumed are relevant only to the devirtualization
179     // pass, not the type test lowering pass.
180     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
181       auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
182       if (!AssumeCI)
183         return true;
184       Function *F = AssumeCI->getCalledFunction();
185       return !F || F->getIntrinsicID() != Intrinsic::assume;
186     });
187     if (HasNonAssumeUses)
188       TypeTests.insert(Guid);
189 
190     SmallVector<DevirtCallSite, 4> DevirtCalls;
191     SmallVector<CallInst *, 4> Assumes;
192     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
193     for (auto &Call : DevirtCalls)
194       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
195                     TypeTestAssumeConstVCalls);
196 
197     break;
198   }
199 
200   case Intrinsic::type_checked_load: {
201     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
202     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
203     if (!TypeId)
204       break;
205     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
206 
207     SmallVector<DevirtCallSite, 4> DevirtCalls;
208     SmallVector<Instruction *, 4> LoadedPtrs;
209     SmallVector<Instruction *, 4> Preds;
210     bool HasNonCallUses = false;
211     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
212                                                HasNonCallUses, CI, DT);
213     // Any non-call uses of the result of llvm.type.checked.load will
214     // prevent us from optimizing away the llvm.type.test.
215     if (HasNonCallUses)
216       TypeTests.insert(Guid);
217     for (auto &Call : DevirtCalls)
218       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
219                     TypeCheckedLoadConstVCalls);
220 
221     break;
222   }
223   default:
224     break;
225   }
226 }
227 
228 static bool isNonVolatileLoad(const Instruction *I) {
229   if (const auto *LI = dyn_cast<LoadInst>(I))
230     return !LI->isVolatile();
231 
232   return false;
233 }
234 
235 static bool isNonVolatileStore(const Instruction *I) {
236   if (const auto *SI = dyn_cast<StoreInst>(I))
237     return !SI->isVolatile();
238 
239   return false;
240 }
241 
242 static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
243                                    const Function &F, BlockFrequencyInfo *BFI,
244                                    ProfileSummaryInfo *PSI, DominatorTree &DT,
245                                    bool HasLocalsInUsedOrAsm,
246                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
247                                    bool IsThinLTO) {
248   // Summary not currently supported for anonymous functions, they should
249   // have been named.
250   assert(F.hasName());
251 
252   unsigned NumInsts = 0;
253   // Map from callee ValueId to profile count. Used to accumulate profile
254   // counts for all static calls to a given callee.
255   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
256   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
257   SetVector<GlobalValue::GUID> TypeTests;
258   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
259       TypeCheckedLoadVCalls;
260   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
261       TypeCheckedLoadConstVCalls;
262   ICallPromotionAnalysis ICallAnalysis;
263   SmallPtrSet<const User *, 8> Visited;
264 
265   // Add personality function, prefix data and prologue data to function's ref
266   // list.
267   findRefEdges(Index, &F, RefEdges, Visited);
268   std::vector<const Instruction *> NonVolatileLoads;
269   std::vector<const Instruction *> NonVolatileStores;
270 
271   bool HasInlineAsmMaybeReferencingInternal = false;
272   for (const BasicBlock &BB : F)
273     for (const Instruction &I : BB) {
274       if (isa<DbgInfoIntrinsic>(I))
275         continue;
276       ++NumInsts;
277       // Regular LTO module doesn't participate in ThinLTO import,
278       // so no reference from it can be read/writeonly, since this
279       // would require importing variable as local copy
280       if (IsThinLTO) {
281         if (isNonVolatileLoad(&I)) {
282           // Postpone processing of non-volatile load instructions
283           // See comments below
284           Visited.insert(&I);
285           NonVolatileLoads.push_back(&I);
286           continue;
287         } else if (isNonVolatileStore(&I)) {
288           Visited.insert(&I);
289           NonVolatileStores.push_back(&I);
290           // All references from second operand of store (destination address)
291           // can be considered write-only if they're not referenced by any
292           // non-store instruction. References from first operand of store
293           // (stored value) can't be treated either as read- or as write-only
294           // so we add them to RefEdges as we do with all other instructions
295           // except non-volatile load.
296           Value *Stored = I.getOperand(0);
297           if (auto *GV = dyn_cast<GlobalValue>(Stored))
298             // findRefEdges will try to examine GV operands, so instead
299             // of calling it we should add GV to RefEdges directly.
300             RefEdges.insert(Index.getOrInsertValueInfo(GV));
301           else if (auto *U = dyn_cast<User>(Stored))
302             findRefEdges(Index, U, RefEdges, Visited);
303           continue;
304         }
305       }
306       findRefEdges(Index, &I, RefEdges, Visited);
307       auto CS = ImmutableCallSite(&I);
308       if (!CS)
309         continue;
310 
311       const auto *CI = dyn_cast<CallInst>(&I);
312       // Since we don't know exactly which local values are referenced in inline
313       // assembly, conservatively mark the function as possibly referencing
314       // a local value from inline assembly to ensure we don't export a
315       // reference (which would require renaming and promotion of the
316       // referenced value).
317       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
318         HasInlineAsmMaybeReferencingInternal = true;
319 
320       auto *CalledValue = CS.getCalledValue();
321       auto *CalledFunction = CS.getCalledFunction();
322       if (CalledValue && !CalledFunction) {
323         CalledValue = CalledValue->stripPointerCasts();
324         // Stripping pointer casts can reveal a called function.
325         CalledFunction = dyn_cast<Function>(CalledValue);
326       }
327       // Check if this is an alias to a function. If so, get the
328       // called aliasee for the checks below.
329       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
330         assert(!CalledFunction && "Expected null called function in callsite for alias");
331         CalledFunction = dyn_cast<Function>(GA->getBaseObject());
332       }
333       // Check if this is a direct call to a known function or a known
334       // intrinsic, or an indirect call with profile data.
335       if (CalledFunction) {
336         if (CI && CalledFunction->isIntrinsic()) {
337           addIntrinsicToSummary(
338               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
339               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
340           continue;
341         }
342         // We should have named any anonymous globals
343         assert(CalledFunction->hasName());
344         auto ScaledCount = PSI->getProfileCount(&I, BFI);
345         auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
346                                    : CalleeInfo::HotnessType::Unknown;
347         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
348           Hotness = CalleeInfo::HotnessType::Cold;
349 
350         // Use the original CalledValue, in case it was an alias. We want
351         // to record the call edge to the alias in that case. Eventually
352         // an alias summary will be created to associate the alias and
353         // aliasee.
354         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
355             cast<GlobalValue>(CalledValue))];
356         ValueInfo.updateHotness(Hotness);
357         // Add the relative block frequency to CalleeInfo if there is no profile
358         // information.
359         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
360           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
361           uint64_t EntryFreq = BFI->getEntryFreq();
362           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
363         }
364       } else {
365         // Skip inline assembly calls.
366         if (CI && CI->isInlineAsm())
367           continue;
368         // Skip direct calls.
369         if (!CalledValue || isa<Constant>(CalledValue))
370           continue;
371 
372         // Check if the instruction has a callees metadata. If so, add callees
373         // to CallGraphEdges to reflect the references from the metadata, and
374         // to enable importing for subsequent indirect call promotion and
375         // inlining.
376         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
377           for (auto &Op : MD->operands()) {
378             Function *Callee = mdconst::extract_or_null<Function>(Op);
379             if (Callee)
380               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
381           }
382         }
383 
384         uint32_t NumVals, NumCandidates;
385         uint64_t TotalCount;
386         auto CandidateProfileData =
387             ICallAnalysis.getPromotionCandidatesForInstruction(
388                 &I, NumVals, TotalCount, NumCandidates);
389         for (auto &Candidate : CandidateProfileData)
390           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
391               .updateHotness(getHotness(Candidate.Count, PSI));
392       }
393     }
394 
395   std::vector<ValueInfo> Refs;
396   if (IsThinLTO) {
397     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
398                            SetVector<ValueInfo> &Edges,
399                            SmallPtrSet<const User *, 8> &Cache) {
400       for (const auto *I : Instrs) {
401         Cache.erase(I);
402         findRefEdges(Index, I, Edges, Cache);
403       }
404     };
405 
406     // By now we processed all instructions in a function, except
407     // non-volatile loads and non-volatile value stores. Let's find
408     // ref edges for both of instruction sets
409     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
410     // We can add some values to the Visited set when processing load
411     // instructions which are also used by stores in NonVolatileStores.
412     // For example this can happen if we have following code:
413     //
414     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
415     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
416     //
417     // After processing loads we'll add bitcast to the Visited set, and if
418     // we use the same set while processing stores, we'll never see store
419     // to @bar and @bar will be mistakenly treated as readonly.
420     SmallPtrSet<const llvm::User *, 8> StoreCache;
421     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
422 
423     // If both load and store instruction reference the same variable
424     // we won't be able to optimize it. Add all such reference edges
425     // to RefEdges set.
426     for (auto &VI : StoreRefEdges)
427       if (LoadRefEdges.remove(VI))
428         RefEdges.insert(VI);
429 
430     unsigned RefCnt = RefEdges.size();
431     // All new reference edges inserted in two loops below are either
432     // read or write only. They will be grouped in the end of RefEdges
433     // vector, so we can use a single integer value to identify them.
434     for (auto &VI : LoadRefEdges)
435       RefEdges.insert(VI);
436 
437     unsigned FirstWORef = RefEdges.size();
438     for (auto &VI : StoreRefEdges)
439       RefEdges.insert(VI);
440 
441     Refs = RefEdges.takeVector();
442     for (; RefCnt < FirstWORef; ++RefCnt)
443       Refs[RefCnt].setReadOnly();
444 
445     for (; RefCnt < Refs.size(); ++RefCnt)
446       Refs[RefCnt].setWriteOnly();
447   } else {
448     Refs = RefEdges.takeVector();
449   }
450   // Explicit add hot edges to enforce importing for designated GUIDs for
451   // sample PGO, to enable the same inlines as the profiled optimized binary.
452   for (auto &I : F.getImportGUIDs())
453     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
454         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
455             ? CalleeInfo::HotnessType::Cold
456             : CalleeInfo::HotnessType::Critical);
457 
458   bool NonRenamableLocal = isNonRenamableLocal(F);
459   bool NotEligibleForImport =
460       NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
461   GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
462                                     /* Live = */ false, F.isDSOLocal(),
463                                     F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
464   FunctionSummary::FFlags FunFlags{
465       F.hasFnAttribute(Attribute::ReadNone),
466       F.hasFnAttribute(Attribute::ReadOnly),
467       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
468       // FIXME: refactor this to use the same code that inliner is using.
469       // Don't try to import functions with noinline attribute.
470       F.getAttributes().hasFnAttribute(Attribute::NoInline),
471       F.hasFnAttribute(Attribute::AlwaysInline)};
472   auto FuncSummary = std::make_unique<FunctionSummary>(
473       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
474       CallGraphEdges.takeVector(), TypeTests.takeVector(),
475       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
476       TypeTestAssumeConstVCalls.takeVector(),
477       TypeCheckedLoadConstVCalls.takeVector());
478   if (NonRenamableLocal)
479     CantBePromoted.insert(F.getGUID());
480   Index.addGlobalValueSummary(F, std::move(FuncSummary));
481 }
482 
483 /// Find function pointers referenced within the given vtable initializer
484 /// (or subset of an initializer) \p I. The starting offset of \p I within
485 /// the vtable initializer is \p StartingOffset. Any discovered function
486 /// pointers are added to \p VTableFuncs along with their cumulative offset
487 /// within the initializer.
488 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
489                              const Module &M, ModuleSummaryIndex &Index,
490                              VTableFuncList &VTableFuncs) {
491   // First check if this is a function pointer.
492   if (I->getType()->isPointerTy()) {
493     auto Fn = dyn_cast<Function>(I->stripPointerCasts());
494     // We can disregard __cxa_pure_virtual as a possible call target, as
495     // calls to pure virtuals are UB.
496     if (Fn && Fn->getName() != "__cxa_pure_virtual")
497       VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
498     return;
499   }
500 
501   // Walk through the elements in the constant struct or array and recursively
502   // look for virtual function pointers.
503   const DataLayout &DL = M.getDataLayout();
504   if (auto *C = dyn_cast<ConstantStruct>(I)) {
505     StructType *STy = dyn_cast<StructType>(C->getType());
506     assert(STy);
507     const StructLayout *SL = DL.getStructLayout(C->getType());
508 
509     for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
510                                       EE = STy->element_end();
511          EI != EE; ++EI) {
512       auto Offset = SL->getElementOffset(EI - EB);
513       unsigned Op = SL->getElementContainingOffset(Offset);
514       findFuncPointers(cast<Constant>(I->getOperand(Op)),
515                        StartingOffset + Offset, M, Index, VTableFuncs);
516     }
517   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
518     ArrayType *ATy = C->getType();
519     Type *EltTy = ATy->getElementType();
520     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
521     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
522       findFuncPointers(cast<Constant>(I->getOperand(i)),
523                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
524     }
525   }
526 }
527 
528 // Identify the function pointers referenced by vtable definition \p V.
529 static void computeVTableFuncs(ModuleSummaryIndex &Index,
530                                const GlobalVariable &V, const Module &M,
531                                VTableFuncList &VTableFuncs) {
532   if (!V.isConstant())
533     return;
534 
535   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
536                    VTableFuncs);
537 
538 #ifndef NDEBUG
539   // Validate that the VTableFuncs list is ordered by offset.
540   uint64_t PrevOffset = 0;
541   for (auto &P : VTableFuncs) {
542     // The findVFuncPointers traversal should have encountered the
543     // functions in offset order. We need to use ">=" since PrevOffset
544     // starts at 0.
545     assert(P.VTableOffset >= PrevOffset);
546     PrevOffset = P.VTableOffset;
547   }
548 #endif
549 }
550 
551 /// Record vtable definition \p V for each type metadata it references.
552 static void
553 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
554                                        const GlobalVariable &V,
555                                        SmallVectorImpl<MDNode *> &Types) {
556   for (MDNode *Type : Types) {
557     auto TypeID = Type->getOperand(1).get();
558 
559     uint64_t Offset =
560         cast<ConstantInt>(
561             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
562             ->getZExtValue();
563 
564     if (auto *TypeId = dyn_cast<MDString>(TypeID))
565       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
566           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
567   }
568 }
569 
570 static void computeVariableSummary(ModuleSummaryIndex &Index,
571                                    const GlobalVariable &V,
572                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
573                                    const Module &M,
574                                    SmallVectorImpl<MDNode *> &Types) {
575   SetVector<ValueInfo> RefEdges;
576   SmallPtrSet<const User *, 8> Visited;
577   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
578   bool NonRenamableLocal = isNonRenamableLocal(V);
579   GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
580                                     /* Live = */ false, V.isDSOLocal(),
581                                     V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
582 
583   VTableFuncList VTableFuncs;
584   // If splitting is not enabled, then we compute the summary information
585   // necessary for index-based whole program devirtualization.
586   if (!Index.enableSplitLTOUnit()) {
587     Types.clear();
588     V.getMetadata(LLVMContext::MD_type, Types);
589     if (!Types.empty()) {
590       // Identify the function pointers referenced by this vtable definition.
591       computeVTableFuncs(Index, V, M, VTableFuncs);
592 
593       // Record this vtable definition for each type metadata it references.
594       recordTypeIdCompatibleVtableReferences(Index, V, Types);
595     }
596   }
597 
598   // Don't mark variables we won't be able to internalize as read/write-only.
599   bool CanBeInternalized =
600       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
601       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
602   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, CanBeInternalized);
603   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
604                                                          RefEdges.takeVector());
605   if (NonRenamableLocal)
606     CantBePromoted.insert(V.getGUID());
607   if (HasBlockAddress)
608     GVarSummary->setNotEligibleToImport();
609   if (!VTableFuncs.empty())
610     GVarSummary->setVTableFuncs(VTableFuncs);
611   Index.addGlobalValueSummary(V, std::move(GVarSummary));
612 }
613 
614 static void
615 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
616                     DenseSet<GlobalValue::GUID> &CantBePromoted) {
617   bool NonRenamableLocal = isNonRenamableLocal(A);
618   GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
619                                     /* Live = */ false, A.isDSOLocal(),
620                                     A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
621   auto AS = std::make_unique<AliasSummary>(Flags);
622   auto *Aliasee = A.getBaseObject();
623   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
624   assert(AliaseeVI && "Alias expects aliasee summary to be available");
625   assert(AliaseeVI.getSummaryList().size() == 1 &&
626          "Expected a single entry per aliasee in per-module index");
627   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
628   if (NonRenamableLocal)
629     CantBePromoted.insert(A.getGUID());
630   Index.addGlobalValueSummary(A, std::move(AS));
631 }
632 
633 // Set LiveRoot flag on entries matching the given value name.
634 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
635   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
636     for (auto &Summary : VI.getSummaryList())
637       Summary->setLive(true);
638 }
639 
640 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
641     const Module &M,
642     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
643     ProfileSummaryInfo *PSI) {
644   assert(PSI);
645   bool EnableSplitLTOUnit = false;
646   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
647           M.getModuleFlag("EnableSplitLTOUnit")))
648     EnableSplitLTOUnit = MD->getZExtValue();
649   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
650 
651   // Identify the local values in the llvm.used and llvm.compiler.used sets,
652   // which should not be exported as they would then require renaming and
653   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
654   // here because we use this information to mark functions containing inline
655   // assembly calls as not importable.
656   SmallPtrSet<GlobalValue *, 8> LocalsUsed;
657   SmallPtrSet<GlobalValue *, 8> Used;
658   // First collect those in the llvm.used set.
659   collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
660   // Next collect those in the llvm.compiler.used set.
661   collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
662   DenseSet<GlobalValue::GUID> CantBePromoted;
663   for (auto *V : Used) {
664     if (V->hasLocalLinkage()) {
665       LocalsUsed.insert(V);
666       CantBePromoted.insert(V->getGUID());
667     }
668   }
669 
670   bool HasLocalInlineAsmSymbol = false;
671   if (!M.getModuleInlineAsm().empty()) {
672     // Collect the local values defined by module level asm, and set up
673     // summaries for these symbols so that they can be marked as NoRename,
674     // to prevent export of any use of them in regular IR that would require
675     // renaming within the module level asm. Note we don't need to create a
676     // summary for weak or global defs, as they don't need to be flagged as
677     // NoRename, and defs in module level asm can't be imported anyway.
678     // Also, any values used but not defined within module level asm should
679     // be listed on the llvm.used or llvm.compiler.used global and marked as
680     // referenced from there.
681     ModuleSymbolTable::CollectAsmSymbols(
682         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
683           // Symbols not marked as Weak or Global are local definitions.
684           if (Flags & (object::BasicSymbolRef::SF_Weak |
685                        object::BasicSymbolRef::SF_Global))
686             return;
687           HasLocalInlineAsmSymbol = true;
688           GlobalValue *GV = M.getNamedValue(Name);
689           if (!GV)
690             return;
691           assert(GV->isDeclaration() && "Def in module asm already has definition");
692           GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
693                                               /* NotEligibleToImport = */ true,
694                                               /* Live = */ true,
695                                               /* Local */ GV->isDSOLocal(),
696                                               GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
697           CantBePromoted.insert(GV->getGUID());
698           // Create the appropriate summary type.
699           if (Function *F = dyn_cast<Function>(GV)) {
700             std::unique_ptr<FunctionSummary> Summary =
701                 std::make_unique<FunctionSummary>(
702                     GVFlags, /*InstCount=*/0,
703                     FunctionSummary::FFlags{
704                         F->hasFnAttribute(Attribute::ReadNone),
705                         F->hasFnAttribute(Attribute::ReadOnly),
706                         F->hasFnAttribute(Attribute::NoRecurse),
707                         F->returnDoesNotAlias(),
708                         /* NoInline = */ false,
709                         F->hasFnAttribute(Attribute::AlwaysInline)},
710                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
711                     ArrayRef<FunctionSummary::EdgeTy>{},
712                     ArrayRef<GlobalValue::GUID>{},
713                     ArrayRef<FunctionSummary::VFuncId>{},
714                     ArrayRef<FunctionSummary::VFuncId>{},
715                     ArrayRef<FunctionSummary::ConstVCall>{},
716                     ArrayRef<FunctionSummary::ConstVCall>{});
717             Index.addGlobalValueSummary(*GV, std::move(Summary));
718           } else {
719             std::unique_ptr<GlobalVarSummary> Summary =
720                 std::make_unique<GlobalVarSummary>(
721                     GVFlags, GlobalVarSummary::GVarFlags(false, false),
722                     ArrayRef<ValueInfo>{});
723             Index.addGlobalValueSummary(*GV, std::move(Summary));
724           }
725         });
726   }
727 
728   bool IsThinLTO = true;
729   if (auto *MD =
730           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
731     IsThinLTO = MD->getZExtValue();
732 
733   // Compute summaries for all functions defined in module, and save in the
734   // index.
735   for (auto &F : M) {
736     if (F.isDeclaration())
737       continue;
738 
739     DominatorTree DT(const_cast<Function &>(F));
740     BlockFrequencyInfo *BFI = nullptr;
741     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
742     if (GetBFICallback)
743       BFI = GetBFICallback(F);
744     else if (F.hasProfileData()) {
745       LoopInfo LI{DT};
746       BranchProbabilityInfo BPI{F, LI};
747       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
748       BFI = BFIPtr.get();
749     }
750 
751     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
752                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
753                            CantBePromoted, IsThinLTO);
754   }
755 
756   // Compute summaries for all variables defined in module, and save in the
757   // index.
758   SmallVector<MDNode *, 2> Types;
759   for (const GlobalVariable &G : M.globals()) {
760     if (G.isDeclaration())
761       continue;
762     computeVariableSummary(Index, G, CantBePromoted, M, Types);
763   }
764 
765   // Compute summaries for all aliases defined in module, and save in the
766   // index.
767   for (const GlobalAlias &A : M.aliases())
768     computeAliasSummary(Index, A, CantBePromoted);
769 
770   for (auto *V : LocalsUsed) {
771     auto *Summary = Index.getGlobalValueSummary(*V);
772     assert(Summary && "Missing summary for global value");
773     Summary->setNotEligibleToImport();
774   }
775 
776   // The linker doesn't know about these LLVM produced values, so we need
777   // to flag them as live in the index to ensure index-based dead value
778   // analysis treats them as live roots of the analysis.
779   setLiveRoot(Index, "llvm.used");
780   setLiveRoot(Index, "llvm.compiler.used");
781   setLiveRoot(Index, "llvm.global_ctors");
782   setLiveRoot(Index, "llvm.global_dtors");
783   setLiveRoot(Index, "llvm.global.annotations");
784 
785   for (auto &GlobalList : Index) {
786     // Ignore entries for references that are undefined in the current module.
787     if (GlobalList.second.SummaryList.empty())
788       continue;
789 
790     assert(GlobalList.second.SummaryList.size() == 1 &&
791            "Expected module's index to have one summary per GUID");
792     auto &Summary = GlobalList.second.SummaryList[0];
793     if (!IsThinLTO) {
794       Summary->setNotEligibleToImport();
795       continue;
796     }
797 
798     bool AllRefsCanBeExternallyReferenced =
799         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
800           return !CantBePromoted.count(VI.getGUID());
801         });
802     if (!AllRefsCanBeExternallyReferenced) {
803       Summary->setNotEligibleToImport();
804       continue;
805     }
806 
807     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
808       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
809           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
810             return !CantBePromoted.count(Edge.first.getGUID());
811           });
812       if (!AllCallsCanBeExternallyReferenced)
813         Summary->setNotEligibleToImport();
814     }
815   }
816 
817   if (!ModuleSummaryDotFile.empty()) {
818     std::error_code EC;
819     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
820     if (EC)
821       report_fatal_error(Twine("Failed to open dot file ") +
822                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
823     Index.exportToDot(OSDot, {});
824   }
825 
826   return Index;
827 }
828 
829 AnalysisKey ModuleSummaryIndexAnalysis::Key;
830 
831 ModuleSummaryIndex
832 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
833   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
834   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
835   return buildModuleSummaryIndex(
836       M,
837       [&FAM](const Function &F) {
838         return &FAM.getResult<BlockFrequencyAnalysis>(
839             *const_cast<Function *>(&F));
840       },
841       &PSI);
842 }
843 
844 char ModuleSummaryIndexWrapperPass::ID = 0;
845 
846 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
847                       "Module Summary Analysis", false, true)
848 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
849 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
850 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
851                     "Module Summary Analysis", false, true)
852 
853 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
854   return new ModuleSummaryIndexWrapperPass();
855 }
856 
857 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
858     : ModulePass(ID) {
859   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
860 }
861 
862 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
863   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
864   Index.emplace(buildModuleSummaryIndex(
865       M,
866       [this](const Function &F) {
867         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
868                          *const_cast<Function *>(&F))
869                      .getBFI());
870       },
871       PSI));
872   return false;
873 }
874 
875 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
876   Index.reset();
877   return false;
878 }
879 
880 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
881   AU.setPreservesAll();
882   AU.addRequired<BlockFrequencyInfoWrapperPass>();
883   AU.addRequired<ProfileSummaryInfoWrapperPass>();
884 }
885